Product
Folder
Sample &
Buy
Tools &
Software
Technical
Documents
Support &
Community
LSF0204, LSF0204D
ZHCSD68A – JULY 2014 – REVISED DECEMBER 2014
LSF0204x 适用于漏极开路和推挽应用的 4 位双向多电压电平转换器
1 特性
•
•
•
•
1
•
•
•
•
•
•
•
•
•
用无方向端子提供双向电压转换
最大传播延迟少于 1.5ns
支持高速转换,大于 100MHz
支持 Ioff,局部断电模式(请参见Feature
Description)
可实现以下电压之间的双向电压电平转换
– 1.0V ↔ 1.8/2.5/3.3/5V
– 1.2V ↔ 1.8/2.5/3.3/5V
– 1.8V ↔ 2.5/3.3/5V
– 2.5V ↔ 3.3/5V
– 3.3V ↔ 5V
低待机电流
支持 TTL 的 5V 耐受 I/O 端口
低导通电阻 Ron 提供较少的信号失真
针对 EN 为低电平的高阻抗 I/O 端子
直通引脚分配以简化印刷电路板 (PCB) 走线路由
锁断性能超过 100mA,符合 JESD17 规范
-40°C 至 125°C 工作温度范围
静电放电 (ESD) 性能测试符合 JESD 22 规范
– 2000V 人体模型(A114-B,II 类)
– 200V 机器模型 (A115-A)
– 1000V 充电器件模型 (C101)
3 说明
LSF 系列是工作电压介于 1.0V 至 4.5V (Vref_A) 和
1.8V 至 5.5V (Vref_B) 之间的双向电压电平转换器。
此器件在无需方向端子的条件下便可在开漏或推挽应用
中实现 1.0V 至 5.0V 的双向电压转换。 对于采用
15pF 电容器和 165Ω 上拉电阻器的开漏系统,LSF 系
列支持传输速度大于 100MHz 电平转换应用。
当 An 或 Bn 端口为低电平时,此开关处于接通状态,
并且在 An 和 Bn 端口之间存在一个低电阻连接。 开关
的低 Ron 可用最小传播延迟和信号失真来实现连接。
A 端或 B 端的电压将限制为 Vref_A,且可上拉至
Vref_A 到 5V 之间的任何电压水平。利用此功能,可
在无需方向控制的情况下实现用户选择的较高和较低电
压间的无缝转换。
器件信息(1)
器件型号
封装
LSF0204x
封装尺寸(标称值)
薄型小外形尺寸封装
(TSSOP) (14)
5.00mm x 4.40mm
UQFN (12)
2.00mm × 1.70mm
VQFN (14)
3.50mm x 3.50mm
DSBGA (12)
1.90mm × 1.40mm
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。
简化电路原理图
2 应用
•
•
•
•
GPIO,MDIO,PMBus,SMBus,SDIO,UART
,I2C,和其他电信基础设施中的接口
工业用
汽车用
个人计算
Vref_B
Vref_A
LSF0204
EN
A1
SW
B1
A2
SW
B2
A3
SW
B3
A4
SW
B4
GND
1
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas
Instruments standard warranty. Production processing does not necessarily include testing of all parameters.
English Data Sheet: SLVSCP5
LSF0204, LSF0204D
ZHCSD68A – JULY 2014 – REVISED DECEMBER 2014
www.ti.com.cn
目录
1
2
3
4
5
6
7
8
特性 ..........................................................................
应用 ..........................................................................
说明 ..........................................................................
修订历史记录 ...........................................................
Description (Continued) ........................................
Device Comparison Table.....................................
Pin Configuration and Functions .........................
Specifications.........................................................
1
1
1
2
3
3
3
4
8.1
8.2
8.3
8.4
8.5
8.6
4
4
4
4
5
Absolute Maximum Ratings ......................................
ESD Ratings..............................................................
Recommended Operating Conditions.......................
Thermal Information .................................................
Electrical Characteristics...........................................
Switching Characteristics: AC Performance
(Translating Down, 3.3 V to 1.8 V) ...........................
8.7 Switching Characteristics: AC Performance
(Translating Down, 3.3 V to 1.2 V) ...........................
8.8 Switching Characteristics: AC Performance
(Translating Up, 1.8 V to 3.3 V) ................................
8.9 Switching Characteristics: AC Performance
(Translating Up, 1.2 V to 1.8 V) ................................
5
8.10 Typical Characteristics ............................................ 6
9
Parameter Measurement Information .................. 7
9.1 Load Circuit AC Waveform for Outputs .................... 8
10 Detailed Description ............................................. 9
10.1
10.2
10.3
10.4
Overview ................................................................. 9
Functional Block Diagram ....................................... 9
Feature Description............................................... 10
Device Functional Modes...................................... 10
11 Application and Implementation........................ 11
11.1 Application Information.......................................... 11
11.2 I2C PMBus, SMBus, GPIO, Application................ 11
12 Power Supply Recommendations ..................... 17
13 Layout................................................................... 17
13.1 Layout Guidelines ................................................. 17
13.2 Layout Example .................................................... 17
14 器件和文档支持 ..................................................... 19
6
6
6
14.1
14.2
14.3
14.4
相关链接................................................................
商标 .......................................................................
静电放电警告.........................................................
术语表 ...................................................................
19
19
19
19
15 机械封装和可订购信息 .......................................... 19
4 修订历史记录
Changes from Original (November 2014) to Revision A
Page
•
从首页产品预览更改为完整数据表 .......................................................................................................................................... 1
•
已将说明中的文本从“传输速度大于 100Mbps”改为“传输速度大于 100MHz” .......................................................................... 1
2
Copyright © 2014, Texas Instruments Incorporated
LSF0204, LSF0204D
www.ti.com.cn
ZHCSD68A – JULY 2014 – REVISED DECEMBER 2014
5 Description (Continued)
The supply voltage (Vpu#) for each channel can be individually set up with a pull up resistor. For example, CH1
can be used in up-translation mode (1.2 V ↔ 3.3 V) and CH2 in down-translation mode (2.5 V ↔ 1.8 V).
When EN is HIGH, the translator switch is on, and the An I/O is connected to the Bn I/O, respectively, allowing
bidirectional data flow between ports. When EN is LOW, the translator switch is off, and a high-impedance state
exists between ports. The EN input circuit is designed to be supplied by Vref_A. To ensure the high-impedance
state during power-up or power-down, EN must be LOW.
6 Device Comparison Table
PART
NUMBER
EN
An
Bn
DESCRIPTION
LSF0204D
H
Place all data pins in 3 state mode
(Hi-Z)
Place all data pins in 3 state mode (Hi-Z)
LSF0204D
L
Input or output
Input or output
LSF0204
H
Input or output
Input or output
L
Place all data pins in 3 state mode
(Hi-Z)
Place all data pins in 3 state mode (Hi-Z)
LSF0204
3-state output mode enable
(active Low; referenced to Vref_A)
3-state output mode enable
(active High, referenced to Vref_A)
7 Pin Configuration and Functions
PW Package
(TOP VIEW)
RGY Package
(TOP VIEW)
RUT Package
(TOP VIEW)
EN
Vref_A 1
A1 2
A2 3
14 Vref_B
Vref_A
1
12
11
Vref_B
B1
13 B1
A1
2
10
12 B2
A2
A3
A4
3
9
B2
A1
4
8
B3
B4
Vref_A
Vref_B
1
14
2
13
B1
A2
3
12
A3
4
11
B2
B3
A3 4
11 B3
A4 5
10 B4
NC 6
9 NC
A4
5
10
B4
GND 7
8 EN
NC
6
9
NC
5
6
7
GND
7
8
GND
EN
Pin Functions
PIN
DESCRIPTION
An/Bn
Data Port
EN
Switch enable input;
LSF0204: EN is high-active
LSF0204D: EN is low-active
Vref_A
Reference supply voltage; see Application and Implementation section
Vref_B
Reference supply voltage; see Application and Implementation section.
Copyright © 2014, Texas Instruments Incorporated
3
LSF0204, LSF0204D
ZHCSD68A – JULY 2014 – REVISED DECEMBER 2014
www.ti.com.cn
8 Specifications
8.1 Absolute Maximum Ratings
over operating free-air temperature range (unless otherwise noted)
(1)
MIN
Input voltage range (2)
VI
VI/O
Input/output voltage range
MAX
–0.5
(2)
–0.5
7
Continuous channel current
IIK
Input clamp current
Tstg
Storage temperature range
(1)
(2)
UNIT
7
VI < 0
–65
V
V
128
mA
–50
mA
150
°C
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
The input and input/output negative-voltage ratings may be exceeded if the input and input/output clamp-current ratings are observed.
8.2 ESD Ratings
VALUE
V(ESD)
(1)
(2)
Electrostatic discharge
UNIT
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)
±2000
Charged-device model (CDM), per JEDEC specification JESD22C101 (2)
±1000
V
JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with
less than 500-V HBM is possible with the necessary precautions.
JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with
less than 250-V CDM is possible with the necessary precautions.
8.3 Recommended Operating Conditions
over operating free-air temperature range (unless otherwise noted)
MIN
MAX
VI/O
Input/output voltage
0
5
Vref_A/B/EN
Reference voltage
0
IPASS
Pass transistor current
TA
Operating free-air temperature
–40
UNIT
V
5
V
64
mA
125
°C
8.4 Thermal Information
THERMAL METRIC (1)
LSF0204
RGY (14 Pins)
RUT (12 Pins)
PW (14 PIns)
157.9
RθJA
Junction-to-ambient thermal resistance
83.2
195.8
RθJC(top)
Junction-to-case (top) thermal resistance
98.2
98.7
82.3
RθJB
Junction-to-board thermal resistance
59.2
122.6
100.0
ψJT
Junction-to-top characterization parameter
17.4
6.2
22.9
ψJB
Junction-to-board characterization parameter
59.4
122.6
99.0
RθJC(bot)
Junction-to-case (bottom) thermal resistance
38.7
N/A
N/A
(1)
4
UNIT
°C
For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.
Copyright © 2014, Texas Instruments Incorporated
LSF0204, LSF0204D
www.ti.com.cn
ZHCSD68A – JULY 2014 – REVISED DECEMBER 2014
8.5 Electrical Characteristics
over recommended operating free-air temperature range (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
TYP (1)
MAX
UNIT
VIK
II = -18 mA,
VEN = 0
–1.2
V
IIH
VI = 5 V
VEN = 0
5.0
µA
ICCBA
Leakage from
Vref_B to
Vref_A
Vref_B = 3.3 V, Vref_A = 1.8 V, VEN = Vref_A IO = 0, VI = 3.3 V or
GND
3.5
µA
ICCA + ICCB (2)
Total Current
through GND
Vref_B = 3.3 V, Vref_A = 1.8 V, VEN = Vref_A IO = 0, VI = 3.3 V or
GND
IIN
Control pin
current
Vref_B = 5.5 V, Vref_A = 4.5 V, VEN = 0 to Vref_A IO = 0
±1
µA
Ioff
Power Off
Leakage
Current
Vref_B = Vref_A = 0 V, VEN = GND IO = 0, VI = 5 V or GND
±1
µA
CI(ref_A/B/EN)
VI = 3 V or 0
Cio(off)
VO = 3 V or 0,
VEN = 0
Cio(on)
VO = 3 V or 0,
VEN = Vref_A
VIH (EN pin)
High-level input voltage (3)
Vref_A = 1.5 V to 4.5 V
VIL (EN pin)
Low-level input voltage
Vref_A = 1.5 V to 4.5 V
VIH (EN pin)
High-level input voltage
Vref_A= 1.0 V to 1.5 V
VIL (EN pin)
Low-level input voltage
Vref_A = 1.0 V to 1.5 V
∆t/∆v (EN pin)
Input transition rise or fall rate for EN pin
ron
(1)
(2)
(3)
(4)
(4)
0.2
µA
7
pF
5.0
6.0
pF
10.5
13
pF
0.7×Vref_A
V
0.3×Vref_A
0.8×Vref_A
V
V
0.3×Vref_A
10
V
ns/V
Vref_A = VEN = 3.3 V; Vref_B = 5 V
3
Vref_A = VEN = 1.8 V; Vref_B = 5 V
4
Vref_A = VEN = 1.0 V; Vref_B = 5 V
9
Vref_A = VEN = 1.8 V; Vref_B = 5 V
4
IO = 32 mA
Vref_A = VEN = 2.5 V; Vref_B = 5 V
10
Ω
IO = 15 mA
Vref_A = VEN = 3.3 V; Vref_B = 5 V
5
Ω
VI = 1.0 V,
IO = 10 mA
Vref_A = VEN = 1.8 V; Vref_B = 3.3 V
8
Ω
VI = 0 V,
IO = 10 mA
Vref_A = VEN = 1.0 V; Vref_B = 3.3 V
6
Ω
VI = 0 V,
IO = 10 mA
Vref_A = VEN = 1.0 V; Vref_B = 1.8 V
6
Ω
VI = 0,
IO = 64 mA
VI = 0,
IO = 32 mA
VI = 0,
VI = 1.8 V,
Ω
Ω
All typical values are at TA = 25°C.
The actual supply current for LSF0204 is ICCA + ICCB; the leakage from Vref_B to Vref_A can be measured on Vref_A and Vref_B pin
Enable pin test conditions are for the LSF0204. The enable pin test conditions for LSF0204D are oppositely set.
Measured by the voltage drop between the A and B terminals at the indicated current through the switch. On-state resistance is
determined by the lowest voltage of the two (A or B) terminals.
8.6 Switching Characteristics: AC Performance (Translating Down, 3.3 V to 1.8 V)
over recommended operating free-air temperature range, Vrev-A = 1.8 V, Vrev-B = 3.3 V, VEN = 1.8 V, Vpu_1 = 3.3 V,
Vpu_2 = 1.8 V, RL = NA, VIH = 3.3 V, VIL = 0 VM = 1.15 V (unless otherwise noted)
PARAMETER
FROM (INPUT)
TO (OUTPUT)
CL = 50 pF
CL = 30 pF
CL = 15 pF
UNIT
TYP
MAX
TYP
MAX
TYP
MAX
0.7
5.49
0.5
5.29
0.3
5.19
ns
0.9
4.9
0.7
4.7
0.5
4.5
ns
13
18
12
16.5
11
15
ns
tPZL
33
45
30
40
23
37
fMAX
50
tPLH
tPHL
tPLZ
A or B
B or A
Copyright © 2014, Texas Instruments Incorporated
100
100
ns
MHz
5
LSF0204, LSF0204D
ZHCSD68A – JULY 2014 – REVISED DECEMBER 2014
www.ti.com.cn
8.7 Switching Characteristics: AC Performance (Translating Down, 3.3 V to 1.2 V)
over recommended operating free-air temperature range Vrev-A = 1.2 V, Vrev-B = 3.3 V, VEN = 1.2 V, Vpu_1 = 3.3 V,
Vpu_2 = 1.2 V, RL = NA, VIH = 3.3V, VIL = 0 VM = 0.85 V (unless otherwise noted)
PARAMETER
FROM (INPUT)
TO (OUTPUT)
A or B
B or A
tPLH
tPHL
fMAX
CL = 50 pF
CL = 30 pF
CL = 15 pF
TYP
MAX
TYP
MAX
TYP
MAX
0.8
4.1
0.5
3.9
0.3
3.8
0.9
4.7
0.7
4.5
0.6
4.3
50
100
100
UNIT
ns
ns
MHz
8.8 Switching Characteristics: AC Performance (Translating Up, 1.8 V to 3.3 V)
over recommended operating free-air temperature range Vrev-A = 1.8 V, Vrev-B = 3.3 V, VEN = 1.8 V, Vpu_1 = 3.3 V,
Vpu_2 = 1.8V, RL = 500 Ω, VIH = 1.8V, VIL = 0 VM = 0.9V (unless otherwise noted)
PARAMETER
FROM (INPUT)
TO (OUTPUT)
CL = 50 pF
CL = 30 pF
CL = 15 pF
UNIT
TYP
MAX
TYP
MAX
TYP
MAX
tPLH
0.6
5.7
0.4
5.3
0.2
5.13
ns
tPHL
1.3
6.7
1
6.4
0.7
5.3
ns
13
18
12
16.5
11
15
ns
tPZL
33
45
30
40
23
37
ns
fMAX
50
tPLZ
A or B
B or A
100
100
MHz
8.9 Switching Characteristics: AC Performance (Translating Up, 1.2 V to 1.8 V)
over recommended operating free-air temperature range, Vrev-A = 1.2 V, Vrev-B = 1.8 V, VEN = 1.2 V, Vpu_1 = 1.8 V,
Vpu_2 = 1.2 V, RL = 500 Ω, VIH = 1.2V, VIL = 0 VM = 0.6 V (unless otherwise noted)
PARAMETER
FROM (INPUT)
TO (OUTPUT)
A or B
B or A
tPLH
tPHL
fMAX
CL = 50 pF
CL = 30 pF
CL = 15 pF
UNIT
TYP
MAX
TYP
MAX
TYP
MAX
0.65
7.25
0.4
7.05
0.2
6.85
ns
1.6
7.03
1.3
6.5
1
5.4
ns
50
100
100
MHz
8.10 Typical Characteristics
4
Input
Output
3.5
3
Voltage (V)
2.5
2
1.5
1
0.5
0
-0.5
0
5
10
Time (ns)
15
20
Figure 1. Signal Integrity (1.8 V to 3.3 V Translation Up at 50 MHz)
6
Copyright © 2014, Texas Instruments Incorporated
LSF0204, LSF0204D
www.ti.com.cn
ZHCSD68A – JULY 2014 – REVISED DECEMBER 2014
9 Parameter Measurement Information
VT
RL
USAGE
SWITCH
Translating up
Translating down
S1
S2
S1
Open
From Output
Under Test
S2
3.3 V
Input
VM
VM
VIL
CL
(see Note A)
5V
Output
VM
VM
LOAD CIRCUIT
VOL
TRANSLATING UP
5V
Input
VM
VM
VIL
2V
Output
VM
VM
VOL
TRANSLATING DOWN
NOTES: A. CL includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, ZO = 50 Ω, tr ≤ 2 ns, tf ≤ 2 ns.
C. The outputs are measured one at a time, with one transition per measurement.
Figure 2. Load Circuit for Outputs
Vref_B
S1
500 Ω
Open
From Output
Under Test
15 pF
TEST
S1
tPZL/tPLZ
Vref_B
Figure 3. Load Circuit for Enable/Disable Time Measurement
Copyright © 2014, Texas Instruments Incorporated
7
LSF0204, LSF0204D
ZHCSD68A – JULY 2014 – REVISED DECEMBER 2014
www.ti.com.cn
9.1 Load Circuit AC Waveform for Outputs
tr 2.0 ns
tf 2.0 ns
VCCA
90%
Input
(An, Bn)
50%
10%
GND
VOH
Output
(Bn, An)
VOL
tpLH
tpHL
Figure 4. tPLH, tPHL
tr 2.0 ns
tf 2.0 ns
VCCA
90%
Output Enabled
Control OE, OE
50%
10%
GND
tpLZ
tpZL
VOH
Output (An or Bn)
Low to off to Low
50%
10%
Outputs
enabled
Outputs
disabled
Outputs
enabled
Figure 5. tPLZ, tPZL
8
Copyright © 2014, Texas Instruments Incorporated
LSF0204, LSF0204D
www.ti.com.cn
ZHCSD68A – JULY 2014 – REVISED DECEMBER 2014
10 Detailed Description
10.1 Overview
The LSF Family can be used in level translation applications for interfacing devices or systems operating at
different interface voltages with one another. The LSF Family is ideal for use in applications where an open-drain
driver is connected to the data I/Os. With appropriate pull-up resistors and layout, LSF can achieve 100 MHz.
The LSF Family can also be used in applications where a push-pull driver is connected to the data I/Os.
10.2 Functional Block Diagram
LSF0204
200 KΩ
Vref_B
Vref_A
Level Converter
EN
A1
B1
A2
B2
A3
B3
A4
B4
Copyright © 2014, Texas Instruments Incorporated
9
LSF0204, LSF0204D
ZHCSD68A – JULY 2014 – REVISED DECEMBER 2014
www.ti.com.cn
10.3 Feature Description
10.3.1 Support High Speed Translation, Greater than 100 MHz
Allows the LSF family to support more consumer or telecom interfaces (MDIO or SDIO).
10.3.2 Bidirectional Voltage Translation Without DIR Terminal
Minimizes system effort to develop voltage translation for bidirectional interface (PMBus, I2C, or SMbus).
10.3.3 5V Tolerance on IO Port and 125°C Support
With 5 V tolerance and 125°C support, the LSF family is flexible and compliant with TTL levels in industrial and
telecom applications.
10.3.4 Channel Specific Translation
The LSF family is able to set up different voltage translation levels on each channel.
10.3.5 Ioff, Partial Power Down Mode
When Vref_A, Vref_B = 0, all of data pins and EN pin are Hi-Z.
Since EN logic circuit is supplied by Vref_A, once Vref_A power up first, all of data pins are unknown state until
Vref_B and EN ready. No power sequence requirement to enable LSF0204 and operate function normally.
10.4 Device Functional Modes
Function Table
(1)
10
INPUT EN (1) TERMINAL
FUNCTION
H
An = Bn
L
Hi-Z
EN is controlled by Vref_A logic levels.
Copyright © 2014, Texas Instruments Incorporated
LSF0204, LSF0204D
www.ti.com.cn
ZHCSD68A – JULY 2014 – REVISED DECEMBER 2014
11 Application and Implementation
NOTE
Information in the following applications sections is not part of the TI component
specification, and TI does not warrant its accuracy or completeness. TI’s customers are
responsible for determining suitability of components for their purposes. Customers should
validate and test their design implementation to confirm system functionality.
11.1 Application Information
LSF is able to perform voltage translation for open-drain or push-pull interface. Table 1 provides some
consumer/telecom interfaces as reference in regards to the different channel numbers that are supported by the
LSF family.
Table 1. Voltage Translator for Consumer/Telecom Interface
PART NAME
CH#
INTERFACE
LSF0101
1
GPIO
LSF0102
2
GPIO, MDIO, SMBus, PMBus, I2C
LSF0204
4
SPI. MDIO, SMBus, PMBus, I2C, UART, SVID
LSF0108
8
GPIO, MDIO, SDIO, SVID, UART, SMBus, PMBus, I2C, SPI
11.2 I2C PMBus, SMBus, GPIO, Application
Vpu_1 = 3.3 V
Vpu_2 = 1.8 V
Vrev_A = 1.8 V Vrev_B = 3.3 V
1.8 V
enable signal
ON
LSF0204
Rpu
SDA
SCL
A2
A3
A4
Rpu
Rpu
EN
Rpu
A1
Vcc
Off
SW
SW
SW
SW
B1
B2
Vcc
SDA
SCL
B3
B4
GND
Figure 6. Bidirectional Translation to Multiple Voltage Levels
11.2.1 Design Requirements
11.2.1.1 Enable, Disable, and Reference Voltage Guidelines
The LSF family has an EN input that is used to disable the device by setting EN LOW, which places all I/Os in
the high-impedance state. Since LSF family is switch-type voltage translator, the power consumption is very low.
It is recommended to always enable LSF family for bidirectional application (I2C, SMBus, PMBus, or MDIO).
Copyright © 2014, Texas Instruments Incorporated
11
LSF0204, LSF0204D
ZHCSD68A – JULY 2014 – REVISED DECEMBER 2014
www.ti.com.cn
I2C PMBus, SMBus, GPIO, Application (continued)
Table 2. Application Operating Condition
SYMBOL
MAX
UNIT
Vref_A
Reference voltage (A)
1
4.5
V
Vref_B
Reference voltage (B)
Vref_A + 0.8
5.5
V
Input voltage on EN terminal
0
Vref_A
V
Pull-up supply voltage
0
Vref_B
V
VI(EN)
(1)
Vpu
(1)
PARAMETER
MIN
TYP
Refer VIH and VIL for VI(EN)
Also Vref_B is recommended to be at 1.0 V higher than Vref_A for best signal integrity.
LSF Family is able to set different voltage translation level on each channel
NOTE
Vref_A must be set as lowest voltage level.
11.2.2 Detailed Design Procedure
11.2.2.1 Bidirectional Translation
The master output driver can be push-pull or open-drain (pull-up resistors may be required) and the slave device
output can be push-pull or open-drain (pull-up resistors are required to pull the Bn outputs to Vpu).
However, if either output is push-pull, data must be unidirectional or the outputs must be 3-state and be
controlled by some direction-control mechanism to prevent HIGH-to-LOW contentions in either direction.
If both outputs are open-drain, no direction control is needed.
In Figure 6, the reference supply voltage (Vref_A) is connected to the processor core power supply voltage.
When Vref_B is connected through to a 3.3 V Vpu power supply, and Vref_A is set 1.0V. The output of A3 and
B4 has a maximum output voltage equal to Vref_A, and the bidirectional interface (Ch1/2, MDIO) has a maximum
output voltage equal to Vpu.
11.2.2.1.1 Pull-up Resistor Sizing
The pull-up resistor value needs to limit the current through the pass transistor when it is in the ON state to about
15 mA. This ensures a pass voltage of 260 mV to 350 mV. If the current through the pass transistor is higher
than 15 mA, the pass voltage also is higher in the ON state. To set the current through each pass transistor at 15
mA, to calculate the pull-up resistor value use Equation 1.
Rpu = (Vpu – 0.35 V) / 0.015 A
(1)
Table 3 summarizes resistor values, reference voltages, and currents at 15 mA, 10 mA, and 3 mA. The resistor
value shown in the +10% column (or a larger value) should be used to ensure that the pass voltage of the
transistor is 350 mV or less. The external driver must be able to sink the total current from the resistors on both
sides of the LSF family device at 0.175 V, although the 15 mA applies only to current flowing through the LSF
family device.
12
Copyright © 2014, Texas Instruments Incorporated
LSF0204, LSF0204D
www.ti.com.cn
ZHCSD68A – JULY 2014 – REVISED DECEMBER 2014
Table 3. Pull-up Resistor Values (1) (2)
PULL-UP RESISTOR VALUE (Ω)
VDPU
(1)
(2)
(3)
15 mA
10 mA
NOMINAL
+10%
(3)
3 mA
NOMINAL
+10% (3)
NOMINAL
+10% (3)
5V
310
341
465
512
1550
1705
3.3 V
197
217
295
325
983
1082
2.5 V
143
158
215
237
717
788
1.8 V
97
106
145
160
483
532
1.5 V
77
85
115
127
383
422
1.2 V
57
63
85
94
283
312
Calculated for VOL = 0.35 V
Assumes output driver VOL = 0.175 V at stated current
+10% to compensate for VDD range and resistor tolerance
11.2.2.2 LS Family Bandwidth
The maximum frequency of the LSF family is dependent on the application. The device can operate at speeds of
>100MHz gave the correct conditions. The maximum frequency is dependent upon the loading of the application.
The LSF family behaves like a standard switch where the bandwidth of the device is dictated by the on
resistance and on capacitance of the device.
Figure 7 shows a bandwidth measurement of the LSF family using a two-port network analyzer.
0
–1
–2
Gain (dB)
–3
–4
–5
–6
–7
–8
–9
0.1
1
10
100
Frequency (MHz)
1000
Figure 7. 3-dB Bandwidth
The 3-dB point of the LSF family is ≈600MHz; however, this measurement is an analog type of measurement.
For digital applications the signal should not degrade up to the fifth harmonic of the digital signal. The frequency
bandwidth should be at least five times the maximum digital clock rate. This component of the signal is very
important in determining the overall shape of the digital signal. In the case of the LSF family, a digital clock
frequency of greater than 100 MHz can be achieved.
The LSF family does not provide any drive capability. Therefore higher frequency applications will require higher
drive strength from the host side. No pull-up resistor is needed on the host side (3.3 V) if the LSF family is being
driven by standard CMOS totem pole output driver. Ideally, it is best to minimize the trace length from the LSF
family on the sink side (1.8 V) to minimize signal degradation.
All fast edges have an infinite spectrum of frequency components; however, there is an inflection (or "knee") in
the frequency spectrum of fast edges where frequency components higher than fknee are insignificant in
determining the shape of the signal.
Copyright © 2014, Texas Instruments Incorporated
13
LSF0204, LSF0204D
ZHCSD68A – JULY 2014 – REVISED DECEMBER 2014
www.ti.com.cn
To calculate the maximum "practical" frequency component, or the "knee" frequency (fknee), use the following
equations:
fknee = 0.5/RT (10–80%)
fknee = 0.4/RT (20–80%)
(2)
(3)
For signals with rise time characteristics based on 10- to 90-percent thresholds, fknee is equal to 0.5 divided by
the rise time of the signal. For signals with rise time characteristics based on 20% to 80% thresholds, which is
very common in many of today's device specifications, fknee is equal to 0.4 divided by the rise time of the signal.
Some guidelines to follow that will help maximize the performance of the device:
• Keep trace length to a minimum by placing the LSF family close to the I2C output of the processor.
• The trace length should be less than half the time of flight to reduce ringing and line reflections or nonmonotonic behavior in the switching region.
• To reduce overshoots, a pull-up resistor can be added on the 1.8 V side; be aware that a slower fall time is to
be expected.
11.2.3 Application Curve
4
Input
Output
Voltage (V)
3
2
1
0
±1
0
50
100
150
200 250 300 350
Time (ns)
400 450
500
Figure 8. Captured Waveform From Above I2C Set-Up (1.8 to 3.3 V at 2.5 MHz)
14
Copyright © 2014, Texas Instruments Incorporated
LSF0204, LSF0204D
www.ti.com.cn
ZHCSD68A – JULY 2014 – REVISED DECEMBER 2014
11.2.4 MDIO Application
Vpu_1 = 3.3 V
Vpu_2 = 1.0 V
Vrev_A = 1.0 V Vrev_B = 3.3 V
1.0 V
enable signal
ON
LSF0204
Rpu
MDC
MDIO
A2
A3
A4
Rpu
Rpu
EN
Rpu
A1
Vcc
Off
SW
SW
SW
SW
B1
B2
Vcc
MDC
MDIO
B3
B4
GND
Figure 9. Typical Application Circuit (MDIO/Bidirectional Interface)
11.2.4.1 Design Requirements
Refer to Design Requirements.
11.2.4.2 Detailed Design Procedure
Refer to Detailed Design Procedure
11.2.4.3 Application Curve
Input (3.3V)
Output (1.0V)
Figure 10. Captured Waveform From Above MDIO Setup
Copyright © 2014, Texas Instruments Incorporated
15
LSF0204, LSF0204D
ZHCSD68A – JULY 2014 – REVISED DECEMBER 2014
www.ti.com.cn
11.2.5 Multiple Voltage Translation in Single Device, Application
Vrev_A = 1.8 V
Vrev_B = 3.3 V
Vpu_1 = 3.3 V
Vpu_2 = 1.8 V
1.8 V
enable signal
ON
LSF0204
Rpu Rpu
Off
A1
Vcc
Rpu
A2
Vpu = 1.0 V
MDIO
Vcc
GPIO
B3
SW
A4
MDC
B2
SW
A3
Vcc
B1
SW
MDC
MDIO
Rpu
EN
Rpu
B4
SW
GPIO
GND
11.2.5.1 Design Requirements
Refer to Design Requirements.
11.2.5.2 Detailed Design Procedure
Refer to Detailed Design Procedure
11.2.5.3 Application Curves
3.5
Input
Output
3
2.5
Voltage (V)
2
1.5
1
0.5
2.16E+1
1.92E+1
1.68E+1
1.44E+1
9.6E+0
7.2E+0
4.8E+0
0
2.4E+0
-0.5
1.2E+1
0
Time (ns)
Figure 11. Translation Down (3.3 to 1.8 V) at 150 MHz
16
Copyright © 2014, Texas Instruments Incorporated
LSF0204, LSF0204D
www.ti.com.cn
ZHCSD68A – JULY 2014 – REVISED DECEMBER 2014
12 Power Supply Recommendations
There are no power sequence requirements for the LSF Family. For enable and reference voltage guidelines,
refer to the Enable, Disable, and Reference Voltage Guidelines.
13 Layout
13.1 Layout Guidelines
Since LSF Family is switch-type level translator, the signal integrity is highly related with pull-up resistor and PCB
capacitance condition.
• Short signal trace as possible to reduce capacitance and minimize stub from pull-up resistor.
• Place LSF close to high voltage side.
• Select the appropriate pull-up resistor that applies to translation levels and driving capability of transmitter.
13.2 Layout Example
LSF0102
GND
Vref_A
A1
A2
1
2
3
4
EN
8
7
6
5
Short Signal Trace as possible
Vref_B
B1
B2
Minimize Stub as possible
Figure 12. Short Trace Layout
TP1
SD Controller
(1.8V IO)
LSF0108
SDIO level translator
SDIO Connector
(3.3V IO)
Device PCB
TP2
Figure 13. Device Placement
版权 © 2014, Texas Instruments Incorporated
17
LSF0204, LSF0204D
ZHCSD68A – JULY 2014 – REVISED DECEMBER 2014
www.ti.com.cn
Layout Example (接
接下页)
2
Time (ns)
Figure 14. Waveform From TP1 (Pullup Resistor: 160 Ω
and 50-pF Capacitance 3.3 to 1.8 V at 100 MHz)
3E+1
2.7E+1
2.4E+1
2.1E+1
0
1.8E+1
-0.5
1.5E+1
2.5E+1
2.25E+1
7.5E+0
5E+0
0
2.5E+0
-5E-1
2E+1
0
1.75E+1
0
1.5E+1
0.5
1.25E+1
5E-1
1.2E+1
1
9E+0
1E+0
1.5
6E+0
Voltage (V)
2.5
2E+0
1.5E+0
Output
Input
3
2.5E+0
1E+1
Voltage (V)
3E+0
18
3.5
Intput
Output
3E+0
3.5E+0
Time (ns)
Figure 15. Waveform From TP2 (Pullup Resistor: 160 Ω
and 50-pF Capacitance 1.8 to 3.3 V at 100 MHz)
版权 © 2014, Texas Instruments Incorporated
LSF0204, LSF0204D
www.ti.com.cn
ZHCSD68A – JULY 2014 – REVISED DECEMBER 2014
14 器件和文档支持
14.1 相关链接
以下表格列出了快速访问链接。 范围包括技术文档、支持与社区资源、工具和软件,并且可以快速访问样片或购买
链接。
表 4. 相关链接
器件
产品文件夹
样片与购买
技术文档
工具与软件
支持与社区
LSF0204
请单击此处
请单击此处
请单击此处
请单击此处
请单击此处
LSF0204D
请单击此处
请单击此处
请单击此处
请单击此处
请单击此处
14.2 商标
All trademarks are the property of their respective owners.
14.3 静电放电警告
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损
伤。
14.4 术语表
SLYZ022 — TI 术语表。
这份术语表列出并解释术语、首字母缩略词和定义。
15 机械封装和可订购信息
以下页中包括机械封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不对
本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。
版权 © 2014, Texas Instruments Incorporated
19
重要声明
德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据
JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售
都遵循在订单确认时所提供的TI 销售条款与条件。
TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使
用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。
TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,
客户应提供充分的设计与操作安全措施。
TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权
限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用
此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。
对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行
复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。
在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明
示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。
客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法
律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障
及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而
对 TI 及其代理造成的任何损失。
在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用
的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。
TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。
只有那些 TI 特别注明属于军用等级或“增强型塑料”的 TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面
向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有
法律和法规要求。
TI 已明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要
求,TI不承担任何责任。
产品
应用
数字音频
www.ti.com.cn/audio
通信与电信
www.ti.com.cn/telecom
放大器和线性器件
www.ti.com.cn/amplifiers
计算机及周边
www.ti.com.cn/computer
数据转换器
www.ti.com.cn/dataconverters
消费电子
www.ti.com/consumer-apps
DLP® 产品
www.dlp.com
能源
www.ti.com/energy
DSP - 数字信号处理器
www.ti.com.cn/dsp
工业应用
www.ti.com.cn/industrial
时钟和计时器
www.ti.com.cn/clockandtimers
医疗电子
www.ti.com.cn/medical
接口
www.ti.com.cn/interface
安防应用
www.ti.com.cn/security
逻辑
www.ti.com.cn/logic
汽车电子
www.ti.com.cn/automotive
电源管理
www.ti.com.cn/power
视频和影像
www.ti.com.cn/video
微控制器 (MCU)
www.ti.com.cn/microcontrollers
RFID 系统
www.ti.com.cn/rfidsys
OMAP应用处理器
www.ti.com/omap
无线连通性
www.ti.com.cn/wirelessconnectivity
德州仪器在线技术支持社区
www.deyisupport.com
IMPORTANT NOTICE
邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122
Copyright © 2014, 德州仪器半导体技术(上海)有限公司
PACKAGE OPTION ADDENDUM
www.ti.com
21-Apr-2015
PACKAGING INFORMATION
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
Lead/Ball Finish
MSL Peak Temp
(2)
(6)
(3)
Op Temp (°C)
Device Marking
(4/5)
LSF0204DPWR
ACTIVE
TSSOP
PW
14
2000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
-40 to 125
LSF204D
LSF0204DRGYR
ACTIVE
VQFN
RGY
14
3000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
-40 to 125
LSF24D
LSF0204DRUTR
ACTIVE
UQFN
RUT
12
3000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
SIO
LSF0204DYZPR
ACTIVE
DSBGA
YZP
12
3000
Green (RoHS
& no Sb/Br)
SNAGCU
Level-1-260C-UNLIM
-40 to 125
G6
LSF0204PWR
ACTIVE
TSSOP
PW
14
2000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
-40 to 125
LSF204
LSF0204RGYR
ACTIVE
VQFN
RGY
14
3000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-2-260C-1 YEAR
-40 to 125
LSF24
LSF0204RUTR
ACTIVE
UQFN
RUT
12
3000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
SIN
LSF0204YZPR
ACTIVE
DSBGA
YZP
12
3000
Green (RoHS
& no Sb/Br)
SNAGCU
Level-1-260C-UNLIM
-40 to 125
G5
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
(3)
MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
Addendum-Page 1
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
(4)
21-Apr-2015
There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
(5)
Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation
of the previous line and the two combined represent the entire Device Marking for that device.
(6)
Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish
value exceeds the maximum column width.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
Addendum-Page 2
PACKAGE MATERIALS INFORMATION
www.ti.com
17-Jun-2015
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device
LSF0204DPWR
Package Package Pins
Type Drawing
SPQ
Reel
Reel
A0
Diameter Width (mm)
(mm) W1 (mm)
B0
(mm)
K0
(mm)
P1
(mm)
W
Pin1
(mm) Quadrant
TSSOP
PW
14
2000
330.0
12.4
6.9
5.6
1.6
8.0
12.0
Q1
LSF0204DRGYR
VQFN
RGY
14
3000
330.0
12.4
3.75
3.75
1.15
8.0
12.0
Q1
LSF0204DRUTR
UQFN
RUT
12
3000
180.0
9.5
1.9
2.3
0.75
4.0
8.0
Q1
LSF0204DYZPR
DSBGA
YZP
12
3000
180.0
8.4
1.63
2.08
0.69
4.0
8.0
Q2
LSF0204PWR
TSSOP
PW
14
2000
330.0
12.4
6.9
5.6
1.6
8.0
12.0
Q1
LSF0204RGYR
VQFN
RGY
14
3000
330.0
12.4
3.75
3.75
1.15
8.0
12.0
Q1
LSF0204RUTR
UQFN
RUT
12
3000
180.0
9.5
1.9
2.3
0.75
4.0
8.0
Q1
LSF0204YZPR
DSBGA
YZP
12
3000
180.0
8.4
1.63
2.08
0.69
4.0
8.0
Q2
Pack Materials-Page 1
PACKAGE MATERIALS INFORMATION
www.ti.com
17-Jun-2015
*All dimensions are nominal
Device
Package Type
Package Drawing
Pins
SPQ
Length (mm)
Width (mm)
Height (mm)
LSF0204DPWR
LSF0204DRGYR
TSSOP
PW
14
2000
364.0
364.0
27.0
VQFN
RGY
14
3000
367.0
367.0
35.0
LSF0204DRUTR
UQFN
RUT
12
3000
184.0
184.0
19.0
LSF0204DYZPR
DSBGA
YZP
12
3000
182.0
182.0
20.0
LSF0204PWR
TSSOP
PW
14
2000
364.0
364.0
27.0
LSF0204RGYR
VQFN
RGY
14
3000
367.0
367.0
35.0
LSF0204RUTR
UQFN
RUT
12
3000
184.0
184.0
19.0
LSF0204YZPR
DSBGA
YZP
12
3000
182.0
182.0
20.0
Pack Materials-Page 2
D: Max = 1.972 mm, Min =1.912 mm
E: Max = 1.472 mm, Min =1.412 mm
IMPORTANT NOTICE
重要声明
德州仪器 (TI) 公司有权按照最新发布的 JESD46 对其半导体产品和服务进行纠正、增强、改进和其他修改,并不再按最新发布的 JESD48 提
供任何产品和服务。买方在下订单前应获取最新的相关信息,并验证这些信息是否完整且是最新的。
TI 公布的半导体产品销售条款 (http://www.ti.com/sc/docs/stdterms.htm) 适用于 TI 已认证和批准上市的已封装集成电路产品的销售。另有其
他条款可能适用于其他类型 TI 产品及服务的使用或销售。
复制 TI 数据表上 TI 信息的重要部分时,不得变更该等信息,且必须随附所有相关保证、条件、限制和通知,否则不得复制。TI 对该等复制文
件不承担任何责任。第三方信息可能受到其它限制条件的制约。在转售 TI 产品或服务时,如果存在对产品或服务参数的虚假陈述,则会失去
相关 TI 产品或服务的明示或暗示保证,且构成不公平的、欺诈性商业行为。TI 对此类虚假陈述不承担任何责任。
买方和在系统中整合 TI 产品的其他开发人员(总称“设计人员”)理解并同意,设计人员在设计应用时应自行实施独立的分析、评价和判断,且
应全权 负责并确保 应用的安全性, 及设计人员的 应用 (包括应用中使用的所有 TI 产品)应符合所有适用的法律法规及其他相关要求。设计
人员就自己设计的 应用声明,其具备制订和实施下列保障措施所需的一切必要专业知识,能够 (1) 预见故障的危险后果,(2) 监视故障及其后
果,以及 (3) 降低可能导致危险的故障几率并采取适当措施。设计人员同意,在使用或分发包含 TI 产品的任何 应用前, 将彻底测试该等 应用
和 该等应用中所用 TI 产品的 功能。
TI 提供技术、应用或其他设计建议、质量特点、可靠性数据或其他服务或信息,包括但不限于与评估模块有关的参考设计和材料(总称“TI 资
源”),旨在帮助设计人员开发整合了 TI 产品的 应用, 如果设计人员(个人,或如果是代表公司,则为设计人员的公司)以任何方式下载、
访问或使用任何特定的 TI 资源,即表示其同意仅为该等目标,按照本通知的条款使用任何特定 TI 资源。
TI 所提供的 TI 资源,并未扩大或以其他方式修改 TI 对 TI 产品的公开适用的质保及质保免责声明;也未导致 TI 承担任何额外的义务或责任。
TI 有权对其 TI 资源进行纠正、增强、改进和其他修改。除特定 TI 资源的公开文档中明确列出的测试外,TI 未进行任何其他测试。
设计人员只有在开发包含该等 TI 资源所列 TI 产品的 应用时, 才被授权使用、复制和修改任何相关单项 TI 资源。但并未依据禁止反言原则或
其他法理授予您任何TI知识产权的任何其他明示或默示的许可,也未授予您 TI 或第三方的任何技术或知识产权的许可,该等产权包括但不限
于任何专利权、版权、屏蔽作品权或与使用TI产品或服务的任何整合、机器制作、流程相关的其他知识产权。涉及或参考了第三方产品或服务
的信息不构成使用此类产品或服务的许可或与其相关的保证或认可。使用 TI 资源可能需要您向第三方获得对该等第三方专利或其他知识产权
的许可。
TI 资源系“按原样”提供。TI 兹免除对资源及其使用作出所有其他明确或默认的保证或陈述,包括但不限于对准确性或完整性、产权保证、无屡
发故障保证,以及适销性、适合特定用途和不侵犯任何第三方知识产权的任何默认保证。TI 不负责任何申索,包括但不限于因组合产品所致或
与之有关的申索,也不为或对设计人员进行辩护或赔偿,即使该等产品组合已列于 TI 资源或其他地方。对因 TI 资源或其使用引起或与之有关
的任何实际的、直接的、特殊的、附带的、间接的、惩罚性的、偶发的、从属或惩戒性损害赔偿,不管 TI 是否获悉可能会产生上述损害赔
偿,TI 概不负责。
除 TI 已明确指出特定产品已达到特定行业标准(例如 ISO/TS 16949 和 ISO 26262)的要求外,TI 不对未达到任何该等行业标准要求而承担
任何责任。
如果 TI 明确宣称产品有助于功能安全或符合行业功能安全标准,则该等产品旨在帮助客户设计和创作自己的 符合 相关功能安全标准和要求的
应用。在应用内使用产品的行为本身不会 配有 任何安全特性。设计人员必须确保遵守适用于其应用的相关安全要求和 标准。设计人员不可将
任何 TI 产品用于关乎性命的医疗设备,除非已由各方获得授权的管理人员签署专门的合同对此类应用专门作出规定。关乎性命的医疗设备是
指出现故障会导致严重身体伤害或死亡的医疗设备(例如生命保障设备、心脏起搏器、心脏除颤器、人工心脏泵、神经刺激器以及植入设
备)。此类设备包括但不限于,美国食品药品监督管理局认定为 III 类设备的设备,以及在美国以外的其他国家或地区认定为同等类别设备的
所有医疗设备。
TI 可能明确指定某些产品具备某些特定资格(例如 Q100、军用级或增强型产品)。设计人员同意,其具备一切必要专业知识,可以为自己的
应用选择适合的 产品, 并且正确选择产品的风险由设计人员承担。设计人员单方面负责遵守与该等选择有关的所有法律或监管要求。
设计人员同意向 TI 及其代表全额赔偿因其不遵守本通知条款和条件而引起的任何损害、费用、损失和/或责任。
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122
Copyright © 2017 德州仪器半导体技术(上海)有限公司