User's Guide
SNVU608 – December 2018
LM5155EVM-BST User's Guide
The LM5155EVM-BST evaluation module showcases the features and performance of the LM5155
device, wide input voltage, non-synchronous boost controller. The standard configuration is designed to
provide a regulate output of 24 V at 48 W from an input of 6 V to 18 V, switching at a frequency of 440
kHz. The module is designed for ease of configuration, enabling a user to evaluate different applications
on the same module. Functionality includes external clock synchronization, programmable slope
compensation, adjustable soft-start, programmable cycle-by-cycle current limit and output over voltage
protection.
1
2
3
4
5
6
Contents
Features and Electrical Performance ..................................................................................... 3
Application Schematic ....................................................................................................... 5
EVM Photo.................................................................................................................... 6
Test Setup and Procedure .................................................................................................. 7
Test Results .................................................................................................................. 7
Design Files ................................................................................................................. 14
List of Figures
1
Application Circuit............................................................................................................ 5
2
EVM Photo
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
................................................................................................................... 6
Test Setup .................................................................................................................... 7
Efficiency vs Load ........................................................................................................... 8
Load Regulation ............................................................................................................. 8
Thermal Image VIN = 6 V IOUT = 2 A, No forced air cooling ............................................................. 8
Steady State, VIN = 6 V, IOUT = 2 A ....................................................................................... 10
Steady State, VIN = 9 V, IOUT = 2 A ....................................................................................... 10
Steady State, VIN = 12 V, IOUT = 2 A ...................................................................................... 10
Steady State, VIN = 18 V, IOUT = 2 A ...................................................................................... 10
Start-Up, VIN = 6 V, IOUT = 2 A ............................................................................................. 11
Start-Up, VIN = 9 V, IOUT = 2 A ............................................................................................. 11
Start-Up, VIN = 12 V, IOUT = 2 A ........................................................................................... 11
Start-Up, VIN = 18 V, IOUT = 2 A ........................................................................................... 11
Load Transient, VIN = 6 V, IOUT = 1 A to 2 A ............................................................................. 12
Load Transient, VIN = 9 V, IOUT = 1 A to 2 A ............................................................................. 12
Load Transient, VIN = 12 V, IOUT = 1 A to 2 A ........................................................................... 12
Load Transient, VIN = 18 V, IOUT = 1 A to 2 A ........................................................................... 12
Control Loop Response, VIN = 6 V, IOUT = 2A ........................................................................... 12
Control Loop Response, VIN = 9 V, IOUT = 2 A .......................................................................... 12
Control Loop Response, VIN = 12 V, IOUT = 2 A ......................................................................... 12
Control Loop Response, VIN = 18 V, IOUT = 2 A ......................................................................... 12
Top Silkscreen .............................................................................................................. 14
Top Layer ................................................................................................................... 14
Signal Layer 1 .............................................................................................................. 14
Signal Layer 2 .............................................................................................................. 14
SNVU608 – December 2018
Submit Documentation Feedback
LM5155EVM-BST User's Guide
Copyright © 2018, Texas Instruments Incorporated
1
www.ti.com
27
Bottom Layer................................................................................................................ 14
28
Bottom Silkscreen .......................................................................................................... 14
29
LM5155EVM-BST Schematic ............................................................................................. 15
List of Tables
.........................................................................
1
Electrical Performance Standard Configuration
2
Jumper Description .......................................................................................................... 4
3
3
Standard Configuration Jumper Connections ............................................................................ 7
4
LM5155EVM-BST Bill of Materials ....................................................................................... 16
Trademarks
All trademarks are the property of their respective owners.
2
LM5155EVM-BST User's Guide
SNVU608 – December 2018
Submit Documentation Feedback
Copyright © 2018, Texas Instruments Incorporated
Features and Electrical Performance
www.ti.com
1
Features and Electrical Performance
The LM5155EVM-BST supports the following features and performance capabilities:
• Tightly regulated output voltage of 24 V with 1% accurate reference voltage
• High conversion efficiency of > 93% at full load.
• Constant cycle-by-cycle peak inductor current limit over input voltage range
• User adjustable soft-start time using CSS
• Output over-voltage protection
• Multiple BIAS pin and VCC pin connections to test multiple configurations
– BIAS connect to VCC
– BIAS supplied with external power supply
– VCC supplied by external power supply
– BIAS supplied by output voltage
• Power good (PGOOD) indicator with selectable pull-up source
• 440kHz Switching frequency
• External clock synchronization
• Programable slope compensation
1.1
Electrical Parameters
Table 1. Electrical Performance Standard Configuration
Parameter
Test Conditions
MIN
TYP
MAX
UNIT
12
18
V
INPUT CHARACTERISTICS
Input voltage Range VIN
Input voltage turn on VIN(ON)
Operation
6
5.8
V
5.5
V
24
V
Maximum Output Current IOUT
2
A
Output Over-voltage VOUT_OV
26.9
V
Input voltage turn off VIN(OFF)
Adjusted by the UVLO/SYNC resistors
OUTPUT CHARACTERISTICS
Output Voltage VOUT
SYSTEM CHARACTERISTICS
Switching frequency
440
External Clock Synchronization
Full load efficiency
375
VIN =6V, IOUT = 2A
Junction Temperature, TJ
93.3
-40
SNVU608 – December 2018
Submit Documentation Feedback
kHz
505
%
150
LM5155EVM-BST User's Guide
Copyright © 2018, Texas Instruments Incorporated
kHz
C
3
Features and Electrical Performance
1.2
www.ti.com
Configuration Points
Table 2 indicates the available test points and configuration jumpers. These points offer flexibility in
configuring the evaluation module and include but are not limited to;
• BIAS pin to be connected to:
– External supply (VAUX)
– Input voltage (VIN)
– Regulated output voltage (VOUT)
– VCC pin
• PGOOD pin to be supplied by either VCC or VAUX
• External clock synchronization
• Shut-down signal by pulling the UVLO pin low.
Table 2. Jumper Description
Jumper
Pin
TP1
VIN
Positive input voltage sense connection
TP2
SW
Probe point for the switch node of the LM5155 boost circuit
TP3
VOUT
Positive output voltage sense connection
TP4
VIN-
Negative input voltage sense connection
TP5
GND
Negative output voltage sense connection
TP6
VCCext
Supply VCC from and external supply. Note VCCext must be less than the voltage on the
BIAS pin.
TP7
VAUX
TP8
VOUT+
Loop response positive injection point
Supply the BIAS pin from and external supply. R12 also connect to this rail
TP9
VOUT-
Loop response negative injection point
TP10
SYNC
Input for external clock synchronization
TP11
SD
J6
J7
High signal pulls UVLO pin to ground entering shutdown mode
Pin 1 to pin 2
Connect VOUT to the BIAS pin of the LM5155 through D3
Pin 2 to pin 3
Directly connect VOUT to BIAS pin of the LM5155
Pin 1 to pin 2
Connect VIN to the BIAS pin of the LM5155 through D4
Pin 2 to pin 3
Directly connect VIN to BIAS pin of the LM5155
J8
Pin 1 to pin 2
Directly Connect VCC to the BIAS pin
J9
Pin 1 to pin 2
Directly connect VAUX to the BIAS pin
VCC (Pin 1)
Monitor the VCC pin
BIAS-IC (Pin 2)
Monitor the BIAS pin
PGOOD (Pin 3)
Monitor the PGOOD pin
J10
COMP (Pin 4)
SS (Pin 5)
4
Description
Monitor the COMP pin
Monitor the SS pin
UVLO (Pin 6)
Monitor the UVLO pin
AGND (Pin 7)
Connection to AGND plan
LM5155EVM-BST User's Guide
SNVU608 – December 2018
Submit Documentation Feedback
Copyright © 2018, Texas Instruments Incorporated
Application Schematic
www.ti.com
2
Application Schematic
The LM5155EVM-BST is capable of multiple configurations. Figure 1 shows the standard configuration of
the LM5155EVM-BST for which the parameters in Table 1 are valid. Section 4.2 describes the correct
jumper settings and measurement locations recreate the data presented in Section 5.
LM
VIN
DSYNC
VOUT
CIN
COUT
VCC
GATE
RFBB
COMP
SS
CSS
RFREQ
RT
FB
CHF
RPG
PGOOD
RFBT
PGND
AGND
RCS
CFILT
LM5155
RCOMP
RUVB
RFILT
CS
UVLO/SYNC
VCC
Q1
VCC
BIAS
CCOMP
RUVT
CVCC
Figure 1. Application Circuit
SNVU608 – December 2018
Submit Documentation Feedback
LM5155EVM-BST User's Guide
Copyright © 2018, Texas Instruments Incorporated
5
EVM Photo
3
www.ti.com
EVM Photo
Figure 2. EVM Photo
6
LM5155EVM-BST User's Guide
SNVU608 – December 2018
Submit Documentation Feedback
Copyright © 2018, Texas Instruments Incorporated
Test Setup and Procedure
www.ti.com
4
Test Setup and Procedure
4.1
Test Setup
Figure 3 shows the correct jumper positions to configure the evaluation module for the typical application,
as shown in Figure 1. The correct equipment connections and measurement points are shown in Table 3
Table 3. Standard Configuration Jumper Connections
Jumper
Position
J6
Jumper from pin 1 to pin 2
Power Supply
-
Ammeter 1
+
A
COM
Voltmeter 1
V
COM
Voltmeter 2
V
COM
Ammeter 2
A
COM
Electronic Load
+
-
Figure 3. Test Setup
4.2
Test Equipment
Power Supply: The input voltage source (VIN) should be a variable supply capable of 0V to 20V and
source at least 15A.
Multi-meters:
• Voltmeter 1: Input voltage, connect from VIN to VIN• Voltmeter 2: Output voltage, connect from VOUT to GND
• Ammeter 1: Input current, must be able to handle 15A. Shunt resistor can be used as needed.
• Ammeter 2: Output current, must be able to handle 2A. Shunt resistor can be used as needed.
Electronic Load: The load should be constant resistance (CR) or constant current (CC) capable. It should
safely handle 2A at 24V.
Oscilloscope: 20-MHz bandwidth and AC coupling. Measure the output voltage ripple directly across an
output capacitor with a short ground lead. It is not recommended to use a long-leaded ground connection
due to the possibility of noise being coupled into the signal. To measure other waveforms, adjust the
oscilloscope as needed.
5
Test Results
Figure 4 through Figure 19 present the typical performance of the LM5155EVM-BST according to the
BOM and the configuration described in Section 4. Based on measurement techniques and environmental
variables measurements might differ slightly than the data presented.
SNVU608 – December 2018
Submit Documentation Feedback
LM5155EVM-BST User's Guide
Copyright © 2018, Texas Instruments Incorporated
7
Test Results
5.1
www.ti.com
Efficiency Curves
Efficiency vs I OUT
100
95
90
Efficiency (%)
85
80
75
70
65
VIN =18V
VIN =12V
VIN =9V
VIN =6V
60
55
50
0
0.25
0.5
0.75
1
1.25
IOUT(A)
1.5
1.75
2
D001
Figure 4. Efficiency vs Load
5.2
Load Regulation Curves
Load Regulation
25
VIN =18V
VIN =12V
VIIN = 9V
VIN = 6V
24.9
24.8
VOUT (V)
24.7
24.6
24.5
24.4
24.3
24.2
24.1
24
0
0.2
0.4
0.6
0.8
1
1.2
IOUT(A)
1.4
1.6
1.8
2
D001
Figure 5. Load Regulation
5.3
Thermal Performance
8
LM5155EVM-BST User's Guide
SNVU608 – December 2018
Submit Documentation Feedback
Copyright © 2018, Texas Instruments Incorporated
Test Results
www.ti.com
Figure 6. Thermal Image VIN = 6 V IOUT = 2 A, No forced air cooling
SNVU608 – December 2018
Submit Documentation Feedback
LM5155EVM-BST User's Guide
Copyright © 2018, Texas Instruments Incorporated
9
Test Results
5.4
10
www.ti.com
Steady State Waveforms
Figure 7. Steady State, VIN = 6 V, IOUT = 2 A
Figure 8. Steady State, VIN = 9 V, IOUT = 2 A
Figure 9. Steady State, VIN = 12 V, IOUT = 2 A
Figure 10. Steady State, VIN = 18 V, IOUT = 2 A
LM5155EVM-BST User's Guide
SNVU608 – December 2018
Submit Documentation Feedback
Copyright © 2018, Texas Instruments Incorporated
Test Results
www.ti.com
5.5
Start-Up Waveforms
Figure 11. Start-Up, VIN = 6 V, IOUT = 2 A
Figure 12. Start-Up, VIN = 9 V, IOUT = 2 A
Figure 13. Start-Up, VIN = 12 V, IOUT = 2 A
Figure 14. Start-Up, VIN = 18 V, IOUT = 2 A
SNVU608 – December 2018
Submit Documentation Feedback
LM5155EVM-BST User's Guide
Copyright © 2018, Texas Instruments Incorporated
11
Test Results
5.7
Load Transient Waveforms
Figure 15. Load Transient, VIN = 6 V, IOUT = 1 A to 2 A
Figure 16. Load Transient, VIN = 9 V, IOUT = 1 A to 2 A
Figure 17. Load Transient, VIN = 12 V, IOUT = 1 A to 2 A
Figure 18. Load Transient, VIN = 18 V, IOUT = 1 A to 2 A
AC Loop Response Curves
Control Loop Response
VIN = 6V, IOUT = 2A
Control Loop Response
VIN = 9V, IOUT = 2A
60
180
60
180
Gain (dB)
Phase (Deg)
120
40
120
20
60
20
60
0
0
0
0
-20
-60
-20
-60
-40
-120
-40
-120
-60
100
200
300
500 700 1000
2000 3000
5000
10000
Frequency (Hz)
2000030000 50000
100000
200000
-180
500000
-60
100
200
300
500 700 1000
D002
Figure 19. Control Loop Response, VIN = 6 V, IOUT = 2A
12
Gain (dB)
40
Phase (deg)
Gain (dB)
Gain (dB)
Phase (Deg)
2000 3000
5000
10000
Frequency (Hz)
2000030000 50000
100000
200000
Phase (deg)
5.6
www.ti.com
-180
500000
D002
Figure 20. Control Loop Response, VIN = 9 V, IOUT = 2 A
LM5155EVM-BST User's Guide
SNVU608 – December 2018
Submit Documentation Feedback
Copyright © 2018, Texas Instruments Incorporated
Test Results
www.ti.com
Control Loop Response
VIN = 12V, IOUT = 2A
Control Loop Response
VIN = 18V, IOUT = 2A
180
60
180
Gain (dB)
Phase (Deg)
120
40
120
20
60
20
60
0
0
0
0
Gain (dB)
40
Phase (deg)
Gain (dB)
Gain (dB)
Phase (Deg)
-20
-60
-20
-60
-40
-120
-40
-120
-60
100
200
300
500 700 1000
2000 3000
5000
10000
Frequency (Hz)
2000030000 50000
100000
200000
-180
500000
-60
100
200
300
500 700 1000
D002
Figure 21. Control Loop Response, VIN = 12 V, IOUT = 2 A
2000 3000
5000
10000
Frequency (Hz)
2000030000 50000
100000
200000
Phase (deg)
60
-180
500000
D002
Figure 22. Control Loop Response, VIN = 18 V, IOUT = 2 A
SNVU608 – December 2018
Submit Documentation Feedback
LM5155EVM-BST User's Guide
Copyright © 2018, Texas Instruments Incorporated
13
Design Files
6
14
www.ti.com
Design Files
Figure 23. Top Silkscreen
Figure 24. Top Layer
Figure 25. Signal Layer 1
Figure 26. Signal Layer 2
Figure 27. Bottom Layer
Figure 28. Bottom Silkscreen
LM5155EVM-BST User's Guide
SNVU608 – December 2018
Submit Documentation Feedback
Copyright © 2018, Texas Instruments Incorporated
Design Files
www.ti.com
C1
R1
DNP
2.00
VIN+
R20
TP1
VOUT
J2
1
DNP
3
1uH
575-8
VIN = 6.0- 18VDC
C3
C4
C5
C6
C7
C8
1000pF
0.1uF
0.01uF
10uF
10uF
10uF
TP3
VOUT+
D1
L2
L1
J1
2200pF
TP2
SW
VIN
0
DNP
2
6.8uH
C2
100uF
C9
C10
C11
10uF
10uF
10uF
575-8
PMEG060V100EPDZ
J3
R2
0
C12
C15
C16
C17
4.7uF
4.7uF
4.7uF
C13
DNP
100uF
100uF
C14
Fsw = 440KHz
C18
100uF
0.1uF
VOUT = 24VDC @ 2A
J4
J5
R3
PGND
TP4
0
VCCext
VCCExt
VCC
R4
TP6
0
D2
VIN
VAUX
VCC
575-8
Q1
IPC50N04S5L5R5ATMA1
4
GND
TP5
PGND
1,2,3
VIN-
5,6,
7,8
575-8
R5
100
BIAS
C19
R6
0.008
100pF
60V
INPUT VOLTAGE SELECTION
R7
0
VOUT
C21
PGND
BIAS
VCC
UVLO
12
1
2
3
4
5
6
7
PGOOD
COMP
SS
UVLO
R10
24.9k
DNP
R12
24.9k
TP7
VAUX
GATE
2
PGND
D3
60V
3
UVLO/SYNC
TP8
0
BIAS-IC
VAUX
PGND
1
0.01uF
R21
VCC
1uF
U1
VCC
VIN
C20
BIAS-IC
R8
21.0k
VOUT
VOUT+
PGOOD
11
PGOOD
CS
5
R9
10.0
TP9
VOUT-
10
RT
PGND
SS
FB
D4
60V
J6
J7
1
2
3
J8
J9
1
2
3
Default: OPEN
BIAS
Default: Pins 2-3
R13
47.0k
4
SS
J10
9
COMP
AGND
6
DNPC22
R11
7.32k
R14
49.9k
COMP
EP
AGND
8
13
7
C23
External SYNC
NT1
Net-Tie
LM5155DSSR
0.22uF
100pF
C24
DNP
AGND
0.022uF
C25
20V
220pF
PGND
R15
2.0k
D5
R16
UVLO
0
3V
D6
DNP
R17
11.3k
20V
Diode clamp FB
TP10
Q2
BSS123
SYNC
PGND
AGND
R18
10.0k
PGND
TP11
Q3
BSS123
SD
R19
10.0k
AGND
PGND
Figure 29. LM5155EVM-BST Schematic
SNVU608 – December 2018
Submit Documentation Feedback
LM5155EVM-BST User's Guide
Copyright © 2018, Texas Instruments Incorporated
15
Design Files
www.ti.com
Table 4. LM5155EVM-BST Bill of Materials
16
Designator
Qty Value
Description
!PCB1
1
Printed Circuit
Board
C2
1
100uF
CAP, Polymer
Hybrid, 100 uF,
50 V, +/- 20%,
28 ohm, 10x10
SMD
C3
1
1000pF
CAP, CERM,
1000 pF, 50 V,
+/- 10%, X7R,
0603
C4, C18
2
C5, C21
PackageRefere
nce
PartNumber
Manufacturer
BMC028
Any
10x10
EEHZC1H101P
Panasonic
0603
C0603X102K5R
ACTU
Kemet
0.1uF
CAP, CERM, 0.1 0603
uF, 50 V, +/10%, X7R, 0603
C1608X7R1H10
4K080AA
TDK
2
0.01uF
CAP, CERM,
0.01 uF, 50 V,
+/- 10%, X7R,
0603
0603
CL10B103KB8N
CNC
Samsung
ElectroMechanics
C6, C7, C8, C9,
C10, C11
6
10uF
CAP, CERM, 10
uF, 50 V, +/10%, X7R, 1210
1210
GRM32ER71H1
06KA12L
MuRata
C12, C14
2
100uF
CAP, Aluminum D10xL10mm
Polymer, 100 uF,
50 V, +/- 20%,
0.025 ohm, AECQ200 Grade 2,
D10xL10mm
SMD
HHXB500ARA10 Chemi-Con
1MJA0G
C15, C16, C17
3
4.7uF
CAP, CERM, 4.7 1210
uF, 50 V, +/10%, X7R, 1210
C3225X7R1H47
5K250AB
TDK
C19
1
100pF
CAP, CERM,
100 pF, 50 V,+/1%, C0G/NP0,
0603
C0603C101F5G
ACTU
Kemet
C20
1
1uF
CAP, CERM, 1
0603
uF, 16 V, +/20%, X7R, AECQ200 Grade 1,
0603
GCM188R71C10 MuRata
5MA64D
C23
1
0.22uF
CAP, CERM,
0.22 uF, 50 V,
+/- 10%, X7R,
AEC-Q200
Grade 1, 0603
0603
CGA3E3X7R1H
224K080AB
TDK
C24
1
0.022uF
'CAP, CERM,
0.022 uF, 100 V,
+/- 10%, X7R,
AEC-Q200
Grade 1, 0603
0603
CGA3E2C0G1H
221J080AA
TDK
C25
1
220pF
'CAP, CERM,
0603
220 pF, 20 V, +/5%, C0G/NP0,
AEC-Q200
Grade 1, 0603
CGA3E2C0G1H
221J080AA
TDK
D1
1
60V
'Diode, Schottky, CFP15
60 V, 10 A, AECQ101, CFP15
PMEG060V100E Nexperia
PDZ
D2, D3, D4
3
60V
Diode, Schottky,
60 V, 1 A, SOD123F
PMEG6010CEH, Nexperia
115
0603
SOD-123F
LM5155EVM-BST User's Guide
SNVU608 – December 2018
Submit Documentation Feedback
Copyright © 2018, Texas Instruments Incorporated
Design Files
www.ti.com
Table 4. LM5155EVM-BST Bill of Materials (continued)
H1, H2, H3, H4
4
Machine Screw,
Round, #4-40 x
1/4, Nylon,
Philips panhead
Screw
NY PMS 440
0025 PH
B&F Fastener
Supply
H5, H6, H7, H8
4
Standoff, Hex,
0.5-inch L #4-40
Nylon
Standoff
1902C
Keystone
J1, J2, J4, J5
4
Standard
Banana Jack,
Uninsulated,
8.9mm
Keystone575-8
575-8
Keystone
J3
1
TEST POINT
SLOTTED .118
inch, TH
Test point, TH
Slot Test point
1040
Keystone
J6, J7
2
Header, 2.54
mm, 3x1, Gold,
TH
Header, 2.54
mm, 3x1, TH
GBC03SAAN
Sullins
Connector
Solutions
J8, J9
2
Header, 2.54
mm, 2x1, Gold,
TH
Header, 2.54
mm, 2x1, TH
GBC02SAAN
Sullins
Connector
Solutions
J10
1
Header, 100mil,
7x1, Gold, TH
7x1 Header
TSW-107-07-GS
Samtec
L2
1
6.8uH
Inductor,
Shielded,
Composite, 6.8
uH, 18.5 A, 0.01
ohm, SMD
Inductor,
11.3x10x10mm
XAL1010682MEB
Coilcraft
Q1
1
40V
MOSFET, N-CH, SON-8
40 V, 50 A, AECQ101, SON-8
IPC50N04S5L5R Infineon
5ATMA1
Technologies
Q2, Q3
2
100V
MOSFET, N-CH, SOT-23
100 V, 0.17 A,
SOT-23
BSS123
Fairchild
Semiconductor
R2, R7, R21
3
0
RES, 0, 5%, 0.1
W, AEC-Q200
Grade 0, 0603
0603
ERJ3GEY0R00V
Panasonic
R3, R4, R16
3
0
RES, 0, 5%, 0.1
W, 0603
0603
RC0603JR070RL
Yageo
R5
1
100
RES, 100, 1%,
0.1 W, 0603
0603
RC0603FR07100RL
Yageo
R6
1
0.008
RES, 0.008, 1%,
3 W, AEC-Q200
Grade 0, 2512
WIDE
2512 WIDE
KRL6432E-MR008-F-T1
Susumu Co Ltd
R8
1
21.0k
RES, 21.0 k, 1%, 0603
0.1 W, AECQ200 Grade 0,
0603
CRCW060321K0 Vishay-Dale
FKEA
R9
1
10.0
RES, 10.0, 1%,
0.1 W, 0603
0603
RC0603FR0710RL
Yageo
R10
1
24.9k
RES, 24.9 k, 1%, 0603
0.1 W, 0603
RC0603FR0724K9L
Yageo
R11
1
7.32k
RES, 7.32 k, 1%, 0603
0.1 W, AECQ200 Grade 0,
0603
CRCW06037K32 Vishay-Dale
FKEA
R13
1
47.0k
RES, 47.0 k, 1%, 0603
0.1 W, AECQ200 Grade 0,
0603
CRCW060347K0 Vishay-Dale
FKEA
SNVU608 – December 2018
Submit Documentation Feedback
LM5155EVM-BST User's Guide
Copyright © 2018, Texas Instruments Incorporated
17
Design Files
www.ti.com
Table 4. LM5155EVM-BST Bill of Materials (continued)
18
R14
1
49.9k
RES, 49.9 k, 1%, 0603
0.1 W, AECQ200 Grade 0,
0603
CRCW060349K9 Vishay-Dale
FKEA
R15
1
2.0k
RES, 2.0 k, 5%,
0.1 W, AECQ200 Grade 0,
0603
0603
CRCW06032K00 Vishay-Dale
JNEA
R17
1
11.3k
RES, 11.3 k, 1%, 0603
0.1 W, AECQ200 Grade 0,
0603
CRCW060311K3 Vishay-Dale
FKEA
R18, R19
2
10.0k
RES, 10.0 k, 1%, 0603
0.1 W, AECQ200 Grade 0,
0603
CRCW060310K0 Vishay-Dale
FKEA
R20
1
0
RES, 0, 5%, 2
W, 2512 WIDE
2512 WIDE
RCL12250000Z0 Vishay Draloric
EG
SH-J1
1
Single Operation
2.54mm Pitch
Open Top
Jumper Socket
Single Operation M7582-05
2.54mm Pitch
Open Top
Jumper Socket
Harwin
TP1, TP3, TP6,
TP7
4
Test Point,
Miniature, Red,
TH
Red Miniature
Testpoint
5000
Keystone
TP4, TP5
2
Test Point,
Miniature, Black,
TH
Black Miniature
Testpoint
5001
Keystone
TP10, TP11
2
Test Point,
White Miniature
Miniature, White, Testpoint
TH
5002
Keystone
U1
1
2.2-MHz Wide
DSS0012B
Input
Nonsynchronous
Boost, Sepic,
Flyback
Controller,
DSS0012B
(WSON-12)
LM5155DSSR
Texas
Instruments
LM5155EVM-BST User's Guide
SNVU608 – December 2018
Submit Documentation Feedback
Copyright © 2018, Texas Instruments Incorporated
IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you
permission to use these resources only for development of an application that uses the TI products described in the resource. Other
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,
damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable
warranties or warranty disclaimers for TI products.
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2018, Texas Instruments Incorporated