Product
Folder
Order
Now
Technical
Documents
Tools &
Software
Support &
Community
MSP430F6779, MSP430F6778, MSP430F6777, MSP430F6776, MSP430F6775
MSP430F6769, MSP430F6768, MSP430F6767, MSP430F6766, MSP430F6765
MSP430F6749, MSP430F6748, MSP430F6747, MSP430F6746, MSP430F6745
SLAS768E – SEPTEMBER 2012 – REVISED SEPTEMBER 2018
MSP430F677x, MSP430F676x, MSP430F674x Polyphase Metering SoCs
1 Device Overview
1.1
Features
1
• Accuracy < 0.1% Over 2000:1 Dynamic Range for
Phase Current
• Meets or Exceeds ANSI C12.20 and IEC 62053
Standards
• Support for Multiple Sensors Such as Current
Transformers, Rogowski Coils, or Shunts
• Power Measurement for up to Three Phases Plus
Neutral
• Dedicated Pulse Output Pins for Active and
Reactive Energy for Calibration
• Four-Quadrant Measurement per Phase or
Cumulative
• Exact Phase Angle Measurements
• Digital Phase Correction for Current Transformers
• Temperature Compensated Energy Measurements
• 40-Hz to 70-Hz Line Frequency Range Using
Single Calibration
• Flexible Power Supply Options With Automatic
Switching
• Display Operates at Very Low Power During AC
Mains Failure: 3 µA in LPM3
• LCD Driver With Contrast Control for up to 320
Segments
• Password-Protected Real-Time Clock (RTC) With
Crystal Offset Calibration and Temperature
Compensation
• Integrated Security Modules to Support AntiTamper and Encryption
• Multiple Communication Interfaces for Smart Meter
Implementations
• High-Performance 25-MHz CPU With 32-Bit
Multiplier
1.2
•
•
• Wide Input Supply Voltage Range:
3.6 V Down to 1.8 V
• Ultra-Low Power Consumption During Energy
Measurement
– 2.9 mW at 10-MHz Operation (3 V)
• Multiple Low-Power Modes
– Standby Mode (LPM3): 2.1 µA at 3 V,
Wake up in Less Than 5 µs
– RTC Mode (LPM3.5): 0.34 µA at 3 V
– Shutdown Mode (LPM4.5): 0.18 µA at 3 V
• Up to 512KB of Single-Cycle Flash
• Up to 32KB of RAM With Single-Cycle Access
• Up to Seven Independent 24-Bit Sigma-Delta
ADCs With Differential Inputs and Variable Gain
• System 10-Bit 200-ksps ADC
– Six Channels Plus Supply and Temperature
Sensor Measurement
• Integrated Hardware AES-128 Module for
Encryption
• Six Enhanced Communications Ports
– Configurable Among Four UART, Six SPI, and
Two I²C Interfaces
• Four 16-Bit Timers With Nine Total
Capture/Compare Registers
• 128-Pin LQFP (PEU) Package With 90 I/O Pins
• 100-Pin LQFP (PZ) Package With 62 I/O Pins
• Industrial Temperature Range of –40°C to 85°C
• 3-Phase Electronic Watt-Hour Meter Development
Tool (Also See Tools and Software)
– EVM430-F6779 With Application Note
– Energy Measurement Design Center for
MSP430™ MCUs
Applications
3-Phase Electronic Watt-Hour Meters
Utility Metering
•
Energy Monitoring
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,
intellectual property matters and other important disclaimers. PRODUCTION DATA.
MSP430F6779, MSP430F6778, MSP430F6777, MSP430F6776, MSP430F6775
MSP430F6769, MSP430F6768, MSP430F6767, MSP430F6766, MSP430F6765
MSP430F6749, MSP430F6748, MSP430F6747, MSP430F6746, MSP430F6745
SLAS768E – SEPTEMBER 2012 – REVISED SEPTEMBER 2018
1.3
www.ti.com
Description
The TI MSP430F677x family of polyphase metering SoCs are powerful highly integrated solutions for
revenue meters that offer accuracy and low system cost with few external components. The F677x family
of devices uses the low-power MSP430 CPU with a 32-bit multiplier to perform all energy calculations,
metering applications such as tariff rate management, and communications with AMR and AMI modules.
The F677x devices feature TI's 24-bit sigma-delta converter technology, which provides better than 0.1%
accuracy. Family members include up to 512KB of flash, 32KB of RAM, and an LCD controller with
support for up to 320 segments.
The ultra-low-power nature of the F677x devices means that the system power supply can be minimized
to reduce overall cost. Lowest standby power means that backup energy storage can be minimized and
critical data retained longer in case of a mains power failure.
The F677x family of devices executes the TI energy measurement software library, which calculates all
relevant energy and power results. The energy measurement software library is available with the F677x
devices at no cost. Industry standard development tools and hardware platforms are available to speed
development of meters that meet all of the ANSI and IEC standards globally.
For complete module descriptions, see the MSP430F5xx and MSP430F6xx Family User's Guide.
Device Information (1)
PACKAGE
BODY SIZE (2)
MSP430F6779IPEU
LQFP (128)
20 mm × 14 mm
MSP430F6779IPZ
LQFP (100)
14 mm × 14 mm
PART NUMBER
(1)
(2)
2
For the most current device, package, and ordering information, see the Package Option Addendum in
Section 8, or see the TI website at www.ti.com.
The sizes shown here are approximations. For the package dimensions with tolerances, see the
Mechanical Data in Section 8.
Device Overview
Copyright © 2012–2018, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F6779 MSP430F6778 MSP430F6777 MSP430F6776 MSP430F6775 MSP430F6769
MSP430F6768 MSP430F6767 MSP430F6766 MSP430F6765 MSP430F6749 MSP430F6748 MSP430F6747
MSP430F6746 MSP430F6745
MSP430F6779, MSP430F6778, MSP430F6777, MSP430F6776, MSP430F6775
MSP430F6769, MSP430F6768, MSP430F6767, MSP430F6766, MSP430F6765
MSP430F6749, MSP430F6748, MSP430F6747, MSP430F6746, MSP430F6745
www.ti.com
1.4
SLAS768E – SEPTEMBER 2012 – REVISED SEPTEMBER 2018
Application Diagram
Figure 1-1 shows a typical application diagram.
TOTAL
kWh
Load
Sx, COMx
Phase C
VCC
MSP430F677x
Phase A
R33
RST
Phase B
LCDCAP
VSS
Px.x
Neutral
+
IA
CT
STATUS LEDs
ΣΔ Modulator
–
+
IB
CT
Px.y
ΣΔ Modulator
–
PULSE LEDs
+
CT
IC
ΣΔ Modulator
–
XIN
+
Ineutral
CT
32768 Hz
ΣΔ Modulator
–
VA
XOUT
AFE
+
USCIA0
UART or SPI
USCIA1
UART or SPI
USCIA2
UART or SPI
USCIA3
UART or SPI
USCIB0
I2C or SPI
USCIB1
I2C or SPI
ΣΔ Modulator
–
VB
+
ΣΔ Modulator
–
VC
+
VN
ΣΔ Modulator
–
Vref
Neutral
Phase B
Phase A
Phase C
Source From Utility
Figure 1-1. 3-Phase 4-Wire Star Connection Using MSP430F677x
Device Overview
Submit Documentation Feedback
Product Folder Links: MSP430F6779 MSP430F6778 MSP430F6777 MSP430F6776 MSP430F6775 MSP430F6769
MSP430F6768 MSP430F6767 MSP430F6766 MSP430F6765 MSP430F6749 MSP430F6748 MSP430F6747
MSP430F6746 MSP430F6745
Copyright © 2012–2018, Texas Instruments Incorporated
3
MSP430F6779, MSP430F6778, MSP430F6777, MSP430F6776, MSP430F6775
MSP430F6769, MSP430F6768, MSP430F6767, MSP430F6766, MSP430F6765
MSP430F6749, MSP430F6748, MSP430F6747, MSP430F6746, MSP430F6745
SLAS768E – SEPTEMBER 2012 – REVISED SEPTEMBER 2018
www.ti.com
Table of Contents
1
2
3
Device Overview ......................................... 1
5.31
Auxiliary Supplies, Switching Time.................. 43
1.1
Features .............................................. 1
5.32
Auxiliary Supplies, Switch Leakage ................. 43
1.2
Applications ........................................... 1
5.33
Auxiliary Supplies, Auxiliary Supplies to ADC10_A . 43
1.3
Description ............................................ 2
5.34
Auxiliary Supplies, Charge Limiting Resistor
1.4
Application Diagram .................................. 3
5.35
Timer_A
Revision History ......................................... 6
Device Comparison ..................................... 7
5.36
Related Products ..................................... 8
5.38
Terminal Configuration and Functions .............. 9
5.39
4.1
Pin Diagrams ......................................... 9
5.40
4.2
3.1
4
5
5.37
Signal Descriptions .................................. 13
5.41
Specifications ........................................... 26
5.42
5.1
Absolute Maximum Ratings ......................... 26
5.43
5.2
ESD Ratings
........................................
Recommended Operating Conditions ...............
26
5.44
26
5.45
Active Mode Supply Current Into VCC Excluding
External Current ..................................... 28
Low-Power Mode Supply Currents (Into VCC)
Excluding External Current.......................... 29
Low-Power Mode With LCD Supply Currents (Into
VCC) Excluding External Current .................... 30
5.46
5.3
5.4
5.5
5.6
5.7
Thermal Packaging Characteristics ................. 31
5.8
Schmitt-Trigger Inputs – General-Purpose I/O...... 32
...........................
5.47
5.48
44
44
44
45
45
46
48
49
49
49
49
50
51
SD24_B Power Supply and Recommended
Operating Conditions ................................ 52
..............................
...........................
SD24_B Performance ...............................
SD24_B, AC Performance ..........................
SD24_B, AC Performance ..........................
SD24_B, AC Performance ..........................
SD24_B External Reference Input ..................
SD24_B Analog Input
52
5.50
SD24_B Supply Currents
53
5.52
54
56
5.9
Inputs – Ports P1 and P2
5.10
5.11
Leakage Current – General-Purpose I/O ........... 32
Outputs – General-Purpose I/O (Full Drive
Strength) ............................................ 33
Outputs – General-Purpose I/O (Reduced Drive
Strength) ............................................ 33
5.53
Output Frequency – General-Purpose I/O .......... 33
Typical Characteristics – Outputs, Reduced Drive
Strength (PxDS.y = 0) ............................... 34
Typical Characteristics – Outputs, Full Drive
Strength (PxDS.y = 1) ............................... 35
5.57
10-Bit ADC Switching Characteristics............... 58
5.58
10-Bit ADC Linearity Parameters
5.59
10-Bit ADC External Reference ..................... 59
5.60
REF Built-In Reference
5.61
Comparator_B ....................................... 61
5.62
Flash Memory ....................................... 62
5.63
JTAG and Spy-Bi-Wire Interface .................... 62
5.12
5.13
5.14
5.15
5.16
5.17
5.18
Crystal Oscillator, XT1, Low-Frequency Mode ...... 36
Internal Very-Low-Power Low-Frequency Oscillator
(VLO) ................................................ 37
Internal Reference, Low-Frequency Oscillator
(REFO) .............................................. 37
5.54
5.55
5.56
6
56
56
57
10-Bit ADC Power Supply and Input Range
Conditions ........................................... 58
...................
.............................
59
60
Detailed Description ................................... 63
6.1
Functional Block Diagrams.......................... 63
5.19
DCO Frequency ..................................... 38
6.2
CPU (Link to User's Guide) ......................... 64
5.20
PMM, Brownout Reset (BOR)....................... 39
6.3
Instruction Set ....................................... 65
5.21
PMM, Core Voltage ................................. 39
6.4
Operating Modes .................................... 66
5.22
PMM, SVS High Side ............................... 40
6.5
Interrupt Vector Addresses.......................... 67
5.23
PMM, SVM High Side ............................... 40
6.6
Special Function Registers (SFRs) ................. 69
5.24
PMM, SVS Low Side ................................ 41
6.7
Memory Organization ............................... 70
5.25
5.26
PMM, SVM Low Side ...............................
Wake-up Times From Low-Power Modes and
Reset ................................................
Auxiliary Supplies Recommended Operating
Conditions ...........................................
Auxiliary Supplies, AUXVCC3 (Backup Subsystem)
Currents .............................................
6.8
Bootloader (BSL) .................................... 72
5.27
41
41
42
6.9
JTAG Operation ..................................... 72
6.10
Flash Memory (Link to User's Guide) ............... 73
6.11
RAM (Link to User's Guide) ......................... 73
6.12
Backup RAM (Link to User's Guide) ................ 73
42
6.13
Peripherals
5.29
Auxiliary Supplies, Auxiliary Supply Monitor ........ 42
6.14
Input/Output Diagrams ............................. 100
5.30
Auxiliary Supplies, Switch ON-Resistance .......... 43
6.15
Device Descriptors (TLV) .......................... 154
5.28
7
4
43
5.49
5.51
32
.......
.............................................
eUSCI (UART Mode) Clock Frequency .............
eUSCI (UART Mode)................................
eUSCI (SPI Master Mode) Clock Frequency .......
eUSCI (SPI Master Mode) ..........................
eUSCI (SPI Slave Mode) ...........................
eUSCI (I2C Mode) ...................................
Schmitt-Trigger Inputs, RTC Tamper Detect Pin ...
Inputs, RTC Tamper Detect Pin.....................
Leakage Current, RTC Tamper Detect Pin .........
Outputs, RTC Tamper Detect Pin ...................
LCD_C Recommended Operating Conditions ......
LCD_C Electrical Characteristics ...................
Table of Contents
..........................................
74
Device and Documentation Support .............. 157
Copyright © 2012–2018, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F6779 MSP430F6778 MSP430F6777 MSP430F6776 MSP430F6775 MSP430F6769
MSP430F6768 MSP430F6767 MSP430F6766 MSP430F6765 MSP430F6749 MSP430F6748 MSP430F6747
MSP430F6746 MSP430F6745
MSP430F6779, MSP430F6778, MSP430F6777, MSP430F6776, MSP430F6775
MSP430F6769, MSP430F6768, MSP430F6767, MSP430F6766, MSP430F6765
MSP430F6749, MSP430F6748, MSP430F6747, MSP430F6746, MSP430F6745
www.ti.com
SLAS768E – SEPTEMBER 2012 – REVISED SEPTEMBER 2018
7.1
Getting Started and Next Steps
157
7.7
Trademarks ........................................ 163
7.2
Device Nomenclature .............................. 157
7.8
Electrostatic Discharge Caution
7.3
Tools and Software ................................ 159
7.9
Export Control Notice .............................. 164
7.4
Documentation Support ............................ 161
7.10
Glossary............................................ 164
7.5
Related Links
7.6
...................
......................................
Community Resources.............................
163
163
8
...................
Mechanical, Packaging, and Orderable
Information ............................................. 165
Table of Contents
Submit Documentation Feedback
Product Folder Links: MSP430F6779 MSP430F6778 MSP430F6777 MSP430F6776 MSP430F6775 MSP430F6769
MSP430F6768 MSP430F6767 MSP430F6766 MSP430F6765 MSP430F6749 MSP430F6748 MSP430F6747
MSP430F6746 MSP430F6745
Copyright © 2012–2018, Texas Instruments Incorporated
164
5
MSP430F6779, MSP430F6778, MSP430F6777, MSP430F6776, MSP430F6775
MSP430F6769, MSP430F6768, MSP430F6767, MSP430F6766, MSP430F6765
MSP430F6749, MSP430F6748, MSP430F6747, MSP430F6746, MSP430F6745
SLAS768E – SEPTEMBER 2012 – REVISED SEPTEMBER 2018
www.ti.com
2 Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.
Changes from December 19, 2013 to September 28, 2018
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
6
Page
Document format changes throughout, including addition of section numbering ............................................ 1
Updated links to development tool and design center in , Features ........................................................... 1
Added Device Information table .................................................................................................... 2
Added Section 3, Device Comparison, and moved Table 3-1 to it ............................................................. 7
Added Section 3.1, Related Products ............................................................................................. 8
Added Section 4 and moved pinouts and terminal functions tables to it ...................................................... 9
Corrected the port number (P4.2) on pin 61 in Figure 4-2, 100-Pin PZ Package (Top View) ............................ 11
Added note to P1.3/ADC10CLK/A3 (pin 8) in Table 4-3, Terminal Functions – PEU Package........................... 13
Added typical conditions statements at the beginning of Section 5, Specifications ........................................ 26
Moved all electrical specifications to Section 5.................................................................................. 26
Added SD24_B input pins and AUXVCCx pins to exception list on "Voltage applied to pins" parameter, and
added SD24_B input pin limits in "Diode current at pins" parameter in Section 5.1, Absolute Maximum Ratings ..... 26
Added Section 5.2, ESD Ratings.................................................................................................. 26
Added note to CVCORE ............................................................................................................... 26
Added Section 5.7, Thermal Packaging Characteristics ...................................................................... 31
Changed the TYP value of the CL,eff parameter with Test Conditions of "XTS = 0, XCAPx = 0" from 2 pF to 1 pF
in Section 5.16, Crystal Oscillator, XT1, Low-Frequency Mode............................................................... 36
Updated notes (1) and (2) and added note (3) in Section 5.26, Wake-up Times From Low-Power Modes and
Reset ................................................................................................................................. 41
Corrected the names of the AUXVCC1, AUXVCC2, and AUXVCC3 pins in Auxiliary Supplies tables.................. 42
Corrected the bit name in the Test Conditions of the RCHARGE parameter (changed CHCx to AUXCHCx) in
Section 5.34, Auxiliary Supplies, Charge Limiting Resistor.................................................................... 43
Replaced fFrame parameter with fLCD, fFRAME,4mux, and fFRAME,8mux parameters in Section 5.46, LCD_C
Recommended Operating Conditions ............................................................................................ 50
On the VID,FS parameter in Section 5.48, SD24_B Power Supply and Recommended Operating Conditions:
Changed the MIN value from "VREF/GAIN" to "–VREF/GAIN"; Removed "Unipolar mode" test condition (mode is
not supported) ....................................................................................................................... 52
Removed ADC10DIV from the formula for the TYP value in the second row of the tCONVERT parameter in
Section 5.57, 10-Bit ADC Switching Characteristics, because ADC10CLK is after division .............................. 58
Changed Test Conditions for all parameters in Section 5.58, 10-Bit ADC Linearity Parameters: Removed
"VREF–"; Changed from "(VeREF+ – VeREF–)min ≤ (VeREF+ – VeREF–)" to "1.4 V ≤ (VeREF+ – VeREF–)"; Changed from
"CVREF+ = 20 pF" to "CVeREF+ = 20 pF"; Added "CVeREF+ = 20 pF" to EI; Added "ADC10SREFx = 11b" to ET and EG .. 59
Removed "VREF–" from the Test Conditions for the VeREF+, VeREF–, and (VeREF+ – VeREF–) parameters in
Section 5.59, 10-Bit ADC External Reference ................................................................................... 59
Changed MIN value of AVCC(min) parameter with Test Conditions of "REFVSEL = {0} for 1.5 V" from 2.2 V to
1.8 V in Section 5.60, REF Built-In Reference .................................................................................. 60
Changed the MAX value of the tEN_CMP parameter with Test Conditions of "CBPWRMD = 10" from 50 µs to
100 µs in Section 5.61, Comparator_B ........................................................................................... 61
Throughout document, changed all instances of "bootstrap loader" to "bootloader" ....................................... 72
Corrected spelling of NMIIFG in Table 6-13, System Module Interrupt Vector Registers ................................. 78
Added Section 7 and moved Development Tools Support, Device and Development Tool Nomenclature, and
Trademarks sections to it ......................................................................................................... 157
Replaced former section Development Tools Support with Section 7.3, Tools and Software .......................... 159
Added Section 8, Mechanical, Packaging, and Orderable Information ..................................................... 165
Revision History
Copyright © 2012–2018, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F6779 MSP430F6778 MSP430F6777 MSP430F6776 MSP430F6775 MSP430F6769
MSP430F6768 MSP430F6767 MSP430F6766 MSP430F6765 MSP430F6749 MSP430F6748 MSP430F6747
MSP430F6746 MSP430F6745
MSP430F6779, MSP430F6778, MSP430F6777, MSP430F6776, MSP430F6775
MSP430F6769, MSP430F6768, MSP430F6767, MSP430F6766, MSP430F6765
MSP430F6749, MSP430F6748, MSP430F6747, MSP430F6746, MSP430F6745
www.ti.com
SLAS768E – SEPTEMBER 2012 – REVISED SEPTEMBER 2018
3 Device Comparison
Table 3-1 summarizes the available family members.
Table 3-1. Device Comparison (1) (2)
DEVICE
FLASH
(KB)
SRAM
(KB)
SD24_B
CONVERTERS
ADC10_A
CHANNELS
Timer_A (3)
eUSCI_A:
UART, IrDA,
SPI
eUSCI_B:
SPI, I2C
I/Os
PACKAGE
MSP430F6779IPEU
512
32
7
6 ext, 2 int
3, 2, 2, 2
4
2
90
128 PEU
MSP430F6778IPEU
512
16
7
6 ext, 2 int
3, 2, 2, 2
4
2
90
128 PEU
MSP430F6777IPEU
256
32
7
6 ext, 2 int
3, 2, 2, 2
4
2
90
128 PEU
MSP430F6776IPEU
256
16
7
6 ext, 2 int
3, 2, 2, 2
4
2
90
128 PEU
MSP430F6775IPEU
128
16
7
6 ext, 2 int
3, 2, 2, 2
4
2
90
128 PEU
MSP430F6769IPEU
512
32
6
6 ext, 2 int
3, 2, 2, 2
4
2
90
128 PEU
MSP430F6768IPEU
512
16
6
6 ext, 2 int
3, 2, 2, 2
4
2
90
128 PEU
MSP430F6767IPEU
256
32
6
6 ext, 2 int
3, 2, 2, 2
4
2
90
128 PEU
MSP430F6766IPEU
256
16
6
6 ext, 2 int
3, 2, 2, 2
4
2
90
128 PEU
MSP430F6765IPEU
128
16
6
6 ext, 2 int
3, 2, 2, 2
4
2
90
128 PEU
MSP430F6749IPEU
512
32
4
6 ext, 2 int
3, 2, 2, 2
4
2
90
128 PEU
MSP430F6748IPEU
512
16
4
6 ext, 2 int
3, 2, 2, 2
4
2
90
128 PEU
MSP430F6747IPEU
256
32
4
6 ext, 2 int
3, 2, 2, 2
4
2
90
128 PEU
MSP430F6746IPEU
256
16
4
6 ext, 2 int
3, 2, 2, 2
4
2
90
128 PEU
MSP430F6745IPEU
128
16
4
6 ext, 2 int
3, 2, 2, 2
4
2
90
128 PEU
MSP430F6779IPZ
512
32
7
6 ext, 2 int
3, 2, 2, 2
4
2
62
100 PZ
MSP430F6778IPZ
512
16
7
6 ext, 2 int
3, 2, 2, 2
4
2
62
100 PZ
MSP430F6777IPZ
256
32
7
6 ext, 2 int
3, 2, 2, 2
4
2
62
100 PZ
MSP430F6776IPZ
256
16
7
6 ext, 2 int
3, 2, 2, 2
4
2
62
100 PZ
MSP430F6775IPZ
128
16
7
6 ext, 2 int
3, 2, 2, 2
4
2
62
100 PZ
MSP430F6769IPZ
512
32
6
6 ext, 2 int
3, 2, 2, 2
4
2
62
100 PZ
MSP430F6768IPZ
512
16
6
6 ext, 2 int
3, 2, 2, 2
4
2
62
100 PZ
MSP430F6767IPZ
256
32
6
6 ext, 2 int
3, 2, 2, 2
4
2
62
100 PZ
MSP430F6766IPZ
256
16
6
6 ext, 2 int
3, 2, 2, 2
4
2
62
100 PZ
MSP430F6765IPZ
128
16
6
6 ext, 2 int
3, 2, 2, 2
4
2
62
100 PZ
MSP430F6749IPZ
512
32
4
6 ext, 2 int
3, 2, 2, 2
4
2
62
100 PZ
MSP430F6748IPZ
512
16
4
6 ext, 2 int
3, 2, 2, 2
4
2
62
100 PZ
MSP430F6747IPZ
256
32
4
6 ext, 2 int
3, 2, 2, 2
4
2
62
100 PZ
MSP430F6746IPZ
256
16
4
6 ext, 2 int
3, 2, 2, 2
4
2
62
100 PZ
MSP430F6745IPZ
128
16
4
6 ext, 2 int
3, 2, 2, 2
4
2
62
100 PZ
(1)
(2)
(3)
For the most current device, package, and ordering information, see the Package Option Addendum in Section 8, or see the TI website
at www.ti.com.
Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.
Each number in the sequence represents an instantiation of Timer_A with its associated number of capture/compare registers and PWM
output generators available. For example, a number sequence of 3, 5 would represent two instantiations of Timer_A, the first
instantiation having 3 and the second instantiation having 5 capture/compare registers and PWM output generators, respectively.
Device Comparison
Submit Documentation Feedback
Product Folder Links: MSP430F6779 MSP430F6778 MSP430F6777 MSP430F6776 MSP430F6775 MSP430F6769
MSP430F6768 MSP430F6767 MSP430F6766 MSP430F6765 MSP430F6749 MSP430F6748 MSP430F6747
MSP430F6746 MSP430F6745
Copyright © 2012–2018, Texas Instruments Incorporated
7
MSP430F6779, MSP430F6778, MSP430F6777, MSP430F6776, MSP430F6775
MSP430F6769, MSP430F6768, MSP430F6767, MSP430F6766, MSP430F6765
MSP430F6749, MSP430F6748, MSP430F6747, MSP430F6746, MSP430F6745
SLAS768E – SEPTEMBER 2012 – REVISED SEPTEMBER 2018
3.1
www.ti.com
Related Products
For information about other devices in this family of products or related products, see the following links.
Products for TI Microcontrollers TI's low-power and high-performance MCUs, with wired and wireless
connectivity options, are optimized for a broad range of applications.
Products for MSP430 Ultra-Low-Power Microcontrollers One platform. One ecosystem. Endless
possibilities. Enabling the connected world with innovations in ultra-low-power
microcontrollers with advanced peripherals for precise sensing and measurement.
Companion Products for MSP430F6779 Review products that are frequently purchased or used with
this product.
Reference Designs for MSP430F6779 The TI Designs Reference Design Library is a robust reference
design library that spans analog, embedded processor, and connectivity. Created by TI
experts to help you jump start your system design, all TI Designs include schematic or block
diagrams, BOMs, and design files to speed your time to market.
8
Device Comparison
Copyright © 2012–2018, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F6779 MSP430F6778 MSP430F6777 MSP430F6776 MSP430F6775 MSP430F6769
MSP430F6768 MSP430F6767 MSP430F6766 MSP430F6765 MSP430F6749 MSP430F6748 MSP430F6747
MSP430F6746 MSP430F6745
MSP430F6779, MSP430F6778, MSP430F6777, MSP430F6776, MSP430F6775
MSP430F6769, MSP430F6768, MSP430F6767, MSP430F6766, MSP430F6765
MSP430F6749, MSP430F6748, MSP430F6747, MSP430F6746, MSP430F6745
www.ti.com
SLAS768E – SEPTEMBER 2012 – REVISED SEPTEMBER 2018
4 Terminal Configuration and Functions
4.1
Pin Diagrams
SD0N0
SD0P0
SD1P0
SD1N0
SD2N0
SD2P0
SD3P0
SD3N0
VASYS2
AVSS2
VREF
SD4P0
SD4N0
SD5P0
SD5N0
SD6P0
SD6N0
AVSS1
AVCC
VASYS1
AUXVCC2
AUXVCC1
93
P2.0/PM_TA0.0/BSL_TX
P1.0/TA1.1/VeREF-/A0
11
92
P11.5/TACLK/RTCCLK
P2.4/PM_TA2.0
12
91
P11.4/CBOUT
P2.5/PM_UCB0SOMI/PM_UCB0SCL
13
90
P11.3/TA2.1
P2.6/PM_UCB0SIMO/PM_UCB0SDA
14
89
P11.2/TA1.1
P2.7/PM_UCB0CLK
15
88
P11.1/TA3.1/CB3
P3.0/PM_UCA0RXD/PM_UCA0SOMI
16
87
P11.0/S0
P3.1/PM_UCA0TXD/PM_UCA0SIMO
17
86
P10.7/S1
P3.2/PM_UCA0CLK
18
85
P10.6/S2
P3.3/PM_UCA1CLK
19
84
P10.5/S3
P3.4/PM_UCA1RXD/PM_UCA1SOMI
20
83
P10.4/S4
P3.5/PM_UCA1TXD/PM_UCA1SIMO
21
82
P10.3/S5
COM0
22
81
P10.2/S6
COM1
23
80
P10.1/S7
P1.6/COM2
24
79
P10.0/S8
P1.7/COM3
25
78
P9.7/S9
P5.0/COM4
26
77
P9.6/S10
P5.1/COM5
27
76
P9.5/S11
P5.2/COM6
28
75
P9.4/S12
P5.3/COM7
29
74
P9.3/S13
LCDCAP/R33
30
73
P9.2/S14
P5.4/SDCLK/R23
31
72
P9.1/S15
P5.5/SD0DIO/LCDREF/R13
32
71
P9.0/S16
P5.6/SD1DIO/R03
33
70
DVSS2
P5.7/SD2DIO/CB2
34
69
VDSYS2
P6.0/SD3DIO
35
68
P8.7/S17
P3.6/PM_UCA2RXD/PM_UCA2SOMI
36
67
P8.6/S18
P3.7/PM_UCA2TXD/PM_UCA2SIMO
37
66
P8.5/S19
38
65
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
P8.4/S20
P8.3/S21
10
P8.2/S22
P2.1/PM_TA0.1/BSL_RX
P1.1/TA2.1/VeREF+/A1
P8.1/S23
94
P8.0/S24
9
P7.7/S25
P2.2/PM_TA0.2
P1.2/ACLK/A2
P7.6/S26
95
P7.5/S27
8
P7.4/S28
P2.3/PM_TA1.0
P1.3/ADC10CLK/A3
P7.3/S29
96
P7.2/S30
7
P7.1/S31
TEST/SBWTCK
P1.4/MCLK/CB1/A4
P7.0/S32
97
P6.7/S33
6
P6.6/S34
PJ.0/TDO
P1.5/SMCLK/CB0/A5
P6.5/S35
98
P6.4/S36
5
P6.3/SD6DIO/S37
PJ.1/TDI/TCLK
RTCCAP0
P6.2/SD5DIOS38
99
P6.1/SD4DIO/S39
4
P4.7/PM_TA3.0
PJ.2/TMS
RTCCAP1
P4.6/PM_UCB1CLK
100
P4.1/PM_UCA3RXD/M_UCA3SOMI
C.
VDSYS1
3
P4.4/PM_UCB1SOMI/PM_UCB1SCL
PJ.3/TCK
AUXVCC3
P4.5/PM_UCB1SIMO/PM_UCB1SDA
101
P4.0/PM_UCA2CLK
B.
DVSS1
2
P4.3/PM_UCA3CLK
RST/NMI/SBWTDIO
XOUT
P4.2/PM_UCA3TXD/PM_UCA3SIMO
128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 104 103
1
102
XIN
A.
DVCC
VCORE
Figure 4-1 shows the pinout for the MSP430F677x devices in the 128-pin PEU package. Table 4-1 lists
the differences among the pinouts for the MSP430F677x, MSP430F676x, and MSP430F674x devices.
The secondary digital functions on Ports P2, P3 and P4 are fully mappable. This pinout shows only the default
mapping. See Table 6-11 for details.
The pair of pins VDSYS1 and VDSYS2, VASYS1 and VASYS2 must be connected externally on the board for proper
device operation.
CAUTION: The LCDCAP/R33 pin must be connected to DVSS if it is not used.
Figure 4-1. 128-Pin PEU Package (Top View)
Terminal Configuration and Functions
Submit Documentation Feedback
Product Folder Links: MSP430F6779 MSP430F6778 MSP430F6777 MSP430F6776 MSP430F6775 MSP430F6769
MSP430F6768 MSP430F6767 MSP430F6766 MSP430F6765 MSP430F6749 MSP430F6748 MSP430F6747
MSP430F6746 MSP430F6745
Copyright © 2012–2018, Texas Instruments Incorporated
9
MSP430F6779, MSP430F6778, MSP430F6777, MSP430F6776, MSP430F6775
MSP430F6769, MSP430F6768, MSP430F6767, MSP430F6766, MSP430F6765
MSP430F6749, MSP430F6748, MSP430F6747, MSP430F6746, MSP430F6745
SLAS768E – SEPTEMBER 2012 – REVISED SEPTEMBER 2018
www.ti.com
Table 4-1. Pinout Differences for MSP430F677xIPEU , MSP430F676xIPEU , and MSP430F674xIPEU
10
PIN NAME
PIN
NUMBER
MSP430F677xIPEU
MSP430F676xIPEU
MSP430F674xIPEU
46
P6.1/SD4DIO/S39
P6.1/SD4DIO/S39
P6.1/S39
47
P6.2/SD5DIO/S38
P6.2/SD5DIO/S38
P6.2/S38
48
P6.3/SD6DIO/S37
P6.3/S37
P6.3/S37
113
VREF
VREF
VREF
114
SD4P0
SD4P0
NC
115
SD4N0
SD4N0
NC
116
SD5P0
SD5P0
NC
117
SD5N0
SD5NO
NC
118
SD6P0
NC
NC
119
SD6N0
NC
NC
Terminal Configuration and Functions
Copyright © 2012–2018, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F6779 MSP430F6778 MSP430F6777 MSP430F6776 MSP430F6775 MSP430F6769
MSP430F6768 MSP430F6767 MSP430F6766 MSP430F6765 MSP430F6749 MSP430F6748 MSP430F6747
MSP430F6746 MSP430F6745
MSP430F6779, MSP430F6778, MSP430F6777, MSP430F6776, MSP430F6775
MSP430F6769, MSP430F6768, MSP430F6767, MSP430F6766, MSP430F6765
MSP430F6749, MSP430F6748, MSP430F6747, MSP430F6746, MSP430F6745
www.ti.com
SLAS768E – SEPTEMBER 2012 – REVISED SEPTEMBER 2018
C.
DVSS2
P6.0/S16
P6.1/S15
P6.3/S13
P6.2/S14
P6.4/S12
P6.5/S11
P6.6/S10
P6.7/S9
P7.0/S8
P7.1/S7
P7.2/S6
P7.3/S5
P7.4/S4
P7.5/S3
P7.6/S2
P7.7/S1
P8.0/S0
P8.1/TACLK/RTCCLKCB3
TEST/SBWTCK
PJ.0/TDO
PJ.1TDI/TCLK
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76
1
75
VDSYS2
SD0N0
2
74
P5.7/SD6DIO/S17
SD1P0
3
73
P5.6/SD5DIO/S18
SD1N0
4
72
P5.5/SD4DIO/S19
SD2P0
5
71
P5.4/SD3DIO/S20
SD2N0
6
70
P5.3/SD2DIO/S21
SD3P0
7
69
P5.2/SD1DIO/S22
SD3N0
8
68
P5.1/SD0DIO/S23
VASYS2
9
67
P5.0/SDCLK/S24
AVSS2
10
66
P4.7/PM_TA3.0/S25
VREF
11
65
P4.6/PM_UCB1CLK/S26
SD4P0
12
64
P4.5/PM_UCB1SIMO/PM_UCB1SDA/S27
SD4N0
13
63
P4.4/PM_UCB1SOMI/PM_UCB1SCL/S28
SD5P0
14
62
P4.3/PM_UCA3CLK/S29
SD5N0
15
61
P4.2/PM_UCA3TXD/PM_UCA3SIMO/S30
SD6P0
16
60
P4.1/PM_UCA3RXD/PM_UCA3SOMI/S31
SD6N0
17
59
P4.0/PM_UCA2CLK/S32
AVSS1
18
58
P3.7/PM_UCA2TXD/PM_UCA2SIMO/S33
AVCC
19
57
P3.6/PM_UCA2RXD/PM_UCA2SOMI/S34
VASYS1
20
56
P3.5/PM_UCA1TXD/PM_UCA1SIMO/S35
AUXVCC2
21
55
P3.4/PM_UCA1RXD/PM_UCA1SOMI/S36
AUXVCC1
22
54
P3.3/PM_UCA1CLK/S37
VDSYS1
23
53
P3.2/PM_UCA0CLK/S38
DVCC
24
52
P3.1/PM_UCA0TXD/PM_UCA0SIMO/S39
P3.0/PM_UCA0RXD/PM_UCA0SOMI
P2.7/PM_UCB0CLK/CB2
P2.6/PM_UCB0SIMO/PM_UCB0SDA/R03
P2.5/PM_UCB0SOMI/PM_UCB0SCL/LCDREF/R13
P2.4/PM_TA2.0/R23
LCDCAP/R33
P2.3/PM_TA1.0/COM7
P2.2/PM_TA0.2/COM6
P2.1/PM_TA0.1/BSL_RX/COM5
P2.0/PM_TA0.0/BSL_TX/COM4
P1.7/COM3
P1.6/COM2
COM1
COM0
P1.0/TA1.1/VeREF-/A0
P1.1/TA2.1/CBOUT/VeREF+/A1
P1.2/ACLK/A2
P1.3/ADC10CLK/A3
P1.4/MCLK/CB1/A4
P1.5/SMCLK/CB0/A5
RTCCAP0
RTCCAP1
AUXVCC3
XOUT
XIN
25
51
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
VCORE
B.
PJ.3/TCK
SD0P0
DVSS1
A.
PJ.2/TMS
RST/NMI/SBWTDIO
Figure 4-2 shows the pinout for the MSP430F677x devices in the 100-pin PZ package. Table 4-2 lists the
differences among the pinouts for the MSP430F677x, MSP430F676x, and MSP430F674x devices.
The secondary digital functions on Ports P2, P3 and P4 are fully mappable. This pinout shows only the default
mapping. See Table 6-11 for details.
The pair of pins VDSYS1 and VDSYS2, VASYS1 and VASYS2 must be connected externally on the board for proper
device operation.
CAUTION: The LCDCAP/R33 pin must be connected to DVSS if it is not used.
Figure 4-2. 100-Pin PZ Package (Top View)
Terminal Configuration and Functions
Submit Documentation Feedback
Product Folder Links: MSP430F6779 MSP430F6778 MSP430F6777 MSP430F6776 MSP430F6775 MSP430F6769
MSP430F6768 MSP430F6767 MSP430F6766 MSP430F6765 MSP430F6749 MSP430F6748 MSP430F6747
MSP430F6746 MSP430F6745
Copyright © 2012–2018, Texas Instruments Incorporated
11
MSP430F6779, MSP430F6778, MSP430F6777, MSP430F6776, MSP430F6775
MSP430F6769, MSP430F6768, MSP430F6767, MSP430F6766, MSP430F6765
MSP430F6749, MSP430F6748, MSP430F6747, MSP430F6746, MSP430F6745
SLAS768E – SEPTEMBER 2012 – REVISED SEPTEMBER 2018
www.ti.com
Table 4-2. Pinout Differences for MSP430F677xIPZ , MSP430F676xIPZ , and MSP430F674xIPZ
12
PIN NAME
PIN
NUMBER
MSP430F677xIPZ
MSP430F676xIPZ
MSP430F674xIPZ
11
VREF
VREF
VREF
12
SD4P0
SD4P0
NC
13
SD4N0
SD4N0
NC
14
SD5P0
SD5P0
NC
15
SD5N0
SD5NO
NC
16
SD6P0
NC
NC
17
SD6N0
NC
NC
72
P5.5/SD4DIO/S19
P5.5/SD4DIO/S19
P5.5/S19
73
P5.6/SD5DIO/S18
P5.6/SD5DIO/S18
P5.6/S18
74
P5.7/SD6DIO/S17
P5.7/S17
P5.7/S17
Terminal Configuration and Functions
Copyright © 2012–2018, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F6779 MSP430F6778 MSP430F6777 MSP430F6776 MSP430F6775 MSP430F6769
MSP430F6768 MSP430F6767 MSP430F6766 MSP430F6765 MSP430F6749 MSP430F6748 MSP430F6747
MSP430F6746 MSP430F6745
MSP430F6779, MSP430F6778, MSP430F6777, MSP430F6776, MSP430F6775
MSP430F6769, MSP430F6768, MSP430F6767, MSP430F6766, MSP430F6765
MSP430F6749, MSP430F6748, MSP430F6747, MSP430F6746, MSP430F6745
www.ti.com
4.2
SLAS768E – SEPTEMBER 2012 – REVISED SEPTEMBER 2018
Signal Descriptions
Table 4-3 describes the signals for devices in the PEU package. See Table 4-4 for the PZ package signal
descriptions.
Table 4-3. Terminal Functions – PEU Package
TERMINAL
NAME
NO.
I/O (1)
DESCRIPTION
PEU
XIN
1
I/O
Input terminal for crystal oscillator
XOUT
2
I/O
Output terminal for crystal oscillator
AUXVCC3
3
RTCCAP1
4
I
External time capture pin 1 for RTC_C
RTCCAP0
5
I
External time capture pin 0 for RTC_C
Auxiliary power supply AUXVCC3 for back up subsystem
General-purpose digital I/O with port interrupt
P1.5/SMCLK/CB0/A5
6
I/O
SMCLK clock output
Comparator_B input CB0
Analog input A5 for 10-bit ADC
General-purpose digital I/O with port interrupt
P1.4/MCLK/CB1/A4
7
I/O
MCLK clock output
Comparator_B input CB1
Analog input A4 for 10-bit ADC
General-purpose digital I/O with port interrupt
P1.3/ADC10CLK/A3 (2)
8
I/O
ADC10_A clock output
Analog input A3 for 10-bit ADC
General-purpose digital I/O with port interrupt
P1.2/ACLK/A2
9
I/O
ACLK clock output
Analog input A2 for 10-bit ADC
General-purpose digital I/O with port interrupt
P1.1/TA2.1/VeREF+/A1
10
I/O
Timer TA2 CCR1 capture: CCI1A input, compare: Out1 output
Positive terminal for the ADC reference voltage for an external applied reference voltage
Analog input A1 for 10-bit ADC
General-purpose digital I/O with port interrupt
P1.0/TA1.1/VeREF-/A0
11
I/O
Timer TA1 CCR1 capture: CCI1A input, compare: Out1 output
Negative terminal for the ADC reference voltage for an external applied reference voltage
Analog input A0 for 10-bit ADC
General-purpose digital I/O with port interrupt and mappable secondary function
P2.4/PM_TA2.0
12
I/O
Default mapping: Timer TA2 capture CCR0: CCI0A input, compare: Out0 output
General-purpose digital I/O with port interrupt and mappable secondary function
P2.5/PM_UCB0SOMI/
PM_UCB0SCL
13
I/O
Default mapping: eUSCI_B0 SPI slave out master in
Default mapping: eUSCI_B0 I2C clock
General-purpose digital I/O with port interrupt and mappable secondary function
P2.6/PM_UCB0SIMO/
PM_UCB0SDA
14
I/O
Default mapping: eUSCI_B0 SPI slave in master out
Default mapping: eUSCI_B0 I2C data
General-purpose digital I/O with port interrupt and mappable secondary function
P2.7/PM_UCB0CLK
15
I/O
Default mapping: eUSCI_B0 clock input/output
(1)
(2)
I = input, O = output
Before enabling the analog function (A3), pull this pin low by setting the port function to output low or to input with the internal pulldown
resistor enabled.
Terminal Configuration and Functions
Submit Documentation Feedback
Product Folder Links: MSP430F6779 MSP430F6778 MSP430F6777 MSP430F6776 MSP430F6775 MSP430F6769
MSP430F6768 MSP430F6767 MSP430F6766 MSP430F6765 MSP430F6749 MSP430F6748 MSP430F6747
MSP430F6746 MSP430F6745
Copyright © 2012–2018, Texas Instruments Incorporated
13
MSP430F6779, MSP430F6778, MSP430F6777, MSP430F6776, MSP430F6775
MSP430F6769, MSP430F6768, MSP430F6767, MSP430F6766, MSP430F6765
MSP430F6749, MSP430F6748, MSP430F6747, MSP430F6746, MSP430F6745
SLAS768E – SEPTEMBER 2012 – REVISED SEPTEMBER 2018
www.ti.com
Table 4-3. Terminal Functions – PEU Package (continued)
TERMINAL
NAME
NO.
I/O (1)
DESCRIPTION
PEU
General-purpose digital I/O with mappable secondary function
P3.0/PM_UCA0RXD/
PM_UCA0SOMI
16
I/O
Default mapping: eUSCI_A0 UART receive data
Default mapping: eUSCI_A0 SPI slave out master in
General-purpose digital I/O with mappable secondary function
P3.1/PM_UCA0TXD/
PM_UCA0SIMO
17
I/O
Default mapping: eUSCI_A0 UART transmit data
Default mapping: eUSCI_A0 SPI slave in master out
General-purpose digital I/O with mappable secondary function
P3.2/PM_UCA0CLK
18
I/O
Default mapping: eUSCI_A0 clock input/output
General-purpose digital I/O with mappable secondary function
P3.3/PM_UCA1CLK
19
I/O
Default mapping: eUSCI_A1 clock input/output
General-purpose digital I/O with mappable secondary function
P3.4/PM_UCA1RXD/
PM_UCA1SOMI
20
I/O
Default mapping: eUSCI_A1 UART receive data
Default mapping: eUSCI_A1 SPI slave out master in
General-purpose digital I/O with mappable secondary function
P3.5/PM_UCA1TXD/
PM_UCA1SIMO
21
I/O
COM0
22
O
LCD common output COM0 for LCD backplane
COM1
23
O
LCD common output COM1 for LCD backplane
P1.6/COM2
24
I/O
Default mapping: eUSCI_A1 UART transmit data
Default mapping: eUSCI_A1 SPI slave in master out
General-purpose digital I/O with port interrupt
LCD common output COM2 for LCD backplane
General-purpose digital I/O with port interrupt
P1.7/COM3
25
I/O
LCD common output COM3 for LCD backplane
General-purpose digital I/O
P5.0/COM4
26
I/O
LCD common output COM4 for LCD backplane
General-purpose digital I/O
P5.1/COM5
27
I/O
LCD common output COM5 for LCD backplane
General-purpose digital I/O
P5.2/COM6
28
I/O
LCD common output COM6 for LCD backplane
General-purpose digital I/O
P5.3/COM7
29
I/O
LCD common output COM7 for LCD backplane
LCD capacitor connection
LCDCAP/R33
30
I/O
Input/output port of most positive analog LCD voltage (V1)
CAUTION: This pin must be connected to DVSS if not used.
General-purpose digital I/O
P5.4/SDCLK/R23
31
I/O
SD24_B bit stream clock input/output
Input/output port of second most positive analog LCD voltage (V2)
General-purpose digital I/O
P5.5/SD0DIO/
LCDREF/R13
SD24_B converter 0 bit stream data input/output
32
I/O
External reference voltage input for regulated LCD voltage
Input/output port of third most positive analog LCD voltage (V3 or V4)
14
Terminal Configuration and Functions
Copyright © 2012–2018, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F6779 MSP430F6778 MSP430F6777 MSP430F6776 MSP430F6775 MSP430F6769
MSP430F6768 MSP430F6767 MSP430F6766 MSP430F6765 MSP430F6749 MSP430F6748 MSP430F6747
MSP430F6746 MSP430F6745
MSP430F6779, MSP430F6778, MSP430F6777, MSP430F6776, MSP430F6775
MSP430F6769, MSP430F6768, MSP430F6767, MSP430F6766, MSP430F6765
MSP430F6749, MSP430F6748, MSP430F6747, MSP430F6746, MSP430F6745
www.ti.com
SLAS768E – SEPTEMBER 2012 – REVISED SEPTEMBER 2018
Table 4-3. Terminal Functions – PEU Package (continued)
TERMINAL
NAME
NO.
I/O (1)
DESCRIPTION
PEU
General-purpose digital I/O
P5.6/SD1DIO/R03
33
I/O
SD24_B converter 1 bit stream data input/output
Input/output port of lowest analog LCD voltage (V5)
General-purpose digital I/O
P5.7/SD2DIO/CB2
34
I/O
SD24_B converter 2 bit stream data input/output
Comparator_B input CB2
General-purpose digital I/O
P6.0/SD3DIO
35
I/O
SD24_B converter 3 bit stream data input/output
General-purpose digital I/O with mappable secondary function
P3.6/PM_UCA2RXD/
PM_UCA2SOMI
36
I/O
Default mapping: eUSCI_A2 UART receive data
Default mapping: eUSCI_A2 SPI slave out master in
General-purpose digital I/O with mappable secondary function
P3.7/PM_UCA2TXD/
PM_UCA2SIMO
37
I/O
Default mapping: eUSCI_A2 UART transmit data
Default mapping: eUSCI_A2 SPI slave in master out
General-purpose digital I/O with mappable secondary function
P4.0/PM_UCA2CLK
38
I/O
Default mapping: eUSCI_A2 clock input/output
General-purpose digital I/O with mappable secondary function
P4.1/PM_UCA3RXD/
PM_UCA3SOMI
39
I/O
Default mapping: eUSCI_A3 UART receive data
Default mapping: eUSCI_A3 SPI slave out master in
General-purpose digital I/O with mappable secondary function
P4.2/PM_UCA3TXD/
PM_UCA3SIMO
40
I/O
Default mapping: eUSCI_A3 UART transmit data
Default mapping: eUSCI_A3 SPI slave in master out
General-purpose digital I/O with mappable secondary function
P4.3/PM_UCA3CLK
41
I/O
Default mapping: eUSCI_A3 clock input/output
General-purpose digital I/O with mappable secondary function
P4.4/PM_UCB1SOMI/
PM_UCB1SCL
42
I/O
Default mapping: eUSCI_B1 SPI slave out, master in
Default mapping: eUSCI_B1 I2C clock
General-purpose digital I/O with mappable secondary function
P4.5/PM_UCB1SIMO/
PM_UCB1SDA
43
I/O
Default mapping: eUSCI_B1 SPI slave in, master out
Default mapping: eUSCI_B1 I2C data
General-purpose digital I/O with mappable secondary function
P4.6/PM_UCB1CLK
44
I/O
Default mapping: eUSCI_B1 clock input/output
General-purpose digital I/O with mappable secondary function
P4.7/PM_TA3.0
45
I/O
Default mapping: Timer TA3 capture CCR0: CCI0A input, compare: Out0 output
General-purpose digital I/O
P6.1/SD4DIO/S39
46
I/O
SD24_B converter 4 bit stream data input/output (not available in F674x devices)
LCD segment output S39
General-purpose digital I/O
P6.2/SD5DIO/S38
47
I/O
SD24_B converter 5 bit stream data input/output (not available in F674x devices)
LCD segment output S38
Terminal Configuration and Functions
Submit Documentation Feedback
Product Folder Links: MSP430F6779 MSP430F6778 MSP430F6777 MSP430F6776 MSP430F6775 MSP430F6769
MSP430F6768 MSP430F6767 MSP430F6766 MSP430F6765 MSP430F6749 MSP430F6748 MSP430F6747
MSP430F6746 MSP430F6745
Copyright © 2012–2018, Texas Instruments Incorporated
15
MSP430F6779, MSP430F6778, MSP430F6777, MSP430F6776, MSP430F6775
MSP430F6769, MSP430F6768, MSP430F6767, MSP430F6766, MSP430F6765
MSP430F6749, MSP430F6748, MSP430F6747, MSP430F6746, MSP430F6745
SLAS768E – SEPTEMBER 2012 – REVISED SEPTEMBER 2018
www.ti.com
Table 4-3. Terminal Functions – PEU Package (continued)
TERMINAL
NAME
NO.
I/O (1)
DESCRIPTION
PEU
General-purpose digital I/O
P6.3/SD6DIO/S37
48
I/O
SD24_B converter 6 bit stream data input/output (not available in F674x, F676x devices)
LCD segment output S37
General-purpose digital I/O
P6.4/S36
49
I/O
LCD segment output S36
General-purpose digital I/O
P6.5/S35
50
I/O
LCD segment output S35
General-purpose digital I/O
P6.6/S34
51
I/O
LCD segment output S34
General-purpose digital I/O
P6.7/S33
52
I/O
LCD segment output S33
General-purpose digital I/O
P7.0/S32
53
I/O
LCD segment output S32
General-purpose digital I/O
P7.1/S31
54
I/O
LCD segment output S31
General-purpose digital I/O
P7.2/S30
55
I/O
LCD segment output S30
General-purpose digital I/O
P7.3/S29
56
I/O
LCD segment output S29
General-purpose digital I/O
P7.4/S28
57
I/O
LCD segment output S28
General-purpose digital I/O
P7.5/S27
58
I/O
LCD segment output S27
General-purpose digital I/O
P7.6/S26
59
I/O
LCD segment output S26
General-purpose digital I/O
P7.7/S25
60
I/O
LCD segment output S25
General-purpose digital I/O
P8.0/S24
61
I/O
LCD segment output S24
General-purpose digital I/O
P8.1/S23
62
I/O
LCD segment output S23
General-purpose digital I/O
P8.2/S22
63
I/O
LCD segment output S22
General-purpose digital I/O
P8.3/S21
64
I/O
LCD segment output S21
General-purpose digital I/O
P8.4/S20
65
I/O
LCD segment output S20
General-purpose digital I/O
P8.5/S19
66
I/O
LCD segment output S19
General-purpose digital I/O
P8.6/S18
67
I/O
LCD segment output S18
16
Terminal Configuration and Functions
Copyright © 2012–2018, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F6779 MSP430F6778 MSP430F6777 MSP430F6776 MSP430F6775 MSP430F6769
MSP430F6768 MSP430F6767 MSP430F6766 MSP430F6765 MSP430F6749 MSP430F6748 MSP430F6747
MSP430F6746 MSP430F6745
MSP430F6779, MSP430F6778, MSP430F6777, MSP430F6776, MSP430F6775
MSP430F6769, MSP430F6768, MSP430F6767, MSP430F6766, MSP430F6765
MSP430F6749, MSP430F6748, MSP430F6747, MSP430F6746, MSP430F6745
www.ti.com
SLAS768E – SEPTEMBER 2012 – REVISED SEPTEMBER 2018
Table 4-3. Terminal Functions – PEU Package (continued)
TERMINAL
NAME
NO.
I/O (1)
DESCRIPTION
PEU
General-purpose digital I/O
P8.7/S17
68
I/O
VDSYS2 (3)
69
Digital power supply for I/Os
DVSS2
70
Digital ground supply
P9.0/S16
71
LCD segment output S17
General-purpose digital I/O
I/O
LCD segment output S16
General-purpose digital I/O
P9.1/S15
72
I/O
LCD segment output S15
General-purpose digital I/O
P9.2/S14
73
I/O
LCD segment output S14
General-purpose digital I/O
P9.3/S13
74
I/O
LCD segment output S13
General-purpose digital I/O
P9.4/S12
75
I/O
LCD segment output S12
General-purpose digital I/O
P9.5/S11
76
I/O
LCD segment output S11
General-purpose digital I/O
P9.6/S10
77
I/O
LCD segment output S10
General-purpose digital I/O
P9.7/S9
78
I/O
LCD segment output S9
General-purpose digital I/O
P10.0/S8
79
I/O
LCD segment output S8
General-purpose digital I/O
P10.1/S7
80
I/O
LCD segment output S7
General-purpose digital I/O
P10.2/S6
81
I/O
LCD segment output S6
General-purpose digital I/O
P10.3/S5
82
I/O
LCD segment output S5
General-purpose digital I/O
P10.4/S4
83
I/O
LCD segment output S4
General-purpose digital I/O
P10.5/S3
84
I/O
LCD segment output S3
General-purpose digital I/O
P10.6/S2
85
I/O
LCD segment output S2
General-purpose digital I/O
P10.7/S1
86
I/O
LCD segment output S1
General-purpose digital I/O
P11.0/S0
87
I/O
LCD segment output S0
General-purpose digital I/O
P11.1/TA3.1/CB3
88
I/O
Timer TA3 capture CCR1: CCI1A input, compare: Out1 output
Comparator_B input CB3
(3)
The pins VDSYS1 and VDSYS2 must be connected externally on board for proper device operation.
Terminal Configuration and Functions
Submit Documentation Feedback
Product Folder Links: MSP430F6779 MSP430F6778 MSP430F6777 MSP430F6776 MSP430F6775 MSP430F6769
MSP430F6768 MSP430F6767 MSP430F6766 MSP430F6765 MSP430F6749 MSP430F6748 MSP430F6747
MSP430F6746 MSP430F6745
Copyright © 2012–2018, Texas Instruments Incorporated
17
MSP430F6779, MSP430F6778, MSP430F6777, MSP430F6776, MSP430F6775
MSP430F6769, MSP430F6768, MSP430F6767, MSP430F6766, MSP430F6765
MSP430F6749, MSP430F6748, MSP430F6747, MSP430F6746, MSP430F6745
SLAS768E – SEPTEMBER 2012 – REVISED SEPTEMBER 2018
www.ti.com
Table 4-3. Terminal Functions – PEU Package (continued)
TERMINAL
NAME
NO.
I/O (1)
DESCRIPTION
PEU
General-purpose digital I/O
P11.2/TA1.1
89
I/O
Timer TA1 capture CCR1: CCI1A input, compare: Out1 output
General-purpose digital I/O
P11.3/TA2.1
90
I/O
Timer TA2 capture CCR1: CCI1A input, compare: Out1 output
General-purpose digital I/O
P11.4/CBOUT
91
I/O
Comparator_B Output
General-purpose digital I/O
P11.5/TACLK/RTCCLK
92
I/O
Timer clock input TACLK for TA0, TA1, TA2, TA3
RTCCLK clock output
General-purpose digital I/O with port interrupt and mappable secondary function
P2.0/PM_TA0.0/BSL_TX
93
I/O
Default mapping: Timer TA0 capture CCR0: CCI0A input, compare: Out0 output
Bootloader: Data transmit
General-purpose digital I/O with port interrupt and mappable secondary function
P2.1/PM_TA0.1/BSL_RX
94
I/O
Default mapping: Timer TA0 capture CCR1: CCI1A input, compare: Out1 output
Bootloader: Data receive
General-purpose digital I/O with port interrupt and mappable secondary function
P2.2/PM_TA0.2
95
I/O
Default mapping: Timer TA0 capture CCR2: CCI2A input, compare: Out2 output
General-purpose digital I/O port interrupt and with mappable secondary function
P2.3/PM_TA1.0
96
I/O
Default mapping: Timer TA1 capture CCR0: CCI0A input, compare: Out0 output
Test mode pin – select digital I/O on JTAG pins
TEST/SBWTCK
97
I
Spy-Bi-Wire input clock
General-purpose digital I/O
PJ.0/TDO
98
I/O
Test data output
General-purpose digital I/O
PJ.1/TDI/TCLK
99
I/O
Test data input or Test clock input
General-purpose digital I/O
PJ.2/TMS
100
I/O
Test mode select
General-purpose digital I/O
PJ.3/TCK
101
I/O
Test clock
Reset input active low (4)
RST/NMI/SBWTDIO
102
I/O
Nonmaskable interrupt input
Spy-By-Wire data input/output
SD0P0
103
I
SD24_B positive analog input for converter 0 (5)
SD0N0
104
I
SD24_B negative analog input for converter 0 (5)
SD1P0
105
I
SD24_B positive analog input for converter 1 (5)
SD1N0
106
I
SD24_B negative analog input for converter 1 (5)
SD2P0
107
I
SD24_B positive analog input for converter 2 (5)
SD2N0
108
I
SD24_B negative analog input for converter 2 (5)
SD3P0
109
I
SD24_B positive analog input for converter 3 (5)
SD3N0
110
I
SD24_B negative analog input for converter 3 (4)
VASYS2
111
(4)
(5)
18
Analog power supply selected between AVCC, AUXVCC1, AUXVCC2. Connect recommended
capacitor value of CVSYS
When this pin is configured as reset, the internal pullup resistor is enabled by default.
Short unused analog input pairs and connect them to analog ground.
Terminal Configuration and Functions
Copyright © 2012–2018, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F6779 MSP430F6778 MSP430F6777 MSP430F6776 MSP430F6775 MSP430F6769
MSP430F6768 MSP430F6767 MSP430F6766 MSP430F6765 MSP430F6749 MSP430F6748 MSP430F6747
MSP430F6746 MSP430F6745
MSP430F6779, MSP430F6778, MSP430F6777, MSP430F6776, MSP430F6775
MSP430F6769, MSP430F6768, MSP430F6767, MSP430F6766, MSP430F6765
MSP430F6749, MSP430F6748, MSP430F6747, MSP430F6746, MSP430F6745
www.ti.com
SLAS768E – SEPTEMBER 2012 – REVISED SEPTEMBER 2018
Table 4-3. Terminal Functions – PEU Package (continued)
TERMINAL
NAME
NO.
I/O (1)
DESCRIPTION
PEU
AVSS2
112
VREF
113
I
SD24_B external reference voltage
SD4P0
114
I
SD24_B positive analog input for converter 4 (5) (not available on F674x devices)
SD4N0
115
I
SD24_B negative analog input for converter 4 (5) (not available on F674x devices)
SD5P0
116
I
SD24_B positive analog input for converter 5 (5) (not available on F674x devices)
SD5N0
117
I
SD24_B negative analog input for converter 5 (5) (not available on F674x devices)
SD6P0
118
I
SD24_B positive analog input for converter 6 (5) (not available on F676x, F674x devices)
SD6N0
119
I
SD24_B negative analog input for converter 6 (5) (not available on F676x, F674x devices)
AVSS1
120
Analog ground supply
AVCC
121
Analog power supply
VASYS1
122
Analog power supply selected between AVCC, AUXVCC1, AUXVCC2. Connect recommended
capacitor value of CVSYS.
AUXVCC2
123
Auxiliary power supply AUXVCC2
AUXVCC1
124
Auxiliary power supply AUXVCC1
VDSYS1 (3)
125
Digital power supply selected between DVCC, AUXVCC1, AUXVCC2. Connect recommended
capacitor value of CVSYS.
DVCC
126
Digital power supply
DVSS1
127
Digital ground supply
VCORE (6)
128
Regulated core power supply (internal use only, no external current loading)
(6)
Analog ground supply
VCORE is for internal use only. No external current loading is possible. VCORE should only be connected to the recommended
capacitor value, CVCORE.
Terminal Configuration and Functions
Submit Documentation Feedback
Product Folder Links: MSP430F6779 MSP430F6778 MSP430F6777 MSP430F6776 MSP430F6775 MSP430F6769
MSP430F6768 MSP430F6767 MSP430F6766 MSP430F6765 MSP430F6749 MSP430F6748 MSP430F6747
MSP430F6746 MSP430F6745
Copyright © 2012–2018, Texas Instruments Incorporated
19
MSP430F6779, MSP430F6778, MSP430F6777, MSP430F6776, MSP430F6775
MSP430F6769, MSP430F6768, MSP430F6767, MSP430F6766, MSP430F6765
MSP430F6749, MSP430F6748, MSP430F6747, MSP430F6746, MSP430F6745
SLAS768E – SEPTEMBER 2012 – REVISED SEPTEMBER 2018
www.ti.com
Table 4-4 describes the signals for devices in the PZ package. See Table 4-3 for the PEU package signal
descriptions.
Table 4-4. Terminal Functions – PZ Package
TERMINAL
NAME
NO.
I/O (1)
DESCRIPTION
PZ
SD0P0
1
I
SD24_B positive analog input for converter 0 (2)
SD0N0
2
I
SD24_B negative analog input for converter 0 (2)
SD1P0
3
I
SD24_B positive analog input for converter 1 (2)
SD1N0
4
I
SD24_B negative analog input for converter 1 (2)
SD2P0
5
I
SD24_B positive analog input for converter 2 (2)
SD2N0
6
I
SD24_B negative analog input for converter 2 (2)
SD3P0
7
I
SD24_B positive analog input for converter 3 (2)
SD3N0
8
I
SD24_B negative analog input for converter 3 (2)
VASYS2
9
AVSS2
10
VREF
11
I
SD24_B external reference voltage
SD4P0
12
I
SD24_B positive analog input for converter 4 (2) (not available on F674x devices)
SD4N0
13
I
SD24_B negative analog input for converter 4 (2) (not available on F674x devices)
SD5P0
14
I
SD24_B positive analog input for converter 5 (2) (not available on F674x devices)
SD5N0
15
I
SD24_B negative analog input for converter 5 (2) (not available on F674x devices)
SD6P0
16
I
SD24_B positive analog input for converter 6 (2) (not available on F676x, F674x devices)
SD6N0
17
I
SD24_B negative analog input for converter 6 (2) (not available on F676x, F674x devices)
AVSS1
18
Analog ground supply
AVCC
19
Analog power supply
VASYS1
20
Analog power supply selected between AVCC, AUXVCC1, AUXVCC2. Connect recommended
capacitor value of CVSYS
AUXVCC2
21
Auxiliary power supply AUXVCC2
AUXVCC1
22
Auxiliary power supply AUXVCC1
23
Digital power supply selected between DVCC, AUXVCC1, AUXVCC2. Connect recommended
capacitor value of CVSYS.
24
Digital power supply
25
Digital ground supply
VDSYS1
(3)
DVCC
DVSS1
VCORE
(4)
Analog power supply selected between AVCC, AUXVCC1, AUXVCC2. Connect recommended
capacitor value of CVSYS.
Analog ground supply
26
Regulated core power supply (internal use only, no external current loading)
XIN
27
I/O
Input terminal for crystal oscillator
XOUT
28
I/O
Output terminal for crystal oscillator
AUXVCC3
29
RTCCAP1
30
I
External time capture pin 1 for RTC_C
RTCCAP0
31
I
External time capture pin 0 for RTC_C
Auxiliary power supply AUXVCC3 for back up subsystem
General-purpose digital I/O with port interrupt
SMCLK clock output
P1.5/SMCLK/CB0/A5
32
I/O
Comparator_B input CB0
Analog input A5 for 10-bit ADC
(1)
(2)
(3)
(4)
20
I = input, O = output
Short unused analog input pairs and connect them to analog ground.
The pins VDSYS1 and VDSYS2 must be connected externally on board for proper device operation.
VCORE is for internal use only. No external current loading is possible. VCORE should only be connected to the recommended
capacitor value, CVCORE.
Terminal Configuration and Functions
Copyright © 2012–2018, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F6779 MSP430F6778 MSP430F6777 MSP430F6776 MSP430F6775 MSP430F6769
MSP430F6768 MSP430F6767 MSP430F6766 MSP430F6765 MSP430F6749 MSP430F6748 MSP430F6747
MSP430F6746 MSP430F6745
MSP430F6779, MSP430F6778, MSP430F6777, MSP430F6776, MSP430F6775
MSP430F6769, MSP430F6768, MSP430F6767, MSP430F6766, MSP430F6765
MSP430F6749, MSP430F6748, MSP430F6747, MSP430F6746, MSP430F6745
www.ti.com
SLAS768E – SEPTEMBER 2012 – REVISED SEPTEMBER 2018
Table 4-4. Terminal Functions – PZ Package (continued)
TERMINAL
NAME
NO.
I/O (1)
DESCRIPTION
PZ
General-purpose digital I/O with port interrupt
MCLK clock output
P1.4/MCLK/CB1/A4
33
I/O
Comparator_B input CB1
Analog input A4 for 10-bit ADC
General-purpose digital I/O with port interrupt
P1.3/ADC10CLK/A3
34
I/O
ADC10_A clock output
Analog input A3 for 10-bit ADC
General-purpose digital I/O with port interrupt
P1.2/ACLK/A2
35
I/O
ACLK clock output
Analog input A2 for 10-bit ADC
General-purpose digital I/O with port interrupt
Timer TA2 CCR1 capture: CCI1A input, compare: Out1 output
P1.1/TA2.1/CBOUT/
VeREF+/A1
36
I/O
Comparator_B Output
Positive terminal for the ADC reference voltage for an external applied reference voltage
Analog input A1 for 10-bit ADC
General-purpose digital I/O with port interrupt
Timer TA1 CCR1 capture: CCI1A input, compare: Out1 output
P1.0/TA1.1/VeREF-/A0
37
I/O
Negative terminal for the ADC reference voltage for an external applied reference voltage
Analog input A0 for 10-bit ADC
COM0
38
I/O
LCD common output COM0 for LCD backplane
COM1
39
I/O
LCD common output COM1 for LCD backplane
P1.6/COM2
40
I/O
General-purpose digital I/O with port interrupt
LCD common output COM2 for LCD backplane
General-purpose digital I/O with port interrupt
P1.7/COM3
41
I/O
LCD common output COM3 for LCD backplane
General-purpose digital I/O with port interrupt and mappable secondary function
P2.0/PM_TA0.0/
BSL_TX/COM4
Default Mapping: Timer TA0 CCR0 capture: CCI0A input, compare: Out0 output
42
I/O
Bootloader: Data transmit
LCD common output COM4 for LCD backplane
General-purpose digital I/O with port interrupt and mappable secondary function
P2.1/PM_TA0.1/
BSL_RX/COM5
Default Mapping: Timer TA0 CCR1 capture: CCI1A input, compare: Out1 output
43
I/O
Bootloader: Data receive
LCD common output COM5 for LCD backplane
General-purpose digital I/O with port interrupt and mappable secondary function
P2.2/PM_TA0.2/COM6
44
I/O
Default Mapping: Timer TA0 CCR0 capture: CCI2A input, compare: Out2 output
LCD common output COM6 for LCD backplane
General-purpose digital I/O with port interrupt and mappable secondary function
P2.3/PM_TA1.0/COM7
45
I/O
Default Mapping: Timer TA1 CCR0 capture: CCI0A input, compare: Out0 output
LCD common output COM7 for LCD backplane
Terminal Configuration and Functions
Submit Documentation Feedback
Product Folder Links: MSP430F6779 MSP430F6778 MSP430F6777 MSP430F6776 MSP430F6775 MSP430F6769
MSP430F6768 MSP430F6767 MSP430F6766 MSP430F6765 MSP430F6749 MSP430F6748 MSP430F6747
MSP430F6746 MSP430F6745
Copyright © 2012–2018, Texas Instruments Incorporated
21
MSP430F6779, MSP430F6778, MSP430F6777, MSP430F6776, MSP430F6775
MSP430F6769, MSP430F6768, MSP430F6767, MSP430F6766, MSP430F6765
MSP430F6749, MSP430F6748, MSP430F6747, MSP430F6746, MSP430F6745
SLAS768E – SEPTEMBER 2012 – REVISED SEPTEMBER 2018
www.ti.com
Table 4-4. Terminal Functions – PZ Package (continued)
TERMINAL
NAME
NO.
I/O (1)
DESCRIPTION
PZ
LCD capacitor connection
LCDCAP/R33
46
I/O
Input/output port of most positive analog LCD voltage (V1)
CAUTION: This pin must be connected to DVSS if not used.
General-purpose digital I/O with port interrupt and mappable secondary function
P2.4/PM_TA2.0/R23
47
I/O
Default Mapping: Timer TA2 CCR0 capture: CCI0A input, compare: Out0 output
Input/output port of second most positive analog LCD voltage (V2)
General-purpose digital I/O with port interrupt and mappable secondary function
P2.5/PM_UCB0SOMI/
PM_UCB0SCL/LCDREF/
R13
Default mapping: eUSCI_B0 SPI slave out, master in
48
I/O
Default mapping: eUSCI_B0 I2C clock
External reference voltage input for regulated LCD voltage
Input/output port of third most positive analog LCD voltage (V3 or V4)
General-purpose digital I/O with port interrupt and mappable secondary function
P2.6/PM_UCB0SIMO/
PM_UCB0SDA/R03
Default mapping: eUSCI_B0 SPI slave in, master out
49
I/O
Default mapping: eUSCI_B0 I2C data
Input/output port of lowest analog LCD voltage (V5)
General-purpose digital I/O with port interrupt and mappable secondary function
P2.7/PM_UCB0CLK/CB2
50
I/O
Default mapping: eUSCI_B0 clock input/output
Comparator_B input CB2
General-purpose digital I/O with mappable secondary function
P3.0/PM_UCA0RXD/
PM_UCA0SOMI
51
I/O
Default mapping: eUSCI_A0 UART receive data
Default mapping: eUSCI_A0 SPI slave out, master in
General-purpose digital I/O with mappable secondary function
P3.1/PM_UCA0TXD/
PM_UCA0SIMO/S39
Default mapping: eUSCI_A0 UART transmit data
52
I/O
Default mapping: eUSCI_A0 SPI slave in, master out
LCD segment output S39
General-purpose digital I/O with mappable secondary function
P3.2/PM_UCA0CLK/S38
53
I/O
Default mapping: eUSCI_A0 clock input/output
LCD segment output S38
General-purpose digital I/O with mappable secondary function
P3.3/PM_UCA1CLK/S37
54
I/O
Default mapping: eUSCI_A1 clock input/output
LCD segment output S37
General-purpose digital I/O with mappable secondary function
P3.4/PM_UCA1RXD/
PM_UCA1SOMI/S36
Default mapping: eUSCI_A1 UART receive data
55
I/O
Default mapping: eUSCI_A1 SPI slave out, master in
LCD segment output S36
General-purpose digital I/O with mappable secondary function
P3.5/PM_UCA1TXD/
PM_UCA1SIMO/S35
Default mapping: eUSCI_A1 UART transmit data
56
I/O
Default mapping: eUSCI_A1 SPI slave in, master out
LCD segment output S35
22
Terminal Configuration and Functions
Copyright © 2012–2018, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F6779 MSP430F6778 MSP430F6777 MSP430F6776 MSP430F6775 MSP430F6769
MSP430F6768 MSP430F6767 MSP430F6766 MSP430F6765 MSP430F6749 MSP430F6748 MSP430F6747
MSP430F6746 MSP430F6745
MSP430F6779, MSP430F6778, MSP430F6777, MSP430F6776, MSP430F6775
MSP430F6769, MSP430F6768, MSP430F6767, MSP430F6766, MSP430F6765
MSP430F6749, MSP430F6748, MSP430F6747, MSP430F6746, MSP430F6745
www.ti.com
SLAS768E – SEPTEMBER 2012 – REVISED SEPTEMBER 2018
Table 4-4. Terminal Functions – PZ Package (continued)
TERMINAL
NAME
NO.
I/O (1)
DESCRIPTION
PZ
General-purpose digital I/O with mappable secondary function
P3.6/PM_UCA2RXD/
PM_UCA2SOMI/S34
Default mapping: eUSCI_A2 UART receive data
57
I/O
Default mapping: eUSCI_A2 SPI slave out, master in
LCD segment output S34
General-purpose digital I/O with mappable secondary function
P3.7/PM_UCA2TXD/
PM_UCA2SIMO/S33
Default mapping: eUSCI_A2 UART transmit data
58
I/O
Default mapping: eUSCI_A2 SPI slave in, master out
LCD segment output S33
General-purpose digital I/O with mappable secondary function
P4.0/PM_UCA2CLK/S32
59
I/O
Default mapping: eUSCI_A2 clock input/output
LCD segment output S32
General-purpose digital I/O with mappable secondary function
P4.1/PM_UCA3RXD/
PM_UCA3SOMI/S31
Default mapping: eUSCI_A3 UART receive data
60
I/O
Default mapping: eUSCI_A3 SPI slave out, master in
LCD segment output S31
General-purpose digital I/O with mappable secondary function
P4.2/PM_UCA3TXD/
PM_UCA3SIMO/S30
Default mapping: eUSCI_A3 UART transmit data
61
I/O
Default mapping: eUSCI_A3 SPI slave in, master out
LCD segment output S30
General-purpose digital I/O with mappable secondary function
P4.3/PM_UCA3CLK/S29
62
I/O
Default mapping: eUSCI_A3 clock input/output
LCD segment output S29
General-purpose digital I/O with mappable secondary function
P4.4/PM_UCB1SOMI/
PM_UCB1SCL/S28
Default mapping: eUSCI_B1 SPI slave out, master in
63
I/O
Default mapping: eUSCI_B1 I2C clock
LCD segment output S28
General-purpose digital I/O with mappable secondary function
P4.5/PM_UCB1SIMO/
PM_UCB1SDA/S27
Default mapping: eUSCI_B1 SPI slave in, master out
64
I/O
Default mapping: eUSCI_B1 I2C data
LCD segment output S27
General-purpose digital I/O with mappable secondary function
P4.6/PM_UCB1CLK/S26
65
I/O
Default mapping: eUSCI_B1 clock input/output
LCD segment output S26
General-purpose digital I/O with mappable secondary function
P4.7/PM_TA3.0/S25
66
I/O
Default Mapping: Timer TA3 CCR0 capture: CCI0A input, compare: Out0 output
LCD segment output S25
General-purpose digital I/O
P5.0/SDCLK/S24
67
I/O
SD24_B bit stream clock input/output
LCD segment output S24
Terminal Configuration and Functions
Submit Documentation Feedback
Product Folder Links: MSP430F6779 MSP430F6778 MSP430F6777 MSP430F6776 MSP430F6775 MSP430F6769
MSP430F6768 MSP430F6767 MSP430F6766 MSP430F6765 MSP430F6749 MSP430F6748 MSP430F6747
MSP430F6746 MSP430F6745
Copyright © 2012–2018, Texas Instruments Incorporated
23
MSP430F6779, MSP430F6778, MSP430F6777, MSP430F6776, MSP430F6775
MSP430F6769, MSP430F6768, MSP430F6767, MSP430F6766, MSP430F6765
MSP430F6749, MSP430F6748, MSP430F6747, MSP430F6746, MSP430F6745
SLAS768E – SEPTEMBER 2012 – REVISED SEPTEMBER 2018
www.ti.com
Table 4-4. Terminal Functions – PZ Package (continued)
TERMINAL
NAME
NO.
I/O (1)
DESCRIPTION
PZ
General-purpose digital I/O
P5.1/PM_SD0DIO/S23
68
I/O
Default mapping: SD24_B converter 0 bit stream data input/output
LCD segment output S23
General-purpose digital I/O
P5.2/PM_SD1DIO/S22
69
I/O
Default mapping: SD24_B converter 1 bit stream data input/output
LCD segment output S22
General-purpose digital I/O
P5.3/PM_SD2DIO/S21
70
I/O
Default mapping: SD24_B converter 2 bit stream data input/output
LCD segment output S21
General-purpose digital I/O
P5.4/PM_SD3DIO/S20
71
I/O
Default mapping: SD24_B converter 3 bit stream data input/output
LCD segment output S20
General-purpose digital I/O
P5.5/PM_SD4DIO/S19
72
I/O
Default mapping: SD24_B converter 4 bit stream data input/output (not available on F674x
devices)
LCD segment output S19
General-purpose digital I/O
P5.6/PM_SD5DIO/S18
73
I/O
Default mapping: SD24_B converter 5 bit stream data input/output (not available on F674x
devices)
LCD segment output S18
General-purpose digital I/O
I/O
Default mapping: SD24_B converter 4 bit stream data input/output (not available on F676x,
F674x devices)
P5.7/PM_SD6DIO/S17
74
VDSYS2 (5)
75
Digital power supply for I/Os
DVSS2
76
Digital ground supply
P6.0/S16
77
LCD segment output S17
General-purpose digital I/O
I/O
LCD segment output S16
General-purpose digital I/O
P6.1/S15
78
I/O
LCD segment output S15
General-purpose digital I/O
P6.2/S14
79
I/O
LCD segment output S14
General-purpose digital I/O
P6.3/S13
80
I/O
LCD segment output S13
General-purpose digital I/O
P6.4/S12
81
I/O
LCD segment output S12
General-purpose digital I/O
P6.5/S11
82
I/O
LCD segment output S11
General-purpose digital I/O
P6.6/S10
83
I/O
LCD segment output S10
General-purpose digital I/O
P6.7/S9
84
I/O
LCD segment output S9
(5)
24
The pins VDSYS1 and VDSYS2 must be connected externally on board for proper device operation.
Terminal Configuration and Functions
Copyright © 2012–2018, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F6779 MSP430F6778 MSP430F6777 MSP430F6776 MSP430F6775 MSP430F6769
MSP430F6768 MSP430F6767 MSP430F6766 MSP430F6765 MSP430F6749 MSP430F6748 MSP430F6747
MSP430F6746 MSP430F6745
MSP430F6779, MSP430F6778, MSP430F6777, MSP430F6776, MSP430F6775
MSP430F6769, MSP430F6768, MSP430F6767, MSP430F6766, MSP430F6765
MSP430F6749, MSP430F6748, MSP430F6747, MSP430F6746, MSP430F6745
www.ti.com
SLAS768E – SEPTEMBER 2012 – REVISED SEPTEMBER 2018
Table 4-4. Terminal Functions – PZ Package (continued)
TERMINAL
NAME
NO.
I/O (1)
DESCRIPTION
PZ
General-purpose digital I/O
P7.0/S8
85
I/O
LCD segment output S8
P7.1/S7
86
I/O
General-purpose digital I/O
LCD segment output S7
General-purpose digital I/O
P7.2/S6
87
I/O
LCD segment output S6
P7.3/S5
88
I/O
General-purpose digital I/O
LCD segment output S5
General-purpose digital I/O
P7.4/S4
89
I/O
LCD segment output S4
P7.5/S3
90
I/O
General-purpose digital I/O
LCD segment output S3
General-purpose digital I/O
P7.6/S2
91
I/O
LCD segment output S2
General-purpose digital I/O
P7.7/S1
92
I/O
LCD segment output S1
General-purpose digital I/O
P8.0/S0
93
I/O
LCD segment output S0
General-purpose digital I/O
Timer clock input TACLK for TA0, TA1, TA2, TA3
P8.1/TACLK/RTCCLK/CB3
94
I/O
RTCCLK clock output
Comparator_B input CB3
Test mode pin – select digital I/O on JTAG pins
TEST/SBWTCK
95
I
Spy-By-Wire input clock
General-purpose digital I/O
PJ.0/TDO
96
I/O
Test data output
General-purpose digital I/O
PJ.1/TDI/TCLK
97
I/O
Test data input or Test clock input
General-purpose digital I/O
PJ.2/TMS
98
I/O
Test mode select
General-purpose digital I/O
PJ.3/TCK
99
I/O
Test clock
Reset input, active low (6)
RST/NMI/SBWTDIO
100
I/O
Nonmaskable interrupt input
Spy-By-Wire data input/output
(6)
When this pin is configured as reset, the internal pullup resistor is enabled by default.
Terminal Configuration and Functions
Submit Documentation Feedback
Product Folder Links: MSP430F6779 MSP430F6778 MSP430F6777 MSP430F6776 MSP430F6775 MSP430F6769
MSP430F6768 MSP430F6767 MSP430F6766 MSP430F6765 MSP430F6749 MSP430F6748 MSP430F6747
MSP430F6746 MSP430F6745
Copyright © 2012–2018, Texas Instruments Incorporated
25
MSP430F6779, MSP430F6778, MSP430F6777, MSP430F6776, MSP430F6775
MSP430F6769, MSP430F6768, MSP430F6767, MSP430F6766, MSP430F6765
MSP430F6749, MSP430F6748, MSP430F6747, MSP430F6746, MSP430F6745
SLAS768E – SEPTEMBER 2012 – REVISED SEPTEMBER 2018
www.ti.com
5 Specifications
All graphs in this section are for typical conditions, unless otherwise noted.
Typical (TYP) values are specified at VCC = 3.3 V and TA = 25°C, unless otherwise noted.
5.1
Absolute Maximum Ratings
over operating free-air temperature range (unless otherwise noted) (1)
Voltage applied at DVCC to DVSS
All pins except VCORE, SD24_B input pins (SDxN0,
SDxP0) (3), AUXVCC1, AUXVCC2, and AUXVCC3 (4)
Voltage applied to pins (2)
MIN
MAX
–0.3
4.1
V
–0.3
VCC + 0.3
V
All pins except SD24_B input pins (SDxN0, SDxP0)
±2
SD0N0, SD0P0, SD1N0, SD1P0, SD2N0, SD2P0,
SD3N0, SD3P0, SD4N0, SD4P0, SD5N0, SD5P0,
SD6N0, SD6P0 (5)
Diode current at pins
Storage temperature, Tstg
(1)
(2)
(3)
(4)
(5)
(6)
mA
2
Maximum junction temperature, TJ
(6)
UNIT
–55
95
°C
105
°C
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
All voltages referenced to VSS = VDVSS = VAVSS.
See Section 5.48 for SD24_B specifications.
See Section 5.27 for AUX specifications.
A protection diode is connected to VCC for the SD24_B input pins. No protection diode is connected to VSS.
Higher temperature may be applied during board soldering according to the current JEDEC J-STD-020 specification with peak reflow
temperatures not higher than classified on the device label on the shipping boxes or reels.
5.2
ESD Ratings
VALUE
V(ESD)
(1)
(2)
5.3
Electrostatic discharge
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)
±1000
Charged-device model (CDM), per JEDEC specification JESD22-C101 (2)
±250
Recommended Operating Conditions
1.8
3.6
2.0
3.6
PMMCOREVx = 0, 1, 2
2.2
3.6
PMMCOREVx = 0, 1, 2, 3
2.4
VSS
Supply voltage VAVSS = VDVSS = VSS
TA
Operating free-air temperature
I version
–40
TJ
Operating junction temperature
I version
–40
CVCORE
Recommended capacitor at VCORE (3)
CDVCC/
CVCORE
Capacitor ratio of DVCC to VCORE
26
MAX
PMMCOREVx = 0, 1
Supply voltage during program execution and flash
programming. VAVCC = VDVCC = VCC (1) (2)
(3)
NOM
PMMCOREVx = 0
VCC
(2)
V
JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Pins listed as
±1000 V may actually have higher performance.
JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Pins listed as ±250 V
may actually have higher performance.
MIN
(1)
UNIT
UNIT
V
3.6
0
V
85
85
470
°C
°C
nF
10
TI recommends powering AVCC and DVCC from the same source. A maximum difference of 0.3 V between VAVCC and VDVCC can be
tolerated during power up and operation.
The minimum supply voltage is defined by the supervisor SVS levels when it is enabled. See the threshold parameters in Section 5.22
for the exact values and more details.
A capacitor tolerance of ±20% or better is required.
Specifications
Copyright © 2012–2018, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F6779 MSP430F6778 MSP430F6777 MSP430F6776 MSP430F6775 MSP430F6769
MSP430F6768 MSP430F6767 MSP430F6766 MSP430F6765 MSP430F6749 MSP430F6748 MSP430F6747
MSP430F6746 MSP430F6745
MSP430F6779, MSP430F6778, MSP430F6777, MSP430F6776, MSP430F6775
MSP430F6769, MSP430F6768, MSP430F6767, MSP430F6766, MSP430F6765
MSP430F6749, MSP430F6748, MSP430F6747, MSP430F6746, MSP430F6745
www.ti.com
SLAS768E – SEPTEMBER 2012 – REVISED SEPTEMBER 2018
Recommended Operating Conditions (continued)
MIN
Processor frequency (maximum MCLK frequency) (4)
(see Figure 5-1)
fSYSTEM
(5)
NOM
MAX
PMMCOREVx = 0,
1.8 V ≤ VCC ≤ 3.6 V
(default condition)
0
8.0
PMMCOREVx = 1,
2 V ≤ VCC ≤ 3.6 V
0
12.0
PMMCOREVx = 2,
2.2 V ≤ VCC ≤ 3.6 V
0
20.0
PMMCOREVx = 3,
2.4 V ≤ VCC ≤ 3.6 V
0
25.0
UNIT
MHz
ILOAD,
DVCCD
Maximum load current that can be drawn from DVCC for core and IO
(ILOAD = ICORE + IIO)
20
mA
ILOAD,
AUX1D
Maximum load current that can be drawn from AUXVCC1 for core and IO
(ILOAD = ICORE + IIO)
20
mA
ILOAD,
AUX2D
Maximum load current that can be drawn from AUXVCC2 for core and IO
(ILOAD = ICORE + IIO)
20
mA
ILOAD,
AVCCA
Maximum load current that can be drawn from AVCC for analog modules
(ILOAD = IModules)
10
mA
ILOAD,
AUX1A
Maximum load current that can be drawn from AUXVCC1 for analog modules
(ILOAD = IModules)
5
mA
ILOAD,
AUX2A
Maximum load current that can be drawn from AUXVCC2 for analog modules
(ILOAD = IModules)
5
mA
PINT
Internal power dissipation
VCC × IDVCC
W
W
W
PIO
I/O power dissipation of the I/O pins powered by DVCC
(VCC – VIOH) × IIOH +
VIOL × IIOL
PMAX
Maximum allowed power dissipation, PMAX > PIO + PINT
(TJ – TA)/θJA
(4)
(5)
The MSP430 CPU is clocked directly with MCLK. Both the high and low phases of MCLK must not exceed the pulse duration of the
specified maximum frequency.
Modules may have a different maximum input clock specification. See the specification of the respective module in this data sheet.
25
System Frequency - MHz
3
20
2
2, 3
1
1, 2
1, 2, 3
0, 1
0, 1, 2
0, 1, 2, 3
12
8
0
0
1.8
2.0
2.2
2.4
3.6
Supply Voltage - V
The numbers within the fields denote the supported PMMCOREVx settings.
Figure 5-1. Maximum System Frequency
Specifications
Submit Documentation Feedback
Product Folder Links: MSP430F6779 MSP430F6778 MSP430F6777 MSP430F6776 MSP430F6775 MSP430F6769
MSP430F6768 MSP430F6767 MSP430F6766 MSP430F6765 MSP430F6749 MSP430F6748 MSP430F6747
MSP430F6746 MSP430F6745
Copyright © 2012–2018, Texas Instruments Incorporated
27
MSP430F6779, MSP430F6778, MSP430F6777, MSP430F6776, MSP430F6775
MSP430F6769, MSP430F6768, MSP430F6767, MSP430F6766, MSP430F6765
MSP430F6749, MSP430F6748, MSP430F6747, MSP430F6746, MSP430F6745
SLAS768E – SEPTEMBER 2012 – REVISED SEPTEMBER 2018
5.4
www.ti.com
Active Mode Supply Current Into VCC Excluding External Current
over recommended operating free-air temperature (unless otherwise noted) (1) (2) (3)
FREQUENCY (fDCO = fMCLK = fSMCLK)
PARAMETER
IAM,
IAM,
(1)
(2)
(3)
(4)
(5)
28
Flash
RAM
(4)
(5)
EXECUTION
MEMORY
Flash
RAM
VCC
3V
3V
PMM
COREVx
1 MHz
8 MHz
12 MHz
TYP
MAX
TYP
MAX
0
0.32
0.50
2.08
2.84
1
0.35
2
20 MHz
TYP
MAX
2.35
3.50
4.76
0.39
2.68
3
0.41
2.83
0
0.19
1.04
1
0.21
1.20
1.77
2
0.23
1.38
2.04
3.35
3
0.24
1.47
2.18
3.58
25 MHz
TYP
MAX
3.99
6.61
8.3
4.22
6.98
TYP
UNIT
MAX
mA
8.67
11.75
mA
4.44
All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.
The currents are characterized with a Micro Crystal MS1V-T1K crystal with a load capacitance of 12.5 pF. The internal and external load
capacitance are chosen to closely match the required 12.5 pF.
Characterized with program executing typical data processing.
fACLK = 32786 Hz, fDCO = fMCLK = fSMCLK at specified frequency.
XTS = CPUOFF = SCG0 = SCG1 = OSCOFF = SMCLKOFF = 0.
Active mode supply current when program executes in flash at a nominal supply voltage of 3 V.
Active mode supply current when program executes in RAM at a nominal supply voltage of 3 V.
Specifications
Copyright © 2012–2018, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F6779 MSP430F6778 MSP430F6777 MSP430F6776 MSP430F6775 MSP430F6769
MSP430F6768 MSP430F6767 MSP430F6766 MSP430F6765 MSP430F6749 MSP430F6748 MSP430F6747
MSP430F6746 MSP430F6745
MSP430F6779, MSP430F6778, MSP430F6777, MSP430F6776, MSP430F6775
MSP430F6769, MSP430F6768, MSP430F6767, MSP430F6766, MSP430F6765
MSP430F6749, MSP430F6748, MSP430F6747, MSP430F6746, MSP430F6745
www.ti.com
5.5
SLAS768E – SEPTEMBER 2012 – REVISED SEPTEMBER 2018
Low-Power Mode Supply Currents (Into VCC) Excluding External Current
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1) (2)
TEMPERATURE (TA)
PARAMETER
VCC
PMMCOREVx
–40°C
TYP
ILPM0,1MHz
Low-power mode 0 (3)
(4)
ILPM2
Low-power mode 2 (5)
(4)
ILPM3,XT1LF
ILPM3,XT1LF
ILPM3,VLO
ILPM4
Low-power mode 3, crystal
mode (6) (4)
Low-power mode 3, crystal
mode (6) (4)
Low-power mode 3,
VLO mode (7) (4)
Low-power mode 4 (8)
ILPM3.5
Low-power mode 3.5, RTC
active on AUXVCC3 (9)
ILPM4.5
Low-power mode 4.5 (10)
TYP
85°C
MAX
TYP
105
100
2.2 V
0
70
75
3V
3
81
87
2.2 V
0
5.9
6.5
3V
3
6.7
7.3
0
1.50
2.0
7.8
1
1.65
2.2
8.3
2
1.80
2.4
8.6
3
1.84
2.4
8.6
0
2.0
2.5
8.5
1
2.1
2.7
9.0
2
2.3
2.9
9.3
3
2.3
2.9
9.3
0
1.3
1.7
7.5
1
1.3
1.8
7.9
2
1.4
1.9
8.2
3
1.4
1.9
8.2
0
1.2
1.6
7.4
1
1.2
1.7
7.8
2
1.3
1.7
7.9
3
2.2 V
3V
3V
(4)
25°C
MAX
3V
UNIT
MAX
86
130
12.5
18
13.8
30
µA
µA
µA
µA
25
µA
25.0
µA
1.3
1.7
8.0
2.2 V
0.7
0.9
1.4
23.0
3V
1.0
1.2
1.5
1.8
3.0
3V
0.6
0.7
1.0
1.2
2.0
µA
µA
(1)
(2)
All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.
The currents are characterized with a Micro Crystal MS1V-T1K crystal with a load capacitance of 12.5 pF. The internal and external load
capacitance are chosen to closely match the required 12.5 pF.
(3) Current for watchdog timer clocked by SMCLK included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0).
CPUOFF = 1, SCG0 = 0, SCG1 = 0, OSCOFF = 0 (LPM0), fACLK = 32768 Hz, fMCLK = 0 MHz, fSMCLK = fDCO = 1 MHz
(4) Current for brownout and high-side supervisor (SVSH) normal mode included. Low-side supervisor (SVSL) and low-side monitor (SVML)
disabled. High-side monitor (SVMH) disabled. RAM retention enabled.
(5) Current for watchdog timer and RTC clocked by ACLK included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0).
CPUOFF = 1, SCG0 = 0, SCG1 = 1, OSCOFF = 0 (LPM2), fACLK = 32768 Hz, fMCLK = 0 MHz, fSMCLK = fDCO = 0 MHz, DCO setting
= 1 MHz operation, DCO bias generator enabled.
(6) Current for watchdog timer and RTC clocked by low-frequency clock included. ACLK = low-frequency crystal operation (XTS = 0,
XT1DRIVEx = 0).
CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3), fACLK = 32768 Hz, fMCLK = fSMCLK = fDCO = 0 MHz
(7) Current for watchdog timer and RTC clocked by low-frequency clock included. ACLK = VLO.
CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3), fACLK = fVLO, fMCLK = fSMCLK = fDCO = 0 MHz
(8) CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1 (LPM4), fDCO = fACLK = fMCLK = fSMCLK = 0 MHz
(9) fDCO = fMCLK = fSMCLK = 0 MHz, fACLK = 32768 Hz, PMMREGOFF = 1, RTC active on AUXVCC3 supply
(10) fDCO = fMCLK = fSMCLK = 0 MHz, fACLK = 0 Hz, PMMREGOFF = 1
Specifications
Submit Documentation Feedback
Product Folder Links: MSP430F6779 MSP430F6778 MSP430F6777 MSP430F6776 MSP430F6775 MSP430F6769
MSP430F6768 MSP430F6767 MSP430F6766 MSP430F6765 MSP430F6749 MSP430F6748 MSP430F6747
MSP430F6746 MSP430F6745
Copyright © 2012–2018, Texas Instruments Incorporated
29
MSP430F6779, MSP430F6778, MSP430F6777, MSP430F6776, MSP430F6775
MSP430F6769, MSP430F6768, MSP430F6767, MSP430F6766, MSP430F6765
MSP430F6749, MSP430F6748, MSP430F6747, MSP430F6746, MSP430F6745
SLAS768E – SEPTEMBER 2012 – REVISED SEPTEMBER 2018
5.6
www.ti.com
Low-Power Mode With LCD Supply Currents (Into VCC) Excluding External Current
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1) (2)
TEMPERATURE (TA)
PARAMETER
VCC
PMMCOREVx
–40°C
TYP
ILPM3
LCD,
ext. bias
ILPM3
LCD,
int. bias
Low-power mode 3 (LPM3)
current, LCD 4-mux mode,
external biasing (3) (4)
Low-power mode 3 (LPM3)
current, LCD 4-mux mode,
internal biasing, charge
pump disabled (3) (5)
3V
3V
2.2 V
ILPM3
LCD,CP
(1)
(2)
(3)
(4)
(5)
(6)
30
Low-power mode 3 (LPM3)
current, LCD 4-mux mode,
internal biasing, charge
pump enabled (3) (6)
3V
25°C
MAX
TYP
85°C
MAX
TYP
0
2.5
3.1
9.1
1
2.6
3.3
9.5
2
2.8
3.5
9.9
3
2.8
3.5
0
2.9
3.5
9.7
1
3.1
3.7
10.1
2
3.2
4.0
10.5
3
3.3
4.0
0
2.2
2.8
8.8
1
2.3
3.0
9.1
2
2.5
3.2
9.5
0
2.6
3.2
9.3
1
2.8
3.4
9.7
2
2.9
3.6
10.1
3
3.0
3.7
10.2
6.0
5.5
10.0
10.5
UNIT
MAX
µA
25.0
µA
25.0
µA
All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.
The currents are characterized with a Micro Crystal MS1V-T1K crystal with a load capacitance of 12.5 pF. The internal and external load
capacitance are chosen to closely match the required 12.5 pF.
Current for watchdog timer and RTC clocked by ACLK included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0).
CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3), fACLK = 32768 Hz, fMCLK = fSMCLK = fDCO = 0 MHz
Current for brownout, high-side supervisor (SVSH) normal mode included. Low-side supervisor and monitors disabled (SVSL, SVML).
High-side monitor (SVMH) disabled. RAM retention enabled.
LCDMx = 11 (4-mux mode), LCDREXT = 1, LCDEXTBIAS = 1 (external biasing), LCD2B = 0 (1/3 bias), LCDCPEN = 0 (charge pump
disabled), LCDSSEL = 0, LCDPREx = 101, LCDDIVx = 00011 (fLCD = 32768 Hz / 32 / 4 = 256 Hz)
Current through external resistors not included (voltage levels are supplied by test equipment).
Even segments S0, S2, ... = 0, odd segments S1, S3, ... = 1. No LCD panel load.
LCDMx = 11 (4-mux mode), LCDREXT = 0, LCDEXTBIAS = 0 (internal biasing), LCD2B = 0 (1/3 bias), LCDCPEN = 0 (charge pump
disabled), LCDSSEL = 0, LCDPREx = 101, LCDDIVx = 00011 (fLCD = 32768 Hz / 32 / 4 = 256 Hz)
Even segments S0, S2, ... = 0, odd segments S1, S3, ... = 1. No LCD panel load.
LCDMx = 11 (4-mux mode), LCDREXT = 0, LCDEXTBIAS = 0 (internal biasing), LCD2B = 0 (1/3 bias), LCDCPEN = 1 (charge pump
enabled), VLCDx = 1000 (VLCD = 3 V, typical), LCDSSEL = 0, LCDPREx = 101, LCDDIVx = 00011 (fLCD = 32768 Hz / 32 / 4 = 256 Hz)
Even segments S0, S2, ... = 0, odd segments S1, S3, ... = 1. No LCD panel load.
Specifications
Copyright © 2012–2018, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F6779 MSP430F6778 MSP430F6777 MSP430F6776 MSP430F6775 MSP430F6769
MSP430F6768 MSP430F6767 MSP430F6766 MSP430F6765 MSP430F6749 MSP430F6748 MSP430F6747
MSP430F6746 MSP430F6745
MSP430F6779, MSP430F6778, MSP430F6777, MSP430F6776, MSP430F6775
MSP430F6769, MSP430F6768, MSP430F6767, MSP430F6766, MSP430F6765
MSP430F6749, MSP430F6748, MSP430F6747, MSP430F6746, MSP430F6745
www.ti.com
5.7
SLAS768E – SEPTEMBER 2012 – REVISED SEPTEMBER 2018
Thermal Packaging Characteristics
THERMAL METRIC (1)
(2)
RθJA
Junction-to-ambient thermal resistance, still air
RθJC(TOP)
Junction-to-case (top) thermal resistance
RθJC(BOTTOM)
Junction-to-case (bottom) thermal resistance
RθJB
Junction-to-board thermal resistance
ΨJT
Junction-to-package-top thermal characterization parameter
ΨJB
Junction-to-board thermal characterization parameter
(1)
(2)
(3)
VALUE
LQFP 128 (PEU)
44.4
LQFP 100 (PZ)
42.9
LQFP 128 (PEU)
10.5
LQFP 100 (PZ)
9.3
LQFP 128 (PEU)
N/A (3)
LQFP 100 (PZ)
N/A
LQFP 128 (PEU)
23.1
LQFP 100 (PZ)
20.6
LQFP 128 (PEU)
0.4
LQFP 100 (PZ)
0.3
LQFP 128 (PEU)
22.8
LQFP 100 (PZ)
20.3
UNIT
°C/W
°C/W
°C/W
°C/W
°C/W
°C/W
For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics.
These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RθJC] value, which is based on a
JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these
EIA/JEDEC standards:
• JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)
• JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages
• JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages
• JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements
N/A = not applicable
Specifications
Submit Documentation Feedback
Product Folder Links: MSP430F6779 MSP430F6778 MSP430F6777 MSP430F6776 MSP430F6775 MSP430F6769
MSP430F6768 MSP430F6767 MSP430F6766 MSP430F6765 MSP430F6749 MSP430F6748 MSP430F6747
MSP430F6746 MSP430F6745
Copyright © 2012–2018, Texas Instruments Incorporated
31
MSP430F6779, MSP430F6778, MSP430F6777, MSP430F6776, MSP430F6775
MSP430F6769, MSP430F6768, MSP430F6767, MSP430F6766, MSP430F6765
MSP430F6749, MSP430F6748, MSP430F6747, MSP430F6746, MSP430F6745
SLAS768E – SEPTEMBER 2012 – REVISED SEPTEMBER 2018
5.8
www.ti.com
Schmitt-Trigger Inputs – General-Purpose I/O
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
VIT+
Positive-going input threshold voltage
VIT–
Negative-going input threshold voltage
Vhys
Input voltage hysteresis (VIT+ – VIT–)
RPull
Pullup or pulldown resistor (1)
For pullup: VIN = VSS,
For pulldown: VIN = VCC
CI
Input capacitance
VIN = VSS or VCC
(1)
VCC
MIN
1.8 V
0.80
1.40
3V
1.50
2.10
1.8 V
0.45
1.00
3V
0.75
1.65
1.8 V
0.3
0.85
3V
0.4
1.0
20
TYP
35
MAX
UNIT
V
V
V
50
kΩ
5
pF
Also applies to RST pin when pullup or pulldown resistor is enabled.
Inputs – Ports P1 and P2 (1)
5.9
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
External interrupt timing (2)
t(int)
(1)
(2)
TEST CONDITIONS
VCC
Port P1 and P2: P1.x to P2.x, external trigger pulse
duration to set interrupt flag
2.2 V, 3 V
MIN
MAX
UNIT
20
ns
Some devices may contain additional ports with interrupts. See the block diagram and terminal function descriptions.
An external signal sets the interrupt flag every time the minimum interrupt pulse duration t(int) is met. It may be set by trigger signals
shorter than t(int).
5.10 Leakage Current – General-Purpose I/O
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
Ilkg(Px.y)
(1)
(2)
32
High-impedance leakage current
TEST CONDITIONS
See
(1) (2)
VCC
MIN
MAX
UNIT
1.8 V, 3 V
–50
+50
nA
The leakage current is measured with VSS or VCC applied to the corresponding pins, unless otherwise noted.
The leakage of the digital port pins is measured individually. The port pin is selected for input and the pullup or pulldown resistor is
disabled.
Specifications
Copyright © 2012–2018, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F6779 MSP430F6778 MSP430F6777 MSP430F6776 MSP430F6775 MSP430F6769
MSP430F6768 MSP430F6767 MSP430F6766 MSP430F6765 MSP430F6749 MSP430F6748 MSP430F6747
MSP430F6746 MSP430F6745
MSP430F6779, MSP430F6778, MSP430F6777, MSP430F6776, MSP430F6775
MSP430F6769, MSP430F6768, MSP430F6767, MSP430F6766, MSP430F6765
MSP430F6749, MSP430F6748, MSP430F6747, MSP430F6746, MSP430F6745
www.ti.com
SLAS768E – SEPTEMBER 2012 – REVISED SEPTEMBER 2018
5.11 Outputs – General-Purpose I/O (Full Drive Strength)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (also see Figure 5-6
through Figure 5-9)
PARAMETER
TEST CONDITIONS
VCC
I(OHmax) = –3 mA (1)
VOH
High-level output voltage
1.8 V
I(OHmax) = –10 mA (1)
I(OHmax) = –5 mA (1)
3V
I(OHmax) = –15 mA (1)
I(OLmax) = 3 mA (2)
VOL
Low-level output voltage
I(OLmax) = 10 mA
1.8 V
(3)
I(OLmax) = 5 mA (2)
3V
I(OLmax) = 15 mA (3)
(1)
(2)
(3)
MIN
MAX
1.55
1.80
1.20
1.80
2.75
3.00
2.40
3.00
0.00
0.25
0.00
0.60
0.00
0.25
0.00
0.60
UNIT
V
V
The maximum total current, I(OHmax), for all outputs combined should not exceed ±20 mA to hold the maximum voltage drop specified.
See Section 5.3 for more details.
The maximum total current, I(OLmax), for all outputs combined should not exceed ±48 mA to hold the maximum voltage drop specified.
The maximum total current, I(OLmax), for all outputs combined should not exceed ±100 mA to hold the maximum voltage drop specified.
5.12 Outputs – General-Purpose I/O (Reduced Drive Strength)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1) (also see
Figure 5-2 through Figure 5-5)
PARAMETER
TEST CONDITIONS
I(OHmax) = –1 mA
VOH
High-level output voltage
VCC
(2)
1.8 V
I(OHmax) = –3 mA (2)
I(OHmax) = –2 mA (2)
3V
I(OHmax) = –6 mA (2)
I(OLmax) = 1 mA
VOL
Low-level output voltage
(3)
1.8 V
I(OLmax) = 3 mA (4)
I(OLmax) = 2 mA (3)
3V
I(OLmax) = 6 mA (4)
(1)
(2)
(3)
(4)
MIN
MAX
1.55
1.80
1.20
1.80
2.75
3.00
2.40
3.00
0.00
0.25
0.00
0.60
0.00
0.25
0.00
0.60
UNIT
V
V
Selecting reduced drive strength may reduce EMI.
The maximum total current, I(OHmax), for all outputs combined should not exceed ±20 mA to hold the maximum voltage drop specified.
See Section 5.3 for more details.
The maximum total current, I(OLmax), for all outputs combined, should not exceed ±48 mA to hold the maximum voltage drop specified.
The maximum total current, I(OLmax), for all outputs combined, should not exceed ±100 mA to hold the maximum voltage drop specified.
5.13 Output Frequency – General-Purpose I/O
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
fPx.y
Port output frequency (with load)
fPort_CLK
(1)
(2)
Clock output frequency
TEST CONDITIONS
See
(1) (2)
ACLK, SMCLK, or MCLK,
CL = 20 pF (2)
MIN
MAX
VCC = 1.8 V,
PMMCOREVx = 0
16
VCC = 3 V,
PMMCOREVx = 3
25
VCC = 1.8 V,
PMMCOREVx = 0
16
VCC = 3 V,
PMMCOREVx = 3
25
UNIT
MHz
MHz
A resistive divider with 2 × R1 between VCC and VSS is used as load. The output is connected to the center tap of the divider. For full
drive strength, R1 = 550 Ω. For reduced drive strength, R1 = 1.6 kΩ. CL = 20 pF is connected to the output to VSS.
The output voltage reaches at least 10% and 90% VCC at the specified toggle frequency.
Specifications
Submit Documentation Feedback
Product Folder Links: MSP430F6779 MSP430F6778 MSP430F6777 MSP430F6776 MSP430F6775 MSP430F6769
MSP430F6768 MSP430F6767 MSP430F6766 MSP430F6765 MSP430F6749 MSP430F6748 MSP430F6747
MSP430F6746 MSP430F6745
Copyright © 2012–2018, Texas Instruments Incorporated
33
MSP430F6779, MSP430F6778, MSP430F6777, MSP430F6776, MSP430F6775
MSP430F6769, MSP430F6768, MSP430F6767, MSP430F6766, MSP430F6765
MSP430F6749, MSP430F6748, MSP430F6747, MSP430F6746, MSP430F6745
SLAS768E – SEPTEMBER 2012 – REVISED SEPTEMBER 2018
www.ti.com
5.14 Typical Characteristics – Outputs, Reduced Drive Strength (PxDS.y = 0)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
8
20
18
7
IOL – Low-Level Output Current – mA
IOL – Low-Level Output Current – mA
TA = 25°C
16
TA = 85°C
14
12
10
8
6
4
TA = 25°C
6
TA = 85°C
5
4
3
2
1
2
0
0
0
0.5
1
1.5
2
2.5
0
3
0.2
VOL – Low-Level Output Voltage – V
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
VOL – Low-Level Output Voltage – V
Figure 5-2. Typical Low-Level Output Current vs
Low-Level Output Voltage
Figure 5-3. Typical Low-Level Output Current vs
Low-Level Output Voltage
0
0
-5
IOH – High-Level Output Current – mA
IOH – High-Level Output Current – mA
-1
-10
-15
TA = 85°C
-20
TA = 25°C
-2
-3
-4
-5
TA = 85°C
-6
-7
TA = 25°C
-8
-25
0
0.5
1
1.5
2
2.5
VOH – High-Level Output Voltage – V
Figure 5-4. Typical High-Level Output Current vs
High-Level Output Voltage
34
Specifications
3
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
VOH – High-Level Output Voltage – V
Figure 5-5. Typical High-Level Output Current vs
High-Level Output Voltage
Copyright © 2012–2018, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F6779 MSP430F6778 MSP430F6777 MSP430F6776 MSP430F6775 MSP430F6769
MSP430F6768 MSP430F6767 MSP430F6766 MSP430F6765 MSP430F6749 MSP430F6748 MSP430F6747
MSP430F6746 MSP430F6745
MSP430F6779, MSP430F6778, MSP430F6777, MSP430F6776, MSP430F6775
MSP430F6769, MSP430F6768, MSP430F6767, MSP430F6766, MSP430F6765
MSP430F6749, MSP430F6748, MSP430F6747, MSP430F6746, MSP430F6745
www.ti.com
SLAS768E – SEPTEMBER 2012 – REVISED SEPTEMBER 2018
5.15 Typical Characteristics – Outputs, Full Drive Strength (PxDS.y = 1)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
60
25
IOL – Low-Level Output Current – mA
IOL – Low-Level Output Current – mA
50
TA = 25°C
TA = 85°C
40
30
20
10
0
20
TA = 25°C
TA = 85°C
15
10
5
0
0
0.5
1
1.5
2
2.5
3
0
0.2
VOL – Low-Level Output Voltage – V
0.6
0.8
1
1.2
1.4
1.6
1.8
VOL – Low-Level Output Voltage – V
Figure 5-6. Typical Low-Level Output Current vs
Low-Level Output Voltage
Figure 5-7. Typical Low-Level Output Current vs
Low-Level Output Voltage
0
0
IOH – High-Level Output Current – mA
-10
IOH – High-Level Output Current – mA
0.4
-20
-30
-40
TA = 85°C
-50
-5
-10
-15
TA = 85°C
-20
TA = 25°C
TA = 25°C
-60
-25
0
0.5
1
1.5
2
2.5
VOH – High-Level Output Voltage – V
Figure 5-8. Typical High-Level Output Current vs
High-Level Output Voltage
3
0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
Figure 5-9. Typical High-Level Output Current vs
High-Level Output Voltage
Specifications
Submit Documentation Feedback
Product Folder Links: MSP430F6779 MSP430F6778 MSP430F6777 MSP430F6776 MSP430F6775 MSP430F6769
MSP430F6768 MSP430F6767 MSP430F6766 MSP430F6765 MSP430F6749 MSP430F6748 MSP430F6747
MSP430F6746 MSP430F6745
Copyright © 2012–2018, Texas Instruments Incorporated
1.8
VOH – High-Level Output Voltage – V
35
MSP430F6779, MSP430F6778, MSP430F6777, MSP430F6776, MSP430F6775
MSP430F6769, MSP430F6768, MSP430F6767, MSP430F6766, MSP430F6765
MSP430F6749, MSP430F6748, MSP430F6747, MSP430F6746, MSP430F6745
SLAS768E – SEPTEMBER 2012 – REVISED SEPTEMBER 2018
www.ti.com
5.16 Crystal Oscillator, XT1, Low-Frequency Mode (1)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
ΔIDVCC.LF
Differential XT1 oscillator
crystal current consumption
from lowest drive setting, LF
mode
TEST CONDITIONS
VCC
MIN
fOSC = 32768 Hz, XTS = 0, XT1BYPASS = 0,
XT1DRIVEx = 1, TA = 25°C
fOSC = 32768 Hz, XTS = 0, XT1BYPASS = 0,
XT1DRIVEx = 2, TA = 25°C
3V
0.170
0.290
XTS = 0, XT1BYPASS = 0
32768
XT1 oscillator crystal
frequency, LF mode
fXT1,LF,SW
XT1 oscillator logic-level
square-wave input frequency, XTS = 0, XT1BYPASS = 1 (2)
LF mode
OALF
Oscillation allowance for
LF crystals (4)
(3)
10
fFault,LF
tSTART,LF
210
XTS = 0, XT1BYPASS = 0, XT1DRIVEx = 1,
fXT1,LF = 32768 Hz, CL,eff = 12 pF
300
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
36
XTS = 0, XCAPx = 2
8.5
XTS = 0, XCAPx = 3
12.0
Oscillator fault frequency,
LF mode (7)
XTS = 0 (8)
fOSC = 32768 Hz, XTS = 0, XT1BYPASS = 0,
XT1DRIVEx = 0, TA = 25°C, CL,eff = 6 pF
fOSC = 32768 Hz, XTS = 0, XT1BYPASS = 0,
XT1DRIVEx = 3, TA = 25°C, CL,eff = 12 pF
µA
Hz
50
kHz
1
5.5
Duty cycle, LF mode
UNIT
kΩ
XTS = 0, XCAPx = 1
XTS = 0, Measured at ACLK,
fXT1,LF = 32768 Hz
Start-up time, LF mode
32.768
XTS = 0, XT1BYPASS = 0, XT1DRIVEx = 0,
fXT1,LF = 32768 Hz, CL,eff = 6 pF
XTS = 0, XCAPx = 0 (6)
CL,eff
MAX
0.075
fOSC = 32768 Hz, XTS = 0, XT1BYPASS = 0,
XT1DRIVEx = 3, TA = 25°C
fXT1,LF0
Integrated effective load
capacitance, LF mode (5)
TYP
pF
30%
70%
10
10000
Hz
1000
3V
ms
500
To improve EMI on the XT1 oscillator, the following guidelines should be observed.
• Keep the trace between the device and the crystal as short as possible.
• Design a good ground plane around the oscillator pins.
• Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.
• Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.
• Use assembly materials and processes that avoid any parasitic load on the oscillator XIN and XOUT pins.
• If conformal coating is used, make sure that it does not induce capacitive or resistive leakage between the oscillator pins.
When XT1BYPASS is set, XT1 circuits are automatically powered down. Input signal is a digital square wave with parametrics defined in
the Schmitt-trigger Inputs section of this data sheet.
Maximum frequency of operation of the entire device cannot be exceeded.
Oscillation allowance is based on a safety factor of 5 for recommended crystals. The oscillation allowance is a function of the
XT1DRIVEx settings and the effective load. In general, comparable oscillator allowance can be achieved based on the following
guidelines, but should be evaluated based on the actual crystal selected for the application:
• For XT1DRIVEx = 0, CL,eff ≤ 6 pF.
• For XT1DRIVEx = 1, 6 pF ≤ CL,eff ≤ 9 pF.
• For XT1DRIVEx = 2, 6 pF ≤ CL,eff ≤ 10 pF.
• For XT1DRIVEx = 3, CL,eff ≥ 6 pF.
Includes parasitic bond and package capacitance (approximately 2 pF per pin).
Because the PCB adds additional capacitance, verify the correct load by measuring the ACLK frequency. For a correct setup, the
effective load capacitance should always match the specification of the used crystal.
Requires external capacitors at both terminals. Values are specified by crystal manufacturers.
Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag.
Frequencies between the MIN and MAX might set the flag.
Measured with logic-level input frequency but also applies to operation with crystals.
Specifications
Copyright © 2012–2018, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F6779 MSP430F6778 MSP430F6777 MSP430F6776 MSP430F6775 MSP430F6769
MSP430F6768 MSP430F6767 MSP430F6766 MSP430F6765 MSP430F6749 MSP430F6748 MSP430F6747
MSP430F6746 MSP430F6745
MSP430F6779, MSP430F6778, MSP430F6777, MSP430F6776, MSP430F6775
MSP430F6769, MSP430F6768, MSP430F6767, MSP430F6766, MSP430F6765
MSP430F6749, MSP430F6748, MSP430F6747, MSP430F6746, MSP430F6745
www.ti.com
SLAS768E – SEPTEMBER 2012 – REVISED SEPTEMBER 2018
5.17 Internal Very-Low-Power Low-Frequency Oscillator (VLO)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
VCC
fVLO
VLO frequency
Measured at ACLK
1.8 V to 3.6 V
dfVLO/dT
VLO frequency temperature drift
Measured at ACLK
1.8 V to 3.6 V
Measured at ACLK
1.8 V to 3.6 V
Measured at ACLK
1.8 V to 3.6 V
dfVLO/dVCC VLO frequency supply voltage drift
Duty cycle
MIN
TYP
MAX
6
9.6
15
0.5
kHz
%/°C
4
40%
UNIT
%/V
50%
60%
TYP
MAX
5.18 Internal Reference, Low-Frequency Oscillator (REFO)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
IREFO
fREFO
TEST CONDITIONS
VCC
MIN
REFO oscillator current consumption
TA = 25°C
1.8 V to 3.6 V
REFO frequency calibrated
Measured at ACLK
1.8 V to 3.6 V
Full temperature range
1.8 V to 3.6 V
–3.5%
+3.5%
3V
–1.5%
+1.5%
REFO absolute tolerance calibrated
TA = 25°C
3
REFO frequency temperature drift
Measured at ACLK
1.8 V to 3.6 V
0.01
dfREFO/dVCC
REFO frequency supply voltage drift
Measured at ACLK
1.8 V to 3.6 V
1.0
Duty cycle
Measured at ACLK
1.8 V to 3.6 V
REFO start-up time
40%/60% duty cycle
1.8 V to 3.6 V
tSTART
µA
32768
dfREFO/dT
40%
50%
Hz
%/°C
%/V
60%
25
Specifications
Submit Documentation Feedback
Product Folder Links: MSP430F6779 MSP430F6778 MSP430F6777 MSP430F6776 MSP430F6775 MSP430F6769
MSP430F6768 MSP430F6767 MSP430F6766 MSP430F6765 MSP430F6749 MSP430F6748 MSP430F6747
MSP430F6746 MSP430F6745
Copyright © 2012–2018, Texas Instruments Incorporated
UNIT
µs
37
MSP430F6779, MSP430F6778, MSP430F6777, MSP430F6776, MSP430F6775
MSP430F6769, MSP430F6768, MSP430F6767, MSP430F6766, MSP430F6765
MSP430F6749, MSP430F6748, MSP430F6747, MSP430F6746, MSP430F6745
SLAS768E – SEPTEMBER 2012 – REVISED SEPTEMBER 2018
www.ti.com
5.19 DCO Frequency
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5-10)
PARAMETER
TEST CONDITIONS
(1)
MIN
TYP
MAX
UNIT
fDCO(0,0)
DCO frequency (0, 0)
DCORSELx = 0, DCOx = 0, MODx = 0
0.07
0.20
MHz
fDCO(0,31)
DCO frequency (0, 31) (1)
DCORSELx = 0, DCOx = 31, MODx = 0
0.70
1.70
MHz
fDCO(1,0)
DCO frequency (1, 0) (1)
DCORSELx = 1, DCOx = 0, MODx = 0
0.15
0.36
MHz
fDCO(1,31)
DCO frequency (1, 31) (1)
DCORSELx = 1, DCOx = 31, MODx = 0
1.47
3.45
MHz
(1)
fDCO(2,0)
DCO frequency (2, 0)
DCORSELx = 2, DCOx = 0, MODx = 0
0.32
0.75
MHz
fDCO(2,31)
DCO frequency (2, 31) (1)
DCORSELx = 2, DCOx = 31, MODx = 0
3.17
7.38
MHz
fDCO(3,0)
DCO frequency (3, 0) (1)
DCORSELx = 3, DCOx = 0, MODx = 0
0.64
1.51
MHz
(1)
fDCO(3,31)
DCO frequency (3, 31)
DCORSELx = 3, DCOx = 31, MODx = 0
6.07
14.0
MHz
fDCO(4,0)
DCO frequency (4, 0) (1)
DCORSELx = 4, DCOx = 0, MODx = 0
1.3
3.2
MHz
fDCO(4,31)
DCO frequency (4, 31) (1)
DCORSELx = 4, DCOx = 31, MODx = 0
12.3
28.2
MHz
(1)
fDCO(5,0)
DCO frequency (5, 0)
DCORSELx = 5, DCOx = 0, MODx = 0
2.5
6.0
MHz
fDCO(5,31)
DCO frequency (5, 31) (1)
DCORSELx = 5, DCOx = 31, MODx = 0
23.7
54.1
MHz
fDCO(6,0)
DCO frequency (6, 0) (1)
DCORSELx = 6, DCOx = 0, MODx = 0
4.6
10.7
MHz
fDCO(6,31)
DCO frequency (6, 31) (1)
DCORSELx = 6, DCOx = 31, MODx = 0
39.0
88.0
MHz
(1)
fDCO(7,0)
DCO frequency (7, 0)
DCORSELx = 7, DCOx = 0, MODx = 0
8.5
19.6
MHz
fDCO(7,31)
DCO frequency (7, 31) (1)
DCORSELx = 7, DCOx = 31, MODx = 0
60
135
MHz
SDCORSEL
Frequency step between range
DCORSEL and DCORSEL + 1
SRSEL = fDCO(DCORSEL+1,DCO)/fDCO(DCORSEL,DCO)
1.2
2.3
ratio
SDCO
Frequency step between tap DCO and
DCO + 1
SDCO = fDCO(DCORSEL,DCO+1)/fDCO(DCORSEL,DCO)
1.02
1.12
ratio
Duty cycle
Measured at SMCLK
40%
dfDCO/dT
DCO frequency temperature drift
fDCO = 1 MHz
0.1
%/°C
dfDCO/
dVCORE
DCO frequency voltage drift
fDCO = 1 MHz
1.9
%/V
(1)
50%
60%
When selecting the proper DCO frequency range (DCORSELx), the target DCO frequency, fDCO, should be set to reside within the
range of fDCO(n, 0),MAX ≤ fDCO ≤ fDCO(n, 31),MIN, where fDCO(n, 0),MAX represents the maximum frequency specified for the DCO frequency,
range n, tap 0 (DCOx = 0) and fDCO(n,31),MIN represents the minimum frequency specified for the DCO frequency, range n, tap
31 (DCOx = 31). This ensures that the target DCO frequency resides within the range selected. It should also be noted that if the actual
fDCO frequency for the selected range causes the FLL or the application to select tap 0 or 31, the DCO fault flag is set to report that the
selected range is at its minimum or maximum tap setting.
100
VCC = 3.0 V
TA = 25°C
fDCO – MHz
10
DCOx = 31
1
0.1
DCOx = 0
0
1
2
3
4
5
6
7
DCORSEL
Figure 5-10. Typical DCO Frequency
38
Specifications
Copyright © 2012–2018, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F6779 MSP430F6778 MSP430F6777 MSP430F6776 MSP430F6775 MSP430F6769
MSP430F6768 MSP430F6767 MSP430F6766 MSP430F6765 MSP430F6749 MSP430F6748 MSP430F6747
MSP430F6746 MSP430F6745
MSP430F6779, MSP430F6778, MSP430F6777, MSP430F6776, MSP430F6775
MSP430F6769, MSP430F6768, MSP430F6767, MSP430F6766, MSP430F6765
MSP430F6749, MSP430F6748, MSP430F6747, MSP430F6746, MSP430F6745
www.ti.com
SLAS768E – SEPTEMBER 2012 – REVISED SEPTEMBER 2018
5.20 PMM, Brownout Reset (BOR)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
V(DVCC_BOR_IT–)
BORH on voltage, DVCC falling level
| dDVCC/dt | < 3 V/s
V(DVCC_BOR_IT+)
BORH off voltage, DVCC rising level
| dDVCC/dt | < 3 V/s
V(DVCC_BOR_hys)
BORH hysteresis
tRESET
Pulse duration required at RST/NMI pin to
accept a reset
MIN
TYP
0.80
1.20
50
MAX
UNIT
1.45
V
1.50
V
250
mV
2
µs
5.21 PMM, Core Voltage
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNIT
VCORE3(AM)
Core voltage, active mode, PMMCOREV = 3
2.4 V ≤ DVCC ≤ 3.6 V
1.91
V
VCORE2(AM)
Core voltage, active mode, PMMCOREV = 2
2.2 V ≤ DVCC ≤ 3.6 V
1.81
V
VCORE1(AM)
Core voltage, active mode, PMMCOREV = 1
2 V ≤ DVCC ≤ 3.6 V
1.61
V
VCORE0(AM)
Core voltage, active mode, PMMCOREV = 0
1.8 V ≤ DVCC ≤ 3.6 V
1.41
V
VCORE3(LPM)
Core voltage, low-current mode, PMMCOREV = 3
2.4 V ≤ DVCC ≤ 3.6 V
1.94
V
VCORE2(LPM)
Core voltage, low-current mode, PMMCOREV = 2
2.2 V ≤ DVCC ≤ 3.6 V
1.92
V
VCORE1(LPM)
Core voltage, low-current mode, PMMCOREV = 1
2 V ≤ DVCC ≤ 3.6 V
1.73
V
VCORE0(LPM)
Core voltage, low-current mode, PMMCOREV = 0
1.8 V ≤ DVCC ≤ 3.6 V
1.52
V
Specifications
Submit Documentation Feedback
Product Folder Links: MSP430F6779 MSP430F6778 MSP430F6777 MSP430F6776 MSP430F6775 MSP430F6769
MSP430F6768 MSP430F6767 MSP430F6766 MSP430F6765 MSP430F6749 MSP430F6748 MSP430F6747
MSP430F6746 MSP430F6745
Copyright © 2012–2018, Texas Instruments Incorporated
39
MSP430F6779, MSP430F6778, MSP430F6777, MSP430F6776, MSP430F6775
MSP430F6769, MSP430F6768, MSP430F6767, MSP430F6766, MSP430F6765
MSP430F6749, MSP430F6748, MSP430F6747, MSP430F6746, MSP430F6745
SLAS768E – SEPTEMBER 2012 – REVISED SEPTEMBER 2018
www.ti.com
5.22 PMM, SVS High Side
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
SVSHE = 0, DVCC = 3.6 V
I(SVSH)
SVS current consumption
V(SVSH_IT+)
SVSH on voltage level
SVSH off voltage level
tpd(SVSH)
SVSH propagation delay
t(SVSH)
SVSH on or off delay time
dVDVCC/dt
DVCC rise time
MAX
0
SVSHE = 1, DVCC = 3.6 V, SVSHFP = 0
1.5
µA
SVSHE = 1, SVSHRVL = 0
1.60
1.65
1.75
SVSHE = 1, SVSHRVL = 1
1.77
1.84
1.95
SVSHE = 1, SVSHRVL = 2
1.93
2.00
2.12
SVSHE = 1, SVSHRVL = 3
2.09
2.16
2.29
SVSHE = 1, SVSMHRRL = 0
1.65
1.75
1.85
SVSHE = 1, SVSMHRRL = 1
1.85
1.95
2.05
SVSHE = 1, SVSMHRRL = 2
2.05
2.15
2.25
SVSHE = 1, SVSMHRRL = 3
2.15
2.25
2.35
SVSHE = 1, SVSMHRRL = 4
2.30
2.40
2.55
SVSHE = 1, SVSMHRRL = 5
2.57
2.70
2.83
SVSHE = 1, SVSMHRRL = 6
2.90
3.05
3.20
SVSHE = 1, SVSMHRRL = 7
2.90
3.05
3.20
SVSHE = 1, dVDVCC/dt = 10 mV/µs, SVSHFP = 1
2.5
SVSHE = 1, dVDVCC/dt = 1 mV/µs, SVSHFP = 0
20
SVSHE = 0 → 1, dVDVCC/dt = 10 mV/µs, SVSHFP = 1
12.5
SVSHE = 0 → 1, dVDVCC/dt = 1 mV/µs, SVSHFP = 0
100
0
UNIT
nA
200
SVSHE = 1, DVCC = 3.6 V, SVSHFP = 1
V(SVSH_IT–)
TYP
V
V
µs
µs
1000
V/s
MAX
UNIT
5.23 PMM, SVM High Side
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
SVMHE = 0, DVCC = 3.6 V
I(SVMH)
SVMH current consumption
0
SVMHE = 1, DVCC = 3.6 V, SVMHFP = 0
SVMH on or off voltage level (1)
t(SVMH)
(1)
40
SVMH propagation delay
SVMH on or off delay time
1.5
µA
SVMHE = 1, SVSMHRRL = 0
1.63
1.73
1.83
SVMHE = 1, SVSMHRRL = 1
1.83
1.93
2.03
SVMHE = 1, SVSMHRRL = 2
2.03
2.13
2.23
SVMHE = 1, SVSMHRRL = 3
2.13
2.23
2.33
SVMHE = 1, SVSMHRRL = 4
2.28
2.40
2.53
SVMHE = 1, SVSMHRRL = 5
2.55
2.70
2.81
SVMHE = 1, SVSMHRRL = 6
2.88
3.02
3.18
SVMHE = 1, SVSMHRRL = 7
2.88
3.02
3.18
SVMHE = 1, SVMHOVPE = 1
tpd(SVMH)
nA
200
SVMHE = 1, DVCC = 3.6 V, SVMHFP = 1
V(SVMH)
TYP
V
3.77
SVMHE = 1, dVDVCC/dt = 10 mV/µs, SVMHFP = 1
2.5
SVMHE = 1, dVDVCC/dt = 1 mV/µs, SVMHFP = 0
20
SVMHE = 0 → 1, dVDVCC/dt = 10 mV/µs,
SVMHFP = 1
12.5
SVMHE = 0 → 1, dVDVCC/dt = 1 mV/µs,
SVMHFP = 0
100
µs
µs
The SVMH settings available depend on the VCORE (PMMCOREVx) setting. See the Power Management Module and Supply Voltage
Supervisor chapter in the MSP430x5xx and MSP430x6xx Family User's Guide on recommended settings and use.
Specifications
Copyright © 2012–2018, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F6779 MSP430F6778 MSP430F6777 MSP430F6776 MSP430F6775 MSP430F6769
MSP430F6768 MSP430F6767 MSP430F6766 MSP430F6765 MSP430F6749 MSP430F6748 MSP430F6747
MSP430F6746 MSP430F6745
MSP430F6779, MSP430F6778, MSP430F6777, MSP430F6776, MSP430F6775
MSP430F6769, MSP430F6768, MSP430F6767, MSP430F6766, MSP430F6765
MSP430F6749, MSP430F6748, MSP430F6747, MSP430F6746, MSP430F6745
www.ti.com
SLAS768E – SEPTEMBER 2012 – REVISED SEPTEMBER 2018
5.24 PMM, SVS Low Side
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
SVSLE = 0, PMMCOREV = 2
I(SVSL)
SVSL current consumption
tpd(SVSL)
SVSL propagation delay
t(SVSL)
SVSL on or off delay time
TYP
MAX
0
SVSLE = 1, PMMCOREV = 2, SVSLFP = 0
200
SVSLE = 1, PMMCOREV = 2, SVSLFP = 1
1.5
SVSLE = 1, dVCORE/dt = 10 mV/µs, SVSLFP = 1
2.5
SVSLE = 1, dVCORE/dt = 1 mV/µs, SVSLFP = 0
20
SVSLE = 0 → 1, dVCORE/dt = 10 mV/µs, SVSLFP = 1
12.5
SVSLE = 0 → 1, dVCORE/dt = 1 mV/µs, SVSLFP = 0
100
UNIT
nA
µA
µs
µs
5.25 PMM, SVM Low Side
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
SVMLE = 0, PMMCOREV = 2
I(SVML)
SVML current consumption
tpd(SVML)
SVML propagation delay
t(SVML)
SVML on or off delay time
TYP
MAX
0
SVMLE = 1, PMMCOREV = 2, SVMLFP = 0
200
SVMLE = 1, PMMCOREV = 2, SVMLFP = 1
1.5
SVMLE = 1, dVCORE/dt = 10 mV/µs, SVMLFP = 1
2.5
SVMLE = 1, dVCORE/dt = 1 mV/µs, SVMLFP = 0
20
SVMLE = 0 → 1, dVCORE/dt = 10 mV/µs, SVMLFP = 1
12.5
SVMLE = 0 → 1, dVCORE/dt = 1 mV/µs, SVMLFP = 0
100
UNIT
nA
µA
µs
µs
5.26 Wake-up Times From Low-Power Modes and Reset
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
tWAKE-UP-FAST
Wake-up time from LPM2,
LPM3, or LPM4 to active
mode (1)
PMMCOREV = SVSMLRRL = n fMCLK ≥ 4.0 MHz
(where n = 0, 1, 2, or 3),
fMCLK < 4.0 MHz
SVSLFP = 1
tWAKE-UP-SLOW
Wake-up time from LPM2,
LPM3, or LPM4 to active
mode (2) (3)
PMMCOREV = SVSMLRRL = n
(where n = 0, 1, 2, or 3),
SVSLFP = 0
tWAKE-UP-LPM4.5
tWAKE-UP-RESET
(1)
(2)
(3)
(4)
MIN
TYP
MAX
UNIT
5
10
µs
150
165
µs
Wake-up time from LPM4.5 to
active mode (4)
2
3
ms
Wake-up time from RST or
BOR event to active mode (4)
2
3
ms
This value represents the time from the wake-up event to the first active edge of MCLK. The wake-up time depends on the performance
mode of the low-side supervisor (SVSL) and low-side monitor (SVML). tWAKE-UP-FAST is possible with SVSL and SVML in full performance
mode or disabled. For specific register settings, see the Low-Side SVS and SVM Control and Performance Mode Selection section in
the Power Management Module and Supply Voltage Supervisor chapter of the MSP430x5xx and MSP430x6xx Family User's Guide.
This value represents the time from the wake-up event to the first active edge of MCLK. The wake-up time depends on the performance
mode of the low-side supervisor (SVSL) and low-side monitor (SVML). tWAKE-UP-SLOW is set with SVSL and SVML in normal mode (low
current mode). For specific register settings, see the Low-Side SVS and SVM Control and Performance Mode Selection section in the
Power Management Module and Supply Voltage Supervisor chapter of the MSP430x5xx and MSP430x6xx Family User's Guide.
The wake-up times from LPM0 and LPM1 to AM are not specified. They are proportional to MCLK cycle time but are not affected by the
performance mode settings as for LPM2, LPM3, and LPM4.
This value represents the time from the wake-up event to the reset vector execution.
Specifications
Submit Documentation Feedback
Product Folder Links: MSP430F6779 MSP430F6778 MSP430F6777 MSP430F6776 MSP430F6775 MSP430F6769
MSP430F6768 MSP430F6767 MSP430F6766 MSP430F6765 MSP430F6749 MSP430F6748 MSP430F6747
MSP430F6746 MSP430F6745
Copyright © 2012–2018, Texas Instruments Incorporated
41
MSP430F6779, MSP430F6778, MSP430F6777, MSP430F6776, MSP430F6775
MSP430F6769, MSP430F6768, MSP430F6767, MSP430F6766, MSP430F6765
MSP430F6749, MSP430F6748, MSP430F6747, MSP430F6746, MSP430F6745
SLAS768E – SEPTEMBER 2012 – REVISED SEPTEMBER 2018
www.ti.com
5.27 Auxiliary Supplies Recommended Operating Conditions
over operating free-air temperature range (unless otherwise noted)
MIN
VCC
MAX
Supply voltage range for all supplies at pins DVCC, AVCC, AUXVCC1, AUXVCC2,
AUXVCC3
1.8
3.6
PMMCOREVx = 0
1.8
3.6
PMMCOREVx = 1
2.0
3.6
PMMCOREVx = 2
2.2
3.6
PMMCOREVx = 3
2.4
3.6
Digital system supply voltage range,
VDSYS = VCC – RON × ILOAD
VDSYS
NOM
See module
specifications
UNIT
V
V
VASYS
Analog system supply voltage range, VASYS = VCC – RON × ILOAD
TA
Ambient temperature range
TA,HTOL
Ambient temperature during HTOL (module should be functional during HTOL)
CVCC,
CAUX1/2
Recommended capacitor at pins DVCC, AVCC, AUXVCC1, AUXVCC2
CVSYS
Recommended capacitor at pins VDSYS1, VDSYS2 and VASYS1, VASYS2
CVCORE
Recommended capacitance at pin VCORE
CAUX3
Recommended capacitor at pin AUXVCC3
0.47
µF
–40
V
85
°C
150
°C
4.7
µF
4.7
µF
0.47
µF
5.28 Auxiliary Supplies, AUXVCC3 (Backup Subsystem) Currents
over operating free-air temperature range (unless otherwise noted)
PARAMETER
TEST CONDITIONS
VCC
IAUX3,RTCon
AUXVCC3 current with RTC
enabled
RTC and 32-kHz oscillator in
backup subsystem enabled
3V
IAUX3,RTCoff
AUXVCC3 current with RTC
disabled
RTC and 32-kHz oscillator in
backup subsystem disabled
3V
TA
MIN
MAX
25°C
0.86
85°C
1.2
25°C
120
85°C
220
UNIT
µA
nA
5.29 Auxiliary Supplies, Auxiliary Supply Monitor
over operating free-air temperature range (unless otherwise noted)
PARAMETER
MAX
UNIT
ICC,Monitor
Average supply
current for monitoring
circuitry drawn from
VDSYS
LOCKAUX = 0, AUXMRx = 0
AUX0MD = 0, AUX1MD = 0, AUX2MD = 1,
VDSYS = DVCC, VASYS = AVCC,
Current measured at VDSYS
TEST CONDITIONS
1.10
µA
IMeas,Montior
Average current
drawn from monitored
supply during
measurement cycle
LOCKAUX = 0, AUXMRx = 0
AUX0MD = 0, AUX1MD = 0, AUX2MD = 1,
VDSYS = DVCC, VASYS = AVCC,
Current measured at AUXVCC1
0.13
µA
General
MIN
VSVMH
(SVSMHRRLx
= AUXLVLx)
TYP
VSVMH
(SVSMHRRLx
= AUXLVLx)
X – 5%
VMonitor
42
Auxiliary supply
threshold level (same
as high-side SVM)
Specifications
VSVMH
(SVSMHRRLx
= AUXLVLx)
X + 5%
AUXLVLx = 0
1.65
1.75
1.85
AUXLVLx = 1
1.85
1.95
2.05
AUXLVLx = 2
2.05
2.15
2.25
AUXLVLx = 3
2.15
2.25
2.35
AUXLVLx = 4
2.30
2.40
2.55
AUXLVLx = 5
2.57
2.70
2.83
AUXLVLx = 6
2.90
3.00
3.20
AUXLVLx = 7
2.90
3.00
3.20
V
Copyright © 2012–2018, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F6779 MSP430F6778 MSP430F6777 MSP430F6776 MSP430F6775 MSP430F6769
MSP430F6768 MSP430F6767 MSP430F6766 MSP430F6765 MSP430F6749 MSP430F6748 MSP430F6747
MSP430F6746 MSP430F6745
MSP430F6779, MSP430F6778, MSP430F6777, MSP430F6776, MSP430F6775
MSP430F6769, MSP430F6768, MSP430F6767, MSP430F6766, MSP430F6765
MSP430F6749, MSP430F6748, MSP430F6747, MSP430F6746, MSP430F6745
www.ti.com
SLAS768E – SEPTEMBER 2012 – REVISED SEPTEMBER 2018
5.30 Auxiliary Supplies, Switch ON-Resistance
over operating free-air temperature range (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
MAX
UNIT
RON,DVCC
ON-resistance of switch between DVCC
and VDSYS
ILOAD = ICORE + IIO = 10 mA + 10 mA = 20 mA
5
Ω
RON,DAUX1
ON-resistance of switch between
AUXVCC1 and VDSYS
ILOAD = ICORE + IIO = 10 mA + 10 mA = 20 mA
5
Ω
RON,DAUX2
ON-resistance of switch between
AUXVCC2 and VDSYS
ILOAD = ICORE + IIO = 10 mA + 10 mA = 20 mA
5
Ω
RON,AVCC
ON-resistance of switch between AVCC
and VASYS
ILOAD = IModules = 10 mA
5
Ω
RON,AAUX1
ON-resistance of switch between
AUXVCC1 and VASYS
ILOAD = IModules = 5 mA
20
Ω
RON,AAUX2
ON-resistance of switch between
AUXVCC2 and VASYS
ILOAD = IModules = 5 mA
20
Ω
5.31 Auxiliary Supplies, Switching Time
over operating free-air temperature range (unless otherwise noted)
PARAMETER
MIN
tSwitch
Time from occurrence of trigger (SVM or software) to "new" supply connected to system
supplies
tRecover
"Recovery time" after a switch over took place. During that time no further switching takes
place.
MAX
UNIT
100
ns
480
µs
170
5.32 Auxiliary Supplies, Switch Leakage
over operating free-air temperature range (unless otherwise noted)
PARAMETER
TEST CONDITIONS
ISW,Lkg
Current into DVCC, AVCC, AUXVCC1, or
AUXVCC2 if not selected
IVmax
Current drawn from highest supply
MIN
Per supply (but not the highest supply)
TYP
MAX
UNIT
75
250
nA
500
700
nA
UNIT
5.33 Auxiliary Supplies, Auxiliary Supplies to ADC10_A
over operating free-air temperature range (unless otherwise noted)
PARAMETER
V3
RV3
tSample,V3
TEST CONDITIONS
Supply voltage divider,
V3 = VSupply/3
Load resistance
Sampling time required if V3
selected
VCC
MIN
TYP
MAX
1.8 V
0.57
0.6
0.63
3V
0.95
1.0
1.05
3.6 V
1.14
1.2
1.26
AUXADCRx = 0
15
AUXADCRx = 1
1.5
AUXADCRx = 2
0.6
Error of conversion
result ≤ 1 LSB
AUXADCRx = 0
1000
AUXADCRx = 1
1000
AUXADCRx = 2
1000
V
kΩ
ns
5.34 Auxiliary Supplies, Charge Limiting Resistor
over operating free-air temperature range (unless otherwise noted)
PARAMETER
RCHARGE
Charge limiting resistor
TEST CONDITIONS
VCC
MIN
TYP
MAX
AUXCHCx = 1
3V
5
AUXCHCx = 2
3V
10
AUXCHCx = 3
3V
20
Specifications
Submit Documentation Feedback
Product Folder Links: MSP430F6779 MSP430F6778 MSP430F6777 MSP430F6776 MSP430F6775 MSP430F6769
MSP430F6768 MSP430F6767 MSP430F6766 MSP430F6765 MSP430F6749 MSP430F6748 MSP430F6747
MSP430F6746 MSP430F6745
Copyright © 2012–2018, Texas Instruments Incorporated
UNIT
kΩ
43
MSP430F6779, MSP430F6778, MSP430F6777, MSP430F6776, MSP430F6775
MSP430F6769, MSP430F6768, MSP430F6767, MSP430F6766, MSP430F6765
MSP430F6749, MSP430F6748, MSP430F6747, MSP430F6746, MSP430F6745
SLAS768E – SEPTEMBER 2012 – REVISED SEPTEMBER 2018
www.ti.com
5.35 Timer_A
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
VCC
MIN
fTA
Timer_A input clock frequency
Internal: SMCLK or ACLK,
External: TACLK,
Duty cycle = 50% ±10%
1.8 V, 3 V
tTA,cap
Timer_A capture timing
All capture inputs, minimum pulse duration
required for capture
1.8 V, 3 V
MAX
UNIT
25
MHz
20
ns
5.36 eUSCI (UART Mode) Clock Frequency
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
feUSCI
TEST CONDITIONS
MIN
Internal: SMCLK or ACLK,
External: UCLK,
Duty cycle = 50% ±10%
eUSCI input clock frequency
fBITCLK BITCLK clock frequency (equals baud rate in MBaud)
MAX
UNIT
fSYSTEM
MHz
5
MHz
5.37 eUSCI (UART Mode)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
VCC
UCGLITx = 0
tt
UART receive deglitch time (1)
UCGLITx = 1
UCGLITx = 2
UCGLITx = 3
(1)
44
2 V, 3 V
MIN
TYP
MAX
10
15
25
30
50
85
50
80
150
70
120
200
UNIT
ns
Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. To make sure that pulses are
correctly recognized, their duration should exceed the maximum specification of the deglitch time.
Specifications
Copyright © 2012–2018, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F6779 MSP430F6778 MSP430F6777 MSP430F6776 MSP430F6775 MSP430F6769
MSP430F6768 MSP430F6767 MSP430F6766 MSP430F6765 MSP430F6749 MSP430F6748 MSP430F6747
MSP430F6746 MSP430F6745
MSP430F6779, MSP430F6778, MSP430F6777, MSP430F6776, MSP430F6775
MSP430F6769, MSP430F6768, MSP430F6767, MSP430F6766, MSP430F6765
MSP430F6749, MSP430F6748, MSP430F6747, MSP430F6746, MSP430F6745
www.ti.com
SLAS768E – SEPTEMBER 2012 – REVISED SEPTEMBER 2018
5.38 eUSCI (SPI Master Mode) Clock Frequency
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
feUSCI
TEST CONDITIONS
MIN
Internal: SMCLK or ACLK,
Duty cycle = 50% ±10%
eUSCI input clock frequency
MAX
UNIT
fSYSTEM
MHz
MAX
UNIT
5.39 eUSCI (SPI Master Mode)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1)
PARAMETER
tSTE,LEAD
STE lead time, STE low to clock
tSTE,LAG
STE lag time, Last clock to STE high
TEST CONDITIONS
VCC
MIN
UCSTEM = 0, UCMODEx = 01 or 10
2 V, 3 V
150
UCSTEM = 1, UCMODEx = 01 or 10
2 V, 3 V
150
UCSTEM = 0, UCMODEx = 01 or 10
2 V, 3 V
200
UCSTEM = 1, UCMODEx = 01 or 10
2 V, 3 V
200
UCSTEM = 0, UCMODEx = 01 or 10
tSTE,ACC
STE access time, STE low to SIMO data out
UCSTEM = 1, UCMODEx = 01 or 10
UCSTEM = 0, UCMODEx = 01 or 10
tSTE,DIS
STE disable time, STE high to SIMO high
impedance
UCSTEM = 1, UCMODEx = 01 or 10
tSU,MI
SOMI input data setup time
tHD,MI
SOMI input data hold time
tVALID,MO
SIMO output data valid time (2)
UCLK edge to SIMO valid,
CL = 20 pF
tHD,MO
SIMO output data hold time (3)
CL = 20 pF
(1)
(2)
(3)
ns
ns
2V
50
3V
30
2V
50
3V
30
2V
40
3V
25
2V
40
3V
ns
ns
25
2V
50
3V
30
2V
0
3V
0
ns
ns
2V
9
3V
5
2V
0
3V
0
ns
ns
fUCxCLK = 1/2tLO/HI with tLO/HI = max(tVALID,MO(eUSCI) + tSU,SI(Slave), tSU,MI(eUSCI) + tVALID,SO(Slave))
For the slave parameters tSU,SI(Slave) and tVALID,SO(Slave), see the SPI parameters of the attached slave.
Specifies the time to drive the next valid data to the SIMO output after the output changing UCLK clock edge. See the timing diagrams
in Figure 5-11 and Figure 5-12.
Specifies how long data on the SIMO output is valid after the output changing UCLK clock edge. Negative values indicate that the data
on the SIMO output can become invalid before the output changing clock edge observed on UCLK. See the timing diagrams in Figure 511 and Figure 5-12.
1/fUCxCLK
CKPL = 0
UCLK
CKPL = 1
tLOW/HIGH
tLOW/HIGH
tSU,MI
tHD,MI
SOMI
tVALID,MO
SIMO
Figure 5-11. SPI Master Mode, CKPH = 0
Specifications
Submit Documentation Feedback
Product Folder Links: MSP430F6779 MSP430F6778 MSP430F6777 MSP430F6776 MSP430F6775 MSP430F6769
MSP430F6768 MSP430F6767 MSP430F6766 MSP430F6765 MSP430F6749 MSP430F6748 MSP430F6747
MSP430F6746 MSP430F6745
Copyright © 2012–2018, Texas Instruments Incorporated
45
MSP430F6779, MSP430F6778, MSP430F6777, MSP430F6776, MSP430F6775
MSP430F6769, MSP430F6768, MSP430F6767, MSP430F6766, MSP430F6765
MSP430F6749, MSP430F6748, MSP430F6747, MSP430F6746, MSP430F6745
SLAS768E – SEPTEMBER 2012 – REVISED SEPTEMBER 2018
www.ti.com
1/fUCxCLK
CKPL = 0
UCLK
CKPL = 1
tLOW/HIGH
tLOW/HIGH
tHD,MI
tSU,MI
SOMI
tVALID,MO
SIMO
Figure 5-12. SPI Master Mode, CKPH = 1
5.40 eUSCI (SPI Slave Mode)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1)
PARAMETER
TEST CONDITIONS
tSTE,LEAD
STE lead time, STE low to clock
tSTE,LAG
STE lag time, Last clock to STE high
tSTE,ACC
STE access time, STE low to SOMI data out
tSTE,DIS
STE disable time, STE high to SOMI high impedance
tSU,SI
SIMO input data setup time
tHD,SI
SIMO input data hold time
tVALID,SO
SOMI output data valid time (2)
UCLK edge to SOMI valid,
CL = 20 pF
tHD,SO
SOMI output data hold time (3)
CL = 20 pF
(1)
(2)
(3)
46
VCC
MIN
2V
4
3V
3
2V
0
3V
0
MAX
ns
ns
2V
46
3V
24
2V
38
3V
25
2V
2
3V
1
2V
2
3V
2
55
32
3V
16
ns
ns
3V
24
ns
ns
2V
2V
UNIT
ns
ns
fUCxCLK = 1/2tLO/HI with tLO/HI ≥ max(tVALID,MO(Master) + tSU,SI(eUSCI), tSU,MI(Master) + tVALID,SO(eUSCI))
For the master parameters tSU,MI(Master) and tVALID,MO(Master), see the SPI parameters of the attached master.
Specifies the time to drive the next valid data to the SOMI output after the output changing UCLK clock edge. See the timing diagrams
in Figure 5-13 and Figure 5-14.
Specifies how long data on the SOMI output is valid after the output changing UCLK clock edge. See the timing diagrams in Figure 5-13
and Figure 5-14.
Specifications
Copyright © 2012–2018, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F6779 MSP430F6778 MSP430F6777 MSP430F6776 MSP430F6775 MSP430F6769
MSP430F6768 MSP430F6767 MSP430F6766 MSP430F6765 MSP430F6749 MSP430F6748 MSP430F6747
MSP430F6746 MSP430F6745
MSP430F6779, MSP430F6778, MSP430F6777, MSP430F6776, MSP430F6775
MSP430F6769, MSP430F6768, MSP430F6767, MSP430F6766, MSP430F6765
MSP430F6749, MSP430F6748, MSP430F6747, MSP430F6746, MSP430F6745
www.ti.com
SLAS768E – SEPTEMBER 2012 – REVISED SEPTEMBER 2018
UCMODEx = 01
tSTE,LEAD
STE
tSTE,LAG
UCMODEx = 10
1/fUCxCLK
CKPL = 0
UCLK
CKPL = 1
tLOW/HIGH
tSU,SIMO
tLOW/HIGH
tHD,SIMO
SIMO
tVALID,SOMI
tACC
tDIS
SOMI
Figure 5-13. SPI Slave Mode, CKPH = 0
tSTE,LAG
tSTE,LEAD
STE
1/fUCxCLK
CKPL = 0
UCLK
CKPL = 1
tLOW/HIGH
tLOW/HIGH
tHD,SI
tSU,SI
SIMO
tACC
tVALID,SO
tDIS
SOMI
Figure 5-14. SPI Slave Mode, CKPH = 1
Specifications
Submit Documentation Feedback
Product Folder Links: MSP430F6779 MSP430F6778 MSP430F6777 MSP430F6776 MSP430F6775 MSP430F6769
MSP430F6768 MSP430F6767 MSP430F6766 MSP430F6765 MSP430F6749 MSP430F6748 MSP430F6747
MSP430F6746 MSP430F6745
Copyright © 2012–2018, Texas Instruments Incorporated
47
MSP430F6779, MSP430F6778, MSP430F6777, MSP430F6776, MSP430F6775
MSP430F6769, MSP430F6768, MSP430F6767, MSP430F6766, MSP430F6765
MSP430F6749, MSP430F6748, MSP430F6747, MSP430F6746, MSP430F6745
SLAS768E – SEPTEMBER 2012 – REVISED SEPTEMBER 2018
www.ti.com
5.41 eUSCI (I2C Mode)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5-15)
PARAMETER
feUSCI
eUSCI input clock frequency
fSCL
SCL clock frequency
tHD,STA
Hold time (repeated) START
tSU,STA
Setup time for a repeated START
tHD,DAT
Data hold time
TEST CONDITIONS
VCC
2 V, 3 V
fSCL = 100 kHz
2 V, 3 V
fSCL > 100 kHz
fSCL = 100 kHz
2 V, 3 V
fSCL > 100 kHz
2 V, 3 V
Data setup time
tSU,STO
Setup time for STOP
2 V, 3 V
fSCL > 100 kHz
fSCL = 100 kHz
2 V, 3 V
fSCL > 100 kHz
UCGLITx = 0
tSP
TYP
Internal: SMCLK or ACLK,
External: UCLK,
Duty cycle = 50% ±10%
fSCL = 100 kHz
tSU,DAT
MIN
Pulse duration of spikes suppressed by input filter
UCGLITx = 1
2 V, 3 V
UCGLITx = 2
UCGLITx = 3
0
Clock low time-out
MHz
400
kHz
µs
1.5
5.1
µs
1.4
0.4
µs
5.0
µs
1.3
5.2
µs
1.7
75
220
35
120
30
60
20
35
2 V, 3 V
33
UCCLTOx = 3
tSU,STA
fSYSTEM
ns
30
UCCLTOx = 2
tHD,STA
UNIT
5.1
UCCLTOx = 1
tTIMEOUT
MAX
ms
37
tHD,STA
tBUF
SDA
tLOW
tHIGH
tSP
SCL
tSU,DAT
tSU,STO
tHD,DAT
Figure 5-15. I2C Mode Timing
48
Specifications
Copyright © 2012–2018, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F6779 MSP430F6778 MSP430F6777 MSP430F6776 MSP430F6775 MSP430F6769
MSP430F6768 MSP430F6767 MSP430F6766 MSP430F6765 MSP430F6749 MSP430F6748 MSP430F6747
MSP430F6746 MSP430F6745
MSP430F6779, MSP430F6778, MSP430F6777, MSP430F6776, MSP430F6775
MSP430F6769, MSP430F6768, MSP430F6767, MSP430F6766, MSP430F6765
MSP430F6749, MSP430F6748, MSP430F6747, MSP430F6746, MSP430F6745
www.ti.com
SLAS768E – SEPTEMBER 2012 – REVISED SEPTEMBER 2018
5.42 Schmitt-Trigger Inputs, RTC Tamper Detect Pin
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
VIT+
Positive-going input threshold voltage
VIT–
Negative-going input threshold voltage
Vhys
Input voltage hysteresis (VIT+ – VIT–)
RPull
Pullup or pulldown resistor
For pullup: VIN = VSS
For pulldown: VIN = AUXVCC3
CI
Input capacitance
VIN = VSS or AUXVCC3
AUXVCC3
MIN
TYP
1.8 V
0.80
1.40
3V
1.50
2.10
1.8 V
0.45
1.00
3V
0.75
1.65
1.8 V
0.3
0.85
3V
0.4
1.0
20
35
MAX
50
5
UNIT
V
V
V
kΩ
pF
5.43 Inputs, RTC Tamper Detect Pin (1)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
t(int)
(1)
(2)
External interrupt timing (2)
TEST CONDITIONS
Port P1, P2: P1.x to P2.x,
external trigger pulse duration to set interrupt flag
AUXVCC3
MIN
2.2 V, 3 V
20
MAX
UNIT
ns
Some devices may contain additional ports with interrupts. See the block diagram and terminal function descriptions.
An external signal sets the interrupt flag every time the minimum interrupt pulse duration t(int) is met. It may be set by trigger signals
shorter than t(int).
5.44 Leakage Current, RTC Tamper Detect Pin
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
Ilkg(Px.y)
(1)
(2)
TEST CONDITIONS
High-impedance leakage current
See
(1) (2)
AUXVCC3
MIN
MAX
UNIT
1.8 V, 3 V
–50
+50
nA
The leakage current is measured with VSS or VCC applied to the corresponding pins, unless otherwise noted.
The leakage of the digital port pins is measured individually. The port pin is selected for input and the pullup or pulldown resistor is
disabled.
5.45 Outputs, RTC Tamper Detect Pin
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
I(OHmax) = –100 µA (1)
VOH
High-level output voltage
I(OHmax) = –200 µA (1)
I(OHmax) = –100 µA (1)
I(OHmax) = –200 µA (1)
I(OLmax) = 100 µA
VOL
Low-level output voltage
1.8 V
3V
(1)
I(OLmax) = 200 µA (1)
I(OLmax) = 100 µA (1)
I(OLmax) = 200 µA (1)
(1)
AUXVCC3
1.8 V
3V
MIN
MAX
1.50
1.80
1.20
1.80
2.70
3.00
2.40
3.00
0.00
0.25
0.00
0.60
0.00
0.25
0.00
0.60
UNIT
V
V
The maximum total current, I(OHmax), for all outputs combined should not exceed ±20 mA to hold the maximum voltage drop specified.
See Section 5.3 for more details.
Specifications
Submit Documentation Feedback
Product Folder Links: MSP430F6779 MSP430F6778 MSP430F6777 MSP430F6776 MSP430F6775 MSP430F6769
MSP430F6768 MSP430F6767 MSP430F6766 MSP430F6765 MSP430F6749 MSP430F6748 MSP430F6747
MSP430F6746 MSP430F6745
Copyright © 2012–2018, Texas Instruments Incorporated
49
MSP430F6779, MSP430F6778, MSP430F6777, MSP430F6776, MSP430F6775
MSP430F6769, MSP430F6768, MSP430F6767, MSP430F6766, MSP430F6765
MSP430F6749, MSP430F6748, MSP430F6747, MSP430F6746, MSP430F6745
SLAS768E – SEPTEMBER 2012 – REVISED SEPTEMBER 2018
www.ti.com
5.46 LCD_C Recommended Operating Conditions
PARAMETER
CONDITIONS
MIN
VCC,LCD_C,CP en,3.6
Supply voltage range, charge
pump enabled, VLCD ≤ 3.6 V
LCDCPEN = 1, 0000 < VLCDx ≤ 1111
(charge pump enabled, VLCD ≤ 3.6 V)
NOM
2.2
3.6
V
VCC,LCD_C,CP en,3.3
Supply voltage range, charge
pump enabled, VLCD ≤ 3.3 V
LCDCPEN = 1, 0000 < VLCDx ≤ 1100
(charge pump enabled, VLCD ≤ 3.3 V)
2.0
3.6
V
VCC,LCD_C,int.
bias
Supply voltage range, internal
biasing, charge pump
disabled
LCDCPEN = 0, VLCDEXT = 0
2.4
3.6
V
VCC,LCD_C,ext.
bias
Supply voltage range, external
biasing, charge pump
LCDCPEN = 0, VLCDEXT = 0
disabled
2.4
3.6
V
VCC,LCD_C,VLCDEXT
Supply voltage range, external
LCD voltage, internal or
LCDCPEN = 0, VLCDEXT = 1
external biasing, charge pump
disabled
2.0
3.6
V
VLCDCAP/R33
External LCD voltage at
LCDCAP/R33, internal or
LCDCPEN = 0, VLCDEXT = 1
external biasing, charge pump
disabled
2.4
3.6
V
CLCDCAP
Capacitor on LCDCAP when
charge pump enabled
LCDCPEN = 1, VLCDx > 0000
(charge pump enabled)
4.7
10
µF
fLCD
LCD frequency range
fFRAME = 1/(2 × mux) × fLCD
with mux = 1 (static) to 8
1024
Hz
fFRAME,4mux
LCD frame frequency range
fFRAME,4mux(MAX) = 1/(2 × 4) ×
fLCD(MAX) = 1/(2 × 4) × 1024 Hz
128
Hz
fFRAME,8mux
LCD frame frequency range
fFRAME,8mux(MAX) = 1/(2 × 4) ×
fLCD(MAX) = 1/(2 × 8) × 1024 Hz
64
Hz
fACLK,in
ACLK input frequency range
40
kHz
CPanel
Panel capacitance
100-Hz frame frequency
VR33
Analog input voltage at R33
LCDCPEN = 0, VLCDEXT = 1
4.7
0
30
32
2.4
MAX
UNIT
10000
pF
VCC + 0.2
V
VR33
V
VR23,1/3bias
Analog input voltage at R23
LCDREXT = 1, LCDEXTBIAS = 1,
LCD2B = 0
VR13
VR03 + 2/3
× (VR33 –
VR03)
VR13,1/3bias
Analog input voltage at R13
with 1/3 biasing
LCDREXT = 1, LCDEXTBIAS = 1,
LCD2B = 0
VR03
VR03 + 1/3
× (VR33 –
VR03)
VR23
V
VR13,1/2bias
Analog input voltage at R13
with 1/2 biasing
LCDREXT = 1, LCDEXTBIAS = 1,
LCD2B = 1
VR03
VR03 + 1/2
× (VR33 –
VR03)
VR33
V
VR03
Analog input voltage at R03
R0EXT = 1
VSS
VLCD-VR03
Voltage difference between
VLCD and R03
LCDCPEN = 0, R0EXT = 1
2.4
VLCDREF/R13
External LCD reference
voltage applied at
LCDREF/R13
VLCDREFx = 01
0.8
50
Specifications
V
1.2
VCC + 0.2
V
1.5
V
Copyright © 2012–2018, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F6779 MSP430F6778 MSP430F6777 MSP430F6776 MSP430F6775 MSP430F6769
MSP430F6768 MSP430F6767 MSP430F6766 MSP430F6765 MSP430F6749 MSP430F6748 MSP430F6747
MSP430F6746 MSP430F6745
MSP430F6779, MSP430F6778, MSP430F6777, MSP430F6776, MSP430F6775
MSP430F6769, MSP430F6768, MSP430F6767, MSP430F6766, MSP430F6765
MSP430F6749, MSP430F6748, MSP430F6747, MSP430F6746, MSP430F6745
www.ti.com
SLAS768E – SEPTEMBER 2012 – REVISED SEPTEMBER 2018
5.47 LCD_C Electrical Characteristics
over operating free-air temperature range (unless otherwise noted)
PARAMETER
TEST CONDITIONS
VLCDx = 0000, VLCDEXT = 0
LCD voltage
MIN
2.4 V to 3.6 V
TYP
2.60
LCDCPEN = 1, VLCDx = 0010
2.66
LCDCPEN = 1, VLCDx = 0011
2.72
LCDCPEN = 1, VLCDx = 0100
2.78
LCDCPEN = 1, VLCDx = 0101
2.84
LCDCPEN = 1, VLCDx = 0111
UNIT
2.90
2 V to 3.6 V
2.96
LCDCPEN = 1, VLCDx = 1000
3.02
LCDCPEN = 1, VLCDx = 1001
3.08
LCDCPEN = 1, VLCDx = 1010
3.14
LCDCPEN = 1, VLCDx = 1011
3.20
LCDCPEN = 1, VLCDx = 1100
3.26
LCDCPEN = 1, VLCDx = 1101
3.32
LCDCPEN = 1, VLCDx = 1110
MAX
VCC
LCDCPEN = 1, VLCDx = 0001
LCDCPEN = 1, VLCDx = 0110
VLCD
VCC
2.2 V to 3.6 V
V
3.38
LCDCPEN = 1, VLCDx = 1111
3.50
3.72
ICC,Peak,CP
Peak supply currents due to charge
pump activities
LCDCPEN = 1, VLCDx = 1111
2.2 V
200
tLCD,CP,on
Time to charge CLCD when
discharged
CLCD = 4.7 µF, LCDCPEN = 0→1,
VLCDx = 1111
2.2 V
100
ICP,Load
Maximum charge pump load current
LCDCPEN = 1, VLCDx = 1111
2.2 V
RLCD,Seg
LCD driver output impedance,
segment lines
LCDCPEN = 1, VLCDx = 1000,
ILOAD = ±10 µA
2.2 V
10
kΩ
RLCD,COM
LCD driver output impedance,
common lines
LCDCPEN = 1, VLCDx = 1000,
ILOAD = ±10 µA
2.2 V
10
kΩ
µA
500
50
µA
Specifications
Submit Documentation Feedback
Product Folder Links: MSP430F6779 MSP430F6778 MSP430F6777 MSP430F6776 MSP430F6775 MSP430F6769
MSP430F6768 MSP430F6767 MSP430F6766 MSP430F6765 MSP430F6749 MSP430F6748 MSP430F6747
MSP430F6746 MSP430F6745
Copyright © 2012–2018, Texas Instruments Incorporated
ms
51
MSP430F6779, MSP430F6778, MSP430F6777, MSP430F6776, MSP430F6775
MSP430F6769, MSP430F6768, MSP430F6767, MSP430F6766, MSP430F6765
MSP430F6749, MSP430F6748, MSP430F6747, MSP430F6746, MSP430F6745
SLAS768E – SEPTEMBER 2012 – REVISED SEPTEMBER 2018
www.ti.com
5.48 SD24_B Power Supply and Recommended Operating Conditions
MIN
AVCC = DVCC, AVSS = DVSS = 0 V
TYP
MAX
Analog supply voltage
TA
Ambient temperature
–40
85
°C
fSD
Modulator clock frequency
0.03
2.3
MHz
VI
Absolute input voltage range
AVSS – 1
AVCC
VIC
Common-mode input voltage range
VID,FS
Differential full-scale input voltage
Bipolar mode, VID = VI,A+ – VI,A–
Differential input voltage for specified
performance (1)
VID
REFON = 1
2.4
AVSS – 1
AVCC
–VREF/GAIN
+VREF/GAIN
SD24GAINx = 1
±900
±930
SD24GAINx = 2
±450
±460
SD24GAINx = 4
±225
±230
SD24GAINx = 8
±112
±120
SD24GAINx = 16
±56
±60
SD24GAINx = 32
±28
±30
SD24GAINx = 64
±14
±14
±7
±7.25
SD24GAINx =
128
CREF
(1)
(2)
VREF load capacitance (2)
3.6
UNIT
AVCC
SD24REFS = 1
V
V
V
mV
mV
100
nF
The full-scale range (FSR) is defined by VFS+ = +VREF/GAIN and VFS– = –VREF/GAIN: FSR = VFS+ – VFS– = 2 × VREF/GAIN. If VREF is
sourced externally, the analog input range should not exceed 80% of VFS+ or VFS–, that is, VID = 0.8 VFS– to 0.8 VFS+. If VREF is sourced
internally, the given VID ranges apply. MIN values are calculated based on a VREF of 1.125 V. TYP values are calculated based on a
VREF of 1.16 V.
There is no capacitance required on VREF. However, TI recommends a capacitance of 100 nF to reduce any reference voltage noise.
5.49 SD24_B Analog Input
(1)
also see Figure 5-16
PARAMETER
CI
Input capacitance
TEST CONDITIONS
VCC
MIN
SD24GAINx = 1
5.0
SD24GAINx = 2
5.0
SD24GAINx = 4
5.0
SD24GAINx = 8
5.0
SD24GAINx = 16
5.0
SD24GAINx = 32, 64, 128
Input impedance
(pin A+ or A– to AVSS)
fSD24 = 1 MHz
SD24GAINx = 8
3V
fSD24 = 1 MHz
SD24GAINx = 8
SD24GAINx = 32
(1)
52
pF
200
kΩ
200
SD24GAINx = 1
ZID
UNIT
200
SD24GAINx = 32
Differential input impedance
(pin A+ to pin A–)
MAX
5.0
SD24GAINx = 1
ZI
TYP
300
3V
400
400
300
kΩ
400
All parameters pertain to each SD24_B converter.
Specifications
Copyright © 2012–2018, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F6779 MSP430F6778 MSP430F6777 MSP430F6776 MSP430F6775 MSP430F6769
MSP430F6768 MSP430F6767 MSP430F6766 MSP430F6765 MSP430F6749 MSP430F6748 MSP430F6747
MSP430F6746 MSP430F6745
MSP430F6779, MSP430F6778, MSP430F6777, MSP430F6776, MSP430F6775
MSP430F6769, MSP430F6768, MSP430F6767, MSP430F6766, MSP430F6765
MSP430F6749, MSP430F6748, MSP430F6747, MSP430F6746, MSP430F6745
www.ti.com
SLAS768E – SEPTEMBER 2012 – REVISED SEPTEMBER 2018
1600
1400
Input Leakage Current – nA
1200
1000
800
600
400
200
0
-200
-1
-0.5
0
0.5
1
1.5
2
2.5
3
Input Voltage – V
Figure 5-16. Input Leakage Current vs Input Voltage (Modulator OFF)
5.50 SD24_B Supply Currents
PARAMETER
ISD,256
ISD,512
Analog plus digital supply current per
converter (reference not included)
Analog plus digital supply current per
converter (reference not included)
TEST CONDITIONS
fSD24 = 1 MHz,
SD24OSR = 256
fSD24 = 2 MHz,
SD24OSR = 512
TYP
MAX
SD24GAIN: 1
490
600
SD24GAIN: 2
490
600
SD24GAIN: 4
490
600
559
700
559
700
SD24GAIN: 32
627
800
SD24GAIN: 64
627
800
SD24GAIN: 128
627
800
SD24GAIN: 1
600
700
677
800
740
900
SD24GAIN: 8
SD24GAIN: 16
SD24GAIN: 8
SD24GAIN: 32
VCC
3V
3V
MIN
Specifications
Submit Documentation Feedback
Product Folder Links: MSP430F6779 MSP430F6778 MSP430F6777 MSP430F6776 MSP430F6775 MSP430F6769
MSP430F6768 MSP430F6767 MSP430F6766 MSP430F6765 MSP430F6749 MSP430F6748 MSP430F6747
MSP430F6746 MSP430F6745
Copyright © 2012–2018, Texas Instruments Incorporated
UNIT
µA
µA
53
MSP430F6779, MSP430F6778, MSP430F6777, MSP430F6776, MSP430F6775
MSP430F6769, MSP430F6768, MSP430F6767, MSP430F6766, MSP430F6765
MSP430F6749, MSP430F6748, MSP430F6747, MSP430F6746, MSP430F6745
SLAS768E – SEPTEMBER 2012 – REVISED SEPTEMBER 2018
www.ti.com
5.51 SD24_B Performance
fSD24 = 1 MHz, SD24OSRx = 256, SD24REFON = 1
PARAMETER
TEST CONDITIONS
VCC
SD24GAIN: 1
Integral nonlinearity,
end-point fit
INL
SD24GAIN: 8
3V
SD24GAIN: 32
Gnom
+0.01
–0.01
+0.01
–0.01
+0.01
1
SD24GAIN: 2
2
SD24GAIN: 4
4
SD24GAIN: 16
32
SD24GAIN: 64
64
128
3V
SD24GAIN: 32, with external reference (1.2 V)
ΔEG/ΔT
Gain error temperature
coefficient (2), internal
reference
ΔEG/ΔT
Gain error temperature
coefficient (2), external
reference
SD24GAIN: 1, 8, or 32 (with internal reference)
–1%
+1%
–2%
+2%
–2%
+2%
3V
80
SD24GAIN: 1 (with external reference)
SD24GAIN: 8 (with external reference)
ΔEG/ΔVCC
Gain error vs VCC
15
SD24GAIN: 32 (with external reference)
SD24GAIN: 8
0.1
3V
0.1
Offset error
SD24GAIN: 8
2.3
3V
1
SD24GAIN: 32
EOS[FS]
Offset error
SD24GAIN: 8
3V
SD24GAIN: 32
ΔEOS/ΔT
(1)
(2)
(3)
(4)
(5)
54
Offset error
temperature
coefficient (5)
SD24GAIN: 1
SD24GAIN: 8
SD24GAIN: 32
mV
0.5
SD24GAIN: 1 (with Vdiff = 0 V)
(4)
%/V
0.4
SD24GAIN: 1 (with Vdiff = 0 V)
EOS[V]
ppm/°C
15
SD24GAIN: 32
(4)
ppm/°C
15
3V
SD24GAIN: 1
(3)
% FSR
16
SD24GAIN: 32
SD24GAIN: 8, with external reference (1.2 V)
UNIT
8
3V
SD24GAIN: 1, with external reference (1.2 V)
Gain error (1)
MAX
–0.01
SD24GAIN: 128
EG
TYP
SD24GAIN: 1
SD24GAIN: 8
Nominal gain
MIN
–0.2
+0.2
–0.7
+0.7
–1.4
+1.4
% FS
2
3V
0.25
µV/°C
0.1
The gain error EG specifies the deviation of the actual gain Gact from the nominal gain Gnom: EG = (Gact – Gnom)/Gnom. It covers process,
temperature, and supply voltage variations.
The gain error temperature coefficient ΔEG/ ΔT specifies the variation of the gain error EG over temperature (EG(T) = (Gact(T) –
Gnom)/Gnom) using the box method (that is, minimum and maximum values):
ΔEG/ ΔT = (MAX(EG(T)) – MIN(EG(T) ) / (MAX(T) – MIN(T)) = (MAX(Gact(T)) – MIN(Gact(T)) / Gnom / (MAX(T) – MIN(T))
with T ranging from –40°C to 85°C.
The gain error vs VCC coefficient ΔEG/ ΔVCC specifies the variation of the gain error EG over supply voltage (EG(VCC) = (Gact(VCC) –
Gnom)/Gnom) using the box method (that is, minimum and maximum values):
ΔEG/ ΔVCC = (MAX(EG(VCC)) – MIN(EG(VCC) ) / (MAX(VCC) – MIN(VCC)) = (MAX(Gact(VCC)) – MIN(Gact(VCC)) / Gnom / (MAX(VCC) –
MIN(VCC))
with VCC ranging from 2.4 V to 3.6 V.
The offset error EOS is measured with shorted inputs in 2s-complement mode with +100% FS = VREF/G and –100% FS = -VREF/G.
Conversion between EOS [FS] and EOS [V] is as follows: EOS [FS] = EOS [V] × G/VREF, EOS [V] = EOS [FS] × VREF/G.
The offset error temperature coefficient ΔEOS / ΔT specifies the variation of the offset error EOS over temperature using the box method
(that is, minimum and maximum values):
ΔEOS / ΔT = (MAX(EOS(T)) – MIN(EOS(T) ) / (MAX(T) – MIN(T))
with T ranging from –40°C to 85°C.
Specifications
Copyright © 2012–2018, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F6779 MSP430F6778 MSP430F6777 MSP430F6776 MSP430F6775 MSP430F6769
MSP430F6768 MSP430F6767 MSP430F6766 MSP430F6765 MSP430F6749 MSP430F6748 MSP430F6747
MSP430F6746 MSP430F6745
MSP430F6779, MSP430F6778, MSP430F6777, MSP430F6776, MSP430F6775
MSP430F6769, MSP430F6768, MSP430F6767, MSP430F6766, MSP430F6765
MSP430F6749, MSP430F6748, MSP430F6747, MSP430F6746, MSP430F6745
www.ti.com
SLAS768E – SEPTEMBER 2012 – REVISED SEPTEMBER 2018
SD24_B Performance (continued)
fSD24 = 1 MHz, SD24OSRx = 256, SD24REFON = 1
PARAMETER
TEST CONDITIONS
VCC
SD24GAIN: 1
ΔEOS/ΔVCC
Offset error vs VCC
(6)
SD24GAIN: 8
3V
SD24GAIN: 8
3V
SD24GAIN: 8, fCM = 50 Hz, VCM = 120 mV
AC PSRR,int
AC power supply
rejection ratio, internal
reference (9)
XT
–110
–110
SD24GAIN: 1, VCC = 3 V + 50 mV ×
sin(2π × fVCC × t), fVCC = 50 Hz
–61
SD24GAIN: 8, VCC = 3 V + 50 mV ×
sin(2π × fVCC × t), fVCC = 50 Hz
–75
SD24GAIN: 32, VCC = 3 V + 50 mV ×
sin(2π × fVCC × t), fVCC = 50 Hz
–79
SD24GAIN: 1, VCC = 3 V + 50 mV ×
sin(2π × fVCC × t), fVCC = 50 Hz
–61
SD24GAIN: 8, VCC = 3 V + 50 mV ×
sin(2π × fVCC × t), fVCC = 50 Hz
–75
SD24GAIN: 32, VCC = 3 V + 50 mV ×
sin(2π × fVCC × t), fVCC = 50 Hz
–79
Crosstalk source: SD24GAIN: 1,
Sine-wave with maximum possible Vpp,
fIN = 50 Hz or 100 Hz,
Converter under test: SD24GAIN: 8
Crosstalk source: SD24GAIN: 1,
Sine-wave with maximum possible Vpp,
fIN = 50 Hz or 100 Hz,
Converter under test: SD24GAIN: 32
dB
dB
–100
Crosstalk source: SD24GAIN: 1,
Sine-wave with maximum possible Vpp,
fIN = 50 Hz or 100 Hz,
Converter under test: SD24GAIN: 1
Crosstalk between
converters (10)
µV/V
–120
3V
SD24GAIN: 32, fCM = 50 Hz, VCM = 30 mV
AC power supply
AC PSRR,ext rejection ratio, external
reference (9)
125
–100
SD24GAIN: 1, fCM = 50 Hz, VCM = 930 mV
Common-mode
rejection at 50 Hz (8)
UNIT
–120
SD24GAIN: 32
CMRR,50 Hz
MAX
50
SD24GAIN: 1
Common-mode
rejection at DC (7)
TYP
500
SD24GAIN: 32
CMRR,DC
MIN
dB
dB
–120
3V
–115
dB
–110
(6)
The offset error vs VCC ΔEOS / ΔVCC specifies the variation of the offset error EOS over supply voltage using the box method (that is,
minimum and maximum values):
ΔEOS / ΔVCC = (MAX(EOS(VCC)) – MIN(EOS(VCC) ) / (MAX(VCC) – MIN(VCC))
with VCC ranging from 2.4 V to 3.6 V.
(7) The DC CMRR specifies the change in the measured differential input voltage value when the common-mode voltage varies:
DC CMRR = –20log(ΔMAX / FSR) with ΔMAX being the difference between the minium value and the maximum value measured when
sweeping the common-mode voltage.
The DC CMRR is measured with both inputs connected to the common-mode voltage (that is, no differential input signal is applied), and
the common-mode voltage is swept from –1 V to VCC.
(8) The AC CMRR is the difference between a hypothetical signal with the amplitude and frequency of the applied common-mode ripple
applied to the inputs of the ADC and the actual common-mode signal spur visible in the FFT spectrum:
AC CMRR = Error Spur [dBFS] – 20log(VCM / 1.2 V / G) [dBFS] with a common-mode signal of VCM × sin(2π × fCM × t) applied to the
analog inputs.
The AC CMRR is measured with the both inputs connected to the common-mode signal; that is, no differential input signal is applied.
With the specified typical values the error spur is within the noise floor (as specified by the SINAD values).
(9) The AC PSRR is the difference between a hypothetical signal with the amplitude and frequency of the applied supply voltage ripple
applied to the inputs of the ADC and the actual supply ripple spur visible in the FFT spectrum:
AC PSRR = Error Spur [dBFS] – 20log(50 mV / 1.2 V / G) [dBFS] with a signal of 50 mV × sin(2π × fVCC × t) added to VCC.
The AC PSRR is measured with the inputs grounded; that is, no analog input signal is applied.
With the specified typical values the error spur is within the noise floor (as specified by the SINAD values).
SD24GAIN: 1 → Hypothetical signal: 20log(50 mV / 1.2 V / 1) = –27.6 dBFS
SD24GAIN: 8 → Hypothetical signal: 20log(50 mV / 1.2 V / 8) = –9.5 dBFS
SD24GAIN: 32 → Hypothetical signal: 20log(50 mV / 1.2 V / 32) = 2.5 dBFS
(10) The crosstalk (XT) is specified as the tone level of the signal applied to the crosstalk source seen in the spectrum of the converter under
test. It is measured with the inputs of the converter under test being grounded.
Specifications
Submit Documentation Feedback
Product Folder Links: MSP430F6779 MSP430F6778 MSP430F6777 MSP430F6776 MSP430F6775 MSP430F6769
MSP430F6768 MSP430F6767 MSP430F6766 MSP430F6765 MSP430F6749 MSP430F6748 MSP430F6747
MSP430F6746 MSP430F6745
Copyright © 2012–2018, Texas Instruments Incorporated
55
MSP430F6779, MSP430F6778, MSP430F6777, MSP430F6776, MSP430F6775
MSP430F6769, MSP430F6768, MSP430F6767, MSP430F6766, MSP430F6765
MSP430F6749, MSP430F6748, MSP430F6747, MSP430F6746, MSP430F6745
SLAS768E – SEPTEMBER 2012 – REVISED SEPTEMBER 2018
www.ti.com
5.52 SD24_B, AC Performance
fSD24 = 1 MHz, SD24OSRx = 256, SD24REFON = 1 (see Figure 5-17)
PARAMETER
TEST CONDITIONS
VCC
SD24GAIN: 1
MIN
TYP
84
86
SD24GAIN: 2
Signal-to-noise +
distortion ratio
84
SD24GAIN: 8
fIN = 50 Hz (1)
SD24GAIN: 16
3V
SD24GAIN: 32
81
Total harmonic distortion
71
dB
73
SD24GAIN: 64
67
SD24GAIN: 128
61
95
fIN = 50 Hz (1)
SD24GAIN: 8
3V
90
SD24GAIN: 32
(1)
83
80
SD24GAIN: 1
THD
UNIT
85
SD24GAIN: 4
SINAD
MAX
dB
86
The following voltages were applied to the SD24_B inputs: VI,A+(t) = 0 V + VPP / 2 × sin(2π × fIN × t) and VI,A–(t) = 0 V – VPP / 2 × sin(2π
× fIN × t)
resulting in a differential voltage of VID = VI,A+(t) – VI,A–(t) = VPP × sin(2π × fIN × t) with VPP being selected as the maximum value
allowed for a given range (according to SD24_B recommended operating conditions).
5.53 SD24_B, AC Performance
fSD24 = 2 MHz, SD24OSRx = 512, SD24REFON = 1
PARAMETER
SINAD
(1)
Signal-to-noise +
distortion ratio
TEST CONDITIONS
VCC
MIN
TYP
SD24GAIN: 1
87
SD24GAIN: 2
85
SD24GAIN: 4
84
SD24GAIN: 8
fIN = 50 Hz (1)
SD24GAIN: 16
MAX
83
3V
dB
81
SD24GAIN: 32
76
SD24GAIN: 64
71
SD24GAIN: 128
65
UNIT
The following voltages were applied to the SD24_B inputs: VI,A+(t) = 0 V + VPP / 2 × sin(2π × fIN × t) and VI,A–(t) = 0 V – VPP / 2 × sin(2π
× fIN × t)
resulting in a differential voltage of VID = VI,A+(t) – VI,A–(t) = VPP × sin(2π × fIN × t) with VPP being selected as the maximum value
allowed for a given range (according to SD24_B recommended operating conditions).
5.54 SD24_B, AC Performance
fSD24 = 32 kHz, SD24OSRx = 512, SD24REFON = 1
PARAMETER
SINAD
(1)
56
Signal-to-noise +
distortion ratio
TEST CONDITIONS
VCC
MIN
TYP
SD24GAIN: 1
89
SD24GAIN: 2
85
SD24GAIN: 4
84
SD24GAIN: 8
SD24GAIN: 16
fIN = 50 Hz (1)
3V
MAX
82
80
SD24GAIN: 32
76
SD24GAIN: 64
67
SD24GAIN: 128
61
UNIT
dB
The following voltages were applied to the SD24_B inputs: VI,A+(t) = 0 V + VPP / 2 × sin(2π × fIN × t) and VI,A–(t) = 0 V – VPP / 2 × sin(2π
× fIN × t)
resulting in a differential voltage of VID = VI,A+(t) – VI,A–(t) = VPP × sin(2π × fIN × t) with VPP being selected as the maximum value
allowed for a given range (according to SD24_B recommended operating conditions) (also see Figure 5-18).
Specifications
Copyright © 2012–2018, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F6779 MSP430F6778 MSP430F6777 MSP430F6776 MSP430F6775 MSP430F6769
MSP430F6768 MSP430F6767 MSP430F6766 MSP430F6765 MSP430F6749 MSP430F6748 MSP430F6747
MSP430F6746 MSP430F6745
MSP430F6779, MSP430F6778, MSP430F6777, MSP430F6776, MSP430F6775
MSP430F6769, MSP430F6768, MSP430F6767, MSP430F6766, MSP430F6765
MSP430F6749, MSP430F6748, MSP430F6747, MSP430F6746, MSP430F6745
www.ti.com
SLAS768E – SEPTEMBER 2012 – REVISED SEPTEMBER 2018
110.0
Theoretical limit
(second order)
100.0
SINAD − dB
90.0
80.0
70.0
60.0
50.0
10
100
1000
OSR
Figure 5-17. SINAD vs OSR
(fSD24 = 1 MHz, SD24REFON = 1, SD24GAIN: 1)
100.0
SINAD – dB
80.0
60.0
40.0
20.0
0.0
0
0.2
0.4
0.6
Vpp – Vref/Gain
0.8
1
Figure 5-18. SINAD vs VPP
5.55 SD24_B External Reference Input
ensure correct input voltage range according to VREF
PARAMETER
TEST CONDITIONS
VCC
MIN
TYP
MAX
1.0
1.20
1.5
V
50
nA
VREF(I)
Input voltage
SD24REFS = 0
3V
IREF(I)
Input current
SD24REFS = 0
3V
Specifications
Submit Documentation Feedback
Product Folder Links: MSP430F6779 MSP430F6778 MSP430F6777 MSP430F6776 MSP430F6775 MSP430F6769
MSP430F6768 MSP430F6767 MSP430F6766 MSP430F6765 MSP430F6749 MSP430F6748 MSP430F6747
MSP430F6746 MSP430F6745
Copyright © 2012–2018, Texas Instruments Incorporated
UNIT
57
MSP430F6779, MSP430F6778, MSP430F6777, MSP430F6776, MSP430F6775
MSP430F6769, MSP430F6768, MSP430F6767, MSP430F6766, MSP430F6765
MSP430F6749, MSP430F6748, MSP430F6747, MSP430F6746, MSP430F6745
SLAS768E – SEPTEMBER 2012 – REVISED SEPTEMBER 2018
www.ti.com
5.56 10-Bit ADC Power Supply and Input Range Conditions
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
VCC
AVCC
Analog supply voltage
AVCC and DVCC are connected together,
AVSS and DVSS are connected together,
V(AVSS) = V(DVSS) = 0 V
V(Ax)
Analog input voltage range (1)
All ADC10_A pins
Operating supply current into
AVCC terminal, REF module
and reference buffer off
fADC10CLK = 5 MHz, ADC10ON = 1, REFON = 0,
SHT0 = 0, SHT1 = 0, ADC10DIV = 0,
ADC10SREF = 00
Operating supply current into
AVCC terminal, REF module
on, reference buffer on
fADC10CLK = 5 MHz, ADC10ON = 1, REFON = 1,
SHT0 = 0, SHT1 = 0, ADC10DIV = 0,
ADC10SREF = 01
Operating supply current into
AVCC terminal, REF module
off, reference buffer on
fADC10CLK = 5 MHz, ADC10ON = 1, REFON = 0,
SHT0 = 0, SHT1 = 0, ADC10DIV = 0,
ADC10SREF = 10, VEREF = 2.5 V
Operating supply current into
AVCC terminal, REF module
off, reference buffer off
fADC10CLK = 5 MHz, ADC10ON = 1, REFON = 0,
SHT0 = 0, SHT1 = 0, ADC10DIV = 0,
ADC10SREF = 11, VEREF = 2.5 V
CI
Input capacitance
Only one terminal Ax can be selected at one time
from the pad to the ADC10_A capacitor array
including wiring and pad.
RI
Input MUX ON resistance
IADC10_A
(1)
MIN
TYP
MAX
UNIT
1.8
3.6
V
0
AVCC
V
2.2 V
68
100
3V
78
110
124
180
105
160
72
110
µA
3V
2.2 V
3.5
pF
AVCC > 2.0 V, 0 V ≤ VAx ≤ AVCC
36
1.8 V < AVCC < 2.0 V, 0 V ≤ VAx ≤ AVCC
96
kΩ
The analog input voltage range must be within the selected reference voltage range VR+ to VR– for valid conversion results. The external
reference voltage requires decoupling capacitors. Two decoupling capacitors, 10 µF and 100 nF, should be connected to VREF to
decouple the dynamic current required for an external reference source if it is used for the ADC10_A. Also see the MSP430x5xx and
MSP430x6xx Family User's Guide.
5.57 10-Bit ADC Switching Characteristics
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
VCC
MIN
TYP
MAX
UNIT
For specified performance of ADC10_A
linearity parameters
2.2 V, 3 V
0.45
5
5.5
MHz
Internal ADC10_A
oscillator (1)
ADC10DIV = 0, fADC10CLK = fADC10OSC
2.2 V, 3 V
4.4
4.9
5.6
MHz
2.2 V, 3 V
2.4
Conversion time
REFON = 0, Internal oscillator,
12 ADC10CLK cycles, 10-bit mode,
fADC10OSC = 4 MHz to 5 MHz
fADC10CLK
fADC10OSC
tCONVERT
TEST CONDITIONS
µs
External fADC10CLK from ACLK, MCLK, or
SMCLK, ADC10SSEL ≠ 0
tADC10ON
Turnon settling time of
the ADC
tSample
Sampling time
(1)
(2)
(3)
58
See
12 ×
1 / fADC10CLK
(2)
100
RS = 1000 Ω, RI = 96 kΩ, CI = 3.5 pF (3)
RS = 1000 Ω, RI = 36 kΩ, CI = 3.5 pF
3.0
(3)
1.8 V
3
3V
1
ns
µs
The ADC10OSC is sourced directly from MODOSC inside the UCS.
The condition is that the error in a conversion started after tADC10ON is less than ±0.5 LSB. The reference and input signal are already
settled.
Approximately 8 Tau (τ) are needed to get an error of less than ±0.5 LSB
Specifications
Copyright © 2012–2018, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F6779 MSP430F6778 MSP430F6777 MSP430F6776 MSP430F6775 MSP430F6769
MSP430F6768 MSP430F6767 MSP430F6766 MSP430F6765 MSP430F6749 MSP430F6748 MSP430F6747
MSP430F6746 MSP430F6745
MSP430F6779, MSP430F6778, MSP430F6777, MSP430F6776, MSP430F6775
MSP430F6769, MSP430F6768, MSP430F6767, MSP430F6766, MSP430F6765
MSP430F6749, MSP430F6748, MSP430F6747, MSP430F6746, MSP430F6745
www.ti.com
SLAS768E – SEPTEMBER 2012 – REVISED SEPTEMBER 2018
5.58 10-Bit ADC Linearity Parameters
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
1.4 V ≤ (VeREF+ – VeREF–) ≤ 1.6 V, CVeREF+ = 20 pF
VCC
MAX
–1.0
+1.0
–1.0
+1.0
UNIT
EI
Integral linearity error
ED
Differential linearity error
1.4 V ≤ (VeREF+ – VeREF–), CVeREF+ = 20 pF
2.2 V, 3 V
–1.0
+1.0
LSB
EO
Offset error
1.4 V ≤ (VeREF+ – VeREF–), CVeREF+ = 20 pF
Internal impedance of source RS < 100 Ω
2.2 V, 3 V
–1.0
+1.0
LSB
EG
Gain error
1.4 V ≤ (VeREF+ – VeREF–), CVeREF+ = 20 pF,
ADC10SREFx = 11b
2.2 V, 3 V
–1.0
+1.0
LSB
ET
Total unadjusted error
1.4 V ≤ (VeREF+ – VeREF–), CVeREF+ = 20 pF,
ADC10SREFx = 11b
2.2 V, 3 V
–2.0
+2.0
LSB
MIN
MAX
UNIT
1.6 V < (VeREF+ – VeREF–) ≤ VAVCC, CVeREF+ = 20 pF
2.2 V, 3 V
MIN
LSB
5.59 10-Bit ADC External Reference
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1)
PARAMETER
TEST CONDITIONS
VCC
VeREF+
Positive external reference
voltage input
VeREF+ > VeREF–
(2)
1.4
AVCC
V
VeREF–
Negative external reference
voltage input
VeREF+ > VeREF–
(3)
0
1.2
V
(VeREF+ –
VeREF–)
Differential external reference
voltage input
VeREF+ > VeREF–
(4)
1.4
AVCC
V
–26
+26
IVeREF+,
IVeREF–
CVREF+
(1)
(2)
(3)
(4)
(5)
Static input current
Capacitance at VREF+
terminal
1.4 V ≤ VeREF+ ≤ VAVCC , VeREF– = 0 V,
fADC10CLK = 5 MHz, ADC10SHTx = 0x0001,
Conversion rate 200 ksps
1.4 V ≤ VeREF+ ≤ VAVCC , VeREF– = 0 V,
fADC10CLK = 5 MHZ, ADC10SHTX = 0x1000,
Conversion rate 20 ksps
See
(5)
2.2 V, 3 V
µA
–1
+1
10
µF
The external reference is used during ADC conversion to charge and discharge the capacitance array. The input capacitance, CI, is also
the dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the
recommendations on analog-source impedance to allow the charge to settle for 10-bit accuracy.
The accuracy limits the minimum positive external reference voltage. Lower reference voltage levels may be applied with reduced
accuracy requirements.
The accuracy limits the maximum negative external reference voltage. Higher reference voltage levels may be applied with reduced
accuracy requirements.
The accuracy limits minimum external differential reference voltage. Lower differential reference voltage levels may be applied with
reduced accuracy requirements.
Two decoupling capacitors, 10 µF and 100 nF, should be connected to VREF to decouple the dynamic current required for an external
reference source if it is used for the ADC10_A. Also see the MSP430x5xx and MSP430x6xx Family User's Guide.
Specifications
Submit Documentation Feedback
Product Folder Links: MSP430F6779 MSP430F6778 MSP430F6777 MSP430F6776 MSP430F6775 MSP430F6769
MSP430F6768 MSP430F6767 MSP430F6766 MSP430F6765 MSP430F6749 MSP430F6748 MSP430F6747
MSP430F6746 MSP430F6745
Copyright © 2012–2018, Texas Instruments Incorporated
59
MSP430F6779, MSP430F6778, MSP430F6777, MSP430F6776, MSP430F6775
MSP430F6769, MSP430F6768, MSP430F6767, MSP430F6766, MSP430F6765
MSP430F6749, MSP430F6748, MSP430F6747, MSP430F6746, MSP430F6745
SLAS768E – SEPTEMBER 2012 – REVISED SEPTEMBER 2018
www.ti.com
5.60 REF Built-In Reference
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
REFVSEL = {2} for 2.5 V, REFON = 1
Positive built-in reference
voltage
VREF+
REFVSEL = {1} for 2 V, REFON = 1
REFVSEL = {0} for 1.5 V, REFON = 1
AVCC minimum voltage,
Positive built-in reference
active
AVCC(min)
VCC
3V
2.2 V, 3 V
MIN
TYP
MAX
2.47
2.51
2.55
1.96
1.99
2.02
1.48
1.5
1.52
REFVSEL = {0} for 1.5 V
1.8
REFVSEL = {1} for 2 V
2.2
REFVSEL = {2} for 2.5 V
2.7
fADC10CLK = 5.0 MHz,
REFON = 1, REFBURST = 0,
REFVSEL = {2} for 2.5 V
Operating supply current
into AVCC terminal (1)
IREF+
24
16.1
21
fADC10CLK = 5.0 MHz,
REFON = 1, REFBURST = 0,
REFVSEL = {0} for 1.5 V
14.4
21