0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
LM7905CT

LM7905CT

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    TO-220-3

  • 描述:

    IC REG LINEAR -5V 1.5A TO220-3

  • 数据手册
  • 价格&库存
LM7905CT 数据手册
LM7905, LM7912, LM7915 www.ti.com SNOSBQ7C – JUNE 1999 – REVISED MAY 2013 LM79XX Series 3-Terminal Negative Regulators Check for Samples: LM7905, LM7912, LM7915 FEATURES 1 • 2 • • • Thermal, Short Circuit and Safe Area Protection High Ripple Rejection 1.5A Output Current 4% Tolerance on Preset Output Voltage space DESCRIPTION The LM79XX series of 3-terminal regulators is available with fixed output voltages of −5V, −12V, and −15V. These devices need only one external component—a compensation capacitor at the output. The LM79XX series is packaged in the TO-220 power package and is capable of supplying 1.5A of output current. Connection Diagram Figure 1. TO-220 Package Front View See Package Number NDE0003B Typical Applications These regulators employ internal current limiting safe area protection and thermal shutdown for protection against virtually all overload conditions. Low ground pin current of the LM79XX series allows output voltage to be easily boosted above the preset value with a resistor divider. The low quiescent current drain of these devices with a specified maximum change with line and load ensures good regulation in the voltage boosted mode. For applications requiring other voltages, see LM137 datasheet. *Required if regulator is separated from filter capacitor by more than 3″. For value given, capacitor must be solid tantalum. 25μF aluminum electrolytic may be substituted. †Required for stability. For value given, capacitor must be solid tantalum. 25μF aluminum electrolytic may be substituted. Values given may be increased without limit. For output capacitance in excess of 100μF, a high current diode from input to output (1N4001, etc.) will protect the regulator from momentary input shorts. Figure 2. Fixed Regulator 1 2 Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners. PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. Copyright © 1999–2013, Texas Instruments Incorporated LM7905, LM7912, LM7915 SNOSBQ7C – JUNE 1999 – REVISED MAY 2013 www.ti.com These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates. ABSOLUTE MAXIMUM RATINGS (1) Input Voltage (Vo = −5V) −25V (Vo = −12V and −15V) −35V Input-Output Differential (Vo = −5V) 25V (Vo = −12V and −15V) Power Dissipation 30V (2) Internally Limited Operating Junction Temperature Range 0°C to +125°C −65°C to +150°C Storage Temperature Range Lead Temperature (Soldering, 10 sec.) (1) (2) 230°C Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not ensure Specific Performance limits. For ensured specifications and test conditions, see the Electrical Characteristics. Refer to DESIGN CONSIDERATIONS for details. ELECTRICAL CHARACTERISTICS Conditions unless otherwise noted: IOUT = 500mA, CIN = 2.2μF, COUT = 1μF, 0°C ≤ TJ ≤ +125°C, Power Dissipation ≤ 1.5W. Part Number LM7905C Output Voltage −5V −10V Input Voltage (unless otherwise specified) Symbol VO Parameter Output Voltage Conditions Min Typ Max TJ = 25°C −4.8 −5.0 −5.2 V 5mA ≤ IOUT ≤ 1A, −4.75 −5.25 V 50 mV 15 mV P ≤ 15W ΔVO Line Regulation Units TJ = 25°C, (−20 ≤ VIN ≤ −7) (1) 8 V (−25 ≤ VIN ≤ −7) 2 V (−12 ≤ VIN ≤ −8) ΔVO Load Regulation TJ = 25°C, 5mA ≤ IOUT ≤ 1.5A 15 100 mV 250mA ≤ IOUT ≤ 750mA 5 50 mV 1 2 mA 0.5 mA 0.5 mA IQ Quiescent Current TJ = 25°C ΔIQ Quiescent Current With Line (−25 ≤ VIN ≤ −7) Change With Load, 5mA ≤ IOUT ≤ 1A Vn IOMAX V (1) Output Noise Voltage TA = 25°C, 10Hz ≤ f ≤ 100Hz Ripple Rejection f = 120Hz 54 V 125 μV 66 dB (−18 ≤ VIN ≤ −8) V V Dropout Voltage TJ = 25°C, IOUT = 1A 1.1 Peak Output Current TJ = 25°C 2.2 A Average Temperature IOUT = 5mA, 0.4 mV/°C Coefficient of 0 C ≤ TJ ≤ 100°C Output Voltage (1) 2 Regulation is measured at a constant junction temperature by pulse testing with a low duty cycle. Changes in output voltage due to heating effects must be taken into account. Submit Documentation Feedback Copyright © 1999–2013, Texas Instruments Incorporated Product Folder Links: LM7905 LM7912 LM7915 LM7905, LM7912, LM7915 www.ti.com SNOSBQ7C – JUNE 1999 – REVISED MAY 2013 ELECTRICAL CHARACTERISTICS Conditions unless otherwise noted: IOUT = 500mA, CIN = 2.2μF, COUT = 1μF, 0°C ≤ TJ ≤ +125°C, Power Dissipation ≤ 1.5W. Part Number LM7912C LM7915C Output Voltage −12V −15V Input Voltage (unless otherwise specified) −19V Symbol VO Parameter Output Voltage Conditions ΔVO Line Regulation Load Regulation Typ Max Min Typ Max TJ = 25°C −11.5 −12.0 −12.5 −14.4 −15.0 −15.6 V 5mA ≤ IOUT ≤ 1A, −11.4 −12.6 −14.25 −15.75 V TJ = 25°C, (−27 ≤ VIN ≤ −14.5) (−30 ≤ VIN ≤ −17.5) V 5 5 mV (1) 100 (−30 ≤ VIN ≤ −14.5) (−30 ≤ VIN≤ −17.5) V 3 3 mV 30 50 (−26 ≤ VIN ≤−20) V 5mA ≤ IOUT ≤ 1.5A 15 200 15 200 mV 250mA ≤ IOUT ≤ 750mA 5 75 5 75 mV 1.5 3 1.5 3 mA 0.5 mA TJ = 25°C, Quiescent Current TJ = 25°C ΔIQ Quiescent Current With Line (1) 0.5 (−30 ≤ VIN ≤ −14.5) Change With Load, 5mA ≤ IOUT ≤ 1A IOMAX 80 (−22 ≤ VIN ≤ −16) IQ Vn −23V Min P ≤ 15W ΔVO Units Output Noise Voltage TA = 25°C, 10Hz ≤ f ≤ 100Hz Ripple Rejection f = 120 Hz (−30 ≤VIN ≤ −17.5) 0.5 0.5 V mA 375 μV 70 dB (−25 ≤ VIN ≤ −15) (−30 ≤ VIN≤ −17.5) V V 300 54 70 54 Dropout Voltage TJ = 25°C, IOUT = 1A 1.1 1.1 Peak Output Current TJ = 25°C 2.2 2.2 A Average Temperature IOUT = 5mA, −0.8 −1.0 mV/°C Coefficient of 0 C ≤ TJ ≤ 100°C Output Voltage (1) Regulation is measured at a constant junction temperature by pulse testing with a low duty cycle. Changes in output voltage due to heating effects must be taken into account. Copyright © 1999–2013, Texas Instruments Incorporated Product Folder Links: LM7905 LM7912 LM7915 Submit Documentation Feedback 3 LM7905, LM7912, LM7915 SNOSBQ7C – JUNE 1999 – REVISED MAY 2013 www.ti.com DESIGN CONSIDERATIONS The LM79XX fixed voltage regulator series has thermal overload protection from excessive power dissipation, internal short circuit protection which limits the circuit's maximum current, and output transistor safe-area compensation for reducing the output current as the voltage across the pass transistor is increased. Although the internal power dissipation is limited, the junction temperature must be kept below the maximum specified temperature (125°C) in order to meet data sheet specifications. To calculate the maximum junction temperature or heat sink required, the following thermal resistance values should be used: Package TO-220 Typ Max Typ θJC θJC θJA Max θJA °C/W °C/W °C/W °C/W 3.0 5.0 60 40 (1) Solving for TJ: TJ = TA + PD (θJC + θCA) or = TA + PDθJA (without heat sink) where • • • • • • • • TJ = Junction Temperature TA = Ambient Temperature PD = Power Dissipation θJA = Junction-to-Ambient Thermal Resistance θJC = Junction-to-Case Thermal Resistance θCA = Case-to-Ambient Thermal Resistance θCS = Case-to-Heat Sink Thermal Resistance θSA = Heat Sink-to-Ambient Thermal Resistance Typical Applications Bypass capacitors are necessary for stable operation of the LM79XX series of regulators over the input voltage and output current ranges. Output bypass capacitors will improve the transient response by the regulator. The bypass capacitors, (2.2μF on the input, 1.0μF on the output) should be ceramic or solid tantalum which have good high frequency characteristics. If aluminum electrolytics are used, their values should be 10μF or larger. The bypass capacitors should be mounted with the shortest leads, and if possible, directly across the regulator terminals. 4 Submit Documentation Feedback Copyright © 1999–2013, Texas Instruments Incorporated Product Folder Links: LM7905 LM7912 LM7915 LM7905, LM7912, LM7915 www.ti.com SNOSBQ7C – JUNE 1999 – REVISED MAY 2013 Load and line regulation < 0.01% temperature stability ≤ 0.2% †Determine Zener current ††Solid tantalum *Select resistors to set output voltage. 2 ppm/°C tracking suggested Figure 3. High Stability 1 Amp Regulator Figure 4. Current Source *Lamp brightness increase until iI= iQ (≈ 1 mA) + 5V/R1. †Necessary only if raw supply filter capacitor is more that 2″ from LM7905CT Figure 5. Light Controller Using Silicon Photo Cell Copyright © 1999–2013, Texas Instruments Incorporated Product Folder Links: LM7905 LM7912 LM7915 Submit Documentation Feedback 5 LM7905, LM7912, LM7915 SNOSBQ7C – JUNE 1999 – REVISED MAY 2013 www.ti.com *Lamp brightness increases until ii = 5V/R1 (Ii can be set as low as 1 μA) †Necessary only if raw supply filter capacitor is more that 2″ from LM7905 Figure 6. High-Sensitivity Light Controller *Improves transient response and ripple rejection. Do not increase beyond 50 μF. Select R2 as follows: LM7905CT 300Ω LM7912CT 750Ω LM7915CT 1k Figure 7. Variable Output 6 Submit Documentation Feedback Copyright © 1999–2013, Texas Instruments Incorporated Product Folder Links: LM7905 LM7912 LM7915 LM7905, LM7912, LM7915 www.ti.com SNOSBQ7C – JUNE 1999 – REVISED MAY 2013 (-15) (+15) Load Regulation at ΔIL = 1A 40mV 2mV Output Ripple, CIN = 3000µF, IL = 1A 100 µVms 100 µVms Temperature Stability 50mV 50mV Output Noise 10Hz ≤ f ≤ 10kHz 150 µVms 150 µVms *Resistor tolerance of R4 and R5 determine matching of (+) and (−) outputs. **Necessary only if raw supply filter capacitors are more than 3″ from regulators. Figure 8. ±15V, 1 Amp Tracking Regulators Figure 9. Dual Trimmed Supply Copyright © 1999–2013, Texas Instruments Incorporated Product Folder Links: LM7905 LM7912 LM7915 Submit Documentation Feedback 7 LM7905, LM7912, LM7915 SNOSBQ7C – JUNE 1999 – REVISED MAY 2013 www.ti.com Schematic Diagrams Figure 10. −5V Figure 11. −12V and −15V 8 Submit Documentation Feedback Copyright © 1999–2013, Texas Instruments Incorporated Product Folder Links: LM7905 LM7912 LM7915 LM7905, LM7912, LM7915 www.ti.com SNOSBQ7C – JUNE 1999 – REVISED MAY 2013 REVISION HISTORY Changes from Revision B (May 2013) to Revision C • Page Changed layout of National Data Sheet to TI format. ........................................................................................................... 8 Copyright © 1999–2013, Texas Instruments Incorporated Product Folder Links: LM7905 LM7912 LM7915 Submit Documentation Feedback 9 PACKAGE OPTION ADDENDUM www.ti.com 3-May-2017 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) LM7905CT NRND TO-220 NDE 3 45 TBD Call TI Call TI 0 to 125 LM7905CT LM7905CT/NOPB ACTIVE TO-220 NDE 3 45 Green (RoHS & no Sb/Br) CU SN Level-1-NA-UNLIM 0 to 125 LM7905CT LM7912CT NRND TO-220 NDE 3 45 TBD Call TI Call TI 0 to 125 LM7912CT LM7912CT/NOPB ACTIVE TO-220 NDE 3 45 Green (RoHS & no Sb/Br) CU SN Level-1-NA-UNLIM 0 to 125 LM7912CT LM7915CT NRND TO-220 NDE 3 45 TBD Call TI Call TI 0 to 125 LM7915CT LM7915CT/NOPB ACTIVE TO-220 NDE 3 45 Green (RoHS & no Sb/Br) CU SN Level-1-NA-UNLIM 0 to 125 LM7915CT (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
LM7905CT 价格&库存

很抱歉,暂时无法提供与“LM7905CT”相匹配的价格&库存,您可以联系我们找货

免费人工找货