0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
LMZ31520EVM-001

LMZ31520EVM-001

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    Module

  • 描述:

    EVAL BOARD FOR LMZ31520

  • 数据手册
  • 价格&库存
LMZ31520EVM-001 数据手册
www.ti.com Table of Contents User’s Guide LMZ315x0 Power Module Evaluation Module User's Guide ABSTRACT The LMZ315x0 EVM is designed as an easy-to-use platform that facilitates evaluation of the features and performance of the SIMPLE SWITCHER® power module. The LMZ31520 and LMZ31530 devices provide output currents of 20 A and 30 A, respectively. This guide provides information on the correct usage of the EVM and an explanation of the various test points found on the board. Table of Contents 1 Description.............................................................................................................................................................................. 2 2 Getting Started........................................................................................................................................................................2 3 Test Point Descriptions.......................................................................................................................................................... 4 4 Operation Notes......................................................................................................................................................................5 5 Performance Data................................................................................................................................................................... 6 6 Schematic................................................................................................................................................................................8 7 Bill of Materials....................................................................................................................................................................... 9 8 PCB Layout............................................................................................................................................................................10 9 Revision History................................................................................................................................................................... 13 List of Figures Figure 2-1. LMZ315x0EVM User Interface.................................................................................................................................. 2 Figure 5-1. LMZ31530EVM Efficiency......................................................................................................................................... 6 Figure 5-2. LMZ31530EVM Power Dissipation............................................................................................................................6 Figure 5-3. LMZ31530EVM Load Regulation.............................................................................................................................. 6 Figure 5-4. LMZ31530EVM Output Ripple.................................................................................................................................. 6 Figure 5-5. LMZ31530EVM Transient Response Waveforms..................................................................................................... 6 Figure 5-6. LMZ31530EVM Transient Response Waveforms..................................................................................................... 6 Figure 5-7. LMZ31530EVM Output Ripple Waveforms............................................................................................................... 7 Figure 6-1. LMZ315xxEVM Schematic........................................................................................................................................ 8 Figure 7-1. LMZ315x0EVM BOM................................................................................................................................................ 9 Figure 8-1. EVM Topside Component Layout............................................................................................................................10 Figure 8-2. EVM Bottom-Side Component Layout.................................................................................................................... 10 Figure 8-3. EVM Top Side Copper............................................................................................................................................. 11 Figure 8-4. EVM Layer 2 Copper............................................................................................................................................... 11 Figure 8-5. EVM Layer 3 Copper...............................................................................................................................................12 Figure 8-6. EVM Layer 4 Copper...............................................................................................................................................12 Figure 8-7. EVM Layer 5 Copper...............................................................................................................................................13 Figure 8-8. EVM Bottom Side Copper....................................................................................................................................... 13 List of Tables Table 3-1. Test Point Descriptions(1) ........................................................................................................................................... 4 Trademarks SIMPLE SWITCHER® is a registered trademark of Texas Instruments. All trademarks are the property of their respective owners. SNVU283B – AUGUST 2013 – REVISED DECEMBER 2021 LMZ315x0 Power Module Evaluation Module User's Guide Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated 1 Description www.ti.com 1 Description The EVM features a LMZ31520 (20 A) or LMZ31530 (30 A), synchronous buck SIMPLE SWITCHER power module configured for operation with typical 5-V and 12-V input bus applications. The output voltage can be set to one of six popular values by using a configuration jumper. In similar fashion, the switching frequency can be set to one of four values with a jumper. The full 20-A/30-A rated output current can be supplied by the EVM. Input and output capacitors are included on the board to accommodate the entire range of input and output voltages. Monitoring test points are provided to allow the following: • Measurement of efficiency • Power dissipation • Input ripple • Output ripple • Line and load regulation • Transient response Control test points are provided for use of the PWRGD and Inhibit features of the power module along with a selector for Eco-Mode or FCCM. The EVM uses a recommended PCB layout that maximizes thermal performance and minimizes output ripple and noise. 2 Getting Started Figure 2-1 highlights the user interface items associated with the EVM. The polarized PVin Power terminal block (J8) is used for connection to the host input supply and the polarized Vout Power terminal block (J11) is used for connection to the load. These terminal blocks can accept up to 16-AWG wire. The polarized VBIAS terminal block (J12) is used along with the VIN SELECT jumper (J4) when optional split power supply operation is desired. Refer to the LMZ31520 20-A Power Module With 3-V to 14.5-V Input Data Sheet and LMZ31530 30-A Power Module With 3-V to 14.5-V Input Data Sheet for further information on split power supply operation. Figure 2-1. LMZ315x0EVM User Interface The PVin Monitor (TP1) and Vout Monitor (TP3) test points located near the power terminal blocks are intended to be used as voltage monitoring points where voltmeters can be connected to measure PVIN and VOUT. The voltmeter references should be connected to the PGND test points (TP4 and TP2). Do not use these PVIN and VOUT monitoring test points as the input supply or output load connection points. The PCB traces connecting to these test points are not designed to support high currents. The PVin Scope (J6) and Vout Scope (J7) test points can be used to monitor PVIN and VOUT waveforms with an oscilloscope. These test points are intended for use with un-hooded scope probes outfitted with a low-inductance ground lead (ground spring) mounted to the scope barrel. The two sockets of each test point are 2 LMZ315x0 Power Module Evaluation Module User's Guide SNVU283B – AUGUST 2013 – REVISED DECEMBER 2021 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated www.ti.com Getting Started on 0.1-inch centers. The scope probe tip should be connected to the socket labeled PVIN or VOUT, and the scope ground lead should be connected to the socket labeled PGND. The Vout Scope (J5) test point can be used to monitor the VOUT waveform with an oscilloscope. This test point is intended for use with an un-hooded scope probe with a 3.5-mm ground barrel. The control test points located directly above the device are made available to test the features of the device. Refer to Section 3 for more information on the individual control test points. The Vout Select jumper (J2) and Fsw Select jumper (J3) are provided for selecting the desired output voltage and appropriate switching frequency. Before applying power to the EVM, ensure that the jumpers are present and properly positioned for the intended output voltage. Always remove input power before changing the jumper settings. SNVU283B – AUGUST 2013 – REVISED DECEMBER 2021 LMZ315x0 Power Module Evaluation Module User's Guide Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated 3 Test Point Descriptions www.ti.com 3 Test Point Descriptions Seven wire-loop test points and three scope probe test points have been provided as convenient connection points for digital voltmeters (DVM) or oscilloscope probes to aid in the evaluation of the device. A description of each test point follows: Table 3-1. Test Point Descriptions(1) PVIN Input voltage monitor. Connect DVM to this point for measuring efficiency. VOUT Output voltage monitor. Connect DVM to this point for measuring efficiency, line regulation, and load regulation. PGND Input and output voltage monitor grounds. Reference the above DVMs to the corresponding ground point. PVIN Scope (J6) Input voltage scope monitor. Connect an oscilloscope to this set of points to measure input ripple voltage. VOUT Scope (J7) Output voltage scope monitor. Connect an oscilloscope to this set of points to measure output ripple voltage and transient response. VOUT Scope (J5) Output voltage scope monitor. Insert an oscilloscope into the test point adapter to measure output ripple voltage and transient response. PWRGD Monitors the power-good signal of the device. A 100-kΩ pullup resistor is included internal to the device and is tied to 5 V. PWRGD is high if the output voltage is within 95% to 110% of its nominal value. INH Connect this point to control ground to inhibit the device. Allow this point to float to enable the device. (1) 4 Refer to the product data sheet for absolute maximum ratings associated with above features. LMZ315x0 Power Module Evaluation Module User's Guide SNVU283B – AUGUST 2013 – REVISED DECEMBER 2021 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated www.ti.com Operation Notes 4 Operation Notes In order to operate the EVM using a single power supply, the VIN Select jumper (J4) must be in the default PVIN-VIN position shown in Figure 2-1. In this position, the PVIN and VIN pins of the device are connected together. The UVLO threshold of the EVM is approximately 4.2 V with 0.25 V of hysteresis. The input voltage must be above the UVLO threshold to start up the device. After start-up, the minimum input voltage to the device must be at least 4.5 V or (VOUT + 1.0 V), whichever is greater. The maximum operating input voltage for the device is 15 V. Refer to the product data sheet for further information on the input voltage range, and optional split power supply operation for operating with PVIN as low as 3.0 V when using an external Vbias supply. After application of the proper input voltage, the output voltage of the device will ramp to its final value in approximately 0.7 ms. If desired, this soft-start time can be increased by increasing the value of the Rss resistor (R6). Refer to the LMZ31520 20-A Power Module With 3-V to 14.5-V Input Data Sheet and LMZ31530 30-A Power Module With 3-V to 14.5-V Input Data Sheet for further information on adjusting the soft-start time. The EVM includes input and output capacitors to accommodate the entire range of input and output voltage conditions. The actual capacitance required will depend on the input and output voltage conditions of the particular application, along with the desired transient response. In most cases, the required output capacitance will be less than that supplied on the EVM. Refer to the LMZ31520 20-A Power Module With 3-V to 14.5-V Input Data Sheet and LMZ31530 30-A Power Module With 3-V to 14.5-V Input Data Sheet for further information on the minimum required I/O capacitance and transient response. The LMZ315x0 can be operated in either auto-skip Eco-Mode or in forced continuous conduction mode (FCCM) by selecting the desired mode using J1. Refer to the LMZ31520 20-A Power Module With 3-V to 14.5-V Input Data Sheet and LMZ31530 30-A Power Module With 3-V to 14.5-V Input Data Sheet for further information on selecting the mode of operation. SNVU283B – AUGUST 2013 – REVISED DECEMBER 2021 LMZ315x0 Power Module Evaluation Module User's Guide Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated 5 Performance Data www.ti.com 5 Performance Data Figure 5-1 through Figure 5-7 demonstrate the TPS84A20EVM performance with VOUT = 1.8 V and Fsw = 500 kHz. 10.0 100 Power Dissipation (W) 90 Efficiency (%) 80 70 60 50 PVIN = VIN = 12V Vo = 1.8V fsw = 500kHz 40 PVIN = VIN = 12V 8.0 PVIN = VIN = 5V 7.0 6.0 Vo = 1.8V fsw = 500kHz 5.0 4.0 3.0 2.0 1.0 PVIN = VIN = 5V 30 0.0 0 5 10 15 20 25 0 30 Output Current (A) 5 10 15 20 25 Output Current (A) C001 Figure 5-1. LMZ31530EVM Efficiency 30 C004 Figure 5-2. LMZ31530EVM Power Dissipation 55 1.84 PVIN = VIN = 12V PVIN = VIN = 12V Vo = 1.8V fsw = 500kHz PVIN = VIN = 5V 1.82 Output Ripple Voltage (mV) 1.83 Output Voltage (V) 9.0 1.81 1.80 1.79 1.78 45 Vo = 1.8V fsw = 500kHz PVIN = VIN = 5V 35 25 15 1.77 1.76 5 0 5 10 15 20 25 30 Output Current (A) 6 C004 0 5 10 15 20 25 Output Current (A) 30 C004 Figure 5-3. LMZ31530EVM Load Regulation Figure 5-4. LMZ31530EVM Output Ripple Figure 5-5. LMZ31530EVM Transient Response Waveforms Figure 5-6. LMZ31530EVM Transient Response Waveforms LMZ315x0 Power Module Evaluation Module User's Guide SNVU283B – AUGUST 2013 – REVISED DECEMBER 2021 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated www.ti.com Performance Data Figure 5-7. LMZ31530EVM Output Ripple Waveforms SNVU283B – AUGUST 2013 – REVISED DECEMBER 2021 LMZ315x0 Power Module Evaluation Module User's Guide Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated 7 LMZ315x0 Power Module Evaluation Module User's Guide CCM LMZ31520RLG LMZ31530RLG TABLE 1 PGND PWR230-002 3 2 1 PWR230-001 SKIP J1 MODE SELECT TP7 PGND TP6 R1 4.32k 19 PWRGD TP5 INH 20 DNC PWRGD 21 DNC 22 PH 23 PH 24 PH 25 PH 26 PH 27 PH 28 PH 29 NC 30 NC 31 NC 32 NC PGND 40 15 VIN PGND 39 16 INH PGND 38 17 PGND PGND 37 18 PWRGD_PU R2 R3 2.15k 1.43k PGND 41 14 SENSE+ PVIN 42 13 VADJ R4 715 0 R10 PVIN 43 12 DNC R9 R5 316 1 U1 LMZ315xxRLG PVIN 44 11 PH 33 PGND NC 45 10 VOUT 34 PGND PGND 46 AGND 9 AGND 35 DNC PGND 47 PGND 48 PGND 49 1.2V 1.8V PGND 50 5 PGND 0 VOUT 52 3 SS_SEL VOUT 54 PGND 51 4 DNC PGND 1uF C23 J2 PGND 72 PH 71 PGND 70 PVIN 69 VOUT 68 PGND 67 PVIN 66 PGND 65 PGND 64 PGND 63 PGND 62 V5V 61 VOUT 60 VOUT 59 VOUT 58 VOUT 57 VOUT 56 VOUT 55 0.8V 0.6V/USER 1.0V 1.8V 1.2V 3.3V VOUT SELECT R6 6 ILIM 1 2 3 4 5 6 1.0V 7 8 0.8V 9 10 0.6V 11 12 7 FREQ_SEL 3.3V 8 DNC 36 DNC VOUT 53 2 VIN 8 1 PGND R6 VALUE 5.6ms 2.8ms 432k 162k 0 0.7ms 1.4ms 60.4k SS TIME 850 kHz 750 kHz 500 kHz 1 2 3 4 5 6 7 8 850 kHz 750 kHz 500 kHz 300 kHz PGND 7 VOUT 3 PWPD VIN 2 4 CP+ GND 1 5 CP- 6 ENA + C7 47uF 16V 330uF 4V C17 2.2uF C19 1 2 3 4 5 6 VBIAS PVIN BOOST 2.2uF C20 J4 C8 47uF 16V C9 22uF 16V C18 1uF 6.3V + 4. Remove R11 to disable 5V boost circuit. 5. Pin 45 (NC) is connected to PGND to improve the routing of the PCB layout. 6. See Table one for IC usage. 3. Remove R10 to apply external power good pullup logic voltage. 2. This is designed to be a platform for quick customer evaluation of the LMZ31520 and LMZ31530 products. 1. Not Populated. + C16 330uF 4V C6 47uF 16V VIN SOURCE SELECT C15 100uF 6.3V C5 47uF 16V U2 TPS60150DRV C14 100uF 6.3V C4 47uF 16V VIN 5V BOOST CIRCUIT C13 100uF 6.3V C3 33uF 25V NOTES: 1uF C21 C12 100uF 6.3V C2 33uF 25V PWM FREQUENCY SELECT J3 R8 66.5k 300 kHz R7 187k C11 100uF 6.3V C1 33uF 25V 1 + BOOST VBIAS PVIN 4 5 2 3 0 R12 10 TP1 NC 5 NC 4 TP3 TP2 TP4 Vin Remote Sense TLV704xxDBV U3 1 GND 2 IN 3 OUT PGND R11 Vout DVM J7 J6 3.0V-14.5V 3.0V-14.5V 4.5V-14.5V PVIN RANGE BOOST CIRCUIT OVER VOLTAGE PROTECTION 1uF C22 J5 C10 22uF Vin 16V DVM NA 4.5V-14.5V NA VIN SOURCE SELECT VBIAS RANGE J11 J10 PGND J9 J8 VBIAS J12 PGND VOUT PGND PGND PVIN Schematic www.ti.com 6 Schematic Figure 6-1 is the schematic for this EVM. Figure 6-1. LMZ315xxEVM Schematic SNVU283B – AUGUST 2013 – REVISED DECEMBER 2021 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated www.ti.com Bill of Materials 7 Bill of Materials Figure 7-1 is the BOM for the EVM. Figure 7-1. LMZ315x0EVM BOM SNVU283B – AUGUST 2013 – REVISED DECEMBER 2021 Submit Document Feedback LMZ315x0 Power Module Evaluation Module User's Guide Copyright © 2021 Texas Instruments Incorporated 9 PCB Layout www.ti.com 8 PCB Layout Figure 8-1 through Figure 8-8 show the PCB layout layers of the EVM. Figure 8-1. EVM Topside Component Layout Figure 8-2. EVM Bottom-Side Component Layout 10 LMZ315x0 Power Module Evaluation Module User's Guide SNVU283B – AUGUST 2013 – REVISED DECEMBER 2021 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated www.ti.com PCB Layout Figure 8-3. EVM Top Side Copper Figure 8-4. EVM Layer 2 Copper SNVU283B – AUGUST 2013 – REVISED DECEMBER 2021 LMZ315x0 Power Module Evaluation Module User's Guide Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated 11 PCB Layout www.ti.com Figure 8-5. EVM Layer 3 Copper Figure 8-6. EVM Layer 4 Copper 12 LMZ315x0 Power Module Evaluation Module User's Guide SNVU283B – AUGUST 2013 – REVISED DECEMBER 2021 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated www.ti.com Revision History Figure 8-7. EVM Layer 5 Copper Figure 8-8. EVM Bottom Side Copper 9 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. Changes from Revision A (January 2014) to Revision B (December 2021) Page • Updated the numbering format for tables, figures, and cross-references throughout the document. ................2 • Updated the user's guide title ............................................................................................................................ 2 • Edited user's guide for clarity..............................................................................................................................2 SNVU283B – AUGUST 2013 – REVISED DECEMBER 2021 LMZ315x0 Power Module Evaluation Module User's Guide Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated 13 IMPORTANT NOTICE AND DISCLAIMER TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products. TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated
LMZ31520EVM-001 价格&库存

很抱歉,暂时无法提供与“LMZ31520EVM-001”相匹配的价格&库存,您可以联系我们找货

免费人工找货
LMZ31520EVM-001
  •  国内价格 香港价格
  • 1+2016.180661+250.10628

库存:8