0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MSP430F2122TPWR

MSP430F2122TPWR

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    TSSOP28

  • 描述:

    IC MCU 16BIT 4KB FLASH 28TSSOP

  • 数据手册
  • 价格&库存
MSP430F2122TPWR 数据手册
MSP430F21x2 SLAS578J – NOVEMBER 2007 – REVISED JANUARY 2012 www.ti.com MIXED SIGNAL MICROCONTROLLER FEATURES 1 • • 2 • • • • • • • Low Supply Voltage Range: 1.8 V to 3.6 V Ultra-Low Power Consumption – Active Mode: 250 µA at 1 MHz, 2.2 V – Standby Mode: 0.7 µA – Off Mode (RAM Retention): 0.1 µA Ultra-Fast Wake-Up From Standby Mode in Less Than 1 µs 16-Bit RISC Architecture, 62.5-ns Instruction Cycle Time Basic Clock Module Configurations – Internal Frequencies up to 16 MHz With Four Calibrated Frequencies to ±1% – Internal Very-Low-Power Low-Frequency Oscillator – 32-kHz Crystal – High-Frequency (HF) Crystal up to 16 MHz – Resonator – External Digital Clock Source – External Resistor 16-Bit Timer0_A3 With Three Capture/Compare Registers 16-Bit Timer1_A2 With Two Capture/Compare Registers On-Chip Comparator for Analog Signal Compare Function or Slope Analog-to-Digital (A/D) Conversion 10-Bit 200-ksps A/D Converter With Internal Reference, Sample-and-Hold, Autoscan, and Data Transfer Controller • • • • • • • • Universal Serial Communication Interface – Enhanced UART Supporting Auto-Baudrate Detection (LIN) – IrDA Encoder and Decoder – Synchronous SPI – I2C™ Brownout Detector Serial Onboard Programming, No External Programming Voltage Needed, Programmable Code Protection by Security Fuse Bootstrap Loader On-Chip Emulation Module Family Members Include: – MSP430F2132 – 8KB + 256B Flash Memory – 512B RAM – MSP430F2122 – 4KB + 256B Flash Memory – 512B RAM – MSP430F2112 – 2KB + 256B Flash Memory – 256B RAM Available in 28-Pin TSSOP (PW) and 32-Pin QFN (RHB or RTV) Packages (See Table 1) For Complete Module Descriptions, See the MSP430x2xx Family User's Guide, Literature Number SLAU144 DESCRIPTION The Texas Instruments MSP430™ family of ultra-low-power microcontrollers consists of several devices featuring different sets of peripherals targeted for various applications. The architecture, combined with five low-power modes, is optimized to achieve extended battery life in portable measurement applications. The device features a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that contribute to maximum code efficiency. The digitally controlled oscillator (DCO) allows wake-up from low-power modes to active mode in less than 1 µs. The MSP430F21x2 series is an ultra-low-power microcontroller with two built-in 16-bit timers, a fast 10-bit A/D converter with integrated reference and a data transfer controller (DTC), a comparator, built-in communication capability using the universal serial communication interface, and up to 24 I/O pins. 1 2 Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. MSP430 is a trademark of Texas Instruments. PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. Copyright © 2007–2012, Texas Instruments Incorporated MSP430F21x2 SLAS578J – NOVEMBER 2007 – REVISED JANUARY 2012 www.ti.com This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. Table 1. Available Options TA PACKAGED DEVICES (1) (2) PLASTIC 28-PIN TSSOP (PW) PLASTIC 32-PIN QFN (RHB) PLASTIC 32-PIN QFN (RTV) MSP430F2112IPW MSP430F2112IRHB MSP430F2112IRTV MSP430F2122IPW MSP430F2122IRHB MSP430F2122IRTV -40°C to 85°C -40°C to 105°C (1) (2) MSP430F2132IPW MSP430F2132IRHB MSP430F2132IRTV MSP430F2112TPW MSP430F2112TRHB MSP430F2112TRTV MSP430F2122TPW MSP430F2122TRHB MSP430F2122TRTV MSP430F2132TPW MSP430F2132TRHB MSP430F2132TRTV For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com. Package drawings, thermal data, and symbolization are available at www.ti.com/packaging. Development Tool Support All MSP430 microcontrollers include an Embedded Emulation Module (EEM) that allows advanced debugging and programming through easy-to-use development tools. Recommended hardware options include: • Debugging and Programming Interface – MSP-FET430UIF (USB) – MSP-FET430PIF (Parallel Port) • Debugging and Programming Interface with Target Board – MSP-FET430U28 (PW package) • Production Programmer – MSP-GANG430 2 Submit Documentation Feedback Copyright © 2007–2012, Texas Instruments Incorporated MSP430F21x2 SLAS578J – NOVEMBER 2007 – REVISED JANUARY 2012 www.ti.com Device Pinout, PW Package TEST/SBWTCK DVCC P2.5/ROSC/CA5 DVSS XOUT/P2.7/CA7 XIN/P2.6/CA6 RST/NMI/SBWTDIO P2.0/ACLK/A0/CA2 P2.1/TAINCLK/SMCLK/A1/CA3 P2.2/TA0.0/A2/CA4/CAOUT P3.0/UCB0STE/UCA0CLK/A5 P3.1/UCB0SIMO/UCB0SDA P3.2/UCB0SOMI/UCB0SCL P3.3/UCB0CLK/UCA0STE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 P1.7/TA0.2/TDO/TDI P1.6/TA0.1/TDI/TCLK P1.5/TA0.0/TMS P1.4/SMCLK/TCK P1.3/TA0.2 P1.2/TA0.1 P1.1/TA0.0/TA1.0 P1.0/TACLK/ADC10CLK/CAOUT P2.4/TA0.2/A4/VREF+/VeREF+/CA1 P2.3/TA0.1/A3/VREF-/VeREF-/CA0 P3.7/TA1.1/A7 P3.6/TA1.0/A6 P3.5/UCA0RXD/UCA0SOMI P3.4/UCA0TXD/UCA0SIMO 28 27 26 25 24 23 22 21 20 19 18 17 16 15 P2.5/ROSC/CA5 NC DVCC TEST/SBWTCK P1.7/TA0.2/TDO/TDI P1.6/TA0.1/TDI/TCLK P1.5/TA0.0/TMS P1.4/SMCLK/TCK Device Pinout, RHB or RTV Package 32 31 30 29 28 27 26 25 1 24 2 23 3 22 4 21 5 20 6 19 7 18 8 17 9 10 11 12 13 14 15 16 P1.3/TA0.2 P1.2/TA0.1 P1.1/TA0.0/TA1.0 P1.0/TACLK/ADC10CLK/CAOUT NC P2.4/TA0.2/A4/VREF+/VeREF+/CA1 P2.3/TA0.1/A3/VREF-/VeREF-/CA0 NC P3.0/UCB0STE/UCA0CLK/A5 P3.1/UCB0SIMO/UCB0SDA P3.2/UCB0SOMI/UCB0SCL P3.3/UCB0CLK/UCA0STE P3.4/UCA0TXD/UCA0SIMO P3.5/UCA0RXD/UCA0SOMI P3.6/TA1.0/A6 P3.7/TA1.1/A7 DVSS XOUT/P2.7/CA7 XIN/P2.6/CA6 NC RST/NMI/SBWTDIO P2.0/ACLK/A0/CA2 P2.1/TAINCLK/SMCLK/A1/CA3 P2.2/TA0.0/A2/CA4/CAOUT Copyright © 2007–2012, Texas Instruments Incorporated Submit Documentation Feedback 3 MSP430F21x2 SLAS578J – NOVEMBER 2007 – REVISED JANUARY 2012 www.ti.com Functional Block Diagram XOUT XIN DVCC D/AVSS AVCC P3.x P2.x P1.x 8 8 8 ACLK Basic Clock System+ SMCLK Flash RAM 8kB 4kB 2kB 512B 512B 256B MCLK 16MHz CPU incl. 16 Registers ADC10 10-bit 8 Channels Autoscan DTC Port P1 Port P2 Port P3 8 I/O Interrupt capability pullup/down resistors 8 I/O Interrupt capability pullup/down resistors pullup/ pulldown resistors MAB MDB Emulation 2BP JTAG Interface 8 I/O Brownout Protection Comp_A+ Watchdog WDT+ 15-Bit Timer0_A3 Timer1_A2 3 CC Registers 2 CC Registers USCI A0 UART/LIN, IrDA, SPI USCI B0 SPI, I2C Spy-Bi Wire RST/NMI 4 Submit Documentation Feedback Copyright © 2007–2012, Texas Instruments Incorporated MSP430F21x2 SLAS578J – NOVEMBER 2007 – REVISED JANUARY 2012 www.ti.com Table 2. Terminal Functions TERMINAL NO. NAME PW I/O DESCRIPTION RHB, RTV General-purpose digital I/O pin Timer0_A3, clock signal TACLK input P1.0/TACLK/ADC10CLK/CAOUT 21 21 I/O Timer1_A2, clock signal TACLK input ADC10, conversion clock Comparator_A+ output General-purpose digital I/O pin P1.1/TA0.0/TA1.0 22 22 I/O Timer0_A3, capture: CCI0A input, compare: Out0 Output Timer1_A2, capture: CCI0A input P1.2/TA0.1 23 23 I/O P1.3/TA0.2 24 24 I/O P1.4/SMCLK/TCK 25 25 I/O General-purpose digital I/O pin Timer0_A3, capture: CCI1A input, compare: Out1 Output General-purpose digital I/O pin Timer0_A3, capture: CCI2A input, compare: Out2 Output General-purpose digital I/O pin SMCLK signal output Test Clock input for device programming and test General-purpose digital I/O pin P1.5/TA0.0/TMS 26 26 I/O Timer0_A3, compare: Out0 Output JTAG test mode select, input terminal for device programming and test General-purpose digital I/O pin P1.6/TA0.1/TDI/TCLK 27 27 I/O Timer0_A3, compare: Out1 Output JTAG test data input or test clock input in programming an test General-purpose digital I/O pin P1.7/TA0.2/TDO/TDI 28 28 I/O Timer0_A3, compare: Out2 Output JTAG test data output terminal or test data input in programming an test General-purpose digital I/O pin P2.0/ACLK/A0/CA2 8 6 I/O ACLK signal output ADC10 analog input A0 Comparator_A+ input General-purpose digital I/O pin SMCLK signal output P2.1/TAINCLK/SMCLK/A1/CA3 9 7 I/O Timer0_A3, clock signal TACLK input Timer1_A2, clock signal TACLK input ADC10 analog input A1 Comparator_A+ input General-purpose digital I/O pin Timer0_A3, capture: CCI0B input, compare: Out0 Output P2.2/TA0.0/A2/CA4/CAOUT 10 8 I/O ADC10 analog input A2 Comparator_A+ input Comparator_A+ output General-purpose digital I/O pin P2.3/TA0.1/A3/VREF-/VeREF-/CA0 19 18 I/O Timer0_A3, compare: Out1 Output ADC10 analog input A3 / negative reference Comparator_A+ input Copyright © 2007–2012, Texas Instruments Incorporated Submit Documentation Feedback 5 MSP430F21x2 SLAS578J – NOVEMBER 2007 – REVISED JANUARY 2012 www.ti.com Table 2. Terminal Functions (continued) TERMINAL NO. NAME PW I/O DESCRIPTION RHB, RTV General-purpose digital I/O pin P2.4/TA0.2/A4/VREF+/VeREF+/CA1 20 19 I/O Timer0_A3, compare: Out2 Output ADC10 analog input A4 / positive reference Comparator_A+ input Input terminal of crystal oscillator XIN/P2.6/CA6 6 3 I/O General-purpose digital I/O pin Comparator_A+ input Output terminal of crystal oscillator XOUT/P2.7/CA7 5 2 I/O General-purpose digital I/O pin Comparator_A+ input General-purpose digital I/O pin P3.0/UCB0STE/UCA0CLK/A5 11 9 I/O USCI_B0 slave transmit enable/USCI_A0 clock input/output ADC10 analog input A5 P3.1/UCB0SIMO/UCB0SDA 12 10 I/O P3.2/UCB0SOMI/UCB0SCL 13 11 I/O P3.3/UCB0CLK/UCA0STE 14 12 I/O P3.4/UCA0TXD/UCA0SIMO 15 13 I/O P3.5/UCA0RXD/UCA0SOMI 16 14 I/O P3.6/TA1.0/A6 17 15 I/O General-purpose digital I/O pin USCI_B0 slave in/master out in SPI mode, SDA I2C data in I2C mode General-purpose digital I/O pin USCI_B0 slave out/master in in SPI mode, SCL I2C clock in I2C mode General-purpose digital I/O USCI_B0 clock input/output, USCI_A0 slave transmit enable General-purpose digital I/O pin USCI_A0 transmit data output in UART mode, slave data in/master out in SPI mode General-purpose digital I/O pin USCI_A0 receive data input in UART mode, slave data out/master in in SPI mode General-purpose digital I/O pin Timer1_A2, capture: CCI0B input, compare: Out0 Output ADC10 analog input A6 General-purpose digital I/O pin P3.7/TA1.1/A7 18 16 I/O Timer1_A2, capture: CCI1A input, compare: Out1 Output ADC10 analog input A7 RST/NMI/SBWTDIO 7 5 I TEST/SBWTCK 1 29 I P2.5/ROSC/CA5 3 32 I/O Reset or nonmaskable interrupt input Spy-Bi-Wire test data input/output during programming and test Selects test mode for JTAG pins on Port 1. The device protection fuse is connected to TEST. General-purpose digital I/O pin Input for external resistor defining the DCO nominal frequency Comparator_A+ input DVCC 2 30 Digital supply voltage DVSS 4 1 Digital supply voltage NC NA 4, 17, 20, 31 QFN Pad NA Pad 6 Submit Documentation Feedback Not connected internally. Connection to VSS is recommended. QFN package pad (RHB, RTV packages). Connection to DVSS is recommended. Copyright © 2007–2012, Texas Instruments Incorporated MSP430F21x2 SLAS578J – NOVEMBER 2007 – REVISED JANUARY 2012 www.ti.com SHORT-FORM DESCRIPTION CPU The MSP430™ CPU has a 16-bit RISC architecture that is highly transparent to the application. All operations, other than program-flow instructions, are performed as register operations in conjunction with seven addressing modes for source operand and four addressing modes for destination operand. Program Counter PC/R0 Stack Pointer SP/R1 SR/CG1/R2 Status Register Constant Generator CG2/R3 General-Purpose Register R4 General-Purpose Register R5 General-Purpose Register R6 General-Purpose Register R7 General-Purpose Register R8 General-Purpose Register R9 General-Purpose Register R10 Instruction Set General-Purpose Register R11 The instruction set consists of 51 instructions with three formats and seven address modes. Each instruction can operate on word and byte data. Table 3 shows examples of the three types of instruction formats; Table 4 shows the address modes. General-Purpose Register R12 General-Purpose Register R13 General-Purpose Register R14 General-Purpose Register R15 The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to-register operation execution time is one cycle of the CPU clock. Four of the registers, R0 to R3, are dedicated as program counter, stack pointer, status register, and constant generator respectively. The remaining registers are general-purpose registers. Peripherals are connected to the CPU using data, address, and control buses and can be handled with all instructions. Table 3. Instruction Word Formats EXAMPLE OPERATION Dual operands, source-destination INSTRUCTION FORMAT ADD R4,R5 R4 + R5 → R5 Single operands, destination only CALL R8 PC → (TOS), R8 → PC JNE Jump-on-equal bit = 0 Relative jump, unconditional/conditional Table 4. Address Mode Descriptions ADDRESS MODE D (2) SYNTAX EXAMPLE OPERATION Register ✓ ✓ MOV Rs,Rd MOV R10,R11 R10 → R11 Indexed ✓ ✓ MOV X(Rn),Y(Rm) MOV 2(R5),6(R6) M(2+R5) → M(6+R6) Symbolic (PC relative) ✓ ✓ MOV EDE,TONI M(EDE) → M(TONI) Absolute ✓ ✓ MOV &MEM,&TCDAT M(MEM) → M(TCDAT) Indirect ✓ MOV @Rn,Y(Rm) MOV @R10,Tab(R6) M(R10) → M(Tab+R6) Indirect autoincrement ✓ MOV @Rn+,Rm MOV @R10+,R11 M(R10) → R11 R10 + 2 → R10 Immediate ✓ MOV #X,TONI MOV #45,TONI #45 → M(TONI) (1) (2) S (1) S = source D = destination Copyright © 2007–2012, Texas Instruments Incorporated Submit Documentation Feedback 7 MSP430F21x2 SLAS578J – NOVEMBER 2007 – REVISED JANUARY 2012 www.ti.com Operating Modes The MSP430 microcontrollers have one active mode and five software-selectable low-power modes of operation. An interrupt event can wake up the device from any of the five low-power modes, service the request, and restore back to the low-power mode on return from the interrupt program. The following six operating modes can be configured by software: • Active mode (AM) – All clocks are active. • Low-power mode 0 (LPM0) – CPU is disabled. – ACLK and SMCLK remain active. MCLK is disabled. • Low-power mode 1 (LPM1) – CPU is disabled ACLK and SMCLK remain active. MCLK is disabled. – DCO dc-generator is disabled if DCO not used in active mode. • Low-power mode 2 (LPM2) – CPU is disabled. – MCLK and SMCLK are disabled. – DCO dc-generator remains enabled. – ACLK remains active. • Low-power mode 3 (LPM3) – CPU is disabled. – MCLK and SMCLK are disabled. – DCO dc-generator is disabled. – ACLK remains active. • Low-power mode 4 (LPM4) – CPU is disabled. – ACLK is disabled. – MCLK and SMCLK are disabled. – DCO dc-generator is disabled. – Crystal oscillator is stopped. 8 Submit Documentation Feedback Copyright © 2007–2012, Texas Instruments Incorporated MSP430F21x2 SLAS578J – NOVEMBER 2007 – REVISED JANUARY 2012 www.ti.com Interrupt Vector Addresses The interrupt vectors and the power-up starting address are located in the address range of 0xFFFF to 0xFFC0. The vector contains the 16-bit address of the appropriate interrupt handler instruction sequence. If the reset vector (located at address 0xFFFE) contains 0xFFFF (for example, if flash is not programmed), the CPU goes into LPM4 immediately after power up. Table 5. Interrupt Vector Addresses INTERRUPT SOURCE INTERRUPT FLAG Power-up PORIFG External reset RSTIFG Watchdog WDTIFG Flash key violation KEYV (1) SYSTEM INTERRUPT WORD ADDRESS PRIORITY Reset 0xFFFE 31, highest 0xFFFC 30 PC out of range (2) NMI NMIIFG (Non)maskable Oscillator fault OFIFG (Non)maskable Flash memory access violation ACCVIFG (1) (3) (Non)maskable Timer1_A2 TA1CCR0 CCIFG (4) Maskable 0xFFFA 29 Maskable 0xFFF8 28 CAIFG Maskable 0xFFF6 27 Watchdog timer WDTIFG Maskable 0xFFF4 26 Timer0_A3 TA0CCR0 CCIFG (4) Maskable 0xFFF2 25 Maskable 0xFFF0 24 UCA0RXIFG, UCB0RXIFG (1) (5) Maskable 0xFFEE 23 USCI_B0 I2C receive/transmit UCA0TXIFG, UCB0TXIFG (1) (6) Maskable 0xFFEC 22 ADC10 ADC10IFG (4) Maskable 0xFFEA 21 0xFFE8 20 I/O port P2 (eight flags) P2IFG.0 to P2IFG.7 (1) (4) Maskable 0xFFE6 19 I/O port P1 (eight flags) P1IFG.0 to P1IFG.7 (1) (4) Maskable 0xFFE4 18 0xFFE2 17 0xFFE0 16 Timer1_A2 Comparator_A+ TA1CCR1 CCIFG, TA1CTL TAIFG (1) (4) TA0CCR1 CCIFG, Timer0_A3 TA0CCR2 CCIFG, TA0CTL TAIFG USCI_A0/USCI_B0 receive USCI_B0 I2C status USCI_A0/USCI_B0 transmit (1) (2) (3) (4) (5) (6) (7) (8) (1) (4) See (7) 0xFFDE 15 See (8) 0xFFDC to 0xFFC0 14 to 0, lowest Multiple source flags A reset is generated if the CPU tries to fetch instructions from within the module register memory address range (0x0000 to 0x01FF) or from within unused address range. (non)-maskable: the individual interrupt-enable bit can disable an interrupt event, but the general interrupt enable cannot. Nonmaskable: neither the individual nor the general interrupt-enable bit will disable an interrupt event. Interrupt flags are located in the module. In SPI mode: UCB0RXIFG. In I2C mode: UCALIFG, UCNACKIFG, ICSTTIFG, UCSTPIFG In UART/SPI mode: UCB0TXIFG. In I2C mode: UCB0RXIFG, UCB0TXIFG This location is used as bootstrap loader security key (BSLSKEY). A 0xAA55 at this location disables the BSL completely. A zero (0x0) disables the erasure of the flash if an invalid password is supplied. The interrupt vectors at addresses 0xFFDC to 0xFFC0 are not used in this device and can be used for regular program code if necessary. Copyright © 2007–2012, Texas Instruments Incorporated Submit Documentation Feedback 9 MSP430F21x2 SLAS578J – NOVEMBER 2007 – REVISED JANUARY 2012 www.ti.com Special Function Registers Most interrupt and module enable bits are collected into the lowest address space. Special function register bits not allocated to a functional purpose are not physically present in the device. Simple software access is provided with this arrangement. Legend rw rw-0, 1 rw-(0), (1) Bit can be read and written. Bit can be read and written. It is Reset or Set by PUC. Bit can be read and written. It is Reset or Set by POR. SFR bit is not present in device. Table 6. Interrupt Enable 1 Address 7 6 00h WDTIE OFIE NMIIE ACCVIE 5 4 1 0 ACCVIE NMIIE 3 2 OFIE WDTIE rw-0 rw-0 rw-0 rw-0 Watchdog timer interrupt enable. Inactive if watchdog mode is selected. Active if watchdog timer is configured in interval timer mode. Oscillator fault interrupt enable (Non)maskable interrupt enable Flash access violation interrupt enable Table 7. Interrupt Enable 2 Address 7 6 5 4 01h UCA0RXIE UCA0TXIE UCB0RXIE UCB0TXIE 3 2 1 0 UCB0TXIE UCB0RXIE UCA0TXIE UCA0RXIE rw-0 rw-0 rw-0 rw-0 USCI_A0 receive-interrupt enable USCI_A0 transmit-interrupt enable USCI_B0 receive-interrupt enable USCI_B0 transmit-interrupt enable Table 8. Interrupt Flag Register 1 Address 7 6 5 02h WDTIFG OFIFG RSTIFG PORIFG NMIIFG 4 3 2 1 0 NMIIFG RSTIFG PORIFG OFIFG WDTIFG rw-0 rw-(0) rw-(1) rw-1 rw-(0) Set on watchdog timer overflow (in watchdog mode) or security key violation. Reset on VCC power-up or a reset condition at RST/NMI pin in reset mode. Flag set on oscillator fault External reset interrupt flag. Set on a reset condition at RST/NMI pin in reset mode. Reset on VCC power up. Power-on reset interrupt flag. Set on VCC power up. Set via RST/NMI pin Table 9. Interrupt Flag Register 2 Address 7 6 03h UCA0RXIFG UCA0TXIFG UCB0RXIFG UCB0TXIFG 10 5 4 3 2 1 0 UCB0TXIFG UCB0RXIFG UCA0TXIFG UCA0RXIFG rw-1 rw-0 rw-1 rw-0 USCI_A0 receive-interrupt flag USCI_A0 transmit-interrupt flag USCI_B0 receive-interrupt flag USCI_B0 transmit-interrupt flag Submit Documentation Feedback Copyright © 2007–2012, Texas Instruments Incorporated MSP430F21x2 SLAS578J – NOVEMBER 2007 – REVISED JANUARY 2012 www.ti.com Memory Organization Table 10. Memory Organization MSP430F2112 Memory MSP430F2122 MSP430F2132 Size 2 KB 4 KB 8 KB Main: interrupt vector Flash 0xFFFF to 0xFFC0 0xFFFF to 0xFFC0 0xFFFF to 0xFFC0 Main: code memory Flash 0xFFFF to 0xF800 0xFFFF to 0xF000 0xFFFF to 0xE000 Information memory Boot memory RAM Size 256 Byte 256 Byte 256 Byte Flash 0x10FFh to 0x1000 0x10FFh to 0x1000 0x10FFh to 0x1000 Size 1 KB 1 KB 1 KB ROM 0x0FFF to 0x0C00 0x0FFF to 0x0C00 0x0FFF to 0x0C00 Size Peripherals 256 B 512 Byte 512 Byte 0x02FF to 0x0200 0x03FF to 0x0200 0x03FF to 0x0200 16-bit 0x01FF to 0x0100 0x01FF to 0x0100 0x01FF to 0x0100 8-bit 0x00FF to 0x0010 0x00FF to 0x0010 0x00FF to 0x0010 8-bit SFR 0x000F to 0x0000 0x000F to 0x0000 0x000F to 0x0000 Bootstrap Loader (BSL) The MSP430 bootstrap loader (BSL) enables users to program the flash memory or RAM using a UART serial interface. Access to the MSP430 memory via the BSL is protected by user-defined password. For complete description of the features of the BSL and its implementation, see the MSP430 Programming Via the Bootstrap Loader User’s Guide, literature number SLAU319. Table 11. BSL Function Pins BSL FUNCTION PW PACKAGE PINS RHB, RTV PACKAGE PINS Data transmit 22 - P1.1 22 - P1.1 Data receive 10 - P2.2 8 - P2.2 Flash Memory The flash memory can be programmed via the JTAG port, the bootstrap loader, or in-system by the CPU. The CPU can perform single-byte and single-word writes to the flash memory. Features of the flash memory include: • Flash memory has n segments of main memory and four segments of information memory (A to D) of 64 bytes each. Each segment in main memory is 512 bytes in size. • Segments 0 to n may be erased in one step, or each segment may be individually erased. • Segments A to D can be erased individually, or as a group with segments 0 to n. Segments A to D are also called information memory. • Segment A contains calibration data. After reset, segment A is protected against programming and erasing. It can be unlocked, but care should be taken not to erase this segment if the device-specific calibration data is required. Copyright © 2007–2012, Texas Instruments Incorporated Submit Documentation Feedback 11 MSP430F21x2 SLAS578J – NOVEMBER 2007 – REVISED JANUARY 2012 www.ti.com Peripherals Peripherals are connected to the CPU through data, address, and control buses and can be handled using all instructions. For complete module descriptions, see the MSP430x2xx Family User's Guide (SLAU144). Oscillator and System Clock The clock system is supported by the basic clock module that includes support for a 32768-Hz watch crystal oscillator, an internal very-low-power low-frequency oscillator, an internal digitally-controlled oscillator (DCO), and a high-frequency crystal oscillator. The basic clock module is designed to meet the requirements of both low system cost and low power consumption. The internal DCO provides a fast turn-on clock source and stabilizes in less than 1 µs. The basic clock module provides the following clock signals: • Auxiliary clock (ACLK), sourced from a 32768-Hz watch crystal, a high-frequency crystal, or the internal very-low-power LF oscillator. • Main clock (MCLK), the system clock used by the CPU. • Sub-Main clock (SMCLK), the sub-system clock used by the peripheral modules. The DCO settings to calibrate the DCO output frequency are stored in the information memory segment A. Calibration Data Stored in Information Memory Segment A Calibration data is stored for both the DCO and for ADC10 organized in a tag-length-value (TLV) structure. Table 12. Tags Used by the ADC Calibration Tags ADDRESS VALUE TAG_DCO_30 NAME 0x10F6 0x01 DCO frequency calibration at VCC = 3 V and TA = 30°C at calibration TAG_ADC10_1 0x10DA 0x08 ADC10_1 calibration tag - 0xFE Identifier for empty memory areas TAG_EMPTY DESCRIPTION Table 13. Labels Used by the ADC Calibration Tags LABEL CONDITION AT CALIBRATION / DESCRIPTION SIZE ADDRESS OFFSET 0x0010 CAL_ADC_25T85 INCHx = 0x1010, REF2_5 = 1, TA = 85°C word CAL_ADC_25T30 INCHx = 0x1010, REF2_5 = 1, TA = 30°C word 0x000E CAL_ADC_25VREF_FACTOR REF2_5 = 1, TA = 30°C, IVREF+ = 1 mA word 0x000C CAL_ADC_15T85 INCHx = 0x1010, REF2_5 = 0, TA = 85°C word 0x000A CAL_ADC_15T30 INCHx = 0x1010, REF2_5 = 0, TA = 30°C word 0x0008 CAL_ADC_15VREF_FACTOR REF2_5 = 0, TA = 30°C, IVREF+ = 0.5 mA word 0x0006 CAL_ADC_OFFSET External VREF = 1.5 V, fADC10CLK = 5 MHz word 0x0004 CAL_ADC_GAIN_FACTOR External VREF = 1.5 V, fADC10CLK = 5 MHz word 0x0002 CAL_BC1_1MHz - byte 0x0009 CAL_DCO_1MHz - byte 0x0008 CAL_BC1_8MHz - byte 0x0007 CAL_DCO_8MHz - byte 0x0006 CAL_BC1_12MHz - byte 0x0005 CAL_DCO_12MHz - byte 0x0004 CAL_BC1_16MHz - byte 0x0003 CAL_DCO_16MHz - byte 0x0002 12 Submit Documentation Feedback Copyright © 2007–2012, Texas Instruments Incorporated MSP430F21x2 www.ti.com SLAS578J – NOVEMBER 2007 – REVISED JANUARY 2012 Brownout The brownout circuit is implemented to provide the proper internal reset signal to the device during power on and power off. Digital I/O There are three 8-bit I/O ports implemented—ports P1, P2, and P3: • All individual I/O bits are independently programmable. • Any combination of input, output, and interrupt condition is possible. • Edge-selectable interrupt input capability for all eight bits of port P1 and P2. • Read/write access to port-control registers is supported by all instructions. • Each I/O has an individually programmable pullup/pulldown resistor. The MSP430F21x2 devices provide up to 24 total port I/O pins available externally. See the device pinout for more information. Watchdog Timer (WDT+) The primary function of the WDT+ module is to perform a controlled system restart after a software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed in an application, the module can be disabled or configured as an interval timer and can generate interrupts at selected time intervals. ADC10 The ADC10 module supports fast, 10-bit analog-to-digital conversions. The module implements a 10-bit SAR core, sample select control, reference generator and data transfer controller, or DTC, for automatic conversion result handling allowing ADC samples to be converted and stored without any CPU intervention. Comparator_A+ The primary function of the comparator_A+ module is to support precision slope analog-to-digital conversions, battery-voltage supervision, and monitoring of external analog signals. Copyright © 2007–2012, Texas Instruments Incorporated Submit Documentation Feedback 13 MSP430F21x2 SLAS578J – NOVEMBER 2007 – REVISED JANUARY 2012 www.ti.com Timer0_A3 Timer0_A3 is a 16-bit timer/counter with three capture/compare registers. Timer0_A3 can support multiple capture/compares, PWM outputs, and interval timing. Timer0_A3 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers. Table 14. Timer0_A3 Signal Connections INPUT PIN NUMBER MODULE BLOCK MODULE OUTPUT SIGNAL Timer NA CCR0 TA0 PW RHB, RTV 21 - P1.0 21 - P1.0 TACLK TACLK ACLK ACLK OUTPUT PIN NUMBER PW RHB, RTV SMCLK SMCLK 9 - P2.1 7 - P2.1 TAINCLK INCLK 22 - P1.1 22 - P1.1 TA0 CCI0A 22 - P1.1 22 - P1.1 10 - P2.2 8 - P2.2 TA0 CCI0B 26 - P1.5 26 - P1.5 DVSS GND 10 - P2.2 8 - P2.2 DVCC VCC ADC10 (internal) ADC10 (internal) 23 - P1.2 23 - P1.2 23 - P1.2 24 - P1.3 23 - P1.2 TA1 CCI1A CAOUT (internal) CCI1B 27 - P1.6 27 - P1.6 DVSS GND 19 - P2.3 18 - P2.3 DVCC VCC ADC10 (internal) ADC10 (internal) TA2 CCI2A 24 - P1.3 24 - P1.3 ACLK (internal) CCI2B 28 - P1.7 28 - P1.7 DVSS GND 20 - P2.4 19 - P2.4 VCC ADC10 (internal) ADC10 (internal) 24 - P1.3 DVCC 14 MODULE INPUT NAME DEVICE INPUT SIGNAL Submit Documentation Feedback CCR1 CCR2 TA1 TA2 Copyright © 2007–2012, Texas Instruments Incorporated MSP430F21x2 SLAS578J – NOVEMBER 2007 – REVISED JANUARY 2012 www.ti.com Timer1_A2 Timer1_A2 is a 16-bit timer/counter with two capture/compare registers. Timer1_A2 can support multiple capture/compares, PWM outputs, and interval timing. Timer1_A2 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers. Table 15. Timer1_A2 Signal Connections INPUT PIN NUMBER MODULE INPUT NAME MODULE BLOCK MODULE OUTPUT SIGNAL Timer NA CCR0 CCR1 PW RHB, RTV DEVICE INPUT SIGNAL 21 - P1.0 21 - P1.0 TACLK TACLK ACLK ACLK SMCLK SMCLK 9 - P2.1 7 - P2.1 TAINCLK INCLK 22 - P1.1 22 - P1.1 TA0 CCI0A 17 - P3.6 15 - P3.6 TA0 CCI0B DVSS GND 18 - P3.7 16 - P3.7 DVCC VCC TA1 CCI1A CAOUT (internal) CCI1B DVSS GND DVCC VCC OUTPUT PIN NUMBER PW RHB, RTV TA0 17 - P3.6 15 - P3.6 TA1 18 - P3.7 16 - P3.7 Universal Serial Communications Interface (USCI) The USCI module is used for serial data communication. The USCI module supports synchronous communication protocols like SPI (3 or 4 pin), I2C and asynchronous communication protocols such as UART, enhanced UART with automatic baudrate detection (LIN), and IrDA. USCI_A0 provides support for SPI (3 or 4 pin), UART, enhanced UART, and IrDA. USCI_B0 provides support for SPI (3 or 4 pin) and I2C. Copyright © 2007–2012, Texas Instruments Incorporated Submit Documentation Feedback 15 MSP430F21x2 SLAS578J – NOVEMBER 2007 – REVISED JANUARY 2012 www.ti.com Peripheral File Map Table 16. Peripherals With Word Access MODULE ADC10 REGISTER NAME SHORT NAME ADDRESS OFFSET ADC10SA 0x01BC ADC memory ADC10MEM 0x01B4 ADC control register 1 ADC10CTL1 0x01B2 ADC control register 0 ADC10CTL0 0x01B0 ADC analog enable 0 ADC10AE0 0x004A ADC analog enable 1 ADC10AE1 0x004B ADC data transfer control register 1 ADC10DTC1 0x0049 ADC data transfer control register 0 ADC10DTC0 0x0048 Capture/compare register TA0CCR2 0x0176 Capture/compare register TA0CCR1 0x0174 Capture/compare register TA0CCR0 0x0172 TA0R 0x0170 Capture/compare control TA0CCTL2 0x0166 Capture/compare control TA0CCTL1 0x0164 Capture/compare control TA0CCTL0 0x0162 TA0CTL 0x0160 Timer0_A3 interrupt vector TA0IV 0x012E Capture/compare register TA1CCR1 0x0194 Capture/compare register TA1CCR0 0x0192 ADC data transfer start address Timer0_A3 Timer0_A3 register Timer0_A3 control Timer1_A2 Timer1_A2 register TA1R 0x0190 Capture/compare control TA1CCTL1 0x0184 Capture/compare control TA1CCTL0 0x0182 Timer1_A2 control Flash Memory TA1CTL 0x0180 Timer1_A2 interrupt vector TA1IV 0x011E Flash control 3 FCTL3 0x012C Flash control 2 FCTL2 0x012A Flash control 1 Watchdog Timer+ Watchdog/timer control FCTL1 0x0128 WDTCTL 0x0120 SHORT NAME ADDRESS OFFSET Table 17. Peripherals With Byte Access MODULE USCI_B0 REGISTER NAME USCI_B0 transmit buffer UCB0TXBUF 0x06F USCI_B0 receive buffer UCB0RXBUF 0x06E UCB0STAT 0x06D USCI B0 I2C Interrupt enable UCB0CIE 0x06C USCI_B0 bit rate control 1 UCB0BR1 0x06B USCI_B0 bit rate control 0 UCB0BR0 0x06A USCI_B0 control 1 UCB0CTL1 0x069 USCI_B0 control 0 USCI_B0 status 16 UCB0CTL0 0x068 USCI_B0 I2C slave address UCB0SA 0x011A USCI_B0 I2C own address UCB0OA 0x0118 Submit Documentation Feedback Copyright © 2007–2012, Texas Instruments Incorporated MSP430F21x2 SLAS578J – NOVEMBER 2007 – REVISED JANUARY 2012 www.ti.com Table 17. Peripherals With Byte Access (continued) MODULE USCI_A0 SHORT NAME ADDRESS OFFSET USCI_A0 transmit buffer REGISTER NAME UCA0TXBUF 0x0067 USCI_A0 receive buffer UCA0RXBUF 0x0066 USCI_A0 status UCA0STAT 0x0065 USCI_A0 modulation control UCA0MCTL 0x0064 USCI_A0 baud rate control 1 UCA0BR1 0x0063 USCI_A0 baud rate control 0 UCA0BR0 0x0062 USCI_A0 control 1 UCA0CTL1 0x0061 USCI_A0 control 0 Comparator_A+ Basic Clock System+ Port P3 UCA0CTL0 0x0060 USCI_A0 IrDA receive control UCA0IRRCTL 0x005F USCI_A0 IrDA transmit control UCA0IRTCTL 0x005E USCI_A0 auto baud rate control UCA0ABCTL 0x005D Comparator_A port disable CAPD 0x005B Comparator_A control 2 CACTL2 0x005A Comparator_A control 1 CACTL1 0x0059 Basic clock system control 3 BCSCTL3 0x0053 Basic clock system control 2 BCSCTL2 0x0058 Basic clock system control 1 BCSCTL1 0x0057 DCO clock frequency control DCOCTL 0x0056 Port P3 resistor enable P3REN 0x0010 Port P3 selection P3SEL 0x001B Port P3 direction P3DIR 0x001A Port P3 output P3OUT 0x0019 P3IN 0x0018 Port P2 selection 2 P2SEL2 0x0042 Port P2 resistor enable P2REN 0x002F Port P2 selection P2SEL 0x002E P2IE 0x002D Port P2 interrupt edge select P2IES 0x002C Port P2 interrupt flag P2IFG 0x002B Port P2 direction P2DIR 0x002A Port P2 output P2OUT 0x0029 Port P3 input Port P2 Port P2 interrupt enable Port P2 input Port P1 P2IN 0x0028 Port P1 selection 2 register P1SEL2 0x0041 Port P1 resistor enable P1REN 0x0027 Port P1 selection P1SEL 0x0026 P1IE 0x0025 P1IES 0x0024 Port P1 interrupt flag P1IFG 0x0023 Port P1 direction P1DIR 0x0022 Port P1 output P1OUT 0x0021 Port P1 input P1IN 0x0020 SFR interrupt flag 2 IFG2 0x0003 SFR interrupt flag 1 IFG1 0x0002 SFR interrupt enable 2 IE2 0x0001 SFR interrupt enable 1 IE1 0x0000 Port P1 interrupt enable Port P1 interrupt edge select Special Function Copyright © 2007–2012, Texas Instruments Incorporated Submit Documentation Feedback 17 MSP430F21x2 SLAS578J – NOVEMBER 2007 – REVISED JANUARY 2012 www.ti.com Absolute Maximum Ratings (1) Voltage applied at VCC to VSS Voltage applied to any pin -0.3 V to 4.1 V (2) -0.3 V to VCC + 0.3 V ±2 mA Diode current at any device terminal Storage temperature, Tstg (1) (3) Unprogrammed device -55°C to 150°C Programmed device -55°C to 150°C Stresses beyond those listed under absolute maximum ratingsmay cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditionsis not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltages referenced to VSS. The JTAG fuse-blow voltage, VFB, is allowed to exceed the absolute maximum rating. The voltage is applied to the TEST pin when blowing the JTAG fuse. Higher temperature may be applied during board soldering process according to the current JEDEC J-STD-020 specification with peak reflow temperatures not higher than classified on the device label on the shipping boxes or reels. (2) (3) Recommended Operating Conditions (1) MIN VCC Supply voltage, AVCC = DVCC = VCC VSS Supply voltage TA Operating free-air temperature fSYSTEM Processor frequency (maximum MCLK frequency) (2) (1) (see Figure 1) (1) (2) NOM MAX During program execution 1.8 3.6 During flash memory programming 2.2 3.6 0 0 AVSS = DVSS = VSS I version -40 85 T version -40 105 VCC = 1.8 V, Duty cycle = 50% ±10% dc 6 VCC = 2.7 V, Duty cycle = 50% ±10% dc 12 VCC ≥ 3.3 V, Duty cycle = 50% ±10% dc 16 UNIT V V °C MHz Modules might have a different maximum input clock specification. See the specification of the respective module in this data sheet. The MSP430 CPU is clocked directly with MCLK. Both the high and low phase of MCLK must not exceed the pulse width of the specified maximum frequency. Legend : System Frequency −MHz 16 MHz Supply voltage range during flash memory programming 12 MHz Supply voltage range during program execution 6 MHz 1.8 V 2.2 V 2.7 V 3.3 V 3.6 V Supply Voltage − V NOTE: Minimum processor frequency is defined by system clock. Flash program or erase operations require a minimum VCC of 2.2 V. Figure 1. Operating Area 18 Submit Documentation Feedback Copyright © 2007–2012, Texas Instruments Incorporated MSP430F21x2 SLAS578J – NOVEMBER 2007 – REVISED JANUARY 2012 www.ti.com Active Mode Supply Current (into DVCC + AVCC ) Excluding External Current over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1) (2) PARAMETER IAM,1MHz IAM,1MHz IAM,4kHz IAM,100kHz (1) (2) TEST CONDITIONS TA VCC MIN TYP MAX 2.2 V 250 340 Active mode (AM) current (1 MHz) fDCO = fMCLK = fSMCLK = 1 MHz, fACLK = 32768 Hz, Program executes in flash, BCSCTL1 = CALBC1_1MHZ, DCOCTL = CALDCO_1MHZ, CPUOFF = 0, SCG0 = 0, SCG1 = 0, OSCOFF = 0 3V 350 450 2.2 V 220 Active mode (AM) current (1 MHz) fDCO = fMCLK = fSMCLK = 1 MHz, fACLK = 32768 Hz, Program executes in RAM, BCSCTL1 = CALBC1_1MHZ, DCOCTL = CALDCO_1MHZ, CPUOFF = 0, SCG0 = 0, SCG1 = 0, OSCOFF = 0 3V 300 -40°C to 85°C Active mode (AM) current (4 kHz) fMCLK = fSMCLK = fACLK = 32768 Hz / 8 = 4096 Hz, fDCO = 0 Hz, Program executes in flash, SELMx = 11, SELS = 1, DIVMx = DIVSx = DIVAx = 11, CPUOFF = 0, SCG0 = 1, SCG1 = 0, OSCOFF = 0 fMCLK = fSMCLK = fDCO(0, 0) ≈ 100 kHz, fACLK = 0 Hz, Program executes in flash, RSELx = 0, DCOx = 0, CPUOFF = 0, SCG0 = 0, SCG1 = 0, OSCOFF = 1 -40°C to 85°C Active mode (AM) current (100 kHz) 105°C 105°C 5 6 -40°C to 85°C 3 7 3V 105°C 60 85 90 72 3V 105°C µA 9 2.2 V -40°C to 85°C µA µA 2 2.2 V UNIT 95 µA 100 All inputs are tied to 0 V or VCC. Outputs do not source or sink any current. The currents are characterized with a Micro Crystal CC4V-T1A SMD crystal with a load capacitance of 9 pF. The internal and external load capacitance is chosen to closely match the required 9 pF. Typical Characteristics - Active-Mode Supply Current (Into DVCC + AVCC ) ACTIVE-MODE CURRENT vs SUPPLY VOLTAGE TA = 25°C ACTIVE-MODE CURRENT vs DCO FREQUENCY 5.0 8.0 f DCO = 16 MHz 7.0 TA = 85°C 6.0 Active Mode Current − mA Active Mode Current − mA 4.0 f DCO = 12 MHz 5.0 4.0 f DCO = 8 MHz 3.0 2.0 TA = 25°C 3.0 VCC = 3 V TA = 85°C 2.0 TA = 25°C 1.0 1.0 0.0 1.5 VCC = 2.2 V f DCO = 1 MHz 2.0 2.5 3.0 VCC − Supply Voltage − V Figure 2. Copyright © 2007–2012, Texas Instruments Incorporated 3.5 4.0 0.0 0.0 4.0 8.0 12.0 16.0 f DCO − DCO Frequency − MHz Figure 3. Submit Documentation Feedback 19 MSP430F21x2 SLAS578J – NOVEMBER 2007 – REVISED JANUARY 2012 www.ti.com Low-Power-Mode Supply Currents (Into VCC ) Excluding External Current (1) (2) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER ILPM0, 1MHz ILPM0, Low-power mode 0 (LPM0) current (3) Low-power mode 0 (LPM0) current (3) 100kHz Low-power mode 2 (LPM2) current (4) ILPM2 TEST CONDITIONS TA VCC fMCLK = 0 MHz, fSMCLK = fDCO = 1 MHz, fACLK = 32768 Hz, BCSCTL1 = CALBC1_1MHZ, DCOCTL = CALDCO_1MHZ, CPUOFF = 1, SCG0 = 0, SCG1 = 0, OSCOFF = 0 -40°C to 85°C fMCLK = 0 MHz, fSMCLK = fDCO(0, 0) ≈ 100 kHz, fACLK = 0 Hz, RSELx = 0, DCOx = 0, CPUOFF = 1, SCG0 = 0, SCG1 = 0, OSCOFF = 1 -40°C to 85°C fMCLK = fSMCLK = 0 MHz, fDCO = 1 MHz, fACLK = 32768 Hz, BCSCTL1 = CALBC1_1MHZ, DCOCTL = CALDCO_1MHZ, CPUOFF = 1, SCG0 = 0, SCG1 = 1, OSCOFF = 0 -40°C to 85°C 105°C 2.2 V -40°C to 85°C ILPM3, Low-power mode 3 (LPM3) current (4) LFXT1 105°C 2.2 V -40°C to 85°C ILPM4 (1) (2) (3) (4) (5) 20 Low-power mode 3 current, (LPM3) (4) Low-power mode 4 (LPM4) current (5) fDCO = fMCLK = fSMCLK = 0 MHz, fACLK = 0 Hz, CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1 66 105°C 2.2 V -40°C to 85°C 85°C 33 105°C -40°C to 25°C 85°C 3V 85°C 2.2 V 105°C -40°C to 25°C 3V 42 46 20 25 27 27 0.7 1.2 1.6 2.3 3 6 0.9 1.9 1.6 2.8 3 7 0.3 0.7 1.2 1.9 2 5 0.7 0.8 1.4 2.1 6 -40°C 0.1 0.5 0.1 0.5 0.8 1.5 2 4 105°C 2.2 V/ 3 V µA 31 2.5 85°C µA 48 105°C 25°C µA 44 22 2.2 V 83 90 3V 105°C UNIT 68 3V 105°C 85°C 55 37 -40°C to 25°C ILPM3, VLO MAX 3V 105°C 105°C fDCO = fMCLK = fSMCLK = 0 MHz, fACLK from internal LF oscillator (VLO), CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 TYP 70 -40°C to 25°C fDCO = fMCLK = fSMCLK = 0 MHz, fACLK = 32768 Hz, CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 MIN µA µA µA All inputs are tied to 0 V or VCC. Outputs do not source or sink any current. The currents are characterized with a Micro Crystal CC4V-T1A SMD crystal with a load capacitance of 9 pF. The internal and external load capacitance is chosen to closely match the required 9 pF. Current for brownout and WDT clocked by SMCLK included. Current for brownout and WDT clocked by ACLK included. Current for brownout included. Submit Documentation Feedback Copyright © 2007–2012, Texas Instruments Incorporated MSP430F21x2 SLAS578J – NOVEMBER 2007 – REVISED JANUARY 2012 www.ti.com Typical Characteristics - LPM4 Current LPM4 CURRENT vs TEMPERATURE ILPM4 − Low-Power Mode Current − µA 2.4 VCC = 3.6 V 2.2 VCC = 3 V 2.0 VCC = 2.2 V 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 −40.0 −20.0 VCC = 1.8 V 0.0 20.0 40.0 60.0 80.0 100.0 TA − Temperature − °C Figure 4. Copyright © 2007–2012, Texas Instruments Incorporated Submit Documentation Feedback 21 MSP430F21x2 SLAS578J – NOVEMBER 2007 – REVISED JANUARY 2012 www.ti.com Schmitt-Trigger Inputs (Ports P1, P2, P3, JTAG, RST/NMI, XIN (1)) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER VIT+ TEST CONDITIONS Positive-going input threshold voltage VCC MIN Negative-going input threshold voltage Vhys Input voltage hysteresis (VIT+ - VIT- ) RPull Pullup/pulldown resistor For pullup: VIN = VSS, For pulldown: VIN = VCC CI Input capacitance VIN = VSS or VCC (1) XIN only in bypass mode MAX 0.45 VCC 0.75 VCC 1 1.65 1.35 2.25 0.25 VCC 0.55 VCC 2.2 V 0.55 1.20 3V 0.75 1.65 2.2 V 0.2 1 3V 0.3 1 2.2 V 3V VIT- TYP 20 35 UNIT V V V 50 kΩ 5 pF Inputs (Ports P1, P2) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER t(int) (1) External interrupt timing TEST CONDITIONS Port P1, P2: P1.x to P2.x, External trigger pulse width to set interrupt flag (1) VCC 2.2 V/3 V MIN TYP MAX UNIT 20 ns An external signal sets the interrupt flag every time the minimum interrupt pulse width t(int) is met. It may be set with trigger signals shorter than t(int). Leakage Current (Ports P1, P2, P3) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER Ilkg(Px.y) (1) (2) 22 High-impedance leakage current TEST CONDITIONS (1) (2) VCC 2.2 V/3 V MIN TYP MAX UNIT ±50 nA The leakage current is measured with VSS or VCC applied to the corresponding pin(s), unless otherwise noted. The leakage of the digital port pins is measured individually. The port pin is selected for input and the pullup/pulldown resistor is disabled. Submit Documentation Feedback Copyright © 2007–2012, Texas Instruments Incorporated MSP430F21x2 SLAS578J – NOVEMBER 2007 – REVISED JANUARY 2012 www.ti.com Outputs (Ports P1, P2, P3) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS IOH(max) = -1.5 mA VOH High-level output voltage IOH(max) = -6 mA (2) IOH(max) = -1.5 mA (1) IOH(max) = -6 mA (2) IOL(max) = 1.5 mA VOL Low-level output voltage (2) 2.2 V 3V (1) 2.2 V IOL(max) = 6 mA (2) IOL(max) = 1.5 mA (1) IOL(max) = 6 mA (2) (1) VCC (1) 3V MIN MAX VCC - 0.25 VCC VCC - 0.6 VCC VCC - 0.25 VCC VCC - 0.6 VCC VSS VSS + 0.25 VSS VSS + 0.6 VSS VSS + 0.25 VSS VSS + 0.6 UNIT V V The maximum total current, IOH(max) and IOL(max), for all outputs combined, should not exceed ±12 mA to hold the maximum voltage drop specified. The maximum total current, IOH(max) and IOL(max), for all outputs combined, should not exceed ±48 mA to hold the maximum voltage drop specified. Output Frequency (Ports P1, P2, P3) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS fPx.y Port output frequency (with load) P1.4/SMCLK, CL = 20 pF, RL = 1 kΩ (1) (2) fPort°CLK Clock output frequency P2.0/ACLK, P1.4/SMCLK, CL = 20 pF (2) (1) (2) VCC MIN TYP MAX 2.2 V 7.5 3V 12 2.2 V 7.5 3V 16 UNIT MHz MHz Alternatively, a resistive divider with two 0.5-kΩ resistors between VCC and VSS is used as load. The output is connected to the center tap of the divider. The output voltage reaches at least 10% and 90% VCC at the specified toggle frequency. Copyright © 2007–2012, Texas Instruments Incorporated Submit Documentation Feedback 23 MSP430F21x2 SLAS578J – NOVEMBER 2007 – REVISED JANUARY 2012 www.ti.com Typical Characteristics - Outputs One output loaded at a time. TYPICAL LOW-LEVEL OUTPUT CURRENT vs LOW-LEVEL OUTPUT VOLTAGE TYPICAL LOW-LEVEL OUTPUT CURRENT vs LOW-LEVEL OUTPUT VOLTAGE 50.0 VCC = 2.2 V P2.4 TA = 25°C 20.0 I OL − Typical Low-Level Output Current − mA I OL − Typical Low-Level Output Current − mA 25.0 TA = 85°C 15.0 10.0 5.0 0.0 0.0 0.5 1.0 1.5 2.0 VCC = 3 V P2.4 40.0 TA = 85°C 30.0 20.0 10.0 0.0 0.0 2.5 VOL − Low-Level Output Voltage − V 1.0 1.5 2.0 2.5 3.0 Figure 5. Figure 6. TYPICAL HIGH-LEVEL OUTPUT CURRENT vs HIGH-LEVEL OUTPUT VOLTAGE TYPICAL HIGH-LEVEL OUTPUT CURRENT vs HIGH-LEVEL OUTPUT VOLTAGE −5.0 −10.0 −15.0 −20.0 −25.0 0.0 3.5 0.0 VCC = 2.2 V P2.4 I OH − Typical High-Level Output Current − mA I OH − Typical High-Level Output Current − mA 0.5 VOL − Low-Level Output Voltage − V 0.0 TA = 85°C TA = 25°C 0.5 1.0 1.5 2.0 VOH − High-Level Output Voltage − V Figure 7. 24 TA = 25°C Submit Documentation Feedback 2.5 VCC = 3 V P2.4 −10.0 −20.0 −30.0 −40.0 −50.0 0.0 TA = 85°C TA = 25°C 0.5 1.0 1.5 2.0 2.5 3.0 3.5 VOH − High-Level Output Voltage − V Figure 8. Copyright © 2007–2012, Texas Instruments Incorporated MSP430F21x2 SLAS578J – NOVEMBER 2007 – REVISED JANUARY 2012 www.ti.com POR/Brownout Reset (BOR) (1) (2) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VCC(start) See Figure 9 dVCC /dt ≤ 3 V/s V(B_IT-) See Figure 9 through Figure 11 dVCC /dt ≤ 3 V/s Vhys(B_IT-) See Figure 9 dVCC /dt ≤ 3 V/s td(BOR) See Figure 9 t(reset) Pulse length needed at RST/NMI pin to accepted reset internally (1) (2) VCC MIN TYP MAX 0.7 × V(B_IT-) 70 2.2 V/3 V 130 UNIT V 1.71 V 210 mV 2000 µs 2 µs The current consumption of the brownout module is already included in the ICC current consumption data. The voltage level V(B_IT-) + Vhys(B_IT-) is ≤ 1.8 V. During power up, the CPU begins code execution following a period of td(BOR) after VCC = V(B_IT-) + Vhys(B_IT-). The default DCO settings must not be changed until VCC ≥ VCC(min), where VCC(min) is the minimum supply voltage for the desired operating frequency. VCC Vhys(B_IT−) V(B_IT−) VCC(start) 1 0 t d(BOR) Figure 9. POR/Brownout Reset (BOR) vs Supply Voltage Copyright © 2007–2012, Texas Instruments Incorporated Submit Documentation Feedback 25 MSP430F21x2 SLAS578J – NOVEMBER 2007 – REVISED JANUARY 2012 www.ti.com Typical Characteristics - POR/Brownout Reset (BOR) VCC 3V 2 VCC(drop) − V VCC = 3 V Typical Conditions t pw 1.5 1 VCC(drop) 0.5 0 0.001 1 1000 1 ns t pw − Pulse Width − µs 1 ns t pw − Pulse Width − µs Figure 10. VCC(drop) Level With a Square Voltage Drop to Generate a POR/Brownout Signal VCC 2 t pw 3V VCC(drop) − V VCC = 3 V 1.5 Typical Conditions 1 VCC(drop) 0.5 0 0.001 tf = tr 1 t pw − Pulse Width − µs 1000 tf tr t pw − Pulse Width − µs Figure 11. VCC(drop) Level With a Triangle Voltage Drop to Generate a POR/Brownout Signal 26 Submit Documentation Feedback Copyright © 2007–2012, Texas Instruments Incorporated MSP430F21x2 SLAS578J – NOVEMBER 2007 – REVISED JANUARY 2012 www.ti.com Main DCO Characteristics • • • All ranges selected by RSELx overlap with RSELx + 1: RSELx = 0 overlaps RSELx = 1, ... RSELx = 14 overlaps RSELx = 15. DCO control bits DCOx have a step size as defined by parameter SDCO. Modulation control bits MODx select how often fDCO(RSEL,DCO+1) is used within the period of 32 DCOCLK cycles. The frequency fDCO(RSEL,DCO) is used for the remaining cycles. The frequency is an average equal to: faverage = 32 × fDCO(RSEL,DCO) × fDCO(RSEL,DCO+1) MOD × fDCO(RSEL,DCO) + (32 – MOD) × fDCO(RSEL,DCO+1) DCO Frequency over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VCC MIN TYP MAX RSELx < 14 1.8 3.6 RSELx = 14 2.2 3.6 UNIT VCC Supply voltage range 3.0 3.6 fDCO(0,0) DCO frequency (0, 0) RSELx = 0, DCOx = 0, MODx = 0 2.2 V/3 V 0.06 0.14 MHz fDCO(0,3) DCO frequency (0, 3) RSELx = 0, DCOx = 3, MODx = 0 2.2 V/3 V 0.07 0.17 MHz fDCO(1,3) DCO frequency (1, 3) RSELx = 1, DCOx = 3, MODx = 0 2.2 V/3 V 0.10 0.20 MHz fDCO(2,3) DCO frequency (2, 3) RSELx = 2, DCOx = 3, MODx = 0 2.2 V/3 V 0.14 0.28 MHz fDCO(3,3) DCO frequency (3, 3) RSELx = 3, DCOx = 3, MODx = 0 2.2 V/3 V 0.20 0.40 MHz fDCO(4,3) DCO frequency (4, 3) RSELx = 4, DCOx = 3, MODx = 0 2.2 V/3 V 0.28 0.54 MHz fDCO(5,3) DCO frequency (5, 3) RSELx = 5, DCOx = 3, MODx = 0 2.2 V/3 V 0.39 0.77 MHz fDCO(6,3) DCO frequency (6, 3) RSELx = 6, DCOx = 3, MODx = 0 2.2 V/3 V 0.54 1.06 MHz fDCO(7,3) DCO frequency (7, 3) RSELx = 7, DCOx = 3, MODx = 0 2.2 V/3 V 0.80 1.50 MHz fDCO(8,3) DCO frequency (8, 3) RSELx = 8, DCOx = 3, MODx = 0 2.2 V/3 V 1.10 2.10 MHz fDCO(9,3) DCO frequency (9, 3) RSELx = 9, DCOx = 3, MODx = 0 2.2 V/3 V 1.60 3.00 MHz fDCO(10,3) DCO frequency (10, 3) RSELx = 10, DCOx = 3, MODx = 0 2.2 V/3 V 2.50 4.30 MHz fDCO(11,3) DCO frequency (11, 3) RSELx = 11, DCOx = 3, MODx = 0 2.2 V/3 V 3.00 5.50 MHz fDCO(12,3) DCO frequency (12, 3) RSELx = 12, DCOx = 3, MODx = 0 2.2 V/3 V 4.30 7.30 MHz fDCO(13,3) DCO frequency (13, 3) RSELx = 13, DCOx = 3, MODx = 0 2.2 V/3 V 6.00 9.60 MHz fDCO(14,3) DCO frequency (14, 3) RSELx = 14, DCOx = 3, MODx = 0 2.2 V/3 V 8.60 13.9 MHz fDCO(15,3) DCO frequency (15, 3) RSELx = 15, DCOx = 3, MODx = 0 3V 12.0 18.5 MHz fDCO(15,7) DCO frequency (15, 7) RSELx = 15, DCOx = 7, MODx = 0 3V 16.0 26.0 MHz SRSEL Frequency step between range RSEL and RSEL+1 SRSEL = fDCO(RSEL+1,DCO) /fDCO(RSEL,DCO) 2.2 V/3 V 1.55 ratio SDCO Frequency step between tap DCO and DCO+1 SDCO = fDCO(RSEL,DCO+1) /fDCO(RSEL,DCO) 2.2 V/3 V 1.05 1.08 1.12 ratio Duty cycle Measured at P1.4/SMCLK 2.2 V/3 V 40 50 60 RSELx = 15 Copyright © 2007–2012, Texas Instruments Incorporated Submit Documentation Feedback V % 27 MSP430F21x2 SLAS578J – NOVEMBER 2007 – REVISED JANUARY 2012 www.ti.com Calibrated DCO Frequencies - Tolerance at Calibration over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS Frequency tolerance at calibration TA VCC MIN TYP MAX UNIT 25°C 3V -1 ±0.2 +1 25°C 3V 0.990 1 1.010 MHz % fCAL(1MHz) 1-MHz calibration value BCSCTL1 = CALBC1_1MHZ, DCOCTL = CALDCO_1MHZ, Gating time: 5 ms fCAL(8MHz) 8-MHz calibration value BCSCTL1 = CALBC1_8MHZ, DCOCTL = CALDCO_8MHZ, Gating time: 5 ms 25°C 3V 7.920 8 8.080 MHz fCAL(12MHz) 12-MHz calibration value BCSCTL1 = CALBC1_12MHZ, DCOCTL = CALDCO_12MHZ, Gating time: 5 ms 25°C 3V 11.88 12 12.12 MHz fCAL(16MHz) 16-MHz calibration value BCSCTL1 = CALBC1_16MHZ, DCOCTL = CALDCO_16MHZ, Gating time: 2 ms 25°C 3V 15.84 16 16.16 MHz MAX UNIT Calibrated DCO Frequencies - Tolerance Over Temperature 0°C to 85°C over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER fCAL(1MHz) fCAL(8MHz) fCAL(12MHz) fCAL(16MHz) 28 TA VCC 1-MHz tolerance over temperature 0°C to 85°C 3V -2.5 ±0.5 +2.5 % 8-MHz tolerance over temperature 0°C to 85°C 3V -2.5 ±1 +2.5 % 12-MHz tolerance over temperature 0°C to 85°C 3V -2.5 ±1 +2.5 % 16-MHz tolerance over temperature 0°C to 85°C 3V -3 ±2 +3 % 2.2 V 0.97 1 1.03 3V 0.975 1 1.025 3.6 V 0.97 1 1.03 2.2 V 7.76 8 8.4 3V 7.8 8 8.2 3.6 V 7.6 8 8.24 2.2 V 11.64 12 12.36 3V 11.64 12 12.36 3.6 V 11.64 12 12.36 3V 15.52 16 16.48 15 16 16.48 1-MHz calibration value 8-MHz calibration value 12-MHz calibration value 16-MHz calibration value TEST CONDITIONS BCSCTL1 = CALBC1_1MHZ, DCOCTL = CALDCO_1MHZ, Gating time: 5 ms 0°C to 85°C BCSCTL1 = CALBC1_8MHZ, DCOCTL = CALDCO_8MHZ, Gating time: 5 ms 0°C to 85°C BCSCTL1 = CALBC1_12MHZ, DCOCTL = CALDCO_12MHZ, Gating time: 5 ms 0°C to 85°C BCSCTL1 = CALBC1_16MHZ, DCOCTL = CALDCO_16MHZ, Gating time: 2 ms 0°C to 85°C Submit Documentation Feedback 3.6 V MIN TYP MHz MHz MHz MHz Copyright © 2007–2012, Texas Instruments Incorporated MSP430F21x2 SLAS578J – NOVEMBER 2007 – REVISED JANUARY 2012 www.ti.com Calibrated DCO Frequencies - Tolerance Over Supply Voltage VCC over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS TA VCC MIN TYP MAX 1-MHz tolerance over VCC 25°C 8-MHz tolerance over VCC 25°C 12-MHz tolerance over VCC 16-MHz tolerance over VCC UNIT 1.8 V to 3.6 V -3 ±2 +3 % 1.8 V to 3.6 V -3 ±2 +3 % 25°C 2.2 V to 3.6 V -3 ±2 +3 % 25°C 3 V to 3.6 V -6 ±2 +3 % fCAL(1MHz) 1-MHz calibration value BCSCTL1 = CALBC1_1MHZ, DCOCTL = CALDCO_1MHZ, Gating time: 5 ms 25°C 1.8 V to 3.6 V 0.97 1 1.03 MHz fCAL(8MHz) 8-MHz calibration value BCSCTL1 = CALBC1_8MHZ, DCOCTL = CALDCO_8MHZ, Gating time: 5 ms 25°C 1.8 V to 3.6 V 7.76 8 8.24 MHz fCAL(12MHz) 12-MHz calibration value BCSCTL1 = CALBC1_12MHZ, DCOCTL = CALDCO_12MHZ, Gating time: 5 ms 25°C 2.2 V to 3.6 V 11.64 12 12.36 MHz fCAL(16MHz) 16-MHz calibration value BCSCTL1 = CALBC1_16MHZ, DCOCTL = CALDCO_16MHZ, Gating time: 2 ms 25°C 3 V to 3.6 V 15 16 16.48 MHz MIN TYP MAX UNIT Calibrated DCO Frequencies - Overall Tolerance over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS TA VCC 1-MHz tolerance overall -40°C to 105°C 1.8 V to 3.6 V -5 ±2 +5 % 8-MHz tolerance overall -40°C to 105°C 1.8 V to 3.6 V -5 ±2 +5 % 12-MHz tolerance overall -40°C to 105°C 2.2 V to 3.6 V -5 ±2 +5 % 16-MHz tolerance overall -40°C to 105°C 3 V to 3.6 V -6 ±3 +6 % fCAL(1MHz) 1-MHz calibration value BCSCTL1 = CALBC1_1MHZ, DCOCTL = CALDCO_1MHZ, Gating time: 5 ms -40°C to 105°C 1.8 V to 3.6 V 0.95 1 1.05 MHz fCAL(8MHz) 8-MHz calibration value BCSCTL1 = CALBC1_8MHZ, DCOCTL = CALDCO_8MHZ, Gating time: 5 ms -40°C to 105°C 1.8 V to 3.6 V 7.6 8 8.4 MHz fCAL(12MHz) 12-MHz calibration value BCSCTL1 = CALBC1_12MHZ, DCOCTL = CALDCO_12MHZ, Gating time: 5 ms -40°C to 105°C 2.2 V to 3.6 V 11.4 12 12.6 MHz fCAL(16MHz) 16-MHz calibration value BCSCTL1 = CALBC1_16MHZ, DCOCTL = CALDCO_16MHZ, Gating time: 2 ms -40°C to 105°C 3 V to 3.6 V 15 16 17 MHz Copyright © 2007–2012, Texas Instruments Incorporated Submit Documentation Feedback 29 MSP430F21x2 SLAS578J – NOVEMBER 2007 – REVISED JANUARY 2012 www.ti.com Typical Characteristics - Calibrated 1-MHz DCO Frequency CALIBRATED 1-MHz FREQUENCY vs SUPPLY VOLTAGE 1.03 TA = 85 °C 1.02 Frequency − MHz TA = 25 °C 1.01 TA = 105 °C 1.00 TA = −40 °C 0.99 0.98 0.97 1.5 2.0 2.5 3.0 3.5 4.0 VCC − Supply Voltage − V Figure 12. 30 Submit Documentation Feedback Copyright © 2007–2012, Texas Instruments Incorporated MSP430F21x2 SLAS578J – NOVEMBER 2007 – REVISED JANUARY 2012 www.ti.com Wake-Up From Lower-Power Modes (LPM3/4) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VCC MIN TYP BCSCTL1 = CALBC1_1MHZ, DCOCTL = CALDCO_1MHZ tDCO,LPM3/4 (1) (2) UNIT 2 BCSCTL1 = CALBC1_8MHZ, DCO clock wake-up time DCOCTL = CALDCO_8MHZ from LPM3/4 (1) BCSCTL1 = CALBC1_12MHZ, DCOCTL = CALDCO_12MHZ 2.2 V/3 V 1.5 µs 1 BCSCTL1 = CALBC1_16MHZ, DCOCTL = CALDCO_16MHZ tCPU,LPM3/4 MAX 3V 1 CPU wake-up time from LPM3/4 (2) 1 / fMCLK + tClock,LPM3/4 The DCO clock wake-up time is measured from the edge of an external wake-up signal (for example, a port interrupt) to the first clock edge observable externally on a clock pin (MCLK or SMCLK). Parameter applicable only if DCOCLK is used for MCLK. Typical Characteristics - DCO Clock Wake-Up Time From LPM3/4 CLOCK WAKE-UP TIME FROM LPM3 vs DCO FREQUENCY DCO Wake Time − µs 10.00 RSELx = 0 to 11 RSELx = 12 to 15 1.00 0.10 0.10 1.00 10.00 DCO Frequency − MHz Figure 13. DCO With External Resistor ROSC (1) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VCC MIN TYP 1.8 3V 1.95 UNIT fDCO,ROSC DCO output frequency with ROSC DT Temperature drift DCOR = 1, RSELx = 4, DCOx = 3, MODx = 0 2.2 V/3 V ±0.1 %/°C DV Drift with VCC DCOR = 1, RSELx = 4, DCOx = 3, MODx = 0 2.2 V/3 V 10 %/V (1) 2.2 V MAX DCOR = 1, RSELx = 4, DCOx = 3, MODx = 0, TA = 25°C MHz ROSC = 100 kΩ. Metal film resistor, type 0257, 0.6 W with 1% tolerance and TK = ±50 ppm/°C. Copyright © 2007–2012, Texas Instruments Incorporated Submit Documentation Feedback 31 MSP430F21x2 SLAS578J – NOVEMBER 2007 – REVISED JANUARY 2012 www.ti.com Typical Characteristics - DCO With External Resistor ROSC DCO FREQUENCY vs ROSC VCC = 2.2 V, TA = 25°C DCO FREQUENCY vs ROSC VCC = 3 V, TA = 25°C 10.00 DCO Frequency − MHz DCO Frequency − MHz 10.00 1.00 0.10 RSELx = 4 0.01 10.00 100.00 1000.00 1.00 0.10 RSELx = 4 0.01 10.00 10000.00 ROSC − External Resistor − kW Figure 15. DCO FREQUENCY vs TEMPERATURE VCC = 3 V DCO FREQUENCY vs SUPPLY VOLTAGE TA = 25°C 2.25 DCO Frequency − MHz ROSC = 100k 2.00 DCO Frequency − MHz 10000.00 2.50 2.25 1.75 1.50 1.25 1.00 ROSC = 270k 0.75 ROSC = 100k 2.00 1.75 1.50 1.25 1.00 ROSC = 270k 0.75 0.50 0.50 ROSC = 1M 0.25 −25 0 25 50 TA − Temperature − °C Figure 16. 32 1000.00 Figure 14. 2.50 0.00 −50 100.00 ROSC − External Resistor − kW Submit Documentation Feedback 75 ROSC = 1M 0.25 100 0.00 2.0 2.5 3.0 3.5 4.0 VCC − Supply Voltage − V Figure 17. Copyright © 2007–2012, Texas Instruments Incorporated MSP430F21x2 SLAS578J – NOVEMBER 2007 – REVISED JANUARY 2012 www.ti.com Crystal Oscillator LFXT1, Low-Frequency Mode (1) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS fLFXT1,LF LFXT1 oscillator crystal frequency, LF mode 0, 1 fLFXT1,LF,logic LFXT1 oscillator logic level square wave input frequency, XTS = 0, XCAPx = 0, LFXT1Sx = 3 LF mode OALF Oscillation allowance for LF crystals CL,eff fFault,LF (1) (2) (3) (4) Integrated effective load capacitance, LF mode (2) XTS = 0, LFXT1Sx = 0 or 1 VCC MIN TYP 1.8 V to 3.6 V 1.8 V to 3.6 V MAX 32768 10000 32768 XTS = 0, LFXT1Sx = 0, fLFXT1,LF = 32768 Hz, CL,eff = 6 pF 500 XTS = 0, LFXT1Sx = 0, fLFXT1,LF = 32768 Hz, CL,eff = 12 pF 200 UNIT Hz 50000 Hz kΩ XTS = 0, XCAPx = 0 1 XTS = 0, XCAPx = 1 5.5 XTS = 0, XCAPx = 2 8.5 XTS = 0, XCAPx = 3 11 Duty cycle, LF mode XTS = 0, Measured at P2.0/ACLK, fLFXT1,LF = 32768 Hz 2.2 V/3 V 30 Oscillator fault frequency, LF mode (3) XTS = 0, XCAPx = 0, LFXT1Sx = 3 (4) 2.2 V/3 V 10 50 pF 70 % 10000 Hz To improve EMI on the XT1 oscillator, the following guidelines should be observed. (a) Keep the trace between the device and the crystal as short as possible. (b) Design a good ground plane around the oscillator pins. (c) Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT. (d) Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins. (e) Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins. (f) If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins. (g) Do not route the XOUT line to the JTAG header to support the serial programming adapter as shown in other documentation. This signal is no longer required for the serial programming adapter. Includes parasitic bond and package capacitance (approximately 2 pF per pin). Because the PCB adds additional capacitance, it is recommended to verify the correct load by measuring the ACLK frequency. For a correct setup, the effective load capacitance should always match the specification of the crystal that is used. Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag. Frequencies in between might set the flag. Measured with logic-level input frequency but also applies to operation with crystals. Internal Very-Low-Power Low-Frequency Oscillator (VLO) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER fVLO VLO frequency dfVLO/dT VLO frequency temperature drift (1) dfVLO/dVCC VLO frequency supply voltage drift (2) (1) (2) TA -40°C to 85°C 105°C VCC 2.2 V/3 V 2.2 V/3 V 1.8 V to 3.6 V MIN TYP MAX 4 12 20 22 UNIT kHz 0.5 %/°C 4 %/V Calculated using the box method: I version: [MAX(-40...85°C) - MIN(-40...85°C)]/MIN(-40...85°C)/[85°C - (-40°C)] T version: [MAX(-40...105°C) - MIN(-40...105°C)]/MIN(-40...105°C)/[105°C - (-40°C)] Calculated using the box method: [MAX(1.8...3.6 V) - MIN(1.8...3.6 V)]/MIN(1.8...3.6 V)/(3.6 V - 1.8 V) Copyright © 2007–2012, Texas Instruments Incorporated Submit Documentation Feedback 33 MSP430F21x2 SLAS578J – NOVEMBER 2007 – REVISED JANUARY 2012 www.ti.com Crystal Oscillator LFXT1, High-Frequency Mode (1) PARAMETER VCC MIN XTS = 1, XCAPx = 0, LFXT1Sx = 0 1.8 V to 3.6 V LFXT1 oscillator crystal frequency, HF mode 1 XTS = 1, XCAPx = 0, LFXT1Sx = 1 LFXT1 oscillator crystal frequency, HF mode 2 XTS = 1, XCAPx = 0, LFXT1Sx = 2 fLFXT1,HF0 LFXT1 oscillator crystal frequency, HF mode 0 fLFXT1,HF1 fLFXT1,HF2 TEST CONDITIONS MAX UNIT 0.4 1 MHz 1.8 V to 3.6 V 1 4 MHz 1.8 V to 3.6 V 2 10 2.2 V to 3.6 V 2 12 3 V to 3.6 V fLFXT1,HF,logic OAHF CL,eff LFXT1 oscillator logic-level square-wave input frequency, HF mode Oscillation allowance for HF crystals (see Figure 18 and Figure 19) Integrated effective load capacitance, HF mode (2) (1) (2) (3) (4) (5) 34 Oscillator fault frequency 2 16 1.8 V to 3.6 V 0.4 10 2.2 V to 3.6 V 0.4 12 3 V to 3.6 V 0.4 16 XTS = 1, XCAPx = 0, LFXT1Sx = 0, fLFXT1,HF = 1 MHz, CL,eff = 15 pF 2700 XTS = 1, XCAPx = 0, LFXT1Sx = 1, fLFXT1,HF = 4 MHz, CL,eff = 15 pF 800 XTS = 1, XCAPx = 0, LFXT1Sx = 2, fLFXT1,HF = 16 MHz, CL,eff = 15 pF 300 XTS = 1, XCAPx = 0 (3) XTS = 1, XCAPx = 0, Measured at P2.0/ACLK, fLFXT1,HF = 10 MHz Duty cycle, HF mode fFault,HF XTS = 1, XCAPx = 0, LFXT1Sx = 3 XTS = 1, XCAPx = 0, Measured at P2.0/ACLK, fLFXT1,HF = 16 MHz (4) TYP XTS = 1, XCAPx = 0, LFXT1Sx = 3 (5) 50 pF 60 2.2 V/3 V % 40 2.2 V/3 V MHz Ω 1 40 MHz 30 50 60 300 kHz To improve EMI on the XT2 oscillator the following guidelines should be observed: (a) Keep the trace between the device and the crystal as short as possible. (b) Design a good ground plane around the oscillator pins. (c) Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT. (d) Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins. (e) Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins. (f) If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins. (g) Do not route the XOUT line to the JTAG header to support the serial programming adapter as shown in other documentation. This signal is no longer required for the serial programming adapter. Includes parasitic bond and package capacitance (approximately 2 pF per pin). Because the PCB adds additional capacitance, it is recommended to verify the correct load by measuring the ACLK frequency. For a correct setup, the effective load capacitance should always match the specification of the used crystal. Requires external capacitors at both terminals. Values are specified by crystal manufacturers. Frequencies below the MIN specification set the fault flag, frequencies above the MAX specification do not set the fault flag, and frequencies in between might set the flag. Measured with logic-level input frequency, but also applies to operation with crystals. Submit Documentation Feedback Copyright © 2007–2012, Texas Instruments Incorporated MSP430F21x2 SLAS578J – NOVEMBER 2007 – REVISED JANUARY 2012 www.ti.com Typical Characteristics - LFXT1 Oscillator in HF Mode (XTS = 1) OSCILLATION ALLOWANCE vs CRYSTAL FREQUENCY CL,eff = 15 pF, TA = 25°C OSCILLATOR SUPPLY CURRENT vs CRYSTAL FREQUENCY CL,eff = 15 pF, TA = 25°C 100000.00 1800.0 LFXT1Sx = 2 10000.00 1000.00 LFXT1Sx = 2 100.00 XT Oscillator Supply Current − uA Oscillation Allowance − Ohms 1600.0 1400.0 1200.0 1000.0 800.0 600.0 400.0 LFXT1Sx = 1 LFXT1Sx = 1 200.0 LFXT1Sx = 0 10.00 0.10 1.00 10.00 100.00 0.0 0.0 Crystal Frequency − MHz LFXT1Sx = 0 4.0 8.0 12.0 16.0 20.0 Crystal Frequency − MHz Figure 18. Figure 19. Timer0_A3 over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS fTA Timer0_A3 clock frequency Internal: SMCLK, ACLK External: TACLK, INCLK Duty cycle = 50% ± 10% tTA,cap Timer0_A3 capture timing TA0.0, TA0.1, TA0.2 VCC MIN TYP MAX 2.2 V 10 3V 16 2.2 V/3 V 20 UNIT MHz ns Timer1_A2 over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS fTB Timer1_A2 clock frequency Internal: SMCLK, ACLK External: TACLK, INCLK Duty cycle = 50% ± 10% tTB,cap Timer1_A2 capture timing TA1.0, TA1.1 Copyright © 2007–2012, Texas Instruments Incorporated VCC MIN TYP MAX 2.2 V 10 3V 16 2.2 V/3 V 20 Submit Documentation Feedback UNIT MHz ns 35 MSP430F21x2 SLAS578J – NOVEMBER 2007 – REVISED JANUARY 2012 www.ti.com USCI (UART Mode) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER fUSCI USCI input clock frequency fmax,BITCLK Maximum BITCLK clock frequency (equals baud rate in MBaud) (1) tτ UART receive deglitch time (2) (1) (2) CONDITIONS VCC MIN TYP Internal: SMCLK, ACLK External: UCLK Duty cycle = 50% ± 10% 2.2 V/3 V 2 2.2 V 50 150 3V 50 100 MAX UNIT fSYSTEM MHz MHz ns The DCO wake-up time must be considered in LPM3/4 for baudrates above 1 MHz. Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. To ensure that pulses are correctly recognized their width should exceed the maximum specification of the deglitch time. USCI (SPI Master Mode) (1) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 20 and Figure 21) PARAMETER fUSCI USCI input clock frequency tSU,MI SOMI input data setup time tHD,MI SOMI input data hold time tVALID,MO SIMO output data valid time (1) TEST CONDITIONS VCC MIN TYP SMCLK, ACLK Duty cycle = 50% ± 10% UCLK edge to SIMO valid, CL = 20 pF 2.2 V 110 3V 75 2.2 V 0 3V 0 MAX UNIT fSYSTEM MHz ns ns 2.2 V 30 3V 20 ns fUCxCLK = 1/2tLO/HI with tLO/HI ≥ max(tVALID,MO(USCI) + tSU,SI(Slave), tSU,MI(USCI) + tVALID,SO(Slave)). For the slave's parameters tSU,SI(Slave) and tVALID,SO(Slave), see the SPI parameters of the attached slave. USCI (SPI Slave Mode) (1) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 22 and Figure 23) PARAMETER TEST CONDITIONS VCC MIN TYP MAX tSTE,LEAD STE lead time, STE low to clock 2.2 V/3 V tSTE,LAG STE lag time, Last clock to STE high 2.2 V/3 V tSTE,ACC STE access time, STE low to SOMI data out 2.2 V/3 V 50 ns tSTE,DIS STE disable time, STE high to SOMI high impedance 2.2 V/3 V 50 ns tSU,SI SIMO input data setup time tHD,SI SIMO input data hold time tVALID,SO SOMI output data valid time (1) 36 UCLK edge to SOMI valid, CL = 20 pF 50 UNIT ns 10 2.2 V 20 3V 15 2.2 V 10 3V 10 ns ns ns 2.2 V 75 110 3V 50 75 ns fUCxCLK = 1/2tLO/HI with tLO/HI ≥ max(tVALID,MO(Master) + tSU,SI(USCI), tSU,MI(Master) + tVALID,SO(USCI)). For the master's parameters tSU,MI(Master) and tVALID,MO(Master) refer to the SPI parameters of the attached slave. Submit Documentation Feedback Copyright © 2007–2012, Texas Instruments Incorporated MSP430F21x2 SLAS578J – NOVEMBER 2007 – REVISED JANUARY 2012 www.ti.com 1/fUCxCLK CKPL=0 UCLK CKPL=1 tLO/HI tLO/HI tSU,MI tHD,MI SOMI tVALID,MO SIMO Figure 20. SPI Master Mode, CKPH = 0 1/fUCxCLK CKPL=0 UCLK CKPL=1 tLO/HI tLO/HI tSU,MI tHD,MI SOMI tVALID,MO SIMO Figure 21. SPI Master Mode, CKPH = 1 Copyright © 2007–2012, Texas Instruments Incorporated Submit Documentation Feedback 37 MSP430F21x2 SLAS578J – NOVEMBER 2007 – REVISED JANUARY 2012 www.ti.com tSTE,LEAD tSTE,LAG STE 1/fUCxCLK CKPL=0 UCLK CKPL=1 tLO/HI tLO/HI tSU,SI tHD,SI SIMO tSTE,ACC tVALID,SO tSTE,DIS SOMI Figure 22. SPI Slave Mode, CKPH = 0 tSTE,LEAD tSTE,LAG STE 1/fUCxCLK CKPL=0 UCLK CKPL=1 tLO/HI tLO/HI tHD,SI tSU,SI SIMO tSTE,ACC tVALID,SO tSTE,DIS SOMI Figure 23. SPI Slave Mode, CKPH = 1 38 Submit Documentation Feedback Copyright © 2007–2012, Texas Instruments Incorporated MSP430F21x2 SLAS578J – NOVEMBER 2007 – REVISED JANUARY 2012 www.ti.com USCI (I2C Mode) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 24) PARAMETER TEST CONDITIONS VCC MIN TYP Internal: SMCLK, ACLK External: UCLK Duty cycle = 50% ± 10% MAX UNIT fSYSTEM MHz 400 kHz fUSCI USCI input clock frequency fSCL SCL clock frequency tHD,STA Hold time (repeated) START tSU,STA Setup time for a repeated START tHD,DAT Data hold time 2.2 V/3 V 0 tSU,DAT Data setup time 2.2 V/3 V 250 ns tSU,STO Setup time for STOP 2.2 V/3 V 4 µs tSP Pulse width of spikes suppressed by input filter 2.2 V 50 150 600 3V 50 100 600 2.2 V/3 V fSCL ≤ 100 kHz fSCL > 100 kHz fSCL ≤ 100 kHz fSCL > 100 kHz tHD,STA 2.2 V/3 V 2.2 V/3 V 0 4 µs 0.6 4.7 µs 0.6 ns ns tSU,STA tHD,STA SDA 1/fSCL tSP SCL tSU,DAT tSU,STO tHD,DAT Figure 24. I2C Mode Timing Copyright © 2007–2012, Texas Instruments Incorporated Submit Documentation Feedback 39 MSP430F21x2 SLAS578J – NOVEMBER 2007 – REVISED JANUARY 2012 www.ti.com Comparator_A+ (1) over recommended operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS I(DD) CAON = 1, CARSEL = 0, CAREF = 0 I(Refladder/RefDiode) CAON = 1, CARSEL = 0, CAREF = 1/2/3, No load at P1.0/CA0 and P1.1/CA1 VCC MIN TYP MAX 2.2 V 25 40 3V 45 60 2.2 V 30 50 3V 45 71 UNIT µA µA VIC Common-mode input voltage range CAON = 1 2.2 V/3 V 0 V(Ref025) Voltage at 0.25 VCC node / VCC PCA0 = 1, CARSEL = 1, CAREF = 1, No load at P1.0/CA0 and P1.1/CA1 2.2 V/3 V 0.23 0.24 0.25 V(Ref050) Voltage at 0.5 VCC node / VCC PCA0 = 1, CARSEL = 1, CAREF = 2, No load at P1.0/CA0 and P1.1/CA1 2.2 V/3 V 0.47 0.48 0.5 390 480 540 See Figure 28 and Figure 29 PCA0 = 1, CARSEL = 1, CAREF = 3, No load at P1.0/CA0 and P1.1/CA1; TA = 85°C 2.2 V V(RefVT) 3V 400 490 550 V(offset) Offset voltage (2) 2.2 V/3 V -30 30 mV Vhys Input hysteresis 2.2 V/3 V 0 0.7 1.4 mV TA = 25°C, Overdrive 10 mV, Without filter: CAF = 0 (3) (see Figure 25 and Figure 26) 2.2 V 80 165 300 3V 70 120 240 TA = 25°C, Overdrive 10 mV, With filter: CAF = 1 (3) (see Figure 25 and Figure 26) 2.2 V 1.4 1.9 2.8 3V 0.9 1.5 2.2 t(response) (1) (2) (3) 40 Response time (low-high and high-low) CAON = 1 VCC - 1 V mV ns µs The leakage current for the Comparator_A+ terminals is identical to Ilkg(Px.y) specification. The input offset voltage can be cancelled by using the CAEX bit to invert the Comparator_A+ inputs on successive measurements. The two successive measurements are then summed together. Response time measured at P2.2/TA0.0/A2/CA4/CAOUT. If the Comparator_A+ is enabled a settling time of 60 ns (typical) is added to the response time. Submit Documentation Feedback Copyright © 2007–2012, Texas Instruments Incorporated MSP430F21x2 SLAS578J – NOVEMBER 2007 – REVISED JANUARY 2012 www.ti.com 0V VCC 0 1 CAF CAON To Internal Modules Low-Pass Filter + _ V+ V− 0 0 1 1 CAOUT Set CAIFG Flag τ ≈ 2.0 µs Figure 25. Comparator_A+ Module Block Diagram VCAOUT Overdrive V− 400 mV t (response) V+ Figure 26. Overdrive Definition CASHORT CA0 CA1 1 VIN + − Comparator_A+ CASHORT = 1 IOUT = 10µA Figure 27. Comparator_A+ Short Resistance Test Condition Copyright © 2007–2012, Texas Instruments Incorporated Submit Documentation Feedback 41 MSP430F21x2 SLAS578J – NOVEMBER 2007 – REVISED JANUARY 2012 www.ti.com Typical Characteristics - Comparator_A+ V(RefVT) vs TEMPERATURE VCC = 2.2 V V(RefVT) vs TEMPERATURE VCC = 2.2 V 650 650.0 VCC = 2.2 V V(REFVT) − Reference Volts − mV V(REFVT) − Reference Volts − mV VCC = 3 V 600.0 Typical 550.0 500.0 450.0 400.0 −45.0 −25.0 −5.0 15.0 35.0 55.0 600 Typical 550 500 450 400 −45 75.0 95.0 115.0 −25 TA − Free-Air Temperature − °C −5 15 35 55 75 95 115 TA − Free-Air Temperature − °C Figure 28. Figure 29. SHORT RESISTANCE vs VIN/VCC Short Resistance − kW 100.00 VCC = 1.8V VCC = 2.2V 10.00 VCC = 3.0V VCC = 3.6V 1.00 0.0 0.2 0.4 0.6 0.8 1.0 VIN/VCC − Normalized Input Voltage − V/V Figure 30. 42 Submit Documentation Feedback Copyright © 2007–2012, Texas Instruments Incorporated MSP430F21x2 SLAS578J – NOVEMBER 2007 – REVISED JANUARY 2012 www.ti.com 10-Bit ADC, Power Supply and Input Range Conditions (1) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1) PARAMETER VCC VAx IADC10 IREF+ TEST CONDITIONS Analog supply voltage VSS = 0 V Analog input voltage range (2) All Ax terminals, Analog inputs selected in ADC10AE register ADC10 supply current (3) Reference supply current, reference buffer disabled (4) fADC10CLK = 5 MHz, ADC10ON = 1, REFON = 0, ADC10SHT0 = 1, ADC10SHT1 = 0, ADC10DIV = 0 fADC10CLK = 5 MHz, ADC10ON = 0, REF2_5V = 0, REFON = 1, REFOUT = 0 fADC10CLK = 5 MHz, ADC10ON = 0, REF2_5V = 1, REFON = 1, REFOUT = 0 TA I: -40°C to 85°C T: -40°C to 105°C MIN TYP MAX UNIT 2.2 3.6 V 0 VCC V 2.2 V 0.52 1.05 3V 0.6 1.2 2.2 V/3 V 0.25 0.4 I: -40°C to 85°C T: -40°C to 105°C fADC10CLK = 5 MHz ADC10ON = 0, REFON = 1, REF2_5V = 0, REFOUT = 1, ADC10SR = 0 -40°C to 85°C Reference buffer supply IREFB,1 current with ADC10SR = 1 (4) fADC10CLK = 5 MHz, ADC10ON = 0, REFON = 1, REF2_5V = 0, REFOUT = 1, ADC10SR = 1 -40°C to 85°C CI Input capacitance Only one terminal Ax selected at a time I: -40°C to 85°C T: -40°C to 105°C RI Input MUX ON resistance 0 V ≤ VAx ≤ VCC I: -40°C to 85°C T: -40°C to 105°C 105°C 105°C mA mA 3V Reference buffer supply IREFB,0 current with ADC10SR = 0 (4) (1) (2) (3) (4) VCC 0.25 0.4 1.1 1.4 2.2 V/3 V 1.8 0.5 2.2 V/3 V 2.2 V/3 V mA 0.7 0.8 mA 27 pF 2000 Ω The leakage current is defined in the leakage current table with Px.x/Ax parameter. The analog input voltage range must be within the selected reference voltage range VR+ to VR- for valid conversion results. The internal reference supply current is not included in current consumption parameter IADC10. The internal reference current is supplied via terminal VCC. Consumption is independent of the ADC10ON control bit, unless a conversion is active. The REFON bit enables the built-in reference. The reference voltage must be allowed to settle before an A/D conversion is started. Copyright © 2007–2012, Texas Instruments Incorporated Submit Documentation Feedback 43 MSP430F21x2 SLAS578J – NOVEMBER 2007 – REVISED JANUARY 2012 www.ti.com 10-Bit ADC, Built-In Voltage Reference over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER VCC,REF+ TEST CONDITIONS IVREF+ ≤ 1 mA, REF2_5V = 0 Positive built-in reference analog IVREF+ ≤ 0.5 mA, REF2_5V = 1 supply voltage range IVREF+ ≤ 1 mA, REF2_5V = 1 VREF+ Positive built-in reference voltage ILD,VREF+ Maximum VREF+ load current VREF+ load regulation 2.2 V/3 V 1.41 1.5 1.59 IVREF+ ≤ IVREF+max, REF2_5V = 1 3V 2.35 2.5 2.65 2.2 V ±0.5 3V ±1 IVREF+ = 500 µA ± 100 µA, Analog input voltage VAx ≈ 0.75 V, REF2_5V = 0 2.2 V/3 V ±2 IVREF+ = 500 µA ± 100 µA, Analog input voltage VAx ≈ 1.25 V, REF2_5V = 1 3V IVREF+ ≤ ±1 mA, REFON = 1, REFOUT = 1 TCREF+ Temperature coefficient IVREF+ = constant with 0 mA ≤ IVREF+ ≤ 1 mA (2) tREFON Settling time of internal reference voltage (3) IVREF+ = 0.5 mA, REF2_5V = 0, REFON = 0 to 1 44 UNIT V IVREF+ ≤ IVREF+max, REF2_5V = 0 Maximum capacitance at pin VREF+ (1) (2) (3) MAX 2.9 CVREF+ (1) TYP 2.8 IVREF+ = 100 µA to 900 µA, VAx ≈ 0.5 x VREF+, Error of conversion result ≤1 LSB Settling time of reference buffer (3) MIN 2.2 VREF+ load regulation response time tREFBURST VCC -40°C to 85°C -40°C to 105°C IVREF+ = 0.5 mA, REF2_5V = 0, REFON = 1, REFBURST = 1 ADC10SR = 0 IVREF+ = 0.5 mA, REF2_5V = 1, REFON = 1, REFBURST = 1 ADC10SR = 0 ADC10SR = 1 ADC10SR = 1 mA LSB ADC10SR = 0 ADC10SR = 1 V ±2 400 3V 2.2 V/3 V 2.2 V/3 V 3.6 V 2000 100 ±100 ±110 30 ns pF ppm/°C µs 1 2.2 V 2.5 2 3V µs 4.5 The capacitance applied to the internal buffer operational amplifier, if switched to terminal P2.4/TA2/A4/VREF+/VeREF+ (REFOUT = 1), must be limited; otherwise, the reference buffer may become unstable. Calculated using the box method: ((MAX(VREF(T)) -- MIN(VREF(T))) / MIN(VREF(T)) / (TMAX - TMIN) The condition is that the error in a conversion started after tREFON or tRefBuf is less than ±0.5 LSB. Submit Documentation Feedback Copyright © 2007–2012, Texas Instruments Incorporated MSP430F21x2 SLAS578J – NOVEMBER 2007 – REVISED JANUARY 2012 www.ti.com 10-Bit ADC, External Reference (1) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER VeREF+ TEST CONDITIONS Positive external reference input voltage range (2) MIN MAX VeREF+ > VeREF-, SREF1 = 1, SREF0 = 0 1.4 VCC VeREF- ≤ VeREF+ ≤ (VCC - 0.15 V), SREF1 = 1, SREF0 = 1 (3) 1.4 3 0 1.2 V 1.4 VCC V VeREF- Negative external reference input voltage range (4) VeREF+ > VeREF- ΔVeREF Differential external reference input voltage range ΔVeREF = VeREF+ - VeREF- VeREF+ > VeREF- (5) IVeREF+ IVeREF(1) (2) (3) (4) (5) 0 V ≤ VeREF+ ≤ VCC, SREF1 = 1, SREF0 = 0 Static input current into VeREF+ UNIT V ±1 0 V ≤ VeREF+ ≤ VCC - 0.15 V ≤ 3 V, SREF1 = 1, SREF0 = 1 (3) 0 V ≤ VeREF- ≤ VCC Static input current into VeREF- VCC µA 2.2 V/3 V 0 ±1 2.2 V/3 V µA The external reference is used during conversion to charge and discharge the capacitance array. The input capacitance, CI, is also the dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the recommendations on analog-source impedance to allow the charge to settle for 10-bit accuracy. The accuracy limits the minimum positive external reference voltage. Lower reference voltage levels may be applied with reduced accuracy requirements. Under this condition, the external reference is internally buffered. The reference buffer is active and requires the reference buffer supply current IREFB. The current consumption can be limited to the sample and conversion period with REBURST = 1. The accuracy limits the maximum negative external reference voltage. Higher reference voltage levels may be applied with reduced accuracy requirements. The accuracy limits the minimum external differential reference voltage. Lower differential reference voltage levels may be applied with reduced accuracy requirements. 10-Bit ADC, Timing Parameters over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS ADC10SR = 0 fADC10CLK ADC10 input clock frequency For specified performance of ADC10 linearity parameters fADC10OSC ADC10 built-in oscillator frequency ADC10DIVx = 0, ADC10SSELx = 0, fADC10CLK = fADC10OSC ADC10 built-in oscillator, ADC10SSELx = 0, fADC10CLK = fADC10OSC tCONVERT Conversion time tADC10ON Turn on settling time of the ADC (1) ADC10SR = 1 fADC10CLK from ACLK, MCLK or SMCLK, ADC10SSELx ≠ 0 See (1) VCC MIN TYP MAX 0.45 6.3 0.45 1.5 2.2 V/3 V 3.7 6.3 2.2 V/3 V 2.06 3.51 2.2 V/3 V 13 × ADC10DIVx × 1 / fADC10CLK 100 UNIT MHz MHz µs ns The condition is that the error in a conversion started after tADC10ON is less than ±0.5 LSB. The reference and input signal are already settled. Copyright © 2007–2012, Texas Instruments Incorporated Submit Documentation Feedback 45 MSP430F21x2 SLAS578J – NOVEMBER 2007 – REVISED JANUARY 2012 www.ti.com 10-Bit ADC, Linearity Parameters over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT EI Integral linearity error 2.2 V/3 V ±1 LSB ED Differential linearity error 2.2 V/3 V ±1 LSB EO Offset error 2.2 V/3 V ±1 LSB EG Gain error ET (1) Total unadjusted error Source impedance RS < 100 Ω SREFx = 010, unbuffered external reference, VeREF+ = 1.5 V 2.2 V ±1.1 ±2 SREFx = 010, unbuffered external reference, VeREF+ = 2.5 V 3V ±1.1 ±2 SREFx = 011, buffered external reference (1), VeREF+ = 1.5 V 2.2 V ±1.1 ±4 SREFx = 011, buffered external reference (1), VeREF+ = 2.5 V 3V ±1.1 ±3 SREFx = 010, unbuffered external reference, VeREF+ = 1.5 V 2.2 V ±2 ±5 SREFx = 010, unbuffered external reference, VeREF+ = 2.5 V 3V ±2 ±5 SREFx = 011, buffered external reference (1), VeREF+ = 1.5 V 2.2 V ±2 ±7 SREFx = 011, buffered external reference (1), VeREF+ = 2.5 V 3V ±2 ±6 TYP MAX 2.2 V 40 120 3V 60 160 LSB LSB The reference buffer offset adds to the gain and total unadjusted error. 10-Bit ADC, Temperature Sensor and Built-In VMID (1) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER ISENSOR Temperature sensor supply current (1) VCC REFON = 0, INCHx = 0Ah, ADC10ON = 1, TA = 25°C ADC10ON = 1, INCHx = 0Ah (2) TCSENSOR VOffset,Sensor TEST CONDITIONS Sensor offset voltage ADC10ON = 1, INCHx = 0Ah 2.2 V/3 V (2) Sensor output voltage (3) 3.55 -100 Temperature sensor voltage at TA = 105°C (T version only) VSENSOR MIN +100 1365 1465 1195 1295 1395 Temperature sensor voltage at TA = 25°C 985 1085 1185 Temperature sensor voltage at TA = 0°C 895 995 1095 2.2 V/3 V tSENSOR(sample) Sample time required if channel 10 is selected (4) ADC10ON = 1, INCHx = 0Ah, Error of conversion result ≤ 1 LSB IVMID Current into divider at channel 11 (4) ADC10ON = 1, INCHx = 0Bh VMID VCC divider at channel 11 ADC10ON = 1, INCHx = 0Bh, VMID ≈ 0.5 × VCC 2.2 V 1.06 1.1 1.14 3V 1.46 1.5 1.54 tVMID(sample) Sample time required if channel 11 is selected (5) ADC10ON = 1, INCHx = 0Bh, Error of conversion result ≤ 1 LSB 2.2 V 1400 3V 1220 (1) (2) (3) (4) (5) 46 2.2 V/3 V µA mV/°C 1265 Temperature sensor voltage at TA = 85°C UNIT mV mV µs 30 2.2 V N/A (4) 3V N/A (4) µA V ns The sensor current ISENSOR is consumed if (ADC10ON = 1 and REFON = 1) or (ADC10ON = 1 and INCH = 0Ah and sample signal is high). When REFON = 1, ISENSOR is included in IREF+.When REFON = 0, ISENSOR applies during conversion of the temperature sensor input (INCH = 0Ah). The following formula can be used to calculate the temperature sensor output voltage: VSensor,typ = TCSensor ( 273 + T [°C] ) + VOffset,sensor [mV] or VSensor,typ = TCSensor T [°C] + VSensor(TA = 0°C) [mV] Results based on characterization and/or production test, not TCSensor or VOffset,sensor. No additional current is needed. The VMID is used during sampling. The on time, tVMID(on), is included in the sampling time, tVMID(sample); no additional on time is needed. Submit Documentation Feedback Copyright © 2007–2012, Texas Instruments Incorporated MSP430F21x2 SLAS578J – NOVEMBER 2007 – REVISED JANUARY 2012 www.ti.com Flash Memory over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT VCC (PGM/ERASE) Program and erase supply voltage 2.2 3.6 V fFTG Flash timing generator frequency 257 476 kHz IPGM Supply current from VCC during program 2.2 V/3.6 V 1 5 mA IERASE Supply current from VCC during erase 2.2 V/3.6 V 1 7 mA 10 ms (1) tCPT Cumulative program time tCMErase Cumulative mass erase time 2.2 V/3.6 V 2.2 V/3.6 V 20 104 Program/erase endurance ms 105 cycles tRetention Data retention duration TJ = 25°C tWord Word or byte program time See (2) 30 tFTG tBlock, 0 Block program time for first byte or word See (2) 25 tFTG tBlock, 1-63 Block program time for each additional byte or word See (2) 18 tFTG Block program end-sequence wait time See (2) 6 tFTG Mass erase time See (2) 10593 tFTG See (2) 4819 tFTG tBlock, End tMass Erase tSeg Erase (1) (2) Segment erase time 100 years The cumulative program time must not be exceeded when writing to a 64-byte flash block. This parameter applies to all programming methods: individual word/byte write and block write modes. These values are hardwired into the flash controller's state machine (tFTG = 1/fFTG). RAM over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER V(RAMh) (1) RAM retention supply voltage (1) TEST CONDITIONS CPU halted MIN MAX UNIT 1.6 V This parameter defines the minimum supply voltage VCC when the data in RAM remains unchanged. No program execution should happen during this supply voltage condition. Copyright © 2007–2012, Texas Instruments Incorporated Submit Documentation Feedback 47 MSP430F21x2 SLAS578J – NOVEMBER 2007 – REVISED JANUARY 2012 www.ti.com JTAG and Spy-Bi-Wire Interface over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT fSBW Spy-Bi-Wire input frequency 2.2 V/3 V 0 20 MHz tSBW,Low Spy-Bi-Wire low clock pulse length 2.2 V/3 V 0.025 15 µs tSBW,En Spy-Bi-Wire enable time (TEST high to acceptance of first clock edge (1)) 2.2 V/3 V 1 µs tSBW,Ret Spy-Bi-Wire return to normal operation time 2.2 V/3 V 15 100 2.2 V 0 5 MHz 3V 0 10 MHz 2.2 V/3 V 25 90 kΩ fTCK TCK input frequency (2) RInternal Internal pulldown resistance on TEST (1) (2) 60 µs Tools accessing the Spy-Bi-Wire interface need to wait for the maximum tSBW,En time after pulling the TEST/SBWCLK pin high before applying the first SBWCLK clock edge. fTCK may be restricted to meet the timing requirements of the module selected. JTAG Fuse (1) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER VCC(FB) Supply voltage during fuse-blow condition VFB Voltage level on TEST for fuse blow IFB Supply current into TEST during fuse blow tFB Time to blow fuse (1) 48 TEST CONDITIONS TA = 25°C MIN MAX UNIT 2.5 6 V 7 V 100 mA 1 ms Once the fuse is blown, no further access to the JTAG/Test and emulation features is possible, and the JTAG block is switched to bypass mode. Submit Documentation Feedback Copyright © 2007–2012, Texas Instruments Incorporated MSP430F21x2 SLAS578J – NOVEMBER 2007 – REVISED JANUARY 2012 www.ti.com APPLICATION INFORMATION Port P1 Pin Schematic: P1.0, Input/Output With Schmitt Trigger Pad Logic P1REN.0 0 P1DIR.0 P1SEL2.0 0 from Comparator 1 0 DVCC 1 1 Direction 0: Input 1: Output 1 ADC10CLK DVSS 1 P1OUT.0 0 P1.0/TACLK/ ADC10CLK/CAOUT Bus Keeper EN P1SEL.0 P1IN.0 EN Module X IN D P1IE.x EN P1IRQ.0 Q Set P1IFG.x P1SEL.0 P1IES.0 Interrupt Edge Select Table 18. Port P1 (P1.0) Pin Functions PIN NAME (P1.x) x FUNCTION P1SEL.x P1SEL2.x I: 0, O: 1 0 0 Timer0_A3.TACLK, Timer1_A2.TACLK 0 1 0 ADC10CLK 1 1 0 CAOUT 1 1 1 P1.0 (I/O) P1.0/TACLK/ ADC10CLK/CAOUT 0 CONTROL BITS / SIGNALS P1DIR.x Copyright © 2007–2012, Texas Instruments Incorporated Submit Documentation Feedback 49 MSP430F21x2 SLAS578J – NOVEMBER 2007 – REVISED JANUARY 2012 www.ti.com Port P1 Pin Schematic: P1.1 to P1.3, Input/Output With Schmitt Trigger Pad Logic P1REN.x 0 P1DIR.x 1 P1OUT.x 0 0 DVCC 1 1 Direction 0: Input 1: Output 1 Timer0_A3 output DVSS P1.1/TA0_0/TA0_1 P1.2/TA1_0 P1.3/TA2_0 Bus Keeper P1SEL.x EN P1IN.x EN Module X IN D P1IE.x P1IRQ.x EN Q Set P1IFG.x P1SEL.x Interrupt Edge Select P1IES.x Table 19. Port P1 (P1.1 to P1.3) Pin Functions PIN NAME (P1.x) x FUNCTION P1DIR.x P1SEL.x P1SEL2.x I: 0; O: 1 0 0 Timer0_A3.CCI0A, Timer1_A2.CCI0A 0 1 0 Timer0_A3.TA0 1 1 0 I: 0; O: 1 0 0 Timer0_A3.CCI1A 0 1 0 Timer0_A3.TA1 1 1 0 I: 0; O: 1 0 0 Timer0_A3.CCI2A 0 1 0 Timer0_A3.TA2 1 1 0 P1.1 (I/O) P1.1/TA0.0/TA1.0 1 P1.2 (I/O) P1.2/TA0.1 2 P1.3 (I/O) P1.3/TA0.2 50 3 CONTROL BITS / SIGNALS Submit Documentation Feedback Copyright © 2007–2012, Texas Instruments Incorporated MSP430F21x2 SLAS578J – NOVEMBER 2007 – REVISED JANUARY 2012 www.ti.com Port P1 Pin Schematic: P1.4 P1REN.4 Pad Logic P1DIR.4 0 1 P1OUT.x 0 0 DVCC 1 1 Direction 0: Input 1: Output 1 SMCLK DVSS P1.4/SMCLK/TCK Bus Keeper EN P1SEL.4 P1IN.4 EN Module X IN D P1IE.x P1IRQ.4 EN Q Set P1IFG.x P1SEL.x P1IES.x Interrupt Edge Select To JTAG From JTAG Table 20. Port P1 (P1.4) Pin Functions CONTROL BITS / SIGNALS (1) PIN NAME (P1.x) x FUNCTION P1.4 (I/O) P1.4/SMCLK/TCK (1) (2) 4 P1DIR.x P1SEL.x P1SEL2.x=0 JTAG Mode I: 0; O: 1 0 0 SMCLK 1 1 0 TCK (2) X X 1 X = Don't care In JTAG mode, the internal pullup/pulldown resistors are disabled. Copyright © 2007–2012, Texas Instruments Incorporated Submit Documentation Feedback 51 MSP430F21x2 SLAS578J – NOVEMBER 2007 – REVISED JANUARY 2012 www.ti.com Port P1 Pin Schematic: P1.5 to P1.7 P1REN.x Pad Logic P1DIR.x 0 1 P1OUT.x 0 0 DVCC 1 1 Direction 0: Input 1: Output 1 Module X Out DVSS P1.5/TA0.0/TMS P1.6/TA0.1/TCLK P1.7/TA0.2/TDO/TDI Bus Keeper EN P1SEL.x P1IN.x EN Module X In D P1IE.x EN P1IRQ.x Q Set P1IFG.x P1SEL.x Interrupt Edge Select P1IES.x To JTAG From JTAG Table 21. Port P1 (P1.5 to P1.7) Pin Functions CONTROL BITS / SIGNALS (1) PIN NAME (P1.x) x FUNCTION P1.5 (I/O) P1.5/TA0.0/TMS 5 6 (1) (2) 52 7 JTAG Mode I: 0; O: 1 0 0 1 1 0 TMS (2) X X 1 I: 0; O: 1 0 0 Timer0_A3.TA1 1 1 0 TDI/TCLK (2) X X 1 I: 0; O: 1 0 0 Timer0_A3.TA2 1 1 0 TDO/TDI (2) X X 1 P1.6 (I/O) P1.7/TA0.2/TDO/TDI P1SEL.x P1SEL2.x=0 Timer0_A3.TA0 P1.6 (I/O) P1.6/TA0.1/TDI/TCLK P1DIR.x X = Don't care In JTAG mode, the internal pullup/pulldown resistors are disabled. Submit Documentation Feedback Copyright © 2007–2012, Texas Instruments Incorporated MSP430F21x2 SLAS578J – NOVEMBER 2007 – REVISED JANUARY 2012 www.ti.com Port P2 Pin Schematic: P2.0 and P2.1, Input/Output With Schmitt Trigger Pad Logic To ADC10 INCHx = y To Comparator_A From Comparator_A CAPD.x ADC10AE0.y P2REN.x DVSS 0 DVCC 1 1 P2DIR.x 0 Direction 0: Input 1: Output 1 P2OUT.x 0 Module X OUT 1 P2.0/ACLK/A0/CA2 P2.1/TAINCLK/ SMCLK/A1/CA3 Bus Keeper EN P2SEL.x P2IN.x EN Module X IN D P2IE.x P2IRQ.x EN Q P2IFG.x P2SEL.x P2IES.x Set Interrupt Edge Select Table 22. Port P2 (P2.0 and P2.1) Pin Functions CONTROL BITS / SIGNALS (1) PIN NAME (P2.x) P2.0/ACLK/A0/CA2 P2.1/TAINCLK/ SMCLK/A1/CA3 (1) x 0 1 FUNCTION ADC10AE0.y CAPD.x P2DIR.x P2SEL.x P2SEL2.x = 0 P2.0 (I/O) 0 0 I: 0; O: 1 0 ACLK 0 0 1 1 A0 1 0 X X CA2 0 1 X X P2.1 (I/O) 0 0 I: 0; O: 1 0 Timer0_A3.TAINCLK, Timer1_A2.TAINCLK 0 0 0 1 SMCLK 0 0 1 1 A1 1 0 X X CA3 0 1 X X X = Don't care Copyright © 2007–2012, Texas Instruments Incorporated Submit Documentation Feedback 53 MSP430F21x2 SLAS578J – NOVEMBER 2007 – REVISED JANUARY 2012 www.ti.com Port P2 Pin Schematic: P2.2, Input/Output With Schmitt Trigger Pad Logic To ADC10 INCHx = y To Comparator_A From Comparator_A CAPD.x ADC10AE0.y P2REN.x DVSS 0 DVCC 1 1 P2DIR.2 0 P2SEL2.2 1 Module output 0 From Comparator 1 Direction 0: Input 1: Output 1 0 P2OUT.2 P2.2/TA0.0/A2/CA4/CAOUT Bus Keeper EN P2SEL.2 P2IN.2 EN Module X IN D P2IE.x EN P2IRQ.2 Q Set P2IFG.x P2SEL.x Interrupt Edge Select P2IES.x Table 23. Port P2 (P2.2) Pin Functions PIN NAME (P2.x) P2.2/TA0.0/A2/CA4/CAOUT (1) 54 x 2 FUNCTION CONTROL BITS / SIGNALS (1) ADC10AE0.x CAPD.x P2DIR.x P2SEL.x P2SEL2.x P2.0 (I/O) 0 0 I: 0; O: 1 0 0 Timer0_A3.TA0 0 0 1 1 0 Timer0_A3.CCI0B 0 0 0 1 0 A2 1 0 X X X CA4 0 1 X X X CAOUT 0 0 1 1 1 X = Don't care Submit Documentation Feedback Copyright © 2007–2012, Texas Instruments Incorporated MSP430F21x2 SLAS578J – NOVEMBER 2007 – REVISED JANUARY 2012 www.ti.com Port P2 Pin Schematic: P2.3 and P2.4, Input/Output With Schmitt Trigger Pad Logic To/from ADC10 Reference To ADC10 INCHx = y To Comparator_A From Comparator_A CAPD.x ADC10AE0.y P2REN.x DVSS 0 DVCC 1 1 P2DIR.x 0 Direction 0: Input 1: Output 1 P2OUT .x Module X OUT 0 1 P2.3/TA0.1/A3/ VREF−/VeREF−/CA0 Bus Keeper EN P2SEL.x P2IN.x P2.4/TA0.2/A4/ VREF+/VeREF+/CA1 EN Module X IN D P2IE.x P2IRQ.x EN Q Set P2IFG.x P2SEL.x Interrupt Edge Select P2IES.x Table 24. Port P2 (P2.3 and P2.4) Pin Functions CONTROL BITS / SIGNALS (1) PIN NAME (P2.x) P2.3/TA0.1/A3/ VREF-/VeREF-/CA0 (1) x 3 FUNCTION ADC10AE0.y CAPD.x P2DIR.x P2SEL.x P2SEL2.x = 0 P2.3 (I/O) 0 0 I: 0; O: 1 0 Timer0_A3.TA1 0 0 1 1 A3/VREF-/VeREF- 1 0 X X CA0 0 1 X X X = Don't care Copyright © 2007–2012, Texas Instruments Incorporated Submit Documentation Feedback 55 MSP430F21x2 SLAS578J – NOVEMBER 2007 – REVISED JANUARY 2012 www.ti.com Table 24. Port P2 (P2.3 and P2.4) Pin Functions (continued) CONTROL BITS / SIGNALS (1) PIN NAME (P2.x) P2.4/TA0.2/A4/ VREF+/VeREF+/CA1 56 x 4 FUNCTION ADC10AE0.y CAPD.x P2DIR.x P2SEL.x P2SEL2.x = 0 P2.4 (I/O) 0 0 I: 0; O: 1 0 Timer0_A3.TA2 0 0 1 1 A4/VREF+/VeREF+ 1 0 X X CA1 0 1 X X Submit Documentation Feedback Copyright © 2007–2012, Texas Instruments Incorporated MSP430F21x2 SLAS578J – NOVEMBER 2007 – REVISED JANUARY 2012 www.ti.com Port P2 Pin Schematic: P2.5, Input/Output With Schmitt Trigger Pad Logic To Comparator From Comparator CAPD.x To DCO DCOR in DCO P2REN.x P2DIR.5 0 P2OUT.5 0 1 0 DVCC 1 1 Direction 0: Input 1: Output 1 Module X OUT DVSS P2.5/ROSC/CA5 Bus Keeper EN P2SEL.x P2IN.5 EN Module X IN D P2IE.5 P2IRQ.5 EN Q P2IFG.5 P2SEL.5 P2IES.5 Set Interrupt Edge Select Table 25. Port P2 (P2.5) Pin Functions CONTROL BITS / SIGNALS (1) PIN NAME (P2.x) P2.5/ROSC/CA5 (1) (2) x 5 FUNCTION P2SEL.5 P2SEL2.x = 0 CAPD.5 DCOR P2DIR.5 P2.5 (I/O) 0 0 I: 0, O: 1 0 ROSC 0 1 X X DVSS 0 0 1 1 CA5 (2) 1 0 X X X = Don't care Setting the CAPD.x bit disables the output driver as well as the input to prevent parasitic cross currents when applying analog signals. Selecting the CAx input to the comparator multiplexer with the P2CAx bits automatically disables the input buffer for that pin, regardless of the state of the associated CAPD.x bit. Copyright © 2007–2012, Texas Instruments Incorporated Submit Documentation Feedback 57 MSP430F21x2 SLAS578J – NOVEMBER 2007 – REVISED JANUARY 2012 www.ti.com Port P2 Pin Schematic: P2.6, Input/Output With Schmitt Trigger BCSCTL3.LFXT1Sx = 11 P2.7/XOUT/CA7 LFXT1 off 0 LFXT1CLK 1 Pad Logic To Comparator From Comparator P2SEL.7 CAPD.6 P2REN.6 P2DIR.6 0 0 Module X OUT 1 0 1 1 Direction 0: Input 1: Output 1 P2OUT.6 DVSS DVCC P2.6/XIN/CA6 Bus Keeper EN P2SEL.6 P2IN.6 EN Module X IN D P2IE.6 P2IRQ.6 EN Q P2IFG.6 P2SEL.6 P2IES.6 Set Interrupt Edge Select Table 26. Port P2 (P2.6) Pin Functions CONTROL BITS / SIGNALS (1) PIN NAME (P2.x) P2.6/XIN/CA6 (1) (2) 58 x 6 FUNCTION CAPD.6 P2DIR.6 P2SEL.6 P2SEL2.x = 0 P2.6 (I/O) 0 I: 0; O: 1 0 XIN (default) X 1 1 CA6 (2) 1 X 0 X = Don't care Setting the CAPD.x bit disables the output driver as well as the input to prevent parasitic cross currents when applying analog signals. Selecting the CAx input to the comparator multiplexer with the P2CAx bits automatically disables the input buffer for that pin, regardless of the state of the associated CAPD.x bit. Submit Documentation Feedback Copyright © 2007–2012, Texas Instruments Incorporated MSP430F21x2 SLAS578J – NOVEMBER 2007 – REVISED JANUARY 2012 www.ti.com Port P2 Pin Schematic: P2.7, Input/Output With Schmitt Trigger BCSCTL3.LFXT1Sx = 11 P2.6/XIN/CA6 LFXT1 off 0 LFXT1CLK From P2.6/XIN 1 Pad Logic To Comparator From Comparator P2SEL.6 CAPD.7 P2REN.7 P2DIR.7 0 0 Module X OUT 1 0 1 1 Direction 0: Input 1: Output 1 P2OUT.7 DVSS DVCC P2.7/XOUT/CA7 Bus Keeper EN P2SEL.7 P2IN.7 EN Module X IN D P2IE.7 P2IRQ.7 EN Q P2IFG.7 Set Interrupt Edge Select P2SEL.7 P2IES.7 Table 27. Port P2 (P2.7) Pin Functions CONTROL BITS / SIGNALS (1) PIN NAME (P2.x) P2.7/XOUT/CA7 (1) (2) x 7 FUNCTION CAPD.7 P2DIR.7 P2SEL.7 P2SEL2.x = 0 P2.7 (I/O) 0 I: 0, O: 1 0 XOUT (default) X 1 1 CA7 (2) 1 X 0 X = Don't care Setting the CAPD.x bit disables the output driver as well as the input to prevent parasitic cross currents when applying analog signals. Selecting the CAx input to the comparator multiplexer with the P2CAx bits automatically disables the input buffer for that pin, regardless of the state of the associated CAPD.x bit. Copyright © 2007–2012, Texas Instruments Incorporated Submit Documentation Feedback 59 MSP430F21x2 SLAS578J – NOVEMBER 2007 – REVISED JANUARY 2012 www.ti.com Port P3 Pin Schematic: P3.0, Input/Output With Schmitt Trigger Pad Logic To ADC10 INCHx = y ADC10AE0.y P3REN.x P3DIR.x Module direction 0 P3OUT.x 0 Module X OUT 1 1 DVSS 0 DVCC 1 1 Direction 0: Input 1: Output P3.0/UCB0STE/ UCA0CLK/A5 Bus Keeper EN P3SEL.x P3IN.x Table 28. Port P3 (P3.0) Pin Functions CONTROL BITS / SIGNALS (1) PIN NAME (P3.x) P3.0/UCB0STE/ UCA0CLK/A5 (1) (2) 60 x 0 FUNCTION ADC10AE0.y P3DIR.x P3SEL.x P3SEL2.x = 0 P3.0 (I/O) 0 I: 0; O: 1 0 UCB0STE/UCA0CLK (2) 0 X 1 A5 (2) 1 X X X = Don't care The pin direction is controlled by the USCI module. Submit Documentation Feedback Copyright © 2007–2012, Texas Instruments Incorporated MSP430F21x2 SLAS578J – NOVEMBER 2007 – REVISED JANUARY 2012 www.ti.com Port P3 Pin Schematic: P3.1 to P3.5, Input/Output With Schmitt Trigger Pad Logic P3REN.x P3DIR.x Module direction 0 P3OUT.x 0 Module X OUT 1 DVSS 0 DVCC 1 1 Direction 0: Input 1: Output 1 P3.1/UCB0SIMO/UCB0SDA P3.2/UCB0SOMI/UCB0SCL P3.3/UCB0CLK/UCA0STE P3.4/UCA0TXD/UCA0SIMO P3.5/UCA0RXD/UCA0SOMI Bus Keeper EN P3SEL.x P3IN.x EN Module X IN D Table 29. Port P3 (P3.1 to P3.5) Pin Functions PIN NAME (P3.x) P3.1/UCB0SIMO/ UCB0SDA P3.2/UCB0SOMI/ UCB0SCL P3.3/UCB0CLK/ UCA0STE P3.4/UCA0TXD/ UCA0SIMO P3.5/UCA0RXD/ UCA0SOMI (1) (2) (3) x 1 2 3 4 5 FUNCTION P3.1 (I/O) UCB0SIMO/UCB0SDA (2) (3) P3.2 (I/O) UCB0SOMI/UCB0SCL (2) (3) P3.3 (I/O) UCB0CLK/UCA0STE (2) P3.4 (I/O) UCA0TXD/UCA0SIMO (2) P3.5 (I/O) UCA0RXD/UCA0SOMI (2) CONTROL BITS / SIGNALS (1) P3DIR.x P3SEL.x I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 X = Don't care The pin direction is controlled by the USCI module. If the I2C functionality is selected, the output drives only the logical 0 to VSS level. Copyright © 2007–2012, Texas Instruments Incorporated Submit Documentation Feedback 61 MSP430F21x2 SLAS578J – NOVEMBER 2007 – REVISED JANUARY 2012 www.ti.com Port P3 Pin Schematic: P3.6 and P3.7, Input/Output With Schmitt Trigger Pad Logic To ADC10 INCHx = y ADC10AE0.y P3REN.x 0 P3DIR.x P3OUT.x 0 1 0 DVCC 1 Direction 0: Input 1: Output 1 Module X OUT DVSS P3.6/TA0_1/A6 P3.7/TA1_1/A7 Bus Keeper EN P3SEL.x P3IN.x Table 30. Port P3 (P3.6 and P3.7) Pin Functions PIN NAME (P3.x) P3.6/TA1.0/A6 P3.7/TA1.1/A7 (1) 62 x 6 7 FUNCTION CONTROL BITS / SIGNALS (1) ADC10AE0.y P3DIR.x P3SEL.x P3.6 (I/O) 0 I: 0; O: 1 0 Timer1_A2.TA0 0 1 1 Timer1_A2.CCI0B 0 0 1 A6 1 X X P3.7 (I/O) 0 I: 0; O: 1 0 Timer1_A2.TA1 0 1 1 Timer1_A2.CCI1A 0 0 1 A7 1 X X X = Don't care Submit Documentation Feedback Copyright © 2007–2012, Texas Instruments Incorporated MSP430F21x2 SLAS578J – NOVEMBER 2007 – REVISED JANUARY 2012 www.ti.com JTAG Fuse Check Mode MSP430 devices that have the fuse on the TEST terminal have a fuse check mode that tests the continuity of the fuse the first time the JTAG port is accessed after a power-on reset (POR). When activated, a fuse check current, ITF , of 1 mA at 3 V, 2.5 mA at 5 V can flow from the TEST pin to ground if the fuse is not burned. Care must be taken to avoid accidentally activating the fuse check mode and increasing overall system power consumption. When the TEST pin is again taken low after a test or programming session, the fuse check mode and sense currents are terminated. Activation of the fuse check mode occurs with the first negative edge on the TMS pin after power up or if TMS is being held low during power up. The second positive edge on the TMS pin deactivates the fuse check mode. After deactivation, the fuse check mode remains inactive until another POR occurs. After each POR the fuse check mode has the potential to be activated. The fuse check current flows only when the fuse check mode is active and the TMS pin is in a low state (see Figure 31). Therefore, the additional current flow can be prevented by holding the TMS pin high (default condition). Time TMS Goes Low After POR TMS ITF ITEST Figure 31. Fuse Check Mode Current NOTE The CODE and RAM data protection is ensured if the JTAG fuse is blown and the 256-bit bootloader access key is used. Also, see the Bootstrap Loader section for more information. Copyright © 2007–2012, Texas Instruments Incorporated Submit Documentation Feedback 63 MSP430F21x2 SLAS578J – NOVEMBER 2007 – REVISED JANUARY 2012 www.ti.com REVISION HISTORY LITERATURE NUMBER SUMMARY SLAS578 Product Preview data sheet release SLAS578A Production Data data sheet release SLAS578B Corrected timer pin names throughout: TA0_0 changed to TA0.0, TA0_1 changed to TA1.0, TA1_0 changed to TA0.1, TA2_0 changed to TA0.2, TA1_1 changed to TA1.1 Added development tool information (page 2). SLAS578C Corrected TAG_ADC10_1 value from 0x10 to 0x08 (page 14). Corrected all address offsets in Labels Used By The ADC Calibration Tags table (page 14). Changed JTAG fuse check mode section (page 73). Corrected parametric values in active mode supply current (into VCC) excluding external current table (page 20). SLAS578D Corrected parametric values and temperature ranges in low-power mode supply currents (into VCC) excluding external current table (page 22). SLAS578E Corrected TAx.y pin names on RHB pinout drawing (page 3). Changed TDI/TCLK to TEST in Note 2 of absolute maximum ratings table (page 19). SLAS578F Changed lower limit of Storage temperature, Programmed device from -40°C to -55°C in absolute maximum ratings table (page 19). In the Labels Used By The ADC Calibration Tags table, changed the Address Offset of CAL_ADC_15T30 from 0x0006 to 0x0008 and the Address Offset of CAL_ADC_15VREF_FACTOR from 0x0005 to 0x0006 (page 14). Changed TDI/TCLK to TEST in the Parameter description for IFB in the JTAG fuse table (page 52). Updated Port P1 pin schematic: P1.0, input/output with Schmitt trigger (page 53). Updated Port P1 pin schematic: P1.1 to P1.3, input/output with Schmitt trigger (page 54). Updated Port P1 (P1.1 to P1.3) pin functions table (page 54). SLAS578G Removed Timer0_A3.CCU0B row from Port P1 (P1.5 to P1.7) pin functions table (page 56). Updated Port P3 pin schematic: P3.1 to P3.5, input/output with Schmitt trigger (page 69). Removed P3SEL2.x = 0 from Port P3 (P3.1 to P3.5) pin functions table header row (page 69). Removed P3SEL2 = 0 from Port P3 (P3.6 and P3.7) pin functions table header row (page 70). Removed JTAG pins: TMS, TCK, TDI/TCLK, TDO/TDI, input/output with Schmitt trigger (page 71). Updated JTAG fuse check mode section (page 72). SLAS578H Corrected schematic drawings for Port 1 and Port 2 (pages 54, 55, 56, 59, 61) Add information for RTV package options SLAS578I Changed Storage temperature range limit in Absolute Maximum Ratings SLAS578J Changed note (4) on 10-Bit ADC, Power Supply and Input Range Conditions. 64 Submit Documentation Feedback Copyright © 2007–2012, Texas Instruments Incorporated PACKAGE OPTION ADDENDUM www.ti.com 10-Dec-2020 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) (6) MSP430F2112IPW ACTIVE TSSOP PW 28 50 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 85 M430F2112 MSP430F2112IPWR ACTIVE TSSOP PW 28 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 85 M430F2112 MSP430F2112IRHBR ACTIVE VQFN RHB 32 3000 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 85 MSP430 F2112 MSP430F2112IRHBT ACTIVE VQFN RHB 32 250 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 105 MSP430 F2112 MSP430F2112TPW ACTIVE TSSOP PW 28 50 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 105 430F2112T MSP430F2112TPWR ACTIVE TSSOP PW 28 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 105 430F2112T MSP430F2112TRHBR ACTIVE VQFN RHB 32 3000 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 105 MSP430 F2112T MSP430F2112TRHBT ACTIVE VQFN RHB 32 250 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 105 MSP430 F2112T MSP430F2122IPW ACTIVE TSSOP PW 28 50 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 85 M430F2122 MSP430F2122IPWR ACTIVE TSSOP PW 28 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 85 M430F2122 MSP430F2122IRHBR ACTIVE VQFN RHB 32 3000 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 85 MSP430 F2122 MSP430F2122IRHBT ACTIVE VQFN RHB 32 250 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 85 MSP430 F2122 MSP430F2122TPW ACTIVE TSSOP PW 28 50 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 105 430F2122T MSP430F2122TPWR ACTIVE TSSOP PW 28 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 105 430F2122T MSP430F2122TRHBR ACTIVE VQFN RHB 32 3000 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 105 MSP430 F2122T MSP430F2122TRHBT ACTIVE VQFN RHB 32 250 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 105 MSP430 F2122T MSP430F2122TRTVT ACTIVE WQFN RTV 32 250 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 105 MSP430 F2122T MSP430F2132IPW ACTIVE TSSOP PW 28 50 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 85 M430F2132 Addendum-Page 1 Samples PACKAGE OPTION ADDENDUM www.ti.com Orderable Device 10-Dec-2020 Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) (6) MSP430F2132IPWR ACTIVE TSSOP PW 28 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 85 M430F2132 MSP430F2132IRHBR ACTIVE VQFN RHB 32 3000 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 85 MSP430 F2132 MSP430F2132IRHBT ACTIVE VQFN RHB 32 250 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 85 MSP430 F2132 MSP430F2132IRTVT ACTIVE WQFN RTV 32 250 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 85 MSP430 F2132 MSP430F2132TPW ACTIVE TSSOP PW 28 50 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 105 430F2132T MSP430F2132TPWR ACTIVE TSSOP PW 28 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 105 430F2132T MSP430F2132TRHBR ACTIVE VQFN RHB 32 3000 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 105 MSP430 F2132T MSP430F2132TRHBT ACTIVE VQFN RHB 32 250 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 105 MSP430 F2132T (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
MSP430F2122TPWR 价格&库存

很抱歉,暂时无法提供与“MSP430F2122TPWR”相匹配的价格&库存,您可以联系我们找货

免费人工找货
MSP430F2122TPWR
  •  国内价格
  • 1+26.49240
  • 10+23.02560
  • 30+20.96280
  • 100+18.86760
  • 500+17.90640

库存:0

MSP430F2122TPWR
    •  国内价格
    • 1+17.08560

    库存:0