User's Guide
SNVU670A – February 2020 – Revised June 2020
LMR36506MSCEVM User’s Guide
The Texas Instruments LMR36506MSCEVM evaluation module help designers evaluate the operation and
performance of the LMR36506-Q1 wide-input buck converters. The LMR36506-Q1 is an easy-to-use
synchronous step-down DC/DC converter capable of driving up to 0.6 A of load current from an input
voltage of up to 65 V. The LMR36506MSCEVM features an output voltage of 5 V and a switching
frequency of 2.2 MHz. See the LMR36506-Q1 3-V–65-V, 0.6-A Synchronous Buck Converter Optimized
for Size and Light Load Efficiency data sheet for additional features, detailed descriptions, and available
options.
Table 1. Device and Package Configurations
EVM
U1
FREQUENCY
SPREAD SPECTRUM
CURRENT
PIN 1 TRIM
LMR36506MSCEVM
LMR36506MSCQRPETQ1
2200 kHz
Enabled
0.6 A
MODE/SYNC
Figure 1. LMR36506MSCEVM Board
SNVU670A – February 2020 – Revised June 2020
Submit Documentation Feedback
Copyright © 2020, Texas Instruments Incorporated
LMR36506MSCEVM User’s Guide
1
www.ti.com
1
2
3
4
5
6
Contents
Setup .......................................................................................................................... 3
Operation ..................................................................................................................... 5
Schematic ..................................................................................................................... 6
Board Layout ................................................................................................................. 7
Bill of Materials ............................................................................................................. 10
Test Results ................................................................................................................ 11
1
LMR36506MSCEVM Board ................................................................................................ 1
2
EVM Board Connections.................................................................................................... 3
3
Jumper Locations ............................................................................................................ 4
4
LMR36506MSCEVM Schematic ........................................................................................... 6
5
Top View of EVM ............................................................................................................ 7
6
EVM Top Copper Layer ..................................................................................................... 7
7
EVM Mid Layer One ......................................................................................................... 8
8
EVM Mid Layer Two ......................................................................................................... 8
9
EVM Bottom Copper Layer ................................................................................................. 9
10
LMR36506MSCEVM 5 VOUT Efficiency .................................................................................. 11
11
LMR36506MSCEVM 5 VOUT Load Regulation .......................................................................... 11
12
LMR36506MSCEVM Load Transient 12 VIN, 5 VOUT, IOUT = 0.3 A to 0.6 A, TR = TF = 1 µs CH1 = VOUT,
CH4 = IOUT ................................................................................................................. 11
13
LMR36506MSCEVM Output Ripple 12 VIN, 5 VOUT, IOUT = 0 A ........................................................ 11
14
LMR36506MSCEVM 5 VOUT Thermal Capture, 12 VIN, 0.6 A Load, 2.2 MHz
List of Figures
15
......................................
LMR36506MSCEVM 5 VOUT Thermal Capture, 24 VIN, 0.6 A Load, 2.2 MHz ......................................
12
12
16
LMR36506MSCEVM CISPR25 Conducted EMI Results 13.5 VIN, 5 VOUT, IOUT = 0.6 A (Blue-Average and
Yellow-Peak) ............................................................................................................... 12
17
LMR36506MSCEVM CISPR25 Conducted EMI Results 13.5 VIN, 5 VOUT, IOUT = 0.6 A (Blue-Average and
Yellow-Peak) ................................................................................................................ 12
List of Tables
1
Device and Package Configurations ...................................................................................... 1
2
Bill of Materials
.............................................................................................................
10
Trademarks
All trademarks are the property of their respective owners.
2
LMR36506MSCEVM User’s Guide
SNVU670A – February 2020 – Revised June 2020
Submit Documentation Feedback
Copyright © 2020, Texas Instruments Incorporated
Setup
www.ti.com
1
Setup
This section describes the test points and connectors on the EVM and how to properly connect, set up,
and use the LMR36506MSCEVM.
1.1
Test Points
The test points on the top of the board can be used for connecting to the input and output of the EVM.
See Figure 2 for typical test setup. The functions of the test points connections are:
• VIN_EMI — Input supply to EVM including an EMI filter. Connect to a suitable input supply. Connect at
this point for conducted EMI test.
• GND_EMI — Ground connection for the input supply
• VIN — Input supply to the IC. Can be connected to DMM to measure input voltage after EMI filter
• VOUT — Output voltage test point of EVM. Can be connected to a desired load
• GND — Ground test points
• EN — This test point is connected to the EN pin. By default, there is a pullup resistor R2 (RENT) to
VIN to enable the IC.
• PGOOD — This test point is connected to the PGOOD pin from the IC. It is an open-drain output of the
PGOOD pin. Can be tied to external supply through a pullup resistor or left open
• SYNC — In a MODE/SYNC trim part, this test point is connected to the SYNC pin of the IC. Can be
connected to an external clock to synchronize the IC. Make sure R4 (RMODE) is installed and R5 (RT)
is not installed. In a RT trim part, this test point is connected to the RT pin of the IC when the R4
(RMODE) is installed.
(+)
Input
Supply
(-)
(+)
(+)
DMM
DMM
(-)
(-)
(+)
Load
(-)
Figure 2. EVM Board Connections
SNVU670A – February 2020 – Revised June 2020
Submit Documentation Feedback
Copyright © 2020, Texas Instruments Incorporated
LMR36506MSCEVM User’s Guide
3
Setup
1.2
www.ti.com
Jumpers
See Figure 3 for jumper locations.
• JEN - This jumper allows the ENABLE input to be connected to GND in order to disable the IC. By
default, this jumper is left open since there is a pullup resistor R2 (RENT) to VIN to enable the IC.
• JPGOOD - Use this jumper to select how the PGOOD pin can be connected. A jumper can be used to
connect pin 2 and 3. In this configuration, the PGOOD pin will be pulled up to VOUT through R9
(RPGOOD) with a value of 100 kΩ. By default, this jumper is left open.
• JMODE/RT - Use this jumper to select the mode of operation in a MODE/SYNC trim part.
Connecting a jumper between pin 1 and 2 cause the IC to operate in PFM (Pulse Frequency
Modulation) mode for a higher efficiency at light load. A jumper between pin 2 and pin 3 causes the IC
to operate in FPWM mode (Forced Pulse Width Modulation) mode. By default, the jumper is connected
between pin 1 and 2.
In an RT trim part, connecting this jumper from pin 1 and 2 sets the switching frequency to 2.2 MHz
and connecting this jumper from pin 2 and 3 sets the switching frequency to 1 MHz. See the
LMR36506-Q1 3-V–65-V, 0.6-A Synchronous Buck Converter Optimized for Size and Light Load
Efficiency data sheet for more information on switching frequency configuration.
ENABLE OFF
JUMPER
PGOOD SELECTION
JUMPER
MODE SELECTION
JUMPER
Figure 3. Jumper Locations
4
LMR36506MSCEVM User’s Guide
SNVU670A – February 2020 – Revised June 2020
Submit Documentation Feedback
Copyright © 2020, Texas Instruments Incorporated
Operation
www.ti.com
2
Operation
2.1
Quick Start
1. Connect the voltage supply between the VIN_EMI and GND_EMI test points.
2. Connect the load between the VOUT and GND test points.
3. Set the supply voltage at an appropriate level between 5.5 V to 65 V. Set the current limit of the supply
to an appropriate level.
4. Turn on the power supply. With the default configuration, the EVM powers up and provides VOUT = 5 V.
5. Monitor the output voltage. The maximum load current must be 0.6 A with the LMR36506 device.
SNVU670A – February 2020 – Revised June 2020
Submit Documentation Feedback
Copyright © 2020, Texas Instruments Incorporated
LMR36506MSCEVM User’s Guide
5
Schematic
3
www.ti.com
Schematic
TP5
VIN
VIN = 5.5V - 65V
TP6
L3
VINF
C3
VIN_EMI
TP1
U1
DNP C7
Cfilt
0.1uF
C6
Cd
1uF
C9
CIN3
2.2uF
C11
Cfilt1
0.1uF
C8
CBulk
22uF
C12
Cfilt2
0.1uF
C1
CIN1
2.2uF
C2
CIN2
0.1uF
R8
Rd
4.99
TP7
R2
RENT
100k
GND
4
VIN
EN
3
EN/UVLO
VCC
7
VCC
RT
1
MODE/SYNC
BOOT
C4
CVCC
1uF
PGOOD 2
R5
DNP
RT
0
GND
SW
FB
PGOOD
GND
VOUT
VOUT = 5V
5 SW
VOUT
6.8µH
C5
DNP C10
COUT1
COUT2
22uF
22uF
B
R6
RINJ
49.9
GND
TP4
VOUT
8 FB
9
LMR36506MSCQRPETQ1
TP8
C14
COUTHF
1nF
TP3
GND
GND
A
GND
R3
RFBT
100k
GND
PGOOD
6 BOOT
L1
R1
DNP
RENB
100k
GND_EMI
VIN
CB
0.1uF
RT
TP9
DNP C13
CFF
10pF
TP10
SYNC
R9
RPGOOD
100k
PGOOD
R7
RFBB
24.9k
R4
RMODE
0
TP11
TP2
VOUT
VCC
EN
EN
3
2
1
3
2
1
GND
GND
J3
2
1
GND
J1
JPGOOD
J2
JMODE/RT
JEN
GND
Figure 4. LMR36506MSCEVM Schematic
6
LMR36506MSCEVM User’s Guide
SNVU670A – February 2020 – Revised June 2020
Submit Documentation Feedback
Copyright © 2020, Texas Instruments Incorporated
Board Layout
www.ti.com
4
Board Layout
Figure 5. Top View of EVM
Figure 6. EVM Top Copper Layer
SNVU670A – February 2020 – Revised June 2020
Submit Documentation Feedback
Copyright © 2020, Texas Instruments Incorporated
LMR36506MSCEVM User’s Guide
7
Board Layout
www.ti.com
Figure 7. EVM Mid Layer One
Figure 8. EVM Mid Layer Two
8
LMR36506MSCEVM User’s Guide
SNVU670A – February 2020 – Revised June 2020
Submit Documentation Feedback
Copyright © 2020, Texas Instruments Incorporated
Board Layout
www.ti.com
Figure 9. EVM Bottom Copper Layer
SNVU670A – February 2020 – Revised June 2020
Submit Documentation Feedback
Copyright © 2020, Texas Instruments Incorporated
LMR36506MSCEVM User’s Guide
9
Bill of Materials
5
www.ti.com
Bill of Materials
Table 2. Bill of Materials
DESIGNATOR
COMMENT
DESCRIPTION
MANUFACTURER
PART NUMBER
QUANTITY
C1, C9
CIN1, CIN3
CAP, CERM, 2.2 uF, 100 V, +/- 10%, X7S, AECQ200 Grade 1, 1206
TDK
CGA5L3X7S2A225K160AB
2
C2
CIN2
CAP, CERM, 0.1 uF, 100 V, +/- 10%, X7R, 0603
MuRata
GRM188R72A104KA35D
1
C3
CB
CAP, CERM, 0.1 uF, 25 V, +/- 20%, X7R, 0402
TDK
C1005X7R1E104M050BB
1
C4
CVCC
CAP, CERM, 1 uF, 16 V, +/- 10%, X7R, 0603
Wurth Elektronik
885012206052
1
C5
COUT1
CAP, CERM, 22 uF, 10 V, +/- 10%, X7R, AEC-Q200
Grade 1, 1206
MuRata
GCM31CR71A226KE02
1
C6
Cd
CAP, CERM, 1 uF, 100 V, +/- 10%, X7R, 1206
TDK
C3216X7R2A105K160AA
1
Cfilt
CAP, CERM, 0.1 uF, 100 V, +/- 10%, X7R, AECQ200 Grade 1, 0805
TDK
CGA4J2X7R2A104K125AA
0
C8
CBulk
CAP, AL, 22 uF, 100 V, +/- 20%, 1.3 ohm, AEC-Q200
Grade 2, SMD
Panasonic
EEE-FK2A220P
1
C10
COUT2
CAP, CERM, 22 uF, 10 V, +/- 10%, X7R, AEC-Q200
Grade 1, 1206
MuRata
GCM31CR71A226KE02
0
C11, C12
Cfilt1, Cfilt2
CAP, CERM, 0.1 uF, 100 V, +/- 10%, X7R, AECQ200 Grade 1, 0805
TDK
CGA4J2X7R2A104K125AA
2
C13
CFF
CAP, CERM, 10 pF, 50 V, +/- 5%, C0G/NP0, AECQ200 Grade 1, 0402
TDK
CGA2B2C0G1H100D050BA
0
C7
10
C14
COUTHF
CAP, CERM, 1000 pF, 100 V, +/- 10%, X7R, 0603
MuRata
GRM188R72A102KA01D
1
FID1, FID2,
FID3, FID4,
FID5, FID6
Fiducial
Fiducial mark. There is nothing to buy or mount.
N/A
N/A
0
J1, J2
JPGOOD,
JMODE/RT
Header, 100mil, 3x1, Gold, TH
Samtec
HTSW-103-07-G-S
2
J3
JEN
Header, 100mil, 2x1, Gold, TH
Samtec
HTSW-102-07-G-S
1
L1
74438336068
FIXED IND 6.8UH 1.6A 193 MOHM
Wurth Electronics
74438336068
1
L3
FBMH3225HM601N
T
Ferrite Bead, 600 ohm @ 100 MHz, 3 A, 1210
Taiyo Yuden
FBMH3225HM601NT
1
R1
RENB
RES, 100 k, 1%, 0.063 W, AEC-Q200 Grade 0, 0402
Vishay-Dale
CRCW0402100KFKED
0
R2, R3
RENT, RFBT
RES, 100 k, 1%, 0.063 W, AEC-Q200 Grade 0, 0402
Vishay-Dale
CRCW0402100KFKED
2
R4
RMODE
RES, 0, 5%, 0.1 W, AEC-Q200 Grade 0, 0603
Vishay-Dale
CRCW06030000Z0EA
1
R5
RT
RES, 0, 0%, 0.2 W, AEC-Q200 Grade 0, 0402
Vishay-Dale
CRCW04020000Z0EDHP
0
R6
RINJ
RES, 49.9, 1%, 0.063 W, AEC-Q200 Grade 0, 0402
Vishay-Dale
CRCW040249R9FKED
1
R7
RFBB
RES, 24.9 k, 1%, 0.063 W, AEC-Q200 Grade 0, 0402
Vishay-Dale
CRCW040224K9FKED
1
R8
Rd
RES, 4.99, 1%, 0.1 W, AEC-Q200 Grade 0, 0603
Vishay-Dale
CRCW06034R99FKEA
1
R9
RPGOOD
RES, 100 k, 1%, 0.1 W, AEC-Q200 Grade 0, 0603
Vishay-Dale
CRCW0603100KFKEA
1
SH-J1
SNT-100-BK-G
Shunt, 100mil, Gold plated, Black
Samtec
SNT-100-BK-G
1
TP1, TP5
VOUT, VIN
Test Point, Miniature, SMT
Keystone
5015
2
TP2
GND
Test Point, Miniature, Black, TH
Keystone
5001
1
TP3, TP4, TP6,
TP7, TP8
GND, VOUT,
VIN_EMI, GND_EMI
Terminal, Turret, TH, Double
Keystone
1502-2
5
TP9, TP10,
TP11
PGOOD, SYNC, EN
Test Point, Miniature, White, TH
Keystone
5002
3
U1
LMR36506MSCQR
PETQ1
LMR36503/06-Q1 Wide Input 60-V Synchronous, DCDC Buck Converter, RPE0009A (VQFN-9)
Texas Instruments
LMR36506MSCQRPETQ1
1
LMR36506MSCEVM User’s Guide
SNVU670A – February 2020 – Revised June 2020
Submit Documentation Feedback
Copyright © 2020, Texas Instruments Incorporated
Test Results
www.ti.com
6
Test Results
Section 6.1 details the test results from the LMR36506MSCEVM variant.
6.1
LMR36506MSCEVM Test Results
The LMR36506MSCEVM variant is used for all figures from Figure 10 to Figure 17 variant.
6.1.1
Efficiency and Load Regulation
5.2
100
90
VIN = 12V
VIN = 24V
5.15
80
5.1
60
Vout (V)
Efficiency (%)
70
50
40
30
5.05
5
4.95
20
0
0.001 0.002
4.85
0.005 0.01 0.02
0.05 0.1
Load Current (A)
0.2 0.3 0.5
1
0
0.1
LMR3
Figure 10. LMR36506MSCEVM 5 VOUT Efficiency
6.1.2
4.9
VIN = 12V
VIN = 24V
10
0.2
0.3
0.4
Load Current (A)
0.5
0.6
LMR3
Figure 11. LMR36506MSCEVM 5 VOUT Load Regulation
Load Transients
Figure 12. LMR36506MSCEVM Load Transient
12 VIN, 5 VOUT, IOUT = 0.3 A to 0.6 A, TR = TF = 1 µs
CH1 = VOUT, CH4 = IOUT
Figure 13. LMR36506MSCEVM Output Ripple
12 VIN, 5 VOUT, IOUT = 0 A
SNVU670A – February 2020 – Revised June 2020
Submit Documentation Feedback
Copyright © 2020, Texas Instruments Incorporated
LMR36506MSCEVM User’s Guide
11
Test Results
6.1.3
www.ti.com
Thermal Picture
Figure 14. LMR36506MSCEVM 5 VOUT Thermal Capture,
12 VIN, 0.6 A Load, 2.2 MHz
6.1.4
Conducted EMI
Figure 16. LMR36506MSCEVM CISPR25 Conducted EMI
Results
13.5 VIN, 5 VOUT, IOUT = 0.6 A
(Blue-Average and Yellow-Peak)
12
Figure 15. LMR36506MSCEVM 5 VOUT Thermal Capture,
24 VIN, 0.6 A Load, 2.2 MHz
LMR36506MSCEVM User’s Guide
Figure 17. LMR36506MSCEVM CISPR25 Conducted EMI
Results
13.5 VIN, 5 VOUT, IOUT = 0.6 A
(Blue-Average and Yellow-Peak)
SNVU670A – February 2020 – Revised June 2020
Submit Documentation Feedback
Copyright © 2020, Texas Instruments Incorporated
Revision History
www.ti.com
Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.
Changes from Original (February 2020) to A Revision .................................................................................................. Page
•
•
•
•
•
•
•
•
Updated EVM board image. .............................................................................................................
Updated EVM board connections image. ..............................................................................................
Updated LMR36506MSCEVM schematic. .............................................................................................
Updated top PCB view image............................................................................................................
Updated top copper layer image. .......................................................................................................
Updated EVM mid-layer one image. ....................................................................................................
Updated EVM mid-layer two image. ....................................................................................................
Updated EVM bottom copper layer image. ............................................................................................
SNVU670A – February 2020 – Revised June 2020
Submit Documentation Feedback
Copyright © 2020, Texas Instruments Incorporated
Revision History
1
3
6
7
7
8
8
9
13
IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated