www.ti.com
Table of Contents
User’s Guide
LM63460-Q1 and LM64460-Q1 EVM User's Guide
ABSTRACT
The LM63460EVM-2MHZ and LM64460EVM-2MHZ evaluation modules (EVMs) are specifically designed to
conveniently evaluate the performance of the LM63460-Q1 and LM64460-Q1 synchronous buck converters,
respectively. As shown in Table 1-1, both converters are available in a 22-pin Enhanced HotRod™ QFN package.
Table 1-1. Device and Package Configuration
REF DES
U1
CONVERTER IC
OUTPUT CURRENT
PACKAGE
LM63460-Q1
6A
LM64460-Q1
6A
22-pin wettable-flank Enhanced HotRod QFN package,
3.5 mm × 4 mm × 1 mm
Both EVMs provide a 5-V output voltage at up to 6-A load current with exceptional efficiency and output
accuracy in a very small solution size. The EVMs showcase a recommended PCB layout that is optimized
specifically for EMI and thermal performance. Input and output voltage sense terminals and a test point header
facilitate measurement of key parameters such as efficiency and power dissipation, line and load regulation,
enable ON/OFF, and bode plot performance. The header also provides connections for synchronization (SYNC)
and power-good (PGOOD) device features. The EVMs share a common schematic and layout – the main
differences being the converter IC and the connections for setting the switching freqeuncy (either with an RT
resistor or by external clock synchronization).
Refer to the LM63460-Q1 and LM64460-Q1 data sheets, LM6k Quickstart Calculator, and
WEBENCH® Power Designer for additional guidance pertaining to converter modes of operation,
component selection, and expected performance.
Table of Contents
1 High-Density EVM Description.............................................................................................................................................. 3
1.1 Typical Applications............................................................................................................................................................3
1.2 Features and Electrical Performance.................................................................................................................................3
2 EVM Performance Specifications..........................................................................................................................................4
3 EVM Photo...............................................................................................................................................................................5
4 Test Setup and Procedure......................................................................................................................................................6
4.1 EVM Connections.............................................................................................................................................................. 6
4.2 EVM Setup......................................................................................................................................................................... 7
4.3 Test Equipment.................................................................................................................................................................. 7
4.4 Recommended Test Setup.................................................................................................................................................7
4.5 Test Procedure................................................................................................................................................................... 8
5 Test Data and Performance Curves...................................................................................................................................... 9
5.1 Conversion Efficiency.........................................................................................................................................................9
5.2 Output Voltage Regulation................................................................................................................................................. 9
5.3 Operating Waveforms...................................................................................................................................................... 10
5.4 Thermal Performance.......................................................................................................................................................11
5.5 EMI Results – CISPR 25 Class 5.....................................................................................................................................12
6 EVM Documentation.............................................................................................................................................................13
6.1 Schematics.......................................................................................................................................................................13
6.2 Bill of Materials.................................................................................................................................................................15
6.3 PCB Layout...................................................................................................................................................................... 16
6.4 Assembly Drawings..........................................................................................................................................................19
7 Device and Documentation Support...................................................................................................................................20
SNVU768 – DECEMBER 2021
Submit Document Feedback
LM63460-Q1 and LM64460-Q1 EVM User's Guide
Copyright © 2021 Texas Instruments Incorporated
1
Trademarks
www.ti.com
7.1 Device Support.................................................................................................................................................................20
7.2 Documentation Support................................................................................................................................................... 21
List of Figures
Figure 3-1. BSR173 EVM Photo..................................................................................................................................................5
Figure 4-1. EVM Test Setup.........................................................................................................................................................6
Figure 5-1. Auto Mode, Linear Scale........................................................................................................................................... 9
Figure 5-2. Auto Mode, Log Scale............................................................................................................................................... 9
Figure 5-3. Load and Line Regulation......................................................................................................................................... 9
Figure 5-4. Start-Up, 6-A Resistive Load...................................................................................................................................10
Figure 5-5. Enable ON/OFF, 6-A Resistive Load.......................................................................................................................10
Figure 5-6. Load Transient, 3 A to 6 A.......................................................................................................................................10
Figure 5-7. Load Transient, 0 A to 6 A.......................................................................................................................................10
Figure 5-8. Line Transient and Dropout Recovery.....................................................................................................................10
Figure 5-9. Frequency Foldback at VIN = 3 V............................................................................................................................ 10
Figure 5-10. Short Circuit Hiccup............................................................................................................................................... 11
Figure 5-11. Short Circuit Recovery to No Load........................................................................................................................ 11
Figure 5-12. IR Thermal Image, 4-A Load................................................................................................................................. 11
Figure 5-13. IR Thermal Image, 6-A Load................................................................................................................................. 11
Figure 5-14. Conducted EMI, 150 kHz to 30 MHz..................................................................................................................... 12
Figure 5-15. Conducted EMI, 30 MHz to 108 MHz....................................................................................................................12
Figure 5-16. CISPR 25 Class 5 Radiated EMI, Bicon Antenna, Horizon. Polarization, 30 MHz to 200 MHz............................ 12
Figure 5-17. CISPR 25 Class 5 Radiated EMI, Bicon Antenna, Vertical Polarization, 30 MHz to 200 MHz..............................12
Figure 5-18. CISPR 25 Class 5 Radiated EMI, Log Antenna, Horizon. Polarization, 200 MHz to 1 GHz................................. 12
Figure 5-19. CISPR 25 Class 5 Radiated EMI, Log Antenna, Vertical Polarization, 200 MHz to 1 GHz................................... 12
Figure 6-1. LM63460-Q1 EVM Schematic.................................................................................................................................13
Figure 6-2. LM64460-Q1 EVM Schematic.................................................................................................................................14
Figure 6-3. Top 3D View............................................................................................................................................................ 16
Figure 6-4. Bottom 3D View (viewed from Bottom)....................................................................................................................16
Figure 6-5. Top Layer.................................................................................................................................................................17
Figure 6-6. Layer 2.................................................................................................................................................................... 17
Figure 6-7. Layer 3.................................................................................................................................................................... 18
Figure 6-8. Bottom Layer........................................................................................................................................................... 18
Figure 6-9. Top Assembly (Top View), LM63460EVM-2MHZ and LM64460EVM-2MHZ...........................................................19
Figure 6-10. Bottom Assembly (Bottom View), LM63460EVM-2MHZ....................................................................................... 19
Figure 6-11. Bottom Assembly (Bottom View), LM64460EVM-2MHZ....................................................................................... 19
List of Tables
Table 1-1. Device and Package Configuration.............................................................................................................................1
Table 2-1. Electrical Performance Specifications.........................................................................................................................4
Table 4-1. EVM Power Connections............................................................................................................................................ 6
Table 4-2. EVM Signal Connections............................................................................................................................................ 6
Table 6-1. LM63460EVM-2MHZ (BSR173-001) and LM64460EVM-2MHZ (BSR173-002) Bill of Materials............................. 15
Table 6-2. Different BOM Configurations................................................................................................................................. 0
Table 7-1. Automotive Synchronous Buck DC/DC Converter Family........................................................................................ 20
Trademarks
HotRod™ is a trademark of Texas Instruments.
WEBENCH® are registered trademarks of Texas Instruments.
All trademarks are the property of their respective owners.
2
LM63460-Q1 and LM64460-Q1 EVM User's Guide
Copyright © 2021 Texas Instruments Incorporated
SNVU768 – DECEMBER 2021
Submit Document Feedback
www.ti.com
High-Density EVM Description
1 High-Density EVM Description
The LM63460EVM-2MHZ and LM64460EVM-2MHZ feature the LM63460-Q1 and LM64460-Q1 synchronous
buck converters, respectively. The EVMs provide the full 6-A output current rating of these converters, and a
wide-VIN range of 3 V to 36 V offers outsized voltage rating and operating margin to withstand automotive
supply-rail voltage transients.
The selected input capacitors accommodate the entire range of input voltage and are available from multiple
component vendors. Input and output voltage sense terminals and a test point header facilitate measurement of
the following:
•
•
•
•
•
Efficiency and power dissipation
Line and load regulation
Load transient response
Enable ON/OFF
Bode plot (crossover frequency and phase margin)
The 8-pin header also provides connections for enable (EN), external clock synchronization (SYNC), and powergood (PGOOD) features. The recommended PCB layout maximizes thermal performance and minimizes output
ripple and noise. The EVMs share a common PCB layout, whereas the BOMs have minor differences in installed
components. The main differences between the ICs relate to pins 7 and 8, which are EN/SYNC and RT for the
LM63460-Q1 and EN and MODE/SYNC for the LM64460-Q1, respectively.
1.1 Typical Applications
•
•
•
Automotive infotainment and cluster: head unit, media hub, USB charge, display
Automotive ADAS and body electronics
Inverting buck-boost (IBB) circuits requiring negative output voltage
1.2 Features and Electrical Performance
•
•
•
•
•
•
•
•
Complete 6-A buck power stage with integrated power MOSFETs and PWM controller
Wide input voltage operating range of 3 V to 36 V (absolute maximum rating of 42 V)
– Input voltage UVLO turn-on and turn-off thresholds set at 4.5 V and 3.2 V, respectively
Default output voltage and switching frequency of 5 V and 2.1 MHz, respectively. The LM63460-Q1 has a
resistor-programmable switching frequency from 200 kHz to 2.2 MHz using its RT pin, whereas the LM64460Q1 has a default frequency of 2.1 MHz but is synchronizable over the same range.
High efficiency across a wide load-current range
– Half-load and full-load efficiencies of 94.4% and 92.5% at VIN = 13.5 V
– External bias option reduces no-load supply current and enhances thermal performance
Improved EMI performance for noise-sensitive automotive applications
– Meets CISPR 25 Class 5 EMI standard for both conducted and radiated emissions
– Input π-stage EMI filter with electrolytic capacitor for parallel damping
– Parallel input and output paths with symmetrical capacitor layouts minimize radiated field coupling
– Clock synchronization and optional FPWM mode provide constant switching frequency across the full load
range
– Integrated input, VCC, and bootstrap capacitors enable low-noise switching performance
– Pseudo-random spread spectrum modulation (PRSS) for lower peak emissions
• Included by default in the LM63460-Q1
• Configurable in the LM64460-Q1 – connect the MODE/SYNC pin of the IC to VCC or GND to enable
spread spectrum in FPWM and auto modes, respectively.
Peak current-mode control architecture enables fast line and load transient response
– Integrated loop compensation components and frequency-proportional slope compensation
Inherent protection features for robust and reliable design
– Overcurrent protection (OCP) with peak and valley current limits
– Thermal shutdown protection with hysteresis
– PGOOD indicator with 100-kΩ pullup resistor to VOUT
– Resistor-programmable input voltage UVLO
Fully assembled, tested and proven, 4-layer PCB layout with 76-mm × 38-mm total footprint
SNVU768 – DECEMBER 2021
Submit Document Feedback
LM63460-Q1 and LM64460-Q1 EVM User's Guide
Copyright © 2021 Texas Instruments Incorporated
3
EVM Performance Specifications
www.ti.com
2 EVM Performance Specifications
Unless otherwise indicated, VIN = 13.5 V, VOUT = 5 V, IOUT = 6 A and FSW = 2.1 MHz
Table 2-1. Electrical Performance Specifications
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNIT
INPUT CHARACTERISTICS
Input voltage range, VIN
Operating
5.5
Input voltage turn-on, VIN(on)
Input voltage turn-off, VIN(off)
V
3.2
Adjusted using EN divider resistors
Input voltage hysteresis, VIN(hys)
Input current, disabled, IIN(off)
36
4.5
1.3
VEN = 0 V (with 255-kΩ and 100-kΩ EN divider)
39
µA
OUTPUT CHARACTERISTICS
Output voltage, VOUT (1)
Adjustable from 1 V to 95% VIN
Output current, IOUT
VIN = 6 V to 36 V (2)
Output voltage regulation, ΔVOUT
4.95
5.0
0
Load regulation
IOUT = 0 A to 6 A
0.1%
Line regulation
VIN = 6 V to 36 V
0.1%
5.05
V
6
A
Output voltage ripple, VOUT(AC)
25
mVrms
Output overcurrent protection, IOUT(OCP)
8.5
A
2.1
MHz
SYSTEM CHARACTERISTICS
Default switching frequency, FSW(nom)
Adjustable from 200 kHz to 2.2 MHz (with suitable choice
of buck inductance and input/ouptut capacitance at lower
FSW)
VIN = 8 V
VIN = 13.5 V
Efficiency,
η(1)
VIN = 18 V
VIN = 24 V
IOUT = 3 A
95%
IOUT = 6 A
92%
IOUT = 3 A
94.5%
IOUT = 6 A
92.5%
IOUT = 3 A
93%
IOUT = 6 A
91.7%
IOUT = 3 A
91.4%
IOUT = 6 A
90.6%
Thermal impedance, RθJA
23
Junction temperature, TJ
(1)
(2)
4
–40
°C/W
150
°C
The default output voltage and switching frequency of this EVM are 5 V and 2.1 MHz, respectively. The BIAS pin connects to the
output for output voltages of 3.3 V and above. Efficiency and other performance metrics can change based on operating input voltage,
load current, switching frequency, external bias voltage, ambient temperature, externally connected output capacitance, and other
parameters.
The recommended airflow is 200 LFM when operating at output currents greater than 4 A.
LM63460-Q1 and LM64460-Q1 EVM User's Guide
Copyright © 2021 Texas Instruments Incorporated
SNVU768 – DECEMBER 2021
Submit Document Feedback
www.ti.com
EVM Photo
3 EVM Photo
Figure 3-1 highlights the buck converter power stage and the various connection interfaces associated with the
EVM. Use terminal blocks J1 and J2 to connect the input supply and load, respectively. These terminal blocks
accept up to 16-AWG wire thickness.
Figure 3-1. BSR173 EVM Photo
CAUTION
Caution Hot surface.
Contact may cause burns.
Do not touch.
SNVU768 – DECEMBER 2021
Submit Document Feedback
LM63460-Q1 and LM64460-Q1 EVM User's Guide
Copyright © 2021 Texas Instruments Incorporated
5
Test Setup and Procedure
www.ti.com
4 Test Setup and Procedure
4.1 EVM Connections
Referencing the EVM connections described in Table 4-1, use the recommended test setup in Figure 4-1 to
evaluate the LM63460-Q1 and LM64460-Q1 converter. Working at an ESD-protected workstation, make sure
that any wrist straps, bootstraps, or mats are connected and referencing the user to earth ground before power
is applied to the EVM.
Oscilloscope
Power Supply
-
Ammeter 1
+
A
V
Ammeter 2
A
COM
+
COM
COM
COM
Electronic Load
-
V
Voltmeter 2
Voltmeter 1
Figure 4-1. EVM Test Setup
SPACER
Table 4-1. EVM Power Connections
LABEL
DESCRIPTION
VIN+
Positive input power connection
VIN–
Negative input power connection
VOUT+
Positive output power connection
VOUT–
Negative output power connection
Table 4-2. EVM Signal Connections
LABEL(1)
DESCRIPTION
VIN+ (TP1)
Positive input sense terminal. Connect the multimeter positive lead for measuring efficiency.
VIN– (TP2)
Negative input sense terminal. Connect a multimeter negative lead for measuring efficiency.
VOUT+ (TP3)
Positive output sense terminal. Connect a multimeter positive lead for measuring efficiency and line/load regulation.
VOUT– (TP4)
Negative output sense terminal. Connect the multimeter negative lead for measuring efficiency and line/load regulation.
GND
Ground reference point at J3
EN
Precision enable input. Tie EN to GND to disable the regulator. Use a logic signal to control EN for remote ON/OFF
functionality. Leave EN open for UVLO turn-on threshold set at 4.5 V.
SYNC
Synchronization input (connects to the EN/SYNC or MODE/SYNC pins of the LM63460-Q1 and LM64460-Q1,
respectively). Connect a valid clock signal to synchronize the switching frequency from 200 kHz to 2.2 MHz.
VCC
VCC output
PGD
Power-good monitor output. This is an open-drain flag with a 100-kΩ pullup resistor to VOUT.
INJ, VOUT
Bode plot measurement and signal injection using a 50-Ω resistor from INJ to VOUT
BIAS
External bias supply connection. A 1-Ω resistor from VOUT to BIAS simplifies bias current measurement.
(1)
6
Refer to the LM63460-Q1 or LM64460-Q1 data sheets for absolute maximum ratings associated with the features in this table.
LM63460-Q1 and LM64460-Q1 EVM User's Guide
Copyright © 2021 Texas Instruments Incorporated
SNVU768 – DECEMBER 2021
Submit Document Feedback
www.ti.com
Test Setup and Procedure
4.2 EVM Setup
•
•
Use the VIN+ and VIN– test points along with the VOUT+ and VOUT– test points located near the power
terminal blocks as voltage monitoring points where voltmeters are connected to measure the input and output
voltages, respectively. Do not use these sense terminals as the input supply or output load connection points.
The PCB traces connected to these sense terminals are not designed to support high currents.
Header J3 provides access to the following test points:
– VIN
– EN
– SYNC
– VCC
– PGD
– BIAS
– VOUT
– INJ
The SYNC test point provides a convenient location to connect an external clock signal. The power-good
(PGD) test point is available to monitor when a valid output voltage is present on the EVM. Refer to Section
4.1 for specific information related to the various test points.
Note
The default switching frequency of the EVM is 2.1 MHz. Adjust the switching frequency by applying
a clock signal at the SYNC test point. Note that lower frequency can necessitate a change in buck
inductance to maintain a recommended 30% to 50% inductor peak-to-peak ripple current and optimal
internal slope compensation contribution. Refer to the LM63460-Q1 or LM64460-Q1 data sheets,
LM63k-LM64k Quickstart Calculator, and WEBENCH® Power Designer for additional guidance related
to converter operation and component selection..
4.3 Test Equipment
Voltage Source: The input voltage source VIN should be a 36-V variable DC source capable of supplying 6 A.
Multimeters:
• Voltmeter 1: Measure the input voltage at VIN+ to VIN–.
• Voltmeter 2: Measure the output voltage at VOUT+ to VOUT–.
• Ammeter 1: Measure the input current. Set the ammeter to 1-second aperture time.
• Ammeter 2: Measure the output current. Set the ammeter to 1-second aperture time.
Electronic Load: Use an electronic load set to constant-resistance (CR) or constant-current (CC) mode and
capable of 0 ADC to 6 ADC. For a no-load input current measurement, disconnect the electronic load as it can
draw a small residual current.
Oscilloscope: With the scope set to 20-MHz bandwidth and AC coupling, measure the output voltage ripple
directly across an output capacitor with a short ground lead normally provided with the scope probe. Place the
oscilloscope probe tip on the positive terminal of the output capacitor, holding the ground barrel of the probe
through the ground lead to the negative terminal of the capacitor. TI does not recommend using a long-leaded
ground connection because this can induce additional noise given a large ground loop. To measure other
waveforms, adjust the oscilloscope as needed.
Safety: Always use caution when touching any circuits that can be live or energized.
4.4 Recommended Test Setup
4.4.1 Input Connections
•
•
•
Prior to connecting the DC input source, set the current limit of the input supply to 0.1-A maximum. Ensure
the input source is initially set to 0 V and connected to the VIN+ and VIN– connection points as shown in
Figure 4-1.
Connect voltmeter 1 at VIN+ and VIN– sense terminals (adjacent to J1) to measure the input voltage.
Connect ammeter 1 to measure the input current and set it to at least a 0.1-second aperture time.
SNVU768 – DECEMBER 2021
Submit Document Feedback
LM63460-Q1 and LM64460-Q1 EVM User's Guide
Copyright © 2021 Texas Instruments Incorporated
7
Test Setup and Procedure
www.ti.com
4.4.2 Output Connections
•
•
•
Connect an electronic load to the VOUT+ and VOUT– connections as shown in Figure 4-1. Set the load to
constant-resistance mode or constant-current mode at 0 A before applying input voltage.
Connect voltmeter 2 at VOUT+ and VOUT– sense terminals (adjacent to J2) to measure the output voltage.
Connect ammeter 2 to measure the output current.
4.5 Test Procedure
4.5.1 Line/Load Regulation and Efficiency
•
•
•
•
•
•
•
•
Set up the EVM as described in Section 4.
Set load to constant resistance or constant current mode to sink 0 A.
Increase the input source voltage from 0 V to 13.5 V; use voltmeter 1 to measure the input voltage.
Increase the current limit of the input supply to 6 A.
Use voltmeter 2 to measure the output voltage, VOUT, and vary the load current from 0 A to 6 A DC; VOUT
should remain within the load regulation specification. For optimal accuracy, measure the output voltage at
the output capacitors close to the converter.
Set the load current to 3 A (50% rated load) and vary the input source voltage from 6 V to 24 V; VOUT should
remain within the line regulation specification.
Set the load current to 6 A (100% rated load) and measure the efficiency at typical input voltages (8 V, 12 V,
13.5 V, and 18 V cover the automotive battery voltage range).
Decrease the load to 0 A. Decrease the input source voltage to 0 V.
CAUTION
Extended operation at high output current can raise component temperatures above 55°C. To
avoid risk of a burn injury, do not touch the components until they have cooled sufficiently after
disconnecting power.
8
LM63460-Q1 and LM64460-Q1 EVM User's Guide
Copyright © 2021 Texas Instruments Incorporated
SNVU768 – DECEMBER 2021
Submit Document Feedback
www.ti.com
Test Data and Performance Curves
5 Test Data and Performance Curves
Because actual performance data can be affected by measurement techniques and environmental variables,
these curves are presented for reference and can differ from actual field measurements. Unless otherwise
indicated, VIN = 13.5 V, VOUT = 5 V, IOUT = 6 A, and FSW = 2.1 MHz.
100
100
95
90
Efficiency (%)
Efficiency (%)
5.1 Conversion Efficiency
90
85
VIN = 8 V
VIN = 12 V
VIN = 18 V
VIN = 24 V
80
1
2
3
4
Output Current (A)
5
70
VIN = 8 V
VIN = 12 V
VIN = 18 V
VIN = 24 V
60
75
0
80
6
Figure 5-1. Auto Mode, Linear Scale
50
0.001
0.01
0.1
Output Current (A)
1
6
Figure 5-2. Auto Mode, Log Scale
5.2 Output Voltage Regulation
5.1
Output Voltage (V)
5.05
5
4.95
VIN = 8 V
VIN = 12 V
VIN = 18 V
VIN = 24 V
4.9
0
1
2
3
4
Output Current (A)
5
6
Figure 5-3. Load and Line Regulation
SNVU768 – DECEMBER 2021
Submit Document Feedback
LM63460-Q1 and LM64460-Q1 EVM User's Guide
Copyright © 2021 Texas Instruments Incorporated
9
Test Data and Performance Curves
www.ti.com
5.3 Operating Waveforms
5.3.1 Start-Up and Enable ON/OFF
VIN 2 V/DIV
EN 2 V/DIV
VOUT 1 V/DIV
VOUT 1 V/DIV
IOUT 2 A/DIV
IOUT 2 A/DIV
2 ms/DIV
Figure 5-4. Start-Up, 6-A Resistive Load
2 ms/DIV
Figure 5-5. Enable ON/OFF, 6-A Resistive Load
5.3.2 Line and Load Transients
VOUT 200 mV/DIV
VOUT 200 mV/DIV
IOUT 2 A/DIV
IOUT 2 A/DIV
100 s/DIV
Figure 5-6. Load Transient, 3 A to 6 A
100 s/DIV
Figure 5-7. Load Transient, 0 A to 6 A
VIN 5 V/DIV
VIN 2 V/DIV
VOUT 2 V/DIV
VOUT 5 V/DIV
IL 1 A/DIV
IL 2 A/DIV
10 s/DIV
2 ms/DIV
Figure 5-8. Line Transient and Dropout Recovery
10
Figure 5-9. Frequency Foldback at VIN = 3 V
LM63460-Q1 and LM64460-Q1 EVM User's Guide
Copyright © 2021 Texas Instruments Incorporated
SNVU768 – DECEMBER 2021
Submit Document Feedback
www.ti.com
Test Data and Performance Curves
5.3.3 Short Circuit and Recovery
VOUT 2 V/DIV
VOUT 2 V/DIV
IL 5 A/DIV
IL 5 A/DIV
20 ms/DIV
Figure 5-10. Short Circuit Hiccup
20 ms/DIV
Figure 5-11. Short Circuit Recovery to No Load
5.4 Thermal Performance
Figure 5-12. IR Thermal Image, 4-A Load
SNVU768 – DECEMBER 2021
Submit Document Feedback
Figure 5-13. IR Thermal Image, 6-A Load
LM63460-Q1 and LM64460-Q1 EVM User's Guide
Copyright © 2021 Texas Instruments Incorporated
11
Test Data and Performance Curves
www.ti.com
5.5 EMI Results – CISPR 25 Class 5
5.5.1 Conducted EMI
Average detector
Peak detector
Peak detector
Average detector
S t a r t 150 k H z
Stop
30 MHz
Figure 5-14. Conducted EMI, 150 kHz to 30 MHz
Start 30 MHz
Stop 108 MHz
Figure 5-15. Conducted EMI, 30 MHz to 108 MHz
5.5.2 Radiated EMI
PK detector
PK detector
QPK detector
QPK detector
AVG detector
AVG detector
Figure 5-16. CISPR 25 Class 5 Radiated EMI, Bicon Figure 5-17. CISPR 25 Class 5 Radiated EMI, Bicon
Antenna, Horizon. Polarization, 30 MHz to 200 MHz Antenna, Vertical Polarization, 30 MHz to 200 MHz
PK detector
PK detector
QPK detector
QPK detector
AVG detector
AVG detector
Figure 5-18. CISPR 25 Class 5 Radiated EMI, Log
Antenna, Horizon. Polarization, 200 MHz to 1 GHz
12
Figure 5-19. CISPR 25 Class 5 Radiated EMI, Log
Antenna, Vertical Polarization, 200 MHz to 1 GHz
LM63460-Q1 and LM64460-Q1 EVM User's Guide
Copyright © 2021 Texas Instruments Incorporated
SNVU768 – DECEMBER 2021
Submit Document Feedback
www.ti.com
EVM Documentation
6 EVM Documentation
6.1 Schematics
6.1.1 LM63460EVM-2MHZ Schematic
Figure 6-1 shows the schematic for the LM63460EVM-2MHZ. Suitable component placements configure the EVM to accommodate the EN/SYNC and RT
pin features of the LM63460-Q1. More specifically, C20 (1 nF) connects SYNC from header J3 to the EN/SYNC pin of the LM63460-Q1, and R11 (6.04
kΩ) sets the switching freqeunecy at 2.1 MHz.
Figure 6-1. LM63460-Q1 EVM Schematic
SNVU768 – DECEMBER 2021
Submit Document Feedback
LM63460-Q1 and LM64460-Q1 EVM User's Guide
Copyright © 2021 Texas Instruments Incorporated
13
EVM Documentation
www.ti.com
6.1.2 LM64460EVM-2MHZ Schematic
Figure 6-2 shows the schematic for the LM64460EVM-2MHZ. Suitable component placements configure the EVM to accommodate the EN and MODE/
SYNC pin features of the LM64460-Q1. More specifically, R9 (0 Ω) connects SYNC from header J3 to the MODE/SYNC pin of the LM64460-Q1, and R11
(100 kΩ) configures the LM64460-Q1 for AUTO mode with spread spectrum disabled. Tie SYNC to VIN or GND to enable spread spectrum in FPWM and
AUTO modes, respectively.
Figure 6-2. LM64460-Q1 EVM Schematic
Note
The input damping network based on electrolytic capacitor C8 mitigates the effect of long input power lines with series parasitic inductance.
For more information regarding this topic, please refer to the EMI Filter Components and Their Nonidealities for Automotive DC/DC Regulators
technical brief.
14
LM63460-Q1 and LM64460-Q1 EVM User's Guide
SNVU768 – DECEMBER 2021
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
www.ti.com
EVM Documentation
6.2 Bill of Materials
Table 6-1 shows the bill of materials for the LM63460EVM-2MHZ and LM64460EVM-2MHZ EVMs. Note that the main BOM difference between the two
EVM variants is the IC (U1). The LM63460-Q1 has an RT pin for resistor-adjustable switching frequency and allows external clock synchronization by AC
coupling to its EN/SYNC pin. Conversely, the LM64460-Q1 has a default switching frequency of 2.1 MHz and has a MODE/SYNC pin for synchronization
and operating mode configuration. Placement of either C20 or R9 accommodates this difference in functionality on a shared PCB design.
Table 6-1. LM63460EVM-2MHZ (BSR173-001) and LM64460EVM-2MHZ (BSR173-002) Bill of Materials
REF DES
QTY
VALUE
DESCRIPTION
PACKAGE
PART NUMBER
MANUFACTURER
C1, C9
2
1 µF
CAP, CERM, 1 µF, 16 V, 10%, X7R, 0603
0603
C0603C105K4RACAUTO
Kemet
C2, C3, C4, C5
4
2.2 µF
CAP, CERM, 2.2 µF, 50 V, 10%, X7R 0805
0805
CGA4J3X7R1H225K125AB
TDK
C6, C7
2
0.47 µF
CAP, CERM, 0.47 µF, 50 V, 10%, X7R, 0603
0603
CGA3E3X7R1H474K080AE
TDK
C8
1
68 µF
68 µF, 50 V, aluminum electrolytic cap
1210
EEE-FN1H680XL
Panasonic
C9, C10, C11
3
47 µF
CAP, CERM, 47 µF, 10 V, 20%, X7S, 1210
1210
CGA6P1X7S1A476M250AC
TDK
C13, C14
2
22 nF
CAP, CERM, 22 nF, 50 V, 10%, X7R, 0402
0402
Std
Std
C15, C16
2
10 µF
CAP, CERM, 10 µF, 50 V, X7R, 1210
1210
CNA6P1X7R1H106K250AE
TDK
C17
1
0.1 µF
CAP, CERM, 0.1 µF, 10 V, 10%, X7R, 0402
0402
Std
Std
C20
1
1 nF
CAP, CERM, 1 nF, 25 V, 10%, X7R, 0402
0402
Std
Std
H1, H2, H3, H4
BSR173-001
4
–
Standoff, Hex, 0.5"L, #4-40, Nylon
–
1902C
Keystone
H5, H6, H7, H8
4
–
Screw, Pan Head, 4-40, 3/8", Nylon
–
NY PMS 440 0038 PH
B&F Fastener Supply
J1, J2
2
–
Terminal block 2 POS 5 mm, TH
–
TSW-110-07-G-S
Phoenix Contact
J3
1
–
Header, 100 mil, 10 × 1, Gold, TH
–
TSW-110-07-G-S
Samtec
L1
1
1 µH
Shielded power inductor
–
XGL4020-102MEC
Coilcraft
L2
1
0.76 µH
Shielded power inductor
–
XGL4030-761MEC
Coilcraft
R1
1
0Ω
RES, 0 Ω, 5%, 0.1 W, 0603
0603
Std
Std
R2, R3, R10
3
100 kΩ
RES, 100 kΩ, 1%, 0.063 W, 0402
0402
Std
Std
R4
1
1Ω
RES, 1 Ω, 1%, 0.063 W, 0402
0402
Std
Std
R5
1
10 Ω
RES, 10 Ω, 1%, 0.063 W, 0402
0402
Std
Std
R7
1
24.9 kΩ
RES, 24.9 kΩ, 1%, 0.0.063 W, 0402
0402
Std
Std
R8
R9
R11
1
255 kΩ
RES, 255 kΩ, 1%, 0.0.063 W, 0402
0402
Std
Std
BSR173-002
1
0Ω
RES, 0 Ω, 5%, 0.1 W, 0402
0402
Std
Std
BSR173-001
1
6.04 kΩ
RES, 6.04 Ω, 1%, 0.063 W, 0402
0402
Std
Std
BSR173-002
1
100 kΩ
RES, 100 kΩ, 1%, 0.063 W, 0402
0402
Std
Std
1
–
Shunt, 100 mil, gold plated, black
Shunt 2 pos. 0.1" 881545-2
TE Connectivity
4
–
Test point, miniature, SMT
–
5019
Keystone
VQFN-FCRLF
(22)
LM63460AASQRYFRQ1
SH-J3
TP1, TP2, TP3, TP4
U1
BSR173-001
BSR173-002
1
–
36-V, 6-A buck converter with EN/SYNC and RT
36-V, 6-A buck converter with EN and MODE/SYNC
SNVU768 – DECEMBER 2021
Submit Document Feedback
LM64460APPQRYFRQ1
Texas Instruments
LM63460-Q1 and LM64460-Q1 EVM User's Guide
Copyright © 2021 Texas Instruments Incorporated
15
EVM Documentation
www.ti.com
6.3 PCB Layout
Figure 6-3 through Figure 6-8 show the board layout. The design offers appropriate test points to configure the
following:
•
•
•
•
PGOOD monitor
Precision enable and input voltage UVLO
Bode plot measurement
External clock synchronization
The 22-pin Enhanced HotRod package enables a very small solution size and a low-EMI design. The PCB
consists of a 4-layer design with 2-oz copper on all layers and an array of thermal vias to connect to all four
layers. Input and output connectors with adjacent sense points for the supply and load enable a convenient
setup to power the EVM, measure efficiency, and so forth.
Figure 6-3. Top 3D View
Figure 6-4. Bottom 3D View (viewed from Bottom)
16
LM63460-Q1 and LM64460-Q1 EVM User's Guide
Copyright © 2021 Texas Instruments Incorporated
SNVU768 – DECEMBER 2021
Submit Document Feedback
www.ti.com
EVM Documentation
Figure 6-5. Top Layer
Figure 6-6. Layer 2
SNVU768 – DECEMBER 2021
Submit Document Feedback
LM63460-Q1 and LM64460-Q1 EVM User's Guide
Copyright © 2021 Texas Instruments Incorporated
17
EVM Documentation
www.ti.com
Figure 6-7. Layer 3
Figure 6-8. Bottom Layer
18
LM63460-Q1 and LM64460-Q1 EVM User's Guide
Copyright © 2021 Texas Instruments Incorporated
SNVU768 – DECEMBER 2021
Submit Document Feedback
www.ti.com
EVM Documentation
6.4 Assembly Drawings
Figure 6-9. Top Assembly (Top View), LM63460EVM-2MHZ and LM64460EVM-2MHZ
Figure 6-10. Bottom Assembly (Bottom View), LM63460EVM-2MHZ
Figure 6-11. Bottom Assembly (Bottom View), LM64460EVM-2MHZ
SNVU768 – DECEMBER 2021
Submit Document Feedback
LM63460-Q1 and LM64460-Q1 EVM User's Guide
Copyright © 2021 Texas Instruments Incorporated
19
Device and Documentation Support
www.ti.com
7 Device and Documentation Support
7.1 Device Support
7.1.1 Development Support
With an input operating voltage as low as 3 V and up to 36 V as specified in Table 7-1, the LM6k family of
automotive synchronous buck converters from TI provides flexibility, scalability and optimized solution size for
a range of applications. These converters enable DC/DC solutions with high density, low EMI and increased
flexibility. Available EMI mitigation features include pseudo-random spread spectrum (PRSS), integrated input
bypass capacitors, RBOOT-configured switch-node slew rate control, and optimized package design with
symmetrical VIN and PGND pins that shield a small switch-node copper area. All converters are rated for a
maximum operating junction temperature of 150°C, have AEC-Q100 grade 1 qualification, and are functional
safety capable.
Table 7-1. Automotive Synchronous Buck DC/DC Converter Family
DC/DC CONVERTER
RATED IOUT
PACKAGE
FEATURES
EMI MITIGATION
LM60430-Q1, LM60440-Q1
3 A, 4 A
WQFN (13)
400 kHz fixed fSW, 3 × 2-mm package
Shielded switch node
LM63610-Q1, LM63615-Q1,
LM63625-Q1, LM63635-Q1
1 A, 1.5 A, 2.5 A, WSON (12),
3.25 A
HTSSOP (16)
RT adjustable fSW, MODE/SYNC
PRSS
LM61430-Q1, LM61435-Q1,
LM61440-Q1, LM61460-Q1
3 A, 3.5 A, 4 A,
6A
RT adjustable fSW, EN/SYNC
LM62435-Q1, LM62440-Q1
3.5 A, 4 A
2.1 MHz default fSW, MODE/SYNC
LMQ61460-Q1
6A
RT adjustable fSW, EN/SYNC
LMQ62440-Q1
4A
2.1 MHz default fSW, MODE/SYNC
PRSS, RBOOT,
integrated capacitors
LM62460-Q1, LM61480-Q1,
LM61495-Q1
6 A, 8 A, 10 A
VQFN-HR (16)
RT adjustable fSW, MODE/SYNC
DRSS, RBOOT
6A
VQFN-FCRLF
(22)
RT adjustable fSW, EN/SYNC, pin FMEA
LM63460-Q1
LM64460-Q1
VQFN-HR (14)
PRSS, RBOOT
2.1 MHz default fSW, MODE/SYNC, pin FMEA
PRSS
For development support see the following:
•
•
•
•
•
•
•
•
•
LM63460-Q1 and LM64460-Q1 Quickstart Calculator
LM63460-Q1 Simulation Models
LM64460-Q1 Simulation Models
LM63460-Q1 and LM64460-Q1 EVM Altium Layout Files
For TI's reference design library, visit TI Designs.
For TI's WEBENCH Design Environment, visit the WEBENCH® Design Center.
To design a low-EMI power supply, review TI's comprehensive EMI Training Series.
TI Reference Designs:
– 30-W Power For Automotive Dual USB Type-C™ Charge Port Reference Design
– High Efficiency, Low Noise, 5-V/3.3-V/1.8-V/1.1-V Automotive Display Reference Design
Technical Articles:
– How Device-level Features And Package Options Can Help Minimize EMI In Automotive Designs
– Optimizing Flip-chip IC Thermal Performance In Automotive Designs
– Powering Levels Of Autonomy: A Quick Guide To DC/DC Solutions For SAE Autonomy Levels
– Powering Infotainment Systems Of The Future
7.1.1.1 Custom Design With WEBENCH® Tools
Click here (LM63460-Q1) or here (LM64460-Q1) to create a custom design using the converter with
WEBENCH® Power Designer.
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.
3. Compare the generated design with other possible solutions from Texas Instruments.
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time
pricing and component availability.
20
LM63460-Q1 and LM64460-Q1 EVM User's Guide
Copyright © 2021 Texas Instruments Incorporated
SNVU768 – DECEMBER 2021
Submit Document Feedback
www.ti.com
Device and Documentation Support
In most cases, these actions are available:
•
•
•
•
Run electrical simulations to see important waveforms and circuit performance.
Run thermal simulations to understand board thermal performance.
Export customized schematic and layout into popular CAD formats.
Print PDF reports for the design, and share the design with colleagues.
Get more information about WEBENCH tools at www.ti.com/WEBENCH.
7.2 Documentation Support
7.2.1 Related Documentation
For related documentation see the following:
•
•
•
•
•
•
Texas Instruments, An Engineer's Guide To EMI In DC/DC Regulators e-book
Texas Instruments, EMI Filter Components And Their Nonidealities For Automotive DC/DC Regulators
technical brief
Texas Instruments, Designing High Performance, Low-EMI, Automotive Power Supplies application report
Texas Instruments, AN-2020 Thermal Design By Insight, Not Hindsight application report
Texas Instruments, AN-2162 Simple Success With Conducted EMI From DC/DC Converters Application
Report application report
Texas Instruments, Practical Thermal Design With DC/DC Power Modules application report
SNVU768 – DECEMBER 2021
Submit Document Feedback
LM63460-Q1 and LM64460-Q1 EVM User's Guide
Copyright © 2021 Texas Instruments Incorporated
21
IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated