0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
LM63460EVM-2MHZ

LM63460EVM-2MHZ

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

  • 描述:

    LM63460-Q1 - DC/DC,步降 1,非隔离 输出评估板

  • 数据手册
  • 价格&库存
LM63460EVM-2MHZ 数据手册
www.ti.com Table of Contents User’s Guide LM63460-Q1 and LM64460-Q1 EVM User's Guide ABSTRACT The LM63460EVM-2MHZ and LM64460EVM-2MHZ evaluation modules (EVMs) are specifically designed to conveniently evaluate the performance of the LM63460-Q1 and LM64460-Q1 synchronous buck converters, respectively. As shown in Table 1-1, both converters are available in a 22-pin Enhanced HotRod™ QFN package. Table 1-1. Device and Package Configuration REF DES U1 CONVERTER IC OUTPUT CURRENT PACKAGE LM63460-Q1 6A LM64460-Q1 6A 22-pin wettable-flank Enhanced HotRod QFN package, 3.5 mm × 4 mm × 1 mm Both EVMs provide a 5-V output voltage at up to 6-A load current with exceptional efficiency and output accuracy in a very small solution size. The EVMs showcase a recommended PCB layout that is optimized specifically for EMI and thermal performance. Input and output voltage sense terminals and a test point header facilitate measurement of key parameters such as efficiency and power dissipation, line and load regulation, enable ON/OFF, and bode plot performance. The header also provides connections for synchronization (SYNC) and power-good (PGOOD) device features. The EVMs share a common schematic and layout – the main differences being the converter IC and the connections for setting the switching freqeuncy (either with an RT resistor or by external clock synchronization). Refer to the LM63460-Q1 and LM64460-Q1 data sheets, LM6k Quickstart Calculator, and WEBENCH® Power Designer for additional guidance pertaining to converter modes of operation, component selection, and expected performance. Table of Contents 1 High-Density EVM Description.............................................................................................................................................. 3 1.1 Typical Applications............................................................................................................................................................3 1.2 Features and Electrical Performance.................................................................................................................................3 2 EVM Performance Specifications..........................................................................................................................................4 3 EVM Photo...............................................................................................................................................................................5 4 Test Setup and Procedure......................................................................................................................................................6 4.1 EVM Connections.............................................................................................................................................................. 6 4.2 EVM Setup......................................................................................................................................................................... 7 4.3 Test Equipment.................................................................................................................................................................. 7 4.4 Recommended Test Setup.................................................................................................................................................7 4.5 Test Procedure................................................................................................................................................................... 8 5 Test Data and Performance Curves...................................................................................................................................... 9 5.1 Conversion Efficiency.........................................................................................................................................................9 5.2 Output Voltage Regulation................................................................................................................................................. 9 5.3 Operating Waveforms...................................................................................................................................................... 10 5.4 Thermal Performance.......................................................................................................................................................11 5.5 EMI Results – CISPR 25 Class 5.....................................................................................................................................12 6 EVM Documentation.............................................................................................................................................................13 6.1 Schematics.......................................................................................................................................................................13 6.2 Bill of Materials.................................................................................................................................................................15 6.3 PCB Layout...................................................................................................................................................................... 16 6.4 Assembly Drawings..........................................................................................................................................................19 7 Device and Documentation Support...................................................................................................................................20 SNVU768 – DECEMBER 2021 Submit Document Feedback LM63460-Q1 and LM64460-Q1 EVM User's Guide Copyright © 2021 Texas Instruments Incorporated 1 Trademarks www.ti.com 7.1 Device Support.................................................................................................................................................................20 7.2 Documentation Support................................................................................................................................................... 21 List of Figures Figure 3-1. BSR173 EVM Photo..................................................................................................................................................5 Figure 4-1. EVM Test Setup.........................................................................................................................................................6 Figure 5-1. Auto Mode, Linear Scale........................................................................................................................................... 9 Figure 5-2. Auto Mode, Log Scale............................................................................................................................................... 9 Figure 5-3. Load and Line Regulation......................................................................................................................................... 9 Figure 5-4. Start-Up, 6-A Resistive Load...................................................................................................................................10 Figure 5-5. Enable ON/OFF, 6-A Resistive Load.......................................................................................................................10 Figure 5-6. Load Transient, 3 A to 6 A.......................................................................................................................................10 Figure 5-7. Load Transient, 0 A to 6 A.......................................................................................................................................10 Figure 5-8. Line Transient and Dropout Recovery.....................................................................................................................10 Figure 5-9. Frequency Foldback at VIN = 3 V............................................................................................................................ 10 Figure 5-10. Short Circuit Hiccup............................................................................................................................................... 11 Figure 5-11. Short Circuit Recovery to No Load........................................................................................................................ 11 Figure 5-12. IR Thermal Image, 4-A Load................................................................................................................................. 11 Figure 5-13. IR Thermal Image, 6-A Load................................................................................................................................. 11 Figure 5-14. Conducted EMI, 150 kHz to 30 MHz..................................................................................................................... 12 Figure 5-15. Conducted EMI, 30 MHz to 108 MHz....................................................................................................................12 Figure 5-16. CISPR 25 Class 5 Radiated EMI, Bicon Antenna, Horizon. Polarization, 30 MHz to 200 MHz............................ 12 Figure 5-17. CISPR 25 Class 5 Radiated EMI, Bicon Antenna, Vertical Polarization, 30 MHz to 200 MHz..............................12 Figure 5-18. CISPR 25 Class 5 Radiated EMI, Log Antenna, Horizon. Polarization, 200 MHz to 1 GHz................................. 12 Figure 5-19. CISPR 25 Class 5 Radiated EMI, Log Antenna, Vertical Polarization, 200 MHz to 1 GHz................................... 12 Figure 6-1. LM63460-Q1 EVM Schematic.................................................................................................................................13 Figure 6-2. LM64460-Q1 EVM Schematic.................................................................................................................................14 Figure 6-3. Top 3D View............................................................................................................................................................ 16 Figure 6-4. Bottom 3D View (viewed from Bottom)....................................................................................................................16 Figure 6-5. Top Layer.................................................................................................................................................................17 Figure 6-6. Layer 2.................................................................................................................................................................... 17 Figure 6-7. Layer 3.................................................................................................................................................................... 18 Figure 6-8. Bottom Layer........................................................................................................................................................... 18 Figure 6-9. Top Assembly (Top View), LM63460EVM-2MHZ and LM64460EVM-2MHZ...........................................................19 Figure 6-10. Bottom Assembly (Bottom View), LM63460EVM-2MHZ....................................................................................... 19 Figure 6-11. Bottom Assembly (Bottom View), LM64460EVM-2MHZ....................................................................................... 19 List of Tables Table 1-1. Device and Package Configuration.............................................................................................................................1 Table 2-1. Electrical Performance Specifications.........................................................................................................................4 Table 4-1. EVM Power Connections............................................................................................................................................ 6 Table 4-2. EVM Signal Connections............................................................................................................................................ 6 Table 6-1. LM63460EVM-2MHZ (BSR173-001) and LM64460EVM-2MHZ (BSR173-002) Bill of Materials............................. 15 Table 6-2. Different BOM Configurations................................................................................................................................. 0 Table 7-1. Automotive Synchronous Buck DC/DC Converter Family........................................................................................ 20 Trademarks HotRod™ is a trademark of Texas Instruments. WEBENCH® are registered trademarks of Texas Instruments. All trademarks are the property of their respective owners. 2 LM63460-Q1 and LM64460-Q1 EVM User's Guide Copyright © 2021 Texas Instruments Incorporated SNVU768 – DECEMBER 2021 Submit Document Feedback www.ti.com High-Density EVM Description 1 High-Density EVM Description The LM63460EVM-2MHZ and LM64460EVM-2MHZ feature the LM63460-Q1 and LM64460-Q1 synchronous buck converters, respectively. The EVMs provide the full 6-A output current rating of these converters, and a wide-VIN range of 3 V to 36 V offers outsized voltage rating and operating margin to withstand automotive supply-rail voltage transients. The selected input capacitors accommodate the entire range of input voltage and are available from multiple component vendors. Input and output voltage sense terminals and a test point header facilitate measurement of the following: • • • • • Efficiency and power dissipation Line and load regulation Load transient response Enable ON/OFF Bode plot (crossover frequency and phase margin) The 8-pin header also provides connections for enable (EN), external clock synchronization (SYNC), and powergood (PGOOD) features. The recommended PCB layout maximizes thermal performance and minimizes output ripple and noise. The EVMs share a common PCB layout, whereas the BOMs have minor differences in installed components. The main differences between the ICs relate to pins 7 and 8, which are EN/SYNC and RT for the LM63460-Q1 and EN and MODE/SYNC for the LM64460-Q1, respectively. 1.1 Typical Applications • • • Automotive infotainment and cluster: head unit, media hub, USB charge, display Automotive ADAS and body electronics Inverting buck-boost (IBB) circuits requiring negative output voltage 1.2 Features and Electrical Performance • • • • • • • • Complete 6-A buck power stage with integrated power MOSFETs and PWM controller Wide input voltage operating range of 3 V to 36 V (absolute maximum rating of 42 V) – Input voltage UVLO turn-on and turn-off thresholds set at 4.5 V and 3.2 V, respectively Default output voltage and switching frequency of 5 V and 2.1 MHz, respectively. The LM63460-Q1 has a resistor-programmable switching frequency from 200 kHz to 2.2 MHz using its RT pin, whereas the LM64460Q1 has a default frequency of 2.1 MHz but is synchronizable over the same range. High efficiency across a wide load-current range – Half-load and full-load efficiencies of 94.4% and 92.5% at VIN = 13.5 V – External bias option reduces no-load supply current and enhances thermal performance Improved EMI performance for noise-sensitive automotive applications – Meets CISPR 25 Class 5 EMI standard for both conducted and radiated emissions – Input π-stage EMI filter with electrolytic capacitor for parallel damping – Parallel input and output paths with symmetrical capacitor layouts minimize radiated field coupling – Clock synchronization and optional FPWM mode provide constant switching frequency across the full load range – Integrated input, VCC, and bootstrap capacitors enable low-noise switching performance – Pseudo-random spread spectrum modulation (PRSS) for lower peak emissions • Included by default in the LM63460-Q1 • Configurable in the LM64460-Q1 – connect the MODE/SYNC pin of the IC to VCC or GND to enable spread spectrum in FPWM and auto modes, respectively. Peak current-mode control architecture enables fast line and load transient response – Integrated loop compensation components and frequency-proportional slope compensation Inherent protection features for robust and reliable design – Overcurrent protection (OCP) with peak and valley current limits – Thermal shutdown protection with hysteresis – PGOOD indicator with 100-kΩ pullup resistor to VOUT – Resistor-programmable input voltage UVLO Fully assembled, tested and proven, 4-layer PCB layout with 76-mm × 38-mm total footprint SNVU768 – DECEMBER 2021 Submit Document Feedback LM63460-Q1 and LM64460-Q1 EVM User's Guide Copyright © 2021 Texas Instruments Incorporated 3 EVM Performance Specifications www.ti.com 2 EVM Performance Specifications Unless otherwise indicated, VIN = 13.5 V, VOUT = 5 V, IOUT = 6 A and FSW = 2.1 MHz Table 2-1. Electrical Performance Specifications PARAMETER TEST CONDITIONS MIN TYP MAX UNIT INPUT CHARACTERISTICS Input voltage range, VIN Operating 5.5 Input voltage turn-on, VIN(on) Input voltage turn-off, VIN(off) V 3.2 Adjusted using EN divider resistors Input voltage hysteresis, VIN(hys) Input current, disabled, IIN(off) 36 4.5 1.3 VEN = 0 V (with 255-kΩ and 100-kΩ EN divider) 39 µA OUTPUT CHARACTERISTICS Output voltage, VOUT (1) Adjustable from 1 V to 95% VIN Output current, IOUT VIN = 6 V to 36 V (2) Output voltage regulation, ΔVOUT 4.95 5.0 0 Load regulation IOUT = 0 A to 6 A 0.1% Line regulation VIN = 6 V to 36 V 0.1% 5.05 V 6 A Output voltage ripple, VOUT(AC) 25 mVrms Output overcurrent protection, IOUT(OCP) 8.5 A 2.1 MHz SYSTEM CHARACTERISTICS Default switching frequency, FSW(nom) Adjustable from 200 kHz to 2.2 MHz (with suitable choice of buck inductance and input/ouptut capacitance at lower FSW) VIN = 8 V VIN = 13.5 V Efficiency, η(1) VIN = 18 V VIN = 24 V IOUT = 3 A 95% IOUT = 6 A 92% IOUT = 3 A 94.5% IOUT = 6 A 92.5% IOUT = 3 A 93% IOUT = 6 A 91.7% IOUT = 3 A 91.4% IOUT = 6 A 90.6% Thermal impedance, RθJA 23 Junction temperature, TJ (1) (2) 4 –40 °C/W 150 °C The default output voltage and switching frequency of this EVM are 5 V and 2.1 MHz, respectively. The BIAS pin connects to the output for output voltages of 3.3 V and above. Efficiency and other performance metrics can change based on operating input voltage, load current, switching frequency, external bias voltage, ambient temperature, externally connected output capacitance, and other parameters. The recommended airflow is 200 LFM when operating at output currents greater than 4 A. LM63460-Q1 and LM64460-Q1 EVM User's Guide Copyright © 2021 Texas Instruments Incorporated SNVU768 – DECEMBER 2021 Submit Document Feedback www.ti.com EVM Photo 3 EVM Photo Figure 3-1 highlights the buck converter power stage and the various connection interfaces associated with the EVM. Use terminal blocks J1 and J2 to connect the input supply and load, respectively. These terminal blocks accept up to 16-AWG wire thickness. Figure 3-1. BSR173 EVM Photo CAUTION Caution Hot surface. Contact may cause burns. Do not touch. SNVU768 – DECEMBER 2021 Submit Document Feedback LM63460-Q1 and LM64460-Q1 EVM User's Guide Copyright © 2021 Texas Instruments Incorporated 5 Test Setup and Procedure www.ti.com 4 Test Setup and Procedure 4.1 EVM Connections Referencing the EVM connections described in Table 4-1, use the recommended test setup in Figure 4-1 to evaluate the LM63460-Q1 and LM64460-Q1 converter. Working at an ESD-protected workstation, make sure that any wrist straps, bootstraps, or mats are connected and referencing the user to earth ground before power is applied to the EVM. Oscilloscope Power Supply - Ammeter 1 + A V Ammeter 2 A COM + COM COM COM Electronic Load - V Voltmeter 2 Voltmeter 1 Figure 4-1. EVM Test Setup SPACER Table 4-1. EVM Power Connections LABEL DESCRIPTION VIN+ Positive input power connection VIN– Negative input power connection VOUT+ Positive output power connection VOUT– Negative output power connection Table 4-2. EVM Signal Connections LABEL(1) DESCRIPTION VIN+ (TP1) Positive input sense terminal. Connect the multimeter positive lead for measuring efficiency. VIN– (TP2) Negative input sense terminal. Connect a multimeter negative lead for measuring efficiency. VOUT+ (TP3) Positive output sense terminal. Connect a multimeter positive lead for measuring efficiency and line/load regulation. VOUT– (TP4) Negative output sense terminal. Connect the multimeter negative lead for measuring efficiency and line/load regulation. GND Ground reference point at J3 EN Precision enable input. Tie EN to GND to disable the regulator. Use a logic signal to control EN for remote ON/OFF functionality. Leave EN open for UVLO turn-on threshold set at 4.5 V. SYNC Synchronization input (connects to the EN/SYNC or MODE/SYNC pins of the LM63460-Q1 and LM64460-Q1, respectively). Connect a valid clock signal to synchronize the switching frequency from 200 kHz to 2.2 MHz. VCC VCC output PGD Power-good monitor output. This is an open-drain flag with a 100-kΩ pullup resistor to VOUT. INJ, VOUT Bode plot measurement and signal injection using a 50-Ω resistor from INJ to VOUT BIAS External bias supply connection. A 1-Ω resistor from VOUT to BIAS simplifies bias current measurement. (1) 6 Refer to the LM63460-Q1 or LM64460-Q1 data sheets for absolute maximum ratings associated with the features in this table. LM63460-Q1 and LM64460-Q1 EVM User's Guide Copyright © 2021 Texas Instruments Incorporated SNVU768 – DECEMBER 2021 Submit Document Feedback www.ti.com Test Setup and Procedure 4.2 EVM Setup • • Use the VIN+ and VIN– test points along with the VOUT+ and VOUT– test points located near the power terminal blocks as voltage monitoring points where voltmeters are connected to measure the input and output voltages, respectively. Do not use these sense terminals as the input supply or output load connection points. The PCB traces connected to these sense terminals are not designed to support high currents. Header J3 provides access to the following test points: – VIN – EN – SYNC – VCC – PGD – BIAS – VOUT – INJ The SYNC test point provides a convenient location to connect an external clock signal. The power-good (PGD) test point is available to monitor when a valid output voltage is present on the EVM. Refer to Section 4.1 for specific information related to the various test points. Note The default switching frequency of the EVM is 2.1 MHz. Adjust the switching frequency by applying a clock signal at the SYNC test point. Note that lower frequency can necessitate a change in buck inductance to maintain a recommended 30% to 50% inductor peak-to-peak ripple current and optimal internal slope compensation contribution. Refer to the LM63460-Q1 or LM64460-Q1 data sheets, LM63k-LM64k Quickstart Calculator, and WEBENCH® Power Designer for additional guidance related to converter operation and component selection.. 4.3 Test Equipment Voltage Source: The input voltage source VIN should be a 36-V variable DC source capable of supplying 6 A. Multimeters: • Voltmeter 1: Measure the input voltage at VIN+ to VIN–. • Voltmeter 2: Measure the output voltage at VOUT+ to VOUT–. • Ammeter 1: Measure the input current. Set the ammeter to 1-second aperture time. • Ammeter 2: Measure the output current. Set the ammeter to 1-second aperture time. Electronic Load: Use an electronic load set to constant-resistance (CR) or constant-current (CC) mode and capable of 0 ADC to 6 ADC. For a no-load input current measurement, disconnect the electronic load as it can draw a small residual current. Oscilloscope: With the scope set to 20-MHz bandwidth and AC coupling, measure the output voltage ripple directly across an output capacitor with a short ground lead normally provided with the scope probe. Place the oscilloscope probe tip on the positive terminal of the output capacitor, holding the ground barrel of the probe through the ground lead to the negative terminal of the capacitor. TI does not recommend using a long-leaded ground connection because this can induce additional noise given a large ground loop. To measure other waveforms, adjust the oscilloscope as needed. Safety: Always use caution when touching any circuits that can be live or energized. 4.4 Recommended Test Setup 4.4.1 Input Connections • • • Prior to connecting the DC input source, set the current limit of the input supply to 0.1-A maximum. Ensure the input source is initially set to 0 V and connected to the VIN+ and VIN– connection points as shown in Figure 4-1. Connect voltmeter 1 at VIN+ and VIN– sense terminals (adjacent to J1) to measure the input voltage. Connect ammeter 1 to measure the input current and set it to at least a 0.1-second aperture time. SNVU768 – DECEMBER 2021 Submit Document Feedback LM63460-Q1 and LM64460-Q1 EVM User's Guide Copyright © 2021 Texas Instruments Incorporated 7 Test Setup and Procedure www.ti.com 4.4.2 Output Connections • • • Connect an electronic load to the VOUT+ and VOUT– connections as shown in Figure 4-1. Set the load to constant-resistance mode or constant-current mode at 0 A before applying input voltage. Connect voltmeter 2 at VOUT+ and VOUT– sense terminals (adjacent to J2) to measure the output voltage. Connect ammeter 2 to measure the output current. 4.5 Test Procedure 4.5.1 Line/Load Regulation and Efficiency • • • • • • • • Set up the EVM as described in Section 4. Set load to constant resistance or constant current mode to sink 0 A. Increase the input source voltage from 0 V to 13.5 V; use voltmeter 1 to measure the input voltage. Increase the current limit of the input supply to 6 A. Use voltmeter 2 to measure the output voltage, VOUT, and vary the load current from 0 A to 6 A DC; VOUT should remain within the load regulation specification. For optimal accuracy, measure the output voltage at the output capacitors close to the converter. Set the load current to 3 A (50% rated load) and vary the input source voltage from 6 V to 24 V; VOUT should remain within the line regulation specification. Set the load current to 6 A (100% rated load) and measure the efficiency at typical input voltages (8 V, 12 V, 13.5 V, and 18 V cover the automotive battery voltage range). Decrease the load to 0 A. Decrease the input source voltage to 0 V. CAUTION Extended operation at high output current can raise component temperatures above 55°C. To avoid risk of a burn injury, do not touch the components until they have cooled sufficiently after disconnecting power. 8 LM63460-Q1 and LM64460-Q1 EVM User's Guide Copyright © 2021 Texas Instruments Incorporated SNVU768 – DECEMBER 2021 Submit Document Feedback www.ti.com Test Data and Performance Curves 5 Test Data and Performance Curves Because actual performance data can be affected by measurement techniques and environmental variables, these curves are presented for reference and can differ from actual field measurements. Unless otherwise indicated, VIN = 13.5 V, VOUT = 5 V, IOUT = 6 A, and FSW = 2.1 MHz. 100 100 95 90 Efficiency (%) Efficiency (%) 5.1 Conversion Efficiency 90 85 VIN = 8 V VIN = 12 V VIN = 18 V VIN = 24 V 80 1 2 3 4 Output Current (A) 5 70 VIN = 8 V VIN = 12 V VIN = 18 V VIN = 24 V 60 75 0 80 6 Figure 5-1. Auto Mode, Linear Scale 50 0.001 0.01 0.1 Output Current (A) 1 6 Figure 5-2. Auto Mode, Log Scale 5.2 Output Voltage Regulation 5.1 Output Voltage (V) 5.05 5 4.95 VIN = 8 V VIN = 12 V VIN = 18 V VIN = 24 V 4.9 0 1 2 3 4 Output Current (A) 5 6 Figure 5-3. Load and Line Regulation SNVU768 – DECEMBER 2021 Submit Document Feedback LM63460-Q1 and LM64460-Q1 EVM User's Guide Copyright © 2021 Texas Instruments Incorporated 9 Test Data and Performance Curves www.ti.com 5.3 Operating Waveforms 5.3.1 Start-Up and Enable ON/OFF VIN 2 V/DIV EN 2 V/DIV VOUT 1 V/DIV VOUT 1 V/DIV IOUT 2 A/DIV IOUT 2 A/DIV 2 ms/DIV Figure 5-4. Start-Up, 6-A Resistive Load 2 ms/DIV Figure 5-5. Enable ON/OFF, 6-A Resistive Load 5.3.2 Line and Load Transients VOUT 200 mV/DIV VOUT 200 mV/DIV IOUT 2 A/DIV IOUT 2 A/DIV 100 s/DIV Figure 5-6. Load Transient, 3 A to 6 A 100 s/DIV Figure 5-7. Load Transient, 0 A to 6 A VIN 5 V/DIV VIN 2 V/DIV VOUT 2 V/DIV VOUT 5 V/DIV IL 1 A/DIV IL 2 A/DIV 10 s/DIV 2 ms/DIV Figure 5-8. Line Transient and Dropout Recovery 10 Figure 5-9. Frequency Foldback at VIN = 3 V LM63460-Q1 and LM64460-Q1 EVM User's Guide Copyright © 2021 Texas Instruments Incorporated SNVU768 – DECEMBER 2021 Submit Document Feedback www.ti.com Test Data and Performance Curves 5.3.3 Short Circuit and Recovery VOUT 2 V/DIV VOUT 2 V/DIV IL 5 A/DIV IL 5 A/DIV 20 ms/DIV Figure 5-10. Short Circuit Hiccup 20 ms/DIV Figure 5-11. Short Circuit Recovery to No Load 5.4 Thermal Performance Figure 5-12. IR Thermal Image, 4-A Load SNVU768 – DECEMBER 2021 Submit Document Feedback Figure 5-13. IR Thermal Image, 6-A Load LM63460-Q1 and LM64460-Q1 EVM User's Guide Copyright © 2021 Texas Instruments Incorporated 11 Test Data and Performance Curves www.ti.com 5.5 EMI Results – CISPR 25 Class 5 5.5.1 Conducted EMI Average detector Peak detector Peak detector Average detector S t a r t 150 k H z Stop 30 MHz Figure 5-14. Conducted EMI, 150 kHz to 30 MHz Start 30 MHz Stop 108 MHz Figure 5-15. Conducted EMI, 30 MHz to 108 MHz 5.5.2 Radiated EMI PK detector PK detector QPK detector QPK detector AVG detector AVG detector Figure 5-16. CISPR 25 Class 5 Radiated EMI, Bicon Figure 5-17. CISPR 25 Class 5 Radiated EMI, Bicon Antenna, Horizon. Polarization, 30 MHz to 200 MHz Antenna, Vertical Polarization, 30 MHz to 200 MHz PK detector PK detector QPK detector QPK detector AVG detector AVG detector Figure 5-18. CISPR 25 Class 5 Radiated EMI, Log Antenna, Horizon. Polarization, 200 MHz to 1 GHz 12 Figure 5-19. CISPR 25 Class 5 Radiated EMI, Log Antenna, Vertical Polarization, 200 MHz to 1 GHz LM63460-Q1 and LM64460-Q1 EVM User's Guide Copyright © 2021 Texas Instruments Incorporated SNVU768 – DECEMBER 2021 Submit Document Feedback www.ti.com EVM Documentation 6 EVM Documentation 6.1 Schematics 6.1.1 LM63460EVM-2MHZ Schematic Figure 6-1 shows the schematic for the LM63460EVM-2MHZ. Suitable component placements configure the EVM to accommodate the EN/SYNC and RT pin features of the LM63460-Q1. More specifically, C20 (1 nF) connects SYNC from header J3 to the EN/SYNC pin of the LM63460-Q1, and R11 (6.04 kΩ) sets the switching freqeunecy at 2.1 MHz. Figure 6-1. LM63460-Q1 EVM Schematic SNVU768 – DECEMBER 2021 Submit Document Feedback LM63460-Q1 and LM64460-Q1 EVM User's Guide Copyright © 2021 Texas Instruments Incorporated 13 EVM Documentation www.ti.com 6.1.2 LM64460EVM-2MHZ Schematic Figure 6-2 shows the schematic for the LM64460EVM-2MHZ. Suitable component placements configure the EVM to accommodate the EN and MODE/ SYNC pin features of the LM64460-Q1. More specifically, R9 (0 Ω) connects SYNC from header J3 to the MODE/SYNC pin of the LM64460-Q1, and R11 (100 kΩ) configures the LM64460-Q1 for AUTO mode with spread spectrum disabled. Tie SYNC to VIN or GND to enable spread spectrum in FPWM and AUTO modes, respectively. Figure 6-2. LM64460-Q1 EVM Schematic Note The input damping network based on electrolytic capacitor C8 mitigates the effect of long input power lines with series parasitic inductance. For more information regarding this topic, please refer to the EMI Filter Components and Their Nonidealities for Automotive DC/DC Regulators technical brief. 14 LM63460-Q1 and LM64460-Q1 EVM User's Guide SNVU768 – DECEMBER 2021 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated www.ti.com EVM Documentation 6.2 Bill of Materials Table 6-1 shows the bill of materials for the LM63460EVM-2MHZ and LM64460EVM-2MHZ EVMs. Note that the main BOM difference between the two EVM variants is the IC (U1). The LM63460-Q1 has an RT pin for resistor-adjustable switching frequency and allows external clock synchronization by AC coupling to its EN/SYNC pin. Conversely, the LM64460-Q1 has a default switching frequency of 2.1 MHz and has a MODE/SYNC pin for synchronization and operating mode configuration. Placement of either C20 or R9 accommodates this difference in functionality on a shared PCB design. Table 6-1. LM63460EVM-2MHZ (BSR173-001) and LM64460EVM-2MHZ (BSR173-002) Bill of Materials REF DES QTY VALUE DESCRIPTION PACKAGE PART NUMBER MANUFACTURER C1, C9 2 1 µF CAP, CERM, 1 µF, 16 V, 10%, X7R, 0603 0603 C0603C105K4RACAUTO Kemet C2, C3, C4, C5 4 2.2 µF CAP, CERM, 2.2 µF, 50 V, 10%, X7R 0805 0805 CGA4J3X7R1H225K125AB TDK C6, C7 2 0.47 µF CAP, CERM, 0.47 µF, 50 V, 10%, X7R, 0603 0603 CGA3E3X7R1H474K080AE TDK C8 1 68 µF 68 µF, 50 V, aluminum electrolytic cap 1210 EEE-FN1H680XL Panasonic C9, C10, C11 3 47 µF CAP, CERM, 47 µF, 10 V, 20%, X7S, 1210 1210 CGA6P1X7S1A476M250AC TDK C13, C14 2 22 nF CAP, CERM, 22 nF, 50 V, 10%, X7R, 0402 0402 Std Std C15, C16 2 10 µF CAP, CERM, 10 µF, 50 V, X7R, 1210 1210 CNA6P1X7R1H106K250AE TDK C17 1 0.1 µF CAP, CERM, 0.1 µF, 10 V, 10%, X7R, 0402 0402 Std Std C20 1 1 nF CAP, CERM, 1 nF, 25 V, 10%, X7R, 0402 0402 Std Std H1, H2, H3, H4 BSR173-001 4 – Standoff, Hex, 0.5"L, #4-40, Nylon – 1902C Keystone H5, H6, H7, H8 4 – Screw, Pan Head, 4-40, 3/8", Nylon – NY PMS 440 0038 PH B&F Fastener Supply J1, J2 2 – Terminal block 2 POS 5 mm, TH – TSW-110-07-G-S Phoenix Contact J3 1 – Header, 100 mil, 10 × 1, Gold, TH – TSW-110-07-G-S Samtec L1 1 1 µH Shielded power inductor – XGL4020-102MEC Coilcraft L2 1 0.76 µH Shielded power inductor – XGL4030-761MEC Coilcraft R1 1 0Ω RES, 0 Ω, 5%, 0.1 W, 0603 0603 Std Std R2, R3, R10 3 100 kΩ RES, 100 kΩ, 1%, 0.063 W, 0402 0402 Std Std R4 1 1Ω RES, 1 Ω, 1%, 0.063 W, 0402 0402 Std Std R5 1 10 Ω RES, 10 Ω, 1%, 0.063 W, 0402 0402 Std Std R7 1 24.9 kΩ RES, 24.9 kΩ, 1%, 0.0.063 W, 0402 0402 Std Std R8 R9 R11 1 255 kΩ RES, 255 kΩ, 1%, 0.0.063 W, 0402 0402 Std Std BSR173-002 1 0Ω RES, 0 Ω, 5%, 0.1 W, 0402 0402 Std Std BSR173-001 1 6.04 kΩ RES, 6.04 Ω, 1%, 0.063 W, 0402 0402 Std Std BSR173-002 1 100 kΩ RES, 100 kΩ, 1%, 0.063 W, 0402 0402 Std Std 1 – Shunt, 100 mil, gold plated, black Shunt 2 pos. 0.1" 881545-2 TE Connectivity 4 – Test point, miniature, SMT – 5019 Keystone VQFN-FCRLF (22) LM63460AASQRYFRQ1 SH-J3 TP1, TP2, TP3, TP4 U1 BSR173-001 BSR173-002 1 – 36-V, 6-A buck converter with EN/SYNC and RT 36-V, 6-A buck converter with EN and MODE/SYNC SNVU768 – DECEMBER 2021 Submit Document Feedback LM64460APPQRYFRQ1 Texas Instruments LM63460-Q1 and LM64460-Q1 EVM User's Guide Copyright © 2021 Texas Instruments Incorporated 15 EVM Documentation www.ti.com 6.3 PCB Layout Figure 6-3 through Figure 6-8 show the board layout. The design offers appropriate test points to configure the following: • • • • PGOOD monitor Precision enable and input voltage UVLO Bode plot measurement External clock synchronization The 22-pin Enhanced HotRod package enables a very small solution size and a low-EMI design. The PCB consists of a 4-layer design with 2-oz copper on all layers and an array of thermal vias to connect to all four layers. Input and output connectors with adjacent sense points for the supply and load enable a convenient setup to power the EVM, measure efficiency, and so forth. Figure 6-3. Top 3D View Figure 6-4. Bottom 3D View (viewed from Bottom) 16 LM63460-Q1 and LM64460-Q1 EVM User's Guide Copyright © 2021 Texas Instruments Incorporated SNVU768 – DECEMBER 2021 Submit Document Feedback www.ti.com EVM Documentation Figure 6-5. Top Layer Figure 6-6. Layer 2 SNVU768 – DECEMBER 2021 Submit Document Feedback LM63460-Q1 and LM64460-Q1 EVM User's Guide Copyright © 2021 Texas Instruments Incorporated 17 EVM Documentation www.ti.com Figure 6-7. Layer 3 Figure 6-8. Bottom Layer 18 LM63460-Q1 and LM64460-Q1 EVM User's Guide Copyright © 2021 Texas Instruments Incorporated SNVU768 – DECEMBER 2021 Submit Document Feedback www.ti.com EVM Documentation 6.4 Assembly Drawings Figure 6-9. Top Assembly (Top View), LM63460EVM-2MHZ and LM64460EVM-2MHZ Figure 6-10. Bottom Assembly (Bottom View), LM63460EVM-2MHZ Figure 6-11. Bottom Assembly (Bottom View), LM64460EVM-2MHZ SNVU768 – DECEMBER 2021 Submit Document Feedback LM63460-Q1 and LM64460-Q1 EVM User's Guide Copyright © 2021 Texas Instruments Incorporated 19 Device and Documentation Support www.ti.com 7 Device and Documentation Support 7.1 Device Support 7.1.1 Development Support With an input operating voltage as low as 3 V and up to 36 V as specified in Table 7-1, the LM6k family of automotive synchronous buck converters from TI provides flexibility, scalability and optimized solution size for a range of applications. These converters enable DC/DC solutions with high density, low EMI and increased flexibility. Available EMI mitigation features include pseudo-random spread spectrum (PRSS), integrated input bypass capacitors, RBOOT-configured switch-node slew rate control, and optimized package design with symmetrical VIN and PGND pins that shield a small switch-node copper area. All converters are rated for a maximum operating junction temperature of 150°C, have AEC-Q100 grade 1 qualification, and are functional safety capable. Table 7-1. Automotive Synchronous Buck DC/DC Converter Family DC/DC CONVERTER RATED IOUT PACKAGE FEATURES EMI MITIGATION LM60430-Q1, LM60440-Q1 3 A, 4 A WQFN (13) 400 kHz fixed fSW, 3 × 2-mm package Shielded switch node LM63610-Q1, LM63615-Q1, LM63625-Q1, LM63635-Q1 1 A, 1.5 A, 2.5 A, WSON (12), 3.25 A HTSSOP (16) RT adjustable fSW, MODE/SYNC PRSS LM61430-Q1, LM61435-Q1, LM61440-Q1, LM61460-Q1 3 A, 3.5 A, 4 A, 6A RT adjustable fSW, EN/SYNC LM62435-Q1, LM62440-Q1 3.5 A, 4 A 2.1 MHz default fSW, MODE/SYNC LMQ61460-Q1 6A RT adjustable fSW, EN/SYNC LMQ62440-Q1 4A 2.1 MHz default fSW, MODE/SYNC PRSS, RBOOT, integrated capacitors LM62460-Q1, LM61480-Q1, LM61495-Q1 6 A, 8 A, 10 A VQFN-HR (16) RT adjustable fSW, MODE/SYNC DRSS, RBOOT 6A VQFN-FCRLF (22) RT adjustable fSW, EN/SYNC, pin FMEA LM63460-Q1 LM64460-Q1 VQFN-HR (14) PRSS, RBOOT 2.1 MHz default fSW, MODE/SYNC, pin FMEA PRSS For development support see the following: • • • • • • • • • LM63460-Q1 and LM64460-Q1 Quickstart Calculator LM63460-Q1 Simulation Models LM64460-Q1 Simulation Models LM63460-Q1 and LM64460-Q1 EVM Altium Layout Files For TI's reference design library, visit TI Designs. For TI's WEBENCH Design Environment, visit the WEBENCH® Design Center. To design a low-EMI power supply, review TI's comprehensive EMI Training Series. TI Reference Designs: – 30-W Power For Automotive Dual USB Type-C™ Charge Port Reference Design – High Efficiency, Low Noise, 5-V/3.3-V/1.8-V/1.1-V Automotive Display Reference Design Technical Articles: – How Device-level Features And Package Options Can Help Minimize EMI In Automotive Designs – Optimizing Flip-chip IC Thermal Performance In Automotive Designs – Powering Levels Of Autonomy: A Quick Guide To DC/DC Solutions For SAE Autonomy Levels – Powering Infotainment Systems Of The Future 7.1.1.1 Custom Design With WEBENCH® Tools Click here (LM63460-Q1) or here (LM64460-Q1) to create a custom design using the converter with WEBENCH® Power Designer. 1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements. 2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial. 3. Compare the generated design with other possible solutions from Texas Instruments. The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time pricing and component availability. 20 LM63460-Q1 and LM64460-Q1 EVM User's Guide Copyright © 2021 Texas Instruments Incorporated SNVU768 – DECEMBER 2021 Submit Document Feedback www.ti.com Device and Documentation Support In most cases, these actions are available: • • • • Run electrical simulations to see important waveforms and circuit performance. Run thermal simulations to understand board thermal performance. Export customized schematic and layout into popular CAD formats. Print PDF reports for the design, and share the design with colleagues. Get more information about WEBENCH tools at www.ti.com/WEBENCH. 7.2 Documentation Support 7.2.1 Related Documentation For related documentation see the following: • • • • • • Texas Instruments, An Engineer's Guide To EMI In DC/DC Regulators e-book Texas Instruments, EMI Filter Components And Their Nonidealities For Automotive DC/DC Regulators technical brief Texas Instruments, Designing High Performance, Low-EMI, Automotive Power Supplies application report Texas Instruments, AN-2020 Thermal Design By Insight, Not Hindsight application report Texas Instruments, AN-2162 Simple Success With Conducted EMI From DC/DC Converters Application Report application report Texas Instruments, Practical Thermal Design With DC/DC Power Modules application report SNVU768 – DECEMBER 2021 Submit Document Feedback LM63460-Q1 and LM64460-Q1 EVM User's Guide Copyright © 2021 Texas Instruments Incorporated 21 IMPORTANT NOTICE AND DISCLAIMER TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products. TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated
LM63460EVM-2MHZ 价格&库存

很抱歉,暂时无法提供与“LM63460EVM-2MHZ”相匹配的价格&库存,您可以联系我们找货

免费人工找货