0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
LSF0204PWR

LSF0204PWR

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    TSSOP14_5X4.4MM

  • 描述:

    用于开漏和推挽应用的4位双向多电压电平转换器

  • 数据手册
  • 价格&库存
LSF0204PWR 数据手册
Product Folder Sample & Buy Tools & Software Technical Documents Support & Community LSF0204, LSF0204D ZHCSD68A – JULY 2014 – REVISED DECEMBER 2014 LSF0204x 适用于漏极开路和推挽应用的 4 位双向多电压电平转换器 1 特性 • • • • 1 • • • • • • • • • 用无方向端子提供双向电压转换 最大传播延迟少于 1.5ns 支持高速转换,大于 100MHz 支持 Ioff,局部断电模式(请参见Feature Description) 可实现以下电压之间的双向电压电平转换 – 1.0V ↔ 1.8/2.5/3.3/5V – 1.2V ↔ 1.8/2.5/3.3/5V – 1.8V ↔ 2.5/3.3/5V – 2.5V ↔ 3.3/5V – 3.3V ↔ 5V 低待机电流 支持 TTL 的 5V 耐受 I/O 端口 低导通电阻 Ron 提供较少的信号失真 针对 EN 为低电平的高阻抗 I/O 端子 直通引脚分配以简化印刷电路板 (PCB) 走线路由 锁断性能超过 100mA,符合 JESD17 规范 -40°C 至 125°C 工作温度范围 静电放电 (ESD) 性能测试符合 JESD 22 规范 – 2000V 人体模型(A114-B,II 类) – 200V 机器模型 (A115-A) – 1000V 充电器件模型 (C101) 3 说明 LSF 系列是工作电压介于 1.0V 至 4.5V (Vref_A) 和 1.8V 至 5.5V (Vref_B) 之间的双向电压电平转换器。 此器件在无需方向端子的条件下便可在开漏或推挽应用 中实现 1.0V 至 5.0V 的双向电压转换。 对于采用 15pF 电容器和 165Ω 上拉电阻器的开漏系统,LSF 系 列支持传输速度大于 100MHz 电平转换应用。 当 An 或 Bn 端口为低电平时,此开关处于接通状态, 并且在 An 和 Bn 端口之间存在一个低电阻连接。 开关 的低 Ron 可用最小传播延迟和信号失真来实现连接。 A 端或 B 端的电压将限制为 Vref_A,且可上拉至 Vref_A 到 5V 之间的任何电压水平。利用此功能,可 在无需方向控制的情况下实现用户选择的较高和较低电 压间的无缝转换。 器件信息(1) 器件型号 封装 LSF0204x 封装尺寸(标称值) 薄型小外形尺寸封装 (TSSOP) (14) 5.00mm x 4.40mm UQFN (12) 2.00mm × 1.70mm VQFN (14) 3.50mm x 3.50mm DSBGA (12) 1.90mm × 1.40mm (1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。 简化电路原理图 2 应用 • • • • GPIO,MDIO,PMBus,SMBus,SDIO,UART ,I2C,和其他电信基础设施中的接口 工业用 汽车用 个人计算 Vref_B Vref_A LSF0204 EN A1 SW B1 A2 SW B2 A3 SW B3 A4 SW B4 GND 1 PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. English Data Sheet: SLVSCP5 LSF0204, LSF0204D ZHCSD68A – JULY 2014 – REVISED DECEMBER 2014 www.ti.com.cn 目录 1 2 3 4 5 6 7 8 特性 .......................................................................... 应用 .......................................................................... 说明 .......................................................................... 修订历史记录 ........................................................... Description (Continued) ........................................ Device Comparison Table..................................... Pin Configuration and Functions ......................... Specifications......................................................... 1 1 1 2 3 3 3 4 8.1 8.2 8.3 8.4 8.5 8.6 4 4 4 4 5 Absolute Maximum Ratings ...................................... ESD Ratings.............................................................. Recommended Operating Conditions....................... Thermal Information ................................................. Electrical Characteristics........................................... Switching Characteristics: AC Performance (Translating Down, 3.3 V to 1.8 V) ........................... 8.7 Switching Characteristics: AC Performance (Translating Down, 3.3 V to 1.2 V) ........................... 8.8 Switching Characteristics: AC Performance (Translating Up, 1.8 V to 3.3 V) ................................ 8.9 Switching Characteristics: AC Performance (Translating Up, 1.2 V to 1.8 V) ................................ 5 8.10 Typical Characteristics ............................................ 6 9 Parameter Measurement Information .................. 7 9.1 Load Circuit AC Waveform for Outputs .................... 8 10 Detailed Description ............................................. 9 10.1 10.2 10.3 10.4 Overview ................................................................. 9 Functional Block Diagram ....................................... 9 Feature Description............................................... 10 Device Functional Modes...................................... 10 11 Application and Implementation........................ 11 11.1 Application Information.......................................... 11 11.2 I2C PMBus, SMBus, GPIO, Application................ 11 12 Power Supply Recommendations ..................... 17 13 Layout................................................................... 17 13.1 Layout Guidelines ................................................. 17 13.2 Layout Example .................................................... 17 14 器件和文档支持 ..................................................... 19 6 6 6 14.1 14.2 14.3 14.4 相关链接................................................................ 商标 ....................................................................... 静电放电警告......................................................... 术语表 ................................................................... 19 19 19 19 15 机械封装和可订购信息 .......................................... 19 4 修订历史记录 Changes from Original (November 2014) to Revision A Page • 从首页产品预览更改为完整数据表 .......................................................................................................................................... 1 • 已将说明中的文本从“传输速度大于 100Mbps”改为“传输速度大于 100MHz” .......................................................................... 1 2 Copyright © 2014, Texas Instruments Incorporated LSF0204, LSF0204D www.ti.com.cn ZHCSD68A – JULY 2014 – REVISED DECEMBER 2014 5 Description (Continued) The supply voltage (Vpu#) for each channel can be individually set up with a pull up resistor. For example, CH1 can be used in up-translation mode (1.2 V ↔ 3.3 V) and CH2 in down-translation mode (2.5 V ↔ 1.8 V). When EN is HIGH, the translator switch is on, and the An I/O is connected to the Bn I/O, respectively, allowing bidirectional data flow between ports. When EN is LOW, the translator switch is off, and a high-impedance state exists between ports. The EN input circuit is designed to be supplied by Vref_A. To ensure the high-impedance state during power-up or power-down, EN must be LOW. 6 Device Comparison Table PART NUMBER EN An Bn DESCRIPTION LSF0204D H Place all data pins in 3 state mode (Hi-Z) Place all data pins in 3 state mode (Hi-Z) LSF0204D L Input or output Input or output LSF0204 H Input or output Input or output L Place all data pins in 3 state mode (Hi-Z) Place all data pins in 3 state mode (Hi-Z) LSF0204 3-state output mode enable (active Low; referenced to Vref_A) 3-state output mode enable (active High, referenced to Vref_A) 7 Pin Configuration and Functions PW Package (TOP VIEW) RGY Package (TOP VIEW) RUT Package (TOP VIEW) EN Vref_A 1 A1 2 A2 3 14 Vref_B Vref_A 1 12 11 Vref_B B1 13 B1 A1 2 10 12 B2 A2 A3 A4 3 9 B2 A1 4 8 B3 B4 Vref_A Vref_B 1 14 2 13 B1 A2 3 12 A3 4 11 B2 B3 A3 4 11 B3 A4 5 10 B4 NC 6 9 NC A4 5 10 B4 GND 7 8 EN NC 6 9 NC 5 6 7 GND 7 8 GND EN Pin Functions PIN DESCRIPTION An/Bn Data Port EN Switch enable input; LSF0204: EN is high-active LSF0204D: EN is low-active Vref_A Reference supply voltage; see Application and Implementation section Vref_B Reference supply voltage; see Application and Implementation section. Copyright © 2014, Texas Instruments Incorporated 3 LSF0204, LSF0204D ZHCSD68A – JULY 2014 – REVISED DECEMBER 2014 www.ti.com.cn 8 Specifications 8.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted) (1) MIN Input voltage range (2) VI VI/O Input/output voltage range MAX –0.5 (2) –0.5 7 Continuous channel current IIK Input clamp current Tstg Storage temperature range (1) (2) UNIT 7 VI < 0 –65 V V 128 mA –50 mA 150 °C Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The input and input/output negative-voltage ratings may be exceeded if the input and input/output clamp-current ratings are observed. 8.2 ESD Ratings VALUE V(ESD) (1) (2) Electrostatic discharge UNIT Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1) ±2000 Charged-device model (CDM), per JEDEC specification JESD22C101 (2) ±1000 V JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 500-V HBM is possible with the necessary precautions. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 250-V CDM is possible with the necessary precautions. 8.3 Recommended Operating Conditions over operating free-air temperature range (unless otherwise noted) MIN MAX VI/O Input/output voltage 0 5 Vref_A/B/EN Reference voltage 0 IPASS Pass transistor current TA Operating free-air temperature –40 UNIT V 5 V 64 mA 125 °C 8.4 Thermal Information THERMAL METRIC (1) LSF0204 RGY (14 Pins) RUT (12 Pins) PW (14 PIns) 157.9 RθJA Junction-to-ambient thermal resistance 83.2 195.8 RθJC(top) Junction-to-case (top) thermal resistance 98.2 98.7 82.3 RθJB Junction-to-board thermal resistance 59.2 122.6 100.0 ψJT Junction-to-top characterization parameter 17.4 6.2 22.9 ψJB Junction-to-board characterization parameter 59.4 122.6 99.0 RθJC(bot) Junction-to-case (bottom) thermal resistance 38.7 N/A N/A (1) 4 UNIT °C For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953. Copyright © 2014, Texas Instruments Incorporated LSF0204, LSF0204D www.ti.com.cn ZHCSD68A – JULY 2014 – REVISED DECEMBER 2014 8.5 Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP (1) MAX UNIT VIK II = -18 mA, VEN = 0 –1.2 V IIH VI = 5 V VEN = 0 5.0 µA ICCBA Leakage from Vref_B to Vref_A Vref_B = 3.3 V, Vref_A = 1.8 V, VEN = Vref_A IO = 0, VI = 3.3 V or GND 3.5 µA ICCA + ICCB (2) Total Current through GND Vref_B = 3.3 V, Vref_A = 1.8 V, VEN = Vref_A IO = 0, VI = 3.3 V or GND IIN Control pin current Vref_B = 5.5 V, Vref_A = 4.5 V, VEN = 0 to Vref_A IO = 0 ±1 µA Ioff Power Off Leakage Current Vref_B = Vref_A = 0 V, VEN = GND IO = 0, VI = 5 V or GND ±1 µA CI(ref_A/B/EN) VI = 3 V or 0 Cio(off) VO = 3 V or 0, VEN = 0 Cio(on) VO = 3 V or 0, VEN = Vref_A VIH (EN pin) High-level input voltage (3) Vref_A = 1.5 V to 4.5 V VIL (EN pin) Low-level input voltage Vref_A = 1.5 V to 4.5 V VIH (EN pin) High-level input voltage Vref_A= 1.0 V to 1.5 V VIL (EN pin) Low-level input voltage Vref_A = 1.0 V to 1.5 V ∆t/∆v (EN pin) Input transition rise or fall rate for EN pin ron (1) (2) (3) (4) (4) 0.2 µA 7 pF 5.0 6.0 pF 10.5 13 pF 0.7×Vref_A V 0.3×Vref_A 0.8×Vref_A V V 0.3×Vref_A 10 V ns/V Vref_A = VEN = 3.3 V; Vref_B = 5 V 3 Vref_A = VEN = 1.8 V; Vref_B = 5 V 4 Vref_A = VEN = 1.0 V; Vref_B = 5 V 9 Vref_A = VEN = 1.8 V; Vref_B = 5 V 4 IO = 32 mA Vref_A = VEN = 2.5 V; Vref_B = 5 V 10 Ω IO = 15 mA Vref_A = VEN = 3.3 V; Vref_B = 5 V 5 Ω VI = 1.0 V, IO = 10 mA Vref_A = VEN = 1.8 V; Vref_B = 3.3 V 8 Ω VI = 0 V, IO = 10 mA Vref_A = VEN = 1.0 V; Vref_B = 3.3 V 6 Ω VI = 0 V, IO = 10 mA Vref_A = VEN = 1.0 V; Vref_B = 1.8 V 6 Ω VI = 0, IO = 64 mA VI = 0, IO = 32 mA VI = 0, VI = 1.8 V, Ω Ω All typical values are at TA = 25°C. The actual supply current for LSF0204 is ICCA + ICCB; the leakage from Vref_B to Vref_A can be measured on Vref_A and Vref_B pin Enable pin test conditions are for the LSF0204. The enable pin test conditions for LSF0204D are oppositely set. Measured by the voltage drop between the A and B terminals at the indicated current through the switch. On-state resistance is determined by the lowest voltage of the two (A or B) terminals. 8.6 Switching Characteristics: AC Performance (Translating Down, 3.3 V to 1.8 V) over recommended operating free-air temperature range, Vrev-A = 1.8 V, Vrev-B = 3.3 V, VEN = 1.8 V, Vpu_1 = 3.3 V, Vpu_2 = 1.8 V, RL = NA, VIH = 3.3 V, VIL = 0 VM = 1.15 V (unless otherwise noted) PARAMETER FROM (INPUT) TO (OUTPUT) CL = 50 pF CL = 30 pF CL = 15 pF UNIT TYP MAX TYP MAX TYP MAX 0.7 5.49 0.5 5.29 0.3 5.19 ns 0.9 4.9 0.7 4.7 0.5 4.5 ns 13 18 12 16.5 11 15 ns tPZL 33 45 30 40 23 37 fMAX 50 tPLH tPHL tPLZ A or B B or A Copyright © 2014, Texas Instruments Incorporated 100 100 ns MHz 5 LSF0204, LSF0204D ZHCSD68A – JULY 2014 – REVISED DECEMBER 2014 www.ti.com.cn 8.7 Switching Characteristics: AC Performance (Translating Down, 3.3 V to 1.2 V) over recommended operating free-air temperature range Vrev-A = 1.2 V, Vrev-B = 3.3 V, VEN = 1.2 V, Vpu_1 = 3.3 V, Vpu_2 = 1.2 V, RL = NA, VIH = 3.3V, VIL = 0 VM = 0.85 V (unless otherwise noted) PARAMETER FROM (INPUT) TO (OUTPUT) A or B B or A tPLH tPHL fMAX CL = 50 pF CL = 30 pF CL = 15 pF TYP MAX TYP MAX TYP MAX 0.8 4.1 0.5 3.9 0.3 3.8 0.9 4.7 0.7 4.5 0.6 4.3 50 100 100 UNIT ns ns MHz 8.8 Switching Characteristics: AC Performance (Translating Up, 1.8 V to 3.3 V) over recommended operating free-air temperature range Vrev-A = 1.8 V, Vrev-B = 3.3 V, VEN = 1.8 V, Vpu_1 = 3.3 V, Vpu_2 = 1.8V, RL = 500 Ω, VIH = 1.8V, VIL = 0 VM = 0.9V (unless otherwise noted) PARAMETER FROM (INPUT) TO (OUTPUT) CL = 50 pF CL = 30 pF CL = 15 pF UNIT TYP MAX TYP MAX TYP MAX tPLH 0.6 5.7 0.4 5.3 0.2 5.13 ns tPHL 1.3 6.7 1 6.4 0.7 5.3 ns 13 18 12 16.5 11 15 ns tPZL 33 45 30 40 23 37 ns fMAX 50 tPLZ A or B B or A 100 100 MHz 8.9 Switching Characteristics: AC Performance (Translating Up, 1.2 V to 1.8 V) over recommended operating free-air temperature range, Vrev-A = 1.2 V, Vrev-B = 1.8 V, VEN = 1.2 V, Vpu_1 = 1.8 V, Vpu_2 = 1.2 V, RL = 500 Ω, VIH = 1.2V, VIL = 0 VM = 0.6 V (unless otherwise noted) PARAMETER FROM (INPUT) TO (OUTPUT) A or B B or A tPLH tPHL fMAX CL = 50 pF CL = 30 pF CL = 15 pF UNIT TYP MAX TYP MAX TYP MAX 0.65 7.25 0.4 7.05 0.2 6.85 ns 1.6 7.03 1.3 6.5 1 5.4 ns 50 100 100 MHz 8.10 Typical Characteristics 4 Input Output 3.5 3 Voltage (V) 2.5 2 1.5 1 0.5 0 -0.5 0 5 10 Time (ns) 15 20 Figure 1. Signal Integrity (1.8 V to 3.3 V Translation Up at 50 MHz) 6 Copyright © 2014, Texas Instruments Incorporated LSF0204, LSF0204D www.ti.com.cn ZHCSD68A – JULY 2014 – REVISED DECEMBER 2014 9 Parameter Measurement Information VT RL USAGE SWITCH Translating up Translating down S1 S2 S1 Open From Output Under Test S2 3.3 V Input VM VM VIL CL (see Note A) 5V Output VM VM LOAD CIRCUIT VOL TRANSLATING UP 5V Input VM VM VIL 2V Output VM VM VOL TRANSLATING DOWN NOTES: A. CL includes probe and jig capacitance. B. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, ZO = 50 Ω, tr ≤ 2 ns, tf ≤ 2 ns. C. The outputs are measured one at a time, with one transition per measurement. Figure 2. Load Circuit for Outputs Vref_B S1 500 Ω Open From Output Under Test 15 pF TEST S1 tPZL/tPLZ Vref_B Figure 3. Load Circuit for Enable/Disable Time Measurement Copyright © 2014, Texas Instruments Incorporated 7 LSF0204, LSF0204D ZHCSD68A – JULY 2014 – REVISED DECEMBER 2014 www.ti.com.cn 9.1 Load Circuit AC Waveform for Outputs tr 2.0 ns tf 2.0 ns VCCA 90% Input (An, Bn) 50% 10% GND VOH Output (Bn, An) VOL tpLH tpHL Figure 4. tPLH, tPHL tr 2.0 ns tf 2.0 ns VCCA 90% Output Enabled Control OE, OE 50% 10% GND tpLZ tpZL VOH Output (An or Bn) Low to off to Low 50% 10% Outputs enabled Outputs disabled Outputs enabled Figure 5. tPLZ, tPZL 8 Copyright © 2014, Texas Instruments Incorporated LSF0204, LSF0204D www.ti.com.cn ZHCSD68A – JULY 2014 – REVISED DECEMBER 2014 10 Detailed Description 10.1 Overview The LSF Family can be used in level translation applications for interfacing devices or systems operating at different interface voltages with one another. The LSF Family is ideal for use in applications where an open-drain driver is connected to the data I/Os. With appropriate pull-up resistors and layout, LSF can achieve 100 MHz. The LSF Family can also be used in applications where a push-pull driver is connected to the data I/Os. 10.2 Functional Block Diagram LSF0204 200 KΩ Vref_B Vref_A Level Converter EN A1 B1 A2 B2 A3 B3 A4 B4 Copyright © 2014, Texas Instruments Incorporated 9 LSF0204, LSF0204D ZHCSD68A – JULY 2014 – REVISED DECEMBER 2014 www.ti.com.cn 10.3 Feature Description 10.3.1 Support High Speed Translation, Greater than 100 MHz Allows the LSF family to support more consumer or telecom interfaces (MDIO or SDIO). 10.3.2 Bidirectional Voltage Translation Without DIR Terminal Minimizes system effort to develop voltage translation for bidirectional interface (PMBus, I2C, or SMbus). 10.3.3 5V Tolerance on IO Port and 125°C Support With 5 V tolerance and 125°C support, the LSF family is flexible and compliant with TTL levels in industrial and telecom applications. 10.3.4 Channel Specific Translation The LSF family is able to set up different voltage translation levels on each channel. 10.3.5 Ioff, Partial Power Down Mode When Vref_A, Vref_B = 0, all of data pins and EN pin are Hi-Z. Since EN logic circuit is supplied by Vref_A, once Vref_A power up first, all of data pins are unknown state until Vref_B and EN ready. No power sequence requirement to enable LSF0204 and operate function normally. 10.4 Device Functional Modes Function Table (1) 10 INPUT EN (1) TERMINAL FUNCTION H An = Bn L Hi-Z EN is controlled by Vref_A logic levels. Copyright © 2014, Texas Instruments Incorporated LSF0204, LSF0204D www.ti.com.cn ZHCSD68A – JULY 2014 – REVISED DECEMBER 2014 11 Application and Implementation NOTE Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality. 11.1 Application Information LSF is able to perform voltage translation for open-drain or push-pull interface. Table 1 provides some consumer/telecom interfaces as reference in regards to the different channel numbers that are supported by the LSF family. Table 1. Voltage Translator for Consumer/Telecom Interface PART NAME CH# INTERFACE LSF0101 1 GPIO LSF0102 2 GPIO, MDIO, SMBus, PMBus, I2C LSF0204 4 SPI. MDIO, SMBus, PMBus, I2C, UART, SVID LSF0108 8 GPIO, MDIO, SDIO, SVID, UART, SMBus, PMBus, I2C, SPI 11.2 I2C PMBus, SMBus, GPIO, Application Vpu_1 = 3.3 V Vpu_2 = 1.8 V Vrev_A = 1.8 V Vrev_B = 3.3 V 1.8 V enable signal ON LSF0204 Rpu SDA SCL A2 A3 A4 Rpu Rpu EN Rpu A1 Vcc Off SW SW SW SW B1 B2 Vcc SDA SCL B3 B4 GND Figure 6. Bidirectional Translation to Multiple Voltage Levels 11.2.1 Design Requirements 11.2.1.1 Enable, Disable, and Reference Voltage Guidelines The LSF family has an EN input that is used to disable the device by setting EN LOW, which places all I/Os in the high-impedance state. Since LSF family is switch-type voltage translator, the power consumption is very low. It is recommended to always enable LSF family for bidirectional application (I2C, SMBus, PMBus, or MDIO). Copyright © 2014, Texas Instruments Incorporated 11 LSF0204, LSF0204D ZHCSD68A – JULY 2014 – REVISED DECEMBER 2014 www.ti.com.cn I2C PMBus, SMBus, GPIO, Application (continued) Table 2. Application Operating Condition SYMBOL MAX UNIT Vref_A Reference voltage (A) 1 4.5 V Vref_B Reference voltage (B) Vref_A + 0.8 5.5 V Input voltage on EN terminal 0 Vref_A V Pull-up supply voltage 0 Vref_B V VI(EN) (1) Vpu (1) PARAMETER MIN TYP Refer VIH and VIL for VI(EN) Also Vref_B is recommended to be at 1.0 V higher than Vref_A for best signal integrity. LSF Family is able to set different voltage translation level on each channel NOTE Vref_A must be set as lowest voltage level. 11.2.2 Detailed Design Procedure 11.2.2.1 Bidirectional Translation The master output driver can be push-pull or open-drain (pull-up resistors may be required) and the slave device output can be push-pull or open-drain (pull-up resistors are required to pull the Bn outputs to Vpu). However, if either output is push-pull, data must be unidirectional or the outputs must be 3-state and be controlled by some direction-control mechanism to prevent HIGH-to-LOW contentions in either direction. If both outputs are open-drain, no direction control is needed. In Figure 6, the reference supply voltage (Vref_A) is connected to the processor core power supply voltage. When Vref_B is connected through to a 3.3 V Vpu power supply, and Vref_A is set 1.0V. The output of A3 and B4 has a maximum output voltage equal to Vref_A, and the bidirectional interface (Ch1/2, MDIO) has a maximum output voltage equal to Vpu. 11.2.2.1.1 Pull-up Resistor Sizing The pull-up resistor value needs to limit the current through the pass transistor when it is in the ON state to about 15 mA. This ensures a pass voltage of 260 mV to 350 mV. If the current through the pass transistor is higher than 15 mA, the pass voltage also is higher in the ON state. To set the current through each pass transistor at 15 mA, to calculate the pull-up resistor value use Equation 1. Rpu = (Vpu – 0.35 V) / 0.015 A (1) Table 3 summarizes resistor values, reference voltages, and currents at 15 mA, 10 mA, and 3 mA. The resistor value shown in the +10% column (or a larger value) should be used to ensure that the pass voltage of the transistor is 350 mV or less. The external driver must be able to sink the total current from the resistors on both sides of the LSF family device at 0.175 V, although the 15 mA applies only to current flowing through the LSF family device. 12 Copyright © 2014, Texas Instruments Incorporated LSF0204, LSF0204D www.ti.com.cn ZHCSD68A – JULY 2014 – REVISED DECEMBER 2014 Table 3. Pull-up Resistor Values (1) (2) PULL-UP RESISTOR VALUE (Ω) VDPU (1) (2) (3) 15 mA 10 mA NOMINAL +10% (3) 3 mA NOMINAL +10% (3) NOMINAL +10% (3) 5V 310 341 465 512 1550 1705 3.3 V 197 217 295 325 983 1082 2.5 V 143 158 215 237 717 788 1.8 V 97 106 145 160 483 532 1.5 V 77 85 115 127 383 422 1.2 V 57 63 85 94 283 312 Calculated for VOL = 0.35 V Assumes output driver VOL = 0.175 V at stated current +10% to compensate for VDD range and resistor tolerance 11.2.2.2 LS Family Bandwidth The maximum frequency of the LSF family is dependent on the application. The device can operate at speeds of >100MHz gave the correct conditions. The maximum frequency is dependent upon the loading of the application. The LSF family behaves like a standard switch where the bandwidth of the device is dictated by the on resistance and on capacitance of the device. Figure 7 shows a bandwidth measurement of the LSF family using a two-port network analyzer. 0 –1 –2 Gain (dB) –3 –4 –5 –6 –7 –8 –9 0.1 1 10 100 Frequency (MHz) 1000 Figure 7. 3-dB Bandwidth The 3-dB point of the LSF family is ≈600MHz; however, this measurement is an analog type of measurement. For digital applications the signal should not degrade up to the fifth harmonic of the digital signal. The frequency bandwidth should be at least five times the maximum digital clock rate. This component of the signal is very important in determining the overall shape of the digital signal. In the case of the LSF family, a digital clock frequency of greater than 100 MHz can be achieved. The LSF family does not provide any drive capability. Therefore higher frequency applications will require higher drive strength from the host side. No pull-up resistor is needed on the host side (3.3 V) if the LSF family is being driven by standard CMOS totem pole output driver. Ideally, it is best to minimize the trace length from the LSF family on the sink side (1.8 V) to minimize signal degradation. All fast edges have an infinite spectrum of frequency components; however, there is an inflection (or "knee") in the frequency spectrum of fast edges where frequency components higher than fknee are insignificant in determining the shape of the signal. Copyright © 2014, Texas Instruments Incorporated 13 LSF0204, LSF0204D ZHCSD68A – JULY 2014 – REVISED DECEMBER 2014 www.ti.com.cn To calculate the maximum "practical" frequency component, or the "knee" frequency (fknee), use the following equations: fknee = 0.5/RT (10–80%) fknee = 0.4/RT (20–80%) (2) (3) For signals with rise time characteristics based on 10- to 90-percent thresholds, fknee is equal to 0.5 divided by the rise time of the signal. For signals with rise time characteristics based on 20% to 80% thresholds, which is very common in many of today's device specifications, fknee is equal to 0.4 divided by the rise time of the signal. Some guidelines to follow that will help maximize the performance of the device: • Keep trace length to a minimum by placing the LSF family close to the I2C output of the processor. • The trace length should be less than half the time of flight to reduce ringing and line reflections or nonmonotonic behavior in the switching region. • To reduce overshoots, a pull-up resistor can be added on the 1.8 V side; be aware that a slower fall time is to be expected. 11.2.3 Application Curve 4 Input Output Voltage (V) 3 2 1 0 ±1 0 50 100 150 200 250 300 350 Time (ns) 400 450 500 Figure 8. Captured Waveform From Above I2C Set-Up (1.8 to 3.3 V at 2.5 MHz) 14 Copyright © 2014, Texas Instruments Incorporated LSF0204, LSF0204D www.ti.com.cn ZHCSD68A – JULY 2014 – REVISED DECEMBER 2014 11.2.4 MDIO Application Vpu_1 = 3.3 V Vpu_2 = 1.0 V Vrev_A = 1.0 V Vrev_B = 3.3 V 1.0 V enable signal ON LSF0204 Rpu MDC MDIO A2 A3 A4 Rpu Rpu EN Rpu A1 Vcc Off SW SW SW SW B1 B2 Vcc MDC MDIO B3 B4 GND Figure 9. Typical Application Circuit (MDIO/Bidirectional Interface) 11.2.4.1 Design Requirements Refer to Design Requirements. 11.2.4.2 Detailed Design Procedure Refer to Detailed Design Procedure 11.2.4.3 Application Curve Input (3.3V) Output (1.0V) Figure 10. Captured Waveform From Above MDIO Setup Copyright © 2014, Texas Instruments Incorporated 15 LSF0204, LSF0204D ZHCSD68A – JULY 2014 – REVISED DECEMBER 2014 www.ti.com.cn 11.2.5 Multiple Voltage Translation in Single Device, Application Vrev_A = 1.8 V Vrev_B = 3.3 V Vpu_1 = 3.3 V Vpu_2 = 1.8 V 1.8 V enable signal ON LSF0204 Rpu Rpu Off A1 Vcc Rpu A2 Vpu = 1.0 V MDIO Vcc GPIO B3 SW A4 MDC B2 SW A3 Vcc B1 SW MDC MDIO Rpu EN Rpu B4 SW GPIO GND 11.2.5.1 Design Requirements Refer to Design Requirements. 11.2.5.2 Detailed Design Procedure Refer to Detailed Design Procedure 11.2.5.3 Application Curves 3.5 Input Output 3 2.5 Voltage (V) 2 1.5 1 0.5 2.16E+1 1.92E+1 1.68E+1 1.44E+1 9.6E+0 7.2E+0 4.8E+0 0 2.4E+0 -0.5 1.2E+1 0 Time (ns) Figure 11. Translation Down (3.3 to 1.8 V) at 150 MHz 16 Copyright © 2014, Texas Instruments Incorporated LSF0204, LSF0204D www.ti.com.cn ZHCSD68A – JULY 2014 – REVISED DECEMBER 2014 12 Power Supply Recommendations There are no power sequence requirements for the LSF Family. For enable and reference voltage guidelines, refer to the Enable, Disable, and Reference Voltage Guidelines. 13 Layout 13.1 Layout Guidelines Since LSF Family is switch-type level translator, the signal integrity is highly related with pull-up resistor and PCB capacitance condition. • Short signal trace as possible to reduce capacitance and minimize stub from pull-up resistor. • Place LSF close to high voltage side. • Select the appropriate pull-up resistor that applies to translation levels and driving capability of transmitter. 13.2 Layout Example LSF0102 GND Vref_A A1 A2 1 2 3 4 EN 8 7 6 5 Short Signal Trace as possible Vref_B B1 B2 Minimize Stub as possible Figure 12. Short Trace Layout TP1 SD Controller (1.8V IO) LSF0108 SDIO level translator SDIO Connector (3.3V IO) Device PCB TP2 Figure 13. Device Placement 版权 © 2014, Texas Instruments Incorporated 17 LSF0204, LSF0204D ZHCSD68A – JULY 2014 – REVISED DECEMBER 2014 www.ti.com.cn Layout Example (接 接下页) 2 Time (ns) Figure 14. Waveform From TP1 (Pullup Resistor: 160 Ω and 50-pF Capacitance 3.3 to 1.8 V at 100 MHz) 3E+1 2.7E+1 2.4E+1 2.1E+1 0 1.8E+1 -0.5 1.5E+1 2.5E+1 2.25E+1 7.5E+0 5E+0 0 2.5E+0 -5E-1 2E+1 0 1.75E+1 0 1.5E+1 0.5 1.25E+1 5E-1 1.2E+1 1 9E+0 1E+0 1.5 6E+0 Voltage (V) 2.5 2E+0 1.5E+0 Output Input 3 2.5E+0 1E+1 Voltage (V) 3E+0 18 3.5 Intput Output 3E+0 3.5E+0 Time (ns) Figure 15. Waveform From TP2 (Pullup Resistor: 160 Ω and 50-pF Capacitance 1.8 to 3.3 V at 100 MHz) 版权 © 2014, Texas Instruments Incorporated LSF0204, LSF0204D www.ti.com.cn ZHCSD68A – JULY 2014 – REVISED DECEMBER 2014 14 器件和文档支持 14.1 相关链接 以下表格列出了快速访问链接。 范围包括技术文档、支持与社区资源、工具和软件,并且可以快速访问样片或购买 链接。 表 4. 相关链接 器件 产品文件夹 样片与购买 技术文档 工具与软件 支持与社区 LSF0204 请单击此处 请单击此处 请单击此处 请单击此处 请单击此处 LSF0204D 请单击此处 请单击此处 请单击此处 请单击此处 请单击此处 14.2 商标 All trademarks are the property of their respective owners. 14.3 静电放电警告 这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损 伤。 14.4 术语表 SLYZ022 — TI 术语表。 这份术语表列出并解释术语、首字母缩略词和定义。 15 机械封装和可订购信息 以下页中包括机械封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不对 本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。 版权 © 2014, Texas Instruments Incorporated 19 重要声明 德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据 JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售 都遵循在订单确认时所提供的TI 销售条款与条件。 TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使 用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。 TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险, 客户应提供充分的设计与操作安全措施。 TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权 限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用 此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。 对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行 复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。 在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明 示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。 客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法 律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障 及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而 对 TI 及其代理造成的任何损失。 在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用 的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。 TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。 只有那些 TI 特别注明属于军用等级或“增强型塑料”的 TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面 向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有 法律和法规要求。 TI 已明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要 求,TI不承担任何责任。 产品 应用 数字音频 www.ti.com.cn/audio 通信与电信 www.ti.com.cn/telecom 放大器和线性器件 www.ti.com.cn/amplifiers 计算机及周边 www.ti.com.cn/computer 数据转换器 www.ti.com.cn/dataconverters 消费电子 www.ti.com/consumer-apps DLP® 产品 www.dlp.com 能源 www.ti.com/energy DSP - 数字信号处理器 www.ti.com.cn/dsp 工业应用 www.ti.com.cn/industrial 时钟和计时器 www.ti.com.cn/clockandtimers 医疗电子 www.ti.com.cn/medical 接口 www.ti.com.cn/interface 安防应用 www.ti.com.cn/security 逻辑 www.ti.com.cn/logic 汽车电子 www.ti.com.cn/automotive 电源管理 www.ti.com.cn/power 视频和影像 www.ti.com.cn/video 微控制器 (MCU) www.ti.com.cn/microcontrollers RFID 系统 www.ti.com.cn/rfidsys OMAP应用处理器 www.ti.com/omap 无线连通性 www.ti.com.cn/wirelessconnectivity 德州仪器在线技术支持社区 www.deyisupport.com IMPORTANT NOTICE 邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122 Copyright © 2014, 德州仪器半导体技术(上海)有限公司 PACKAGE OPTION ADDENDUM www.ti.com 21-Apr-2015 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) LSF0204DPWR ACTIVE TSSOP PW 14 2000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 125 LSF204D LSF0204DRGYR ACTIVE VQFN RGY 14 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR -40 to 125 LSF24D LSF0204DRUTR ACTIVE UQFN RUT 12 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 SIO LSF0204DYZPR ACTIVE DSBGA YZP 12 3000 Green (RoHS & no Sb/Br) SNAGCU Level-1-260C-UNLIM -40 to 125 G6 LSF0204PWR ACTIVE TSSOP PW 14 2000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 125 LSF204 LSF0204RGYR ACTIVE VQFN RGY 14 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-2-260C-1 YEAR -40 to 125 LSF24 LSF0204RUTR ACTIVE UQFN RUT 12 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 SIN LSF0204YZPR ACTIVE DSBGA YZP 12 3000 Green (RoHS & no Sb/Br) SNAGCU Level-1-260C-UNLIM -40 to 125 G5 (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Addendum-Page 1 Samples PACKAGE OPTION ADDENDUM www.ti.com (4) 21-Apr-2015 There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 2 PACKAGE MATERIALS INFORMATION www.ti.com 17-Jun-2015 TAPE AND REEL INFORMATION *All dimensions are nominal Device LSF0204DPWR Package Package Pins Type Drawing SPQ Reel Reel A0 Diameter Width (mm) (mm) W1 (mm) B0 (mm) K0 (mm) P1 (mm) W Pin1 (mm) Quadrant TSSOP PW 14 2000 330.0 12.4 6.9 5.6 1.6 8.0 12.0 Q1 LSF0204DRGYR VQFN RGY 14 3000 330.0 12.4 3.75 3.75 1.15 8.0 12.0 Q1 LSF0204DRUTR UQFN RUT 12 3000 180.0 9.5 1.9 2.3 0.75 4.0 8.0 Q1 LSF0204DYZPR DSBGA YZP 12 3000 180.0 8.4 1.63 2.08 0.69 4.0 8.0 Q2 LSF0204PWR TSSOP PW 14 2000 330.0 12.4 6.9 5.6 1.6 8.0 12.0 Q1 LSF0204RGYR VQFN RGY 14 3000 330.0 12.4 3.75 3.75 1.15 8.0 12.0 Q1 LSF0204RUTR UQFN RUT 12 3000 180.0 9.5 1.9 2.3 0.75 4.0 8.0 Q1 LSF0204YZPR DSBGA YZP 12 3000 180.0 8.4 1.63 2.08 0.69 4.0 8.0 Q2 Pack Materials-Page 1 PACKAGE MATERIALS INFORMATION www.ti.com 17-Jun-2015 *All dimensions are nominal Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm) LSF0204DPWR LSF0204DRGYR TSSOP PW 14 2000 364.0 364.0 27.0 VQFN RGY 14 3000 367.0 367.0 35.0 LSF0204DRUTR UQFN RUT 12 3000 184.0 184.0 19.0 LSF0204DYZPR DSBGA YZP 12 3000 182.0 182.0 20.0 LSF0204PWR TSSOP PW 14 2000 364.0 364.0 27.0 LSF0204RGYR VQFN RGY 14 3000 367.0 367.0 35.0 LSF0204RUTR UQFN RUT 12 3000 184.0 184.0 19.0 LSF0204YZPR DSBGA YZP 12 3000 182.0 182.0 20.0 Pack Materials-Page 2 D: Max = 1.972 mm, Min =1.912 mm E: Max = 1.472 mm, Min =1.412 mm IMPORTANT NOTICE 重要声明 德州仪器 (TI) 公司有权按照最新发布的 JESD46 对其半导体产品和服务进行纠正、增强、改进和其他修改,并不再按最新发布的 JESD48 提 供任何产品和服务。买方在下订单前应获取最新的相关信息,并验证这些信息是否完整且是最新的。 TI 公布的半导体产品销售条款 (http://www.ti.com/sc/docs/stdterms.htm) 适用于 TI 已认证和批准上市的已封装集成电路产品的销售。另有其 他条款可能适用于其他类型 TI 产品及服务的使用或销售。 复制 TI 数据表上 TI 信息的重要部分时,不得变更该等信息,且必须随附所有相关保证、条件、限制和通知,否则不得复制。TI 对该等复制文 件不承担任何责任。第三方信息可能受到其它限制条件的制约。在转售 TI 产品或服务时,如果存在对产品或服务参数的虚假陈述,则会失去 相关 TI 产品或服务的明示或暗示保证,且构成不公平的、欺诈性商业行为。TI 对此类虚假陈述不承担任何责任。 买方和在系统中整合 TI 产品的其他开发人员(总称“设计人员”)理解并同意,设计人员在设计应用时应自行实施独立的分析、评价和判断,且 应全权 负责并确保 应用的安全性, 及设计人员的 应用 (包括应用中使用的所有 TI 产品)应符合所有适用的法律法规及其他相关要求。设计 人员就自己设计的 应用声明,其具备制订和实施下列保障措施所需的一切必要专业知识,能够 (1) 预见故障的危险后果,(2) 监视故障及其后 果,以及 (3) 降低可能导致危险的故障几率并采取适当措施。设计人员同意,在使用或分发包含 TI 产品的任何 应用前, 将彻底测试该等 应用 和 该等应用中所用 TI 产品的 功能。 TI 提供技术、应用或其他设计建议、质量特点、可靠性数据或其他服务或信息,包括但不限于与评估模块有关的参考设计和材料(总称“TI 资 源”),旨在帮助设计人员开发整合了 TI 产品的 应用, 如果设计人员(个人,或如果是代表公司,则为设计人员的公司)以任何方式下载、 访问或使用任何特定的 TI 资源,即表示其同意仅为该等目标,按照本通知的条款使用任何特定 TI 资源。 TI 所提供的 TI 资源,并未扩大或以其他方式修改 TI 对 TI 产品的公开适用的质保及质保免责声明;也未导致 TI 承担任何额外的义务或责任。 TI 有权对其 TI 资源进行纠正、增强、改进和其他修改。除特定 TI 资源的公开文档中明确列出的测试外,TI 未进行任何其他测试。 设计人员只有在开发包含该等 TI 资源所列 TI 产品的 应用时, 才被授权使用、复制和修改任何相关单项 TI 资源。但并未依据禁止反言原则或 其他法理授予您任何TI知识产权的任何其他明示或默示的许可,也未授予您 TI 或第三方的任何技术或知识产权的许可,该等产权包括但不限 于任何专利权、版权、屏蔽作品权或与使用TI产品或服务的任何整合、机器制作、流程相关的其他知识产权。涉及或参考了第三方产品或服务 的信息不构成使用此类产品或服务的许可或与其相关的保证或认可。使用 TI 资源可能需要您向第三方获得对该等第三方专利或其他知识产权 的许可。 TI 资源系“按原样”提供。TI 兹免除对资源及其使用作出所有其他明确或默认的保证或陈述,包括但不限于对准确性或完整性、产权保证、无屡 发故障保证,以及适销性、适合特定用途和不侵犯任何第三方知识产权的任何默认保证。TI 不负责任何申索,包括但不限于因组合产品所致或 与之有关的申索,也不为或对设计人员进行辩护或赔偿,即使该等产品组合已列于 TI 资源或其他地方。对因 TI 资源或其使用引起或与之有关 的任何实际的、直接的、特殊的、附带的、间接的、惩罚性的、偶发的、从属或惩戒性损害赔偿,不管 TI 是否获悉可能会产生上述损害赔 偿,TI 概不负责。 除 TI 已明确指出特定产品已达到特定行业标准(例如 ISO/TS 16949 和 ISO 26262)的要求外,TI 不对未达到任何该等行业标准要求而承担 任何责任。 如果 TI 明确宣称产品有助于功能安全或符合行业功能安全标准,则该等产品旨在帮助客户设计和创作自己的 符合 相关功能安全标准和要求的 应用。在应用内使用产品的行为本身不会 配有 任何安全特性。设计人员必须确保遵守适用于其应用的相关安全要求和 标准。设计人员不可将 任何 TI 产品用于关乎性命的医疗设备,除非已由各方获得授权的管理人员签署专门的合同对此类应用专门作出规定。关乎性命的医疗设备是 指出现故障会导致严重身体伤害或死亡的医疗设备(例如生命保障设备、心脏起搏器、心脏除颤器、人工心脏泵、神经刺激器以及植入设 备)。此类设备包括但不限于,美国食品药品监督管理局认定为 III 类设备的设备,以及在美国以外的其他国家或地区认定为同等类别设备的 所有医疗设备。 TI 可能明确指定某些产品具备某些特定资格(例如 Q100、军用级或增强型产品)。设计人员同意,其具备一切必要专业知识,可以为自己的 应用选择适合的 产品, 并且正确选择产品的风险由设计人员承担。设计人员单方面负责遵守与该等选择有关的所有法律或监管要求。 设计人员同意向 TI 及其代表全额赔偿因其不遵守本通知条款和条件而引起的任何损害、费用、损失和/或责任。 邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122 Copyright © 2017 德州仪器半导体技术(上海)有限公司
LSF0204PWR 价格&库存

很抱歉,暂时无法提供与“LSF0204PWR”相匹配的价格&库存,您可以联系我们找货

免费人工找货
LSF0204PWR
  •  国内价格
  • 1+4.34150
  • 10+4.00750
  • 100+3.67360
  • 1000+3.33960

库存:79

LSF0204PWR
  •  国内价格
  • 1+4.59000
  • 10+3.74760
  • 30+3.32640
  • 100+2.90520
  • 500+2.65680

库存:507

LSF0204PWR
  •  国内价格
  • 1+2.50182
  • 10+2.29842
  • 30+2.25774

库存:0