User's Guide
SNVU629 – June 2019
LM5155EVM-FLY User's Guide
The LM5155EVM-FLY evaluation module showcases the features and performance of the LM5155 as
wide input non-synchronous flyback controller. The standard configuration is designed to provide a
regulate output of 5V at 4A from an input of 18V to 36V, switching at 250 kHz. This evaluation module is
designed for ease of configuration, enabling the user to evaluate many different applications on the same
module. The PCB is two layers with components populated only on one side. Functionality includes
programmable slope compensation, adjustable soft-start, programmable cycle-by-cycle current limit,
hiccup mode short-circuit protection, and programmable line under voltage lockout.
1
2
3
4
5
6
Contents
Introduction ................................................................................................................... 2
1.1
Electrical Parameters............................................................................................... 3
1.2
Configuration Points ................................................................................................ 3
Application Schematic ....................................................................................................... 4
EVM Photo.................................................................................................................... 5
Test Setup and Procedure .................................................................................................. 5
4.1
EVM Test Setup Schematic ....................................................................................... 5
4.2
Test Equipment ..................................................................................................... 5
4.3
Precautions .......................................................................................................... 6
Test Data and Performance Curves ....................................................................................... 6
5.1
Efficiency Curve ..................................................................................................... 6
5.2
Load Regulation..................................................................................................... 7
5.3
Thermal Performance .............................................................................................. 8
5.4
Steady State Waveforms .......................................................................................... 9
5.5
Start-Up Waveforms .............................................................................................. 11
5.6
Load Transient Waveforms ...................................................................................... 12
5.7
Load Short-Circuit ................................................................................................. 13
5.8
AC Loop Response ............................................................................................... 14
Design Files ................................................................................................................. 15
List of Figures
1
Application Circuit............................................................................................................ 4
2
EVM Photo
3
4
5
6
7
8
9
10
11
12
13
14
15
................................................................................................................... 5
Test Setup ................................................................................................................... 5
Efficiency vs ILOAD ............................................................................................................ 6
Load Regulation ............................................................................................................. 7
VSUPPLY = 36V, ILOAD = 4A, No forced air cooling .......................................................................... 8
Steady State, VSUPPLY = 18V, ILOAD = 4A.................................................................................... 9
Steady State, VSUPPLY = 24V, ILOAD = 4A.................................................................................... 9
Steady State, VSUPPLY = 36V, ILOAD = 4A.................................................................................... 9
Start-Up, VSUPPLY = 18V, ILOAD = 0A ....................................................................................... 11
Start-Up, VSUPPLY = 18V, ILOAD = 4A ....................................................................................... 11
Start-Up, VSUPPLY = 24V, ILOAD = 0A ....................................................................................... 11
Start-Up, VSUPPLY = 24V, ILOAD = 4A ....................................................................................... 11
Start-Up, VSUPPLY = 36V, ILOAD = 0A ....................................................................................... 11
Start-Up, VSUPPLY = 36V, ILOAD = 4A ....................................................................................... 11
SNVU629 – June 2019
Submit Documentation Feedback
LM5155EVM-FLY User's Guide
Copyright © 2019, Texas Instruments Incorporated
1
Introduction
www.ti.com
16
Load Transient, VSUPPLY = 18V, ILOAD = 2A to 4A ........................................................................ 12
17
Load Transient, VSUPPLY = 24V, ILOAD = 2A to 4A ........................................................................ 12
18
Load Transient, VSUPPLY = 36V, ILOAD = 2A to 4A ........................................................................ 12
19
Short Circuit Protection .................................................................................................... 13
20
Short Circuit Recovery: VSUPPLY = 36V ................................................................................... 13
21
Control Loop Response VSUPPLY = 18V, ILOAD = 4A ...................................................................... 14
22
Control Loop Response VSUPPLY = 24V, ILOAD = 4A ...................................................................... 14
23
Control Loop Response VSUPPLY = 36V, ILOAD = 4A ...................................................................... 14
24
Top Silkscreen .............................................................................................................. 15
25
Top Layer
26
Bottom Layer................................................................................................................ 15
27
Bottom Silkscreen .......................................................................................................... 15
28
LM5155EVM-FLY Schematic ............................................................................................. 16
...................................................................................................................
15
List of Tables
......................................................................... 3
....................................................................................................... 3
LM5155EVM-FLY Bill of Materials ....................................................................................... 17
1
Electrical Performance Standard Configuration
2
Test point description
3
Trademarks
All trademarks are the property of their respective owners.
1
Introduction
The LM5155EVM-FLY supports the following features and performance capabilities:
• Tightly regulated output voltage of 5 V
• High conversion efficiency of > 86% at full load.
• Hiccup mode Short Circuit Protection
• User adjustable secondary side soft-start time
• 10V Auxiliary winding to power VCC pin
• 250kHz Switching frequency
• 2 Layer PCB with components populated on 1 side
2
LM5155EVM-FLY User's Guide
SNVU629 – June 2019
Submit Documentation Feedback
Copyright © 2019, Texas Instruments Incorporated
Introduction
www.ti.com
1.1
Electrical Parameters
Table 1. Electrical Performance Standard Configuration
Parameter
Test Conditions
MIN
TYP
MAX
UNIT
18
24
36
V
INPUT CHARACTERISTICS
Input voltage Range VIN
Operation
Input voltage turn on VIN(ON)
17
V
16.5
V
Output Voltage VOUT
5
V
Maximum Output Current IOUT
4
A
250
kHz
86.5
%
Input voltage turn off VIN(OFF)
Adjusted by the UVLO/SYNC resistors
OUTPUT CHARACTERISTICS
SYSTEM CHARACTERISTICS
Switching frequency
Peak efficiency
VIN =18V, IOUT = 1.8A
Junction Temperature, TJ
-40
150
C
Transformer Specifications (Wurth 750319733)
Primary Inductance
21
Turns Ratio
Saturation Current
(3-5):(2-1)
1:1
(3-5):(6:10) tie (6+7,9+10)
2:1
20% inductance reduction
6.2
Leakage Inductance
1.2
150
µH
A
300
nH
Configuration Points
Table 2 indicates the available test points. These points offer simple probe points to evaluate the
operation of the LM5155.
Table 2. Test point description
Jumper
Name
Description
TP1
VIN
TP2
VOUT+
Positive output voltage sense connection
TP3
PGND
Negative input voltage sense connection
TP4
ISO_GND
TP5
SW
TP6
VOUT+
Loop response positive injection point
TP7
VOUT-
Loop response negative injection point
TP8
AGND
Analog ground connection point
TP9
ISO_GND
Isolated ground connection point
J1
-
Input power connections
J2
-
Output power connections
J3
PGND
PGOOD (pin 1)
COMP (pin 2)
J4
SS (pin 3)
Positive input voltage sense connection
Negative isolated output voltage sense connection
Probe point for the switch node of the LM5155 flyback circuit
Power ground connection point
Probe voltage on the PGOOD pin of the LM5155
Probe voltage on the COMP pin of the LM5155
Probe voltage on the SS pin of the LM5155
VAUX (pin 4)
Auxiliary winding voltage
PGND (pin 5)
Power ground connection
SNVU629 – June 2019
Submit Documentation Feedback
LM5155EVM-FLY User's Guide
Copyright © 2019, Texas Instruments Incorporated
3
Application Schematic
2
www.ti.com
Application Schematic
The LM5155EVM-FLY is capable of multiple configurations. Figure 1 shows the standard configuration of
the LM5155EVM-FLY for which the parameters in Table 1 are valid.
VSUPPLY
NP
VLOAD
NS
CLOAD
CIN
NAUX
ISO_GND
VAUX
RUVLOT
VCC
BIAS
GATE
CS
UVLO/SYNC
RUVLOB
RS
LM51551
PGND
AGND
RPULLUP
FB
PGOOD
RT
VAUX
SS
RLED
COMP
RFBT
CCOMP
CCOMP RCOMP
RT
RCOMP
VREF
Figure 1. Application Circuit
4
LM5155EVM-FLY User's Guide
SNVU629 – June 2019
Submit Documentation Feedback
Copyright © 2019, Texas Instruments Incorporated
EVM Photo
www.ti.com
3
EVM Photo
Figure 2. EVM Photo
4
Test Setup and Procedure
4.1
EVM Test Setup Schematic
The correct equipment connections and measurement points are shown in Figure 3
Power Supply
-
+
Ammeter 1
Ammeter 2
A
A
COM
Voltmeter 1
V
COM
Electronic Load
+
-
Voltmeter 2
COM
V
COM
Figure 3. Test Setup
4.2
Test Equipment
Power Supply: The input voltage source (VIN) should be a variable supply capable of 0V to 36V and
source at least 5A.
Multi-meters:
• Voltmeter 1: Input voltage, connect from VIN to PGND
• Voltmeter 2: Output voltage, connect from VOUT to ISO_GND
• Ammeter 1: Input current, must be able to handle 5A. Shunt resistor can be used as needed.
• Ammeter 2: Output current, must be able to handle 5A. Shunt resistor can be used as needed.
Electronic Load: The load should be constant resistance (CR) or constant current (CC) capable. It
should safely handle 4A at 5V.
SNVU629 – June 2019
Submit Documentation Feedback
LM5155EVM-FLY User's Guide
Copyright © 2019, Texas Instruments Incorporated
5
Test Setup and Procedure
www.ti.com
Oscilloscope: 20-MHz bandwidth and AC coupling. Measure the output voltage ripple directly across
an output capacitor with a short ground lead. It is not recommended to use a long-leaded ground
connection due to the possibility of noise being coupled into the signal. To measure other waveforms,
adjust the oscilloscope as needed.
4.3
Precautions
CAUTION:
Prolonged operation with low input at full power will cause heating of the diode (D1).
Board surface is hot. Do not touch. Contact may cause burns.
5
Test Data and Performance Curves
Figure 4 through Figure 23 present the typical performance of the LM5155EVM-FLY according to the bill
of materials and the configuration described in Table 1. Based on measurement techniques and
environmental variables measurements might differ slightly than the data presented
5.1
Efficiency Curve
Efficiency vs I LOAD
100
90
Efficiency (%)
80
70
60
VIN = 36V
VIN = 24V
VIN = 18V
50
40
0
0.5
1
1.5
2
2.5
ILOAD (A)
3
3.5
4
Effi
Figure 4. Efficiency vs ILOAD
6
LM5155EVM-FLY User's Guide
SNVU629 – June 2019
Submit Documentation Feedback
Copyright © 2019, Texas Instruments Incorporated
Test Data and Performance Curves
www.ti.com
5.2
Load Regulation
VLOAD vs ILOAD
5.08
VIN = 36V
VIN = 24V
VIN = 18V
5.075
5.07
5.065
5.06
VLOAD (V)
5.055
5.05
5.045
5.04
5.035
5.03
5.025
5.02
5.015
5.01
0
0.4
0.8
1.2
1.6
2
2.4
ILOAD (A)
2.8
3.2
3.6
4
Load
Figure 5. Load Regulation
SNVU629 – June 2019
Submit Documentation Feedback
LM5155EVM-FLY User's Guide
Copyright © 2019, Texas Instruments Incorporated
7
Test Data and Performance Curves
5.3
www.ti.com
Thermal Performance
D1
Q1
Figure 6. VSUPPLY = 36V, ILOAD = 4A, No forced air cooling
8
LM5155EVM-FLY User's Guide
SNVU629 – June 2019
Submit Documentation Feedback
Copyright © 2019, Texas Instruments Incorporated
Test Data and Performance Curves
www.ti.com
5.4
Steady State Waveforms
Figure 7. Steady State, VSUPPLY = 18V, ILOAD = 4A
Figure 8. Steady State, VSUPPLY = 24V, ILOAD = 4A
SNVU629 – June 2019
Submit Documentation Feedback
LM5155EVM-FLY User's Guide
Copyright © 2019, Texas Instruments Incorporated
9
Test Data and Performance Curves
www.ti.com
Figure 9. Steady State, VSUPPLY = 36V, ILOAD = 4A
10
LM5155EVM-FLY User's Guide
SNVU629 – June 2019
Submit Documentation Feedback
Copyright © 2019, Texas Instruments Incorporated
Test Data and Performance Curves
www.ti.com
5.5
Start-Up Waveforms
Figure 10. Start-Up, VSUPPLY = 18V, ILOAD = 0A
Figure 11. Start-Up, VSUPPLY = 18V, ILOAD = 4A
Figure 12. Start-Up, VSUPPLY = 24V, ILOAD = 0A
Figure 13. Start-Up, VSUPPLY = 24V, ILOAD = 4A
Figure 14. Start-Up, VSUPPLY = 36V, ILOAD = 0A
Figure 15. Start-Up, VSUPPLY = 36V, ILOAD = 4A
SNVU629 – June 2019
Submit Documentation Feedback
LM5155EVM-FLY User's Guide
Copyright © 2019, Texas Instruments Incorporated
11
Test Data and Performance Curves
5.6
www.ti.com
Load Transient Waveforms
Figure 16. Load Transient, VSUPPLY = 18V, ILOAD = 2A to 4A
Figure 17. Load Transient, VSUPPLY = 24V, ILOAD = 2A to 4A
12
LM5155EVM-FLY User's Guide
SNVU629 – June 2019
Submit Documentation Feedback
Copyright © 2019, Texas Instruments Incorporated
Test Data and Performance Curves
www.ti.com
Figure 18. Load Transient, VSUPPLY = 36V, ILOAD = 2A to 4A
5.7
Load Short-Circuit
Figure 19. Short Circuit Protection
Figure 20. Short Circuit Recovery: VSUPPLY = 36V
SNVU629 – June 2019
Submit Documentation Feedback
LM5155EVM-FLY User's Guide
Copyright © 2019, Texas Instruments Incorporated
13
Test Data and Performance Curves
5.8
www.ti.com
AC Loop Response
Control Loop Response
VSUPPLY = 18V, ILOAD = 4A
60
180
40
120
20
60
0
0
-20
-60
-40
-120
-60
500
700
1000
2000
3000
5000 7000 10000
20000 30000
Frequency (Hz)
50000
100000
200000 300000
Phase (deg)
Gain (dB)
Gain
Phase
-180
500000
Loop
Figure 21. Control Loop Response VSUPPLY = 18V, ILOAD = 4A
Control Loop Response
VSUPPLY = 24V, ILOAD = 4A
60
180
40
120
20
60
0
0
-20
-60
-40
-120
-60
500
700
1000
2000
3000
5000 7000 10000
20000 30000
Frequency (Hz)
50000
100000
200000 300000
Phase (deg)
Gain (dB)
Gain
Phase
-180
500000
Loop
Figure 22. Control Loop Response VSUPPLY = 24V, ILOAD = 4A
14
LM5155EVM-FLY User's Guide
SNVU629 – June 2019
Submit Documentation Feedback
Copyright © 2019, Texas Instruments Incorporated
Design Files
www.ti.com
Control Loop Response
VSUPPLY = 36V, ILOAD = 4A
60
180
40
120
20
60
0
0
-20
-60
-40
-120
-60
500
700
1000
2000
3000
5000 7000 10000
20000 30000
Frequency (Hz)
50000
100000
200000 300000
Phase (deg)
Gain (dB)
Gain
Phase
-180
500000
Loop
Figure 23. Control Loop Response VSUPPLY = 36V, ILOAD = 4A
6
Design Files
Figure 24. Top Silkscreen
Figure 25. Top Layer
Figure 26. Bottom Layer
Figure 27. Bottom Silkscreen
SNVU629 – June 2019
Submit Documentation Feedback
LM5155EVM-FLY User's Guide
Copyright © 2019, Texas Instruments Incorporated
15
Design Files
www.ti.com
Figure 28. LM5155EVM-FLY Schematic
16
LM5155EVM-FLY User's Guide
SNVU629 – June 2019
Submit Documentation Feedback
Copyright © 2019, Texas Instruments Incorporated
Design Files
www.ti.com
Table 3. LM5155EVM-FLY Bill of Materials
Designator
Qu Value
ant
ity
Description
Package
Reference
Part Number
C1
1
680pF
CAP, CERM, 680 pF, 100 V, +/10%, X7R, 0603
0603
GRM188R72A68 MuRata
1KA01D
C2
1
100uF
CAP, Polymer Hybrid, 100 uF, 50 V,
+/- 20%, 28 ohm, 10x10 SMD
10x10
EEHZC1H101P
Panasonic
C3
1
0.1uF
CAP, CERM, 0.1 uF, 50 V, +/- 20%,
X7R, 0805
0805
08055C104MAT
2A
AVX
C4, C5
2
1uF
CAP, CERM, 1 uF, 50 V, +/- 10%,
X7R, 0805
0805
08055C105KAT
2A
AVX
C6
1
4.7uF
CAP, CERM, 4.7 uF, 50 V, +/- 10%,
X7R, 1206
1206
C3216X7R1H47
5K160AC
TDK
C7, C8
2
270uF
CAP, Aluminum Polymer, 270 uF, 25 D10xL12.7mm
V, +/- 20%, 0.027 ohm,
D10xL12.7mm SMD
PCV1E271MCL1 Nichicon
GS
C9, C10
2
10uF
CAP, CERM, 10 uF, 25 V,+/- 10%,
X7R, 1210
1210
885012209028
Wurth Elektronik
C11, C13
2
0.1uF
CAP, CERM, 0.1 uF, 25 V, +/- 10%,
X7R, 0603
0603
C1608X7R1E10
4K080AA
TDK
C12
1
1000pF
CAP, CERM, 1000 pF, 25 V, +/10%, X7R, 0603
0603
GRM188R71E10 MuRata
2KA01D
C14
1
0.01uF
CAP, CERM, 0.01 uF, 50 V, +/- 10%, 0603
X7R, AEC-Q200 Grade 1, 0603
GCM188R71H1
03KA37D
MuRata
C15
1
4.7uF
CAP, CERM, 4.7 uF, 35 V, +/- 10%,
X5R, 0603
GRM188R6YA4
75KE15D
MuRata
C16
1
0.33uF
CAP, CERM, 0.33 uF, 100 V, +/10%, X7R,
C3216X7R2A33
4K130AA
TDK
C17
1
1uF
CAP, CERM, 1 uF, 16 V, +/- 20%,
X7R, AEC-Q200 Grade 1, 0603
0603
GCM188R71C1
05MA64D
MuRata
C18
1
0.1uF
CAP, CERM, 0.1 uF, 50 V, +/- 10%,
X7R, 0603
0603
C1608X7R1H10
4K080AA
TDK
C19
1
470pF
CAP, CERM, 470 pF, 50 V, +/- 10%,
X7R, 0603
0603
GRM188R71H4
71KA01D
MuRata
C20
1
4.7uF
CAP, CERM, 4.7 µF, 25 V,+/- 10%,
X6S, AEC-Q200 Grade 2, 0603
0603
GRT188C81E47 MuRata
5KE13D
C21
1
220pF
CAP, CERM, 220 pF, 50 V, +/- 5%,
C0G/NP0, 0603
0603
C0603C221J5G
ACTU
Kemet
C22
1
0.01uF
CAP, CERM, 0.01 uF, 16 V, +/- 10%, 0603
X7R, 0603
GRM188R71C1
03KA01D
MuRata
C24, C26
2
0.22uF
CAP, CERM, 0.22 µF, 16 V,+/- 10%,
X7R, AEC-Q200 Grade 1, 0603
0603
CL10B224KO8V Samsung
PNC
C28
1
1000pF
CAP, CERM, 1000 pF, 2000 V, +/10%, X7R, 1812
1812
1812GC102K1A
D1
1
40V
Diode, Schottky, 40 V, 10 A, AECQ101, TO-277A
TO-277A
SS10P4-M3/87A VishaySemiconductor
D2
1
100V
Diode, Switching, 100 V, 0.2 A,
SOD-323
SOD-323
MMDL914-TP
Micro Commercial
Components
D3
1
150V
Diode, Superfast Rectifier, 150 V, 1
A, SMA
SMA
ES1C-13-F
Diodes Inc.
D4
1
30V
Diode, Schottky, 30 V, 0.2 A, SOT323
SOT-323
BAT54SWT1G
Fairchild
Semiconductor
H1, H2, H3, H4
4
Bumpon, Cylindrical, 0.312 X 0.200,
Black
Black Bumpon
SJ61A1
3M
J1, J2
2
Terminal Block, 5mm, 2-pole, TH
TH, 2-Leads,
Body 10x9mm,
Pin Spacing
5mm
ED350/2
On-Shore
Technology
0603
SNVU629 – June 2019
Submit Documentation Feedback
Manufacturer
AVX
LM5155EVM-FLY User's Guide
Copyright © 2019, Texas Instruments Incorporated
17
Design Files
www.ti.com
Table 3. LM5155EVM-FLY Bill of Materials (continued)
18
J3, TP9
2
TEST POINT SLOTTED .118", TH
Test point, TH
Slot Test point
1040
Keystone
J4
1
Header, 2.54mm, 5x1, Tin, TH
Header,
2.54mm, 5x1,
TH
PEC05SAAN
Sullins Connector
Solutions
Q1
1
100V
MOSFET, N-CH, 100 V, 13 A,
DQJ0008A (VSONP-8)
DQJ0008A
CSD19533Q5A
Texas
Instruments
R1
1
15.0
RES, 15.0, 1%, 0.5 W, 1210
1210
ERJ14NF15R0U
Panasonic
R2, R11
2
100
RES, 100, 1%, 0.1 W, AEC-Q200
Grade 0, 0603
0603
ERJ-3EKF1000V Panasonic
R3
1
0
RES, 0, 1%, 0.1 W, AEC-Q200
Grade 0, 0603
0603
RMCF0603ZT0R Stackpole
00
Electronics Inc
R4
1
30.1k
RES, 30.1 k, 1%, 1 W, AEC-Q200
Grade 0, 2512
2512
CRCW251230K
1FKEG
Vishay-Dale
R5, R8, R10,
R24, R26
5
0
RES, 0, 5%, 0.1 W, AEC-Q200
Grade 0, 0603
0603
ERJ3GEY0R00V
Panasonic
R6, R9, R13
3
100k
RES, 100 k, 1%, 0.1 W, AEC-Q200
Grade 0, 0603
0603
CRCW0603100
KFKEA
Vishay-Dale
R7
1
10.0
RES, 10.0, 1%, 0.1 W, AEC-Q200
Grade 0, 0603
0603
CRCW060310R
0FKEA
Vishay-Dale
R12
1
0.02
RES, 0.02, 1%, 1 W, 0612
0612
PRL1632-R020F-T1
Susumu Co Ltd
R14
1
1.00k
RES, 1.00 k, 1%, 0.1 W, 0603
0603
ERJ-3EKF1001V Panasonic
R16, R22
2
9.76k
RES, 9.76 k, 1%, 0.1 W, AEC-Q200
Grade 0, 0603
0603
CRCW06039K7
6FKEA
Vishay-Dale
R17
1
86.6k
RES, 86.6 k, 1%, 0.1 W, AEC-Q200
Grade 0, 0603
0603
CRCW060386K
6FKEA
Vishay-Dale
R18
1
4.99k
RES, 4.99 k, 1%, 0.1 W, AEC-Q200
Grade 0, 0603
0603
CRCW06034K9
9FKEA
Vishay-Dale
R19
1
30.0k
RES, 30.0 k, 1%, 0.1 W, 0603
0603
RC0603FR0730KL
Yageo
R20, R21
2
1.00k
RES, 1.00 k, 0.1%, 0.1 W, AECQ200 Grade 0, 0603
0603
ERA3AEB102V
Panasonic
T1
1
21uH
Transformer, 21 uH, SMT
13.97x18.25mm
750317933
Wurth Elektronik
TP1, TP2
2
Test Point, Miniature, Red, TH
Red Miniature
Testpoint
5000
Keystone
TP3, TP4, TP8
3
Test Point, Miniature, Black, TH
Black Miniature
Testpoint
5001
Keystone
TP5
1
PC Test Point, SMT
PC Test Point,
SMT
5017
Keystone
U1
1
2.2-MHz Wide Input
Nonsynchronous Boost, Sepic,
Flyback Controller, DSS0012B
(WSON-12)
DSS0012B
LM51551DSST
Texas
Instruments
U2
1
Optocoupler, 2.5 kV, 100-200%
CTR, SMT
PS2811-1
PS2811-1-M-A
California Eastern
Laboratories
U3
1
Low-Voltage (1.24V) Adjustable
Precision Shunt Regulators, 3-pin
SOT-23, Pb-Free
DBZ0003A
LMV431BIMF/N
OPB
Texas
Instruments
LM5155EVM-FLY User's Guide
SNVU629 – June 2019
Submit Documentation Feedback
Copyright © 2019, Texas Instruments Incorporated
IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you
permission to use these resources only for development of an application that uses the TI products described in the resource. Other
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,
damages, costs, losses, and liabilities arising out of your use of these resources.
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable
warranties or warranty disclaimers for TI products.
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2019, Texas Instruments Incorporated