0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
LMK1C1106PWR

LMK1C1106PWR

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    TSSOP14

  • 描述:

    6 通道输出 LVCMOS 1.8V 缓冲器

  • 数据手册
  • 价格&库存
LMK1C1106PWR 数据手册
LMK1C1106, LMK1C1108 ZHCSLS7A – DECEMBER 2020 – REVISED JANUARY 2022 LMK1C110x 1.8V、2.5V 和 3.3V LVCMOS 时钟缓冲器系列 1 特性 3 说明 • 高性能 1:6 和 1:8 LVCMOS 时钟缓冲器 • 输出偏斜极低,< 55ps • 附加抖动极低,标称值 < 25fs – VDD = 3.3 V 时,典型值为 12fs – VDD = 2.5 V 时,典型值为 15fs – VDD = 1.8V 时,典型值为 28fs • 传播延迟极低,< 3ns • 同步输出使能 • 电源电压:3.3V、2.5V 或 1.8V – 在电源电压范围内输入端耐受 3.3V 电压 – 失效防护输入 • 9000V HBM 的工业高 ESD 等级 • fmax = 250MHz (3.3V) fmax = 200MHz(2.5V 和 1.8V) • 工作温度范围:–40°C 至 125°C • 采用 14 引脚和 16 引脚 TSSOP 封装 LMK1C110x 是德州仪器 (TI) 的一款模块化、高性能、 低偏斜、通用时钟缓冲器系列器件。整个系列采用模块 化方法设计。提供五个不同的扇出选项:1:2、1:3、 1:4、1:6 和 1:8。 2 应用 • • • • • • 工厂自动化与控制 电信设备 数据中心和企业计算 电网基础设施 电机驱动器 医疗成像 该系列所有器件均互相引脚兼容,并与 CDCLVC110x 系列向后兼容,从而易于处理。 该系列所有器件均具有相同的高性能特性,如低附加抖 动、低偏斜和宽工作温度范围。 LMK1C110x 具有同步输出使能控制端 (1G),可在 1G 处于低电平时将输出切换为低电平状态。这些器件具有 失效防护输入,可防止在没有输入信号的情况下输出发 生振荡并允许在提供 VDD 之前提供输入信号。 LMK1C110x 系列可在 1.8V、2.5V 和 3.3V 电压下工 作,额定工作温度范围为 –40°C 至 125°C。 器件信息 器件型号 封装 封装尺寸(标称值) LMK1C1106 TSSOP (14) 5.00mm x 4.40mm LMK1C1108 TSSOP (16) 5.00mm x 4.40mm CLKIN LVCMOS LVCMOS Y0 LVCMOS Y1 LVCMOS Y2 LVCMOS Y3 LVCMOS Y4 LVCMOS Y5 LVCMOS Y6 LVCMOS Y7 1G 功能方框图 本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前,请务必参考最新版本的英文版本。 English Data Sheet: SNAS814 LMK1C1106, LMK1C1108 www.ti.com.cn ZHCSLS7A – DECEMBER 2020 – REVISED JANUARY 2022 Table of Contents 1 特性................................................................................... 1 2 应用................................................................................... 1 3 说明................................................................................... 1 4 Revision History.............................................................. 2 5 Pin Configuration and Functions...................................3 6 Specifications.................................................................. 4 6.1 Absolute Maximum Ratings........................................ 4 6.2 ESD Ratings............................................................... 4 6.3 Recommended Operating Conditions.........................4 6.4 Thermal Information....................................................4 6.5 Electrical Characteristics.............................................5 6.6 Timing Requirements.................................................. 6 6.7 Typical Characteristics................................................ 7 7 Parameter Measurement Information............................ 8 8 Detailed Description......................................................10 8.1 Overview................................................................... 10 8.2 Functional Block Diagram......................................... 10 8.3 Feature Description...................................................11 8.4 Device Functional Modes..........................................11 9 Application and Implementation.................................. 12 9.1 Application Information............................................. 12 9.2 Typical Application.................................................... 12 10 Power Supply Recommendations..............................14 11 Layout........................................................................... 15 11.1 Layout Guidelines................................................... 15 11.2 Layout Example...................................................... 15 12 Device and Documentation Support..........................16 12.1 Documentation Support.......................................... 16 12.2 接收文档更新通知................................................... 16 12.3 支持资源..................................................................16 12.4 Trademarks............................................................. 16 12.5 Electrostatic Discharge Caution..............................16 12.6 术语表..................................................................... 16 13 Mechanical, Packaging, and Orderable Information.................................................................... 16 4 Revision History 注:以前版本的页码可能与当前版本的页码不同 Changes from Revision * (December 2020) to Revision A (January 2022) • • • • 2 Page 向说明 部分中添加失效防护输入详细信息.......................................................................................................... 1 更改了第一页的重要图形.................................................................................................................................... 1 Changed part-to-part skew maximum from 950 ps to 280 ps.............................................................................5 Added the Fail-Safe Inputs section................................................................................................................... 11 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: LMK1C1106 LMK1C1108 LMK1C1106, LMK1C1108 www.ti.com.cn ZHCSLS7A – DECEMBER 2020 – REVISED JANUARY 2022 5 Pin Configuration and Functions CLKIN 1 16 Y1 1G 2 15 Y3 Y0 3 14 VDD GND VDD 4 5 13 12 Y2 GND Y5 LMK1C 1106 Y4 6 11 GND 7 10 Y6 8 LMK1C 1108 9 VDD Y7 Not to scale 图 5-1. LMK1C1106 and LMK1C1108 PW Package 14-Pin TSSOP and 16-Pin TSSOP Top View 表 5-1. Pin Functions PIN NAME LMK1C 1106 LMK1C 1108 TYPE DESCRIPTION 1 Input Single-ended clock input with internal 300-kΩ (typical) pulldown resistor to GND. Typically connected to a single-ended clock input. 2 Input Global Output Enable with internal 300-kΩ (typical) pulldown resistor to GND. Typically connected to VDD with external pullup resistor. HIGH: outputs enabled LOW: outputs disabled LVCMOS CLOCK INPUT CLKIN 1 CLOCK OUTPUT ENABLE 1G 2 LVCMOS CLOCK OUTPUT Y0 3 3 Y1 14 16 Y2 11 13 Y3 13 15 Y4 6 6 Y5 9 11 Y6 – 8 Y7 – 9 5 5 8 10 12 14 4 4 Output LVCMOS output. Typically connected to a receiver. Unused outputs can be left floating. Power Power supply terminal. Typically connected to a 3.3-V, 2.5-V, or 1.8-V supply. The VDD pin is typically connected to an external 0.1-μF capacitor near the pin. SUPPLY VOLTAGE VDD GROUND GND 7 7 10 12 GND Device ground. Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: LMK1C1106 LMK1C1108 3 LMK1C1106, LMK1C1108 www.ti.com.cn ZHCSLS7A – DECEMBER 2020 – REVISED JANUARY 2022 6 Specifications 6.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted)(1) MIN MAX –0.5 3.6 UNIT VDD Supply voltage VCLKIN Input voltage (CLKIN) VIN Input voltage (1G) VYn Output pins (Yn) –0.5 VDD + 0.3 IIN Input current –20 20 mA IO Continuous output current –50 50 mA Tstg Storage temperature –65 150 °C (1) V Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime. 6.2 ESD Ratings VALUE V(ESD) (1) (2) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/ JEDEC JS-001, all pins(1) ±9000 Charged device model (CDM), per JEDEC specification JESD22-C101, all pins(2) ±1500 UNIT V JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. 6.3 Recommended Operating Conditions over operating free-air temperature range (unless otherwise noted) VDD Core supply voltage MIN NOM MAX 3.3-V supply 3.135 3.3 3.465 2.5-V supply 2.375 2.5 2.625 1.8-V supply 1.71 1.8 1.89 UNIT V TA Operating free-air temperature –40 125 °C TJ Operating junction temperature –40 150 °C 6.4 Thermal Information THERMAL METRIC(1) LMK1C1108 PW(TSSOP) UNIT 14 PINS 16 PINS RqJA Junction-to-ambient thermal resistance 114.4 123.4 °C/W RqJC(top) Junction-to-case (top) thermal resistance 45.2 53.1 °C/W RqJB Junction-to-board thermal resistance 60.6 66.4 °C/W YJT Junction-to-top characterization parameter 5.9 8.9 °C/W YJB Junction-to-board characterization parameter 60 65.8 °C/W (1) 4 LMK1C1106 PW (TSSOP) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report. Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: LMK1C1106 LMK1C1108 LMK1C1106, LMK1C1108 www.ti.com.cn ZHCSLS7A – DECEMBER 2020 – REVISED JANUARY 2022 6.5 Electrical Characteristics VDD = 3.3 V ± 5 %, –40°C ≤ TA ≤ 125°C. Typical values are at VDD = 3.3 V, 25°C (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT CURRENT CONSUMPTION IDD Core supply current, static All-outputs disabled, fIN = 0 V 25 45 µA IDD Core supply current All-outputs disabled, fIN = 100 MHz, VDD = 1.8 V 2 6 mA IDD Core supply current All-outputs disabled, fIN = 100 MHz, VDD = 2.5 V 6.5 10 mA IDD Core supply current All-outputs disabled, fIN = 100 MHz, VDD = 3.3 V 15 21 Per output, fIN = 100 MHz, CL = 5pF, VDD = 1.8 V 3.2 3.5 Per output, fIN = 100 MHz, CL = 5pF, VDD = 2.5 V 4.6 5.5 Per output, fIN = 100 MHz, CL = 5pF, VDD = 3.3 V 6 7 IDD Output current mA CLOCK INPUT fIN_SE Input frequency VIH Input high voltage VIL Input low voltage dVIN/dt Input slew rate IIN_LEAK Input leakage current CIN_SE Input capacitance VDD = 3.3 V DC 250 VDD = 2.5 V and 1.8 V DC 200 0.7 x VDD 0.3 x VDD 20% - 80% of input swing 0.1 V V/ns 50 –50 at 25°C MHz 7 uA pF CLOCK OUTPUT FOR ALL VDD LEVELS fOUT Output frequency ODC Output duty cycle VDD = 3.3 V 250 VDD = 2.5 V and 1.8 V 200 With 50% duty cycle input 55 % (1) 5 cycles 5 cycles t1G_ON Output enable time See t1G_OFF Output disable time See (2) 45 MHz CLOCK OUTPUT FOR VDD = 3.3 V ± 5% VOH Output high voltage IOH = 1 mA VOL Output low voltage IOL = 1 mA tRISE-FALL Output rise and fall time 20/80%, CL= 5 pF, fIN = 156.25 MHz 0.3 0.7 tOUTPUT- Output-output skew See (3) 35 55 SKEW tPART-SKEW 2.8 0.2 Part-to-part skew V ns ps 280 tPROP-DELAY Propagation delay See (4) 1.3 2.2 tJITTER-ADD Additive Jitter fIN = 156.25 MHz, Input slew rate = 1.6 V/ns, Integration range = 12 kHz - 20 MHz 12 20 fs, RMS ROUT Output impedance 50 ns Ω CLOCK OUTPUT FOR VDD = 2.5 V ± 5% VOH Output high voltage IOH = 1 mA VOL Output low voltage IOL = 1 mA tRISE-FALL Output rise and fall time 20/80%, CL= 5 pF, fIN = 156.25 MHz tOUTPUT- Output-output skew See (3) SKEW tPART-SKEW 0.8 x VDD 0.2 x VDD 0.33 55 Part-to-part skew tPROP-DELAY Propagation delay 0.8 V ns ps 450 See (4) 1.5 2.5 ns Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: LMK1C1106 LMK1C1108 5 LMK1C1106, LMK1C1108 www.ti.com.cn ZHCSLS7A – DECEMBER 2020 – REVISED JANUARY 2022 VDD = 3.3 V ± 5 %, –40°C ≤ TA ≤ 125°C. Typical values are at VDD = 3.3 V, 25°C (unless otherwise noted) PARAMETER tJITTER-ADD Additive Jitter ROUT Output impedance TEST CONDITIONS MIN fIN = 156.25 MHz, Input slew rate = 1.2 V/ns, Integration range = 12 kHz - 20 MHz TYP 15 MAX UNIT 27 fs, RMS 55 Ω CLOCK OUTPUT FOR VDD = 1.8 V ± 5% VOH Output high voltage IOH = 1 mA VOL Output low voltage IOL = 1 mA tRISE-FALL Output rise and fall time 20/80%, CL= 5 pF, fIN = 156.25 MHz tOUTPUT- Output-output skew See (3) SKEW tPART-SKEW 0.8 x VDD 0.2 x VDD 0.38 Part-to-part skew (4) tPROP-DELAY Propagation delay See tJITTER-ADD Additive Jitter fIN = 156.25 MHz, Input slew rate = 1.2 V/ns, Integration range = 12 kHz - 20 MHz ROUT Output impedance 1.5 28 V 1 ns 55 ps 930 ps 3 ns 60 fs, RMS 64 Ω GENERAL PURPOSE INPUT (1G) 0.75 x VDD VIH High-level input voltage VIL Low-level input voltage IIH Input high-level current VIH = VDD_REF –50 50 IIL Input low-level current VIL = GND –50 50 (1) (2) (3) (4) 0.25 x VDD V µA Measured from 1G rising edge crossing VIH to first rising edge of Yn. Measured from 1G falling edge crossing VIL to last falling edge of Yn. Measured from rising edge of any Yn output to any other Ym output. Measured from rising edge of CLKIN to any Yn output. 6.6 Timing Requirements VDD = 3.3 V ± 5 %, –40°C ≤ TA ≤ 125°C MIN NOM MAX UNIT 50 V/ms POWER SUPPLY V/tRAMP 6 VDD ramp rate 0.1 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: LMK1C1106 LMK1C1108 LMK1C1106, LMK1C1108 www.ti.com.cn ZHCSLS7A – DECEMBER 2020 – REVISED JANUARY 2022 6.7 Typical Characteristics 140 120 Current (mA) 100 80 60 40 VDD = 1.8 V VDD = 2.5 V VDD = 3.3 V 20 0 0 25 50 75 100 125 150 175 Frequency (MHz) 200 225 250 Device Power Consumption vs. Clock Frequency (Load 5 pF) Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: LMK1C1106 LMK1C1108 7 LMK1C1106, LMK1C1108 www.ti.com.cn ZHCSLS7A – DECEMBER 2020 – REVISED JANUARY 2022 7 Parameter Measurement Information VDD = 3.3-V, 2.5-V, or 1.8-V LVCMOS Output Zo = 50 R = 50 Ÿ C = 2 pF Parasitic capacitance From measurement equipment 图 7-1. Test Load Circuit VDD VDD = 3.3-V, 2.5-V, or 1.8-V R = 100 Ÿ LVCMOS Output Zo = 50 Parasitic capacitance R = 100 Ÿ 图 7-2. Application Load With 50-Ω Termination VDD = 3.3-V, 2.5-V, or 1.8-V LVCMOS Output Zo = 50 Parasitic capacitance 图 7-3. Application Load With Termination CLKIN 1G tt1G_ONt Yn 图 7-4. t1G_ON Output Enable Time 8 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: LMK1C1106 LMK1C1108 LMK1C1106, LMK1C1108 www.ti.com.cn ZHCSLS7A – DECEMBER 2020 – REVISED JANUARY 2022 CLKIN 1G tt1G_OFFt Yn 图 7-5. t1G_OFF Output Disable Time CLKIN Yn tPROP-DELAY tOUTPUT-SKEW Yn+1 图 7-6. Propagation Delay tPROP-DELAY and Output Skew tOUTPUT-SKEW 80% x VDD Yn 20% x VDD tRISE-FALL tRISE-FALL 图 7-7. Rise and Fall Time tRISE-FALL Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: LMK1C1106 LMK1C1108 9 LMK1C1106, LMK1C1108 www.ti.com.cn ZHCSLS7A – DECEMBER 2020 – REVISED JANUARY 2022 8 Detailed Description 8.1 Overview The LMK1C110x family of devices is part of a low-jitter and low-skew LVCMOS fan-out buffer solution. For best signal integrity, it is important to match the characteristic impedance of the LMK1C110x's output driver with that of the transmission line. 8.2 Functional Block Diagram CLKIN LVCMOS LVCMOS Y0 LVCMOS Y1 LVCMOS Y2 LVCMOS Y3 LVCMOS Y4 LVCMOS Y5 LVCMOS Y6 LVCMOS Y7 1G 10 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: LMK1C1106 LMK1C1108 LMK1C1106, LMK1C1108 www.ti.com.cn ZHCSLS7A – DECEMBER 2020 – REVISED JANUARY 2022 8.3 Feature Description The outputs of the LMK1C110x can be disabled by driving the synchronous output enable pin (1G) low. Unused output can be left floating to reduce overall system component cost. Supply and ground pins must be connected to VDD and GND, respectively. 8.3.1 Fail-Safe Inputs The LMK1C110x family of devices is designed to support fail-safe input operation. This feature allows the user to drive the device inputs before VDD is applied without damaging the device. Refer to Absolute Maximum Ratings for more information on the maximum input supported by the device. The device also incorporates an input hysteresis that prevents random oscillation in absence of an input signal, allowing the input pins to be left open. 8.4 Device Functional Modes The LMK1C110x operates from 1.8-V, 2.5-V, or 3.3-V supplies. 表 8-1 shows the output logics of the LMK1C110x. 表 8-1. Output Logic Table INPUTS CLKIN OUTPUTS 1G Yn X L L L H L H H H Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: LMK1C1106 LMK1C1108 11 LMK1C1106, LMK1C1108 www.ti.com.cn ZHCSLS7A – DECEMBER 2020 – REVISED JANUARY 2022 9 Application and Implementation 备注 以下应用部分中的信息不属于 TI 器件规格的范围,TI 不担保其准确性和完整性。TI 的客 户应负责确定 器件是否适用于其应用。客户应验证并测试其设计,以确保系统功能。 9.1 Application Information The LMK1C110x family is a low additive jitter LVCMOS buffer solution that can operate up to 250-MHz at VDD = 3.3 V and 200 MHz at VDD = 2.5 V to 1.8 V. Low output skew as well as the ability for synchronous output enable is featured to simultaneously enable or disable buffered clock outputs as necessary in the application. 9.2 Typical Application 100-MHz LVCMOS Oscillator 50VDD Trace Y0 CMOS CPU Clock Y1 CMOS FPGA Clock CLKIN 50- 1G Trace 100 PLL Reference Yn From CPU GND 100 图 9-1. System Configuration Example 9.2.1 Design Requirements The LMK1C110x shown in 图 9-1 is configured to fan out a 100-MHz signal from a local LVCMOS oscillator. The CPU is configured to control the output state through 1G. The configuration example is driving three LVCMOS receivers in a backplane application with the following properties: • The CPU clock can accept a full swing DC-coupled LVCMOS signal. A series resistor is placed near the LMK1C110x to closely match the characteristic impedance of the trace to minimize reflections. • The FPGA clock is similarly DC-coupled with an appropriate series resistor placed near the LMK1C110x. • The PLL in this example can accept a lower amplitude signal, so a Thevenin's equivalent termination is used. The PLL receiver features internal biasing, so AC coupling can be used when common-mode voltage is mismatched. 9.2.2 Detailed Design Procedure Unused outputs can be left floating. See Power Supply Recommendations for recommended filtering techniques. 9.2.3 Application Curves The low additive jitter of the LMK1C110x is shown in 图 9-2. 图 9-3 shows the low-noise 156.25-MHz reference source with 24.8-fs RMS jitter driving the LMK1C110x, resulting in 27.3-fs RMS jitter when integrated from 12 kHz to 20 MHz at 3.3-V supply. The resultant additive jitter measured is a low 11.4-fs RMS for this configuration. 图 9-4 shows the low-noise 156.25-MHz reference source with 24.8-fs RMS jitter driving the LMK1C110x, resulting in 29-fs RMS jitter when integrated from 12 kHz to 20 MHz at 2.5-V supply. The resultant additive jitter measured is a low 15-fs RMS for this configuration. 12 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: LMK1C1106 LMK1C1108 LMK1C1106, LMK1C1108 www.ti.com.cn ZHCSLS7A – DECEMBER 2020 – REVISED JANUARY 2022 图 9-5 shows the low-noise 156.25-MHz reference source with 24.8-fs RMS jitter driving the LMK1C110x, resulting in 34-fs RMS jitter when integrated from 12 kHz to 20 MHz at 1.8-V supply. The resultant additive jitter measured is a low 23.25-fs RMS for this configuration. 图 9-2. LMK1C110x Reference Phase Noise 24.8-fs (12 kHz to 20 MHz) 图 9-3. LMK1C110x 3.3-V Output Phase Noise 27.3fs (12 kHz to 20 MHz) 图 9-4. LMK1C110x 2.5-V Output Phase Noise 29-fs 图 9-5. LMK1C110x 1.8-V Output Phase Noise 34-fs (12 kHz to 20 MHz) (12 kHz to 20 MHz) Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: LMK1C1106 LMK1C1108 13 LMK1C1106, LMK1C1108 www.ti.com.cn ZHCSLS7A – DECEMBER 2020 – REVISED JANUARY 2022 10 Power Supply Recommendations High-performance clock buffers can be sensitive to noise on the power supply, which may dramatically increase the additive jitter of the buffer. Thus, it is essential to manage any excessive noise from the system power supply, especially for applications where the jitter and phase noise performance is critical. Filter capacitors are used to eliminate the low-frequency noise from the power supply, where the bypass capacitors provide the very low impedance path for high-frequency noise and guard the power supply system against induced fluctuations. These bypass capacitors also provide instantaneous current surges as required by the device and should have low equivalent series resistance (ESR). To properly bypass the supply, the decoupling capacitors must be placed very close to the power-supply terminals, be connected directly to the ground plane, and laid out with short loops to minimize inductance. TI recommends adding as many highfrequency (for example, 0.1 µF) bypass capacitors, as there are supply terminals in the package. TI recommends, but does not require, inserting a ferrite bead between the board power supply and the chip power supply that isolates the high-frequency switching noises generated by the clock buffer; these beads prevent the switching noise from leaking into the board supply. It is imperative to choose an appropriate ferrite bead with very low DC resistance to provide adequate isolation between the board supply and the chip supply, as well as to maintain a voltage at the supply terminals that is greater than the minimum voltage required for proper operation. 图 10-1 shows this recommended power supply decoupling method. V Board Supply CC Chip Supply Ferrite Bead C 10 …F C 1 …F C 0.1 …F GND GND GND 图 10-1. Power Supply Decoupling 14 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: LMK1C1106 LMK1C1108 LMK1C1106, LMK1C1108 www.ti.com.cn ZHCSLS7A – DECEMBER 2020 – REVISED JANUARY 2022 11 Layout 11.1 Layout Guidelines 图 11-1 shows a conceptual layout detailing recommended placement of power supply bypass capacitors. For component side mounting, use 0402 body size capacitors to facilitate signal routing. Keep the connections between the bypass capacitors and the power supply on the device as short as possible. Ground the other side of the capacitor using a low-impedance connection to the ground plane. 11.2 Layout Example 图 11-1. PCB Conceptual Layout Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: LMK1C1106 LMK1C1108 15 LMK1C1106, LMK1C1108 ZHCSLS7A – DECEMBER 2020 – REVISED JANUARY 2022 www.ti.com.cn 12 Device and Documentation Support 12.1 Documentation Support 12.1.1 Related Documentation For related documentation, see the following: LMK1C1108EVM User Guide 12.2 接收文档更新通知 要接收文档更新通知,请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册,即可每周接收产品信息更 改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。 12.3 支持资源 TI E2E™ 支持论坛是工程师的重要参考资料,可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解 答或提出自己的问题可获得所需的快速设计帮助。 链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI 的《使用条款》。 12.4 Trademarks TI E2E™ is a trademark of Texas Instruments. 所有商标均为其各自所有者的财产。 12.5 Electrostatic Discharge Caution This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. 12.6 术语表 TI 术语表 本术语表列出并解释了术语、首字母缩略词和定义。 13 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. 16 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: LMK1C1106 LMK1C1108 PACKAGE OPTION ADDENDUM www.ti.com 18-Nov-2021 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) (6) LMK1C1106PWR ACTIVE TSSOP PW 14 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 LMK1C6 LMK1C1108PWR ACTIVE TSSOP PW 16 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 LMK1C8 (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
LMK1C1106PWR 价格&库存

很抱歉,暂时无法提供与“LMK1C1106PWR”相匹配的价格&库存,您可以联系我们找货

免费人工找货
LMK1C1106PWR
  •  国内价格
  • 1+22.52880
  • 10+19.71000
  • 30+18.04680
  • 100+15.39000

库存:105