0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MSP430F1471IPMRG

MSP430F1471IPMRG

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    LQFP-64

  • 描述:

    IC MCU 16BIT 32KB FLASH 64LQFP

  • 数据手册
  • 价格&库存
MSP430F1471IPMRG 数据手册
Product Folder Order Now Technical Documents Support & Community Tools & Software MSP430F149, MSP430F148, MSP430F147 MSP430F1491, MSP430F1481, MSP430F1471 MSP430F135, MSP430F133 SLAS272H – JULY 2000 – REVISED MAY 2018 MSP430F14x, MSP430F14x1, MSP430F13x Mixed-Signal Microcontrollers 1 Device Overview 1.1 Features 1 • Low Supply Voltage Range, 1.8 V to 3.6 V • Ultra-Low Power Consumption: – Active Mode: 280 µA at 1 MHz, 2.2 V – Standby Mode: 1.6 µA – Off Mode (RAM Retention): 0.1 µA • Five Power-Saving Modes • Wakeup From Standby Mode in Less Than 6 µs • 16-Bit RISC Architecture, 125-ns Instruction Cycle Time • 12-Bit Analog-to-Digital Converter (ADC) With Internal Reference, Sample-and-Hold, and Autoscan Feature • 16-Bit Timer_B With Seven Capture/CompareWith-Shadow Registers • 16-Bit Timer_A With Three Capture/Compare Registers • On-Chip Comparator • Serial Onboard Programming, No External Programming Voltage Needed, Programmable Code Protection by Security Fuse 1.2 • • Applications Sensor Systems Industrial Controls 1.3 • Serial Communication Interface (USART), Functions as Asynchronous UART or Synchronous SPI Interface – Two USARTs (USART0, USART1) On MSP430F14x and MSP430F14x1 Devices – One USART (USART0) On MSP430F13x Devices • Family Members (Also See Device Comparison) – MSP430F133 – 8KB + 256 Bytes of Flash Memory, 256 Bytes of RAM – MSP430F135 – 16KB + 256 Bytes of Flash Memory, 512 Bytes of RAM – MSP430F147, MSP430F1471 – 32KB + 256 Bytes of Flash Memory, 1KB of RAM – MSP430F148, MSP430F1481 – 48KB + 256 Bytes of Flash Memory, 2KB of RAM – MSP430F149, MSP430F1491 – 60KB + 256 Bytes of Flash Memory, 2KB of RAM • Hand-Held Meters Description The Texas Instruments MSP430™ family of ultra-low-power microcontrollers (MCUs) consist of several devices featuring different sets of peripherals targeted for various applications. The architecture, combined with five low-power modes is optimized to achieve extended battery life in portable measurement applications. The device features a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that attribute to maximum code efficiency. The digitally controlled oscillator (DCO) allows wake-up from low-power modes to active mode in less than 6 µs. The MSP430F13x, MSP430F14x, and MSP430F14x1 MCUs support two built-in 16-bit timers, a fast 12-bit ADC on the MSP430F13x and the MSP430F14x devices, one USART on the MSP430F13x devices or two USARTs on the MSP430F14x and MSP430F14x1 devices, and 48 I/O pins. The hardware multiplier enhances the performance and offers a broad code and hardware-compatible family solution. For complete module descriptions, see the MSP430x1xx Family User’s Guide. 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA. MSP430F149, MSP430F148, MSP430F147 MSP430F1491, MSP430F1481, MSP430F1471 MSP430F135, MSP430F133 SLAS272H – JULY 2000 – REVISED MAY 2018 www.ti.com Device Information (1) PACKAGE BODY SIZE (2) LQFP (64) 10 mm × 10 mm MSP430F149IPAG TQFP (64) 10 mm × 10 mm MSP430F1491IRTD VQFN (64) 9 mm × 9 mm PART NUMBER MSP430F149IPM (1) For the most current device, package, and ordering information, see the Package Option Addendum in Section 8, or see the TI website at www.ti.com. The sizes shown here are approximations. For the package dimensions with tolerances, see the Mechanical Data in Section 8. (2) 1.4 Functional Block Diagrams Figure 1-1 shows the functional block diagram for the MSP430F13x MCUs. XIN XOUT DVCC DVSS AV CC AV SS P1 RST/NMI P2 8 ROSC Oscillator XT2IN System Clock XT2OUT ACLK 16KB Flash 512B RAM ADC12 SMCLK 8KB Flash 256B RAM 12-Bit 8 Channels VVREF-/VeREF- (3) VVeREF+ − VVREF-/VeREF- Differential external reference input voltage VVeREF+ > VVREF-/VeREF- (4) IVeREF+ Static input current, VeREF+ 0 V ≤ VVeREF+ ≤ VAVCC IVREF-/VeREF- Static input current, VeREF− 0 V ≤ VVeREF− ≤ VAVCC (1) (2) (3) (4) VCC (2) MIN MAX 1.4 VAVCC 0 UNIT V 1.2 V 1.4 VAVCC V 2.2 V, 3 V ±1 µA 2.2 V, 3 V ±1 µA The external reference is used during conversion to charge and discharge the capacitance array. The input capacitance, CI, is also the dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the recommendations on analog-source impedance to allow the charge to settle for 12-bit accuracy. The accuracy requirements limit the minimum positive external reference voltage. Lower reference voltage levels may be applied with reduced accuracy requirements The accuracy requirements limit the maximum negative external reference voltage. Higher reference voltage levels may be applied with reduced accuracy requirements. The accuracy requirements limit the minimum external differential reference voltage. Lower differential reference voltage levels may be applied with reduced accuracy requirements. Specifications Submit Documentation Feedback Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471 MSP430F135 MSP430F133 Copyright © 2000–2018, Texas Instruments Incorporated 27 MSP430F149, MSP430F148, MSP430F147 MSP430F1491, MSP430F1481, MSP430F1471 MSP430F135, MSP430F133 SLAS272H – JULY 2000 – REVISED MAY 2018 www.ti.com 5.25 12-Bit ADC, Built-In Reference over recommended operating supply voltage and free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS Positive built-in reference voltage output VREF+ AVCC(min) VCC MIN TYP MAX REF2_5V = 1 for 2.5 V, IVREF+ ≤ IVREF+(max) 3V 2.4 2.5 2.6 REF2_5V = 0 for 1.5 V, IVREF+ ≤ IVREF+(max) 2.2 V, 3 V 1.44 1.5 1.56 V REF2_5V = 0, IVREF+ ≤ 1 mA AVCC minimum voltage, positive built-in reference active IL(VREF)+ 2.2 REF2_5V = 1, IVREF+ ≤ 0.5 mA VREF+ + 0.15 REF2_5V = 1, IVREF+ ≤ 1 mA VREF+ + 0.15 2.2 V Load current out of VREF+ terminal IVREF+ IVREF+ = 500 µA ±100 µA, Analog input voltage ≈ 0.75 V, REF2_5V = 0 Load-current regulation, VREF+ terminal (1) IVREF+ = 500 µA ±100 µA, Analog input voltage ≈ 1.25 V, REF2_5V = 1 0.01 –0.5 mA –1 2.2 V ±2 3V ±2 3V ±2 LSB 3V 20 ns Load-current regulation, VREF+ terminal (2) IVREF+ = 100 µA to 90 µA, CVREF+ = 5 µF, VAx ≈ 0 5 × VREF+, Error of conversion result ≤ 1 LSB CVREF+ Capacitance at VREF+ terminal (3) REFON = 1, 0 mA ≤ IVREF+ ≤ IVREF+(max) 2.2 V, 3 V TREF+ Temperature coefficient of built-in reference (1) IVREF+ is constant in the range of 0 mA ≤ IVREF+ ≤ 1 mA 2.2 V, 3 V tREFON Settling time of reference voltage (4) (1) (see Figure 5-13) IVREF+ = 0.5 mA, CVREF+ = 10 µF, VVREF+ = 1.5 V, VAVCC = 2.2 V (4) V 3V IDL(VREF)+ (1) (2) (3) UNIT 5 LSB 10 µF ±100 ppm/°C 17 ms Not production tested, limits characterized Not production tested, limits verified by design The internal buffer operational amplifier and the accuracy specifications require an external capacitor. All INL and DNL tests uses two capacitors between pins VREF+ and AVSS and VREF−/VeREF− and AVSS: 10-µF tantalum and 100-nF ceramic. The condition is that the error in a conversion started after tREFON is less than ±0.5 LSB. The settling time depends on the external capacitive load. CVREF+, Capacitance at VREF+ 100 µF 10 µF tREFON ≈ 0.66 × CVREF+ [ms], with CVREF+ in µF 1 µF 0 1 ms 10 ms 100 ms tREFON. Setting Time Figure 5-13. Typical Settling Time of Internal Reference (tREFON) vs External Capacitor on VREF+ 28 Specifications Copyright © 2000–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471 MSP430F135 MSP430F133 MSP430F149, MSP430F148, MSP430F147 MSP430F1491, MSP430F1481, MSP430F1471 MSP430F135, MSP430F133 www.ti.com SLAS272H – JULY 2000 – REVISED MAY 2018 DVCC From power supply + − 10 µF 100 nF AVCC + − 10 µF Apply external reference (VeREF+) or use internal reference (VREF+) 100 nF 100 nF Apply external reference VREF−/VeREF− + − 10 µF AVSS VREF+ or VeREF+ + − 10 µF DVSS 100 nF Figure 5-14. Supply Voltage and Reference Voltage Design, VREF−/VeREF− External Supply DVCC From power supply + − 10 µF 100 nF AVCC + − 10 µF Apply external reference (VeREF+) or use internal reference (VREF+) 100 nF AVSS VREF+ or VeREF+ + − 10 µF Reference is internally switched to AVSS DVSS 100 nF VREF−/VeREF− Figure 5-15. Supply Voltage and Reference Voltage Design, VREF-/VeREF- = AVSS, Internally Connected Specifications Submit Documentation Feedback Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471 MSP430F135 MSP430F133 Copyright © 2000–2018, Texas Instruments Incorporated 29 MSP430F149, MSP430F148, MSP430F147 MSP430F1491, MSP430F1481, MSP430F1471 MSP430F135, MSP430F133 SLAS272H – JULY 2000 – REVISED MAY 2018 www.ti.com 5.26 12-Bit ADC, Timing Parameters over recommended operating supply voltage and free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS For specified performance of ADC12 linearity parameters fADC12CLK ADC clock frequency fADC12OSC Internal ADC12 oscillator ADC12DIV = 0, fADC12CLK = fADC12OSC CVREF+ ≥ 5 µF, internal oscillator, fADC12OSC = 3.7 MHz to 6.3 MHz tCONVERT Conversion time tADC12ON Turn-on settling time of the ADC (1) See tSample Sampling time (1) RS = 400 Ω, RI = 1000 Ω, CI = 30 pF, τ = [RS + RI] × CI (3) (1) (2) (3) VCC MIN TYP MAX UNIT 2.2 V, 3 V 0.45 5 6.3 MHz 2.2 V, 3 V 3.7 6.3 MHz 2.2 V, 3 V 2.06 3.51 External fADC12CLK from ACLK, MCLK or SMCLK, ADC12SSEL ≠ 0 µs 13 × 1/fADC12CLK (2) 100 3V 1220 2.2 V 1400 ns ns Not production tested, limits verified by design The condition is that the error in a conversion started after tADC12ON is less than ±0.5 LSB. The reference and input signal are already settled. Approximately 10 Tau (τ) are needed to get an error of less than ±0.5 LSB: tSample = ln(2n+1) × (RS + RI) × CI + 800 ns, where n = ADC resolution = 12, RS = external source resistance 5.27 12-Bit ADC, Linearity Parameters over recommended operating supply voltage and free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VCC EI Integral linearity error 1.4 V ≤ (VVeREF+ – VVREF-/VeREF-)min ≤ 1.6 V ED Differential linearity error (VVeREF+ – VVREF-/VeREF-)min ≤ (VVeREF+ – VVREF-/VeREF-), CVREF+ = 10 µF (tantalum) and 100 nF (ceramic) 2.2 V, 3 V EO Offset error (VVeREF+ – VVREF-/VeREF-)min ≤ (VVeREF+ – VVREF-/VeREF-), Internal impedance of source RS < 100 Ω, CVREF+ = 10 µF (tantalum) and 100 nF (ceramic) 2.2 V, 3 V EG Gain error (VVeREF+ – VVREF-/VeREF-)min ≤ (VVeREF+ – VVREF-/VeREF-), CVREF+ = 10 µF (tantalum) and 100 nF (ceramic) ET Total unadjusted error (VVeREF+ – VVREF-/VeREF-)min ≤ (VVeREF+ – VVREF-/VeREF-), CVREF+ = 10 µF (tantalum) and 100 nF (ceramic) 30 Specifications 1.6 V < (VVeREF+ – VVREF-/VeREF-)min ≤ VAVCC MIN TYP MAX ±2 2.2 V, 3 V ±1.7 UNIT LSB ±1 LSB ±2 ±4 LSB 2.2 V, 3 V ±1.1 ±2 LSB 2.2 V, 3 V ±2 ±5 LSB Copyright © 2000–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471 MSP430F135 MSP430F133 MSP430F149, MSP430F148, MSP430F147 MSP430F1491, MSP430F1481, MSP430F1471 MSP430F135, MSP430F133 www.ti.com SLAS272H – JULY 2000 – REVISED MAY 2018 5.28 12-Bit ADC, Temperature Sensor and Built-In VMID over recommended operating supply voltage and free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VCC MIN TYP MAX ISENSOR Operating supply current into REFON = 0, INCH = 0Ah, AVCC terminal (1) ADC12ON = N/A, TA = 25°C 2.2 V 40 120 3V 60 160 VSENSOR Sensor output voltage (2) ADC12ON = 1, INCH = 0Ah, TA = 0°C 2.2 V 986 986 ±5% 3V 986 986 ±5% TCSENSOR Temperature coefficient of sensor output voltage (2) ADC12ON = 1, INCH = 0Ah 2.2 V 3.55 3.55 ±3% 3V 3.55 3.55 ±3% tSENSOR(sample) Sample time required if channel 10 is selected (2) (3) ADC12ON = 1, INCH = 0Ah, Error of conversion result ≤ 1 LSB IVMID Current into divider at channel 11 (4) ADC12ON = 1, INCH = 0Bh VMID AVCC divider at channel 11 ADC12ON = 1, INCH = 0Bh, VMID ≈ 0.5 × VAVCC 2.2 V 1.1 1.1 ±0.04 3V 1.5 1.5 ±0.04 tVMID(sample) Sample time required if channel 11 is selected (6) ADC12ON = 1, INCH = 0Bh, Error of conversion result ≤ 1 LSB 2.2 V 1400 3V 1220 (1) (2) (3) (4) (5) (6) 2.2 V 30 3V 30 UNIT µA mV mV/°C µs N/A (5) 2.2 V 3V N/A µA V ns The sensor current ISENSOR is consumed if (ADC12ON = 1 and REFON = 1), or (ADC12ON = 1 AND INCH = 0Ah and sample signal is high). Therefore, it includes the constant current through the sensor and the reference. Not production tested, limits characterized The typical equivalent impedance of the sensor is 51 kΩ. The sample time required includes the sensor on-time, tSENSOR(on). No additional current is needed. The VMID is used during sampling. N/A = Not applicable The on-time tVMID(on) is included in the sampling time tVMID(sample); no additional on time is needed. 5.29 Flash Memory over recommended operating supply voltage and free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT VCC(PGM/ERASE) Program and erase supply voltage 2.7 3.6 V fFTG Flash timing generator frequency 257 476 kHz IPGM Supply current from DVCC during program VCC = 2.7 V or 3.6 V 3 5 mA IERASE Supply current from DVCC during erase VCC = 2.7 V or 3.6 V 3 7 mA 4 ms (1) tCPT Cumulative program time tCMErase Cumulative mass erase time (2) VCC = 2.7 V or 3.6 V VCC = 2.7 V or 3.6 V Program and erase endurance (3) 200 104 ms 105 cycles tRetention Data retention duration (3) tWord Word or byte program time (3) 35 tFTG tBlock, Block program time for first byte or word (3) 30 tFTG 21 tFTG 6 tFTG 0 tBlock, 1-63 Block program time for each additional byte or word tBlock, Block program end-sequence wait time (3) End TJ = 25°C (3) 100 years tMass Erase Mass erase time (3) 5297 tFTG tSeg Erase Segment erase time (3) 4819 tFTG (1) (2) (3) The cumulative program time must not be exceeded when writing to a 64-byte flash block. This parameter applies to all programming methods: individual word or byte write and block write modes. The mass erase duration generated by the flash timing generator is at least 11.1 ms ( = 5297 × 1/fFTG, maximum = 5297 × 1/476 kHz). To achieve the required cumulative mass erase time the flash controller mass erase operation can be repeated until this time is met. A worst case minimum of 19 cycles are required. These values are hardwired into the flash controller state machine (tFTG = 1/fFTG). Specifications Submit Documentation Feedback Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471 MSP430F135 MSP430F133 Copyright © 2000–2018, Texas Instruments Incorporated 31 MSP430F149, MSP430F148, MSP430F147 MSP430F1491, MSP430F1481, MSP430F1471 MSP430F135, MSP430F133 SLAS272H – JULY 2000 – REVISED MAY 2018 www.ti.com 5.30 JTAG Interface over recommended operating supply voltage and free-air temperature (unless otherwise noted) PARAMETER fTCK TCK input frequency (1) Rinternal Internal pullup resistance on TMS, TCK, TDI/TCLK (1) VCC MIN TYP MAX 2.2 V 0 5 3V 0 10 2.2 V, 3 V 25 60 90 UNIT MHz kΩ fTCK may be restricted to meet the timing requirements of the module selected. 5.31 JTAG Fuse (1) over recommended operating supply voltage and free-air temperature (unless otherwise noted) PARAMETER VCC(FB) Supply voltage during fuse blow VFB Voltage level on TDI/TCLK for fuse blow IFB Supply current into TDI/TCLK during fuse blow tFB Time to blow fuse (1) 32 TA MIN 25°C 2.5 MAX UNIT V 6 7 V 100 mA 1 ms After the fuse is blown, no further access to the MSP430 JTAG/Test and emulation features is possible. The JTAG block is switched to bypass mode. Specifications Copyright © 2000–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471 MSP430F135 MSP430F133 MSP430F149, MSP430F148, MSP430F147 MSP430F1491, MSP430F1481, MSP430F1471 MSP430F135, MSP430F133 www.ti.com SLAS272H – JULY 2000 – REVISED MAY 2018 6 Detailed Description 6.1 CPU The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All operations, other than program-flow instructions, are performed as register operations in conjunction with seven addressing modes for source operand and four addressing modes for destination operand. The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-toregister operation execution time is one cycle of the CPU clock. Four of the registers, R0 to R3, are dedicated as program counter, stack pointer, status register, and constant generator, respectively. The remaining registers are general-purpose registers (see Figure 6-1). Peripherals are connected to the CPU using data, address, and control buses, and can be handled with all instructions. The instruction set consists of the original 51 instructions with three formats and seven address modes and additional instructions for the expanded address range. Each instruction can operate on word and byte data. Program Counter PC/R0 Stack Pointer SP/R1 Status Register Constant Generator SR/CG1/R2 CG2/R3 General-Purpose Register R4 General-Purpose Register R5 General-Purpose Register R6 General-Purpose Register R7 General-Purpose Register R8 General-Purpose Register R9 General-Purpose Register R10 General-Purpose Register R11 General-Purpose Register R12 General-Purpose Register R13 General-Purpose Register R14 General-Purpose Register R15 Figure 6-1. CPU Registers Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471 MSP430F135 MSP430F133 Copyright © 2000–2018, Texas Instruments Incorporated 33 MSP430F149, MSP430F148, MSP430F147 MSP430F1491, MSP430F1481, MSP430F1471 MSP430F135, MSP430F133 SLAS272H – JULY 2000 – REVISED MAY 2018 6.2 www.ti.com Instruction set The instruction set consists of 51 instructions with three formats and seven address modes. Each instruction can operate on word and byte data. Table 6-1 lists examples of the three types of instruction formats, and Table 6-2 lists the address modes. Table 6-1. Instruction Word Formats EXAMPLE OPERATION Dual operands, source-destination INSTRUCTION FORMAT ADD R4, R5 R4 + R5 → R5 Single operands, destination only CALL R8 PC → (TOS), R8 → PC JNE Jump-on-equal bit = 0 Relative jump, unconditional or conditional Table 6-2. Address Mode Descriptions S (1) D (1) SYNTAX EXAMPLE Register ✓ ✓ MOV Rs, Rd MOV R10, R11 R10 → R11 Indexed ✓ ✓ MOV X(Rn), Y(Rm) MOV 2(R5), 6(R6) M(2+R5) → M(6+R6) Symbolic (PC relative) ✓ ✓ MOV EDE, TONI Absolute ✓ ✓ MOV &MEM, &TCDAT Indirect ✓ MOV @Rn, Y(Rm) MOV @R10, Tab(R6) M(R10) → M(Tab+R6) Indirect autoincrement ✓ MOV @Rn+, Rm MOV @R10+, R11 M(R10) → R11 R10 + 2 → R10 Immediate ✓ MOV #X, TONI MOV #45, TONI #45 → M(TONI) ADDRESS MODE (1) 6.3 OPERATION M(EDE) → M(TONI) M(MEM) → M(TCDAT) S = source, D = destination Operating Modes The MSP430F13x, MSP430F14x, and MSP430F14x1 MCUs support one active mode and five softwareselectable low-power modes of operation. An interrupt event can wake up the MCU from any of the lowpower modes, service the request, and restore back to the low-power mode on return from the interrupt program. The following operating modes can be configured by software: • • • 34 Active mode (AM) – All clocks are active Low-power mode 0 (LPM0) – CPU is disabled – ACLK and SMCLK remain active – MCLK is disabled Low-power mode 1 (LPM1) – CPU is disabled – ACLK and SMCLK remain active – MCLK is disabled – DC generator of the DCO is disabled if DCO not used in active mode Detailed Description • • • Low-power mode 2 (LPM2) – CPU is disabled – MCLK and SMCLK are disabled – DC generator of the DCO remains enabled – ACLK remains active Low-power mode 3 (LPM3) – CPU is disabled – MCLK and SMCLK are disabled – DC generator of the DCO is disabled – ACLK remains active Low-power mode 4 (LPM4) – CPU is disabled – ACLK is disabled – MCLK and SMCLK are disabled – DC generator of the DCO is disabled – Crystal oscillator is stopped Copyright © 2000–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471 MSP430F135 MSP430F133 MSP430F149, MSP430F148, MSP430F147 MSP430F1491, MSP430F1481, MSP430F1471 MSP430F135, MSP430F133 www.ti.com 6.4 SLAS272H – JULY 2000 – REVISED MAY 2018 Interrupt Vector Addresses The interrupt vectors and the power-up starting address are in the address range 0FFFFh to 0FFE0h. The vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence. Table 6-3. Interrupt Sources, Flags, and Vectors INTERRUPT SOURCE INTERRUPT FLAG SYSTEM INTERRUPT WORD ADDRESS PRIORITY Power up External reset Watchdog Flash memory WDTIFG KEYV (1) Reset 0FFFEh 15, highest NMI Oscillator fault Flash memory access violation NMIIFG OFIFG ACCVIFG (1) (Non)maskable (2) 0FFFCh 14 Timer_B7 (3) TBCCR0 CCIFG (4) Maskable 0FFFAh 13 Timer_B7 (3) TBCCR1 to 6 CCIFGs, TBIFG (1) (4) Maskable 0FFF8h 12 Comparator_A CAIFG Maskable 0FFF9h 11 Watchdog timer WDTIFG Maskable 0FFF4h 10 USART0 receive URXIFG0 Maskable 0FFF2h 9 USART0 transmit UTXIFG0 Maskable 0FFF0h 8 ADC12 (5) ADC12IFG (1) (4) Maskable 0FFEEh 7 Timer_A3 TACCR0 CCIFG Maskable 0FFECh 6 Timer_A3 TACCR1 CCIFG, TACCR2 CCIFG, TAIFG (1) (4) Maskable 0FFEAh 5 I/O port P1 (eight flags) P1IFG.0 to P1IFG.7 (1) (4) Maskable 0FFE8h 4 USART1 receive URXIFG1 Maskable 0FFE6h 3 USART1 transmit UTXIFG1 Maskable 0FFE4h 2 Maskable 0FFE2h 1 – 0FFE0h 0, lowest I/O port P2 (eight flags) P2IFG.0 to P2IFG.7 – (1) (2) (3) (4) (5) 6.5 (4) (1) (4) – Multiple source flags (Non)maskable: the individual interrupt-enable bit can disable an interrupt event, but the general-interrupt enable can not disable it. Timer_B7 in the MSP430F14x(1) MCUs has 7 CCRs, and Timer_B3 in the MSP430F13x MCUs has 3 CCRs. In Timer_B3, there are only interrupt flags TBCCR0, TBCCR1, and TBCCR2 CCIFGs and the interrupt-enable bits TBCCTL0, TBCCTL1, and TBCCTL2 CCIEs. Interrupt flags are located in the module. ADC12 is not implemented on the MSP430F14x1 devices. Bootloader (BSL) The MSP430 BSL lets users program the flash memory or RAM using a UART serial interface. Access to the MSP430 memory through the BSL is protected by a user-defined password. For complete description of the features of the BSL and its implementation, see the MSP430™ Flash Device Bootloader (BSL) User's Guide. Table 6-4 lists the pin requirements for the BSL. Table 6-4. BSL Pin Requirements and Functions BSL FUNCTION PM, PAG, AND RTD PACKAGE PINS Data transmit 13 - P1.1 Data receive 22 - P2.2 Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471 MSP430F135 MSP430F133 Copyright © 2000–2018, Texas Instruments Incorporated 35 MSP430F149, MSP430F148, MSP430F147 MSP430F1491, MSP430F1481, MSP430F1471 MSP430F135, MSP430F133 SLAS272H – JULY 2000 – REVISED MAY 2018 6.6 www.ti.com JTAG Fuse Check Mode MSP430 MCUs that have the fuse on the TDI/TCLK terminal have a fuse check mode that tests the continuity of the fuse the first time the JTAG port is accessed after a power-on reset (POR). When activated, a fuse check current (ITF) of 1 mA at 3 V or 2.5 mA at 5 V can flow from the TDI/TCLK pin to ground if the fuse is not burned. Care must be taken to avoid accidentally activating the fuse check mode and increasing overall system power consumption. Activation of the fuse check mode occurs with the first negative edge on the TMS pin after power up or if the TMS is being held low during power up. The second positive edge on the TMS pin deactivates the fuse check mode. After deactivation, the fuse check mode remains inactive until another POR occurs. After each POR the fuse check mode has the potential to be activated. The fuse check current flows only when the fuse check mode is active and the TMS pin is in a low state (see Figure 6-2). Therefore, the additional current flow can be prevented by holding the TMS pin high (default condition). Time TMS goes low after POR TMS ITF ITDI/TCLK Figure 6-2. Fuse Check Mode Current 6.7 Memory Table 6-5 summarizes the memory map of all device variants. Table 6-5. Memory Organization MSP430F133 Memory (flash) MSP430F135 MSP430F147 MSP430F1471 MSP430F148 MSP430F1481 MSP430F149 MSP430F149 Size 8KB 16KB 32KB 48KB 60KB Main: interrupt vector Flash 0FFFFh to 0FFE0h 0FFFFh to 0FFE0h 0FFFFh to 0FFE0h 0FFFFh to 0FFE0h 0FFFFh to 0FFE0h Main: code memory Flash 0FFFFh to 0E000h 0FFFFh to 0C000h 0FFFFh to 08000h 0FFFFh to 04000h 0FFFFh to 01100h Size 256 bytes 256 bytes 256 bytes 256 bytes 256 bytes Information memory Boot memory RAM Peripherals Flash 010FFh to 01000h 010FFh to 01000h 010FFh to 01000h 010FFh to 01000h 010FFh to 01000h Size 1KB 1KB 1KB 1KB 1KB Flash 0FFFh to 0C00h 0FFFh to 0C00h 0FFFh to 0C00h 0FFFh to 0C00h 0FFFh to 0C00h Size 256 bytes 512 bytes 1KB 2KB 2KB RAM 02FFh to 0200h 03FFh to 0200h 05FFh to 0200h 09FFh to 0200h 09FFh to 0200h 16-bit 01FFh to 0100h 01FFh to 0100h 01FFh to 0100h 01FFh to 0100h 01FFh to 0100h 8-bit 0FFh to 010h 0FFh to 010h 0FFh to 010h 0FFh to 010h 0FFh to 010h 0Fh to 00h 0Fh to 00h 0Fh to 00h 0Fh to 00h 0Fh to 00h 8-bit SFR 36 Detailed Description Copyright © 2000–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471 MSP430F135 MSP430F133 MSP430F149, MSP430F148, MSP430F147 MSP430F1491, MSP430F1481, MSP430F1471 MSP430F135, MSP430F133 www.ti.com 6.7.1 SLAS272H – JULY 2000 – REVISED MAY 2018 Flash Memory The flash memory can be programmed through the JTAG port, the bootloader, or in-system by the CPU. The CPU can perform single-byte and single-word writes to the flash memory. Features of the flash memory include: • Flash memory has n segments of main memory and two segments of information memory (A and B) of 128 bytes each. Each segment in main memory is 512 bytes in size. • Segments 0 to n may be erased in one step, or each segment may be individually erased. • Segments A and B can be erased individually, or as a group with segments 0 to n. Segments A and B are also called information memory. • New devices may have some bytes programmed in the information memory (needed for test during manufacturing). The user should perform an erase of the information memory prior to the first use. 8KB 16KB 32KB 48KB 60KB 0FFFFh 0FFFFh 0FFFFh 0FFFFh 0FFFFh 0FE00h 0FDFFh 0FE00h 0FDFFh 0FE00h 0FDFFh 0FE00h 0FDFFh 0FE00h 0FDFFh 0FC00h 0FBFFh 0FC00h 0FBFFh 0FC00h 0FBFFh 0FC00h 0FBFFh 0FC00h 0FBFFh 0FA00h 0F9FFh 0FA00h 0F9FFh 0FA00h 0F9FFh 0FA00h 0F9FFh 0FA00h 0F9FFh Segment 0 with interrupt vectors Segment 1 Segment 2 Main memory 0E400h 0E3FFh 0C400h 0C3FFh 08400h 083FFh 04400h 043FFh 01400h 013FFh 0E200h 0E1FFh 0C200h 0C1FFh 08200h 081FFh 04200h 041FFh 01200h 011FFh 0E000h 010FFh 0C000h 010FFh 08000h 010FFh 04000h 010FFh 01100h 010FFh 01080h 0107Fh 01080h 0107Fh 01080h 0107Fh 01080h 0107Fh 01080h 0107Fh 01000h 01000h 01000h 01000h 01000h Segment n-1 Segment n Segment A Information memory Segment B Figure 6-3. Flash Memory Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471 MSP430F135 MSP430F133 Copyright © 2000–2018, Texas Instruments Incorporated 37 MSP430F149, MSP430F148, MSP430F147 MSP430F1491, MSP430F1481, MSP430F1471 MSP430F135, MSP430F133 SLAS272H – JULY 2000 – REVISED MAY 2018 6.7.2 www.ti.com Special Function Registers Most interrupt and module-enable bits are collected in the lowest address space. Special-function register bits not allocated to a functional purpose are not physically present in the device. This arrangement provides simple software access. Figure 6-4. Interrupt Enable 1 Bit Register 7 UTXIE0 R/W-0 6 URXIE0 R/W-0 5 ACCVIE R/W-0 4 NMIIE R/W-0 3 2 1 OFIE R/W-0 Reserved R-0 0 WDTIE R/W-0 Table 6-6. Interrupt Enable 1 Register Field Descriptions Bit Field Type Reset Description 7 UTXIE0 R/W 0 USART0: UART and SPI transmit interrupt enable 6 URXIE0 R/W 0 USART0: UART and SPI receive interrupt enable 5 ACCVIE R/W 0 Flash access violation interrupt enable 4 NMIIE R/W 0 Nonmaskable interrupt enable 3-2 Reserved R 0 1 OFIE R/W 0 Oscillator-fault interrupt enable 0 WDTIE R/W 0 Watchdog timer interrupt enable. Inactive if watchdog mode is selected. Active if watchdog timer is configured in interval timer mode. Figure 6-5. Interrupt Enable 2 Bit Register 7 6 5 UTXIE1 R/W-0 Reserved R-0 4 URXIE1 R/W-0 3 2 1 0 1 OFIFG R/W-1 0 WDTIFG R/W-(0) Reserved R-0 Table 6-7. Interrupt Enable 2 Register Field Descriptions Bit Field Type Reset 7-6 Reserved R 0 5 UTXIE1 R/W 0 USART1: UART and SPI receive interrupt enable 4 URXIE1 R/W 0 USART1: UART and SPI transmit interrupt enable Reserved R/W 0 3-0 Description Figure 6-6. Interrupt Flag 1 Bit Register 7 UTXIFG0 R/W-1 6 URXIFG0 R/W-0 5 Reserved R-0 4 NMIIFG R/W-0 3 2 Reserved R-0 Table 6-8. Interrupt Flag 1 Register Field Descriptions Bit Field Type Reset Description 7 UTXIFG0 R/W 1 USART0: UART and SPI transmit flag 6 URXIFG0 R/W 0 USART0: UART and SPI receive flag 5 Reserved R 0 4 NMIIFG R/W 0 Reserved R 0 1 OFIFG R/W 1 Flag set on oscillator fault 0 WDTIFG R/W (0) Set on watchdog timer overflow (in watchdog mode) or security key violation. Reset on VCC power up or a reset condition at the RST/NMI pin in reset mode. 3-2 38 Detailed Description Set by RST/NMI pin Copyright © 2000–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471 MSP430F135 MSP430F133 MSP430F149, MSP430F148, MSP430F147 MSP430F1491, MSP430F1481, MSP430F1471 MSP430F135, MSP430F133 www.ti.com SLAS272H – JULY 2000 – REVISED MAY 2018 Figure 6-7. Interrupt Flag 2 Bit Register 7 6 5 UTXIFG1 R/W-1 Reserved R-0 4 URXIFG1 R/W-0 3 2 1 0 1 0 Reserved R-0 Table 6-9. Interrupt Flag 2 Register Field Descriptions Bit Field Type Reset 7-6 Reserved R 0 Description 5 UTXIFG1 R/W 1 USART1: UART and SPI transmit flag 4 URXIFG1 R/W 0 USART1: UART and SPI receive flag 3-0 Reserved R 0 Figure 6-8. Module Enable 1 Bit Register 7 6 URXE0 USPIE0 R/W-0 UTXE0 R/W-0 5 4 3 2 Reserved R-0 Table 6-10. Module Enable 1 Bit Register Field Descriptions Bit Field Type Reset Description 7 UTXE0 R/W 0 USART0: UART transmit enable 6 URXE0 USPIE0 R/W 0 USART0: UART receive enable USART0: SPI (synchronous peripheral interface) transmit and receive enable Reserved R 0 5-0 Figure 6-9. Module Enable 2 Bit Register 7 6 5 Reserved UTXE1 R-0 R/W-0 4 URXE1 USPIE1 R/W-0 3 2 1 0 Reserved R-0 Table 6-11. Module Enable 2 Bit Register Field Descriptions Bit Field Type Reset 7-6 Reserved R 0 R/W 0 USART1: UART transmit enable URXE1 USPIE1 R/W 0 USART1: UART receive enable USART1: SPI (synchronous peripheral interface) transmit and receive enable Reserved R 0 5 4 3-0 Description Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471 MSP430F135 MSP430F133 Copyright © 2000–2018, Texas Instruments Incorporated 39 MSP430F149, MSP430F148, MSP430F147 MSP430F1491, MSP430F1481, MSP430F1471 MSP430F135, MSP430F133 SLAS272H – JULY 2000 – REVISED MAY 2018 6.8 www.ti.com Peripherals Peripherals are connected to the CPU through data, address, and control buses and can be handled using all instructions. For complete module descriptions, see the MSP430x1xx Family User’s Guide. 6.8.1 Digital I/O Six 8-bit I/O ports are implemented: ports P1 to P6: • All individual I/O bits are independently programmable. • Any combination of input, output, and interrupt conditions is possible. • Edge-selectable interrupt input capability for all the eight bits of ports P1 and P2. • Read and write access to port-control registers is supported by all instructions. 6.8.2 Oscillator and System Clock The clock system is supported by the basic clock module that includes support for a 32768-Hz watch crystal oscillator, an internal digitally controlled oscillator (DCO), and a high-frequency crystal oscillator. The basic clock module is designed to meet the requirements of both low system cost and low power consumption. The internal DCO provides a fast turn-on clock source and stabilizes in less than 6 µs. The basic clock module provides the following clock signals: • Auxiliary clock (ACLK), sourced from a 32768-Hz watch crystal or a high-frequency crystal • Main clock (MCLK), the system clock used by the CPU • Sub-Main clock (SMCLK), the subsystem clock used by the peripheral modules 6.8.3 Watchdog Timer (WDT) The primary function of the WDT module is to perform a controlled system restart after a software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed in an application, the module can be configured as an interval timer and can generate interrupts at selected time intervals. 6.8.4 Hardware Multiplier (MSP430F14x and MSP430F14x1 Only) The multiplication operation is supported by a dedicated peripheral module. The module performs 16 × 16, 16 × 8, 8 × 16, and 8 × 8 bit operations. The module is capable of supporting signed and unsigned multiplication as well as signed and unsigned multiply and accumulate operations. The result of an operation can be accessed immediately after the operands have been loaded into the peripheral registers. No additional clock cycles are required. 6.8.5 USART0 The hardware universal synchronous/asynchronous receive transmit (USART0) peripheral module is used for serial data communication. The USART supports synchronous SPI (3 or 4 pin) and asynchronous UART communication protocols, using double-buffered transmit and receive channels. 6.8.6 USART1 (MSP430F14x and MSP430F14x1 Only) The MSP430F14x(1) has a second hardware universal synchronous/asynchronous receive transmit (USART1) peripheral module that is used for serial data communication. The USART supports synchronous SPI (3 or 4 pin) and asynchronous UART communication protocols, using double-buffered transmit and receive channels. Operation of USART1 is identical to USART0. 6.8.7 Comparator_A The primary function of the Comparator_A module is to support precision slope analog-to-digital conversions, battery-voltage supervision, and monitoring of external analog signals. 40 Detailed Description Copyright © 2000–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471 MSP430F135 MSP430F133 MSP430F149, MSP430F148, MSP430F147 MSP430F1491, MSP430F1481, MSP430F1471 MSP430F135, MSP430F133 www.ti.com 6.8.8 SLAS272H – JULY 2000 – REVISED MAY 2018 ADC12 (MSP430F14x and MSP430F13x Only) The ADC12 module supports fast 12-bit analog-to-digital conversions. The module implements a 12-bit SAR core, sample select control, reference generator, and a 16-word conversion-and-control buffer. The conversion-and-control buffer allows up to 16 independent ADC samples to be converted and stored without CPU intervention. 6.8.9 Timer_A3 Timer_A3 is a 16-bit timer/counter with three capture/compare registers. Timer_A3 can support multiple capture/compares, PWM outputs, and interval timing (see Table 6-12). Timer_A3 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers. Table 6-12. Timer_A3 Signal Connections INPUT PIN NUMBER DEVICE INPUT SIGNAL MODULE INPUT NAME 12 - P1.0 TACLK TACLK ACLK ACLK SMCLK SMCLK 21 - P2.1 TAINCLK INCLK 13 - P1.1 TA0 CCI0A 22 - P2.2 TA0 CCI0B DVSS GND 14 - P1.2 15 - P1.3 DVCC VCC TA1 CCI1A CAOUT (internal) CCI1B DVSS GND DVCC VCC TA2 CCI2A ACLK (internal) CCI2B DVSS GND DVCC VCC MODULE BLOCK MODULE OUTPUT SIGNAL Timer NA OUTPUT PIN NUMBER 13 - P1.1 CCR0 TA0 CCR1 TA1 CCR2 TA2 17 - P1.5 27 - P2.7 6.8.10 Timer_B3 (MSP430F13x Only) Timer_B3 is a 16-bit timer/counter with three capture/compare registers. Timer_B3 can support multiple capture/compares, PWM outputs, and interval timing (see Table 6-13). Timer_B3 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers. 6.8.11 Timer_B7 (MSP430F14x and MSP430F14x1 Only) Timer_B7 is a 16-bit timer/counter with seven capture/compare registers. Timer_B7 can support multiple capture/compares, PWM outputs, and interval timing (see Table 6-13). Timer_B7 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers. Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471 MSP430F135 MSP430F133 Copyright © 2000–2018, Texas Instruments Incorporated 41 MSP430F149, MSP430F148, MSP430F147 MSP430F1491, MSP430F1481, MSP430F1471 MSP430F135, MSP430F133 SLAS272H – JULY 2000 – REVISED MAY 2018 www.ti.com Table 6-13. Timer_B3 and Timer_B7 Signal Connections (1) INPUT PIN NUMBER DEVICE INPUT SIGNAL MODULE INPUT NAME 43 - P4.7 TBCLK TBCLK ACLK ACLK SMCLK SMCLK 43 - P4.7 TBCLK INCLK 36 - P4.0 TB0 CCI0A TB0 CCI0B DVSS GND 36 - P4.0 37 - P4.1 37 - P4.1 CCI1A TB1 CCI1B GND DVCC VCC 38 - P4.2 TB2 CCI2A 38 - P4.2 TB2 CCI2B DVSS GND DVCC VCC 39 - P4.3 TB3 CCI3A 39 - P4.3 TB3 CCI3B DVSS GND DVCC VCC 40 - P4.4 TB4 CCI4A 40 - P4.4 TB4 CCI4B DVSS GND 41 - P4.5 DVCC VCC TB5 CCI5A TB5 CCI5B DVSS GND DVCC VCC TB6 CCI6A ACLK (internal) CCI6B DVSS GND DVCC VCC 42 - P4.6 42 VCC TB1 DVSS 41 - P4.5 (1) DVCC MODULE BLOCK MODULE OUTPUT SIGNAL Timer NA OUTPUT PIN NUMBER 36 - P4.0 CCR0 TB0 ADC12 (internal) 37 - P4.1 CCR1 TB1 ADC12 (internal) 38 - P4.2 CCR2 TB2 39 - P4.3 CCR3 TB3 40 - P4.4 CCR4 TB4 41 - P4.5 CCR5 TB5 42 - P4.6 CCR6 TB6 Timer_B3 implements three capture/compare blocks (CCR0, CCR1 and CCR2). Detailed Description Copyright © 2000–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471 MSP430F135 MSP430F133 MSP430F149, MSP430F148, MSP430F147 MSP430F1491, MSP430F1481, MSP430F1471 MSP430F135, MSP430F133 www.ti.com SLAS272H – JULY 2000 – REVISED MAY 2018 6.8.12 Peripheral File Map Table 6-14 lists the peripheral register that support word access. See Table 6-15 for the regsiters with byte access. Table 6-14. Peripherals With Word Access MODULE Watchdog REGISTER NAME 0120h Timer_B interrupt vector TBIV 011Eh TBCTL 0180h Timer_B capture/compare control 0 TBCCTL0 0182h Timer_B capture/compare control 1 TBCCTL1 0184h Timer_B capture/compare control 2 TBCCTL2 0186h Timer_B capture/compare control 3 (1) TBCCTL3 0188h Timer_B capture/compare control 4 (1) TBCCTL4 018Ah Timer_B capture/compare control 5 (1) TBCCTL5 018Ch (1) TBCCTL6 018Eh TBR 0190h Timer_B capture/compare 0 TBCCR0 0192h Timer_B capture/compare 1 TBCCR1 0194h Timer_B capture/compare 2 TBCCR2 0196h Timer_B capture/compare 3 (1) TBCCR3 0198h (1) TBCCR4 019Ah Timer_B capture/compare 5 (1) TBCCR5 019Ch Timer_B capture/compare 6 (1) TBCCR6 019Eh TAIV 012Eh Timer_B capture/compare control 6 Timer_B counter Timer_B capture/compare 4 Timer_A interrupt vector Timer_A control Timer_A3 TACTL 0160h Timer_A capture/compare control 0 TACCTL0 0162h Timer_A capture/compare control 1 TACCTL1 0164h Timer_A capture/compare control 2 TACCTL2 0166h Reserved 0168h Reserved 016Ah Reserved 016Ch Reserved Timer_A counter 016Eh TAR 0170h Timer_A capture/compare 0 TACCR0 0172h Timer_A capture/compare 1 TACCR1 0174h Timer_A capture/compare 2 TACCR2 0176h Reserved (1) ADDRESS WDTCTL Timer_B control Timer_B7, Timer_B3 ACRONYM Watchdog timer control 0178h Reserved 017Ah Reserved 017Ch Reserved 017Eh Timer_B7 only, reserved for Timer_B3 Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471 MSP430F135 MSP430F133 Copyright © 2000–2018, Texas Instruments Incorporated 43 MSP430F149, MSP430F148, MSP430F147 MSP430F1491, MSP430F1481, MSP430F1471 MSP430F135, MSP430F133 SLAS272H – JULY 2000 – REVISED MAY 2018 www.ti.com Table 6-14. Peripherals With Word Access (continued) MODULE REGISTER NAME ACRONYM ADDRESS SUMEXT 013Eh Result high word RESHI 013Ch Result low word RESLO 013Ah OP2 0138h MACS 0136h MAC 0134h MPYS 0132h Sum extend Hardware multiplier (MSP430F14x and MSP430F14x1 only) Operand 2 Multiply signed and accumulate operand 1 Multiply and accumulate operand 1 Multiply signed operand 1 Multiply unsigned operand 1 Flash 44 Detailed Description MPY 0130h Flash control 3 FCTL1 012Ch Flash control 2 FCTL2 012Ah Flash control 1 FCTL1 0128h Copyright © 2000–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471 MSP430F135 MSP430F133 MSP430F149, MSP430F148, MSP430F147 MSP430F1491, MSP430F1481, MSP430F1471 MSP430F135, MSP430F133 www.ti.com SLAS272H – JULY 2000 – REVISED MAY 2018 Table 6-14. Peripherals With Word Access (continued) MODULE ACRONYM ADDRESS Conversion memory 15 REGISTER NAME ADC12MEM15 015Eh Conversion memory 14 ADC12MEM14 015Ch Conversion memory 13 ADC12MEM13 015Ah Conversion memory 12 ADC12MEM12 0158h Conversion memory 11 ADC12MEM11 0156h Conversion memory 10 ADC12MEM10 0154h Conversion memory 9 ADC12MEM9 0152h Conversion memory 8 ADC12MEM8 0150h Conversion memory 7 ADC12MEM7 014Eh Conversion memory 6 ADC12MEM6 014Ch Conversion memory 5 ADC12MEM5 014Ah Conversion memory 4 ADC12MEM4 0148h Conversion memory 3 ADC12MEM3 0146h Conversion memory 2 ADC12MEM2 0144h Conversion memory 1 ADC12MEM1 0142h Conversion memory 0 ADC12MEM0 0140h ADC12IV 01A8h Interrupt vector word Interrupt enable ADC12 (not in MSP430F14x1) ADC12IE 01A6h ADC12IFG 01A4h ADC control 1 ADC12CTL1 01A2h ADC control 0 ADC12CTL0 01A0h Interrupt flag ADC memory control 15 ADC12MCTL15 08Fh ADC memory control 14 ADC12MCTL14 08Eh ADC memory control 13 ADC12MCTL13 08Dh ADC memory control 12 ADC12MCTL12 08Ch ADC memory control 11 ADC12MCTL11 08Bh ADC memory control 10 ADC12MCTL10 08Ah ADC memory control 9 ADC12MCTL9 089h ADC memory control 8 ADC12MCTL8 088h ADC memory control 7 ADC12MCTL7 087h ADC memory control 6 ADC12MCTL6 086h ADC memory control 5 ADC12MCTL5 085h ADC memory control 4 ADC12MCTL4 084h ADC memory control 3 ADC12MCTL3 083h ADC memory control 2 ADC12MCTL2 082h ADC memory control 1 ADC12MCTL1 081h ADC memory control 0 ADC12MCTL0 080h Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471 MSP430F135 MSP430F133 Copyright © 2000–2018, Texas Instruments Incorporated 45 MSP430F149, MSP430F148, MSP430F147 MSP430F1491, MSP430F1481, MSP430F1471 MSP430F135, MSP430F133 SLAS272H – JULY 2000 – REVISED MAY 2018 www.ti.com Table 6-15 lists the peripheral register that support byte access. See Table 6-14 for the regsiters with word access. Table 6-15. Peripherals With Byte Access MODULE REGISTER NAME USART0 07Fh Receive buffer U1RXBUF 07Eh U1BR1 07Dh Baud rate 0 U1BR0 07Ch Modulation control U1MCTL 07Bh Receive control U1RCTL 07Ah Transmit control U1TCTL 079h USART control U1CTL 078h Transmit buffer U0TXBUF 077h Receive buffer U0RXBUF 076h Baud rate 1 U0BR1 075h Baud rate 0 U0BR0 074h Modulation control U0MCTL 073h Receive control U0RCTL 072h Transmit control U0TCTL 071h USART control U0CTL 070h Comparator_A port disable Comparator_A Basic Clock CAPD 05Bh Comparator_A control 2 CACTL2 05Ah Comparator_A control 1 CACTL1 059h Basic clock system control 2 BCSCTL2 058h Basic clock system control 1 BCSCTL1 057h DCO clock frequency control DCOCTL 056h P6SEL 037h Port P6 direction P6DIR 036h Port P6 output P6OUT 035h P6IN 034h Port P5 selection P5SEL 033h Port P5 direction P5DIR 032h Port P5 output P5OUT 031h Port P6 selection Port P6 Port P6 input Port P5 Port P5 input Port P4 selection Port P4 Detailed Description 030h 01Fh P4DIR 01Eh Port P4 output P4OUT 01Dh P4IN 01Ch Port P3 selection P3SEL 01Bh Port P3 direction P3DIR 01Ah Port P3 output P3OUT 019h P3IN 018h Port P3 input 46 P5IN P4SEL Port P4 direction Port P4 input Port P3 ADDRESS U1TXBUF Baud rate 1 USART1 (MSP430F14x and MSP430F14x1 only) ACRONYM Transmit buffer Copyright © 2000–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471 MSP430F135 MSP430F133 MSP430F149, MSP430F148, MSP430F147 MSP430F1491, MSP430F1481, MSP430F1471 MSP430F135, MSP430F133 www.ti.com SLAS272H – JULY 2000 – REVISED MAY 2018 Table 6-15. Peripherals With Byte Access (continued) MODULE REGISTER NAME Port P2 selection Port P2 interrupt enable Port P2 02Eh P2IE 02Dh P2IES 02Ch Port P2 interrupt flag P2IFG 02Bh Port P2 direction P2DIR 02Ah Port P2 output P2OUT 029h P2IN 028h P1SEL 026h P1IE 025h Port P1 interrupt edge select P1IES 024h Port P1 interrupt flag P1IFG 023h Port P1 direction P1DIR 022h Port P1 output P1OUT 021h Port P1 input P1IN 020h SFR module enable 2 ME2 005h SFR module enable 1 ME1 004h SFR interrupt flag 2 IFG2 003h SFR interrupt flag 1 Port P1 selection Port P1 interrupt enable Special Functions ADDRESS P2SEL Port P2 interrupt edge select Port P2 input Port P1 ACRONYM IFG1 002h SFR interrupt enable 2 IE2 001h SFR interrupt enable 1 IE1 000h Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471 MSP430F135 MSP430F133 Copyright © 2000–2018, Texas Instruments Incorporated 47 MSP430F149, MSP430F148, MSP430F147 MSP430F1491, MSP430F1481, MSP430F1471 MSP430F135, MSP430F133 SLAS272H – JULY 2000 – REVISED MAY 2018 6.9 www.ti.com Input/Output Diagrams 6.9.1 Port P1, Input/Output With Schmitt Trigger P1SEL.x 0 P1DIR.x Direction Control From Module 1 Pad Logic 0 P1OUT.x Module X OUT 1 P1.0/TACLK P1.1/TA0 P1.2/TA1 P1.3/TA2 P1.4/SMCLK P1.5/TA0 P1.6/TA1 P1.7/TA2 P1IN.x EN Module X IN D P1IRQ.x P1IE.x Q P1IFG.x EN Set Interrupt Flag Interrupt Edge Select P1IES.x P1SEL.x Figure 6-10. Port P1 (P1.0 to P1.7) Diagram Table 6-16. Port P1 (P1.0 to P1.7) Pin Functions PnSel.x PnDIR.x DIRECTION CONTROL FROM MODULE PnOUT.x MODULE X OUT PnIN.x MODULE X IN PnIE.x PnIFG.x PnIES.x P1Sel.0 P1DIR.0 P1DIR.0 P1OUT.0 DVSS P1IN.0 TACLK (1) P1IE.0 P1IFG.0 P1IES.0 (1) P1IN.1 CCI0A (1) P1IE.1 P1IFG.1 P1IES.1 P1IN.2 CCI1A (1) P1IE.2 P1IFG.2 P1IES.2 P1IN.3 (1) P1Sel.1 P1DIR.1 P1DIR.1 P1OUT.1 Out0 signal P1Sel.2 P1DIR.2 P1DIR.2 P1OUT.2 Out1 signal (1) (1) P1Sel.3 P1DIR.3 P1DIR.3 P1OUT.3 P1IE.3 P1IFG.3 P1IES.3 P1Sel.4 P1DIR.4 P1DIR.4 P1OUT.4 Out2 signal SMCLK P1IN.4 unused P1IE.4 P1IFG.4 P1IES.4 P1Sel.5 P1DIR.5 P1DIR.5 P1OUT.5 Out0 signal (1) P1IN.5 unused P1IE.5 P1IFG.5 P1IES.5 (1) P1IN.6 unused P1IE.6 P1IFG.6 P1IES.6 P1IN.7 unused P1IE.7 P1IFG.7 P1IES.7 P1Sel.6 P1DIR.6 P1DIR.6 P1OUT.6 Out1 signal P1Sel.7 P1DIR.7 P1DIR.7 P1OUT.7 Out2 signal (1) (1) Signal from or to Timer_A 48 Detailed Description CCI2A Copyright © 2000–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471 MSP430F135 MSP430F133 MSP430F149, MSP430F148, MSP430F147 MSP430F1491, MSP430F1481, MSP430F1471 MSP430F135, MSP430F133 www.ti.com 6.9.2 SLAS272H – JULY 2000 – REVISED MAY 2018 Port P2, Input/Output With Schmitt Trigger P2SEL.x 0 P2DIR.x Direction Control From Module 0: Input 1: Output 1 0 P2OUT.x Module X OUT 1 P2.0/ACLK P2.1/TAINCLK P2.2/CAOUT/TA0 P2.6/ADC12CLK P2.7/TA0 Pad Logic P2IN.x EN Module X IN Bus Keeper D P2IE.x P2IRQ.x P2IFG.x CAPD.X Interrupt Edge Select EN Q Set Interrupt Flag P2IES.x P2SEL.x Figure 6-11. Port P2 (P2.0 to P2.2, P2.6, and P2.7) Diagram Table 6-17. Port P2 (P2.0 to P2.2, P2.6, and P2.7) Pin Functions PnSel.x PnDIR.x DIRECTION CONTROL FROM MODULE PnOUT.x MODULE X OUT PnIN.x P2Sel.0 P2DIR.0 P2DIR.0 P2OUT.0 ACLK P2Sel.1 P2DIR.1 P2DIR.1 P2OUT.1 DVSS P2Sel.2 P2DIR.2 P2DIR.2 P2OUT.2 CAOUT (2) MODULE X IN PnIE.x PnIFG.x PnIES.x P2IN.0 unused P2IE.0 P2IFG.0 P2IES.0 P2IN.1 INCLK (1) P2IE.1 P2IFG.1 P2IES.1 P2IN.2 CCI0B (1) P2IE.2 P2IFG.2 P2IES.2 (3) P2IN.6 unused P2IE.6 P2IFG.6 P2IES.6 P2IN.7 unused P2IE.7 P2IFG.7 P2IES.7 P2Sel.6 P2DIR.6 P2DIR.6 P2OUT.6 ADC12CLK P2Sel.7 P2DIR.7 P2DIR.7 P2OUT.7 Out0 signal (4) (1) (2) (3) (4) Signal to Timer_A Signal from Comparator_A ADC12CLK signal is output of the 12-bit ADC module Signal from Timer_A Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471 MSP430F135 MSP430F133 Copyright © 2000–2018, Texas Instruments Incorporated 49 MSP430F149, MSP430F148, MSP430F147 MSP430F1491, MSP430F1481, MSP430F1471 MSP430F135, MSP430F133 SLAS272H – JULY 2000 – REVISED MAY 2018 www.ti.com P2SEL.3 0: Input 1: Output 0 P2DIR.3 Direction Control From Module 1 Pad Logic P2.3/CA0/TA1 0 P2OUT.3 Module X OUT 1 P2IN.3 EN Module X IN Bus Keeper D P2IRQ.3 P2IE.3 P2IFG.3 EN Set Q Interrupt Flag Interrupt Edge Select P2IES.3 P2SEL.3 CAPD.3 Comparator_A CAEX P2CA CAREF CAF + CCI1B To Timer_A3 − Interrupt Flag P2IFG.4 P2IRQ.4 Set EN Q P2IE.4 P2SEL.4 P2IES.4 CAREF Reference Block Interrupt Edge Select CAPD.4 D Module X IN Bus Keeper EN P2IN.4 1 Module X OUT P2OUT.4 0 From Module Direction Control P2DIR.4 1 P2.4/CA1/TA2 Pad Logic 1: Output 0: Input 0 P2SEL.4 Figure 6-12. Port P2 (P2.3 and P2.4) Diagram Table 6-18. Port P2 (P2.3 and P2.4) Pin Functions PnSel.x PnDIR.x DIRECTION CONTROL FROM MODULE PnOUT.x MODULE X OUT PnIN.x MODULE X IN PnIE.x PnIFG.x PnIES.x P2Sel.3 P2DIR.3 P2DIR.3 P2OUT.3 Out1 signal (1) P2IN.3 unused P2IE.3 P2IFG.3 P2IES.3 P2Sel.4 P2DIR.4 P2DIR.4 P2OUT.4 Out2 signal (1) P2IN.4 unused P2IE.4 P2IFG.4 P2IES.4 (1) 50 Signal from Timer_A Detailed Description Copyright © 2000–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471 MSP430F135 MSP430F133 MSP430F149, MSP430F148, MSP430F147 MSP430F1491, MSP430F1481, MSP430F1471 MSP430F135, MSP430F133 www.ti.com SLAS272H – JULY 2000 – REVISED MAY 2018 0: Input 1: Output P2SEL.5 0 P2DIR.5 Direction Control From Module Pad Logic 1 0 P2OUT.5 Module X OUT 1 P2.5/ROSC Bus Keeper P2IN.5 EN Module X IN P2IRQ.5 D P2IE.5 EN Q Set P2IFG.5 Interrupt Flag VCC Edge Select Interrupt P2IES.5 P2SEL.5 Internal to Basic Clock Module 0 1 to DCOR DC Generator CAPD.5 DCOR: Control bit from Basic Clock module. If it is set, P2.5 is disconnected from P2.5 pad. Figure 6-13. Port P2 (P2.5) Diagram Table 6-19. Port P2 (P2.5) Pin Functions PnSel.x PnDIR.x DIRECTION CONTROL FROM MODULE PnOUT.x MODULE X OUT PnIN.x MODULE X IN PnIE.x PnIFG.x PnIES.x P2Sel.5 P2DIR.5 P2DIR.5 P2OUT.5 DVSS P2IN.5 unused P2IE.5 P2IFG.5 P2IES.5 Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471 MSP430F135 MSP430F133 Copyright © 2000–2018, Texas Instruments Incorporated 51 MSP430F149, MSP430F148, MSP430F147 MSP430F1491, MSP430F1481, MSP430F1471 MSP430F135, MSP430F133 SLAS272H – JULY 2000 – REVISED MAY 2018 6.9.3 www.ti.com Port P3, Input/Output With Schmitt Trigger P3SEL.x 0: Input 1: Output 0 P3DIR.x Direction Control From Module 1 Pad Logic 0 P3OUT.x Module X OUT 1 P3.0/STE0 P3.4/UTXD0 P3.5/URXD0 P3.6/UTXD1 P3.7/URXD1 P3IN.x EN D Module X IN Figure 6-14. Port P3 (P3.0 and 3.4 to 3.7) Diagram Table 6-20. Port P3 (P3.0 and 3.4 to 3.7) Pin Functions (1) (2) (3) (4) DIRECTION CONTROL FROM MODULE PnOUT.x P3DIR.0 DVSS P3DIR.4 DVCC P3Sel.5 P3DIR.5 P3Sel.6 P3Sel.7 PnSel.x PnDIR.x MODULE X OUT PnIN.x P3Sel.0 P3Sel.4 MODULE X IN P3OUT.0 DVSS P3IN.0 STE0 P3OUT.4 UTXD0 (1) P3IN.4 Unused DVSS P3OUT.5 DVSS P3IN.5 URXD0 (2) P3DIR.6 DVCC P3OUT.6 UTXD1 (3) P3IN.6 unused P3DIR.7 DVSS P3OUT.7 DVSS P3IN.7 URXD1 (4) Output from USART0 module Input to USART0 module Output from USART1 module in MSP430F14x and MSP430F14x1 devices, DVSS in MSP430F13x devices Input to USART1 module in MSP430F14x and MSP430F14x1 devices, unused in MSP430F13x devices P3SEL.1 SYNC MM STC STE 0 P3DIR.1 0: Input 1: Output 1 DCM_SIMO Pad Logic 0 P3OUT1 (SI)MO0 From USART0 1 P3.1/SIMO0 P3IN.1 EN SI(MO)0 To USART0 D Figure 6-15. Port P3 (P3.1) Diagram 52 Detailed Description Copyright © 2000–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471 MSP430F135 MSP430F133 MSP430F149, MSP430F148, MSP430F147 MSP430F1491, MSP430F1481, MSP430F1471 MSP430F135, MSP430F133 www.ti.com SLAS272H – JULY 2000 – REVISED MAY 2018 P3SEL.2 SYNC MM STC STE 0 P3DIR.2 0: Input 1: Output 1 DCM_SOMI Pad Logic 0 P3OUT.2 SO(MI)0 From USART0 1 P3.2/SOMI0 P3IN.2 EN (SO)MI0 To USART0 D Figure 6-16. Port P3 (P3.2) Diagram P3SEL.3 SYNC MM STC STE 0 P3DIR.3 0: Input 1: Output 1 DCM_UCLK Pad Logic 0 P3OUT.3 UCLK.0 From USART0 1 P3.3/UCLK0 P3IN.3 EN UCLK0 D To USART0 NOTE: UART mode: The UART clock can only be an input. If UART mode and UART function are selected, P3.3/UCLK0 is always an input. SPI slave mode: The clock applied to UCLK0 is used to shift data in and out. SPI master mode: The clock to shift data in and out is supplied to connected devices on pin P3.3/UCLK0 (in slave mode). Figure 6-17. Port P3 (P3.3) Diagram Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471 MSP430F135 MSP430F133 Copyright © 2000–2018, Texas Instruments Incorporated 53 MSP430F149, MSP430F148, MSP430F147 MSP430F1491, MSP430F1481, MSP430F1471 MSP430F135, MSP430F133 SLAS272H – JULY 2000 – REVISED MAY 2018 6.9.4 www.ti.com Port P4, Input/Output With Schmitt Trigger 0: Input 1: Output P4SEL.x 0 P4DIR.x Direction Control From Module 1 Module X IN Pad Logic P5SEL.7 0 P4OUT.x Module X OUT 1 P4.0/TB0 P4.1/TB1 P4.2/TB2 P4.3/TB3 P4.4/TB4 P4.5/TB5 P4.6/TB6 TBOUTH Bus Keeper P4IN.x EN Module X IN D Figure 6-18. Port P4 (P4.0 to P4.6) Diagram Table 6-21. Port P4 (P4.0 to P4.6) Pin Functions PnSel.x PnDIR.x DIRECTION CONTROL FROM MODULE PnOUT.x MODULE X OUT PnIN.x MODULE X IN P4Sel.0 P4DIR.0 P4DIR.0 P4OUT.0 Out0 signal (1) P4IN.0 CCI0A / CCI0B (2) P4Sel.1 P4DIR.1 P4DIR.1 P4OUT.1 Out1 signal (1) P4IN.1 CCI1A / CCI1B (2) P4OUT.2 Out2 signal (1) P4IN.2 CCI2A / CCI2B (2) Out3 signal (1) P4IN.3 CCI3A / CCI3B (2) (1) P4IN.4 CCI4A / CCI4B (2) P4Sel.2 P4DIR.2 P4Sel.3 P4DIR.3 P4DIR.3 P4OUT.3 P4Sel.4 P4DIR.4 P4DIR.4 P4OUT.4 Out4 signal P4Sel.5 P4DIR.5 P4DIR.5 P4OUT.5 Out5 signal (1) P4IN.5 CCI5A / CCI5B (2) P4OUT.6 (1) P4IN.6 CCI6A (2) P4Sel.6 (1) (2) P4DIR.2 P4DIR.6 P4DIR.6 Out6 signal Signal from Timer_B Signal to Timer_B P4SEL.7 0 P4DIR.7 0: Input 1: Output 1 Pad Logic 0 P4OUT.7 DVSS 1 P4.7/TBCLK P4IN.7 EN Timer_B, TBCLK D Figure 6-19. Port P4 (P4.7) Diagram 54 Detailed Description Copyright © 2000–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471 MSP430F135 MSP430F133 MSP430F149, MSP430F148, MSP430F147 MSP430F1491, MSP430F1481, MSP430F1471 MSP430F135, MSP430F133 www.ti.com 6.9.5 SLAS272H – JULY 2000 – REVISED MAY 2018 Port P5, Input/Output With Schmitt Trigger P5SEL.x 0: Input 1: Output 0 P5DIR.x Direction Control From Module 1 Pad Logic 0 P5OUT.x Module X OUT 1 P5.0/STE1 P5.4/MCLK P5.5/SMCLK P5.6/ACLK P5.7/TBOUTH P5IN.x EN Module X IN D Figure 6-20. Port P5 (P5.0 and P5.4 to P5.7) Diagram Table 6-22. Port P5 (P5.0 and P5.4 to P5.7) Pin Functions (1) DIRECTION CONTROL FROM MODULE PnOUT.x P5DIR.0 DVSS P5DIR.4 DVCC P5Sel.5 P5DIR.5 P5Sel.6 P5DIR.6 P5Sel.7 P5DIR.7 PnSel.x PnDIR.x P5Sel.0 P5Sel.4 MODULE X OUT PnIN.x MODULE X IN P5OUT.0 DVSS P5IN.0 STE.1 P5OUT.4 MCLK P5IN.4 unused DVCC P5OUT.5 SMCLK P5IN.5 unused DVCC P5OUT.6 ACLK P5IN.6 unused DVSS P5OUT.7 DVSS P5IN.7 TBOUTH (1) The TBOUTH signal is used by port module P4, pins P4.0 to P4.6. The function of TBOUTH is most useful when used with Timer_B7. P5SEL.1 SYNC MM STC STE 0 P5DIR.1 0: Input 1: Output 1 DCM_SIMO Pad Logic 0 P5OUT.1 (SI)MO1 From USART1 1 P5.1/SIMO1 P5IN.1 EN SI(MO)1 To USART1 D Figure 6-21. Port P5 (P5.1) Diagram Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471 MSP430F135 MSP430F133 Copyright © 2000–2018, Texas Instruments Incorporated 55 MSP430F149, MSP430F148, MSP430F147 MSP430F1491, MSP430F1481, MSP430F1471 MSP430F135, MSP430F133 SLAS272H – JULY 2000 – REVISED MAY 2018 www.ti.com P5SEL.2 SYNC MM STC STE 0 P5DIR.2 0: Input 1: Output 1 DCM_SOMI Pad Logic 0 P5OUT.2 SO(MI)1 From USART1 1 P5.2/SOMI1 P5IN.2 EN (SO)MI1 To USART1 D Figure 6-22. Port P5 (P5.2) Diagram P5SEL.3 SYNC MM STC STE 0 P5DIR.3 0: Input 1: Output 1 DCM_SIMO Pad Logic 0 P5OUT.3 UCLK1 From USART1 1 P5.3/UCLK1 P5IN.3 EN D UCLK1 To USART1 NOTE: UART mode: The UART clock can only be an input. If UART mode and UART function are selected, P5.3/UCLK1 is always an input. SPI slave mode: The clock applied to UCLK1 is used to shift data in and out. SPI master mode: The clock to shift data in and out is supplied to connected devices on pin P5.3/UCLK1 (in slave mode). Figure 6-23. Port P5 (P5.3) Diagram 56 Detailed Description Copyright © 2000–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471 MSP430F135 MSP430F133 MSP430F149, MSP430F148, MSP430F147 MSP430F1491, MSP430F1481, MSP430F1471 MSP430F135, MSP430F133 www.ti.com 6.9.6 SLAS272H – JULY 2000 – REVISED MAY 2018 Port P6, Input/Output With Schmitt Trigger P6SEL.x 0 P6DIR.x Direction Control From Module 1 0: Input 1: Output Pad Logic 0 P6OUT.x Module X OUT 1 P6.0 P6.1 P6.2 P6.3 P6.4 P6.5 P6.6 P6.7 Bus Keeper P6IN.x EN Module X IN D From ADC To ADC Note: Not implemented in the MSP430F14x1 devices NOTE: Analog signals applied to digital gates can cause current flow from the positive to the negative terminal. The throughput current flows if the analog signal is in the range of transitions 0→1 or 1→0. The value of the throughput current depends on the driving capability of the gate. For MSP430 MCUs, the current is approximately 100 µA. Use P6SEL.x = 1 to prevent throughput current. P6SEL.x should be set, even if the signal at the pin is not being used by the ADC12. Figure 6-24. Port P6 (P6.0 to P6.7) Diagram Table 6-23. Port P6 (P6.0 to P6.7) Pin Functions (1) (1) PnSel.x PnDIR.x DIRECTION CONTROL FROM MODULE PnOUT.x MODULE X OUT PnIN.x MODULE X IN P6Sel.0 P6DIR.0 P6DIR.0 P6OUT.0 DVSS P6IN.0 unused P6Sel.1 P6DIR.1 P6DIR.1 P6OUT.1 DVSS P6IN.1 unused P6Sel.2 P6DIR.2 P6DIR.2 P6OUT.2 DVSS P6IN.2 unused P6Sel.3 P6DIR.3 P6DIR.3 P6OUT.3 DVSS P6IN.3 unused P6Sel.4 P6DIR.4 P6DIR.4 P6OUT.4 DVSS P6IN.4 unused P6Sel.5 P6DIR.5 P6DIR.5 P6OUT.5 DVSS P6IN.5 unused P6Sel.6 P6DIR.6 P6DIR.6 P6OUT.6 DVSS P6IN.6 unused P6Sel.7 P6DIR.7 P6DIR.7 P6OUT.7 DVSS P6IN.7 unused The signal at pins P6.x/Ax is used by the 12-bit ADC module. Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471 MSP430F135 MSP430F133 Copyright © 2000–2018, Texas Instruments Incorporated 57 MSP430F149, MSP430F148, MSP430F147 MSP430F1491, MSP430F1481, MSP430F1471 MSP430F135, MSP430F133 SLAS272H – JULY 2000 – REVISED MAY 2018 6.9.7 www.ti.com Port JTAG (TMS, TCK, TDI/TCLK, TDO/TDI), Input/Output With Schmitt Trigger TDO Controlled by JTAG Controlled by JTAG TDO/TDI Controlled by JTAG DVCC DVCC TDI JTAG Fuse Burn and Test Fuse Test and Emulation Module TDI/TCLK DVCC TMS TMS DVCC TCK TCK During programming activity and during blowing of the fuse, the TDO/TDI pin is used to apply the test input data for JTAG circuitry. Figure 6-25. JTAG (TMS, TCK, TDI/TCLK, TDO/TDI) Diagram 58 Detailed Description Copyright © 2000–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471 MSP430F135 MSP430F133 MSP430F149, MSP430F148, MSP430F147 MSP430F1491, MSP430F1481, MSP430F1471 MSP430F135, MSP430F133 www.ti.com SLAS272H – JULY 2000 – REVISED MAY 2018 7 Device and Documentation Support 7.1 Getting Started and Next Steps For more information on the MSP430 family of devices and the tools and libraries that are available to help with your development, visit the Getting Started page. 7.2 Device Nomenclature To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all MSP MCU devices. Each MSP MCU commercial family member has one of two prefixes: MSP or XMS. These prefixes represent evolutionary stages of product development from engineering prototypes (XMS) through fully qualified production devices (MSP). XMS – Experimental device that is not necessarily representative of the final device's electrical specifications MSP – Fully qualified production device XMS devices are shipped against the following disclaimer: "Developmental product is intended for internal evaluation purposes." MSP devices have been characterized fully, and the quality and reliability of the device have been demonstrated fully. TI's standard warranty applies. Predictions show that prototype devices (XMS) have a greater failure rate than the standard production devices. TI recommends that these devices not be used in any production system because their expected end-use failure rate still is undefined. Only qualified production devices are to be used. TI device nomenclature also includes a suffix with the device family name. This suffix indicates the temperature range, package type, and distribution format. Figure 7-1 provides a legend for reading the complete device name. Device and Documentation Support Submit Documentation Feedback Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471 MSP430F135 MSP430F133 Copyright © 2000–2018, Texas Instruments Incorporated 59 MSP430F149, MSP430F148, MSP430F147 MSP430F1491, MSP430F1481, MSP430F1471 MSP430F135, MSP430F133 SLAS272H – JULY 2000 – REVISED MAY 2018 www.ti.com MSP 430 F 5 438 A I ZQW T -EP Processor Family Optional: Additional Features MCU Platform Optional: Tape and Reel Device Type Packaging Series Feature Set Processor Family MCU Platform Optional: Temperature Range Optional: A = Revision CC = Embedded RF Radio MSP = Mixed-Signal Processor XMS = Experimental Silicon PMS = Prototype Device 430 = MSP430 low-power microcontroller platform Device Type Memory Type C = ROM F = Flash FR = FRAM G = Flash or FRAM (Value Line) L = No Nonvolatile Memory Specialized Application AFE = Analog Front End BQ = Contactless Power CG = ROM Medical FE = Flash Energy Meter FG = Flash Medical FW = Flash Electronic Flow Meter Series 1 = Up to 8 MHz 2 = Up to 16 MHz 3 = Legacy 4 = Up to 16 MHz with LCD 5 = Up to 25 MHz 6 = Up to 25 MHz with LCD 0 = Low-Voltage Series Feature Set Various levels of integration within a series Optional: A = Revision N/A Optional: Temperature Range S = 0°C to 50°C C = 0°C to 70°C I = –40°C to 85°C T = –40°C to 105°C Packaging http://www.ti.com/packaging Optional: Tape and Reel T = Small reel R = Large reel No markings = Tube or tray Optional: Additional Features -EP = Enhanced Product (–40°C to 105°C) -HT = Extreme Temperature Parts (–55°C to 150°C) -Q1 = Automotive Q100 Qualified NOTE: This figure does not represent a complete list of the available features and options, and it does not indicate that all of these features and options are available for a given device or family. Figure 7-1. Device Nomenclature – Part Number Decoder 60 Device and Documentation Support Copyright © 2000–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471 MSP430F135 MSP430F133 MSP430F149, MSP430F148, MSP430F147 MSP430F1491, MSP430F1481, MSP430F1471 MSP430F135, MSP430F133 www.ti.com 7.3 SLAS272H – JULY 2000 – REVISED MAY 2018 Tools and Software Table 7-1 lists the debug features supported by the MSP430F14x, MSP430F14x1, and MSP430F13x microcontrollers. See the Code Composer Studio for MSP430 User's Guide for details on the available features. Table 7-1. Hardware Features MSP430 ARCHITECTURE 4-WIRE JTAG 2-WIRE JTAG BREAKPOINTS RANGE BREAKPOINTS CLOCK CONTROL STATE SEQUENCER TRACE BUFFER LPMx.5 DEBUGGING SUPPORT MSP430 Yes No 3 Yes No No No No Design Kits and Evaluation Modules 64-pin Target Development Board and MSP-FET Programmer Bundle - MSP430F1x, MSP430F2x, MSP430F4x MCUs The MSP-FET430U64 is a powerful flash emulation tool that includes the hardware and software required to quickly begin application development on the MSP430 MCU. It includes a ZIF socket target board (MSP-TS430PM64) and a USB debugging interface (MSP-FET) used to program and debug the MSP430 in-system through the JTAG interface. The flash memory can be erased and programmed in seconds with only a few keystrokes, and because the MSP430 flash is ultra-low power, no external power supply is required. MSP-TS430PM64 - 64-pin Target Development Board for MSP430F1x, MSP430F2x and MSP430F4x MCUs The MSP-TS430PM64 is a standalone ZIF socket target board used to program and debug the MSP430 MCU in-system through the JTAG interface. Software MSP430Ware™ Software MSP430Ware software is a collection of code examples, data sheets, and other design resources for all MSP430 devices delivered in a convenient package. In addition to providing a complete collection of existing MSP430 MCU design resources, MSP430Ware software also includes a high-level API called MSP Driver Library. This library makes it easy to program MSP430 hardware. MSP430Ware software is available as a component of CCS or as a stand-alone package. MSP430F13x, MSP430F14x, MSP430F15x, MSP430F16x Code Examples C Code examples are available for every MSP device that configures each of the integrated peripherals for various application needs. Bootloader (BSL) for MSP low-power microcontrollers The bootloader (BSL) is an application built into MSP low-power microcontrollers. It lets the user communicate with the device to read from and write to its memory. This feature is primarily used for programming the device, during prototyping, final production, and in service. Both the programmable memory (flash memory) and the data memory (RAM) can be modified as required. Fixed Point Math Library for MSP The MSP IQmath and Qmath Libraries are a collection of highly optimized and high-precision mathematical functions for C programmers to seamlessly port a floating-point algorithm into fixed-point code on MSP430 and MSP432 devices. These routines are typically used in computationally intensive real-time applications where optimal execution speed, high accuracy, and ultra-low energy are critical. By using the IQmath and Qmath libraries, it is possible to achieve execution speeds considerably faster and energy consumption considerably lower than equivalent code written using floating-point math. Development Tools Code Composer Studio™ Integrated Development Environment for MSP Microcontrollers Code Composer Studio (CCS) integrated development environment (IDE) supports all MSP microcontroller devices. CCS comprises a suite of embedded software utilities used to develop and debug embedded applications. CCS includes an optimizing C/C++ compiler, source code editor, project build environment, debugger, profiler, and many other features. Command-Line Programmer MSP Flasher is an open-source shell-based interface for programming MSP microcontrollers through a FET programmer or eZ430 using JTAG or Spy-Bi-Wire (SBW) communication. MSP Flasher can download binary files (.txt or .hex) directly to the MSP microcontroller without an IDE. Device and Documentation Support Submit Documentation Feedback Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471 MSP430F135 MSP430F133 Copyright © 2000–2018, Texas Instruments Incorporated 61 MSP430F149, MSP430F148, MSP430F147 MSP430F1491, MSP430F1481, MSP430F1471 MSP430F135, MSP430F133 SLAS272H – JULY 2000 – REVISED MAY 2018 www.ti.com MSP MCU Programmer and Debugger The MSP-FET is a powerful emulation development tool – often called a debug probe – which lets users quickly begin application development on MSP lowpower MCUs. Creating MCU software usually requires downloading the resulting binary program to the MSP device for validation and debugging. MSP-GANG Production Programmer The MSP Gang Programmer is an MSP430 or MSP432 device programmer that can program up to eight identical MSP430 or MSP432 flash or FRAM devices at the same time. The MSP Gang Programmer connects to a host PC using a standard RS-232 or USB connection and provides flexible programming options that let the user fully customize the process. 7.4 Documentation Support The following documents describe the MSP430F14x, MSP430F14x1, and MSP430F13x MCUs. Copies of these documents are available on the Internet at www.ti.com. Receiving Notification of Document Updates To receive notification of documentation updates—including silicon errata—go to the product folder for your device on ti.com (for links to product folders, see Section 7.5). In the upper right corner, click the "Alert me" button. This registers you to receive a weekly digest of product information that has changed (if any). For change details, check the revision history of any revised document. Errata MSP430F149 Device Erratasheet Describes the known exceptions to the functional specifications. MSP430F1491 Device Erratasheet Describes the known exceptions to the functional specifications. MSP430F148 Device Erratasheet Describes the known exceptions to the functional specifications. MSP430F1481 Device Erratasheet Describes the known exceptions to the functional specifications. MSP430F147 Device Erratasheet Describes the known exceptions to the functional specifications. MSP430F1471 Device Erratasheet Describes the known exceptions to the functional specifications. MSP430F135 Device Erratasheet Describes the known exceptions to the functional specifications. MSP430F133 Device Erratasheet Describes the known exceptions to the functional specifications. User's Guides MSP430x1xx Family User's Guide Detailed description of all modules and peripherals available in this device family. MSP430 Flash Device Bootloader (BSL) User's Guide The MSP430™ bootloader (BSL) lets users communicate with embedded memory in the MSP430 microcontroller (MCU) during the prototyping phase, final production, and in service. Both the programmable memory (flash memory) and the data memory (RAM) can be modified as required. MSP430 Programming With the JTAG Interface This document describes the functions that are required to erase, program, and verify the memory module of the MSP430 flash-based and FRAM-based microcontroller families using the JTAG communication port. In addition, it describes how to program the JTAG access security fuse that is available on all MSP430 devices. This document describes device access using both the standard 4-wire JTAG interface and the 2-wire JTAG interface, which is also referred to as Spy-Bi-Wire (SBW). MSP430 Hardware Tools User's Guide This manual describes the hardware of the TI MSP-FET430 Flash Emulation Tool (FET). The FET is the program development tool for the MSP430 ultralow-power microcontroller. Both available interface types, the parallel port interface and the USB interface, are described. 62 Device and Documentation Support Copyright © 2000–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471 MSP430F135 MSP430F133 MSP430F149, MSP430F148, MSP430F147 MSP430F1491, MSP430F1481, MSP430F1471 MSP430F135, MSP430F133 www.ti.com SLAS272H – JULY 2000 – REVISED MAY 2018 Application Reports MSP430 32-kHz Crystal Oscillators Selection of the right crystal, correct load circuit, and proper board layout are important for a stable crystal oscillator. This application report summarizes crystal oscillator function and explains the parameters to select the correct crystal for MSP430 ultralow-power operation. In addition, hints and examples for correct board layout are given. The document also contains detailed information on the possible oscillator tests to ensure stable oscillator operation in mass production. Software Coding Techniques for MSP430™ MCUs This application report describes techniques and related topics of interest to programmers of MSP430 MCUs. software General Oversampling of MSP ADCs for Higher Resolution Multiple MSP430 ultra-low-power microcontrollers offer ADCs to convert physical quantities into digital numbers, a function that is widely used across numerous applications. There are times, however, when a customer design demands a higher resolution than the ADC of the selected MSP can offer. This application report describes how an oversampling method can be incorporated to increase ADC resolution past the currently available number of bits. MSP430 System-Level ESD Considerations System-Level ESD has become increasingly demanding with silicon technology scaling towards lower voltages and the need for designing costeffective and ultra-low-power components. This application report addresses three different ESD topics to help board designers and OEMs understand and design robust system-level designs. 7.5 Related Links Table 7-2 lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to order now. Table 7-2. Related Links 7.6 PARTS PRODUCT FOLDER ORDER NOW TECHNICAL DOCUMENTS TOOLS & SOFTWARE SUPPORT & COMMUNITY MSP430F149 Click here Click here Click here Click here Click here MSP430F1491 Click here Click here Click here Click here Click here MSP430F148 Click here Click here Click here Click here Click here MSP430F1481 Click here Click here Click here Click here Click here MSP430F147 Click here Click here Click here Click here Click here MSP430F1471 Click here Click here Click here Click here Click here MSP430F135 Click here Click here Click here Click here Click here Community Resources The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. TI E2E™ Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas, and help solve problems with fellow engineers. TI Embedded Processors Wiki Texas Instruments Embedded Processors Wiki. Established to help developers get started with embedded processors from Texas Instruments and to foster innovation and growth of general knowledge about the hardware and software surrounding these devices. 7.7 Trademarks MSP430, MSP430Ware, Code Composer Studio, E2E are trademarks of Texas Instruments. All other trademarks are the property of their respective owners. Device and Documentation Support Submit Documentation Feedback Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471 MSP430F135 MSP430F133 Copyright © 2000–2018, Texas Instruments Incorporated 63 MSP430F149, MSP430F148, MSP430F147 MSP430F1491, MSP430F1481, MSP430F1471 MSP430F135, MSP430F133 SLAS272H – JULY 2000 – REVISED MAY 2018 7.8 www.ti.com Electrostatic Discharge Caution This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. 7.9 Export Control Notice Recipient agrees to not knowingly export or re-export, directly or indirectly, any product or technical data (as defined by the U.S., EU, and other Export Administration Regulations) including software, or any controlled product restricted by other applicable national regulations, received from disclosing party under nondisclosure obligations (if any), or any direct product of such technology, to any destination to which such export or re-export is restricted or prohibited by U.S. or other applicable laws, without obtaining prior authorization from U.S. Department of Commerce and other competent Government authorities to the extent required by those laws. 7.10 Glossary TI Glossary This glossary lists and explains terms, acronyms, and definitions. 64 Device and Documentation Support Copyright © 2000–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471 MSP430F135 MSP430F133 MSP430F149, MSP430F148, MSP430F147 MSP430F1491, MSP430F1481, MSP430F1471 MSP430F135, MSP430F133 www.ti.com SLAS272H – JULY 2000 – REVISED MAY 2018 8 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. Mechanical, Packaging, and Orderable Information Submit Documentation Feedback Product Folder Links: MSP430F149 MSP430F148 MSP430F147 MSP430F1491 MSP430F1481 MSP430F1471 MSP430F135 MSP430F133 Copyright © 2000–2018, Texas Instruments Incorporated 65 PACKAGE OPTION ADDENDUM www.ti.com 14-Oct-2022 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) Samples (4/5) (6) MSP430F133IPAG ACTIVE TQFP PAG 64 160 RoHS & Green NIPDAU Level-4-260C-72 HR -40 to 85 M430F133 Samples MSP430F133IPM ACTIVE LQFP PM 64 160 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 M430F133 Samples MSP430F133IPMR ACTIVE LQFP PM 64 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 M430F133 Samples MSP430F133IRTDT ACTIVE VQFN RTD 64 250 RoHS & Green SN Level-3-260C-168 HR -40 to 85 M430F133 Samples MSP430F135IPAG ACTIVE TQFP PAG 64 160 RoHS & Green NIPDAU Level-4-260C-72 HR -40 to 85 M430F135 REV # Samples MSP430F135IPM ACTIVE LQFP PM 64 160 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 M430F135 REV # Samples MSP430F135IPMR ACTIVE LQFP PM 64 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 M430F135 REV # Samples MSP430F135IRTDR ACTIVE VQFN RTD 64 2500 RoHS & Green SN Level-3-260C-168 HR -40 to 85 M430F135 Samples MSP430F135IRTDT ACTIVE VQFN RTD 64 250 RoHS & Green SN Level-3-260C-168 HR -40 to 85 M430F135 Samples MSP430F1471IPM ACTIVE LQFP PM 64 160 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 M430F1471 REV # Samples MSP430F1471IPMR ACTIVE LQFP PM 64 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 M430F1471 REV # Samples MSP430F1471IRTDT ACTIVE VQFN RTD 64 250 RoHS & Green SN Level-3-260C-168 HR -40 to 85 M430F1471 Samples MSP430F147IPAG ACTIVE TQFP PAG 64 160 RoHS & Green NIPDAU Level-4-260C-72 HR -40 to 85 M430F147 REV # Samples MSP430F147IPM ACTIVE LQFP PM 64 160 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 M430F147 REV # Samples MSP430F147IPMR ACTIVE LQFP PM 64 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 M430F147 REV # Samples MSP430F147IPMR-KAM ACTIVE LQFP PM 64 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 M430F147 REV # Samples MSP430F147IPMRG4 ACTIVE LQFP PM 64 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 M430F147 REV # Samples MSP430F147IRTDR ACTIVE VQFN RTD 64 2500 RoHS & Green SN Level-3-260C-168 HR -40 to 85 M430F147 Samples Addendum-Page 1 PACKAGE OPTION ADDENDUM www.ti.com Orderable Device 14-Oct-2022 Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) Samples (4/5) (6) MSP430F147IRTDT ACTIVE VQFN RTD 64 250 RoHS & Green SN Level-3-260C-168 HR -40 to 85 M430F147 Samples MSP430F1481IPM ACTIVE LQFP PM 64 160 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 M430F1481 Samples MSP430F1481IPMR ACTIVE LQFP PM 64 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 M430F1481 Samples MSP430F1481IRTDT ACTIVE VQFN RTD 64 250 RoHS & Green SN Level-3-260C-168 HR -40 to 85 M430F1481 Samples MSP430F148IPAG ACTIVE TQFP PAG 64 160 RoHS & Green NIPDAU Level-4-260C-72 HR -40 to 85 M430F148 Samples MSP430F148IPM ACTIVE LQFP PM 64 160 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 M430F148 REV # Samples MSP430F148IPMR ACTIVE LQFP PM 64 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 M430F148 REV # Samples MSP430F148IRTDR ACTIVE VQFN RTD 64 2500 RoHS & Green SN Level-3-260C-168 HR -40 to 85 M430F148 Samples MSP430F148IRTDT ACTIVE VQFN RTD 64 250 RoHS & Green SN Level-3-260C-168 HR -40 to 85 M430F148 Samples MSP430F1491IPM ACTIVE LQFP PM 64 160 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 M430F1491 Samples MSP430F1491IPMR ACTIVE LQFP PM 64 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 M430F1491 Samples MSP430F1491IRTDR ACTIVE VQFN RTD 64 2500 RoHS & Green SN Level-3-260C-168 HR -40 to 85 M430F1491 Samples MSP430F1491IRTDT ACTIVE VQFN RTD 64 250 RoHS & Green SN Level-3-260C-168 HR -40 to 85 M430F1491 Samples MSP430F149IPAG ACTIVE TQFP PAG 64 160 RoHS & Green NIPDAU Level-4-260C-72 HR -40 to 85 M430F149 REV # Samples MSP430F149IPAGR ACTIVE TQFP PAG 64 1500 RoHS & Green NIPDAU Level-4-260C-72 HR -40 to 85 M430F149 REV # Samples MSP430F149IPM ACTIVE LQFP PM 64 160 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 M430F149 REV # Samples MSP430F149IPMG4 ACTIVE LQFP PM 64 160 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 M430F149 REV # Samples MSP430F149IPMR ACTIVE LQFP PM 64 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 M430F149 REV # Samples MSP430F149IPMRG4 ACTIVE LQFP PM 64 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 M430F149 REV # Samples Addendum-Page 2 PACKAGE OPTION ADDENDUM www.ti.com Orderable Device 14-Oct-2022 Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) Samples (4/5) (6) MSP430F149IRTDR ACTIVE VQFN RTD 64 2500 RoHS & Green SN Level-3-260C-168 HR -40 to 85 M430F149 Samples MSP430F149IRTDT ACTIVE VQFN RTD 64 250 RoHS & Green SN Level-3-260C-168 HR -40 to 85 M430F149 Samples (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
MSP430F1471IPMRG 价格&库存

很抱歉,暂时无法提供与“MSP430F1471IPMRG”相匹配的价格&库存,您可以联系我们找货

免费人工找货