0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
LP5910-1.8DRVT

LP5910-1.8DRVT

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    WSON6_EP

  • 描述:

    IC REG LINEAR 1.8V 300MA 6WSON

  • 数据手册
  • 价格&库存
LP5910-1.8DRVT 数据手册
Product Folder Sample & Buy Tools & Software Technical Documents Support & Community Reference Design LP5910 ZHCSE96A – SEPTEMBER 2015 – REVISED OCTOBER 2015 LP5910 用于 RF 和模拟电路的超低噪声、300mA 线性稳压器 - 无需旁路 电容 1 特性 • • • • • • • • 1 • • • • • 3 说明 输入电压范围:1.3V 至 3.3V 输出电压范围:0.8V 至 2.3V 输出电流:300mA 电源抑制比 (PSRR):1kHz 频率时为 75dB 输出电压容差:±2% 低压降:120mV(典型值) 极低 IQ(使能时,无负载):12µA 无需噪声旁路电容即可实现超低噪声:12 µVRMS (典型值) 与陶瓷输入和输出电容搭配使用可保持稳定 热过载保护 短路保护功能 反向电流保护 自动输出放电实现快速关断 LP5910 是一款能够提供高达 300mA 输出电流的线性 稳压器。 此器件专门针对 RF 和模拟电路而设计,可 满足其低噪声、高 PSRR、低静态电流以及出色的线 路和负载瞬态响应等诸多要求。 LP5910 采用创新的 设计技术,无需噪声旁路电容便可提供出色的噪声性 能,并且支持远距离安置输出电容。 该器件包含一个反向电流保护电路,可在输入电压低于 输出电压时防止反向电流通过 LDO 进入 IN 引脚。 当使能引脚 (EN) 为低电平且输出处于关断状态时,自 动输出放电电路会使输出电容放电以实现快速关断。 凭借低输入和低输出电压范围,LP5910 非常适合用作 后置 DC-DC 稳压器(后置降压稳压器)或者用于由单 节或两节电池供电的应用。 2 应用范围 • • • • • • 该器件经过设计,可与一个 1μF 输入陶瓷电容和一个 1μF 输出陶瓷电容搭配使用。 无需使用独立的噪声旁 路电容。 智能电话 平板电脑 无线局域网 (LAN) 设备 针对射频 (RF)、压控振荡器 (VCO) 和锁相环 (PLL) 器件偏置的后置降压和 DC-DC 稳压 机顶盒 摄像机 其固定输出电压介于 0.8V 和 2.3V 之间(以 25mV 为 单位增量)。 如需特定的电压选项,请联系德州仪器 (TI) 销售代表。 器件信息(1) 部件号 LP5910 封装 封装尺寸(最大值) WSON (6) 2.10mm × 2.10mm DSBGA (4) 0.742mm × 0.742mm (1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。 简化电路原理图 VIN VOUT IN OUT CIN COUT LP5910 Enable EN GND 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA. English Data Sheet: SNVSA91 LP5910 ZHCSE96A – SEPTEMBER 2015 – REVISED OCTOBER 2015 www.ti.com.cn 目录 1 2 3 4 5 6 7 特性 .......................................................................... 应用范围................................................................... 说明 .......................................................................... 修订历史记录 ........................................................... Pin Configuration and Functions ......................... Specifications......................................................... 1 1 1 2 3 4 6.1 6.2 6.3 6.4 6.5 6.6 4 4 4 4 5 6 Absolute Maximum Ratings ...................................... ESD Ratings.............................................................. Recommended Operating Conditions....................... Thermal Information .................................................. Electrical Characteristics........................................... Typical Characteristics .............................................. Detailed Description ............................................ 11 7.1 7.2 7.3 7.4 Overview ................................................................. Functional Block Diagram ....................................... Feature Description................................................. Device Functional Modes........................................ 11 11 11 12 8 Applications and Implementation ...................... 13 8.1 Application Information............................................ 13 8.2 Typical Application .................................................. 13 9 Power Supply Recommendations...................... 17 10 Layout................................................................... 17 10.1 10.2 10.3 10.4 Layout Guidelines ................................................. Layout Examples................................................... DSBGA Mounting.................................................. DSBGA Light Sensitivity ....................................... 17 17 17 17 11 器件和文档支持 ..................................................... 18 11.1 11.2 11.3 11.4 11.5 文档支持................................................................ 社区资源................................................................ 商标 ....................................................................... 静电放电警告......................................................... Glossary ................................................................ 18 18 18 18 18 12 机械、封装和可订购信息 ....................................... 18 4 修订历史记录 NOTE: Page numbers for previous revisions may differ from page numbers in the current version. Changes from Original (September 2015) to Revision A Page • 已更改 器件数据表状态,从“产品预览”改为“量产数据”;在手册顶部导航栏处添加了参考设计图标 ...................................... 1 2 Copyright © 2015, Texas Instruments Incorporated LP5910 www.ti.com.cn ZHCSE96A – SEPTEMBER 2015 – REVISED OCTOBER 2015 5 Pin Configuration and Functions YKA Package 4-Pin Ultra-Thin DSBGA Top View IN A1 OUT A2 B1 EN B2 GND YKA Package 4-Pin Ultra-Thin DSBGA Bottom View OUT IN A1 A2 B2 GND B1 EN DRV Package 6-Pin WSON With Thermal Pad Top View OUT 1 6 IN NC 2 5 GND NC 3 4 EN Pin Functions PIN I/O DESCRIPTION 4 I Enable input; disables the regulator when logic low. Enables the regulator when logic high. An internal 1-MΩ pull down resistor connects this input to ground. B2 5 — A1 6 I NC — 2, 3 — No internal connection. Connect to ground or leave open. OUT A2 1 O Voltage output. A 1-µF low-ESR capacitor must be connected from this pin to the GND pin. Connect this output to the load circuit. Exposed Pad — Thermal Pad — The exposed thermal pad on the bottom of the package must be connected to a copper area under the package on the PCB. Connect to ground potential or leave floating. Do not connect to any potential other than the same ground potential seen at device pin 5 (GND). See Power Dissipation for more information. NAME DSBGA WSON EN B1 GND IN Copyright © 2015, Texas Instruments Incorporated Common ground Voltage supply input. A 1-μF capacitor must be connected at this input. 3 LP5910 ZHCSE96A – SEPTEMBER 2015 – REVISED OCTOBER 2015 www.ti.com.cn 6 Specifications 6.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted) (1) (2) MIN MAX UNIT Input voltage, VIN –0.3 3.6 V Output voltage, VOUT –0.3 3.6 V Enable input voltage, VEN –0.3 3.6 Continuous power dissipation (3) Junction temperature, TJ(MAX) Storage temperature, Tstg (1) (2) (3) V Internally Limited –65 W 150 °C 150 °C Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltages are with respect to the GND pin. Internal thermal shutdown circuitry protects the device from permanent damage. 6.2 ESD Ratings VALUE V(ESD) (1) (2) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1) ±1000 Charged-device model (CDM), per JEDEC specification JESD22-C101 (2) ±250 UNIT V JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. 6.3 Recommended Operating Conditions over operating free-air temperature range (unless otherwise noted) (1) MIN MAX Input voltage, VIN 1.3 3.3 UNIT V Output voltage, VOUT 0.8 2.3 V Enable input voltage, VEN 0 3.3 V Output current, IOUT 0 300 mA Junction temperature, TJ (1) –40 125 °C (1) –40 85 °C Ambient temperature, TA (1) The maximum ambient temperature, (TA(MAX)) is a recommended value only and can vary depending on device power dissipation and RθJA. For reliable operation, the junction temperature (TJ) must be limited to a maximum of 125°C. Ambient temperature (TA), thermal resistance (RθJA) , VIN, VOUT, and IOUT all define TJ : TJ = TA + (RθJA × ((VIN – VOUT) × IOUT). 6.4 Thermal Information LP5910 THERMAL METRIC (1) YKA (DSBGA) DRV (WSON) 4 PINS 6 PINS 202.8 79.2 (3) RθJA (2) Junction-to-ambient thermal resistance, High-K RθJC(top) Junction-to-case (top) thermal resistance 3.3 110.2 RθJB Junction-to-board thermal resistance 36.0 48.7 ψJT Junction-to-top characterization parameter 0.4 5.2 ψJB Junction-to-board characterization parameter 36.0 49.1 RθJC(bot) Junction-to-case (bottom) thermal resistance n/a 18.1 (1) (2) (3) 4 UNIT °C/W For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953. Thermal resistance value RθJA is based on the EIA/JEDEC High-K printed circuit board defined by: JESD51-7 - High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages. The PCB for the WSON/DRV package RθJA includes two (2) thermal vias under the exposed thermal pad per EIA/JEDEC JESD51-5. Copyright © 2015, Texas Instruments Incorporated LP5910 www.ti.com.cn ZHCSE96A – SEPTEMBER 2015 – REVISED OCTOBER 2015 6.5 Electrical Characteristics Unless otherwise specified, VIN = VOUT(NOM) + 0.5 V, VEN = 1 V, IOUT = 1 mA, CIN = 1 µF, COUT = 1 µF. (1) (2) (3) PARAMETER ΔVOUT ILOAD TEST CONDITIONS MIN Output voltage tolerance VIN = (VOUT(NOM) + 0.5 V) to 3.3 V, IOUT = 1 mA to 300 mA –2 Line regulation VIN = (VOUT(NOM) + 0.5 V) to 3.3 V, IOUT = 1 mA Load regulation IOUT = 1 mA to 300 mA Load current See (4) 230 350 VEN = 0.3 V, –40°C ≤ TJ ≤ 85°C 0.02 2 IRO Output reverse current (6) VOUT > VIN VOUT = 3.3 V, VIN = VEN = 0 V IG Ground current (7) IOUT = 0 mA (VOUT = 2.3 V) PSRR eN TSD Power supply rejection ratio (9) –20 VOUT = 3.3 V, VIN = VEN = 1.3 V 0 50 µA µA 200 300 1.5V ≤ VOUT = 2.3 V, IOUT = 300 mA 120 180 VOUT = VOUT(NOM) – 0.1 V VIN = VOUT(NOM) + 0.5 V 450 ƒ = 1 kHz, IOUT = 20 mA, VOUT ≥ 1 V 75 ƒ = 10 kHz, IOUT = 20 mA, VOUT ≥ 1 V 65 ƒ = 100 kHz, IOUT = 20 mA, VOUT ≥ 1 V 40 ƒ = 2 MHz, IOUT = 20 mA, VOUT ≥ 1 V 25 ƒ = 100 Hz, IOUT = 20 mA, 0.8 V < VOUT < 1 V 65 ƒ = 1 kHz, IOUT = 20 mA, 0.8 V < VOUT < 1 V 65 ƒ = 10 kHz, IOUT = 20 mA, 0.8 V < VOUT < 1 V 65 ƒ = 100 kHz, IOUT = 20 mA, 0.8 V < VOUT < 1 V 40 ƒ = 2 MHz, IOUT = 20 mA, 0.8 V < VOUT < 1 V 25 Output noise voltage (9) BW = 10 Hz to 100 kHz Thermal shutdown TJ rising until output is OFF Thermal hysteresis TJ falling from shutdown IOUT = 1 mA 12 IOUT = 300 mA 12 µA µA 1.3V ≤ VOUT < 1.5 V, IOUT = 300 mA 80 mA 0 15 ƒ = 100 Hz, IOUT = 20 mA, VOUT ≥ 1 V %VOUT %/mA 300 VEN = 1 V, IOUT = 300 mA IQ(SD) Output current limit 0.002 0 UNIT %/V 25 Quiescent current in shutdown (5) ILIMIT 2 12 Quiescent current (5) Dropout voltage (8) MAX 0.01 VEN = 1 V, IOUT = 0 mA IQ VDO TYP mV mA dB µVRMS 160 °C 15 LOGIC INPUT THRESHOLDS VIL EN low threshold (Off) VIH EN high threshold (On) IEN EN pin current (10) VIN = 1.3 V to 3.3 V VEN = 3.3 V, VIN = 3.3 V VEN = 0 V, VIN = 3.3 V 0.3 V 1 3.3 0.001 µA (1) (2) All voltages are with respect to the device GND pin. Minimum and maximum limits are ensured through test, design, or statistical correlation over the TJ range of –40°C to 125°C, unless otherwise stated. Typical values represent the most likely parametric norm at TA = 25°C, and are provided for reference purposes only. (3) CIN, COUT: Low-ESR Surface-Mount-Ceramic Capacitors (MLCCs) used in setting electrical characteristics. (4) The device maintains a stable, regulated output voltage without a load current. (5) Quiescent current is defined here as the difference in current between the input voltage source and the load at VOUT. IQ = (IIN – IOUT) (6) Output reverse current (IRO) is measured at the IN pin. (7) Ground current is defined here as the total current flowing to ground as a result of all input voltages applied to the device. (8) Dropout voltage is the voltage difference between the input and the output at which the output voltage drops to 100 mV below its nominal value. Dropout voltage is not a valid condition for output voltages less than 1.3 V as compliance with the minimum operating input voltage can not be ensured. (9) This specification is verified by design. (10) There is a 1-MΩ resistor between EN and ground on the device. Copyright © 2015, Texas Instruments Incorporated 5 LP5910 ZHCSE96A – SEPTEMBER 2015 – REVISED OCTOBER 2015 www.ti.com.cn Electrical Characteristics (continued) Unless otherwise specified, VIN = VOUT(NOM) + 0.5 V, VEN = 1 V, IOUT = 1 mA, CIN = 1 µF, COUT = 1 µF.(1)(2)(3) PARAMETER TEST CONDITIONS TRANSIENT CHARACTERISTICS Line transient MIN TYP MAX 0 1 VIN = (VOUT(NOM) + 0.5 V) to (VOUT(NOM) + 1 V) in 30 µs IOUT = 1 mA (9) mV VIN = (VOUT(NOM) + 1 V) to (VOUT(NOM) + 0.5 V) in 30 µs IOUT = 1 mA ΔVOUT IOUT = 1 mA to 100 mA in 10 µs Load transient (9) –1 0 –45 IOUT = 100 mA to 1 mA in 10 µs mV 45 Overshoot on start-up (9) tON UNIT (10) 5% Turnon time From VEN > VIH to VOUT = 95% of VOUT(NOM) 80 200 µs OUTPUT DISCHARGE Output discharge pulldown resistance RAD VEN = 0 V, VIN = 2.3 V Ω 160 6.6 Typical Characteristics Unless otherwise stated: VOUT = 1.8 V, VIN = VOUT + 0.5 V, VEN = VIN, IOUT = 1 mA, CIN = 1 µF, COUT = 1 µF, TJ = 25°C. 1.2 1.2 ON (VIH) OFF (VIL) 1.1 1 1 0.9 VEN Thresholds (V) Enable Threshold (V) ON (VIH) OFF (VIL) 1.1 0.8 0.7 0.6 0.5 0.9 0.8 0.7 0.6 0.5 0.4 0.4 0.3 0.3 0.2 -50 0.2 -25 0 25 50 75 Junction Temperature (°C) VIN = 2.3 V 100 125 1 2.5 3 3.5 D002 VOUT = 1.8 V Figure 1. VEN Threshold vs Temperature Figure 2. VEN Thresholds vs VIN 1.2 ON (VIH) OFF (VIL) 1.1 ON (VIH) OFF (VIL) 1.1 1 1 VEN Thresholds (V) VEN Thresholds (V) 2 VIN (V) 1.2 0.9 0.8 0.7 0.6 0.5 0.9 0.8 0.7 0.6 0.5 0.4 0.4 0.3 0.3 0.2 0.2 1 1.5 2 2.5 3 VIN (V) TJ = –40°C Figure 3. VEN Thresholds vs VIN 6 1.5 D001 3.5 1 1.5 2 2.5 3 VIN (V) D003 3.5 D004 TJ = 125°C Figure 4. VEN Thresholds vs VIN Copyright © 2015, Texas Instruments Incorporated LP5910 www.ti.com.cn ZHCSE96A – SEPTEMBER 2015 – REVISED OCTOBER 2015 Typical Characteristics (continued) 2 2 1.8 1.8 1.6 1.6 1.4 1.4 1.2 1.2 VOUT (V) VOUT (V) Unless otherwise stated: VOUT = 1.8 V, VIN = VOUT + 0.5 V, VEN = VIN, IOUT = 1 mA, CIN = 1 µF, COUT = 1 µF, TJ = 25°C. 1 0.8 0.6 1 0.8 0.6 0.4 0.4 18 k: (100 µA) 1.8 k: (1 mA) 180 : (10 mA) 0.2 180 : (10 mA) 18 : (100 mA) 6 : (300 mA) 0.2 0 0 0 0.5 1 1.5 2 VIN (V) 2.5 3 3.5 0 0.5 1 D005 VEN = VIN Figure 5. VOUT vs VIN 3 3.5 D006 Figure 6. VOUT vs VIN 25 125°C 85°C 25°C -40°C 125°C 85°C 25°C -40°C 20 IQ [No Load] (µA) 20 IQ [No Load] (µA) 2.5 VEN = VIN 25 15 10 5 15 10 5 0 0 0 0.5 1 VOUT = 0.8 V 1.5 2 VIN (V) 2.5 3 3.5 0 0.5 1 D007 VEN = VIN No load VOUT = 1.2 V 1.5 2 VIN (V) 2.5 3 3.5 D008 VEN = VIN Figure 7. IQ vs VIN No load Figure 8. IQ vs VIN 25 25 125°C 85°C 25°C -40°C 125°C 85°C 25°C -40°C 20 IQ [No Load] (µA) 20 IQ [No Load] (µA) 1.5 2 VIN (V) 15 10 5 15 10 5 0 0 0 0.5 VOUT = 1.8 V 1 1.5 2 VIN (V) 2.5 VEN = VIN Figure 9. IQ vs VIN Copyright © 2015, Texas Instruments Incorporated 3 3.5 0 0.5 D009 No load VOUT = 2.3 V 1 1.5 2 VIN (V) 2.5 VEN = VIN 3 3.5 D010 No load Figure 10. IQ vs VIN 7 LP5910 ZHCSE96A – SEPTEMBER 2015 – REVISED OCTOBER 2015 www.ti.com.cn Typical Characteristics (continued) 0 0 -10 -10 -20 -20 -30 -30 PSRR (dB) PSRR (dB) Unless otherwise stated: VOUT = 1.8 V, VIN = VOUT + 0.5 V, VEN = VIN, IOUT = 1 mA, CIN = 1 µF, COUT = 1 µF, TJ = 25°C. -40 -50 -60 -40 -50 -60 -70 -70 -80 -80 -90 -90 -100 10 -100 10 100 1k VOUT = 0.8 V 10k 100k Frequency (Hz) 1M 10M 100 D011 VIN = 1.3 V IOUT = 20 mA VOUT = 1.8 V 0.5 -10 0.45 -20 0.4 -30 0.35 -40 -50 -60 -70 VOUT = 2.3 V 1M 0 10 10M 1 mA 300 mA 100 D013 VIN = 2.8 V IOUT = 20 mA VOUT = 0.8 V Figure 13. PSRR vs Frequency 1000 10000 Frequency (Hz) 100000 1000000 D014 VIN = 1.3 V Figure 14. Noise Density 0.5 1.5 1 mA 300 mA 0.45 1.25 1 0.4 0.75 0.35 0.5 0.3 'VOUT (%) Noise (µV / —Hz) IOUT = 20 mA 0.15 0.1 10k 100k Frequency (Hz) D012 VIN = 2.3 V 0.2 0.05 1k 10M 0.3 -90 100 1M 0.25 -80 -100 10 10k 100k Frequency (Hz) Figure 12. PSRR vs Frequency 0 Noise (µV / —Hz) PSRR (dB) Figure 11. PSRR vs Frequency 1k 0.25 0.2 0.25 0 -0.25 -0.5 0.15 -0.75 0.1 -1 0.05 0 10 -1.25 100 VOUT = 2.3 V 1000 10000 Frequency (Hz) 100000 VIN = 2.8 V Figure 15. Noise Density 8 1000000 -1.5 -50 -25 D015 VIN = VOUT + 0.5 V 0 25 50 75 Junction Temperature (°C) 100 125 D016 IOUT = 1 mA Figure 16. ΔVOUT vs Temperature Copyright © 2015, Texas Instruments Incorporated LP5910 www.ti.com.cn ZHCSE96A – SEPTEMBER 2015 – REVISED OCTOBER 2015 Typical Characteristics (continued) Unless otherwise stated: VOUT = 1.8 V, VIN = VOUT + 0.5 V, VEN = VIN, IOUT = 1 mA, CIN = 1 µF, COUT = 1 µF, TJ = 25°C. 250 250 VIN = 3.3 V VIN = 1.3 V VIN = 3.3 V VIN = 2.3 V 225 200 200 175 175 150 150 IGND (µA) IGND (µA) 225 125 100 125 100 75 75 50 50 25 25 0 0 0 50 100 150 IOUT (mA) 200 250 0 300 50 100 D017 VOUT = 0.8 V 200 250 300 D018 VOUT = 1.8 V Figure 17. IGND vs IOUT Figure 18. IGND vs IOUT 250 300 VIN = 3.3 V VIN = 2.8 V 225 VOUT = 1.2 V VOUT = 1.8 V VOUT = 2.3 V 250 200 175 200 150 VDO (mV) IGND (µA) 150 IOUT (mA) 125 100 150 100 75 50 50 25 0 0 0 50 100 150 IOUT (mA) 200 250 300 0 50 100 D019 150 IOUT (mA) 200 250 300 D020 VOUT = 2.3 V Figure 20. Dropout Voltage vs IOUT 2.5 1.5 1.5 1 1 0.5 0.5 IOUT (mA) 2 VOUT (V) VIN (V) 2 120 12 100 8 80 4 60 0 40 -4 20 -8 IOUT 'VOUT VIN VOUT 0 -25 0 VEN = VIN 25 50 75 Time (µs) 100 VOUT = 1.8 V Figure 21. Turnon Time Copyright © 2015, Texas Instruments Incorporated 125 'VOUT (mV) Figure 19. IGND vs IOUT 2.5 0 150 0 -20 -10 0 10 D021 COUT = 1 µF VIN = 2.3 V IOUT = 1 mA to 100 mA 20 30 40 Time (µs) VOUT = 1.8 V 50 60 70 -12 80 D022 COUT = 1 µF tRISE = 10 µs Figure 22. Load Transient Response 9 LP5910 ZHCSE96A – SEPTEMBER 2015 – REVISED OCTOBER 2015 www.ti.com.cn Typical Characteristics (continued) 12 8 2.5 8 80 4 2.0 4 60 0 1.5 0 40 -4 1.0 -4 20 -8 0.5 IOUT (mA) 100 VIN (V) 3.0 IOUT 'VOUT 'VOUT (mV) 12 120 'VOUT (mV) Unless otherwise stated: VOUT = 1.8 V, VIN = VOUT + 0.5 V, VEN = VIN, IOUT = 1 mA, CIN = 1 µF, COUT = 1 µF, TJ = 25°C. -8 VIN (V) 'VOUT (mV) 0 -20 -10 0 10 VIN = 2.3 V IOUT = 100 mA to 1 mA 20 30 40 Time (µs) 50 VOUT = 1.8 V tFALL = 10 µs 60 70 0.0 0 50 100 D023 COUT = 1 µF Figure 23. Load Transient Response 10 -12 80 ΔVIN = 0.5 V tRISE = tFALL = 30 µs 150 200 250 300 Time (Ps) VOUT = 1.8 V IOUT = 1 mA 350 400 450 -12 500 D024 COUT = 1 µF Figure 24. Line Transient Response Copyright © 2015, Texas Instruments Incorporated LP5910 www.ti.com.cn ZHCSE96A – SEPTEMBER 2015 – REVISED OCTOBER 2015 7 Detailed Description 7.1 Overview The LP5910 is a linear regulator capable of supplying 300-mA output current. Designed to meet the requirements of RF and analog circuits, the LP5910 device provides low noise, high PSRR, low quiescent current, and low line/load transient response figures. Using new innovative design techniques the LP5910 offers class-leading noise performance without a noise bypass capacitor and the option for remote output capacitor placement. 7.2 Functional Block Diagram Current limit IN OUT VIN EA Bandgap Output discharge EN EN Control GND 7.3 Feature Description 7.3.1 No-Load Stability The LP5910 remains stable and in regulation with no external load. 7.3.2 Thermal Overload Protection The LP5910 contains a thermal shutdown protection circuit to turn off the output current when excessive heat is dissipated in the LDO. Thermal shutdown occurs when the thermal junction temperature (TJ) of the main passFET exceeds 160°C (typical). Thermal shutdown hysteresis assures that the LDO again resets (turns on) when the temperature falls to 145°C (typical). 7.3.3 Short-Circuit Protection The LP5910 contains internal current limit which reduces output current to a safe value if the output is overloaded or shorted. Depending upon the value of VIN, thermal limiting may also become active as the average power dissipated causes the die temperature to increase to the limit value (about 160°C). The hysteresis of the thermal shutdown circuitry can result in a cyclic behavior on the output as the die temperature heats and cools. 7.3.4 Output Automatic Discharge The LP5910 output employs an internal 160-Ω (typical) pulldown resistance to discharge the output when the EN pin is low, and the device is disabled. Copyright © 2015, Texas Instruments Incorporated 11 LP5910 ZHCSE96A – SEPTEMBER 2015 – REVISED OCTOBER 2015 www.ti.com.cn Feature Description (continued) 7.3.5 Reverse Current Protection The device contains a reverse current protection circuit that prevents a backward current flowing through the LDO from the OUT pin to the IN pin. 7.4 Device Functional Modes 7.4.1 Enable (EN) The LP5910 may be switched to the ON or OFF state by logic input at the EN pin. A logic-high voltage on the EN pin turns the device to the ON state. A logic-low voltage on the EN pin turns the device to the OFF state. If the application does not require the shutdown feature, the EN pin must be tied to VIN to keep the regulator output permanently in the ON state when power is applied To ensure proper operation, the signal source used to drive the EN input must be able to swing above and below the specified turnon or turnoff voltage thresholds listed in the Electrical Characteristics section under VIL and VIH. A 1-MΩ pulldown resistor ties the EN input to ground. If the EN pin is left open, the internal 1-MΩ pulldown resistor ensures that the device is turned into an OFF state by default. When the EN pin is low, and the output is in an OFF state, the output activates an internal pulldown resistance to discharge the output capacitance for fast turnoff. 12 Copyright © 2015, Texas Instruments Incorporated LP5910 www.ti.com.cn ZHCSE96A – SEPTEMBER 2015 – REVISED OCTOBER 2015 8 Applications and Implementation NOTE Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality. 8.1 Application Information The LP5910 is designed to meet the requirements of RF and analog circuits, by providing low noise, high PSRR, low quiescent current, and low line or load transient response figures. The device offers excellent noise performance without the need for a noise bypass capacitor and is stable with input and output capacitors with a value of 1 µF. The LP5910 delivers this performance in an industry-standard DSBGA package which, for this device, is specified with a TJ of –40°C to +125°C. 8.2 Typical Application Figure 25 shows the typical application circuit for the LP5910. Input and output capacitances may need to be increased above 1-µF minimum for some applications. VIN VOUT IN OUT 1 µF 1 µF LP5910 Enable EN GND Figure 25. LP5910 Typical Application 8.2.1 Design Requirements For typical LP5910 applications, use the parameters listed in Table 1. Table 1. Design Parameters DESIGN PARAMETER EXAMPLE VALUE Input voltage 1.3 V to 3.3 V Output voltage 0.8 V to 2.3 V Output current 300 mA Output capacitor range 1 µF to 10 µF 8.2.2 Detailed Design Procedure 8.2.2.1 External Capacitors Like most low-dropout regulators, the LP5910 requires external capacitors for regulator stability. The device is specifically designed for portable applications requiring minimum board space and smallest components. These capacitors must be correctly selected for good performance. Copyright © 2015, Texas Instruments Incorporated 13 LP5910 ZHCSE96A – SEPTEMBER 2015 – REVISED OCTOBER 2015 www.ti.com.cn 8.2.2.2 Input Capacitor An input capacitor is required for stability. It is recommended that a 1-µF capacitor be connected from the LP5910 IN pin to ground. (This capacitance value may be increased without limit.) The input capacitor must be located a distance of not more than 1 cm from the IN pin and returned to a clean analog ground. Any good quality ceramic, tantalum, or film capacitor may be used at the input. NOTE Tantalum capacitors can suffer catastrophic failures due to surge current when connected to a low-impedance source of power (like a battery or a very large capacitor). If a tantalum capacitor is used at the input, it must be guaranteed by the manufacturer to have a surge current rating sufficient for the application. There are no requirements for the equivalent series resistance (ESR) on the input capacitor, but tolerance and temperature coefficient must be considered when selecting the capacitor to ensure the capacitance remains 1 µF ±30% over the entire operating temperature range. 8.2.2.3 Output Capacitor For capacitance values in the range of 1 µF to 4.7 µF, ceramic capacitors are the smallest, least expensive and have the lowest ESR values, thus making them best for eliminating high frequency noise. The ESR of a typical 1µF ceramic capacitor is in the range of 20 mΩ to 40 mΩ, which easily meets the ESR requirement for stability for the LP5910. The temperature performance of ceramic capacitors varies by type. Most large value ceramic capacitors ( ≥ 2.2 µF) are manufactured with Z5U or Y5V temperature characteristics, which results in the capacitance dropping by more than 50% as the temperature goes from 25°C to 85°C. A better choice for temperature coefficient in a ceramic capacitor is X7R. This type of capacitor is the most stable and holds the capacitance within ±15% over the temperature range. Tantalum capacitors are less desirable than ceramic for use as output capacitors because they are more expensive when comparing equivalent capacitance and voltage ratings in the 1-µF to 4.7-µF range. 8.2.2.4 Capacitor Characteristics The LP5910 is designed to work with ceramic capacitors on the input and output to take advantage of the benefits they offer. For capacitance values in the range of 1 µF to 10 µF, ceramic capacitors are the smallest, least expensive and have the lowest ESR values, thus making them best for eliminating high frequency noise. The ESR of a typical 1-µF ceramic capacitor is in the range of 20 mΩ to 40 mΩ, which easily meets the ESR requirement for stability for the LP5910. A better choice for temperature coefficient in a ceramic capacitor is X7R. This type of capacitor is the most stable and holds the capacitance within ±15% over the temperature range. Tantalum capacitors are less desirable than ceramic for use as output capacitors because they are more expensive when comparing equivalent capacitance and voltage ratings in the 1-µF to 10-µF range. Another important consideration is that tantalum capacitors have higher ESR values than equivalent size ceramics. This means that while it may be possible to find a tantalum capacitor with an ESR value within the stable range, it would have to be larger in capacitance (which means bigger and more costly) than a ceramic capacitor with the same ESR value. Also, the ESR of a typical tantalum increases about 2:1 as the temperature goes from 25°C down to –40°C, so some guard band must be allowed. 8.2.2.5 Remote Capacitor Operation The LP5910 requires at least a 1-µF capacitor at the OUT pin, but there is no strict requirements about the location of the capacitor in regards to the pin. In practical designs the output capacitor may be located up to 10 cm away from the LDO. This means that there is no need to have a special capacitor close to the OUT pin if there is already respective capacitors in the system (like a capacitor at the input of supplied part). The remote capacitor feature helps user to minimize the number of capacitors in the system. 14 Copyright © 2015, Texas Instruments Incorporated LP5910 www.ti.com.cn ZHCSE96A – SEPTEMBER 2015 – REVISED OCTOBER 2015 As a good design practice, keep the wiring parasitic inductance at a minimum, using as wide as possible traces from the LDO output to the capacitors, keeping the LDO output trace layer as close as possible to ground layer and avoiding vias on the path. If there is a need to use vias, implement as many vias as possible between the connection layers. It is recommended to keep parasitic wiring inductance less than 35 nH. For the applications with fast load transients, an input capacitor is recommended, equal to or larger to the sum of the capacitance at the output node, for the best load-transient performance. 8.2.2.6 No-Load Stability The LP5910 remains stable, and in regulation, with no external load. 8.2.2.7 Enable Control The LP5910 may be switched to an ON or OFF state by a logic input at the EN pin. A voltage on this pin greater than VIH turns the device on, while a voltage less than VIL turns the device off. When the EN pin is low, the regulator output is off and the device typically consumes less than 1 µA. Additionally, an output pulldown circuit is activated which ensures that any charge stored on COUT is discharged to ground. If the application does not require the use of the shutdown feature, the EN pin can be tied directly to the IN pin to keep the regulator output permanently on. An internal 1-MΩ pulldown resistor ties the EN input to ground, ensuring that the device remains off if the EN pin is left open circuit. To ensure proper operation, the signal source used to drive the EN pin must be able to swing above and below the specified turn-on/off voltage thresholds listed in the Electrical Characteristics under VIL and VIH. Table 2. Recommended Output Capacitor Specification PARAMETER Output capacitor, COUT TEST CONDITIONS Capacitance for stability ESR MIN NOM MAX 0.7 1 10 µF 500 mΩ 5 UNIT 8.2.2.8 Power Dissipation Knowing the device power dissipation and proper sizing of the thermal plane connected to the tab or pad is critical to ensuring reliable operation. Device power dissipation depends on input voltage, output voltage, and load conditions and can be calculated with Equation 1. PD(MAX) = (VIN(MAX) – VOUT) × IOUT(MAX) (1) Power dissipation can be minimized, and greater efficiency can be achieved, by using the lowest available voltage drop option that would still be greater than the dropout voltage (VDO). However, keep in mind that higher voltage drops result in better dynamic (that is, PSRR and transient) performance. On the WSON (DRV) package, the primary conduction path for heat is through the exposed power pad to the PCB. To ensure the device does not overheat, connect the exposed pad, through thermal vias, to an internal ground plane with an appropriate amount of copper PCB area . On the DSBGA (YKA) package, the primary conduction path for heat is through the four bumps to the PCB. The maximum allowable junction temperature (TJ(MAX)) determines maximum power dissipation allowed (PD(MAX)) for the device package. Power dissipation and junction temperature are most often related by the junction-to-ambient thermal resistance (RθJA) of the combined PCB and device package and the temperature of the ambient air (TA), according to Equation 2 or Equation 3: TJ(MAX) = TA(MAX) + (RθJA × PD(MAX)) PD(MAX) = (TJ(MAX) - TA(MAX)) / RθJA (2) (3) Copyright © 2015, Texas Instruments Incorporated 15 LP5910 ZHCSE96A – SEPTEMBER 2015 – REVISED OCTOBER 2015 www.ti.com.cn Unfortunately, this RθJA is highly dependent on the heat-spreading capability of the particular PCB design, and therefore varies according to the total copper area, copper weight, and location of the planes. The RθJA recorded in Thermal Information is determined by the specific EIA/JEDEC JESD51-7 standard for PCB and copperspreading area, and is to be used only as a relative measure of package thermal performance. For a welldesigned thermal layout, RθJA is actually the sum of the package junction-to-case (bottom) thermal resistance (RθJCbot) plus the thermal resistance contribution by the PCB copper area acting as a heat sink. 8.2.2.9 Estimating Junction Temperature The EIA/JEDEC standard recommends the use of psi (Ψ) thermal characteristics to estimate the junction temperatures of surface mount devices on a typical PCB board application. These characteristics are not true thermal resistance values, but rather package specific thermal characteristics that offer practical and relative means of estimating junction temperatures. These psi metrics are determined to be significantly independent of copper-spreading area. The key thermal characteristics (ΨJT and ΨJB) are given in Thermal Information and are used in accordance with Equation 4 or Equation 5. TJ(MAX) = TTOP + (ΨJT × PD(MAX)) where • • PD(MAX) is explained in Equation 1. TTOP is the temperature measured at the center-top of the device package. (4) TJ(MAX) = TBOARD + (ΨJB × PD(MAX)) where • • PD(MAX) is explained in Equation 1. TBOARD is the PCB surface temperature measured 1-mm from the device package and centered on the package edge. (5) For more information about the thermal characteristics ΨJT and ΨJB, see the TI Application Report: Semiconductor and IC Package Thermal Metrics (SPRA953), available for download at www.ti.com. For more information about measuring TTOP and TBOARD, see the TI Application Report: Using New Thermal Metrics (SBVA025), available for download at www.ti.com. For more information about the EIA/JEDEC JESD51 PCB used for validating RθJA, see the TI Application Report: Thermal Characteristics of Linear and Logic Packages Using JEDEC PCB Designs (SZZA017), available for download at www.ti.com. 2.5 2.5 1.5 1.5 1 1 0.5 0.5 IOUT (mA) 2 VOUT (V) VIN (V) 2 120 12 100 8 80 4 60 0 40 -4 20 -8 IOUT 'VOUT VIN VOUT 0 -25 VEN = VIN 0 25 50 75 Time (µs) 100 VOUT = 1.8 V Figure 26. Turnon Time 16 125 'VOUT (mV) 8.2.3 Application Curves 0 150 0 -20 -10 0 10 D021 COUT = 1 µF VIN = 2.3 V IOUT = 1 mA to 100 mA 20 30 40 Time (µs) VOUT = 1.8 V 50 60 70 -12 80 D022 COUT = 1 µF tRISE = 10 µs Figure 27. Load Transient Response Copyright © 2015, Texas Instruments Incorporated LP5910 www.ti.com.cn ZHCSE96A – SEPTEMBER 2015 – REVISED OCTOBER 2015 9 Power Supply Recommendations This device is designed to operate from an input supply voltage range of 1.3 V to 3.3 V. The input supply must be well regulated and free of spurious noise. To ensure that the LP5910 output voltage is well regulated and dynamic performance is optimum, the input supply must be at least VOUT + 0.5 V. 10 Layout 10.1 Layout Guidelines The dynamic performance of the LP5910 is dependant on the layout of the PCB. PCB layout practices that are adequate for typical LDOs may degrade the PSRR, noise, or transient performance of the LP5910. Best performance is achieved by placing CIN and COUT on the same side of the PCB as the LP5910 device, and as close as is practical to the package. The ground connections for CIN and COUT must be back to the LP5910 GND pin using as wide and as short of a copper trace as is practical. Avoid connections using long trace lengths, narrow trace widths, and/or connections through vias. These add parasitic inductances and resistance that results in inferior performance especially during transient conditions. 10.2 Layout Examples IN A1 CIN OUT A2 COUT Via B1 EN B2 GND Figure 28. LP5910 Typical DSBGA Layout 1 NC 2 NC 3 COUT Thermal Pad OUT 6 IN 5 GND 4 EN CIN Figure 29. LP5910 Typical WSON Layout 10.3 DSBGA Mounting The DSBGA package requires specific mounting techniques, which are detailed in TI Application Note AN-1112, DSBGA Wafer Level Chip Scale Package (SNVA009). For best results during assembly, alignment ordinals on the PC board may be used to facilitate placement of the DSBGA device. 10.4 DSBGA Light Sensitivity Exposing the DSBGA device to direct light may cause incorrect operation of the device. High intensity light sources such as halogen lamps can affect electrical performance if they are situated in close proximity to the device. The wavelengths that have the most detrimental effect are reds and infra-reds, which means that the fluorescent lighting used inside most buildings has little effect on performance. 版权 © 2015, Texas Instruments Incorporated 17 LP5910 ZHCSE96A – SEPTEMBER 2015 – REVISED OCTOBER 2015 www.ti.com.cn 11 器件和文档支持 11.1 文档支持 11.1.1 相关文档  相关文档如下: • TI 应用报告《半导体和 IC 封装热指标》(文献编号:SPRA953) • TI 应用报告《使用新的热指标》(文献编号:SBVA025) • TI 应用报告《采用 JEDEC PCB 设计的线性和逻辑封装散热特性》(文件编号:SZZA017) • TI 应用手册《DSBGA 晶圆级芯片规模封装》(文献编号:SNVA009)。 11.2 社区资源 The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers. Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support. 11.3 商标 E2E is a trademark of Texas Instruments. All other trademarks are the property of their respective owners. 11.4 静电放电警告 ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可 能会损坏集成电路。 ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可 能会导致器件与其发布的规格不相符。 11.5 Glossary SLYZ022 — TI Glossary. This glossary lists and explains terms, acronyms, and definitions. 12 机械、封装和可订购信息 以下页中包括机械、封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不 对本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏 18 版权 © 2015, Texas Instruments Incorporated 重要声明 德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据 JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售 都遵循在订单确认时所提供的TI 销售条款与条件。 TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使 用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。 TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险, 客户应提供充分的设计与操作安全措施。 TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权 限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用 此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。 对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行 复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。 在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明 示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。 客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法 律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障 及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而 对 TI 及其代理造成的任何损失。 在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用 的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。 TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。 只有那些 TI 特别注明属于军用等级或“增强型塑料”的 TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面 向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有 法律和法规要求。 TI 已明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要 求,TI不承担任何责任。 产品 应用 数字音频 www.ti.com.cn/audio 通信与电信 www.ti.com.cn/telecom 放大器和线性器件 www.ti.com.cn/amplifiers 计算机及周边 www.ti.com.cn/computer 数据转换器 www.ti.com.cn/dataconverters 消费电子 www.ti.com/consumer-apps DLP® 产品 www.dlp.com 能源 www.ti.com/energy DSP - 数字信号处理器 www.ti.com.cn/dsp 工业应用 www.ti.com.cn/industrial 时钟和计时器 www.ti.com.cn/clockandtimers 医疗电子 www.ti.com.cn/medical 接口 www.ti.com.cn/interface 安防应用 www.ti.com.cn/security 逻辑 www.ti.com.cn/logic 汽车电子 www.ti.com.cn/automotive 电源管理 www.ti.com.cn/power 视频和影像 www.ti.com.cn/video 微控制器 (MCU) www.ti.com.cn/microcontrollers RFID 系统 www.ti.com.cn/rfidsys OMAP应用处理器 www.ti.com/omap 无线连通性 www.ti.com.cn/wirelessconnectivity 德州仪器在线技术支持社区 www.deyisupport.com IMPORTANT NOTICE 邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122 Copyright © 2015, 德州仪器半导体技术(上海)有限公司 PACKAGE OPTION ADDENDUM www.ti.com 3-Aug-2017 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) LP5910-0.9YKAR ACTIVE DSBGA YKA 4 3000 Green (RoHS & no Sb/Br) SNAGCU Level-1-260C-UNLIM -40 to 125 D LP5910-1.0DRVR ACTIVE WSON DRV 6 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 59A LP5910-1.0YKAR ACTIVE DSBGA YKA 4 3000 Green (RoHS & no Sb/Br) SNAGCU Level-1-260C-UNLIM -40 to 125 A LP5910-1.1BYKAR ACTIVE DSBGA YKA 4 3000 Green (RoHS & no Sb/Br) SNAGCU Level-1-260C-UNLIM -40 to 125 T LP5910-1.1BYKAT ACTIVE DSBGA YKA 4 250 Green (RoHS & no Sb/Br) SNAGCU Level-1-260C-UNLIM -40 to 125 T LP5910-1.1YKAR ACTIVE DSBGA YKA 4 3000 Green (RoHS & no Sb/Br) SNAGCU Level-1-260C-UNLIM -40 to 125 E LP5910-1.2YKAR ACTIVE DSBGA YKA 4 3000 Green (RoHS & no Sb/Br) SNAGCU Level-1-260C-UNLIM -40 to 125 B LP5910-1.825YKAR ACTIVE DSBGA YKA 4 3000 Green (RoHS & no Sb/Br) SNAGCU Level-1-260C-UNLIM -40 to 125 O LP5910-1.825YKAT ACTIVE DSBGA YKA 4 250 Green (RoHS & no Sb/Br) SNAGCU Level-1-260C-UNLIM -40 to 125 O LP5910-1.8DRVR ACTIVE WSON DRV 6 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 59C LP5910-1.8DRVT ACTIVE WSON DRV 6 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 59C LP5910-1.8YKAR ACTIVE DSBGA YKA 4 3000 Green (RoHS & no Sb/Br) SNAGCU Level-1-260C-UNLIM -40 to 125 C LP5910-1.8YKAT ACTIVE DSBGA YKA 4 250 Green (RoHS & no Sb/Br) SNAGCU Level-1-260C-UNLIM -40 to 125 C (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. Addendum-Page 1 Samples PACKAGE OPTION ADDENDUM www.ti.com 3-Aug-2017 (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
LP5910-1.8DRVT 价格&库存

很抱歉,暂时无法提供与“LP5910-1.8DRVT”相匹配的价格&库存,您可以联系我们找货

免费人工找货