0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
LMT70AYFQR

LMT70AYFQR

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    DSBGA4

  • 描述:

    ±0.1°C 匹配精度精密模拟温度传感器

  • 数据手册
  • 价格&库存
LMT70AYFQR 数据手册
Sample & Buy Product Folder Support & Community Tools & Software Technical Documents LMT70, LMT70A ZHCSDV8A – MARCH 2015 – REVISED JULY 2015 LMT70、 、LMT70A ±0.05°C 精密模拟温度传感器、RTD 和精密 NTC 热敏 电阻 IC 1 特性 • 1 • • • • • • • • 3 说明 精度: – 20°C 至 42°C 范围内为 ±0.05°C(典型值) 或 ±0.13°C(最大值) – -20°C 至 90°C 范围内为 ±0.2°C(最大值) – 90°C 至 110°C 范围内为 ±0.23°C(最大值) – -55°C 至 150°C 范围内为 ±0.36°C(最大值) 宽温度范围:−55°C 至 150°C 卷带包装中相邻两个 LMT70A 的温度匹配:30°C 时为 0.1°C(最大值) 带有输出使能引脚的超线性模拟温度传感器 负温度系数 (NTC) 输出斜率:-5.19mV/°C RDS on < 80Ω 时输出开启/关闭开关 宽电源范围:2.0V 至 5.5V 低电源电流:9.2µA(典型值)12µA(最大值) 超小型 0.88mm x 0.88mm 4 凸点 WLCSP (DSBGA) 封装 2 应用 • • • • • • 物联网 (IoT) 传感器节点 工业电阻式温度检测器 (RTD)(AA 类)或精密 NTC/正温度系数 (PTC) 热敏电阻的替代产品 医疗/健身设备 医疗温度计 人体温度监视器 计量温度补偿 LMT70 是一款带有输出使能引脚的超小型、高精度、 低功耗互补金属氧化物半导体 (CMOS) 模拟温度传感 器。 LMT70 几乎适用于所有高精度、低功耗的经济高 效型温度感测应用,例如物联网 (IoT) 传感器节点、医 疗温度计、高精度仪器仪表和电池供电设备。 LMT70 也是 RTD 和高精度 NTC/PTC 热敏电阻的理想替代产 品。 多个 LMT70 可利用输出使能引脚来共用一个模数转换 器 (ADC) 通道,从而简化 ADC 校准过程并降低精密 温度感测系统的总成本。 LMT70 还具有一个线性低阻 抗输出,支持与现成的微控制器 (MCU)/ADC 无缝连 接。 LMT70 的热耗散低于 36µW,这种超低自发热特 性支持其在宽温度范围内保持高精度。 LMT70A 具有出色的温度匹配性能,同一卷带中取出 的相邻两个 LMT70A 的温度最多相差 0.1°C。 因此, 对于需要计算热量传递的能量计量应用而言,LMT70A 是一套理想的解决方案。 器件信息 (1) 器件型号 封装 封装尺寸(标称值) DSBGA - WLCSP (4) YFQ LMT70 0.88mm x 0.88mm 要了解所有可用封装,请见数据表末尾的可订购产品附录。 (1) 4 宽温度范围、精密、有源 RTD 或 NTC 的替代产品(−55°C 至 150°C) ) LMT70 精度与温度间的关系 0.60 Coin Cell Battery 0.50 0.40 2.2V to 3.6V Max Limit GPIO1 MSP430 GPIO2 P2.5_VREF VDD 0.10 0.00 -0.10 -0.20 Min Limit -0.40 -0.50 P2.3 TAO 0.20 -0.30 1.5V Vref T_ON LMT70 Accuracy (ƒC) 0.30 M U X ADC (12-bit) -0.60 ±60 ±40 ±20 0 20 40 60 80 DUT Temperature (ƒC) 100 120 140 160 C001 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA. English Data Sheet: SNIS187 LMT70, LMT70A ZHCSDV8A – MARCH 2015 – REVISED JULY 2015 www.ti.com.cn 目录 1 2 3 4 5 6 7 8 特性 .......................................................................... 应用 .......................................................................... 说明 .......................................................................... 宽温度范围、精密、有源 RTD 或 NTC 的替代产品 (−55°C 至 150°C) ) ................................................ 修订历史记录 ........................................................... Device Comparison Table..................................... Pin Configuration and Functions ......................... Specifications......................................................... 1 1 1 10 Application and Implementation........................ 16 1 2 3 3 4 8.1 8.2 8.3 8.4 8.5 8.6 Absolute Maximum Ratings ...................................... 4 ESD Ratings.............................................................. 4 Recommended Operating Conditions....................... 4 Thermal Information .................................................. 4 Electrical Characteristics........................................... 5 Electrical Characteristics Temperature Lookup Table (LUT) .......................................................................... 6 8.7 Switching Characteristics .......................................... 7 8.8 Typical Performance Characteristics ....................... 7 9 9.2 Functional Block Diagram ....................................... 11 9.3 Feature Description................................................. 11 9.4 Device Functional Modes........................................ 15 Detailed Description ............................................ 11 10.1 Application Information.......................................... 16 10.2 Typical Application ................................................ 16 10.3 System Examples ................................................. 21 11 Power Supply Recommendations ..................... 21 12 Layout................................................................... 22 12.1 Layout Guidelines ................................................. 22 12.2 Layout Example .................................................... 22 13 器件和文档支持 ..................................................... 23 13.1 13.2 13.3 13.4 13.5 13.6 相关链接................................................................ 文档支持 ............................................................... 社区资源................................................................ 商标 ....................................................................... 静电放电警告......................................................... Glossary ................................................................ 23 23 23 23 23 23 14 机械、封装和可订购信息 ....................................... 23 9.1 Overview ................................................................. 11 5 修订历史记录 Changes from Original (March 2015) to Revision A Page • 已添加 典型精度规范。........................................................................................................................................................... 1 • 已将 ±0.2°C 精度的温度范围从“20°C 至 90°C”扩展至“-20°C 至 90°C”。............................................................................... 1 • 已添加 9.2µA(典型值) ........................................................................................................................................................ 1 • Updated schematic ................................................................................................................................................................. 3 • Added -20°C accuracy specification ...................................................................................................................................... 5 • Changed from 20°C to 20°C to 42°C for accuracy specification condition ........................................................................... 5 • Added 50°C accuracy specification ....................................................................................................................................... 5 • Added typical supply current specification.............................................................................................................................. 6 • Changed from 942.547 to 942.552......................................................................................................................................... 6 • Changed from 943.907 to 943.902......................................................................................................................................... 6 • Changed from 890.423 to 890.500......................................................................................................................................... 6 • Changed from 891.934 to 891.857......................................................................................................................................... 6 • Added -20°C histogram curve ................................................................................................................................................ 8 • Removed erroneous 10°C histogram ..................................................................................................................................... 8 • Changed y axis units from (V) to (mV) ................................................................................................................................... 9 • Added Output Noise vs Frequency curve............................................................................................................................. 10 2 版权 © 2015, Texas Instruments Incorporated LMT70, LMT70A www.ti.com.cn ZHCSDV8A – MARCH 2015 – REVISED JULY 2015 6 Device Comparison Table Matching Specification Provided (1) Order Number LMT70YFQR, LMT70YFQT No LMT70AYFQR, LMT70AYFQT (1) Yes, 0.1°C at approximately 30°C (1) In order to meet the matching specification of the LMT70A, two units must be picked from adjacent positions from one tape and reel. If PCB rework is required, involving the LMT70A, then the pair of the LMT70A matched units must be replaced. Matching features (which include, without limitation, electrical matching characteristics of adjacent Components as they are delivered in original packaging from TI) are warranted solely to the extent that the purchaser can demonstrate to TI’s satisfaction that the particular Component(s) at issue were adjacent in original packaging as delivered by TI. Customers should be advised that the small size of these Components means they are not individually traceable at the unit level and it may be difficult to establish the original position of the Components once they have been removed from that original packaging as delivered by TI. 7 Pin Configuration and Functions DSBGA or WLCSP 4 Pins YFQ (Top View) GND (A1) VDD (A2) LMT70 TAO (B1) T_ON (B2) Pin Functions PIN NAME NO. TYPE GND A1 Ground VDD A2 Power EQUIVALENT CIRCUIT DESCRIPTION Ground reference for the device Supply voltage VDD VSENSE TAO B1 T_ON Analog Output Temperature analog output pin T_ON GND VDD T_ON B2 T_ON pin. Active High input. If T_ON = 0, then the TAO output is open. If T_ON = 1, then TAO pin is connected to the temperature output voltage. Tie this pin to VDD if not used. Digital Input GND Copyright © 2015, Texas Instruments Incorporated 3 LMT70, LMT70A ZHCSDV8A – MARCH 2015 – REVISED JULY 2015 www.ti.com.cn 8 Specifications 8.1 Absolute Maximum Ratings (1) (2) MIN MAX UNIT Supply voltage −0.3 6 V Voltage at T_ON and TAO −0.3 6 V 5 mA 150 °C Current at any pin Storage temperature, Tstg (1) (2) -65 Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. Soldering process must comply with Reflow Temperature Profile specifications. Refer to www.ti.com/packaging. 8.2 ESD Ratings VALUE V(ESD) (1) (2) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1) ±2000 Charged-device model (CDM), per JEDEC specification JESD22C101 (2) ±750 UNIT V JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. 8.3 Recommended Operating Conditions MAX UNIT Specified temperature (TMIN ≤ TA ≤ TMAX) MIN −55 NOM 150 °C Supply voltage 2.0 5.5 V 8.4 Thermal Information LMT70 DSBGA or WLCSP THERMAL METRIC (1) UNIT YFQ 4 PINS RθJA Junction-to-ambient thermal resistance RθJC(top) Junction-to-case (top) thermal resistance 2.3 RθJB Junction-to-board thermal resistance 105 ψJT Junction-to-top characterization parameter 10.9 ψJB Junction-to-board characterization parameter 104 Thermal response time to 63% of final value in stirred oil (dominated by PCB see layout) 1.5 sec Thermal response time to 63% of final value in still air (dominated by PCB see layout) 73 sec (1) 4 187 °C/W For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953. Copyright © 2015, Texas Instruments Incorporated LMT70, LMT70A www.ti.com.cn ZHCSDV8A – MARCH 2015 – REVISED JULY 2015 8.5 Electrical Characteristics Limits apply for TA = TJ = TMIN to TMAX and VDD of 2.00V to 5.5V and VDD ≥ VTAO + 1V, unless otherwise noted. PARAMETER TEST CONDITIONS MIN TYP MAX UNIT TEMPERATURE ACCURACY TAO accuracy (These stated accuracy limits are with reference to the values in Electrical Characteristics Temperature Lookup Table (LUT), LMT70 temperature-tovoltage.) (1) ATC APSS VTAO TA = –55°C VDD = 2.7 V -0.33 0.33 TA = –40°C VDD = 2.7 V –0.27 0.27 TA = –20°C VDD = 2.7 V –0.2 0.2 TA = –10°C VDD = 2.7 V –0.18 TA = 20°C to 42°C VDD = 2.7 V –0.13 TA = 50°C VDD = 2.7 V -0.15 0.15 TA = 90°C VDD = 2.7 V –0.20 0.20 TA = 110°C VDD = 2.7 V –0.23 0.23 TA = 150°C VDD = 2.7 V –0.36 0.36 -2.6 +2.6 Accuracy temperature VDD = 2.7V coefficient (note, uses end point (2) calculations) –55°C ≤ TA ≤ 10°C VDD = VTAO + 1.1 V to 4.0 V Accuracy power supply sensitivity (note uses end point calculations) 10°C ≤ TA ≤ 120°C VDD = 2.0 V to 4.0 V 120°C ≤ TA ≤ 150°C VDD = 2.0 V to 4.0 V –15 VDD = 4 V to 5.5 V –30 Output Voltage TA = 30°C VDD = 2.7 V TA approximately 30°C VDD = 2.0 V to 3.6 V –9 Time stability (4) –2 0.13 m°C/°C 8 8 –12 0 943.227 mV –5.194 mV/°C 0.1 TA = 30°C to 150°C TA = 20°C to 30°C °C m°C /V Sensor gain Matching of two adjacent parts in tape and reel for LMT70AYFQR, LMT70AYFQT only (see curve Figure 19 for specification at other temperatures) (3) (2) 0.18 ±0.05 °C 2.5 m°C /°C 0.1 °C 0 0.4 mV -0.4 0 mV VDD = 2.0 V to 3.6 V -2.5 TA = -55°C to 30°C VDD = 2.7 V to 3.6 V –2.5 10k hours at 90°C –0.1 ±0.01 ANALOG OUTPUT Operating output voltage change with load current ROUT 0 µA≤IL≤5 µA -5 µA≤IL≤0 µA Output Resistance TAO Off Leakage Current VTAO ≤ VDD – 0.6v, VT_ON=GND VTAO ≥ 0.2V, VT_ON = GND Output Load Capacitance (1) (2) (3) (4) -0.5 28 80 Ω 0.005 0.5 µA 1100 pF -0.005 Accuracy is defined as the error between the measured and reference output voltages, tabulated in the Conversion Table at the specified conditions of supply voltage and temperature (expressed in °C). These stated accuracy limits are with reference to the values in Electrical Characteristics Temperature Lookup Table (LUT), see Accuracy Curve for other temperatures. Accuracy limits do not include load regulation or aging; they assume no DC load. The accuracy temperature coefficient specification is given to indicate part to part performance and does not correlate to the limits given in the curve Figure 3. In order to meet the matching specification of the LMT70A, two units must be picked from adjacent positions from one tape and reel. If PCB rework is required, involving the LMT70A, then the pair of the LMT70A matched units must be replaced. Matching features (which include, without limitation, electrical matching characteristics of adjacent Components as they are delivered in original packaging from TI) are warranted solely to the extent that the purchaser can demonstrate to TI’s satisfaction that the particular Component(s) at issue were adjacent in original packaging as delivered by TI. Customers should be advised that the small size of these Components means they are not individually traceable at the unit level and it may be difficult to establish the original position of the Components once they have been removed from that original packaging as delivered by TI. Determined using accelerated operational life testing at 150°C junction temperature; not tested during production. Copyright © 2015, Texas Instruments Incorporated 5 LMT70, LMT70A ZHCSDV8A – MARCH 2015 – REVISED JULY 2015 www.ti.com.cn Electrical Characteristics (continued) Limits apply for TA = TJ = TMIN to TMAX and VDD of 2.00V to 5.5V and VDD ≥ VTAO + 1V, unless otherwise noted. PARAMETER TEST CONDITIONS MIN TYP MAX UNIT POWER SUPPLY VDO Dropout Voltage (VDD-VTAO) (5) –20°C ≤ TA ≤ 20°C 1.0 –55°C ≤ TA ≤ –20°C 1.1 Power Supply Current V 9.2 VDD ≤ 0.4V (-55°C to +110°C) Shutdown Current VDD ≤ 0.4V (+110°C to +150°C) 12 µA 50 nA 350 nA LOGIC INPUT T_ON Logic Low Input Threshold -55°C to +150°C T_ON Logic High Input Threshold -55°C to +150°C T_ON Input Current VT_ON = VDD 0.5 VT_ON = GND (5) -1 0.33*VDD V 0.66*VDD VDD-0.5 V 0.15 1 µA -0.02 Dropout voltage (VDO) is defined as the smallest possible differential voltage measured between VTAO and VDD that causes the temperature error to degrade by 0.02°C. 8.6 Electrical Characteristics Temperature Lookup Table (LUT) applies for VDD of 2.7V TEMPERATURE (°C) 6 VTAO (mV) LOCAL SLOPE (mV/°C) MIN TYP MAX -55 1373.576 1375.219 1376.862 -4.958 -50 1348.990 1350.441 1351.892 -4.976 -40 1299.270 1300.593 1301.917 -5.002 -30 1249.242 1250.398 1251.555 -5.036 -20 1198.858 1199.884 1200.910 -5.066 -10 1148.145 1149.070 1149.995 -5.108 0 1097.151 1097.987 1098.823 -5.121 10 1045.900 1046.647 1047.394 -5.134 20 994.367 995.050 995.734 -5.171 30 942.547 943.227 943.902 -5.194 40 890.500 891.178 891.857 -5.217 50 838.097 838.882 839.668 -5.241 60 785.509 786.360 787.210 -5.264 70 732.696 733.608 734.520 -5.285 80 679.672 680.654 681.636 -5.306 90 626.435 627.490 628.545 -5.327 100 572.940 574.117 575.293 -5.347 110 519.312 520.551 521.789 -5.368 120 465.410 466.760 468.110 -5.391 130 411.288 412.739 414.189 -5.430 140 356.458 358.164 359.871 -5.498 150 300.815 302.785 304.756 -5.538 Copyright © 2015, Texas Instruments Incorporated LMT70, LMT70A www.ti.com.cn ZHCSDV8A – MARCH 2015 – REVISED JULY 2015 8.7 Switching Characteristics Limits apply for TA = TJ = TMIN to TMAX and VDD of 2.00V to 5.5V and VDD ≥ VTAO + 1V, unless otherwise noted. PARAMETER TEST CONDITIONS MIN TYP MAX UNIT tPOWER Power-on Time to 99% of final voltage value CL=0 pF to 1100 pF; VDD connected T_ON 0.6 1 ms tT_ON T_ON Time to 99% of final voltage value (note dependent on RON and C load) CL=150pF 30 500 µs CT_ON T_ON Digital Input Capacitance 2.2 pF 0.66xVDD T_ON tT_ON 99% TAO Figure 1. Definition of tT_ON 2V VDD tPOWER 99% TAO Figure 2. Definition of tPOWER 8.8 Typical Performance Characteristics 0.60 0.50 0.40 0.30 0.33°C Max Limit 0.20 Frequency Accuracy (ƒC) -0.33°C Min Limit Max Limit 0.10 0.00 -0.10 -0.20 -0.30 Min Limit -0.40 -0.50 -0.60 ±60 ±40 ±20 0 20 40 60 80 100 120 140 160 DUT Temperature (ƒC) C001 VDD=2.7V using LUT (Look-Up Table) and linear interporlation for conversion of voltage to temperature Figure 3. Temperature Accuracy Copyright © 2015, Texas Instruments Incorporated -0.5 0 Accuracy (ƒC) +0.5 C005 VDD=2.7V using LUT table for conversion of voltage to temperature Figure 4. Accuracy Histogram at -55°C 7 LMT70, LMT70A ZHCSDV8A – MARCH 2015 – REVISED JULY 2015 www.ti.com.cn Typical Performance Characteristics (continued) -0.27°C Min Limit 0.27°C Max Limit 0.2°C Max Limit Frequency Frequency -0.2°C Min Limit -0.5 0 Accuracy (ƒC) +0.5 -0.5 VDD=2.7V using LUT table for conversion of voltage to temperature Figure 6. Accuracy Histogram at –20°C Figure 5. Accuracy Histogram at -40°C 0.18°C Max Limit -0.13°C Min Limit +0.5 0 Accuracy (ƒC) -0.5 C002 VDD=2.7V using LUT table for conversion of voltage to temperature Figure 7. Accuracy Histogram at -10°C Figure 8. Accuracy Histogram at 30°C 0.15°C Max Limit 0.2°C Max Limit -0.2°C Min Limit Frequency Frequency -0.15°C Min Limit +0.5 0 Accuracy (ƒC) C002 VDD=2.7V using LUT table for conversion of voltage to temperature 0 Accuracy (ƒC) +0.5 C006 VDD=2.7V using LUT table for conversion of voltage to temperature Figure 9. Accuracy Histogram at 50°C 8 0.13°C Max Limit Frequency Frequency -0.5 -0.5 C024 C003 VDD=2.7V using LUT table for conversion of voltage to temperature -0.18°C Min Limit +0.5 0 Accuracy (ƒC) -0.5 0 Accuracy (ƒC) +0.5 C007 VDD=2.7V using LUT table for conversion of voltage to temperature Figure 10. Accuracy Histogram at 90°C Copyright © 2015, Texas Instruments Incorporated LMT70, LMT70A www.ti.com.cn ZHCSDV8A – MARCH 2015 – REVISED JULY 2015 Typical Performance Characteristics (continued) -0.23°C Min Limit -0.26°C 0.26°C Min Limit Max Limit Frequency Frequency 0.23°C Max Limit -0.5 0 Accuracy (ƒC) +0.5 -0.5 0 Accuracy (ƒC) C008 VDD=2.7V using LUT table for conversion of voltage to temperature +0.5 C009 VDD=2.7V using LUT table for conversion of voltage to temperature Figure 11. Accuracy Histogram at 110°C Figure 12. Accuracy Histogram at 120°C -4.8 -4.9 0.36°C Max Limit -5.0 Frequency TAO Slope mV/ƒC) -0.36°C Min Limit -5.1 -5.2 -5.3 -5.4 -5.5 -5.6 -5.7 -5.8 -0.5 0 Accuracy (ƒC) +0.5 ±60 ±40 ±20 0 20 40 60 80 100 120 140 160 DUT Temperature (ƒC) C010 VDD=2.7V using LUT table for conversion of voltage to temperature C013 VDD=2.7V Figure 13. Accuracy Histogram at 150°C Figure 14. TAO first order transfer function slope vs temperature 944.0 10.0 9.6 943.5 9.4 VTAO (mV) Power Supply Current ( A) 9.8 9.2 VDD=5.5V VDD=5V VDD=4V VDD=3.6V VDD=3.3V VDD=2.7V VDD=2.4V VDD=2.2V VDD=2V 9.0 8.8 8.6 8.4 8.2 8.0 ±60 ±40 ±20 0 20 40 60 80 942.5 942.0 100 120 140 160 DUT Temperature (ƒC) 943.0 C011 2.0 2.5 3.0 3.5 4.0 4.5 VDD Power Supply Voltage (V) 5.0 5.5 C012 At 30°C Figure 15. IDD vs Temperature at Various VDD Copyright © 2015, Texas Instruments Incorporated Figure 16. TAO Line Regulation 9 LMT70, LMT70A ZHCSDV8A – MARCH 2015 – REVISED JULY 2015 www.ti.com.cn VTAO (V) Typical Performance Characteristics (continued) Time (µs) Conditions: Various VDD and CLOAD VDD=3.3V Top trace is T_ON Bottom trace is TAO Figure 17. Start-up Response Figure 18. TAO Response to T_ON 3.00 VTAO Normalized at VDD=2.7V (mV) Adjacent Device Matching (ƒC) 0.60 Max Limit when using LUT 0.50 0.40 0.30 0.20 0.10 -55°C -20°C 10°C 20°C 2.50 2.00 1.50 1.00 0.50 0.00 -0.50 0.00 ±60 ±40 ±20 0 20 40 60 80 2.0 100 120 140 160 DUT Temperature (ƒC) 3.0 3.5 4.0 4.5 5.0 VDD Power Supply Voltage (V) VDD=2.7V using LUT table for conversion of voltage to temperature 5.5 C019 at various temperatures Figure 19. LMT70A Matching of Adjacent Units on Tape and Reel Figure 20. Line Regulation Temperature Variation: VTAO vs Supply Voltage 2.5 7.E-07 Output Noise Level (V/sqrt(Hz)) 2.4 2.3 2.2 VDD (V) 2.5 C020 2.1 2.0 1.9 1.8 1.7 1.6 6.E-07 5.E-07 4.E-07 3.E-07 2.E-07 1.E-07 0.E+00 1.5 ±60 ±40 ±20 0 20 40 60 80 100 120 140 160 DUT Temperature ( ƒC) C018 1 10 100 1000 10000 Frequency (Hz) 100000 C027 Figure 21. Minimum Recommended Supply Voltage Temperature Sensitivity Figure 22. Output Noise vs Frequency 10 Copyright © 2015, Texas Instruments Incorporated LMT70, LMT70A www.ti.com.cn ZHCSDV8A – MARCH 2015 – REVISED JULY 2015 9 Detailed Description 9.1 Overview The LMT70 is a precision analog output temperature sensor. It includes an output switch that is controlled by the T_ON digital input. The output switch enables the multiplexing of several devices onto a single ADC input thus expanding on the ADC input multiplexer capability. The temperature sensing element is comprised of simply stacked BJT base emitter junctions that are biased by a current source. The temperature sensing element is then buffered by a precision amplifier before being connected to the output switch. The output amplifier has a simple class AB push-pull output stage that enables the device to easily source and sink current. 9.2 Functional Block Diagram VDD T_ON TAO Thermal Diodes LMT70 GND 9.3 Feature Description 9.3.1 Temperature Analog Output (TAO) The TAO push-pull output provides the ability to sink and source current. This is beneficial when, for example, driving dynamic loads like an input stage on an analog-to-digital converter (ADC). In these applications the source current is required to quickly charge the input capacitor of the ADC. See the Typical Application section for more discussion of this topic. The LMT70 is ideal for this and other applications which require strong source or sink current. 9.3.1.1 LMT70 Output Transfer Function The LMT70 output voltage transfer function appears to be linear, but upon close inspection it can be seen that it is truly not linear and can be better described by a second or third order transfer function equation. Copyright © 2015, Texas Instruments Incorporated 11 LMT70, LMT70A ZHCSDV8A – MARCH 2015 – REVISED JULY 2015 www.ti.com.cn Feature Description (continued) Figure 23. LMT70 Output Transfer Function 9.3.1.1.1 First Order Transfer Function A first order transfer function can be used to calculate the temperature LMT70 is sensing but over a wide temperature range it is the least accurate method. An equation can be easily generated using the LUT (Look-Up Table) information found in Electrical Characteristics Temperature Lookup Table (LUT) . Over a narrow 10°C temperature range a linear equation will yield very accurate results. It is actually recommended that over a 10°C temperature range linear interpolation be used to calculate the temperature the device is sensing. When this method is used the accuracy minimum and maximum specifications would meet the values given in Figure 3. For example the first order equation between 20°C and 30°C can be generated using the typical output voltage levels as given in Electrical Characteristics Temperature Lookup Table (LUT) and partially repeated here for reference from 20°C to 50°C: 12 Copyright © 2015, Texas Instruments Incorporated LMT70, LMT70A www.ti.com.cn ZHCSDV8A – MARCH 2015 – REVISED JULY 2015 Feature Description (continued) Table 1. Output Voltage LUT Temperature (°C) VTAO (mV) Local Slope (mV/°C) MIN TYP MAX 20 994.367 995.050 995.734 -5.171 30 942.547 943.227 943.907 -5.194 40 890.423 891.178 891.934 -5.217 50 838.097 838.882 839.668 -5.241 First calculate the slope: m =(T1 – T2) ÷ [(VTAO (T1) – VTAO (T2)] m = (20°C - 30°C) ÷ (995.050 mV – 943.227 mV) m = –0.193 °C/mV Then calculate the y intercept b: b = (T1) – (m × VTAO(T1)) b = 20°C – (–0.193 °C/mV × 995.050 mV) b = 212.009°C Thus the final equation used to calculate the measured temperature (TM) in the range between 20°C and 30°C is: TM = m × VTAO + b TM = –0.193 °C/mV × VTAO + 212.009°C where VTAO is in mV and TM is in °C. 9.3.1.1.2 Second Order Transfer Function A second order transfer function can give good results over a wider limited temperature range. Over the full temperature range of -55°C to +150°C a single second order transfer function will have increased error at the temperature extremes. Using least squares sum method a best fit second order transfer function was generated using the values in Electrical Characteristics Temperature Lookup Table (LUT): TM = a (VTAO)2+ b (VTAO) + c where: Best fit for -55°C to 150°C Best fit for -10°C to 110°C a -8.451576E-06 -7.857923E-06 b -1.769281E-01 -1.777501E-01 c 2.043937E+02 2.046398E+02 and VTAO is in mV and TM is in °C. Copyright © 2015, Texas Instruments Incorporated 13 LMT70, LMT70A ZHCSDV8A – MARCH 2015 – REVISED JULY 2015 www.ti.com.cn 9.3.1.1.3 Third Order Transfer Function Over a wide temperature range the most accurate single equation is a third order transfer function. Using least squares sum method a best fit third order transfer function was generated using the values in Figure 3: TM = a (VTAO)3 + b (VTAO)2 + c(VTAO) + d where: Best fit for -55°C to 150°C Best fit for -10°C to 110°C a -1.064200E-09 -1.809628E-09 b -5.759725E-06 -3.325395E-06 c -1.789883E-01 -1.814103E-01 d 2.048570E+02 2.055894E+02 and VTAO is in mV and TM is in °C. 9.3.1.2 LMT70A TAO Matching In order to meet the matching specification of the LMT70A, two units must be picked from adjacent positions from one tape and reel. If PCB rework is required, involving the LMT70A, then the pair of the LMT70A matched units must be replaced. Matching features (which include, without limitation, electrical matching characteristics of adjacent Components as they are delivered in original packaging from TI) are warranted solely to the extent that the purchaser can demonstrate to TI’s satisfaction that the particular Component(s) at issue were adjacent in original packaging as delivered by TI. Customers should be advised that the small size of these components means they are not individually traceable at the unit level and it may be difficult to establish the original position of the Components once they have been removed from that original packaging as delivered by TI. 9.3.1.3 TAO Noise Considerations A load capacitor on TAO pin can help to filter noise. For noisy environments, TI recommends at minimum 100 nF supply decoupling capacitor placed close across VDD and GND pins of LMT70. 9.3.1.4 TAO Capacitive Loads TAO handles capacitive loading well. In an extremely noisy environment, or when driving a switched sampling input on an ADC, it may be necessary to add some filtering to minimize noise coupling. Without any precautions, the VTAO can drive a capacitive load less than or equal to 1 nF as shown in Figure 24. For capacitive loads greater than 1 nF, a series resistor is required on the output, as shown in Figure 25, to maintain stable conditions. VDD OPTIONAL BYPASS CAPACITANCE T_ON LMT70 TAO CLOAD ” 1.1 nF Figure 24. LMT70 No Isolation Resistor Required 14 Copyright © 2015, Texas Instruments Incorporated LMT70, LMT70A www.ti.com.cn ZHCSDV8A – MARCH 2015 – REVISED JULY 2015 OPTIONAL BYPASS CAPACITANCE VDD T_ON LMT70 TAO RS CLOAD • 1.1 nF Figure 25. LMT70 With Series Resistor for Capacitive Loading Greater than 1 nF Table 2. CLOAD and RS Values of Figure 25 CLOAD Minimum RS 1.1 to 90 nF 3 kΩ 90 to 900 nF 1.5 kΩ 0.9 μF 750 Ω 9.3.2 TON Digital Input The T_ON digital input enables and disables the analog output voltage presented at the TAO pin by controlling the state of the internal switch that is in series with the internal temperature sensor circuitry output. When T_ON is driven to a logic "HIGH" the temperature sensor output voltage is present on the TAO pin. When T_ON is set to a logic "LOW" the TAO pin is set to a high impedance state. 9.3.3 Light Sensitivity Although the LMT70 package has a protective backside coating that reduces the amount of light exposure on the die, unless it is fully shielded, ambient light will still reach the active region of the device from the side of the package. Depending on the amount of light exposure in a given application, an increase in temperature error should be expected. In circuit board tests under ambient light conditions, a typical increase in error may not be observed and is dependent on the angle that the light approaches the package. The LMT70 is most sensitive to IR radiation. Best practice should include end-product packaging that provides shielding from possible light sources during operation. 9.4 Device Functional Modes The LMT70 is a simple precise analog output temperature sensor with a switch in series with its output. It has only two functional modes: output on or output off. Copyright © 2015, Texas Instruments Incorporated 15 LMT70, LMT70A ZHCSDV8A – MARCH 2015 – REVISED JULY 2015 www.ti.com.cn 10 Application and Implementation NOTE Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality. 10.1 Application Information The LMT70 analog output temperature sensor is an ideal device to connect to an integrated 12-Bit ADC such as that found in the MSP430 microcontroller family. Applications for the LMT70 included but are not limited to: IoT based temperature sensor nodes, medical fitness equipment (e.g. thermometers, fitness/smart bands or watches, activity monitors, human body temperature monitor), Class AA or lower RTD replacement, precision NTC or PTC thermistor replacement, instrumentation temperature compensation, metering temperature compensation (e. g. heat cost allocator, heat meter). 10.2 Typical Application 2.2V to 3.6V MSP430 P2.5_VREF 1.5V Vref VDD T_ON P2.3 LMT70 TAO M U X ADC Figure 26. Typical Application Schematic Most CMOS ADCs found in microcontrollers and ASICs have a sampled data comparator input structure. When the ADC charges the sampling cap, it requires instantaneous charge from the output of the analog source such as the LMT70 temperature sensor and many op amps. This requirement is easily accommodated by the addition of a capacitor (CFILTER) or the extension of the ADC acquisition time thus slowing the ADC sampling rate. The size of CFILTER depends on the size of the sampling capacitor and the sampling frequency. Since not all ADCs have identical input stages, the charge requirements will vary. The general ADC application shown in Figure 27 is an example only. The application in Figure 26 was actually tried and the extension of the MSP430 12-Bit ADC acquisition time was all that was necessary in order to accommodate the LMT70's output stage drive capability. 16 Copyright © 2015, Texas Instruments Incorporated LMT70, LMT70A www.ti.com.cn ZHCSDV8A – MARCH 2015 – REVISED JULY 2015 Typical Application (continued) SAR Analog-to-Digital Converter Reset +2.0V to +5.5V Input Pin LMT70 VDD RIN Sample TAO T_ON CFILTER CBP CSAMPLE CPIN GND Figure 27. Suggested Connection to a Sampling Analog-to-Digital Converter Input Stage 10.2.1 Design Requirements The circuit show in Figure 26 will support the design requirements as shown in Table 3. Table 3. Design Requirements PARAMETER TARGET SPECIFICATION Temperature Range -40°C to +150°C LMT70, -40°C to +85°C for MSP430 Accuracy ±0.2°C typical over full temperature range VDD 2.2V to 3.6V with typical of 3.0V IDD 12µA 10.2.2 Detailed Design Procedure 10.2.2.1 Temperature Algorithm Selection Of the three algorithms presented in this datasheet, linear interpolation, second order transfer function or third order transfer function, the one selected will be determined by the users microcontroller resources and the temperature range that will be sensed. Therefore, a comparison of the expected accuracy from the LMT70 is given here. The following curves show effect on the accuracy of the LMT70 when using each of the different algorithms/equations given in LMT70 Output Transfer Function. The first curve (Figure 28) shows the performance when using linear interpolation of the LUT values shown in Electrical Characteristics Temperature Lookup Table (LUT) of every 10°C and provides the best performance. Linear interpolation of the LUT values shown in Electrical Characteristics Temperature Lookup Table (LUT) is used to determine the LMT70 min/max accuracy limits as shown in the Electrical Characteristics and the red lines of Figure 28. The other lines in the middle of Figure 28 show independent device performance. The green limit lines, shown in the subsequent figures, apply for the specific equation used to convert the output voltage of the LMT70 to temperature. The equations are shown under each figure for reference purposes. The green lines show the min/max limits when set in a similar manner to the red limit lines of Figure 28. The limits shown in red for Figure 28 are repeated in all the figures of this section for comparison purposes. Copyright © 2015, Texas Instruments Incorporated 17 LMT70, LMT70A ZHCSDV8A – MARCH 2015 – REVISED JULY 2015 0.60 0.60 0.50 0.50 0.40 0.40 Max Limit 0.30 0.10 0.00 -0.10 -0.20 -0.30 0.20 0.10 0.00 -0.10 -0.20 -0.30 Min Limit -0.40 -0.40 -0.50 -0.50 -0.60 20 40 60 80 100 120 140 160 DUT Temperature (ƒC) Temp (°C) VTAO (mV) TYP 995.050 943.227 891.178 838.882 MIN 994.367 942.547 890.423 838.097 20 30 40 50 ±60 ±40 ±20 Min Limit when using Equation MAX 995.734 943.907 891.934 839.668 20 40 60 80 100 120 140 160 DUT Temperature (ƒC) C016 TM = -1.064200E-09 (VTAO)3 – 5.759725E-06 (VTAO)2 – 1.789883E-01(VTAO) + 2.048570E+02 Local Slope (mV/°C) -5.171 -5.194 -5.217 -5.241 Figure 29. Using Third Order Transfer Function Best Fit 55°C to +150°C 0.60 Max Limit when using LUT 0.50 Max Limit when using Equation 0.40 Max Limit when using Equation Max Limit when using LUT 0.30 Accuracy (ƒC) 0.70 0.60 0.50 0.40 0.30 0.20 0.10 0.00 -0.10 -0.20 -0.30 -0.40 -0.50 -0.60 -0.70 0 C001 Figure 28. LMT70 Performance Using LUT and Linear Interpolation Accuracy (ƒC) Min Limit when using LUT -0.60 0 ±60 ±40 ±20 Min Limit when using LUT 0.20 0.10 0.00 -0.10 -0.20 -0.30 Min Limit when using LUT -0.40 Min Limit when using Equation -0.50 Min Limit when using Equation -0.60 ±60 ±40 ±20 0 20 40 60 80 100 120 140 160 DUT Temperature (ƒC) C017 TM = -1.809628E-09 (VTAO)3 – 3.325395E-06 (VTAO)2 – 1.814103E-01(VTAO) + 2.055894E+02 Figure 30. Using Third Order Transfer Function Best Fit 10°C to +110°C 18 Max Limit when using Equation Max Limit when using LUT 0.30 0.20 Accuracy (ƒC) Accuracy (ƒC) www.ti.com.cn ±60 ±40 ±20 0 20 40 60 80 100 120 140 160 DUT Temperature (ƒC) C014 TM = -8.451576E-06 (VTAO)2– 1.769281E-01 (VTAO) + 2.043937E+02 Figure 31. Using Second Order Transfer Function Best Fit -55°C to 150°C Copyright © 2015, Texas Instruments Incorporated LMT70, LMT70A www.ti.com.cn ZHCSDV8A – MARCH 2015 – REVISED JULY 2015 0.60 0.50 0.40 Max Limit when using Equation Max Limit when using LUT Accuracy (ƒC) 0.30 0.20 0.10 0.00 -0.10 -0.20 -0.30 Min Limit when using LUT -0.40 -0.50 Min Limit when using Equation -0.60 ±60 ±40 ±20 0 20 40 60 80 DUT Temperature (ƒC) 100 120 140 160 C015 TM = -7.857923E-06 (VTAO)2 – 1.777501E-01 (VTAO) + 2.046398E+02 Figure 32. Using Second Order Transfer Function Best Fit -10°C to 110°C 10.2.2.2 ADC Requirements The ADC resolution and its specifications as well as reference voltage and its specifications will determine the overall system accuracy that you can obtain. For this example the 12-bit SAR ADC found in the MSP430 was used as well as it's integrated reference. At first glance the specifications may not seem to be precise enough to actually be used with the LMT70 but the MSP430 ADC and integrated reference errors are actually measured during production testing of the MSP430. Values are then provided to user for software calibration. These calibration values are located in the MSP430A device descriptor tag-length-value (TLV) structure and found in the device-specific datasheet. The MSP430 Users Guide includes information on how to use these calibration values to calibrate the ADC reading. The specific values used to calibrate the ADC readings are: CAL_ADC_15VREF_FACTOR, CAL_ADC_GAIN_FACTOR and CAL_ADC_OFFSET. Copyright © 2015, Texas Instruments Incorporated 19 LMT70, LMT70A ZHCSDV8A – MARCH 2015 – REVISED JULY 2015 www.ti.com.cn 10.2.3 Finer Resolution LUT The following table is given for reference only and not meant to be used for calculation purposes. Temp (°C) VTAO (mV) Temp (°C) TYP VTAO (mV) Temp (°C) TYP VTAO (mV) Temp (°C) TYP VTAO (mV) Temp (°C) TYP VTAO (mV) Temp (°C) TYP VTAO (mV) Temp (°C) TYP VTAO (mV) TYP -30 1250.398 0 1097.987 30 943.227 60 786.360 90 627.490 120 466.760 -29 1244.953 1 1092.532 31 937.729 61 780.807 91 621.896 121 460.936 -28 1239.970 2 1087.453 32 932.576 62 775.580 92 616.603 122 455.612 -27 1234.981 3 1082.370 33 927.418 63 770.348 93 611.306 123 450.280 -26 1229.986 4 1077.282 34 922.255 64 765.113 94 606.006 124 444.941 -55 1375.219 -25 1224.984 5 1072.189 35 917.087 65 759.873 95 600.701 125 439.593 -54 1370.215 -24 1219.977 6 1067.090 36 911.915 66 754.628 96 595.392 126 434.238 -53 1365.283 -23 1214.963 7 1061.987 37 906.738 67 749.380 97 590.079 127 428.875 -52 1360.342 -22 1209.943 8 1056.879 38 901.556 68 744.127 98 584.762 128 423.504 -51 1355.395 -21 1204.916 9 1051.765 39 896.370 69 738.870 99 579.442 129 418.125 -50 1350.441 -20 1199.884 10 1046.647 40 891.178 70 733.608 100 574.117 130 412.739 -49 1345.159 -19 1194.425 11 1041.166 41 885.645 71 728.055 101 568.504 131 406.483 -48 1340.229 -18 1189.410 12 1036.062 42 880.468 72 722.804 102 563.192 132 401.169 -47 1335.293 -17 1184.388 13 1030.952 43 875.287 73 717.550 103 557.877 133 395.841 -46 1330.352 -16 1179.361 14 1025.838 44 870.100 74 712.292 104 552.557 134 390.499 -45 1325.405 -15 1174.327 15 1020.720 45 864.909 75 707.029 105 547.233 135 385.144 -44 1320.453 -14 1169.288 16 1015.596 46 859.713 76 701.762 106 541.905 136 379.775 -43 1315.496 -13 1164.242 17 1010.467 47 854.513 77 696.491 107 536.573 137 374.393 -42 1310.534 -12 1159.191 18 1005.333 48 849.307 78 691.217 108 531.236 138 368.997 -41 1305.566 -11 1154.134 19 1000.194 49 844.097 79 685.937 109 525.895 139 363.587 -40 1300.593 -10 1149.070 20 995.050 50 838.882 80 680.654 110 520.551 140 358.164 -39 1295.147 -9 1143.654 21 989.583 51 833.343 81 675.073 111 514.886 141 351.937 -38 1290.202 -8 1138.599 22 984.450 52 828.141 82 669.803 112 509.557 142 346.508 -37 1285.250 -7 1133.540 23 979.313 53 822.934 83 664.528 113 504.223 143 341.071 -36 1280.291 -6 1128.476 24 974.171 54 817.723 84 659.250 114 498.885 144 335.625 -35 1275.326 -5 1123.407 25 969.025 55 812.507 85 653.967 115 493.542 145 330.172 -34 1270.353 -4 1118.333 26 963.875 56 807.287 86 648.680 116 488.195 146 324.711 -33 1265.375 -3 1113.254 27 958.720 57 802.062 87 643.389 117 482.843 147 319.241 -32 1260.389 -2 1108.170 28 953.560 58 796.832 88 638.094 118 477.486 148 313.764 -31 1255.397 -1 1103.081 29 948.396 59 791.598 89 632.794 119 472.125 149 308.279 20 Temp (°C) VTAO (mV) TYP 150 302.785 Copyright © 2015, Texas Instruments Incorporated LMT70, LMT70A www.ti.com.cn ZHCSDV8A – MARCH 2015 – REVISED JULY 2015 10.2.4 Application Curves The LMT70 performance using the MSP430 with integrated 12-bit ADC is shown in Figure 33. This curve includes the error of the MSP430 integrated 12-bit ADC and reference as shown in the schematic Figure 26. The MSP430 was kept at room temperature and the LMT70 was submerged in a precision temperature calibration oil bath. A calibrated temperature probe was used to monitor the temperature of the oil. As can be seen in Figure 33 the combined performance on the MSP430 and the LMT70 is better than 0.12°C for the entire -40°C to +150°C temperature range. The only calibration performed was with software using the MSP430A device descriptor taglength-value (TLV) calibration values for ADC and VREF error. Temperature Reading Error (ƒC) 0.50 0.40 0.30 0.20 0.10 0.00 ±0.10 ±0.20 ±0.30 ±0.40 ±0.50 ±60 ±40 ±20 0 20 40 60 80 100 120 140 160 LMT70 Temperature (ƒC) C023 Figure 33. LMT70 with MSP430 typical performance 10.3 System Examples Coin Cell Battery Coin Cell Battery 2.8V to 3.6V 2.2V to 3.2V 2.2V to 3.6V GPIO1 CC430F6147 MSP430 P2.0 GPIO2 P2.5_VREF GPIO2 P2.1 P2.3 P2.5_VREF 1.5V Vref VDD T_ON TAO VDD M U X 100k P2.3 LMT70 P2.3 LMT70 16-bit Counter VDD T_ON + CCR T_1 ADC Comparator B VDD T_ON LMT70 - 47nF T_ON 0.25 Vref LMT70 T_2 TAO Figure 34. Multiple LMT70s connected to one 12-bit ADC channel on an MSP430 Figure 35. Multiple LMT70s connected to a slope ADC for high resolution 11 Power Supply Recommendations Power supply bypass capacitors are optional and may be required if the supply line is noisy. It is recommended that a local supply decoupling capacitor be used to reduce noise. For noisy environments, TI recommends a 100 nF supply decoupling capacitor placed closed across VDD and GND pins of LMT70. Copyright © 2015, Texas Instruments Incorporated 21 LMT70, LMT70A ZHCSDV8A – MARCH 2015 – REVISED JULY 2015 www.ti.com.cn 12 Layout 12.1 Layout Guidelines The LMT70 can be applied easily in the same way as other integrated-circuit temperature sensors. It can be glued or cemented to a surface. The temperatures of the lands and traces to the other leads of the LMT70 will also affect the temperature reading. 12.1.1 Mounting and Temperature Conductivity Alternatively, the LMT70 can be mounted inside a sealed-end metal tube, and can then be dipped into a bath or screwed into a threaded hole in a tank. As with any IC, the LMT70 and accompanying wiring and circuits must be kept insulated and dry, to avoid leakage and corrosion. This is especially true if the circuit may operate at cold temperatures where condensation can occur. If moisture creates a short circuit from the TAO output to ground or VDD, the TAO output from the LMT70 will not be correct. Printed-circuit coatings are often used to ensure that moisture cannot corrode the leads or circuit traces. The LMT70's junction temperature is the actual temperature being measured. The thermal resistance junction-toambient (RθJA) is the parameter (from Thermal Information) used to calculate the rise of a device junction temperature due to its power dissipation. Equation 1 is used to calculate the rise in the LMT70's die temperature. 7J 7A 5TJA ¬ª 9DD,Q 9DD ± 9TEMP ,L ¼º where • • • TA is the ambient temperature. IQ is the quiescent current. IL is the load current on VTEMP. (1) For example, in an application where TA = 30°C, VDD = 3 V, IDD = 12µA, VTAO = 943.227 mV, and IL = 0 μA, the total temperature rise would be [187°C/W × 3 V × 12 μA] = 0.007°C. To minimize self-heating, the load current on TAO pin should be minimized. 12.2 Layout Example VIA to power plane VIA to ground plane 0.01µ F 22 GND VDD TAO T_ON 版权 © 2015, Texas Instruments Incorporated LMT70, LMT70A www.ti.com.cn ZHCSDV8A – MARCH 2015 – REVISED JULY 2015 13 器件和文档支持 13.1 相关链接 以下表格列出了快速访问链接。 范围包括技术文档、支持与社区资源、工具和软件,并且可以快速访问样片或购买 链接。 表 4. 相关链接 器件 产品文件夹 样片与购买 技术文档 工具与软件 支持与社区 LMT70 请单击此处 请单击此处 请单击此处 请单击此处 请单击此处 LMT70A 请单击此处 请单击此处 请单击此处 请单击此处 请单击此处 13.2 文档支持 13.2.1 相关文档 《回流温度曲线》规范。 请访问 www.ti.com/packaging。 应用报告《IC 封装热指标》,SPRA953 13.3 社区资源 The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers. Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support. 13.4 商标 E2E is a trademark of Texas Instruments. All other trademarks are the property of their respective owners. 13.5 静电放电警告 这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损 伤。 13.6 Glossary SLYZ022 — TI Glossary. This glossary lists and explains terms, acronyms, and definitions. 14 机械、封装和可订购信息 以下页中包括机械、封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不 对本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。 版权 © 2015, Texas Instruments Incorporated 23 PACKAGE OPTION ADDENDUM www.ti.com 10-Dec-2020 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) (3) Device Marking (4/5) (6) LMT70AYFQR ACTIVE DSBGA YFQ 4 3000 RoHS & Green SNAGCU Level-1-260C-UNLIM -55 to 150 LMT70AYFQT ACTIVE DSBGA YFQ 4 250 RoHS & Green SNAGCU Level-1-260C-UNLIM -55 to 150 LMT70YFQR ACTIVE DSBGA YFQ 4 3000 RoHS & Green SNAGCU Level-1-260C-UNLIM -55 to 150 LMT70YFQT ACTIVE DSBGA YFQ 4 250 RoHS & Green SNAGCU Level-1-260C-UNLIM -55 to 150 (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
LMT70AYFQR 价格&库存

很抱歉,暂时无法提供与“LMT70AYFQR”相匹配的价格&库存,您可以联系我们找货

免费人工找货
LMT70AYFQR
  •  国内价格
  • 1+10.44360
  • 10+8.92080
  • 30+8.07840
  • 100+6.37200

库存:0

LMT70AYFQR
    •  国内价格
    • 1000+5.94000

    库存:0