0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MSP430F112IDW

MSP430F112IDW

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    SOIC20

  • 描述:

    IC MCU 16BIT 4KB FLASH 20SOIC

  • 数据手册
  • 价格&库存
MSP430F112IDW 数据手册
       SLAS256D − NOVEMBER 1999 − REVISED SEPTEMBER 2004 D Low Supply Voltage Range 1.8 V to 3.6 V D Ultralow-Power Consumption: D Family Members Include: D D D D D D − Active Mode: 200 µA at 1 MHz, 2.2 V − Standby Mode: 0.8 µA − Off Mode (RAM Retention): 0.1 µA Wake-Up From Standby Mode in less than 6 µs 16-Bit RISC Architecture, 125 ns Instruction Cycle Time Basic Clock Module Configurations: − Various Internal Resistors − Single External Resistor − 32 kHz Crystal − High Frequency Crystal − Resonator − External Clock Source 16-Bit Timer_A With Three Capture/Compare Registers Serial Onboard Programming, No External Programming Voltage Needed MSP430F110: D 1KB + 128B Flash Memory 128B RAM MSP430F112: 4KB + 256B Flash Memory 256B RAM Available in a 20-Pin Plastic Small-Outline Wide Body (SOWB) Package and 20-Pin Plastic Thin Shrink Small-Outline Package (TSSOP) For Complete Module Descriptions, Refer to the MSP430x1xx Family User’s Guide, Literature Number SLAU049 DW OR PW PACKAGE (TOP VIEW) 1 2 3 4 5 6 7 8 9 10 TEST VCC P2.5/Rosc VSS XOUT/TCLK XIN RST/NMI P2.0/ACLK P2.1/INCLK P2.2/TA0 20 19 18 17 16 15 14 13 12 11 P1.7/TA2/TDO/TDI P1.6/TA1/TDI P1.5/TA0/TMS P1.4/SMCLK/TCK P1.3/TA2 P1.2/TA1 P1.1/TA0 P1.0/TACLK P2.4/TA2 P2.3/TA1 description The Texas Instruments MSP430 family of ultralow power microcontrollers consist of several devices featuring different sets of peripherals targeted for various applications. The architecture, combined with five low power modes is optimized to achieve extended battery life in portable measurement applications. The device features a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that attribute to maximum code efficiency. The digitally controlled oscillator (DCO) allows wake-up from low-power modes to active mode in less than 6µs. The MSP430F11x series is an ultralow-power mixed signal microcontroller with a built in 16-bit timer and fourteen I/O pins. Typical applications include sensor systems that capture analog signals, convert them to digital values, and then process the data and display them or transmit them to a host system. Stand alone RF sensor front-end is another area of application. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Copyright  1999 − 2004, Texas Instruments Incorporated       !"#   $"%&! '#( '"! !  $#!! $# )# #  #  "# '' *+( '"! $!#, '#  #!#&+ !&"'# #,  && $##( POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1        SLAS256D − NOVEMBER 1999 − REVISED SEPTEMBER 2004 AVAILABLE OPTIONS PACKAGED DEVICES TA −40°C to 85°C PLASTIC 20-PIN SOWB (DW) PLASTIC 20-PIN TSSOP (PW) MSP430F110IDW MSP430F112IDW MSP430F110IPW MSP430F112IPW functional block diagram XIN XOUT VCC VSS P1 RST/NMI JTAG ROSC Oscillator System Clock ACLK 4KB Flash 256B RAM SMCLK 1KB Flash 128B RAM P2 8 I/O Port 1 8 I/Os, with Interrupt Capability 6 I/O Port 2 6 I/Os, with Interrupt Capability MCLK Test MAB, 4 Bit MAB,MAB, 16 Bit16-Bit JTAG CPU MCB Emulation Module Incl. 16 Reg. Bus Conv MDB, 16-Bit MDB, 16 Bit MDB, 8 Bit TEST † Watchdog Timer Timer_A3 POR 3 CC Reg 15/16-Bit † A pulldown resistor of 30 kΩ is needed on F11x devices. 2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265        SLAS256D − NOVEMBER 1999 − REVISED SEPTEMBER 2004 Terminal Functions TERMINAL NAME NO. I/O DESCRIPTION P1.0/TACLK 13 I/O General-purpose digital I/O pin/Timer_A, clock signal TACLK input P1.1/TA0 14 I/O General-purpose digital I/O pin/Timer_A, capture: CCI0A input, compare: Out0 output/BSL transmit P1.2/TA1 15 I/O General-purpose digital I/O pin/Timer_A, capture: CCI1A input, compare: Out1 output P1.3/TA2 16 I/O General-purpose digital I/O pin/Timer_A, capture: CCI2A input, compare: Out2 output P1.4/SMCLK/TCK 17 I/O General-purpose digital I/O pin/SMCLK signal output/test clock, input terminal for device programming and test P1.5/TA0/TMS 18 I/O General-purpose digital I/O pin/Timer_A, compare: Out0 output/test mode select, input terminal for device programming and test P1.6/TA1/TDI 19 I/O General-purpose digital I/O pin/Timer_A, compare: Out1 output/test data input terminal P1.7/TA2/TDO/TDI† 20 I/O General-purpose digital I/O pin/Timer_A, compare: Out2 output/test data output terminal or data input during programming P2.0/ACLK 8 I/O General-purpose digital I/O pin/ACLK output P2.1/INCLK 9 I/O General-purpose digital I/O pin/Timer_A, clock signal at INCLK P2.2/TA0 10 I/O General-purpose digital I/O pin/Timer_A, capture: CCI0B input, compare: Out0 output/BSL receive P2.3/TA1 11 I/O General-purpose digital I/O pin/Timer_A, capture: CCI1B input, compare: Out1 output P2.4/TA2 12 I/O General-purpose digital I/O pin/Timer_A, compare: Out2 output P2.5/ROSC RST/NMI 3 I/O General-purpose digital I/O pin/Input for external resistor that defines the DCO nominal frequency 7 I Reset or nonmaskable interrupt input TEST 1 I Selects test mode for JTAG pins on Port1. Must be tied low with less than 30 kΩ. VCC VSS 2 XIN 6 Supply voltage 4 Ground reference I Input terminal of crystal oscillator XOUT/TCLK 5 I/O Output terminal of crystal oscillator or test clock input † TDO or TDI is selected via JTAG instruction. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 3        SLAS256D − NOVEMBER 1999 − REVISED SEPTEMBER 2004 short-form description CPU The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All operations, other than program-flow instructions, are performed as register operations in conjunction with seven addressing modes for source operand and four addressing modes for destination operand. Program Counter PC/R0 Stack Pointer SP/R1 SR/CG1/R2 Status Register Constant Generator The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to-register operation execution time is one cycle of the CPU clock. Four of the registers, R0 to R3, are dedicated as program counter, stack pointer, status register, and constant generator respectively. The remaining registers are general-purpose registers. Peripherals are connected to the CPU using data, address, and control buses, and can be handled with all instructions. instruction set The instruction set consists of 51 instructions with three formats and seven address modes. Each instruction can operate on word and byte data. Table 1 shows examples of the three types of instruction formats; the address modes are listed in Table 2. CG2/R3 General-Purpose Register R4 General-Purpose Register R5 General-Purpose Register R6 General-Purpose Register R7 General-Purpose Register R8 General-Purpose Register R9 General-Purpose Register R10 General-Purpose Register R11 General-Purpose Register R12 General-Purpose Register R13 General-Purpose Register R14 General-Purpose Register R15 Table 1. Instruction Word Formats Dual operands, source-destination e.g. ADD R4,R5 R4 + R5 −−−> R5 Single operands, destination only e.g. CALL PC −−>(TOS), R8−−> PC Relative jump, un/conditional e.g. JNE R8 Jump-on-equal bit = 0 Table 2. Address Mode Descriptions ADDRESS MODE Indirect D D D D D Indirect autoincrement Register Indexed Symbolic (PC relative) Absolute Immediate NOTE: S = source 4 S D D D D D SYNTAX EXAMPLE MOV Rs,Rd MOV R10,R11 MOV X(Rn),Y(Rm) MOV 2(R5),6(R6) OPERATION R10 −−> R11 M(2+R5)−−> M(6+R6) MOV EDE,TONI M(EDE) −−> M(TONI) MOV &MEM,&TCDAT M(MEM) −−> M(TCDAT) MOV @Rn,Y(Rm) MOV @R10,Tab(R6) M(R10) −−> M(Tab+R6) D MOV @Rn+,Rm MOV @R10+,R11 M(R10) −−> R11 R10 + 2−−> R10 D MOV #X,TONI MOV #45,TONI D = destination POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 #45 −−> M(TONI)        SLAS256D − NOVEMBER 1999 − REVISED SEPTEMBER 2004 operating modes The MSP430 has one active mode and five software selectable low-power modes of operation. An interrupt event can wake up the device from any of the five low-power modes, service the request and restore back to the low-power mode on return from the interrupt program. The following six operating modes can be configured by software: D Active mode AM; − All clocks are active D Low-power mode 0 (LPM0); − CPU is disabled ACLK and SMCLK remain active. MCLK is disabled D Low-power mode 1 (LPM1); − CPU is disabled ACLK and SMCLK remain active. MCLK is disabled DCO’s dc-generator is disabled if DCO not used in active mode D Low-power mode 2 (LPM2); − CPU is disabled MCLK and SMCLK are disabled DCO’s dc-generator remains enabled ACLK remains active D Low-power mode 3 (LPM3); − CPU is disabled MCLK and SMCLK are disabled DCO’s dc-generator is disabled ACLK remains active D Low-power mode 4 (LPM4); − CPU is disabled ACLK is disabled MCLK and SMCLK are disabled DCO’s dc-generator is disabled Crystal oscillator is stopped POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 5        SLAS256D − NOVEMBER 1999 − REVISED SEPTEMBER 2004 interrupt vector addresses The interrupt vectors and the power-up starting address are located in the memory with an address range of 0FFFFh-0FFE0h. The vector contains the 16-bit address of the appropriate interrupt handler instruction sequence. INTERRUPT SOURCE INTERRUPT FLAG SYSTEM INTERRUPT WORD ADDRESS PRIORITY Power-up External reset Watchdog WDTIFG (Note1) KEYV (Note 1) Reset 0FFFEh 15, highest NMI Oscillator fault Flash memory access violation NMIIFG (Notes 1 and 5) OFIFG (Notes 1 and 5) ACCVIFG (Notes 1 and 5) (non)-maskable, (non)-maskable, (non)-maskable 0FFFCh 14 0FFFAh 13 0FFF8h 12 0FFF6h 11 Watchdog timer WDTIFG maskable 0FFF4h 10 Timer_A3 TACCR0 CCIFG (Note 2) maskable 0FFF2h 9 Timer_A3 TACCR1 and TACCR2 CCIFGs, TAIFG (Notes 1 and 2) maskable 0FFF0h 8 0FFEEh 7 0FFECh 6 0FFEAh 5 0FFE8h 4 I/O Port P2 (eight flags − see Note 3) P2IFG.0 to P2IFG.7 (Notes 1 and 2) maskable 0FFE6h 3 I/O Port P1 (eight flags) P1IFG.0 to P1IFG.7 (Notes 1 and 2) maskable 0FFE4h 2 0FFE2h 1 0FFE0h 0, lowest NOTES: 1. 2. 3. 4. 5. 6 Multiple source flags Interrupt flags are located in the module There are eight Port P2 interrupt flags, but only six Port P2 I/O pins (P2.0−5) are implemented on the ’11x devices. Nonmaskable: neither the individual nor the general interrupt enable bit will disable an interrupt event. (non)-maskable: the individual interrupt enable bit can disable an interrupt event, but the general interrupt enable cannot. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265        SLAS256D − NOVEMBER 1999 − REVISED SEPTEMBER 2004 special function registers Most interrupt and module enable bits are collected into the lowest address space. Special function register bits that are not allocated to a functional purpose are not physically present in the device. Simple software access is provided with this arrangement. interrupt enable 1 and 2 Address 7 6 0h 5 4 ACCVIE NMIIE rw-0 WDTIE: OFIE: NMIIE: ACCVIE: Address 3 2 1 OFIE rw-0 0 WDTIE rw-0 rw-0 Watchdog Timer interrupt enable. Inactive if watchdog mode is selected. Active if Watchdog Timer is configured in interval timer mode. Oscillator fault enable Nonmaskable interrupt enable Flash access violation interrupt enable 7 6 5 6 5 4 3 2 4 3 2 1 0 01h interrupt flag register 1 and 2 Address 7 02h NMIIFG rw-0 WDTIFG: OFIFG: NMIIFG: Address 1 OFIFG rw-1 0 WDTIFG rw-(0) Set on Watchdog Timer overflow (in watchdog mode) or security key violation. Reset on VCC power-up or a reset condition at RST/NMI pin in reset mode. Flag set on oscillator fault Set via RST/NMI-pin 7 6 5 4 3 2 1 0 03h Legend rw: rw-0,1: rw-(0,1): Bit can be read and written. Bit can be read and written. It is Reset or Set by PUC. Bit can be read and written. It is Reset or Set by POR. SFR bit is not present in device. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 7        SLAS256D − NOVEMBER 1999 − REVISED SEPTEMBER 2004 memory organization MSP430F110 FFFFh FFE0h FFDFh Int. Vector 1 KB Flash FC00h Segment0,1 MSP430F112 FFFFh FFE0h Int. Vector FFDFh 4 KB Main Flash Segment0−7 Memory F000h 10FFh 1080h 0FFFh 0C00h 128B Flash SegmentA 1 KB Boot ROM 10FFh 2 × 128B Information Flash Memory 1000h SegmentA,B 0FFFh 1 KB Boot ROM 0C00h 02FFh 027Fh 0200h 01FFh 0100h 00FFh 0010h 000Fh 0000h 256B RAM 128B RAM 16b Per. 8b Per. SFR 0200h 01FFh 16b Per. 0100h 00FFh 0010h 000Fh 0000h 8b Per. SFR bootstrap loader (BSL) The MSP430 bootstrap loader (BSL) enables users to program the flash memory or RAM using a UART serial interface. Access to the MSP430 memory via the BSL is protected by user-defined password. For complete description of the features of the BSL and its implementation, see the Application report Features of the MSP430 Bootstrap Loader, Literature Number SLAA089. BSL Function DW & PW Package Pins Data Transmit 14 - P1.1 Data Receive 10 - P2.2 flash memory The flash memory can be programmed via the JTAG port, the bootstrap loader, or in-system by the CPU. The CPU can perform single-byte and single-word writes to the flash memory. Features of the flash memory include: D Flash memory has n segments of main memory and two segments of information memory (A and B) of 128 bytes each. Each segment in main memory is 512 bytes in size. D Segments 0 to n may be erased in one step, or each segment may be individually erased. D Segments A and B can be erased individually, or as a group with segments 0−n. Segments A and B are also called information memory. D New devices may have some bytes programmed in the information memory (needed for test during manufacturing). The user should perform an erase of the information memory prior to the first use. 8 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265        SLAS256D − NOVEMBER 1999 − REVISED SEPTEMBER 2004 Segment0 w/ Interrupt Vectors 0FDFFh 0FC00h Segment1 0FBFFh 0FA00h Segment2 0F9FFh 0F800h Segment3 0F7FFh 0F600h Segment4 0F5FFh 0F400h Segment5 0F3FFh 0F200h Segment6 0F1FFh 0F000h Segment7 010FFh 01080h SegmentA 0107Fh 01000h SegmentB Information Memory 0FFFFh 0FE00h Flash Main Memory flash memory (continued) NOTE: All segments not implemented on all devices. peripherals Peripherals are connected to the CPU through data, address, and control busses and can be handled using all instructions. For complete module descriptions, refer to the MSP430x1xx Family User’s Guide, literature number SLAU049. oscillator and system clock The clock system is supported by the basic clock module that includes support for a 32768-Hz watch crystal oscillator, an internal digitally-controlled oscillator (DCO) and a high frequency crystal oscillator. The basic clock module is designed to meet the requirements of both low system cost and low-power consumption. The internal DCO provides a fast turn-on clock source and stabilizes in less than 6 µs. The basic clock module provides the following clock signals: D Auxiliary clock (ACLK), sourced from a 32768-Hz watch crystal or a high frequency crystal. D Main clock (MCLK), the system clock used by the CPU. D Sub-Main clock (SMCLK), the sub-system clock used by the peripheral modules. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 9        SLAS256D − NOVEMBER 1999 − REVISED SEPTEMBER 2004 digital I/O There are two 8-bit I/O ports implemented—ports P1 and P2 (only six P2 I/O signals are available on external pins): D D D D All individual I/O bits are independently programmable. Any combination of input, output, and interrupt conditions is possible. Edge-selectable interrupt input capability for all the eight bits of port P1 and six bits of port P2. Read/write access to port-control registers is supported by all instructions. NOTE: Six bits of port P2, P2.0 to P2.5, are available on external pins − but all control and data bits for port P2 are implemented. watchdog timer The primary function of the watchdog timer (WDT) module is to perform a controlled system restart after a software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed in an application, the module can be configured as an interval timer and can generate interrupts at selected time intervals. timer_A3 Timer_A3 is a 16-bit timer/counter with three capture/compare registers. Timer_A3 can support multiple capture/compares, PWM outputs, and interval timing. Timer_A3 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers. Timer_A3 Signal Connections Input Pin Number Device Input Signal Module Input Name 13 - P1.0 TACLK TACLK ACLK ACLK SMCLK SMCLK 9 - P2.1 INCLK INCLK 14 - P1.1 TA0 CCI0A TA0 CCI0B DVSS DVCC GND 10 - P2.2 15 - P1.2 TA1 VCC CCI1A 11 - P2.3 TA1 CCI1B 16 - P1.3 10 DVSS DVCC TA2 GND VCC CCI2A ACLK (internal) CCI2B DVSS DVCC GND Module Block Module Output Signal Timer NA 14 - P1.1 18 - P1.5 CCR0 TA0 10 - P2.2 15 - P1.2 19 - P1.6 CCR1 TA1 11 - P2.3 16 - P1.3 20 - P1.7 CCR2 VCC POST OFFICE BOX 655303 Output Pin Number • DALLAS, TEXAS 75265 TA2 12 - P2.4        SLAS256D − NOVEMBER 1999 − REVISED SEPTEMBER 2004 peripheral file map PERIPHERALS WITH WORD ACCESS Timer_A Reserved Reserved Reserved Reserved Capture/compare register Capture/compare register Capture/compare register Timer_A register Reserved Reserved Reserved Reserved Capture/compare control Capture/compare control Capture/compare control Timer_A control Timer_A interrupt vector TACCTL2 TACCTL1 TACCTL0 TACTL TAIV 017Eh 017Ch 017Ah 0178h 0176h 0174h 0172h 0170h 016Eh 016Ch 016Ah 0168h 0166h 0164h 0162h 0160h 012Eh TACCR2 TACCR1 TACCR0 TAR Flash Memory Flash control 3 Flash control 2 Flash control 1 FCTL3 FCTL2 FCTL1 012Ch 012Ah 0128h Watchdog Watchdog/timer control WDTCTL 0120h PERIPHERALS WITH BYTE ACCESS Basic Clock Basic clock sys. control2 Basic clock sys. control1 DCO clock freq. control BCSCTL2 BCSCTL1 DCOCTL 058h 057h 056h Port P2 Port P2 selection Port P2 interrupt enable Port P2 interrupt edge select Port P2 interrupt flag Port P2 direction Port P2 output Port P2 input P2SEL P2IE P2IES P2IFG P2DIR P2OUT P2IN 02Eh 02Dh 02Ch 02Bh 02Ah 029h 028h Port P1 Port P1 selection Port P1 interrupt enable Port P1 interrupt edge select Port P1 interrupt flag Port P1 direction Port P1 output Port P1 input P1SEL P1IE P1IES P1IFG P1DIR P1OUT P1IN 026h 025h 024h 023h 022h 021h 020h Special Function SFR interrupt flag2 SFR interrupt flag1 SFR interrupt enable2 SFR interrupt enable1 IFG2 IFG1 IE2 IE1 003h 002h 001h 000h POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 11        SLAS256D − NOVEMBER 1999 − REVISED SEPTEMBER 2004 absolute maximum ratings† Voltage applied at VCC to VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 4.1 V Voltage applied to any pin (referenced to VSS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to VCC+0.3 V Diode current at any device terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±2 mA Storage temperature, Tstg (unprogrammed device) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −55°C to 150°C Storage temperature, Tstg (programmed device) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 85°C † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTE: All voltages referenced to VSS. recommended operating conditions MIN Supply voltage during program execution, VCC (see Note 1) 1.8 Supply voltage during program/erase flash memory, VCC 2.7 Supply voltage, VSS MAX −40 LF mode selected, XTS=0 Watch crystal V 3.6 V 85 °C XT1 mode selected, XTS=1 Hz 450 8000 1000 8000 VCC = 1.8 V dc 2 MHz VCC = 2.2 V dc 5 MHz Crystal Processor frequency f(system) (MCLK signal) V 32 768 Ceramic resonator UNITS 3.6 0 Operating free-air temperature range, TA LFXT1 crystal frequency, f(LFXT1) (see Note 2) NOM kHz VCC = 3.6 V dc 8 MHz NOTES: 1. The LFXT1 oscillator in LF-mode requires a resistor of 5.1 MΩ from XOUT to VSS when VCC
MSP430F112IDW 价格&库存

很抱歉,暂时无法提供与“MSP430F112IDW”相匹配的价格&库存,您可以联系我们找货

免费人工找货