0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
LMZ31710EVM-001

LMZ31710EVM-001

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    -

  • 描述:

    EVAL BOARD FOR LMZ31710

  • 数据手册
  • 价格&库存
LMZ31710EVM-001 数据手册
www.ti.com Table of Contents User’s Guide LMZ3170x Power Module Evaluation Module User's Guide ABSTRACT The LMZ31710EVM-001, LMZ31707EVM-002, and LMZ31704EVM-003 evaluation modules are designed as an easy-to-use platform that facilitates an extensive evaluation of the features and performance of the SIMPLE SWITCHER® power module. This guide provides information on the correct usage of the EVM and an explanation of the numerous test points on the board. Table of Contents 1 Description.............................................................................................................................................................................. 2 2 Getting Started........................................................................................................................................................................2 3 Test Point Descriptions.......................................................................................................................................................... 4 4 Operation Notes......................................................................................................................................................................5 5 Performance Data................................................................................................................................................................... 6 6 Schematic................................................................................................................................................................................8 7 Bill of Materials....................................................................................................................................................................... 9 8 PCB Layout............................................................................................................................................................................11 9 Revision History................................................................................................................................................................... 13 List of Figures Figure 2-1. LMZ317xxEVM User Interface.................................................................................................................................. 2 Figure 5-1. LMZ31710EVM Efficiency......................................................................................................................................... 6 Figure 5-2. LMZ31710EVM Power Dissipation............................................................................................................................6 Figure 5-3. LMZ31710EVM Load Regulation.............................................................................................................................. 6 Figure 5-4. LMZ31710EVM Line Regulation............................................................................................................................... 6 Figure 5-5. LMZ31710EVM Output Ripple.................................................................................................................................. 6 Figure 5-6. LMZ31710EVM Output Ripple Waveforms............................................................................................................... 6 Figure 5-7. LMZ31710EVM Transient Response Waveforms..................................................................................................... 7 Figure 5-8. LMZ31710EVM Start-Up Waveforms........................................................................................................................ 7 Figure 6-1. LMZ317xxEVM Schematic........................................................................................................................................ 8 Figure 8-1. LMZ317xxEVM Topside Component Layout........................................................................................................... 11 Figure 8-2. LMZ317xxEVM Bottom-Side Component Layout.................................................................................................... 11 Figure 8-3. LMZ317xxEVM Layer 1 Copper.............................................................................................................................. 12 Figure 8-4. LMZ317xxEVM Layer 2 Copper.............................................................................................................................. 12 Figure 8-5. LMZ317xxEVM Layer 3 Copper.............................................................................................................................. 13 Figure 8-6. LMZ317xxEVM Layer 4 Copper.............................................................................................................................. 13 List of Tables Table 2-1. Output Voltage and Switching Frequency Jumper Settings........................................................................................3 Table 3-1. Test Point Descriptions(1) ........................................................................................................................................... 4 Table 7-1. LMZ317xxEVM Bill of Materials.................................................................................................................................. 9 Trademarks SIMPLE SWITCHER® is a registered trademark of Texas Instruments. All trademarks are the property of their respective owners. SLVU895B – MARCH 2013 – REVISED JANUARY 2022 LMZ3170x Power Module Evaluation Module User's Guide Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated 1 Description www.ti.com 1 Description This EVM features the LMZ31710 (10-A), LMZ31707 (7-A), or LMZ31704 (4-A) synchronous buck power module configured for operation with typical 5-V and 12-V input bus applications. The output voltage can be set to one of seven popular values by using a configuration jumper. In similar fashion, the switching frequency can be set to one of seven values with a jumper. The full output current rating of the device can be supplied by the EVM. Input and output capacitors are included on the board to accommodate the entire range of input and output voltages. Monitoring test points are provided to allow measurement of the following: • • • • • • Efficiency Power dissipation Input ripple Output ripple Line and load regulation Transient response Control test points are provided for use of the PWRGD, inhibit/UVLO, synchronization, and slow-start/tracking features of the LMZ317xx device. The EVM uses a recommended PCB layout that maximizes thermal performance and minimizes output ripple and noise. 2 Getting Started Figure 2-1 highlights the user interface items associated with the EVM. The polarized PVin Power terminal block (TB1) is used for connection to the host input supply and the polarized Vout Power terminal block (TB2) is used for connection to the load. These terminal blocks can accept up to 16-AWG wire. The polarized Vbias terminal block (TB3) is used along with the VIN select jumper (P1) when optional split power supply operation is desired. Refer to the LMZ317xx data sheets (LMZ31710 10-A Module, 2.95-V to 17-V Input and Current Sharing in QFN Package Data Sheet, LMZ31707 7-A Power Module with 2.95-V to 17-V Input Current Sharing in QFN Data Sheet, and LMZ31704 4-A Power Module with 2.95-V to 17-V Input and Current Sharing Data Sheet) for further information on split power supply operation. Figure 2-1. LMZ317xxEVM User Interface The PVin Monitor and Vout Monitor test points located near the power terminal blocks are intended to be used as voltage monitoring points where voltmeters can be connected to measure PVin and Vout. The voltmeter references should be connected to any of the four PVin/Vout Monitor Grounds test points located between the power terminal blocks. Do not use these PVin and Vout monitoring test points as the input supply or output load connection points. The PCB traces connecting to these test points are not designed to support high currents. 2 LMZ3170x Power Module Evaluation Module User's Guide SLVU895B – MARCH 2013 – REVISED JANUARY 2022 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com Getting Started The PVin Scope and Vout Scope test points can be used to monitor PVin and Vout waveforms with an oscilloscope. These test points are intended for use with un-hooded scope probes outfitted with a low-inductance ground lead (ground spring) mounted to the scope barrel. The two sockets of each test point are on 0.1 in centers. The scope probe tip should be connected to the socket labeled PVin or Vout, and the scope ground lead should be connected to the socket labeled PGND. The Controls test points located directly below the device are made available to test the features of the device. Any external connections made to these test points should be referenced to the Control Ground test point located along the bottom of the EVM. Refer to Section 3 for more information on the individual control test points. The Vout Select jumper (P3) and Fsw Select jumper (P2) are provided for selecting the desired output voltage and appropriate switching frequency. Before applying power to the EVM, ensure that the jumpers are present and properly positioned for the intended output voltage. Refer to Table 2-1 for the recommended jumper settings. Always remove input power before changing the jumper settings. Once the jumper settings have been confirmed, configure the host input supply to apply the appropriate bus voltage listed in Table 2-1 and confirm that the selected output voltage is obtained. Table 2-1. Output Voltage and Switching Frequency Jumper Settings VOUT Select FSW Select PVin Bus Voltage 5.0 V 1 MHz 12 V 3.3 V 750 kHz 5 V or 12 V 2.5 V 750 kHz 5 V or 12 V 1.8 V 500 kHz 5 V or 12 V 1.2 V 300 kHz 5 V or 12 V 0.9 V 250 kHz 5 V or 12 V 0.6 V 200 kHz 5 V or 12 V SLVU895B – MARCH 2013 – REVISED JANUARY 2022 LMZ3170x Power Module Evaluation Module User's Guide Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated 3 Test Point Descriptions www.ti.com 3 Test Point Descriptions Twelve wire-loop test points and two scope probe test points have been provided as convenient connection points for digital voltmeters (DVM) or oscilloscope probes to aid in the evaluation of the device. A description of each test point follows: Table 3-1. Test Point Descriptions(1) Test Point Description PVIN Input voltage monitor. Connect DVM to this point to measure efficiency. VOUT Output voltage monitor. Connect DVM to this point to measure efficiency, line regulation, and load regulation. AGND Input and output voltage monitor grounds (located between terminal blocks). Reference the above DVMs to any of these four analog ground points. PVIN Scope (J1) Input voltage scope monitor. Connect an oscilloscope to this set of points to measure input ripple voltage. VOUT Scope (J2) Output voltage scope monitor. Connect an oscilloscope to this set of points to measure output ripple voltage and transient response. PWRGD Monitors the power-good signal of the device. This is an open-drain signal that requires an external pullup resistor if monitoring is desired. A 10-kΩ to 100-kΩ pullup resistor is recommended. PWRGD is high if the output voltage is within 92% to 107% of its nominal value. INH/UVLO Connect this point to control ground to inhibit the device. Allow this point to float to enable the device. An external resistor divider can be connected between this point, control ground, and VIN to adjust the UVLO of the device. RT/CLK Connects to the RT/CLK pin of the device. An external clock signal can be applied to this point to synchronize the device to an appropriate frequency. SS/TR Connects to the internal slow-start capacitor of the device. An external capacitor can be connected from this point to control ground to increase the slow-start time of the device. This point can also be used to track applications. SYNC_OUT This output provides a clock signal that is 180° out of phase with the PH node of the device and can be used to synchronize other devices. AGND Control ground (located along bottom of EVM). Reference any signals associated with the control test points to this analog ground point. (1) 4 Refer to the LMZ317xx data sheets for absolute maximum ratings associated with these features. LMZ3170x Power Module Evaluation Module User's Guide SLVU895B – MARCH 2013 – REVISED JANUARY 2022 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com Operation Notes 4 Operation Notes In order to operate the EVM using a single power supply, the Vin Select jumper (P1) must be in the default PVIN-VIN position shown in Figure 2-1. In this position, the PVin and Vin pins of the device are connected together. The UVLO threshold of the EVM is approximately 4 V with 0.15 V of hysteresis. The input voltage must be above the UVLO threshold in order for the device to start-up. After start-up, the minimum input voltage to the device must be at least 4.5 V or (VOUT + 0.7 V), whichever is greater. The maximum operating input voltage for the device is 17 V. Refer to the LMZ317xx data sheets for further information on the input voltage range, UVLO operation, and optional split power supply operation for operating with PVin as low as 2.95 V when using an external Vbias supply. After application of the proper input voltage, the output voltage of the device will ramp to its final value in approximately 1.2 ms. If desired, this soft-start time can be increased by adding a capacitor to the SS/TR test point as described above. Refer to the LMZ317xx data sheets for further information on adjusting the soft-start time. Table 2-1 lists the recommended switching frequencies for each of the VOUT selections. These recommendations cover operation over a wide range of input voltage and output load conditions. Several factors such as duty cycle, minimum on-time, minimum off-time, and current limit influence selection of the appropriate switching frequency. In some applications, other switching frequencies can be used for particular output voltages, depending on the above factors. Refer to the LMZ317xx data sheets for further information on switching frequency selection, including synchronization. The EVM includes input and output capacitors to accommodate the entire range of input and output voltage conditions. The actual capacitance required will depend on the input and output voltage conditions of the particular application, along with the desired transient response. In most cases, the required output capacitance will be less than that supplied on the EVM. Refer to the LMZ317xx data sheets for further information on the minimum required I/O capacitance and transient response. The LMZ317xx operates in pulse skip mode at light currents to improve light load efficiency (LLE mode). At output voltages of less than 1.5 V, the pulse skipping can cause the output to rise when there is no load to discharge the energy. A minimum load of 600 µA or less, depending on VOUT, is required to keep the output voltage within regulation. For the worst case condition of VOUT = 0.6 V, a 1-kΩ resistor would provide a required minimum load of 600 µA. If the application requires an additional load to meet the minimum load requirement, the additional load can be connected external to the EVM or installed in the R16 position on the underside of the EVM. Refer to the LMZ317xx data sheets for further information on LLE mode and determining the required minimum load. SLVU895B – MARCH 2013 – REVISED JANUARY 2022 LMZ3170x Power Module Evaluation Module User's Guide Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated 5 Performance Data www.ti.com 5 Performance Data Figure 5-1 through Figure 5-8 demonstrate the LMZ31710EVM performance with VOUT = 1.8 V and FSW = 500 kHz. For data regarding the LMZ31707 and the LMZ31704, please see the product data sheet. 3.5 100 90 VOUT = 1.8 V FSW = 500 kHz 3.0 70 2.5 60 2.0 PDISS (W) Efficiency (%) 80 50 40 30 20 0 PVIN _VIN 1.0 PVIN _VIN 5V 12 V 0.5 5V 12 V VOUT = 1.8 V FSW = 500 kHz 10 0 1 2 3 4 5 6 Iout (A) 7 1.5 8 9 0 10 Figure 5-1. LMZ31710EVM Efficiency 0 1 2 3 4 5 6 IOUT (A) 7 8 9 10 Figure 5-2. LMZ31710EVM Power Dissipation 1.828 1.828 VOUT = 1.8 V FSW = 500 kHz 1.820 VOUT = 1.8 V FSW = 500 kHz 1.820 1.812 VOUT (V) 1.812 1.804 VOUT (V) 1.804 1.796 1.796 IOUT 1.788 PVIN _VIN 1.788 1.780 5V 12 V 1.780 1.772 0 1 2 3 4 5 6 IOUT (A) 7 8 9 10 Figure 5-3. LMZ31710EVM Load Regulation 1.772 0A 5A 10 A 5 7 9 11 PVIN_VIN (V) 13 15 17 Figure 5-4. LMZ31710EVM Line Regulation 0.030 VOUT = 1.8 V FSW = 500 kHz Output Ripple (V-pk-pk) 0.025 VOUT 10 mV/div 0.020 0.015 0.010 VOUT 10 mV/div PVIN _VIN 0.005 0.000 fSW = 500 kHz IOUT = 10 A VOUT = 1.8 V PVIN = 12 V 5V 12 V 0 1 2 3 4 5 6 IOUT (A) 7 8 9 Figure 5-5. LMZ31710EVM Output Ripple 6 PVIN = 5 V LMZ3170x Power Module Evaluation Module User's Guide 10 1 µs/div Figure 5-6. LMZ31710EVM Output Ripple Waveforms SLVU895B – MARCH 2013 – REVISED JANUARY 2022 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com Performance Data VOUT 100 mV/div PVIN = 5 V PVIN = 5 V/div fSW = 500 kHz IOUT = 10 A VOUT = 1.8 V VOUT 1 V/div VOUT 100 mV/div PVIN = 12 V fSW = 500 kHz IOUT = 10 A VOUT = 1.8 V PVIN = 12 V SS/TR 1 V/div 200 µs/div Figure 5-7. LMZ31710EVM Transient Response Waveforms 2 ms/div Figure 5-8. LMZ31710EVM Start-Up Waveforms SLVU895B – MARCH 2013 – REVISED JANUARY 2022 LMZ3170x Power Module Evaluation Module User's Guide Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated 7 TB1 NOTES: See Table in BOM for part number. C10 4.7µF 25V 2 3 C7 100µF 25V Not Populated. RT/CLK 1 2 + 1 TP8 RT/CLK SYNC_OUT AGND TP9 AGND TP7 SYNC_OUT PWRGD PGND VBIAS P1 PGND PVIN PVIN VIN VBIAS TP11 PWRGD 4.5V to 17V PGND VBIAS TB3 PGND 2.95V to 17V PVIN PGND 1 TP1 PVIN PVIN PGND PGND J1 C5 22µF 25V C9 0.1µF 25V C1 22µF 25V FREQUENCY SELECT P2 TP14 AGND 1 2 3 4 5 6 7 8 9 10 11 12 13 14 200kHz 250kHz 300kHz 500kHz 750kHz 1.0MHz 1.2MHz R3 52.3k 1 1 AGND VIN DNC DNC ILIM SYNC_OUT PWRGD DNC PH TP12 PHASE 2 3 4 5 6 7 8 9 10 PGND AGND C3 22µF 25V 1 40 39 12 11 41 38 37 36 35 34 33 32 31 21 20 2 U1 PH PH PH PH PH PH PH PH LMZ3170x Power Module Evaluation Module User's Guide R4 63.4k R5 90.9k R6 169k 13 14 15 16 17 18 19 42 8 R15 R7 487k PGND 1 C2 100µF 6.3V INH/UVLO STSEL SS/TR SENSE+ VADJ ISHARE DNC AGND RT/CLK PVIN PVIN PVIN PVIN PVIN VOUT VOUT VOUT VOUT VOUT VOUT PGND PGND PGND PGND PGND P4 R8 1M 30 29 28 27 26 25 24 23 22 R9 2.87k C4 100µF 6.3V R10 1.43k 1 R2 C6 100µF 6.3V VOUT R11 715 Ω 1 R1 PGND + R12 453 Ω J2 R13 316 Ω C8 220µF 10V R14 196 Ω 1 R16 SS/TR INH/UVLO TB2 P5 VOUT PGND 1 0.6V 0.9V 1.2V 1.8V 2.5V 3.3V 5.0V 1 2 3 4 5 6 7 8 9 10 11 12 13 14 P3 VOUT SELECT TP6 TP5 AGND TP4 TP3 TP13 SS/TR TP10 INH/UVLO 0.6V to 5.5V / 10A AGND PGND VOUT TP2 VOUT Schematic www.ti.com 6 Schematic Figure 6-1 is the schematic for this EVM. Figure 6-1. LMZ317xxEVM Schematic SLVU895B – MARCH 2013 – REVISED JANUARY 2022 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com Bill of Materials 7 Bill of Materials Table 7-1 is the BOM for the EVM. Table 7-1. LMZ317xxEVM Bill of Materials -001 -002 -003 RefDes Value Description Size Part Number Mfg 3 3 3 C1, C3, C5 22 μF Capacitor, Ceramic, 25 V, X5R, 10% 1210 GRM32ER61E226K Murata 3 3 3 C2, C4, C6 100 μF Capacitor, Ceramic, 6.3 V, X5R, 20% 1210 GRM32ER60J107M Murata 1 1 1 C7 100 μF Capacitor, Polymer, 25 V, 20% 6.3mm EEH-ZA1E101XP Panasonic 1 1 1 C8 220 μF Capacitor, Polymer, 10 V, 20% D3L 10TPE220ML Sanyo 1 1 1 C9 0.1 μF Capacitor, Ceramic, 25 V, X7R, 10% 0805 Std Std 1 1 1 C10 4.7 μF Capacitor, Ceramic, 25 V, X5R, 10% 0805 GRM21BR61E475K Murata 2 2 2 J1, J2 310-43-102-41-001000 Header, Female, 1 × 2 socket, 0.1" centers 0.100 inch × 1 × 2 310-43-102-41-001000 Mill-Max 1 1 1 P1 PEC03SAAN Header, Male, 1 × 3 pin, 0.1" centers 0.100 inch × 1 × 3 PEC03SAAN Sullins 2 2 2 P2, P3 PEC07DAAN Header, Male, 2 × 7 pin, 0.1" centers 0.100 inch × 2 × 7 PEC07DAAN Sullins 0 0 0 P4, P5 PEC02SAAN (not populated) Header, Male, 1 × 2 pin, 0.1" centers 0.100 inch × 1 × 2 PEC02SAAN Sullins 0 0 0 R1 optional (user-defined) Resistor, Chip, 1/16W, 1% 0402 Std Std 0 0 0 R2 optional (user-defined) Resistor, Chip, 1/16W, 1% 0402 Std Std 1 1 1 R3 52.3 k Resistor, Chip, 1/16W, 1% 0603 Std Std 1 1 1 R4 63.4 k Resistor, Chip, 1/16W, 1% 0603 Std Std 1 1 1 R5 90.9 k Resistor, Chip, 1/16W, 1% 0603 Std Std 1 1 1 R6 169 k Resistor, Chip, 1/16W, 1% 0603 Std Std 1 1 1 R7 487 k Resistor, Chip, 1/16W, 1% 0603 Std Std 1 1 1 R8 1M Resistor, Chip, 1/16W, 1% 0603 Std Std 1 1 1 R9 2.87 k Resistor, Chip, 1/16W, 1% 0603 Std Std 1 1 1 R10 1.43 k Resistor, Chip, 1/16W, 1% 0603 Std Std 1 1 1 R11 715 Resistor, Chip, 1/16W, 1% 0603 Std Std 1 1 1 R12 453 Resistor, Chip, 1/16W, 1% 0603 Std Std 1 1 1 R13 316 Resistor, Chip, 1/16W, 1% 0603 Std Std 1 1 1 R14 196 Resistor, Chip, 1/16W, 1% 0603 Std Std 0 0 0 R15 0 (not populated) Resistor, Chip, 1/10W, 1% 0805 Std Std 0 0 0 R16 1 k (not populated) Resistor, Chip, 1/10W, 1% 0805 Std Std 2 2 2 TB1,TB2 ED120/2DS Terminal Block, 2-pin, 15 A, 5.1 mm 0.40 × 0.35 inch ED120/2DS OST 1 1 1 TB3 ED555/2DS Terminal Block, 2-pin, 6 A, 3.5 mm 0.27 × 0.25 inch ED555/2DS OST 2 2 2 TP1,TP2 5010 Test Point, Red, Wire Loop, Thru Hole 0.125 × 0.125 inch 5010 Keystone 5 5 5 TP3, TP4, TP5, TP6, TP9 5011 Test Point, Black, Wire Loop, Thru Hole 0.125 × 0.125 inch 5011 Keystone 5 5 5 TP7, TP8, TP10, TP11, TP13 5012 Test Point, White, Wire Loop, Thru Hole 0.125 × 0.125 inch 5012 Keystone 0 0 0 TP12, TP14 — Test Point, Internal — — — 1 0 0 U1 LMZ31710RVQ Sync Buck, 2.95-V to 17-V Input, 10-A Output 10 × 10 × 4.3 mm QFN LMZ31710RVQ TI 0 1 0 U1 LMZ31707RVQ Sync Buck, 2.95-V to 17-V Input, 7-A Output 10 × 10 × 4.3 mm QFN LMZ31707RVQ TI 0 0 1 U1 LMZ31704RVQ Sync Buck, 2.95-V to 17-V Input, 4-A Output 10 × 10 × 4.3 mm QFN LMZ31704RVQ TI 3 3 3 — — Shunt, Black 0.100 inch × 1 × 2 929950-00 3M 4 4 4 — — Bumpon, Hemisphere, Black 0.44 Dia. × 0.20 inch SJ-5003 3M 1 1 1 — — PCB, 2" × 4" × 0.062" 2 × 4 × 0.062 inch PWR195 Any SLVU895B – MARCH 2013 – REVISED JANUARY 2022 Submit Document Feedback LMZ3170x Power Module Evaluation Module User's Guide Copyright © 2022 Texas Instruments Incorporated 9 Bill of Materials www.ti.com Table 7-1. LMZ317xxEVM Bill of Materials (continued) -001 -002 -003 RefDes Value Description Size Part Number Mfg 1 1 1 — — Label 1.25 × 0.25 inch THT-13-457-10 Brady 10 LMZ3170x Power Module Evaluation Module User's Guide SLVU895B – MARCH 2013 – REVISED JANUARY 2022 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com PCB Layout 8 PCB Layout Figure 8-1 through Figure 8-6 show the PCB layouts of the EVM. Figure 8-1. LMZ317xxEVM Topside Component Layout Figure 8-2. LMZ317xxEVM Bottom-Side Component Layout SLVU895B – MARCH 2013 – REVISED JANUARY 2022 LMZ3170x Power Module Evaluation Module User's Guide Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated 11 PCB Layout www.ti.com Figure 8-3. LMZ317xxEVM Layer 1 Copper Figure 8-4. LMZ317xxEVM Layer 2 Copper 12 LMZ3170x Power Module Evaluation Module User's Guide SLVU895B – MARCH 2013 – REVISED JANUARY 2022 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated www.ti.com Revision History Figure 8-5. LMZ317xxEVM Layer 3 Copper Figure 8-6. LMZ317xxEVM Layer 4 Copper 9 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. Changes from Revision A (June 2013) to Revision B (January 2022) Page • Updated the numbering format for tables, figures, and cross-references throughout the document. ................2 • Updated the user's guide title............................................................................................................................. 2 SLVU895B – MARCH 2013 – REVISED JANUARY 2022 LMZ3170x Power Module Evaluation Module User's Guide Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated 13 IMPORTANT NOTICE AND DISCLAIMER TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products. TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated
LMZ31710EVM-001 价格&库存

很抱歉,暂时无法提供与“LMZ31710EVM-001”相匹配的价格&库存,您可以联系我们找货

免费人工找货