0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
LMH6629MFX/NOPB

LMH6629MFX/NOPB

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    SOT23-5

  • 描述:

    IC OPAMP VFB 1 CIRCUIT SOT23-5

  • 数据手册
  • 价格&库存
LMH6629MFX/NOPB 数据手册
Product Folder Sample & Buy Support & Community Tools & Software Technical Documents LMH6629 SNOSB18I – APRIL 2010 – REVISED DECEMBER 2014 LMH6629 Ultra-Low Noise, High-Speed Operational Amplifier with Shutdown 1 Features • 1 • • • • • • • • • • • 3 Description Specified for VS = 5 V, RL = 100 Ω, AV = 10V/V WSON-8 Package, unless Specified. –3dB Bandwidth 900 MHz Input Voltage Noise 0.69 nV/√Hz Input Offset Voltage Max. Over Temperature ±0.8 mV Slew Rate 1600 V/ μs HD2 @ f = 1 MHz, 2VPP −90 dBc HD3 @ f = 1 MHz, 2VPP −94 dBc Supply Voltage Range 2.7 V to 5.5 V Typical Supply Current 15.5 mA Selectable Min. Gain ≥4 or ≥10 V/V Enable Time: 75 ns Output Current ±250 mA WSON-8 and SOT-23-5 Packages 2 Applications • • • • • • • • Instrumentation Amplifiers Ultrasound Pre-amps Wide-band Active Filters Opto-Electronics Medical Imaging Systems Base-Station Amplifiers Low-Noise Single Ended to Differential Conversion Trans-Impedance Amplifier The LMH6629 is a high-speed, ultra-low noise amplifier designed for applications requiring wide bandwidth with high gain and low noise such as in communication, test and measurement, optical and ultrasound systems. The LMH6629 operates on 2.7-V to 5.5-V supply with an input common mode range that extends below ground and outputs that swing to within 0.8 V of the rails for ease of use in single supply applications. Heavy loads up to ±250 mA can be driven by highfrequency large signals with the LMH6629's –3dB bandwidth of 900 MHz and 1600 V/µs slew rate. The LMH6629 (WSON-8 package only) has userselectable internal compensation for minimum gains of 4 or 10 controlled by pulling the COMP pin low or high, thereby avoiding the need for external compensation capacitors required in competitive devices. Compensation for the SOT-23-5 package is internally set for a minimum stable gain of 10 V/V. The WSON-8 package also provides the power-down enable/disable feature. The low-input noise (0.69 nV/√Hz and 2.6 pA/√Hz), low distortion (HD2/HD3 = −90 dBc/−94 dBc) and ultra-low DC errors (800 µV VOS maximum over temperature, ±0.45 µV/°C drift) allow precision operation in both ac- and dc-coupled applications. The LMH6629 is fabricated in Texas Instruments' proprietary SiGe process and is available in a 3 mm × 3 mm 8-pin WSON package as well as the SOT-23-5 package. Device Information(1) PART NUMBER LMH6629 PACKAGE BODY SIZE (NOM) SOT-23 (5) 2.90 mm × 1.60 mm WSON (8) 3.00 mm × 3.00 mm (1) For all available packages, see the orderable addendum at the end of the datasheet. Transimpedance Amplifier CF 0.6 pF (1.2 pF (2) series) +5VDC D1 RF 1.2k CD = 10 pF ID +5VDC LMH 6629 +5VDC RL 500 R2 2k C1 0.1 PF R1 3k Vout = 3VDC - 1200 x ID 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA. LMH6629 SNOSB18I – APRIL 2010 – REVISED DECEMBER 2014 www.ti.com Table of Contents 1 2 3 4 5 6 Features .................................................................. Applications ........................................................... Description ............................................................. Revision History..................................................... Pin Configuration and Functions ......................... Specifications......................................................... 6.1 6.2 6.3 6.4 6.5 6.6 6.7 7 1 1 1 2 3 4 Absolute Maximum Ratings ...................................... 4 ESD Ratings.............................................................. 4 Recommended Operating Conditions....................... 4 Thermal Information .................................................. 4 Electrical Characteristics 5V .................................... 5 Electrical Characteristics 3.3V ................................. 8 Typical Performance Characteristics ...................... 11 Detailed Description ............................................ 19 7.1 Overview ................................................................. 19 7.2 Functional Block Diagram ....................................... 19 7.3 Feature Description................................................. 20 7.4 Device Functional Modes........................................ 31 8 Application and Implementation ........................ 32 8.1 Application Information............................................ 32 8.2 Typical Application .................................................. 32 9 Power Supply Recommendations...................... 34 10 Layout................................................................... 35 10.1 Layout Guidelines ................................................. 35 10.2 Layout Example .................................................... 36 11 Device and Documentation Support ................. 38 11.1 11.2 11.3 11.4 Documentation Support ........................................ Trademarks ........................................................... Electrostatic Discharge Caution ............................ Glossary ................................................................ 38 38 38 38 12 Mechanical, Packaging, and Orderable Information ........................................................... 38 4 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. Changes from Revision H (October 2014) to Revision I Page • Updated ESD Ratings table. .................................................................................................................................................. 4 • Revised paragraph beginning with "The optimum value of "CF in the Low-Noise Transimpedance Amplifier section ........ 29 • Updated Related Documentation section ............................................................................................................................. 38 Changes from Revision G (March 2013) to Revision H • Added, updated, or renamed the following sections: Device Information Table, Pin Configuration and Functions, Application and Implementation; Power Supply Recommendations; Layout; Device and Documentation Support; Mechanical, Packaging, and Ordering Information................................................................................................................. 1 Changes from Revision F (March 2013) to Revision G • 2 Page Page Changed layout of National Data Sheet to TI format ............................................................................................................. 1 Submit Documentation Feedback Copyright © 2010–2014, Texas Instruments Incorporated Product Folder Links: LMH6629 LMH6629 www.ti.com SNOSB18I – APRIL 2010 – REVISED DECEMBER 2014 5 Pin Configuration and Functions 5-Pin Package DBV Top View OUT V - 1 5 + V 2 + PD 1 8 V FB 2 7 OUT IN- 3 6 COMP IN+ 4 5 V DAP - + +IN 8-Pin Package NGQ08A Top View 4 3 V- - -IN Pin Functions NAME NUMBER DBV NGQ08A I/O COMP 6 I FB 2 I/O DESCRIPTION Compensation Feedback -IN 4 3 I Inverting input +IN 3 4 I Non-inverting input OUT 1 7 O Output 1 I Power Down PD V- 2 5 I Negative supply + 5 8 I Positive supply V Submit Documentation Feedback Copyright © 2010–2014, Texas Instruments Incorporated Product Folder Links: LMH6629 3 LMH6629 SNOSB18I – APRIL 2010 – REVISED DECEMBER 2014 www.ti.com 6 Specifications 6.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted) (1) (2) (3) Positive Supply Voltage MIN MAX UNIT −0.5 6.0 V Differential Input Voltage 3 V ±10 mA Analog Input Voltage −0.5 to VS V Digital Input Voltage −0.5 to VS V +150 °C +150 °C Input current Junction Temperature −65 Storage Temperature (Tstg) (1) (2) (3) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and specifications. Electrical table values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very limited self-heating of the device such that TJ = TA. No guarantee of parametric performance is indicated in the electrical tables under conditions of internal self-heating where TJ > TA. 6.2 ESD Ratings VALUE Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 V(ESD) (1) (2) Electrostatic discharge (1) UNIT ±2000 Machine model ±200 Charged-device model (CDM), per JEDEC specification JESD22C101 (2) ±750 V JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 500-V HBM is possible with the necessary precautions. Pins listed as ±2000 V may actually have higher performance. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 250-V CDM is possible with the necessary precautions. Pins listed as ±750 V may actually have higher performance. 6.3 Recommended Operating Conditions over operating free-air temperature range (unless otherwise noted) (1) MIN Supply Voltage (V+ - V−) Operating Temperature Range (1) NOM MAX UNIT 2.7 5.5 V −40 +125 °C Absolute maximum ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not ensured. For ensured specifications and the test conditions, see the Electrical Characteristics. 6.4 Thermal Information THERMAL METRIC (1) RθJA (1) 4 Junction-to-ambient thermal resistance DBV NGQ08A 5 PINS 8 PINS 179 71 UNIT °C/W For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953. Submit Documentation Feedback Copyright © 2010–2014, Texas Instruments Incorporated Product Folder Links: LMH6629 LMH6629 www.ti.com SNOSB18I – APRIL 2010 – REVISED DECEMBER 2014 6.5 Electrical Characteristics 5V The following specifications apply for single supply with VS = 5 V, RL = 100 Ω terminated to 2.5 V, gain = 10V/V, VO = 2VPP, VCM = VS/2, COMP Pin = HI (WSON-8 package), unless otherwise noted. (1) PARAMETER TEST CONDITIONS TA = 25°C MIN (2) TYP (3) UNIT MAX (2) DYNAMIC PERFORMANCE SSBW LSBW Small Signal −3dB bandwidth VO = 200 mVPP, WSON-8 package 900 VO = 200 mVPP, SOT-23-5 package 1000 AV= 4, VO = 200 mVPP, COMP Pin = LO Large signal −3dB VO = 2VPP bandwidth COMP Pin = LO, AV= 4, VO = 2VPP 0.1 dB bandwidth Peaking SR Slew rate tr/ tf Rise/fall time Ts 800 380 330 AV= 10, VO = 200 mVPP, SOT-23-5 package 190 MHz 95 VO = 200 mVPP, WSON-8 package 0 VO = 200 mVPP, SOT-23-5 package 2 AV= 10, 2 V step MHz 190 AV= 10, VO = 200 mVPP, WSON-8 package AV= 4, VO = 200 mVPP, COMP Pin = LO MHz dB 1600 AV= 4, 2 V step, COMP Pin = LO 530 AV= 10, 2 V step, 10% to 90%, WSON-8 package 0.90 AV= 10, 2 V step, 10% to 90%, SOT-23-5 package 0.95 AV= 4, 2 V step, 10% to 90%, COMP Pin = LO, (Slew Rate Limited) 2.8 Settling time AV= 10, 1 V step, ±0.1% 42 Overload recovery VIN = 1 VPP V/μs ns 2 NOISE and DISTORTION HD2 HD3 2nd Order distortion 3rd Order distortion OIP3 Two-tone 3rd order intercept point en Noise voltage in Noise current NF Noise figure (1) (2) (3) fc = 1 MHz, VO = 2 VPP −90 COMP Pin = LO, AV= 4, fc = 1 MHz, VO = 2 VPP −88 fc = 10 MHz, VO = 2 VPP −70 COMP Pin = LO, fc = 10 MHz, AV= 4 V, VO = 2 VPP −65 fc = 1 MHz, VO = 2VPP −94 COMP Pin = LO, AV= 4, fc = 1 MHz, VO = 2 VPP −87 fc = 10 MHz, VO = 2 VPP −82 COMP Pin = LO, fc = 10 MHz, VO = 2VPP −75 fc = 25 MHz, VO = 2 VPP composite 31 fc = 75 MHz, VO = 2 VPP composite 27 Input referred f > 1MHz RS = RT = 50 Ω dBc dBc dBm 0.69 nV/√Hz 2.6 pA/√Hz 8.0 dB Electrical table values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very limited self-heating of the device such that TJ = TA. No guarantee of parametric performance is indicated in the electrical tables under conditions of internal self-heating where TJ > TA. All limits are ensured by testing or statistical analysis Typical numbers are the most likely parametric norm. Submit Documentation Feedback Copyright © 2010–2014, Texas Instruments Incorporated Product Folder Links: LMH6629 5 LMH6629 SNOSB18I – APRIL 2010 – REVISED DECEMBER 2014 www.ti.com Electrical Characteristics 5V (continued) The following specifications apply for single supply with VS = 5 V, RL = 100 Ω terminated to 2.5 V, gain = 10V/V, VO = 2VPP, VCM = VS/2, COMP Pin = HI (WSON-8 package), unless otherwise noted.(1) PARAMETER TEST CONDITIONS TA = 25°C MIN (2) TYP (3) MAX (2) UNIT ANALOG I/O CMVR Input voltage range VO Output voltage range 0.89 -40°C ≤ TJ ≤ +125°C IOUT Linear output current VOS Input offset voltage TcVOS Input offset voltage temperature drift See (5) IBI Input bias current See (6) IOS Input offset current TCIOS Input offset voltage temperature drift CDIFF RCM Input capacitance Input resistance VO = 2.5 V -40°C ≤ TJ ≤ +125°C 0.82 to 4.19 0.95 0.76 No Load 3.8 −0.30 to 3.8 CMRR > 70 dB, SOT-23-5 package RL = 100 Ω to VS/2 CCM −0.30 CMRR > 70 dB, WSON-8 package 0.85 (4) 4.1 250 -40°C ≤ TJ ≤ +125°C mA ±780 ±800 −15 -40°C ≤ TJ ≤ +125°C −23 −37 ±0.1 -40°C ≤ TJ ≤ +125°C ±1.8 ±3.0 ±2.8 Common Mode 1.7 Differential Mode (7) 4 Common Mode 450 µV μV/°C ±0.45 (5) V 4.0 ±150 See 4.0 3.9 0.72 to 4.28 V μA μA nA/°C pF kΩ MISCELLANEOUS PARAMETERS CMRR Common mode rejection ratio PSRR Power supply rejection ratio VCM from 0 V to 3.7 V, WSON-8 package 82 -40°C ≤ TJ ≤ +125°C VCM from 0 V to 3.7 V, SOT-23-5 package AVOL Open loop gain WSON-8 package (5) (6) (7) 6 83 78 74 -40°C ≤ TJ ≤ +125°C SOT-23-5 package (4) 87 81 -40°C ≤ TJ ≤ +125°C 87 70 dB 78 72 78 The maximum continuous output current (IOUT) is determined by device power dissipation limitations. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of 150°C Drift determined by dividing the change in parameter at temperature extremes by the total temperature change. Negative input current implies current flowing out of the device Simulation results. Submit Documentation Feedback Copyright © 2010–2014, Texas Instruments Incorporated Product Folder Links: LMH6629 LMH6629 www.ti.com SNOSB18I – APRIL 2010 – REVISED DECEMBER 2014 Electrical Characteristics 5V (continued) The following specifications apply for single supply with VS = 5 V, RL = 100 Ω terminated to 2.5 V, gain = 10V/V, VO = 2VPP, VCM = VS/2, COMP Pin = HI (WSON-8 package), unless otherwise noted.(1) PARAMETER TEST CONDITIONS TA = 25°C MIN (2) TYP (3) MAX (2) UNIT DIGITAL INPUTS/TIMING VIL Logic low-voltage threshold VIH Logic high-voltage PD and COMP pins, WSON-8 package threshold IIL Logic Low-bias current PD and COMP pins = 0.8 V, WSON-8 package (6) IIH Logic High-bias current PD and COMP pins = 2.5 V, WSON-8 package (6) Ten Enable time Tdis Disable time PD and COMP pins, WSON-8 package 0.8 V 2.5 −23 -40°C ≤ TJ ≤ +125°C −16 -40°C ≤ TJ ≤ +125°C −28 −19 −34 −38 −22 −14 −27 −29 75 WSON-8 package µA ns 80 POWER REQUIREMENTS IS Supply current No Load, Normal Operation (PD Pin = HI or open for WSON-8 package) No Load, Shutdown (PD Pin =LO for WSON-8 package) 15.5 -40°C ≤ TJ ≤ +125°C 18.2 1.1 -40°C ≤ TJ ≤ +125°C 16.7 2.0 Submit Documentation Feedback Copyright © 2010–2014, Texas Instruments Incorporated Product Folder Links: LMH6629 mA 1.85 7 LMH6629 SNOSB18I – APRIL 2010 – REVISED DECEMBER 2014 www.ti.com 6.6 Electrical Characteristics 3.3V The following specifications apply for single supply with VS = 3.3 V, RL = 100 Ω terminated to 1.65 V, gain = 10V/V, VO = 1 VPP, VCM = VS/2, COMP Pin = HI (WSON-8 package), unless otherwise noted. (1) PARAMETER TEST CONDITIONS TA = 25°C MIN (2) TYP (3) MAX (2) UNIT DYNAMIC PERFORMANCE VO = 200 mVPP, WSON-8 package SSBW LSBW 950 Large signal −3dB VO = 1VPP bandwidth COMP Pin = LO, AV= 4, VO = 1VPP 540 0.1 dB Bandwidth Peaking SR Slew rate tr/ tf Rise/fall time Ts 820 Small signal −3dB VO = 200 mVPP, SOT-23-5 package bandwidth COMP Pin = LO, AV= 4, VO = 200 mVPP 730 320 AV= 10, VO = 200 mVPP, WSON-8 package 330 AV= 10, VO = 200 mVPP, SOT-23-5 package 190 COMP Pin = LO, AV= 4, VO = 200 mVPP 85 VO = 200 mVPP, WSON-8 package VO = 200 mVPP, SOT-23-5 package AV= 10, 1.3V step MHz 0 1.8 1100 COMP Pin = LO, AV= 4, 1.3V step 500 AV= 10, 1V step, 10% to 90%, WSON-8 package 0.7 AV= 10, 1V step, 10% to 90%, SOT-23-5 package 0.55 AV= 4, COMP Pin = LO, 1V step, 10% to 90% (Slew Rate Limited) 1.3 Settling time AV= 10, 1V step, ±0.1% 70 Overload recovery VIN = 1VPP MHz MHz dB V/µs ns 2 NOISE and DISTORTION HD2 HD3 2nd Order distortion 3rd Order distortion OIP3 Two-tone 3rd order intercept point en Noise voltage in Noise current NF Noise figure (1) (2) (3) 8 fc = 1MHz, VO = 1VPP -82 COMP Pin = LO, AV= 4, fc = 1MHz, VO = 1VPP -88 fc = 10 MHz, VO = 1VPP -67 COMP Pin = LO, fc = 10 MHz, AV= 4V, VO = 1VPP -74 fc = 1MHz, VO = 1VPP -94 COMP Pin = LO, AV= 4, fc = 1MHz, VO = 1VPP -112 fc = 10 MHz, VO = 1VPP -79 COMP pin = LO, fc = 10 MHz, VO = 1VPP -96 fc = 25 MHz, VO = 1VPP composite 30 fc = 75 MHz, VO = 1VPP composite 26 Input referred, f > 1MHz RS = RT = 50 Ω dBc dBc dBm 0.69 nV/√Hz 2.6 pA/√Hz 8.0 dB Electrical table values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very limited self-heating of the device such that TJ = TA. No guarantee of parametric performance is indicated in the electrical tables under conditions of internal self-heating where TJ > TA. All limits are ensured by testing or statistical analysis. Typical numbers are the most likely parametric norm. Submit Documentation Feedback Copyright © 2010–2014, Texas Instruments Incorporated Product Folder Links: LMH6629 LMH6629 www.ti.com SNOSB18I – APRIL 2010 – REVISED DECEMBER 2014 Electrical Characteristics 3.3V (continued) The following specifications apply for single supply with VS = 3.3 V, RL = 100 Ω terminated to 1.65 V, gain = 10V/V, VO = 1 VPP, VCM = VS/2, COMP Pin = HI (WSON-8 package), unless otherwise noted.(1) PARAMETER TEST CONDITIONS TA = 25°C MIN (2) TYP (3) UNIT MAX (2) ANALOG I/O CMVR Input voltage range VO Output voltage range CMRR > 70 dB, WSON-8 package -40°C ≤ TJ ≤ +125°C IOUT Linear output current VOS Input offset voltage TcVOS Input offset voltage temperature drift See (5) IBI Input bias current See (6) Input offset current TCIOS Input offset voltage temperature drift CCM CDIFF RCM Input capacitance Input resistance -40°C ≤ TJ ≤ +125°C 0.79 to 2.50 0.95 0.76 No load 2.1 -0.30 to 2.1 0.90 RL = 100 Ω to VS/2 IOS -0.30 CMRR > 70 dB, SOT-23-5 package 0.70 to 2.60 2.5 2.4 230 ±150 -40°C ≤ TJ ≤ +125°C mA ±680 µV ±700 ±1 µV/°C -15 -23 ±0.13 ±1.8 -40°C ≤ TJ ≤ +125°C -35 -40°C ≤ TJ ≤ +125°C See V 2.3 0.80 VO = 1.65 V (4) 2.4 µA ±3.0 (5) ±3.2 Common Mode nA/°C 1.7 Differential Mode (7) 4 Common Mode 1 pF MΩ MISCELLANEOUS PARAMETERS CMRR Common mode rejection ratio PSRR Power supply rejection ratio AVOL Open loop gain VCM from 0 V to 2.0 V, WSON-8 package 84 -40°C ≤ TJ ≤ +125°C VCM from 0 V to 2.0 V, SOT-23-5 package 87 82 -40°C ≤ TJ ≤ +125°C WSON-8 package (5) (6) (7) 84 dB 79 78 -40°C ≤ TJ ≤ +125°C SOT-23-5 package (4) 87 81 79 73 79 The maximum continuous output current (IOUT) is determined by device power dissipation limitations. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of 150°C Drift determined by dividing the change in parameter at temperature extremes by the total temperature change. Negative input current implies current flowing out of the device. Simulation results. Submit Documentation Feedback Copyright © 2010–2014, Texas Instruments Incorporated Product Folder Links: LMH6629 9 LMH6629 SNOSB18I – APRIL 2010 – REVISED DECEMBER 2014 www.ti.com Electrical Characteristics 3.3V (continued) The following specifications apply for single supply with VS = 3.3 V, RL = 100 Ω terminated to 1.65 V, gain = 10V/V, VO = 1 VPP, VCM = VS/2, COMP Pin = HI (WSON-8 package), unless otherwise noted.(1) PARAMETER TEST CONDITIONS TA = 25°C MIN (2) TYP (3) MAX (2) UNIT DIGITAL INPUTS/TIMING VIL Logic low-voltage threshold 0.8 PD and COMP pins, WSON-8 package VIH Logic high-voltage threshold IIL Logic low-bias current PD and COMP pins = 0.8 V, WSON-8 package (6) IIH Logic high-bias current PD and COMP pins = 2.0 V, WSON-8 package (6) Ten Enable time Tdis Disable time V 2.0 -17 -40°C ≤ TJ ≤ +125°C -16 -40°C ≤ TJ ≤ +125°C -23 -14 -28 -32 -22 -13 -27 -31 75 WSON-8 package µA ns 80 POWER REQUIREMENTS IS Supply current No Load, Normal Operation (PD Pin = HI or open for WSON-8 package) 13.7 -40°C ≤ TJ ≤ +125°C No Load, Shutdown (PD Pin = LO for WSON-8 package) -40°C ≤ TJ ≤ +125°C 10 Submit Documentation Feedback 14.9 16.0 0.89 mA 1.4 1.5 Copyright © 2010–2014, Texas Instruments Incorporated Product Folder Links: LMH6629 LMH6629 www.ti.com SNOSB18I – APRIL 2010 – REVISED DECEMBER 2014 6.7 Typical Performance Characteristics 1 1 0 0 Normalized Gain (dB) Normalized Gain (dB) Unless otherwise specified, VS = ±2.5V, Rf = 240 Ω, RL = 100 Ω, VO = 2 VPP, COMP pin = HI, AV = +10 V/V, WSON-8 and SOT-23-5 packages (unless specifically noted). Av = 100 V/V -1 Av = -60 V/V Av = -40 V/V -2 Av = -20 V/V -3 Av = -4 V/V (COMP Pin = LO) -4 Av = -60 V/V Av = -40 V/V -2 Av = -20 V/V -3 Av = -4 V/V (COMP Pin = LO) -4 -5 100k 1M 10M f (Hz) 100M -5 100k 1G Vo = 2 Vpp 0 0 Normalized Gain (dB) 1 Av = 200 V/V Av = 100 V/V -2 Av = 30 V/V -3 Av = 4 V/V (COMP Pin = LO) Av = 10 V/V -4 -5 100k 10M f (Hz) 1M 10M f (Hz) Vs = ±1.5V -1 Av = 200 V/V -2 Av = 100 V/V Av = 30 V/V -3 Av = 10 V/V -5 100k 1G Vo = 2 Vpp 1M 10M f (Hz) Vo = 1 Vpp Figure 3. Non-Inverting Frequency Response 1G Av = 4 V/V (COMP Pin = LO) -4 100M 100M Figure 2. Inverting Frequency Response 1 -1 1M Vo = 1 Vpp Figure 1. Inverting Frequency Response Normalized Gain (dB) Av = 100 V/V -1 100M 1G Vs = ±1.5 V Figure 4. Non-Inverting Frequency Response 3 3 2 2 0 Normalized Gain (dB) Normalized Gain (dB) 1 -1 -2 Av = 100 V/V -3 -4 Av = 30 V/V -5 -6 -7 Av = 4 V/V (COMP Pin = LO) 0 -1 Av = 115 V/V -2 Av = 80 V/V -3 Av = 35 V/V -8 -4 -9 -10 100k 1 Av = 10 V/V Av = 10 V/V 1M 10M 100M 1G -5 100k 10G 1M 10M 100M 1G 10G f (Hz) f (Hz) Vo = 0.2 Vpp Vo = 0.2 Vpp Figure 5. Non-Inverting Frequency Response, WSON-8 Package Figure 6. Non-Inverting Frequency Response, SOT-23-5 Package Submit Documentation Feedback Copyright © 2010–2014, Texas Instruments Incorporated Product Folder Links: LMH6629 11 LMH6629 SNOSB18I – APRIL 2010 – REVISED DECEMBER 2014 www.ti.com Typical Performance Characteristics (continued) 1 2 0 1 Vo = 0.2 Vpp Normalized Gain (dB) Normalized Gain (dB) Unless otherwise specified, VS = ±2.5V, Rf = 240 Ω, RL = 100 Ω, VO = 2 VPP, COMP pin = HI, AV = +10 V/V, WSON-8 and SOT-23-5 packages (unless specifically noted). -1 Vo = 0.2 Vpp -2 Vo = 2 Vpp -3 -4 0 -1 -2 Vo = 2 Vpp -3 -4 -5 100k 1M 10M 100M -5 100k 1G 1M f (Hz) Figure 7. Non-Inverting Frequency Response with Varying VO, WSON-8 Package 2 1 Normalized Gain (dB) Normalized Gain (dB) 0 -1 -2 Vo = 0.2 Vpp -3 Vo = 1 Vpp -4 Vo = 0.2 Vpp 0 -1 -2 Vo = 1 Vpp -3 -4 1M 10M 100M -5 100k 1G 1M Av = 10 V/V Av=10 V/V Vs = +/-1.5 V 100M 1G 10G Vs= +/-1.5 V Figure 10. Non-Inverting Frequency Response with Varying VO, SOT-23-5 Package 4 4 2 2 0 0 Normalized Gain (dB) Normalized Gain (dB) Figure 9. Non-Inverting Frequency Response with Varying VO, WSON-8 Package -2 Vo = 80 mVpp -4 -6 Vo = 0.8 Vpp -8 -10 -2 Vo = 80 mVpp -4 -6 Vo = 0.8 Vpp -8 -10 1 10 f (MHz) 100 -12 0.1 1,000 COMP Pin = LO Av = 4 V/V Figure 11. Non-Inverting Frequency Response with Varying VO, WSON-8 Package 12 10M f (Hz) f (Hz) Av = 4 V/V 10G Figure 8. Non-Inverting Frequency Response with Varying VO, SOT-23-5 Package 1 -12 0.1 1G Av=10 V/V Av = 10 V/V -5 100k 10M 100M f (Hz) 1 10 f (MHz) 100 Vs = ±1.5 V 1,000 COMP Pin = LO Figure 12. Non-Inverting Frequency Response with Varying VO, WSON-8 Package Submit Documentation Feedback Copyright © 2010–2014, Texas Instruments Incorporated Product Folder Links: LMH6629 LMH6629 www.ti.com SNOSB18I – APRIL 2010 – REVISED DECEMBER 2014 Typical Performance Characteristics (continued) Unless otherwise specified, VS = ±2.5V, Rf = 240 Ω, RL = 100 Ω, VO = 2 VPP, COMP pin = HI, AV = +10 V/V, WSON-8 and SOT-23-5 packages (unless specifically noted). 2 2 1 0 Normalized Gain (dB) Normalized Gain (dB) 0 -1 33 pF, Riso = 17 : -2 -3 4.7 pF, Riso = 72 : -4 -5 -1 -2 -5 -6 -7 -8 10 1,000 RL = 100 Ω || CL RISO as noted (measured @ CL) 100 f (MHz) 1,000 RL = 100 Ω || CL, AV = 4 V/V COMP Pin = LO RISO as noted (measured @ CL) Figure 13. Frequency Response with Cap. Loading 2 Figure 14. Frequency Response Cap. Loading, WSON-8 Package 2 1 k: 1.5 k: 0 1.5 kÖ 1 kÖ Normalized Gain (dB) 0 -2 240 : 750 : -4 -2 240 Ö 750 Ö -4 -6 -6 -8 100k 10 pF, Riso = 40 : -4 -7 100 f (MHz) 4.7 pF, Riso = 72 : -3 -6 -8 10 Normalized Gain (dB) 33 pF, Riso = 17 : 1 10 pF, Riso = 40 : 1M 10M 100M -8 100k 1G 1M 10M 100M 1G f (Hz) f (Hz) Figure 15. Frequency Response vs. Rf, WSON-8 Package Figure 16. Frequency Response vs. Rf, SOT-23-5 Package 4 2 1.5 kÖ 1.5 k: 750 Ö 2 -2 Normalized Gain (dB) Normalized Gain (dB) 0 511 : 240 : 750 : -4 -6 -8 100k 0 -2 240 Ö -6 1M 10M 100M -8 100k 1G 1M 10M 100M 1G f (Hz) f (Hz) VS = ±1.5 V 1 kÖ -4 VS = ± 1.5 V VO = 1 VPP Figure 17. Frequency Response vs. Rf, WSON-8 Package VO = 1 VPP Figure 18. Frequency Response vs. Rf, SOT-23-5 Package Submit Documentation Feedback Copyright © 2010–2014, Texas Instruments Incorporated Product Folder Links: LMH6629 13 LMH6629 SNOSB18I – APRIL 2010 – REVISED DECEMBER 2014 www.ti.com Typical Performance Characteristics (continued) Unless otherwise specified, VS = ±2.5V, Rf = 240 Ω, RL = 100 Ω, VO = 2 VPP, COMP pin = HI, AV = +10 V/V, WSON-8 and SOT-23-5 packages (unless specifically noted). -60 -50 HD2 HD2 -60 -70 -70 HD (dBc) HD (dBc) -80 HD3 -90 -80 HD3 -90 -100 -110 0.0 -100 0.5 1.0 1.5 2.0 Vo (Vpp) 2.5 -110 0.0 3.0 0.5 1.0 1.5 2.0 2.5 3.0 Vo (Vpp) 20 MHz 20 MHz Figure 19. Distortion vs. Swing, WSON-8 Package Figure 20. Distortion vs. Swing, SOT-23-5 Package -85 -80 -85 -90 HD (dBc) HD (dBc) HD2 HD3 HD2 -90 -95 HD3 -95 -100 -100 1.0 1.5 2.0 2.5 -105 1.0 3.0 1.5 Vo (Vpp) 2.0 2.5 3.0 Vo (Vpp) 1 MHz 1 MHz Figure 21. Distortion vs. Swing, WSON-8 Package Figure 22. Distortion vs. Swing, SOT-23-5 Package -65 -60 -70 -65 HD2 -70 HD2 -80 HD (dBc) HD (dBc) -75 HD3 HD3 -75 -80 -85 -85 -90 -95 0 -90 20 40 60 80 -95 0 100 Av (V/V) 1 MHz 40 60 80 100 Av (V/V) Vout = 2 Vpp 1 MHz Figure 23. Distortion vs. Gain, WSON-8 Package 14 20 Vout = 2 Vpp Figure 24. Distortion vs. Gain, SOT-23-5 Package Submit Documentation Feedback Copyright © 2010–2014, Texas Instruments Incorporated Product Folder Links: LMH6629 LMH6629 www.ti.com SNOSB18I – APRIL 2010 – REVISED DECEMBER 2014 Typical Performance Characteristics (continued) Unless otherwise specified, VS = ±2.5V, Rf = 240 Ω, RL = 100 Ω, VO = 2 VPP, COMP pin = HI, AV = +10 V/V, WSON-8 and SOT-23-5 packages (unless specifically noted). -40 -40 -50 -50 HD2 -60 HD2 HD (dBc) HD (dBc) -60 -70 HD3 -70 HD3 -80 -80 -90 -90 -100 0 10 20 30 f (MHz) 40 -100 0 50 10 20 30 40 50 f (MHz) Vo = 2 Vpp Vo = 2 Vpp Figure 25. Distortion vs. Frequency, WSON-8 Package Figure 26. Distortion vs. Frequency, SOT-23-5 Package -30 1.3 1.2 -40 -50 en (nV/Hz) IMD3 (dBc) 1.1 75 MHz 25 MHz -60 1.0 0.9 0.8 -70 0.7 -80 0.5 1.0 1.5 2.0 2.5 3.0 0.6 0.1 3.5 Vo (Vpp Composite) Figure 27. 3rd Order Intermodulation Distortion vs. Output Voltage 1 10 100 f (kHz) 1,000 10,000 Figure 28. Input Noise Voltage vs. Frequency 12 in (pA/Hz) 10 8 6 4 2 0.1 1 10 100 f (kHz) 1,000 10,000 Figure 29. Input Noise Current vs. Frequency Figure 30. PSRR vs. Frequency Submit Documentation Feedback Copyright © 2010–2014, Texas Instruments Incorporated Product Folder Links: LMH6629 15 LMH6629 SNOSB18I – APRIL 2010 – REVISED DECEMBER 2014 www.ti.com Typical Performance Characteristics (continued) Unless otherwise specified, VS = ±2.5V, Rf = 240 Ω, RL = 100 Ω, VO = 2 VPP, COMP pin = HI, AV = +10 V/V, WSON-8 and SOT-23-5 packages (unless specifically noted). 4.0 80 160 Gain, COMP HI 3.5 120 20 40 Vo from V+ (V) 80 125°C Phase (°) Gain (dB) 40 Gain, COMP LO 2.5 2.0 1.5 1M 10M -40°C 1.0 Phase, COMP HI 0 100k 25°C 3.0 Phase, COMP LO 60 0.5 0 1G 100M 0.0 100 150 200 f (Hz) 250 300 350 400 Isource (mA) Figure 31. Open Loop Gain/Phase Response Figure 32. Output Source Current, WSON-8 Package 4.5 3.5 4.0 3.0 -40°C 3.5 3.0 Vo from V (V) 125°C + Vo from V- (V) 2.5 2.5 2.0 25°C 1.5 -40°C 2.0 25°C 1.5 1.0 1.0 0.5 0.5 0.0 100 125°C 150 200 250 300 350 0.0 100 400 Isink (mA) 150 200 250 300 350 400 Isource (mA) Figure 33. Output Sink Current WSON-8 Package Figure 34. Output Source Current, SOT-23-5 Package 3.5 3.0 -40°C Vo (0.5V/DIV) - Vo from V (V) 2.5 2.0 25°C 1.5 1.0 0.5 125°C 0.0 100 150 200 250 300 350 400 TIME (10 ns/DIV) Isink (mA) Figure 35. Output Sink Current, SOT-23-5 Package 16 Submit Documentation Feedback Figure 36. Large Signal Step Response Copyright © 2010–2014, Texas Instruments Incorporated Product Folder Links: LMH6629 LMH6629 www.ti.com SNOSB18I – APRIL 2010 – REVISED DECEMBER 2014 Typical Performance Characteristics (continued) Vo (0.2V/Div) Vo (0.5 V/DIV) Unless otherwise specified, VS = ±2.5V, Rf = 240 Ω, RL = 100 Ω, VO = 2 VPP, COMP pin = HI, AV = +10 V/V, WSON-8 and SOT-23-5 packages (unless specifically noted). Time (4 ns/Div) Time (10 ns/DIV) Figure 37. Large Signal Step Response Figure 38. Large Signal Step Response Vo (0.05V/Div) COMP Pin = LO Vo (0.2 V/DIV) AV= 4V/V Time (4 ns/DIV) Time (2 ns/Div) Vs = 3.3 V Figure 39. Large Signal Step Response Figure 40. Small Signal Step Response, WSON-8 Package 1.0 3 2 0.5 0.0 1 0 PD\ (V) Vo (V) Vo (0.05 V/DIV) PD\ Vo -1 -0.5 -2 -1.0 Time (2 ns/DIV) -3 Time (50 ns/DIV) Vs = 3.3 V Figure 41. Small Signal Step Response, WSON-8 Package Figure 42. Turn-On Waveform, WSON-8 Package Submit Documentation Feedback Copyright © 2010–2014, Texas Instruments Incorporated Product Folder Links: LMH6629 17 LMH6629 SNOSB18I – APRIL 2010 – REVISED DECEMBER 2014 www.ti.com Typical Performance Characteristics (continued) Unless otherwise specified, VS = ±2.5V, Rf = 240 Ω, RL = 100 Ω, VO = 2 VPP, COMP pin = HI, AV = +10 V/V, WSON-8 and SOT-23-5 packages (unless specifically noted). 1.0 3 18.0 Vo 2 17.0 0.5 0 Is (mA) 0.0 PD\ (V) Vo (V) 1 125°C 16.0 25°C 15.0 -40°C -1 -0.5 PD\ 14.0 -2 -1.0 13.0 2.5 -3 3.0 3.5 Time (50 ns/DIV) Figure 43. Turn-Off Waveform, WSON-8 Package 4.5 5.0 5.5 Figure 44. Supply Current vs. Supply Voltage 25 400 350 125°C 300 20 85°C IB (PA) 250 VOS (V) 4.0 Vs (V) 200 150 15 25°C 25°C 100 10 50 0 -50 2.5 -40°C -40°C 3.0 3.5 4.0 4.5 5.0 5 2.5 5.5 VS (V) 3.0 3.5 4.0 4.5 5.0 5.5 Vs (V) Figure 45. Offset Voltage vs. Supply Voltage (Typical Unit) Figure 46. Input Bias Current vs. Supply Voltage (Typical Unit) 1.0 125°C IOS (PA) 0.5 25°C 0.0 -0.5 -40°C -1.0 -1.5 2.5 3.0 3.5 4.0 4.5 5.0 5.5 Vs (V) Figure 47. Input Offset Current vs. Supply Voltage (Typical Unit) 18 Submit Documentation Feedback Copyright © 2010–2014, Texas Instruments Incorporated Product Folder Links: LMH6629 LMH6629 www.ti.com SNOSB18I – APRIL 2010 – REVISED DECEMBER 2014 7 Detailed Description 7.1 Overview The LMH6629 is a high gain bandwidth, ultra low-noise voltage feedback operational amplifier. The excellent noise and bandwidth enables applications such as medical diagnostic ultrasound, magnetic tape and disk storage and fiberoptics to achieve maximum high frequency signal-to-noise ratios. The following discussion will enable the proper selection of external components to achieve optimum system performance. 7.2 Functional Block Diagram The LMH6629 (WSON-8 package only) has some additional features to allow maximum flexibility. As shown in Figure 48, there are provisions for low-power shutdown and two internal compensation settings, which are discussed in more detail in Compensation. Also provided is a feedback (FB) pin which allows the placement of the feedback resistor directly adjacent to the inverting input (IN-) pin. This pin simplifies printed circuit board layout and minimizes the possibility of unwanted interaction between the feedback path and other circuit elements. PD FB -IN +IN 1 8 2 7 3 6 4 + 5 + V OUT COMP - V Figure 48. 8-Pin WSON Pinout Diagram The WSON-8 package requires the bottom-side Die Attach Paddle (DAP) to be soldered to the circuit board for proper thermal dissipation and to get the thermal resistance number specified. The DAP is tied to the V- potential within the LMH6629 package. Thus, the circuit board copper area devoted to DAP heatsinking connection should be at the V- potential as well. Please refer to the package drawing for the recommended land pattern and recommended DAP connection dimensions. PD 1 FB 2 + 8 V 7 OUT 6 COMP 5 V DAP IN- 3 IN+ 4 V- - Figure 49. WSON–8 DAP(Top View) Submit Documentation Feedback Copyright © 2010–2014, Texas Instruments Incorporated Product Folder Links: LMH6629 19 LMH6629 SNOSB18I – APRIL 2010 – REVISED DECEMBER 2014 www.ti.com 7.3 Feature Description 7.3.1 WSON-8 Control Pins and SOT-23-5 Comparison The LMH6629 WSON-8 package has two digital control pins; PD and COMP pins. The PD pin, used for power down, floats high (device on) when not driven. When the PD pin is pulled low, the amplifier is disabled and the amplifier output stage goes into a high impedance state so the feedback and gain set resistors determine the output impedance of the circuit. The other control pin, the COMP pin, allows control of the internal compensation and defaults to the lower gain mode or logic 0. The SOT-23-5 package has the following differences relative to the WSON-8 package: 1. No power down (shutdown) capability. 2. No COMP pin to set the minimum stable gain. SOT-23–5 package minimum stable gain is internally fixed to be 10V/V. 3. No feedback (FB) pin. From a performance point of view, the WSON-8 and the SOT-23-5 packages perform very similarly except in the following areas: 1. SSBW, Peaking, and 0.1 dB Bandwidth: These differences are highlighted in the Typical Performance Characteristics and the Electrical Characteristics 5V tables. Most notable differences are with small signal (0.2 Vpp) and close to the minimum stable gain of 10V/V. 2. Distortion: It is possible to get slightly different distortion performance. The board layout and decoupling capacitor return current routing strongly influence distortion performance. 3. Output Current: In heavy current applications, there will be differences between these package types because of the difference in their respective Thermal Resistances (RθJA). 7.3.2 Compensation The LMH6629 has two compensation settings that can be controlled by the COMP pin (WSON-8 package only). The default setting is set through an internal pulldown resistor and places the COMP pin at the logic 0 state. In this configuration the on-chip compensation is set to the maximum and bandwidth is reduced to enable stability at gains as low as 4V/V. When this pin is driven to the logic 1 state, the internal compensation is decreased to allow higher bandwidth at higher gains. In this state, the minimum stable gain is 10V/V. Due to the reduced compensation, slew rate and large signal bandwidth are significantly enhanced for the higher gains. NOTE As mentioned earlier, the SOT-23-5 package does not offer the two compensation settings that the WSON-8 offers. The SOT-23-5 is internally set for a minimum gain of 10 V/V. It is possible to externally compensate the LMH6629 for any of the following reasons, as shown in Figure 50. • To operate the SOT-23-5 package (which does not offer the COMP pin) at closed loop gains < 10V/V. • To operate the WSON-8 package at gains below the minimum stable gain of 4V /V when the COMP pin is LO. NOTE: In this case, Figure 50 “Constraint 1” may be changed to ≥ 4 V/V instead of ≥ 10 V/V. • To operate either package at low gain and need maximum slew rate (COMP pin HI). 20 Submit Documentation Feedback Copyright © 2010–2014, Texas Instruments Incorporated Product Folder Links: LMH6629 LMH6629 www.ti.com SNOSB18I – APRIL 2010 – REVISED DECEMBER 2014 Feature Description (continued) Rg Rs VIN Rf VIN Rc Rc Cc Cc RT Rf R1 Rs Rp a) Non-inverting COMP pin = HI b) Inverting R p = Rs || R T R EQ = R f || R g R g = R s + R1 Constraint 1: (1 + Costraint 2: R + REQ Rf )(1 + p ) t 10 V/V Rg Rc 1 d 90 MHz 2SCcRc Figure 50. External Compensation This circuit operates by increasing the Noise Gain (NG) beyond the minimum stable gain of the LMH6629 while maintaining a positive loop gain phase angle at 0 dB. There are two constraints shown in Figure 50: “Constraint 1” ensures that NG has increased to at least 10 V/V when the loop gain approaches 0dB, and “Constraint 2” places an upper limit on the feedback phase lead network frequency to make sure it is fully effective in the frequency range when loop gain approaches 0dB. These two constraints allow one to estimate the “starting value” for Rc and Cc which may need to be fine tuned for proper response. Here is an example worked out for more clarification: • Assume that the objective is to use the SOT-23-5 version of the LMH6629 for a closed loop gain of +3.7 V/V using the technique shown in Figure 50. • Selecting Rf = 249 Ω → Rg = 91 Ω → REQ= 66.6 Ω. • For 50-Ω source termination (Rs= 50 Ω), select RT= 50 Ω → Rp = 25 Ω. • Using “Constraint 1” (= 10V/V) allows one to compute Rc ≊ 56 Ω. Using “Constraint 2” (= 90 MHz) defines the appropriate value of Cc ≊ 33 pF. • The frequency response plot shown in Figure 51 is the measured response with Rc and Cc values computed above and shows a -3 dB response of about 1 GHz. Submit Documentation Feedback Copyright © 2010–2014, Texas Instruments Incorporated Product Folder Links: LMH6629 21 LMH6629 SNOSB18I – APRIL 2010 – REVISED DECEMBER 2014 www.ti.com Feature Description (continued) 4.0 Normalized Gain (dB) 2.0 0.0 RA RB -2.0 Cf ¶ Rg Rf -4.0 -6.0 1 10 100 1,000 10,000 f (MHz) Cf = 1.5 pF RA = 33 Ω RB = 91 Ω Figure 51. SOT-23-5 Package Low Closed Loop Gain Operation with External Compensation For the Figure 51 measured results, a compensation capacitor (Cf') was used across Rf to compensate for the summing node net capacitance due to the board and the SOT-23–5 LMH6629. The RA and RB combination reduces the effective capacitance of Cf‘ by the ratio of 1+RB / RA, with the constraint that RB 1pF) to be used. The WSON-8 package does not need this compensation across Rf due to its lower parasitics. With the COMP pin HI (WSON-8 package only) or with the SOT-23–5 package, this circuit achieves high slew rate and takes advantage of the LMH6629’s superior low-noise characteristics without sacrificing stability, while enabling lower gain applications. It should be noted that the Rc, Cc combination does lower the input impedance and increases noise gain at higher frequencies. With these values, the input impedance reduces by 3 dB at 490 MHz. The Noise Gain transfer function “zero” is given by Equation 1 and it has a 3-dB increase at 32.8 MHz with these values: External Compensation Noise Gain Increase: 1 Noise Gain " zero" # 2S (RC + R p + REQ ) CC 22 Submit Documentation Feedback (1) Copyright © 2010–2014, Texas Instruments Incorporated Product Folder Links: LMH6629 LMH6629 www.ti.com SNOSB18I – APRIL 2010 – REVISED DECEMBER 2014 Feature Description (continued) 7.3.3 Cancellation of Offset Errors Due to Input Bias Currents The LMH6629 offers exceptional offset voltage accuracy. In order to preserve the low offset voltage errors, care must be taken to avoid voltage errors due to input bias currents. This is important in both inverting and noninverting applications. The non-inverting circuit is used here as an example. To cancel the bias current errors of the non-inverting configuration, the parallel combination of the gain setting (Rg) and feedback (Rf) resistors should equal the equivalent source resistance (Rseq) as defined in Figure 52. Combining this constraint with the non-inverting gain equation also seen in Figure 52 allows both Rf and Rg to be determined explicitly from Equation 2: Rf = AVRseq and Rg = Rf/(AV-1) (2) Figure 52. Non-Inverting Amplifier Configuration When driven from a 0-Ω source, such as the output of an op amp, the non-inverting input of the LMH6629 should be isolated with at least a 25-Ω series resistor. As seen in Figure 53, bias current cancellation is accomplished for the inverting configuration by placing a resistor (Rb) on the non-inverting input equal in value to the resistance seen by the inverting input (Rf || (Rg+Rs)). Rb should to be no less than 25 Ω for optimum LMH6629 performance. A shunt capacitor (not shown) can minimize the additional noise of Rb. Figure 53. Inverting Amplifier Configuration Submit Documentation Feedback Copyright © 2010–2014, Texas Instruments Incorporated Product Folder Links: LMH6629 23 LMH6629 SNOSB18I – APRIL 2010 – REVISED DECEMBER 2014 www.ti.com Feature Description (continued) 7.3.4 Total Input Noise vs. Source Resistance To determine maximum signal-to-noise ratios from the LMH6629, an understanding of the interaction between the amplifier’s intrinsic noise sources and the noise arising from its external resistors is necessary. Figure 54 describes the noise model for the non-inverting amplifier configuration showing all noise sources. In addition to the intrinsic input voltage noise (en) and current noise (in = in+ = in−) source, there is also thermal voltage noise (et = √(4KTR)) associated with each of the external resistors. Figure 54. Non-Inverting Amplifier Noise Model Equation 3 provides the general form for total equivalent input voltage noise density (eni). General Noise Equation: (3) Equation 4 is a simplification of Equation 3 that assumes Rf || Rg = Rseq for bias current cancellation: Equation 4: Noise Equation with Rf || Rg = Rseq (4) Figure 55 schematically shows eni alongside VIN (the portion of VS source which reaches the non-inverting input of Figure 52) and external components affecting gain (Av= 1 + Rf / Rg), all connected to an ideal noiseless amplifier. Rf (Noiseless) Rseq = RS || RT Rg (Noiseless) VS RS (Noiseless) eni Noiseless Op Amp RT (Noiseless) Set RSeq = Rf || Rg for bias current offset cancellation Figure 55. Non-Inverting Amplifier Equivalent Noise Source Schematic 24 Submit Documentation Feedback Copyright © 2010–2014, Texas Instruments Incorporated Product Folder Links: LMH6629 LMH6629 www.ti.com SNOSB18I – APRIL 2010 – REVISED DECEMBER 2014 Feature Description (continued) Figure 56 illustrates the equivalent noise model using this assumption. Figure 57 is a plot of eni against equivalent source resistance (Rseq) with all of the contributing voltage noise source of Equation 4. This plot gives the expected eni for a given (Rseq) which assumes Rf||Rg = Rseq for bias current cancellation. The total equivalent output voltage noise (eno) is eni*AV. Figure 56. Noise Model with Rf||Rg = Rseq As seen in Figure 57, eni is dominated by the intrinsic voltage noise (en) of the amplifier for equivalent source resistances below 15 Ω. Between 15 Ω and 2.5 kΩ, eni is dominated by the thermal noise (et = √(4kT(2Rseq)) of the equivalent source resistance Rseq. Incidentally, this is the range of Rseq values where the LMH6629 has the best (lowest) Noise Figure (NF) for the case where Rseq = Rf || Rg. Above 2.5 kΩ, eni is dominated by the amplifier’s current noise (in = √2 * inRseq). When Rseq = 190 Ω (that is, Rseq = en/√2 * in), the contribution from voltage noise and current noise of LMH6629 is equal. For example, configured with a gain of +10V/V giving a −3dB of 825 MHz and driven from Rseq = Rf || Rg = 20 Ω (eni = 1.07 nV√Hz from Figure 57), the LMH6629 produces a total equivalent output noise voltage (eni * 10 V/V * √(1.57 * 825 MHz)) of 385 μVrms. Voltage Noise Density (nV/ Hz) 1000 eni 100 10 et in 1 en 0.1 1 10 100 1k 10k 100k RSEQ (:) RSEQ = RF || RG Figure 57. Voltage Noise Density vs. Source Resistance Submit Documentation Feedback Copyright © 2010–2014, Texas Instruments Incorporated Product Folder Links: LMH6629 25 LMH6629 SNOSB18I – APRIL 2010 – REVISED DECEMBER 2014 www.ti.com Feature Description (continued) If bias current cancellation is not a requirement, then Rf || Rg does not need to equal Rseq. In this case, according to Equation 3, Rf || Rg should be as low as possible to minimize noise. Results similar to Equation 3 are obtained for the inverting configuration of Figure 53 if Rseq is replaced by Rb and Rg is replaced by Rg + Rs. With these substitutions, Equation 3 will yield an eni referred to the non-inverting input. Referring eni to the inverting input is easily accomplished by multiplying eni by the ratio of non-inverting to inverting gains (1+Rg/ Rf). 7.3.5 Noise Figure Noise Figure (NF) is a measure of the noise degradation caused by an amplifier. General Noise Figure Equation: (5) Looking at the two parts of the NF expression (inside the log function) yields: • Si/ So→ Inverse of the power gain provided by the amplifier • No/ Ni→ Total output noise power, including the contribution of RS, divided by the noise power at the input due to RS • To simplify this, consider Na as the noise power added by the amplifier (reflected to its input port): • Si/ So→ 1/ G • No/ Ni→ G * (Ni+Na) / Ni (where G*(Ni +Na ) = No) Substituting these two expressions into the NF expression: NF = 10 log § G(Ni + Na) · ¨ Ni ¸ G© ¹ 1 § © = 10 log ¨1 + Na· Ni ¸ ¹ (6) The noise figure expression has simplified to depend only on the ratio of the noise power added by the amplifier at its input (considering the source resistor to be in place but noiseless in getting Na) to the noise power delivered by the source resistor (considering all amplifier elements to be in place but noiseless in getting Ni). For a given amplifier with a desired closed loop gain, to minimize noise figure: • Minimize Rf || Rg • Choose the Optimum RS (ROPT) ROPT is the point at which the NF curve reaches a minimum and is approximated by: ROPT ≈ en/ in 26 (7) Submit Documentation Feedback Copyright © 2010–2014, Texas Instruments Incorporated Product Folder Links: LMH6629 LMH6629 www.ti.com SNOSB18I – APRIL 2010 – REVISED DECEMBER 2014 Feature Description (continued) Figure 58 is a plot of NF vs RS with the circuit of Figure 52 (Rf = 240 Ω, AV = +10V/V). The NF curves for both Unterminated (RT = open) and Terminated systems (RT = RS) are shown. Table 1 indicates NF for various source resistances including RS = ROPT. 18 16 Terminated Noise Figure (dB) 14 12 10 8 6 4 2 Unterminated 0 10 100 1k 10k 100k RS (:) f > 1 MHz Figure 58. Noise Figure vs. Source Resistance Table 1. Noise Figure for Various Rs RS (Ω) NF (TERMINATED) (dB) NF (UNTERMINATED) (dB) 50 8 3.2 ROPT 4.1 (ROPT = 750 Ω) 1.1 (ROPT = 350 Ω) 7.3.6 Single-Supply Operation The LMH6629 can be operated with single power supply as shown in Figure 59. Both the input and output are capacitively coupled to set the DC operating point. Figure 59. Single-Supply Operation Submit Documentation Feedback Copyright © 2010–2014, Texas Instruments Incorporated Product Folder Links: LMH6629 27 LMH6629 SNOSB18I – APRIL 2010 – REVISED DECEMBER 2014 www.ti.com 7.3.7 Low-Noise Transimpedance Amplifier Figure 60 implements a high-speed, single-supply, low-noise Transimpedance amplifier commonly used with photo-diodes. The transimpedance gain is set by RF. CF 0.6 pF (1.2 pF (2) series) +5VDC D1 RF 1.2k CD = 10 pF ID +5VDC LMH 6629 +5VDC RL 500 R2 2k C1 0.1 PF R1 3k Vout = 3VDC - 1200 x ID Figure 60. 200 MHz Transimpedance Amplifier Configuration Figure 61 shows the Noise Gain (NG) and transfer function (I-V Gain). As with most Transimpedance amplifiers, it is required to compensate for the additional phase lag (Noise Gain zero at fZ) created by the total input capacitance ( CD (diode capacitance) + CCM (LMH6629 CM input capacitance) + CDIFF (LMH6629 DIFF input capacitance) ) looking into RF. This is accomplished by placing CF across RF to create enough phase lead (Noise Gain pole at fP) to stabilize the loop. OP AMP OPEN LOOP GAIN GAIN (dB) I-V GAIN (:) NOISE GAIN (NG) 1 + sRF (CIN + CF) 1 + sRFCF 1+ CIN CF 0 dB FREQUENCY fz # 1 2SRFCIN fP = 1 GBWP 2SRFCF Figure 61. Transimpedance Amplifier Noise Gain and Transfer Function 28 Submit Documentation Feedback Copyright © 2010–2014, Texas Instruments Incorporated Product Folder Links: LMH6629 LMH6629 www.ti.com SNOSB18I – APRIL 2010 – REVISED DECEMBER 2014 The optimum value of CF is given by Equation 8 resulting in the I-V -3dB bandwidth shown in Equation 9, or around 200 MHz in this case (assuming GBWP= 4GHz with COMP pin = HI for WSON-8 package). This CF value is a “starting point” and CF needs to be tuned for the particular application as it is often less than 1 pF and thus is easily affected by board parasitics. For maximum speed, the LMH6629 COMP pin should be HI (or use the SOT-23 package). Optimum CF Value: CF = CIN 2S(GBWP)RF (8) Resulting -3dB Bandwidth f - 3 dB # GBWP 2 S R F C IN (9) Equation 10 provides the total input current noise density (ini) equation for the basic Transimpedance configuration and is plotted against feedback resistance (RF) showing all contributing noise sources in Figure 62. The plot indicates the expected total equivalent input current noise density (ini) for a given feedback resistance (RF). This is depicted in the schematic of Figure 63 where total equivalent current noise density (ini) is shown at the input of a noiseless amplifier and noiseless feedback resistor (RF). The total equivalent output voltage noise density (eno) is ini*RF. Noise Equation for Transimpedance Amplifier: (10) Current Noise Density (pA/ Hz) 16 14 ini 12 10 8 it en/RF 6 in 4 2 0 100 1k 10k Rf (:) Figure 62. Current Noise Density vs. Feedback Resistance +5VDC D1 CD = 10 pF RF (Noiseless) ID ini Noiseless Op Amp Figure 63. Transimpedance Amplifier Equivalent Input Source Model Submit Documentation Feedback Copyright © 2010–2014, Texas Instruments Incorporated Product Folder Links: LMH6629 29 LMH6629 SNOSB18I – APRIL 2010 – REVISED DECEMBER 2014 www.ti.com From Figure 62, it is clear that with LMH6629’s extremely low-noise characteristics, for RF < 2.5 kΩ, the noise performance is entirely dominated by RF thermal noise. Only above this RF threshold, LMH6629’s input noise current (in) starts being a factor and at no RF setting does the LMH6629 input noise voltage play a significant role. This noise analysis has ignored the possible noise gain increase, due to photo-diode capacitance, at higher frequencies. 7.3.8 Low-Noise Integrator Figure 64 shows a deBoo integrator implemented with the LMH6629. Positive feedback maintains integration linearity. The LMH6629’s low input offset voltage and matched inputs allow bias current cancellation and provide for very precise integration. Keeping RG and RS low helps maintain dynamic stability. VO #VIN KO KO = 1 + ; sRSC RF RG RB VO RS + VIN C R - 50: 50: RF RG R F = RB RG = RS||R Figure 64. Low-Noise Integrator 7.3.9 High-Gain Sallen-Key Active Filters The LMH6629 is well suited for high-gain Sallen-Key type of active filters. Figure 65 shows the 2nd order SallenKey low-pass filter topology. Using component predistortion methods discussed in OA-21, Component PreDistortion for Sallen Key Filters (SNOA369), enables the proper selection of components for these highfrequency filters. C1 R1 R2 VIN C2 Vo # VIN K s s2 1+ + 2 Zp Qp Zp 1 = R1C1(1 - K ) + C2 (R1 + R2) Zp Qp VO RF RG 1 R1R2 C1C2 2 = Zp Figure 65. Low Pass Sallen-Key Active Filter Topology 30 Submit Documentation Feedback Copyright © 2010–2014, Texas Instruments Incorporated Product Folder Links: LMH6629 LMH6629 www.ti.com SNOSB18I – APRIL 2010 – REVISED DECEMBER 2014 7.4 Device Functional Modes With an industry-leading low noise voltage operating off a supply voltage as low as 2.7-V and a common mode input voltage range that extends 0.3 V below V−, the LMH6629 finds applications in single supply, high bandwidth, ultra-low noise applications. With a GBWP of 4GHz, the LMH6629 can operate at large gains and deliver exceptional speed and low noise. Choose the WSON(8) package for the ultimate flexibility (including Power Down and COMP pin which allows tailoring internal compensation to the operating gain conditions), or the SOT23-5 package if Power Down is not needed and closed loop gain is ≥ 20dB. Submit Documentation Feedback Copyright © 2010–2014, Texas Instruments Incorporated Product Folder Links: LMH6629 31 LMH6629 SNOSB18I – APRIL 2010 – REVISED DECEMBER 2014 www.ti.com 8 Application and Implementation NOTE Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality. 8.1 Application Information The following discussion details some of the applications that can benefit from the LMH6629’s ultra-low noise, wide bandwidth, and single supply capability. Note that It is essential to use a low-noise / low-distortion device to drive a high resolution ADC. This will minimize the impact on the quantization noise and to make sure that the driver’s distortion does not dominate the acquired data. Equation 11 demonstrates the converter noise expression and Equation 12 shows the converter noise expression evaluated for the example depicted in Figure 66. Figure 67 shows a high-performance low-noise equalizer for such applications as magnetic tape channels using the LMH6629. Figure 68 shows the circuit’s simulated frequency response. 8.2 Typical Application Many high-resolution data converters (ADC’s) require a differential input driver. In order to preserve the ADC’s dynamic range, the analog input driver must have a noise floor which is lower than the ADC’s noise floor. Figure 66 shows a ground referenced bipolar input (symmetrical swing around 0V) SE to differential converter used to drive a high resolution ADC. The combination of LMH6629’s low noise and the converter architecture reduces the impact on the ADC noise. 3Vpp 47, Rg 0.417V Vset 2.32k 1% R1 464 1% R2 2.5V 470, KRg 5V A2 LMH6629 2.5V RO VREF VinVin+ CO 1k, Rf ADC RO 470, KRg 5V 600 mVpp A1 LMH6629 GND 2.5V 3Vpp 200, Rin VIN Governing Expressions : Vo _ diff K= Vin R in = Vset = 2R f K Example: Vo _ CM = 2. 5V; K = 10, Let R f = 1k : o Rin = 200: Vo _ diff = 6 Vpp ; Vset = 2 x 2.5V = 0. 417 V 10 + 2 Vin = 600 mVpp 2 Vo _ CM K +2 Figure 66. Low-Noise Single-Ended (SE) to Differential Converter 32 Submit Documentation Feedback Copyright © 2010–2014, Texas Instruments Incorporated Product Folder Links: LMH6629 LMH6629 www.ti.com SNOSB18I – APRIL 2010 – REVISED DECEMBER 2014 Typical Application (continued) 8.2.1 Design Requirements For an ADC with N bits, the quantization Signal-to-noise ratio (SNR) is 6.02* N + 1.76 in dB. For example, a 12bit ADC has a SNR of 74 dB (= 5000 V/V). Assuming a full-scale differential input of 2Vpp (0.707 V_RMS), the quantization oise referred to the ADC’s input is ~140 μV_RMS (= 0.707 V_RMS / 5000 V/V) over the bandwidth “visible” to the ADC. Assuming an ADC input bandwidth of 20 MHz, this translates to just 25 nV/RtHz (= 141 µV_RMS / SQRT(20 MHz * π/2)) noise density at the output of the driver. Using an amplifier to form the singleended (SE) to Differential converter / driver for such an application is challenging, especially when there is some gain required. In addition, the input driver’s linearity (harmonic distortion) must also be high enough such that the spurs that get through to the ADC input are below the ADC’s LSB threshold or -73 dBc (= 20*log (1/ 212)) or lower in this case. Therefore, it is essential to use a low-noise / low-distortion device to drive a high resolution ADC in order to minimize the impact on the quantization noise and to make sure that the driver’s distortion does not dominate the acquired data. 8.2.2 Detailed Design Procedure In the circuit depicted in Figure 66, the required gain dictates the resistor ratio “K”. With “K” and the driver output CM voltage (VO_CM) known, VSET can be established. Reasonable values for Rf and Rg can be set to complete the design. In terms of output swing, with the LMH6629 output swing capability which requires ~0.85 V of headroom from either rail, the maximum total output swing into the ADC is limited to 6.6 VPP (=(5 – 2 x 0.85V) x 2); that is true with VO_CM set to mid-rail between V+ and V-. It should also be noted that the LMH6629’s input CMVR range includes the lower rail (V-) and that is the reason there is great flexibility in setting Vo_CM by controlling VSET. Another feature is that A1 and A2 inputs act like “virtual grounds” and thus do not see any signal swing. Note that due to the converter’s biasing, the source, VIN, needs to sink a current equal to VSET / RIN. The converter example shown in Figure 66 operates with a noise gain of 6 (=1+ K / 2) and thus requires that the COMP pin to be tied low (WSON-8 package only). The 1st order approximated small signal bandwidth will be 280 MHz (=1.7 GHz / 6 V/V) which is computed using 1.7 GHz as the GBWP with COMP pin LO. From a noise point of view, concentrating only on the dominant noise sources involved, here is the expression for the expected differential noise density at the input of the ADC. Converter Noise Expression: >en (1 + K / 2)@ 2 . 23 + >(eRin _ thermal) K / 2)@2. 2 2 + >(eRg _ thermal ) K)@2 Vnoise # (11) 3 2 en is the LMH6629 input noise voltage and eRin_thermal is the thermal noise of RIN. The “2 ” and the “2 ” multipliers account for the different instances of each noise source (2 for en, and 1 for eRin_thermal). Equation 11, evaluated for the circuit example of Figure 66, is shown in Equation 12: >0.69 nV/RtHz x 6@2.2 3 + >1.82 nV/RtHz x 5@2 .2 2 + >0.88 nV/ RtHz x 10@2 = 23.4 nV/RtHz Vnoise # (12) Because of the LMH6629’s low input noise voltage (en), noise is dominated by the thermal noise of RIN. It is evident that the input resistor, RIN, can be reduced to lower the noise with lower input impedance as the tradeoff. 8.2.2.1 Low-Noise Magnetic Media Equalizer Figure 67 shows a high-performance low-noise equalizer for such applications as magnetic tape channels using the LMH6629. The circuit combines an integrator (used to limit noise) with a bandpass filter (used to boost the response centered at a frequency or over a band of interest) to produce the low-noise equalization. The circuit’s simulated frequency response is illustrated in Figure 68. In this circuit, the bandpass filter center frequency is set by Equation 13: ´ ¶C = 1 2S LC (13) For higher selectivity, use high C values; for wider bandwidth, use high L values, while keeping the product of L and C values the same to keep fc intact. The integrator’s -3dB roll-off is set by Submit Documentation Feedback Copyright © 2010–2014, Texas Instruments Incorporated Product Folder Links: LMH6629 33 LMH6629 SNOSB18I – APRIL 2010 – REVISED DECEMBER 2014 www.ti.com Typical Application (continued) 1 2SC1(R1 + R) (14) 1
LMH6629MFX/NOPB 价格&库存

很抱歉,暂时无法提供与“LMH6629MFX/NOPB”相匹配的价格&库存,您可以联系我们找货

免费人工找货