User's Guide
SNVU476 – September 2015
LMZ36002
Simple Switcher® Power Module Evaluation Module
The LMZ36002EVM evaluation module is designed as an easy-to-use platform that facilitates an extensive
evaluation of the features and performance of the Simple Switcher® power module. This guide provides
information on the correct usage of the EVM and an explanation of the numerous test points on the board.
1
Description
This EVM features the LMZ36002 synchronous buck power module configured for operation with typical
12-V to 60-V input bus applications. The output voltage can be set to one of five popular values by using a
configuration jumper. In similar fashion, the switching frequency can be set to one of five values with a
jumper. The full output current rating of the device can be supplied by the EVM. Input and output
capacitors are included on the board to accommodate the entire range of input and output voltages.
Monitoring test points are provided to allow measurement of efficiency, power dissipation, input ripple,
output ripple, line and load regulation, and transient response. Control test points are provided for use of
the slow-start/tracking, Inhibit/UVLO, PWRGD, and synchronization features of the LMZ36002 device. The
EVM uses a recommended PCB layout that maximizes thermal performance and minimizes output ripple
and noise.
2
Getting Started
Figure 1 highlights the user interface items associated with the EVM. The polarized PVin Power terminal
block (TB1) is used for connection to the host input supply and the polarized Vout Power terminal block
(TB2) is used for connection to the load. These terminal blocks can accept up to 16-AWG wire. Verify the
polarity of the PVIN and PGND connections for TB1 based on the label beneath the terminal block.
Figure 1. LMZ36002EVM User Interface
SNVU476 – September 2015
Submit Documentation Feedback
LMZ36002 Simple Switcher® Power Module Evaluation Module
Copyright © 2015, Texas Instruments Incorporated
1
Test Point Descriptions
www.ti.com
The PVin Monitor and Vout Monitor test points located near the power terminal blocks are intended to be
used as voltage monitoring points where voltmeters can be connected to measure PVin and Vout. The
voltmeter references should be connected to any of the four PVin/Vout Monitor Grounds test points
located between the power terminal blocks (labeled AGND). Do not use these PVin and Vout monitoring
test points as the input supply or output load connection points. The PCB traces connecting to these test
points are not designed to support high currents.
The PVin Scope (J1) and Vout Scope (J2) test points can be used to monitor PVin and Vout waveforms
with an oscilloscope. These test points are intended for use with un-hooded scope probes outfitted with a
low-inductance ground lead (ground spring) mounted to the scope barrel. The two sockets of each test
point are on 0.1 in centers. The scope probe tip should be connected to the socket labeled VIN or VOUT,
and the scope ground lead should be connected to the socket labeled PGND.
The controls test points located directly below the device are made available to test the features of the
device. Any external connections made to these test points should be referenced to the AGND test point
located along the bottom of the EVM. Refer to the Test Points Descriptions section of this guide for more
information on the individual control test points.
The Vout Select jumper (P1) and Fsw Select jumper (P2) are provided for selecting the desired output
voltage and appropriate switching frequency. Before applying power to the EVM, ensure that the jumpers
are present and properly positioned for the intended output voltage. Refer to Table 1 for the recommended
jumper settings. Always remove input power before changing the jumper settings.
Once the jumper settings have been confirmed, configure the host input supply to apply the appropriate
bus voltage listed in Table 1 and confirm that the selected output voltage is obtained.
Table 1. Output Voltage and Switching Frequency Jumper Settings
LMZ36002
Vout Select
Fsw Select
2.5 V
300 kHz
3.3 V
300 kHz
5.0 V
500 kHz
6.0 V
500 kHz
7.5 V
500 kHz
The Versa-Comp settings can be adjusted using jumper J3. The Versa-Comp feature of the LMZ36002
provides the user with a simple method of adjusting the module's internal compensation network to
provide the optimized phase and gain margin based on the output voltage and amount of output
capacitance. Remove the jumper from J3 when operating the EVM as received from the factory. When
operating the EVM with additional output capacitance, see the LMZ36002 datasheet for Versa-Comp
settings.
Jumper J4 allows the user to select the input source of the internal bias circuitry to improve efficiency. For
output voltages ≥ 4.5V, place the jumper across the center and top position of J4. For output voltages <
4.5V, place the jumper across the center and bottom position of J4.
3
Test Point Descriptions
Twelve wire-loop test points and two scope probe test points have been provided as convenient
connection points for digital voltmeters (DVM) or oscilloscope probes to aid in the evaluation of the device.
A description of each test point follows:
Table 2. Test Point Descriptions (1)
PVIN
Input voltage monitor. Connect DVM to this point for measuring efficiency.
VOUT
Output voltage monitor. Connect DVM to this point for measuring efficiency, line regulation, and load
regulation.
AGND
Input and output voltage monitor grounds (located between terminal blocks). Reference the above DVMs
to any of these four analog ground points.
(1)
2
Refer to the LMZ36002/H datasheet for absolute maximum ratings associated with above features.
LMZ36002 Simple Switcher® Power Module Evaluation Module
Copyright © 2015, Texas Instruments Incorporated
SNVU476 – September 2015
Submit Documentation Feedback
Operation Notes
www.ti.com
Table 2. Test Point Descriptions (1) (continued)
4
PVIN Scope (J1)
Input voltage scope monitor. Connect an oscilloscope to this set of points to measure input ripple
voltage.
VOUT Scope (J2)
Output voltage scope monitor. Connect an oscilloscope to this set of points to measure output ripple
voltage and transient response.
PWRGD
Monitors the power good signal of the device. This is an open drain signal that requires an external
pullup resistor if monitoring is desired. A 10-kΩ to 100-kΩ pullup resistor is recommended. PWRGD is
high if the output voltage is within 92% to 107% of its nominal value.
INH/UVLO
Connect this point to control ground to inhibit the device. Allow this point to float to enable the device. An
external resistor divider can be connected between this point, control ground, and Vin to adjust the
UVLO of the device.
CLK
Connects to the CLK pin of the device. An external clock signal can be applied to this point to
synchronize the device to an appropriate frequency.
SS/TR
Connects to the internal slow-start capacitor of the device. An external capacitor can be connected from
this point to control ground to increase the slow-start time of the device. This point can also be used as
for tracking applications.
AGND
Control ground (located along bottom of EVM). Reference any signals associated with the control test
points to this analog ground point.
Operation Notes
In order to operate the EVM apply a voltage in the range of 4.5V to 60V for the LMZ36002. The UVLO
threshold of the EVM is approximately 4 V with 0.4 V of hysteresis. The input voltage must be above the
UVLO threshold in order for the device to startup. After startup, the minimum input voltage to the device
must be at least 4.5 V or (Vout + 2 V), whichever is greater. Refer to the LMZ36002 datasheet for further
information on the input voltage range and UVLO operation.
After application of the proper input voltage, the output voltage of the device will ramp to its final value in
approximately 4.1 ms. If desired, this soft-start time can be increased by adding a capacitor to the SS/TR
test point as described above. Refer to the LMZ36002 datasheet for further information on adjusting the
soft-start time.
Table 1 lists the recommended switching frequencies for each of the Vout selections. These
recommendations cover operation over a wide range of input voltage and output load conditions. Several
factors such as duty cycle, minimum on-time, minimum off-time, and current limit influence selection of the
appropriate switching frequency. In some applications, other switching frequencies might be used for
particular output voltages, depending on the above factors. Refer to the LMZ36002 datasheet for further
information on switching frequency selection, including synchronization.
The EVM includes input and output capacitors to accommodate the entire range of input and output
voltage conditions. The actual capacitance required will depend on the input and output voltage conditions
of the particular application, along with the desired transient response. In most cases, the required output
capacitance will be less than that supplied on the EVM. Refer to the LMZ36002 datasheet for further
information on the minimum required input and output capacitance.
5
Performance Data
Figure 2 through Figure 7 demonstrate the LMZ36002EVM performance. For more data regarding the
LMZ36002 please see the product data sheet.
SNVU476 – September 2015
Submit Documentation Feedback
LMZ36002 Simple Switcher® Power Module Evaluation Module
Copyright © 2015, Texas Instruments Incorporated
3
Performance Data
4
www.ti.com
Figure 2. LMZ36002EVM Efficiency (Vin = 12V)
Figure 3. LMZ36002EVM Efficiency (Vin = 24V)
Figure 4. LMZ36002EVM Ripple Voltage (Fsw = 300 KHz)
Figure 5. LMZ36002EVM Ripple Voltage (Fsw = 500 KHz)
Figure 6. LMZ36002EVM Start-up Waveforms
Figure 7. LMZ36002EVM Shut-down Waveforms
LMZ36002 Simple Switcher® Power Module Evaluation Module
Copyright © 2015, Texas Instruments Incorporated
SNVU476 – September 2015
Submit Documentation Feedback
Schematic
www.ti.com
6
Schematic
Figure 8 is the schematic for this EVM.
Figure 8. LMZ36002EVM Schematic
SNVU476 – September 2015
Submit Documentation Feedback
LMZ36002 Simple Switcher® Power Module Evaluation Module
Copyright © 2015, Texas Instruments Incorporated
5
Bill of Materials
7
www.ti.com
Bill of Materials
Figure 9 is the BOM for the EVM.
Figure 9. LMZ36002 Bill Of Material
6
LMZ36002 Simple Switcher® Power Module Evaluation Module
SNVU476 – September 2015
Submit Documentation Feedback
Copyright © 2015, Texas Instruments Incorporated
PCB Layout
www.ti.com
8
PCB Layout
Figure 10 through Figure 17 show the PCB layers of the LMZ36002HEVM. The layout is the same for the
LMZ36002EVM.
Figure 10. LMZ36002HEVM Topside Component Layout
Figure 11. LMZ36002HEVM Topside Soldermask
SNVU476 – September 2015
Submit Documentation Feedback
LMZ36002 Simple Switcher® Power Module Evaluation Module
Copyright © 2015, Texas Instruments Incorporated
7
PCB Layout
www.ti.com
Figure 12. LMZ36002HEVM Layer 1 Copper
Figure 13. LMZ36002HEVM Layer 2 Copper
8
LMZ36002 Simple Switcher® Power Module Evaluation Module
Copyright © 2015, Texas Instruments Incorporated
SNVU476 – September 2015
Submit Documentation Feedback
PCB Layout
www.ti.com
Figure 14. LMZ36002HEVM Layer 3 Copper
Figure 15. LMZ36002HEVM Bottom-Side Copper
SNVU476 – September 2015
Submit Documentation Feedback
LMZ36002 Simple Switcher® Power Module Evaluation Module
Copyright © 2015, Texas Instruments Incorporated
9
PCB Layout
www.ti.com
Figure 16. LMZ36002HEVM Bottom Solder Mask
Figure 17. LMZ36002HEVM Bottom-Side Component Layout
10
LMZ36002 Simple Switcher® Power Module Evaluation Module
Copyright © 2015, Texas Instruments Incorporated
SNVU476 – September 2015
Submit Documentation Feedback
STANDARD TERMS AND CONDITIONS FOR EVALUATION MODULES
1.
Delivery: TI delivers TI evaluation boards, kits, or modules, including any accompanying demonstration software, components, or
documentation (collectively, an “EVM” or “EVMs”) to the User (“User”) in accordance with the terms and conditions set forth herein.
Acceptance of the EVM is expressly subject to the following terms and conditions.
1.1 EVMs are intended solely for product or software developers for use in a research and development setting to facilitate feasibility
evaluation, experimentation, or scientific analysis of TI semiconductors products. EVMs have no direct function and are not
finished products. EVMs shall not be directly or indirectly assembled as a part or subassembly in any finished product. For
clarification, any software or software tools provided with the EVM (“Software”) shall not be subject to the terms and conditions
set forth herein but rather shall be subject to the applicable terms and conditions that accompany such Software
1.2 EVMs are not intended for consumer or household use. EVMs may not be sold, sublicensed, leased, rented, loaned, assigned,
or otherwise distributed for commercial purposes by Users, in whole or in part, or used in any finished product or production
system.
2
Limited Warranty and Related Remedies/Disclaimers:
2.1 These terms and conditions do not apply to Software. The warranty, if any, for Software is covered in the applicable Software
License Agreement.
2.2 TI warrants that the TI EVM will conform to TI's published specifications for ninety (90) days after the date TI delivers such EVM
to User. Notwithstanding the foregoing, TI shall not be liable for any defects that are caused by neglect, misuse or mistreatment
by an entity other than TI, including improper installation or testing, or for any EVMs that have been altered or modified in any
way by an entity other than TI. Moreover, TI shall not be liable for any defects that result from User's design, specifications or
instructions for such EVMs. Testing and other quality control techniques are used to the extent TI deems necessary or as
mandated by government requirements. TI does not test all parameters of each EVM.
2.3 If any EVM fails to conform to the warranty set forth above, TI's sole liability shall be at its option to repair or replace such EVM,
or credit User's account for such EVM. TI's liability under this warranty shall be limited to EVMs that are returned during the
warranty period to the address designated by TI and that are determined by TI not to conform to such warranty. If TI elects to
repair or replace such EVM, TI shall have a reasonable time to repair such EVM or provide replacements. Repaired EVMs shall
be warranted for the remainder of the original warranty period. Replaced EVMs shall be warranted for a new full ninety (90) day
warranty period.
3
Regulatory Notices:
3.1 United States
3.1.1
Notice applicable to EVMs not FCC-Approved:
This kit is designed to allow product developers to evaluate electronic components, circuitry, or software associated with the kit
to determine whether to incorporate such items in a finished product and software developers to write software applications for
use with the end product. This kit is not a finished product and when assembled may not be resold or otherwise marketed unless
all required FCC equipment authorizations are first obtained. Operation is subject to the condition that this product not cause
harmful interference to licensed radio stations and that this product accept harmful interference. Unless the assembled kit is
designed to operate under part 15, part 18 or part 95 of this chapter, the operator of the kit must operate under the authority of
an FCC license holder or must secure an experimental authorization under part 5 of this chapter.
3.1.2
For EVMs annotated as FCC – FEDERAL COMMUNICATIONS COMMISSION Part 15 Compliant:
CAUTION
This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not
cause harmful interference, and (2) this device must accept any interference received, including interference that may cause
undesired operation.
Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to
operate the equipment.
FCC Interference Statement for Class A EVM devices
NOTE: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of
the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is
operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not
installed and used in accordance with the instruction manual, may cause harmful interference to radio communications.
Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to
correct the interference at his own expense.
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
FCC Interference Statement for Class B EVM devices
NOTE: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of
the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential
installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance
with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference
will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which
can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more
of the following measures:
•
•
•
•
Reorient or relocate the receiving antenna.
Increase the separation between the equipment and receiver.
Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
Consult the dealer or an experienced radio/TV technician for help.
3.2 Canada
3.2.1
For EVMs issued with an Industry Canada Certificate of Conformance to RSS-210
Concerning EVMs Including Radio Transmitters:
This device complies with Industry Canada license-exempt RSS standard(s). Operation is subject to the following two conditions:
(1) this device may not cause interference, and (2) this device must accept any interference, including interference that may
cause undesired operation of the device.
Concernant les EVMs avec appareils radio:
Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation
est autorisée aux deux conditions suivantes: (1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit
accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.
Concerning EVMs Including Detachable Antennas:
Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and maximum (or lesser)
gain approved for the transmitter by Industry Canada. To reduce potential radio interference to other users, the antenna type
and its gain should be so chosen that the equivalent isotropically radiated power (e.i.r.p.) is not more than that necessary for
successful communication. This radio transmitter has been approved by Industry Canada to operate with the antenna types
listed in the user guide with the maximum permissible gain and required antenna impedance for each antenna type indicated.
Antenna types not included in this list, having a gain greater than the maximum gain indicated for that type, are strictly prohibited
for use with this device.
Concernant les EVMs avec antennes détachables
Conformément à la réglementation d'Industrie Canada, le présent émetteur radio peut fonctionner avec une antenne d'un type et
d'un gain maximal (ou inférieur) approuvé pour l'émetteur par Industrie Canada. Dans le but de réduire les risques de brouillage
radioélectrique à l'intention des autres utilisateurs, il faut choisir le type d'antenne et son gain de sorte que la puissance isotrope
rayonnée équivalente (p.i.r.e.) ne dépasse pas l'intensité nécessaire à l'établissement d'une communication satisfaisante. Le
présent émetteur radio a été approuvé par Industrie Canada pour fonctionner avec les types d'antenne énumérés dans le
manuel d’usage et ayant un gain admissible maximal et l'impédance requise pour chaque type d'antenne. Les types d'antenne
non inclus dans cette liste, ou dont le gain est supérieur au gain maximal indiqué, sont strictement interdits pour l'exploitation de
l'émetteur
3.3 Japan
3.3.1
Notice for EVMs delivered in Japan: Please see http://www.tij.co.jp/lsds/ti_ja/general/eStore/notice_01.page 日本国内に
輸入される評価用キット、ボードについては、次のところをご覧ください。
http://www.tij.co.jp/lsds/ti_ja/general/eStore/notice_01.page
3.3.2
Notice for Users of EVMs Considered “Radio Frequency Products” in Japan: EVMs entering Japan may not be certified
by TI as conforming to Technical Regulations of Radio Law of Japan.
If User uses EVMs in Japan, not certified to Technical Regulations of Radio Law of Japan, User is required by Radio Law of
Japan to follow the instructions below with respect to EVMs:
1.
2.
3.
Use EVMs in a shielded room or any other test facility as defined in the notification #173 issued by Ministry of Internal
Affairs and Communications on March 28, 2006, based on Sub-section 1.1 of Article 6 of the Ministry’s Rule for
Enforcement of Radio Law of Japan,
Use EVMs only after User obtains the license of Test Radio Station as provided in Radio Law of Japan with respect to
EVMs, or
Use of EVMs only after User obtains the Technical Regulations Conformity Certification as provided in Radio Law of Japan
with respect to EVMs. Also, do not transfer EVMs, unless User gives the same notice above to the transferee. Please note
that if User does not follow the instructions above, User will be subject to penalties of Radio Law of Japan.
SPACER
SPACER
SPACER
SPACER
SPACER
【無線電波を送信する製品の開発キットをお使いになる際の注意事項】 開発キットの中には技術基準適合証明を受けて
いないものがあります。 技術適合証明を受けていないもののご使用に際しては、電波法遵守のため、以下のいずれかの
措置を取っていただく必要がありますのでご注意ください。
1.
2.
3.
電波法施行規則第6条第1項第1号に基づく平成18年3月28日総務省告示第173号で定められた電波暗室等の試験設備でご使用
いただく。
実験局の免許を取得後ご使用いただく。
技術基準適合証明を取得後ご使用いただく。
なお、本製品は、上記の「ご使用にあたっての注意」を譲渡先、移転先に通知しない限り、譲渡、移転できないものとします。
上記を遵守頂けない場合は、電波法の罰則が適用される可能性があることをご留意ください。 日本テキサス・イ
ンスツルメンツ株式会社
東京都新宿区西新宿6丁目24番1号
西新宿三井ビル
3.3.3
Notice for EVMs for Power Line Communication: Please see http://www.tij.co.jp/lsds/ti_ja/general/eStore/notice_02.page
電力線搬送波通信についての開発キットをお使いになる際の注意事項については、次のところをご覧くださ
い。http://www.tij.co.jp/lsds/ti_ja/general/eStore/notice_02.page
SPACER
4
EVM Use Restrictions and Warnings:
4.1 EVMS ARE NOT FOR USE IN FUNCTIONAL SAFETY AND/OR SAFETY CRITICAL EVALUATIONS, INCLUDING BUT NOT
LIMITED TO EVALUATIONS OF LIFE SUPPORT APPLICATIONS.
4.2 User must read and apply the user guide and other available documentation provided by TI regarding the EVM prior to handling
or using the EVM, including without limitation any warning or restriction notices. The notices contain important safety information
related to, for example, temperatures and voltages.
4.3 Safety-Related Warnings and Restrictions:
4.3.1
User shall operate the EVM within TI’s recommended specifications and environmental considerations stated in the user
guide, other available documentation provided by TI, and any other applicable requirements and employ reasonable and
customary safeguards. Exceeding the specified performance ratings and specifications (including but not limited to input
and output voltage, current, power, and environmental ranges) for the EVM may cause personal injury or death, or
property damage. If there are questions concerning performance ratings and specifications, User should contact a TI
field representative prior to connecting interface electronics including input power and intended loads. Any loads applied
outside of the specified output range may also result in unintended and/or inaccurate operation and/or possible
permanent damage to the EVM and/or interface electronics. Please consult the EVM user guide prior to connecting any
load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative.
During normal operation, even with the inputs and outputs kept within the specified allowable ranges, some circuit
components may have elevated case temperatures. These components include but are not limited to linear regulators,
switching transistors, pass transistors, current sense resistors, and heat sinks, which can be identified using the
information in the associated documentation. When working with the EVM, please be aware that the EVM may become
very warm.
4.3.2
EVMs are intended solely for use by technically qualified, professional electronics experts who are familiar with the
dangers and application risks associated with handling electrical mechanical components, systems, and subsystems.
User assumes all responsibility and liability for proper and safe handling and use of the EVM by User or its employees,
affiliates, contractors or designees. User assumes all responsibility and liability to ensure that any interfaces (electronic
and/or mechanical) between the EVM and any human body are designed with suitable isolation and means to safely
limit accessible leakage currents to minimize the risk of electrical shock hazard. User assumes all responsibility and
liability for any improper or unsafe handling or use of the EVM by User or its employees, affiliates, contractors or
designees.
4.4 User assumes all responsibility and liability to determine whether the EVM is subject to any applicable international, federal,
state, or local laws and regulations related to User’s handling and use of the EVM and, if applicable, User assumes all
responsibility and liability for compliance in all respects with such laws and regulations. User assumes all responsibility and
liability for proper disposal and recycling of the EVM consistent with all applicable international, federal, state, and local
requirements.
5.
Accuracy of Information: To the extent TI provides information on the availability and function of EVMs, TI attempts to be as accurate
as possible. However, TI does not warrant the accuracy of EVM descriptions, EVM availability or other information on its websites as
accurate, complete, reliable, current, or error-free.
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
6.
Disclaimers:
6.1 EXCEPT AS SET FORTH ABOVE, EVMS AND ANY WRITTEN DESIGN MATERIALS PROVIDED WITH THE EVM (AND THE
DESIGN OF THE EVM ITSELF) ARE PROVIDED "AS IS" AND "WITH ALL FAULTS." TI DISCLAIMS ALL OTHER
WARRANTIES, EXPRESS OR IMPLIED, REGARDING SUCH ITEMS, INCLUDING BUT NOT LIMITED TO ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF ANY
THIRD PARTY PATENTS, COPYRIGHTS, TRADE SECRETS OR OTHER INTELLECTUAL PROPERTY RIGHTS.
6.2 EXCEPT FOR THE LIMITED RIGHT TO USE THE EVM SET FORTH HEREIN, NOTHING IN THESE TERMS AND
CONDITIONS SHALL BE CONSTRUED AS GRANTING OR CONFERRING ANY RIGHTS BY LICENSE, PATENT, OR ANY
OTHER INDUSTRIAL OR INTELLECTUAL PROPERTY RIGHT OF TI, ITS SUPPLIERS/LICENSORS OR ANY OTHER THIRD
PARTY, TO USE THE EVM IN ANY FINISHED END-USER OR READY-TO-USE FINAL PRODUCT, OR FOR ANY
INVENTION, DISCOVERY OR IMPROVEMENT MADE, CONCEIVED OR ACQUIRED PRIOR TO OR AFTER DELIVERY OF
THE EVM.
7.
USER'S INDEMNITY OBLIGATIONS AND REPRESENTATIONS. USER WILL DEFEND, INDEMNIFY AND HOLD TI, ITS
LICENSORS AND THEIR REPRESENTATIVES HARMLESS FROM AND AGAINST ANY AND ALL CLAIMS, DAMAGES, LOSSES,
EXPENSES, COSTS AND LIABILITIES (COLLECTIVELY, "CLAIMS") ARISING OUT OF OR IN CONNECTION WITH ANY
HANDLING OR USE OF THE EVM THAT IS NOT IN ACCORDANCE WITH THESE TERMS AND CONDITIONS. THIS OBLIGATION
SHALL APPLY WHETHER CLAIMS ARISE UNDER STATUTE, REGULATION, OR THE LAW OF TORT, CONTRACT OR ANY
OTHER LEGAL THEORY, AND EVEN IF THE EVM FAILS TO PERFORM AS DESCRIBED OR EXPECTED.
8.
Limitations on Damages and Liability:
8.1 General Limitations. IN NO EVENT SHALL TI BE LIABLE FOR ANY SPECIAL, COLLATERAL, INDIRECT, PUNITIVE,
INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF THESE
TERMS ANDCONDITIONS OR THE USE OF THE EVMS PROVIDED HEREUNDER, REGARDLESS OF WHETHER TI HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. EXCLUDED DAMAGES INCLUDE, BUT ARE NOT LIMITED
TO, COST OF REMOVAL OR REINSTALLATION, ANCILLARY COSTS TO THE PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES, RETESTING, OUTSIDE COMPUTER TIME, LABOR COSTS, LOSS OF GOODWILL, LOSS OF PROFITS,
LOSS OF SAVINGS, LOSS OF USE, LOSS OF DATA, OR BUSINESS INTERRUPTION. NO CLAIM, SUIT OR ACTION SHALL
BE BROUGHT AGAINST TI MORE THAN ONE YEAR AFTER THE RELATED CAUSE OF ACTION HAS OCCURRED.
8.2 Specific Limitations. IN NO EVENT SHALL TI'S AGGREGATE LIABILITY FROM ANY WARRANTY OR OTHER OBLIGATION
ARISING OUT OF OR IN CONNECTION WITH THESE TERMS AND CONDITIONS, OR ANY USE OF ANY TI EVM
PROVIDED HEREUNDER, EXCEED THE TOTAL AMOUNT PAID TO TI FOR THE PARTICULAR UNITS SOLD UNDER
THESE TERMS AND CONDITIONS WITH RESPECT TO WHICH LOSSES OR DAMAGES ARE CLAIMED. THE EXISTENCE
OF MORE THAN ONE CLAIM AGAINST THE PARTICULAR UNITS SOLD TO USER UNDER THESE TERMS AND
CONDITIONS SHALL NOT ENLARGE OR EXTEND THIS LIMIT.
9.
Return Policy. Except as otherwise provided, TI does not offer any refunds, returns, or exchanges. Furthermore, no return of EVM(s)
will be accepted if the package has been opened and no return of the EVM(s) will be accepted if they are damaged or otherwise not in
a resalable condition. If User feels it has been incorrectly charged for the EVM(s) it ordered or that delivery violates the applicable
order, User should contact TI. All refunds will be made in full within thirty (30) working days from the return of the components(s),
excluding any postage or packaging costs.
10. Governing Law: These terms and conditions shall be governed by and interpreted in accordance with the laws of the State of Texas,
without reference to conflict-of-laws principles. User agrees that non-exclusive jurisdiction for any dispute arising out of or relating to
these terms and conditions lies within courts located in the State of Texas and consents to venue in Dallas County, Texas.
Notwithstanding the foregoing, any judgment may be enforced in any United States or foreign court, and TI may seek injunctive relief
in any United States or foreign court.
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2015, Texas Instruments Incorporated
spacer
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.
Products
Applications
Audio
www.ti.com/audio
Automotive and Transportation
www.ti.com/automotive
Amplifiers
amplifier.ti.com
Communications and Telecom
www.ti.com/communications
Data Converters
dataconverter.ti.com
Computers and Peripherals
www.ti.com/computers
DLP® Products
www.dlp.com
Consumer Electronics
www.ti.com/consumer-apps
DSP
dsp.ti.com
Energy and Lighting
www.ti.com/energy
Clocks and Timers
www.ti.com/clocks
Industrial
www.ti.com/industrial
Interface
interface.ti.com
Medical
www.ti.com/medical
Logic
logic.ti.com
Security
www.ti.com/security
Power Mgmt
power.ti.com
Space, Avionics and Defense
www.ti.com/space-avionics-defense
Microcontrollers
microcontroller.ti.com
Video and Imaging
www.ti.com/video
RFID
www.ti-rfid.com
OMAP Applications Processors
www.ti.com/omap
TI E2E Community
e2e.ti.com
Wireless Connectivity
www.ti.com/wirelessconnectivity
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2015, Texas Instruments Incorporated