0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MSP430F4132IPMR

MSP430F4132IPMR

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    LQFP-64

  • 描述:

    IC MCU 16BIT 8KB FLASH 64LQFP

  • 数据手册
  • 价格&库存
MSP430F4132IPMR 数据手册
MSP430F41x2 MIXED SIGNAL MICROCONTROLLER SLAS648E -- APRIL 2009 -- REVISED MARCH 2011 D Low Supply-Voltage Range, 1.8 V to 3.6 V D Ultralow Power Consumption D D D D D D D Active Mode: 220 A at 1 MHz, 2.2 V Standby Mode: 0.9 A Off Mode (RAM Retention): 0.1 A Five Power-Saving Modes Wake-Up From Standby Mode in Less Than 6 s -- Internal Very Low Power, Low-Frequency Oscillator 16-Bit RISC Architecture, 125-ns Instruction Cycle Time 16-Bit Timer_A With Three Capture/Compare Registers 16-Bit Timer_A With Five Capture/Compare Registers Two Universal Serial Communication Interfaces (USCIs) USCI_A0 -- Enhanced UART Supporting Auto-Baudrate Detection -- IrDA Encoder and Decoder -- Synchronous SPI USCI_B0 -- I2C -- Synchronous SPI Supply Voltage Supervisor/Monitor With Programmable Level Detection D Integrated LCD Driver With Contrast D D D D D D D D D D Control for Up to 144 Segments Basic Timer With Real Time Clock Feature Brownout detector On-Chip Comparator for Analog Signal Compare Function or Slope A/D 10-Bit 200-ksps Analog-to-Digital (A/D) Converter With Internal Reference, Sample-and-Hold, Autoscan, and Data Transfer Controller Serial Onboard Programming, No External Programming Voltage Needed Programmable Code Protection by Security Fuse Bootstrap Loader On-Chip Emulation Module Family Members Include: MSP430F4152: 16KB+256B Flash Memory 512B RAM MSP430F4132: 8KB+256B Flash Memory 512B RAM Available in 64-Pin QFP Package and 48-Pin QFN Package (See Available Options) For Complete Module Descriptions, See The MSP430x4xx Family User’s Guide, Literature Number SLAU056 description The Texas Instruments MSP430 family of ultralow-power microcontrollers consist of several devices featuring different sets of peripherals targeted for various applications. The architecture, combined with five low power modes, is optimized to achieve extended battery life in portable measurement applications. The device features a powerful 16-bit RISC CPU, 16-bit registers, and constant generator that contribute to maximum code efficiency. The digitally controlled oscillator (DCO) allows wake-up from low-power modes to active mode in less than 6 s. The MSP430F41x2 is a microcontroller configuration with two 16-bit timers, a basic timer with a real--time clock, a 10-bit A/D converter, a versatile analog comparator, two universal serial communication interfaces, up to 48 I/O pins, and a liquid crystal display driver. Typical applications for this device include analog and digital sensor systems, remote controls, thermostats, digital timers, hand-held meters, etc. This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. These devices have limited built-in ESD protection. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Copyright  2011, Texas Instruments Incorporated PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. POST OFFICE BOX 655303  DALLAS, TEXAS 75265 1 MSP430F41x2 MIXED SIGNAL MICROCONTROLLER SLAS648E -- APRIL 2009 -- REVISED MARCH 2011 AVAILABLE OPTIONS† PACKAGED DEVICES‡ TA --40C to 85C PLASTIC 64-PIN QFP (PM) PLASTIC 48-PIN QFN (RGZ) MSP430F4152IPM MSP430F4132IPM MSP430F4152IRGZ MSP430F4132IRGZ † For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com. ‡ Package drawings, thermal data, and symbolization are available at www.ti.com/packaging. DEVELOPMENT TOOL SUPPORT All MSP430 microcontrollers include an Embedded Emulation Module (EEM) allowing advanced debugging and programming through easy to use development tools. Recommended hardware options include the following: D Debugging and Programming Interface -- MSP-FET430UIF (USB) -- MSP-FET430PIF (Parallel Port) D Debugging and Programming Interface with Target Board -- MSP-FET430U64A (PM package) D Production Programmer -- 2 MSP-GANG430 POST OFFICE BOX 655303  DALLAS, TEXAS 75265 MSP430F41x2 MIXED SIGNAL MICROCONTROLLER SLAS648E -- APRIL 2009 -- REVISED MARCH 2011 AVCC P6.0/TA1.2/A2/CA4 AVSS P7.5/TA1.3/A1/CA3 P7.4/TA1.4/A0/CA2 TEST/SBWTCLK RST/NMI/SBWTDIO P7.3/TCK/S35 P7.2/TMS/S34 P7.1/TDI/TCLK/S33 P7.0/TDO/TDI/S32 P1.0/TA0.0/S31 P1.1/TA0.0/MCLK/S30 P1.2/TA0.1/S29 P1.3/TA1.0/SVSOUT/S28 P1.4/TA1.0/S27 pin designation, MSP430F41x2IPM (QFP) 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 64-pin PM PACKAGE (TOP VIEW) 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 P1.5/TA0CLK/CAOUT/S26 P1.6/ACLK/CA0 P1.7/TA0CLK/CAOUT/CA1 P7.6/TA0.2/S25 P5.0/TA1.1/S24 R33/LCDCAP P5.1/R23 P5.2/R13/LCDREF P5.3/R03 P5.4/COM3 P5.5/COM2 P5.6/COM1 P5.7/COM0 P3.0/TA1.2/S23 P3.1/TA1.3/S22 P3.2/TA1.4/S21 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 P4.2/S5 P4.1/S6 P4.0/S7 P2.7/S8 P2.6/S9 P2.5/S10 P2.4/S11 P2.3/TA1.4/S12 P2.2/TA1.3/S13 P2.1/TA1.2/S14 P2.0/TA1.1/S15 P3.7/S16 P3.6/S17 P3.5/S18 P3.4/CAOUT/S19 P3.3/TA0.0/TA1CLK/S20 P6.1/UCB0SOMI/UCB0SCL P6.2/UCB0SIMO/UCB0SDA P6.3/UCB0STE/UCA0CLK/A3/CA5/VeREF-/VREFP6.4/UCB0CLK/UCA0STE/A4/CA6/VeREF+/VREF+ P6.5/UCA0RXD/UCA0SOMI/A5 P6.6/UCA0TXD/UCA0SIMO/A6 DVCC XIN XOUT DVSS P6.7/A7/CA7/SVSIN P4.7/ADC10CLK/S0 P4.6/S1 P4.5/S2 P4.4/S3 P4.3/S4 POST OFFICE BOX 655303  DALLAS, TEXAS 75265 3 MSP430F41x2 MIXED SIGNAL MICROCONTROLLER SLAS648E -- APRIL 2009 -- REVISED MARCH 2011 P7.0/TDO/TDI/S32 P1.0/TA0.0/S31 P7.1/TDI/TCLK/S33 P7.2/TMS/S34 P7.3/TCK/S35 TEST/SBWTCLK RST/NMI/SBWTDIO P7.4/TA1.4/A0/CA2 AVSS P7.5/TA1.3/A1/CA3 P6.0/TA1.2/A2/CA4 AVCC pin designation, MSP430F41x2IRGZ (QFN)† 48 47 46 45 44 43 42 41 40 39 38 37 P6.1 1 36 P1.1/TA0.0/MCLK/S30 P6.2 2 35 P1.5/TA0CLK/CAOUT/S26 DVCC 3 34 P1.6/ACLK/CA0 XIN 4 33 P1.7/TA0CLK/CAOUT/CA1 XOUT 5 6 32 31 R33/LCDCAP 30 29 P5.2/R13/LCDREF P5.3/R03 DVSS P6.7/A7/CA7/SVSIN P4.7/ADC10CLK/S0 7 48-pin RGZ PACKAGE (TOP VIEW) 8 P4.6/S1 9 28 P5.4/COM3 P4.5/S2 10 27 P5.5/COM2 P4.4/S3 11 26 P5.6/COM1 P4.3/S4 12 25 P5.7/COM0 4 P3.4/CAOUT/S19 P2.0/TA1.1/S15 P2.1/TA1.2/S14 P2.2/TA1.3/S13 P2.3/TA1.4/S12 P2.4/S11 P2.6/S9 P2.5/S10 P2.7/S8 P4.0/S7 P4.1/S6 P4.2/S5 13 14 15 16 17 18 19 20 21 22 23 24 † P5.1/R23 “Not available” pins in the 48-pin package should be initialized to output direction. POST OFFICE BOX 655303  DALLAS, TEXAS 75265 MSP430F41x2 MIXED SIGNAL MICROCONTROLLER SLAS648E -- APRIL 2009 -- REVISED MARCH 2011 functional block diagram XIN XOUT DVCC DVSS AVCC AVSS P1.x/P2.x 2x8 P3.x/P4.x 2x8 P5.x/P6.x P7.x 1x7 2x8 ACLK Oscillators FLL+ VLO ADC10 SMCLK Flash RAM 16kB 8kB 512B 512B Brownout Protection LCD_A 144 Segments 1,2,3,4 Mux MCLK CPU 64kB MAB incl. 16 Registers MDB EEM JTAG Interface SVS, SVM 10--bit 8 Channels Autoscan DTC Comparator _A+ USCI A0 UART/ LIN, IrDA, SPI USCI B0 SPI, I2C Watchdog WDT+ 15--Bit Ports P1/P2 2x8 I/O Interrupt capability Ports P3/P4 Ports P5/P6 Port P7 2x8 I/O 2x8 I/O 1x7 I/O Timer _A3 Timer _A5 3 CC Registers 5 CC Registers Basic Timer & Real-Time Clock Spy--Bi-Wire RST/NMI NOTE: The USCI A0 and USCI B0 cannot be used in the 48-pin package options (RGZ). POST OFFICE BOX 655303  DALLAS, TEXAS 75265 5 MSP430F41x2 MIXED SIGNAL MICROCONTROLLER SLAS648E -- APRIL 2009 -- REVISED MARCH 2011 Terminal Functions TERMINAL NO. I/O DESCRIPTION 37 I/O General-purpose digital I/O pin Timer0_A3, capture: CCI0A input, compare: Out0 output LCD segment output 52 36 I/O General-purpose digital I/O pin Timer0_A3, capture: CCI0B input MCLK signal output LCD segment output P1.2/TA0.1/S29 51 -- I/O General-purpose digital I/O pin Timer0_A3, capture: CCI1A input, compare: Out1 output LCD segment output P1.3/TA1.0/ SVSOUT/S28 50 -- I/O General-purpose digital I/O pin Timer1_A5, capture: CCI0B input SVS comparator output LCD segment output P1.4/TA1.0/S27 49 -- I/O General-purpose digital I/O pin/ Timer1_A5, capture: CCI0A input, compare: Out0 output LCD segment output P1.5/TA0CLK/ CAOUT/S26 48 35 I/O General-purpose digital I/O pin Timer0_A3, clock signal TACLK input Comparator_A output LCD segment output P1.6/ACLK/CA0 47 34 I/O General-purpose digital I/O pin Comparator_A input 0 ACLK signal output P1.7/TA0CLK CAOUT/CA1 46 33 I/O General-purpose digital I/O pin Timer0_A3, clock signal TACLK input Comparator_A output Comparator_A input 1 P2.0/TA1.1/S15 27 23 I/O General-purpose digital I/O pin Timer1_A5, compare: Out1 Output LCD segment output P2.1/TA1.2/S14 26 22 I/O General-purpose digital I/O pin Timer1_A5, compare: Out2 Output LCD segment output P2.2/TA1.3/S13 25 21 I/O General-purpose digital I/O pin Timer1_A5, compare: Out3 Output LCD segment output P2.3/TA1.4/S12 24 20 I/O General-purpose digital I/O pin Timer1_A5, compare: Out4 output LCD segment output P2.4/S11 23 19 I/O General-purpose digital I/O pin LCD segment output P2.5/S10 22 18 I/O General-purpose digital I/O pin LCD segment output P2.6/S9 21 17 I/O General-purpose digital I/O pin LCD segment output P2.7/S8 20 16 I/O General-purpose digital I/O pin LCD segment output NAME 64 PIN 48 PIN P1.0/TA0.0/S31 53 P1.1/TA0.0/ MCLK/S30 6 POST OFFICE BOX 655303  DALLAS, TEXAS 75265 MSP430F41x2 MIXED SIGNAL MICROCONTROLLER SLAS648E -- APRIL 2009 -- REVISED MARCH 2011 Terminal Functions (continued) TERMINAL NO. NAME I/O DESCRIPTION -- I/O General-purpose digital I/O pin Timer1_A5, capture: CCI2A input, compare: Out2 output LCD segment output 34 -- I/O General-purpose digital I/O pin Timer1_A5, capture: CCI3A input, compare: Out3 output LCD segment output 33 -- I/O General-purpose digital I/O pin Timer1_A5, capture: CCI4A input, compare: Out4 output LCD segment output 64 PIN 48 PIN P3.0/TA1.2/S23 35 P3.1/TA1.3/S22 P3.2/TA1.4/S21 P3.3/TA0.0/ TA1CLK/S20 32 -- I/O General-purpose digital I/O pin Timer0_A3, compare: Out0 output Timer1_A5, clock signal TACLK input LCD segment output P3.4/CAOUT/S19 31 24 I/O General-purpose digital I/O pin Comparator_A output LCD segment output P3.5/S18 30 -- I/O General-purpose digital I/O pin LCD segment output P3.6/S17 29 -- I/O General-purpose digital I/O pin LCD segment output P3.7/S16 28 -- I/O General-purpose digital I/O pin LCD segment output P4.0/S7 19 15 I/O General-purpose digital I/O pin LCD segment output P4.1/S6 18 14 I/O General-purpose digital I/O pin LCD segment output P4.2/S5 17 13 I/O General-purpose digital I/O pin LCD segment output P4.3/S4 16 12 I/O General-purpose digital I/O pin LCD segment output P4.4/S3 15 11 I/O General-purpose digital I/O pin LCD segment output P4.5/S2 14 10 I/O General-purpose digital I/O pin LCD segment output P4.6/S1 13 9 I/O General-purpose digital I/O pin LCD segment output P4.7/ADC10CLK/ S0 12 8 I/O General-purpose digital I/O pin ADC10, conversion clock LCD segment output P5.0/TA1.1/S24 44 -- I/O General-purpose digital I/O pin Timer1_A5, capture: CCI1A input, compare: Out1 output LCD segment output LCDCAP/R33 43 32 I/O Capacitor connection for LCD charge pump input port of the most positive analog LCD level (V4) P5.1/R23 42 31 I/O General-purpose digital I/O pin input port of the second most positive analog LCD level (V3) P5.2/LCDREF/ R13 41 30 I/O General-purpose digital I/O pin External LCD reference voltage input input port of the third most positive analog LCD level (V3 or V2) POST OFFICE BOX 655303  DALLAS, TEXAS 75265 7 MSP430F41x2 MIXED SIGNAL MICROCONTROLLER SLAS648E -- APRIL 2009 -- REVISED MARCH 2011 Terminal Functions (continued) TERMINAL NO. NAME I/O DESCRIPTION 64 PIN 48 PIN P5.3/R03 40 29 I/O General-purpose digital I/O pin input port of the fourth most positive analog LCD level (V1) P5.4/COM3 39 28 I/O General-purpose digital I/O pin common output, COM0--3 are used for LCD backplanes P5.5/COM2 38 27 I/O General-purpose digital I/O pin common output, COM0--3 are used for LCD backplanes P5.6/COM1 37 26 I/O General-purpose digital I/O pin common output, COM0--3 are used for LCD backplanes P5.7/COM0 36 25 I/O General-purpose digital I/O pin common output, COM0--3 are used for LCD backplanes P6.0/TA1.2/A2†/ CA4 63 47 I/O General-purpose digital I/O pin Timer1_A5, compare: Out2 output ADC10 analog input A2† Comparator_A input 4 P6.1/ UCB0SOMI†/ UCB0SCL† 1 1 I/O General-purpose digital I/O pin USCI B0 slave out/master in in SPI mode, SCL I2C clock in I2C mode† P6.2/ UCB0SIMO†/ UCB0SDA† 2 2 I/O General-purpose digital I/O pin USCI B0 slave in/master out in SPI mode, SDA I2C data in I2C mode† I/O General-purpose digital I/O pin USCI B0 slave transmit enable/USCI A0 clock input/output ADC10 analog input A3 / negative reference Comparator_A input 5 P6.3/UCB0STE/ UCA0CLK/A3/ CA5/Veref-- /Vref-- 3 -- P6.4/UCB0CLK/ UCA0STE/A4/ CA6/Veref+/Vref+ 4 -- I/O General-purpose digital I/O pin USCI B0 clock input/output, USCI A0 slave transmit enable ADC10 analog input A4/ positive reference Comparator_A input 6 P6.5/UCA0RXD/ UCA0SOMI/A5 5 -- I/O General-purpose digital I/O pin USCI A0 receive data input in UART mode, slave data out/master in in SPI mode ADC10 analog input A5 P6.6/UCA0TXD/ UCA0SIMO/A6 6 -- I/O General-purpose digital I/O pin USCI A0 transmit data output in UART mode, slave data in/master out SPI mode ADC10 analog input A6 General-purpose digital I/O pin ADC10 analog input A7 Comparator_A input 7 SVS input P6.7/A7/CA7/ SVSIN 11 7 I/O P7.0/TDO/TDI/ S32 54 38 I/O General-purpose digital I/O pin JTAG test data output terminal or test data input in programming an test LCD segment output P7.1/TDI/TCLK/ S33 55 39 I/O General-purpose digital I/O pin JTAG test data input or test clock input in programming an test LCD segment output P7.2/TMS/S34 56 40 I/O General-purpose digital I/O pin JTAG test mode select, input terminal for device programming and test LCD segment output † 8 64-pin package devices only POST OFFICE BOX 655303  DALLAS, TEXAS 75265 MSP430F41x2 MIXED SIGNAL MICROCONTROLLER SLAS648E -- APRIL 2009 -- REVISED MARCH 2011 Terminal Functions (continued) TERMINAL NO. NAME I/O DESCRIPTION 64 PIN 48 PIN P7.3/TCK/S35 57 41 I/O P7.4/TA1.4/ A0/CA2 60 44 I/O General-purpose digital I/O pin Timer1_A5, capture: CCI4B input, compare: Out4 output ADC10 analog input A0 Comparator_A input 2 General-purpose digital I/O pin Test clock input for device programming and test LCD segment output P7.5/TA1.3/ A1/CA3 61 45 I/O General-purpose digital I/O pin Timer1_A5, capture: CCI3B input, compare: Out3 output ADC10 analog input A1 Comparator_A input 3 P7.6/TA0.2/S25 45 -- I/O General-purpose digital I/O pin Timer0_A3, capture: CCI2A input, compare: Out2 output LCD segment output AVCC 64 48 Analog supply voltage, positive terminal AVSS 62 46 Analog supply voltage, negative terminal DVCC 7 3 Digital supply voltage, positive terminal. Supplies all digital parts. DVSS 10 6 XOUT 9 5 O Output port for crystal oscillator XT1. Standard or watch crystals can be connected. Digital supply voltage, negative terminal. Supplies all digital parts. XIN 8 4 I Input port for crystal oscillator XT1. Standard or watch crystals can be connected. RST/NMI/ SBWTDIO 58 42 I Reset or nonmaskable interrupt input Spy-Bi-Wire test data input/output during programming and test Selects test mode for JTAG pins on Port7. The device protection fuse is connected to TEST. TEST/SBWTCLK 59 43 I Thermal Pad NA NA NA QFN package pad (RGZ package only). Connection to DVSS is recommended. POST OFFICE BOX 655303  DALLAS, TEXAS 75265 9 MSP430F41x2 MIXED SIGNAL MICROCONTROLLER SLAS648E -- APRIL 2009 -- REVISED MARCH 2011 short-form description CPU The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All operations, other than program-flow instructions, are performed as register operations in conjunction with seven addressing modes for source operand and four addressing modes for destination operand. Program Counter PC/R0 Stack Pointer SP/R1 Status Register Constant Generator The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to-register operation execution time is one cycle of the CPU clock. Four of the registers, R0 to R3, are dedicated as program counter, stack pointer, status register, and constant generator, respectively. The remaining registers are general-purpose registers. Peripherals are connected to the CPU using data, address, and control buses and can be handled with all instructions. instruction set The instruction set consists of 51 instructions with three formats and seven address modes. Each instruction can operate on word and byte data. Table 1 shows examples of the three types of instruction formats; Table 2 shows the address modes. SR/CG1/R2 CG2/R3 General-Purpose Register R4 General-Purpose Register R5 General-Purpose Register R6 General-Purpose Register R7 General-Purpose Register R8 General-Purpose Register R9 General-Purpose Register R10 General-Purpose Register R11 General-Purpose Register R12 General-Purpose Register R13 General-Purpose Register R14 General-Purpose Register R15 Table 1. Instruction Word Formats Dual operands, source-destination e.g., ADD R4,R5 R4 + R5 ------> R5 Single operands, destination only e.g., CALL PC ---->(TOS), R8----> PC Relative jump, un/conditional e.g., JNE R8 Jump-on-equal bit = 0 Table 2. Address Mode Descriptions ADDRESS MODE S D SYNTAX EXAMPLE Register F F MOV Rs,Rd MOV R10,R11 R10 —> R11 Indexed F F MOV X(Rn),Y(Rm) MOV 2(R5),6(R6) M(2+R5) —> M(6+R6) Symbolic (PC relative) F F MOV EDE,TONI Absolute F F MOV & MEM, & TCDAT M(EDE) —> M(TONI) M(MEM) —> M(TCDAT) Indirect F MOV @Rn,Y(Rm) MOV @R10,Tab(R6) M(R10) —> M(Tab+R6) Indirect autoincrement F MOV @Rn+,Rm MOV @R10+,R11 M(R10) —> R11 R10 + 2 —> R10 Immediate F MOV #X,TONI MOV #45,TONI #45 —> M(TONI) NOTE: S = source, D = destination 10 OPERATION POST OFFICE BOX 655303  DALLAS, TEXAS 75265 MSP430F41x2 MIXED SIGNAL MICROCONTROLLER SLAS648E -- APRIL 2009 -- REVISED MARCH 2011 operating modes The MSP430 has one active mode and five software selectable low-power modes of operation. An interrupt event can wake up the device from any of the five low-power modes, service the request, and restore back to the low-power mode on return from the interrupt program. The following six operating modes can be configured by software: D Active mode (AM) -- All clocks are active D Low-power mode 0 (LPM0) -- CPU is disabled -- ACLK and SMCLK remain active -- FLL+ loop control remains active D Low-power mode 1 (LPM1) -- CPU is disabled -- ACLK and SMCLK remain active -- FLL+ loop control is disabled D Low-power mode 2 (LPM2) -- CPU is disabled -- MCLK, FLL+ loop control, and DCOCLK are disabled -- DCO’s dc generator remains enabled -- ACLK remains active D Low-power mode 3 (LPM3) -- CPU is disabled -- MCLK, FLL+ loop control, and DCOCLK are disabled -- DCO’s dc generator is disabled -- ACLK remains active D Low-power mode 4 (LPM4) -- CPU is disabled -- ACLK is disabled -- MCLK, FLL+ loop control, and DCOCLK are disabled -- DCO’s dc generator is disabled -- Crystal oscillator is stopped POST OFFICE BOX 655303  DALLAS, TEXAS 75265 11 MSP430F41x2 MIXED SIGNAL MICROCONTROLLER SLAS648E -- APRIL 2009 -- REVISED MARCH 2011 interrupt vector addresses The interrupt vectors and the power-up starting address are located in the address range 0xFFFF to 0xFFC0. The vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence. If the reset vector (located at address 0xFFFE) contains 0xFFFF (e.g., flash is not programmed), the CPU goes into LPM4 immediately after power-up. INTERRUPT SOURCE INTERRUPT FLAG SYSTEM INTERRUPT WORD ADDRESS PRIORITY Power-Up External Reset Watchdog Flash Memory PC Out--of--Range (see Note 4) PORIFG RSTIFG WDTIFG KEYV (see Note 1) Reset 0xFFFE 15, highest NMI Oscillator Fault Flash Memory Access Violation NMIIFG (see Notes 1 and 3) OFIFG (see Notes 1 and 3) ACCVIFG (see Notes 1, 2, and 4) (Non)maskable (Non)maskable (Non)maskable 0xFFFC 14 Timer_A5 TA1CCR0 CCIFG0 (see Note 2) Maskable 0xFFFA 13 Timer_A5 TA1CCR1 to TACCR4 CCIFGs, and TAIFG (see Notes 1 and 2) Maskable 0xFFF8 12 Comparator_A+ CAIFG Maskable 0xFFF6 11 Watchdog Timer+ WDTIFG Maskable 0xFFF4 10 USCI_A0/B0 Receive UCA0RXIFG (see Note 1), UCB0RXIFG (SPI mode), or UCB0STAT UCALIFG, UCNACKIFG, UCSTTIFG, UCSTPIFG (I2C mode) (see Note 1) Maskable 0xFFF2 9 USCI_A0/B0 Transmit UCA0TXIFG (see Note 1), UCB0TXIFG (SPI mode), or UCB0RXIFG and UCB0TXIFG (I2C mode) (see Note 1) Maskable 0xFFF0 8 ADC10 ADC10IFG (see Note 2) Maskable 0xFFEE 7 Timer_A3 TACCR0 CCIFG0 (see Note 2) Maskable 0xFFEC 6 Timer_A3 TACCR1 CCIFG1 and TACCR2 CCIFG2, TAIFG (see Notes 1 and 2) Maskable 0xFFEA 5 I/O Port P1 (Eight Flags) P1IFG.0 to P1IFG.7 (see Notes 1 and 2) Maskable 0xFFE8 4 0xFFE6 3 0xFFE4 2 I/O Port P2 (Eight Flags) P2IFG.0 to P2IFG.7 (see Notes 1 and 2) Maskable 0xFFE2 1 Basic Timer1/RTC BTIFG Maskable 0xFFE0 0, lowest NOTES: 1. Multiple source flags 2. Interrupt flags are located in the module. 3. A reset is generated if the CPU tries to fetch instructions from within the module register memory address range (0h to 01FFh). (Non)maskable: the individual interrupt-enable bit can disable an interrupt event, but the general-interrupt enable cannot disable it. 4. Access and key violations, KEYV and ACCVIFG. 12 POST OFFICE BOX 655303  DALLAS, TEXAS 75265 MSP430F41x2 MIXED SIGNAL MICROCONTROLLER SLAS648E -- APRIL 2009 -- REVISED MARCH 2011 special function registers Most interrupt and module-enable bits are collected in the lowest address space. Special-function register bits not allocated to a functional purpose are not physically present in the device. This arrangement provides simple software access. interrupt enable 1 and 2 Address 7 6 00h 5 4 ACCVIE rw--0 3 2 1 0 NMIIE OFIE WDTIE rw--0 rw--0 rw--0 WDTIE Watchdog timer interrupt enable. Inactive if watchdog mode is selected. Active if watchdog timer is configured in interval timer mode. OFIE Oscillator fault enable NMIIE (Non)maskable interrupt enable ACCVIE Flash access violation interrupt enable Address 01h 7 6 5 4 3 2 1 0 BTIE UCB0TXIE UCB0RXIE UCA0TXIE UCA0RXIE rw--0 rw--0 rw--0 rw--0 rw--0 UCA0RXIE USCI_A0 receive interrupt enable UCA0TXIE USCI_A0 transmit interrupt enable UCB0RXIE USCI_B0 receive interrupt enable UCB0TXIE USCI_B0 transmit interrupt enable BTIE Basic timer interrupt enable POST OFFICE BOX 655303  DALLAS, TEXAS 75265 13 MSP430F41x2 MIXED SIGNAL MICROCONTROLLER SLAS648E -- APRIL 2009 -- REVISED MARCH 2011 interrupt flag register 1 and 2 Address 7 6 5 02h 4 3 2 1 0 NMIIFG RSTIFG PORIFG OFIFG WDTIFG rw--0 rw--(0) rw--(1) rw--1 rw--(0) WDTIFG Set on watchdog timer overflow (in watchdog mode) or security key violation. Reset on VCC power-up or a reset condition at RST/NMI pin in reset mode. OFIFG Flag set on oscillator fault RSTIFG External reset interrupt flag. Set on a reset condition at RST/NMI pin in reset mode. Reset on VCC power-up. PORIFG Power-on interrupt flag. Set on VCC power--up. NMIIFG Set via RST/NMI-pin Address 7 03h UCA0RXIFG 6 5 3 2 1 0 BTIFG UCB0 TXIFG UCB0 RXIFG UCA0 TXIFG UCA0 RXIFG rw--0 rw--1 rw--0 rw--1 rw--0 USCI_A0 receive interrupt flag UCA0TXIFG USCI_A0 transmit interrupt flag UCB0RXIFG USCI_B0 receive interrupt flag UCB0TXIFG USCI_B0 transmit interrupt flag BTIFG Basic Timer1 interrupt flag Legend 4 rw: rw-0,1: rw-(0,1): Bit can be read and written. Bit can be read and written. It is Reset or set by PUC. Bit can be read and written. It is Reset or set by POR. SFR bit is not present in device 14 POST OFFICE BOX 655303  DALLAS, TEXAS 75265 MSP430F41x2 MIXED SIGNAL MICROCONTROLLER SLAS648E -- APRIL 2009 -- REVISED MARCH 2011 memory organization MSP430F4152 MSP430F4132 Memory Main: interrupt vector Main: code memory Size Flash Flash 16KB 0FFFFh -- 0FFE0h 0FFFFh -- 0C000h 8KB 0FFFFh -- 0FFE0h 0FFFFh -- 0E000h Information memory Size Flash 256 Byte 010FFh -- 01000h 256 Byte 010FFh -- 01000h Boot memory Size ROM 1KB 0FFFh -- 0C00h 1KB 0FFFh -- 0C00h Size 512B 03FFh -- 0200h 512B 03FFh -- 0200h 16-bit 8-bit 8-bit SFR 01FFh -- 0100h 0FFh -- 010h 0Fh -- 00h 01FFh -- 0100h 0FFh -- 010h 0Fh -- 00h RAM Peripherals bootstrap loader (BSL) The MSP430 BSL enables users to program the flash memory or RAM using a UART serial interface. Access to the MSP430 memory via the BSL is protected by user-defined password. For complete description of the features of the BSL and its implementation, see the MSP430 Memory Programming User’s Guide, literature number SLAU265. BSL FUNCTION PM PACKAGE PINS RGZ PACKAGE PINS Data transmit 53 -- P1.0 37 -- P1.0 Data receive 52 -- P1.1 36 -- P1.1 flash memory (Flash) The flash memory can be programmed via the JTAG port, the bootstrap loader, or in-system by the CPU. The CPU can perform single-byte and single-word writes to the flash memory. Features of the flash memory include: D Flash memory has n segments of main memory and four segments of information memory (A to D) of 64 bytes each. Each segment in main memory is 512 bytes in size. D Segments 0 to n may be erased in one step, or each segment may be individually erased. D Segments A to D can be erased individually, or as a group with segments 0 to n. Segments A to D are also called information memory. POST OFFICE BOX 655303  DALLAS, TEXAS 75265 15 MSP430F41x2 MIXED SIGNAL MICROCONTROLLER SLAS648E -- APRIL 2009 -- REVISED MARCH 2011 peripherals Peripherals are connected to the CPU through data, address, and control buses and can be handled using all instructions. For complete module descriptions, see the MSP430x4xx Family User’s Guide, literature number SLAU056. oscillator and system clock The clock system in the MSP430F41x2 is supported by the FLL+ module that includes support for a 32768-Hz watch crystal oscillator, an internal very low-power low--frequency oscillator, an internal digitally-controlled oscillator (DCO), and an 8-MHz high-frequency crystal oscillator (XT1). The FLL+ clock module is designed to meet the requirements of both low system cost and low power consumption. The FLL+ features a digital frequency locked loop (FLL) hardware that, in conjunction with a digital modulator, stabilizes the DCO frequency to a programmable multiple of the watch crystal frequency. The internal DCO provides a fast turn-on clock source and stabilizes in less than 6 s. The FLL+ module provides the following clock signals: D Auxiliary clock (ACLK), sourced from a 32768-Hz watch crystal, a high-frequency crystal, or a very low-power LF oscillator D Main clock (MCLK), the system clock used by the CPU D Sub-Main clock (SMCLK), the sub-system clock used by the peripheral modules D ACLK/n, the buffered output of ACLK, ACLK/2, ACLK/4, or ACLK/8 brownout, supply voltage supervisor The brownout circuit is implemented to provide the proper internal reset signal to the device during power on and power off. The supply voltage supervisor (SVS) circuitry detects if the supply voltage drops below a user selectable level and supports both supply voltage supervision (the device is automatically reset) and supply voltage monitoring (SVM, the device is not automatically reset). The CPU begins code execution after the brownout circuit releases the device reset. However, VCC may not have ramped to VCC(min) at that time. The user must insure the default FLL+ settings are not changed until VCC reaches VCC(min). If desired, the SVS circuit can be used to determine when VCC reaches VCC(min). digital I/O There are seven 8-bit I/O ports implemented—ports P1 through P7. Port P7 is a 7-bit I/O port. D D D D 16 All individual I/O bits are independently programmable. Any combination of input, output, and interrupt conditions is possible. Edge-selectable interrupt input capability for all the eight bits of ports P1 and P2. Read/write access to port-control registers is supported by all instructions. POST OFFICE BOX 655303  DALLAS, TEXAS 75265 MSP430F41x2 MIXED SIGNAL MICROCONTROLLER SLAS648E -- APRIL 2009 -- REVISED MARCH 2011 watchdog timer (WDT+) The primary function of the WDT+ module is to perform a controlled system restart after a software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed in an application, the module can be configured as an interval timer and can generate interrupts at selected time intervals. Basic Timer1 and Real-Time Clock (RTC) The Basic Timer1 has two independent 8-bit timers which can be cascaded to form a 16-bit timer/counter. Both timers can be read and written by software. The Basic Timer1 is extended to provide an integrated real-time clock (RTC). An internal calendar compensates for month with less than 31 days and includes leap year correction. LCD_A driver with regulated charge pump The LCD_A driver generates the segment and common signals required to drive an LCD display. The LCD_A controller has dedicated data memory to hold segment drive information. Common and segment signals are generated as defined by the mode. Static, 2--MUX, 3--MUX, and 4--MUX LCDs are supported by this peripheral. The module can provide a LCD voltage independent of the supply voltage via an integrated charge pump. Furthermore it is possible to control the level of the LCD voltage and thus contrast in software. Timer0_A3 Timer_A3 is a 16-bit timer/counter with three capture/compare registers. Timer_A3 can support multiple capture/compares, PWM outputs, and interval timing. Timer_A3 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers. TIMER_A3 SIGNAL CONNECTIONS INPUT PIN NUMBER PM RGZ 48 -- P1.5 46 -- P1.7 35 -- P1.5 33 -- P1.7 DEVICE INPUT SIGNAL MODULE INPUT NAME TA0CLK TACLK ACLK ACLK SMCLK SMCLK 48 -- P1.5 35 -- P1.5 TA0CLK TACLK 53 -- P1.0 37 -- P1.0 TA0.0 CCI0A 52 -- P1.1 36 -- P1.1 TA0.0 CCI0B DVSS GND DVCC VCC 51 -- P1.2 45 -- P7.6 -- -- MODULE BLOCK MODULE OUTPUT SIGNAL Timer NA CCR0 TA0 OUTPUT PIN NUMBER PM RGZ 53 -- P1.0 37 -- P1.0 32 -- P3.3 -- TA0.1 CCI1A 51 -- P1.2 CAOUT (internal) CCI1B ADC10 (internal) ADC10 (internal) DVSS GND 45 -- P7.6 -- DVCC VCC TA0.2 CCI2A ACLK (internal) CCI2B DVSS GND DVCC VCC POST OFFICE BOX 655303 CCR1 CCR2 TA1 TA2  DALLAS, TEXAS 75265 17 MSP430F41x2 MIXED SIGNAL MICROCONTROLLER SLAS648E -- APRIL 2009 -- REVISED MARCH 2011 Timer1_A5 Timer_A5 is a 16-bit timer/counter with five capture/compare registers. Timer_A5 can support multiple capture/compares, PWM outputs, and interval timing. Timer_A5 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers. TIMER_A5 SIGNAL CONNECTIONS INPUT PIN NUMBER PM RGZ DEVICE INPUT SIGNAL 32 -- P3.3 -- TA1CLK MODULE INPUT NAME TACLK ACLK ACLK SMCLK SMCLK MODULE BLOCK MODULE OUTPUT SIGNAL Timer NA OUTPUT PIN NUMBER PM RGZ 32 -- P3.3 -- TA1CLK TACLK 49 -- P1.4 -- TA1.0 CCI0A 49 -- P1.4 -- 50 -- P1.3 -- TA1.0 CCI0B ADC10 (internal) ADC10 (internal) DVSS GND 44 -- P5.0 -- 44 -- P5.0 -- 35 -- P3.0 -- DVCC VCC TA1.1 CCI1A CAOUT (internal) CCI1B DVSS GND CCR0 CCR1 TA0 TA1 27 -- P2.0 23 -- P2.0 ADC10 (internal) ADC10 (internal) DVCC VCC TA1.2 CCI2A 35 -- P3.0 -- ACLK (internal) CCI2B 26 -- P2.1 22 -- P2.1 DVSS GND 63 -- P6.0 47 -- P6.0 DVCC VCC 34 -- P3.1 -- 25 -- P2.2 21 -- P2.2 61 -- P7.5 45 -- P7.5 34 -- P3.1 -- TA1.3 CCI3A 61 -- P7.5 45 -- P7.5 TA1.3 CCI3B DVSS GND DVCC VCC CCR2 CCR3 TA2 TA3 33 -- P3.2 -- TA1.4 CCI4A 33 -- P3.2 -- 60 -- P7.4 44 -- P7.4 TA1.4 CCI4B 24 -- P2.3 20 -- P2.3 DVSS GND 60 -- P7.4 44 -- P7.4 DVCC VCC CCR4 TA4 universal serial communication interface (USCI) (USCI_A0, USCI_B0) The USCI module is used for serial data communication. The USCI module supports synchronous communication protocols like SPI (3 or 4 pin), I2C and asynchronous communication protocols like UART, enhanced UART with automatic baudrate detection (LIN), and IrDA. USCI_A0 provides support for SPI (3 or 4 pin), UART, enhanced UART, and IrDA. USCI_B0 provides support for SPI (3 or 4 pin) and I2C. Comparator_A+ The primary function of the comparator_A+ module is to support precision slope analog-to-digital conversions, battery-voltage supervision, and monitoring of external analog signals. 18 POST OFFICE BOX 655303  DALLAS, TEXAS 75265 MSP430F41x2 MIXED SIGNAL MICROCONTROLLER SLAS648E -- APRIL 2009 -- REVISED MARCH 2011 ADC10 The ADC10 module supports fast 10-bit analog-to-digital conversions. The module implements a 10-bit SAR core, sample select control, reference generator, and data transfer controller (DTC) for automatic conversion result handling, allowing ADC samples to be converted and stored without any CPU intervention. peripheral file map PERIPHERALS WITH WORD ACCESS Watchdog Watchdog timer control WDTCTL 0120h Timer0_A3 Capture/compare register 2 Capture/compare register 1 Capture/compare p / p register g 0 TA0CCR2 TA0CCR1 TA0CCR0 0176h 0174h 0172h Timer_A _ register g Capture/compare p p control 2 Capture/compare control 1 Capture/compare control 0 TA0R TA0CCTL2 TA0CCTL1 TA0CCTL0 0170h 0166h 0164h 0162h Timer_A control Timer_A interrupt vector TA0CTL TA0IV 0160h 012Eh Capture/compare register 4 C t / Capture/compare register i t 3 Capture/compare register 2 TA1CCR4 TA1CCR3 TA1CCR2 019A 0198 0196h Capture/compare register 1 Capture/compare register 0 Timer A register Timer_A Capture/compare p p control 4 TA1CCR1 TA1CCR0 TA1R TA1CCTL4 0194h 0192h 0190h 018A Capture/compare control 3 Capture/compare control 2 Capture/compare p / p control 1 Capture/compare control 0 TA1CCTL3 TA1CCTL2 TA1CCTL1 TA1CCTL0 0188 0186h 0184h 0182h Timer A control Timer_A Timer_A interrupt vector TA1CTL TA1IV 0180h 011Eh Flash Flash control 3 Flash control 2 Flash control 1 FCTL3 FCTL2 FCTL1 012Ch 012Ah 0128h ADC10 ADC data transfer start address ADC memory ADC control register 1 ADC10SA ADC10MEM ADC10CTL1 01BCh 01B4h 01B2h ADC control register 0 ADC analog enable 0 ADC analog enable 1 ADC data transfer control register 1 ADC10CTL0 ADC10AE0 ADC10AE1 ADC10DTC1 01B0h 004Ah 004Bh 0049h ADC data transfer control register 0 ADC10DTC0 0048h Timer1_A5 POST OFFICE BOX 655303  DALLAS, TEXAS 75265 19 MSP430F41x2 MIXED SIGNAL MICROCONTROLLER SLAS648E -- APRIL 2009 -- REVISED MARCH 2011 peripheral file map (continued) PERIPHERALS WITH BYTE ACCESS LCD_A USCI A0/B0 / Comparator_A+ p _ 20 LCD Voltage Control 1 LCD Voltage Control 0 LCD Voltage Port Control 1 LCDAVCTL1 LCDAVCTL0 LCDAPCTL1 0AFh 0AEh 0ADh LCD Voltage Port Control 0 LCD memory 20 : LCD memory 16 LCDAPCTL0 LCDM20 : LCDM16 0ACh 0A4h : 0A0h LCD memory 15 : LCD memory 1 LCD control and mode LCDM15 : LCDM1 LCDACTL 09Fh : 091h 090h USCI A0 auto baud rate control UCA0ABCTL 0x005D USCI A0 transmit buffer UCA0TXBUF 0x0067 USCI A0 receive buffer UCA0RXBUF 0x0066 USCI A0 status UCA0STAT 0x0065 USCI A0 modulation control UCA0MCTL 0x0064 USCI A0 baud rate control 1 UCA0BR1 0x0063 USCI A0 baud rate control 0 UCA0BR0 0x0062 USCI A0 control 1 UCA0CTL1 0x0061 USCI A0 control 0 UCA0CTL0 0x0060 USCI A0 IrDA receive control UCA0IRRCTL 0x005F USCI A0 IrDA transmit control UCA0IRTCTL 0x005E USCI B0 transmit buffer UCB0TXBUF 0x006F USCI B0 receive buffer UCB0RXBUF 0x006E USCI B0 status UCB0STAT 0x006D USCI B0 I2C Interrupt enable UCB0CIE 0x006C USCI B0 baud rate control 1 UCB0BR1 0x006B USCI B0 baud rate control 0 UCB0BR0 0x006A USCI B0 control 1 UCB0CTL1 0x0069 USCI B0 control 0 UCB0CTL0 0x0068 USCI B0 I2C slave address UCB0SA 0x011A USCI B0 I2C own address UCB0OA 0x0118 Comparator_A port disable CAPD 05Bh Comparator_A control2 CACTL2 05Ah Comparator_A control1 CACTL1 059h Brownout, SVS SVS control register (Reset by brownout signal) SVSCTL 056h FLL+ Clock FLL+ Control 2 FLL+ Control 1 FLL_CTL2 FLL_CTL1 055h 054h FLL+ Control 0 FLL_CTL0 053h System clock frequency control SCFQCTL 052h System clock frequency integrator SCFI1 051h System clock frequency integrator SCFI0 050h POST OFFICE BOX 655303  DALLAS, TEXAS 75265 MSP430F41x2 MIXED SIGNAL MICROCONTROLLER SLAS648E -- APRIL 2009 -- REVISED MARCH 2011 peripheral file map (continued) PERIPHERALS WITH BYTE ACCESS RTC (Basic Timer1) Port P7 Port P6 Port P5 Port P4 Port P3 Port P2 Real Time Clock Year High Byte Real Time Clock Year Low Byte Real Time Clock Month RTCYEARH RTCYEARL RTCMON 04Fh 04Eh 04Dh Real Time Clock Day of Month Basic Timer1 Counter Basic Timer1 Counter Real Time Counter 4 RTCDAY BTCNT2 BTCNT1 RTCNT4 04Ch 047h 046h 045h (Real Time Clock Day of Week) Real Time Counter 3 (Real Time Clock Hour) Real Time Counter 2 (RTCDOW) RTCNT3 (RTCHOUR) RTCNT2 (Real Time Clock Minute) Real Time Counter 1 (Real Time Clock Second) Real Time Clock Control (RTCMIN) RTCNT1 (RTCSEC) RTCCTL Basic Timer1 Control BTCTL 040h Port P7 selection P7SEL 03Bh Port P7 direction P7DIR 03Ah Port P7 output P7OUT 039h Port P7 input P7IN 038h Port P6 selection P6SEL 037h Port P6 direction P6DIR 036h Port P6 output P6OUT 035h Port P6 input P6IN 034h Port P5 selection P5SEL 033h Port P5 direction P5DIR 032h Port P5 output P5OUT 031h Port P5 input P5IN 030h Port P4 selection P4SEL 01Fh Port P4 direction P4DIR 01Eh Port P4 output P4OUT 01Dh Port P4 input P4IN 01Ch Port P3 selection P3SEL 01Bh Port P3 direction P3DIR 01Ah Port P3 output P3OUT 019h Port P3 input P3IN 018h Port P2 selection P2SEL 02Eh Port P2 interrupt enable P2IE 02Dh Port P2 interrupt-edge select P2IES 02Ch Port P2 interrupt flag P2IFG 02Bh Port P2 direction P2DIR 02Ah Port P2 output P2OUT 029h Port P2 input P2IN 028h POST OFFICE BOX 655303  DALLAS, TEXAS 75265 044h 043h 042h 041h 21 MSP430F41x2 MIXED SIGNAL MICROCONTROLLER SLAS648E -- APRIL 2009 -- REVISED MARCH 2011 peripheral file map (continued) PERIPHERALS WITH BYTE ACCESS (CONTINUED) Port P1 Special functions 22 Port P1 selection register P1SEL 026h Port P1 interrupt enable P1IE 025h Port P1 interrupt-edge select P1IES 024h Port P1 interrupt flag P1IFG 023h Port P1 direction P1DIR 022h Port P1 output P1OUT 021h Port P1 input P1IN 020h SFR interrupt flag 2 SFR iinterrupt t pt flflag g1 SFR interrupt enable 2 IFG2 IFG1 IE2 003h 002h 001h SFR interrupt enable 1 IE1 000h POST OFFICE BOX 655303  DALLAS, TEXAS 75265 MSP430F41x2 MIXED SIGNAL MICROCONTROLLER SLAS648E -- APRIL 2009 -- REVISED MARCH 2011 absolute maximum ratings over operating free-air temperature (unless otherwise noted)† Voltage applied at VCC to VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . --0.3 V to 4.1 V Voltage applied to any pin (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . --0.3 V to VCC + 0.3 V Diode current at any device terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 mA Unprogrammed device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . --55C to 150C Storage temperature, Tstg: Programmed device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . --55C to 85C † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTE 1: All voltages referenced to VSS. The JTAG fuse-blow voltage, VFB, is allowed to exceed the absolute maximum rating. The voltage is applied to the TEST pin when blowing the JTAG fuse. recommended operating conditions MIN NOM MAX UNIT Supply voltage during program execution, VCC (AVCC = DVCC = VCC) 1.8 3.6 V Supply voltage during flash memory programming, VCC (AVCC = DVCC = VCC) 2.2 3.6 V 0 0 V --40 85 C Supply voltage, VSS (AVSS = DVSS = VSS) Operating free-air temperature range, TA LFXT1 crystal frequency, f(LFXT1) (see Note 1) LF selected, XTS_FLL = 0 Watch crystal XT1 selected, XTS_FLL = 1 Ceramic resonator XT1 selected, XTS_FLL = 1 Crystal Processor frequency (signal MCLK), MCLK) f(System) 32.768 kHz 0.45 6 MHz 1 6 MHz VCC = 1.8 V dc 4.15 VCC = 3.0 V dc 8 MHz NOTES: 1. In LF mode, the LFXT1 oscillator requires a watch crystal. In XT1 mode, LFXT1 accepts a ceramic resonator or a crystal. fSystem (MHz) 8 MHz Supply voltage range, MSP430F41x2, during program execution Supply voltage range, MSP430F41x2, during flash memory programming 4.15 MHz 1.8 2.2 3.0 Supply Voltage - V 3.6 Figure 1. Frequency vs Supply Voltage POST OFFICE BOX 655303  DALLAS, TEXAS 75265 23 MSP430F41x2 MIXED SIGNAL MICROCONTROLLER SLAS648E -- APRIL 2009 -- REVISED MARCH 2011 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) supply current into AVCC + DVCC excluding external current PARAMETER TA TYP MAX 2.2 V 220 295 3V 350 398 2.2 V 33 60 3V 50 92 2.2 V 6 13 3V 7 15 0.85 1.4 0.90 1.2 1.15 1.4 85C 2.15 3.0 --40C 1.0 1.5 1.1 1.5 I(AM) Active mode (see Note 1), f(MCLK) = f(SMCLK) = 1 MHz, f(ACLK) = 32768 Hz, XTS=0, SELM=(0,1) 40C to 85C --40C I(LPM0) Low power mode 0 (LPM0) (see Note 1) Low-power --40C 40C to 85C I(LPM2) Low-power mode 2 (LPM2), f(MCLK) = f (SMCLK) = 0 MHz, MHz f(ACLK) = 32768 Hz, SCG0 = 0 (see Note 2) --40C 40C to 85C VCC I(LPM3) I(LPM3) Low-power mode 3 (LPM3), f(MCLK) = f(SMCLK) = 0 MHz, f(ACLK) = 32768 Hz, SCG0 = 1, Basic Timer1 enabled , ACLK selected selected, LCD LCD_A A enabled, LCDCPEN = 0, ((4-mux mode,, fLCD = f(ACLK)//32)) (see Notes 2 and 3) 25C 60C 25C 1.9 2.5 3.5 --40C 1.8 3.3 25C 2.1 3.2 85C 3.6 5.0 --40C 2.1 3.6 2.2 V 2.3 3.6 85C 4.1 5.5 --40C 0.1 0.5 25C 3V 0.1 0.5 0.35 0.9 85C 1.1 2.5 --40C 0.1 0.8 0.1 0.8 0.8 1.2 1.9 3.5 60C I(LPM4) 3V 1.4 25C Low-power mode 4 (LPM4), f(MCLK) = 0 MHz, MHz f(SMCLK) = 0 MHz, MHz f(ACLK) = 0 Hz, SCG0 = 1 (see Note 2) 22V 2.2 85C 60C 25C 60C 85C 22V 2.2 3V NOTES: 1. Timer_A is clocked by f(DCOCLK) = 1 MHz. All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current. 2. All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current. 3. The LPM3 currents are characterized with a Micro Crystal CC4V--T1A (9 pF) crystal and OSCCAPx = 01h. 24 POST OFFICE BOX 655303  DALLAS, TEXAS 75265 UNIT A A --40C Low-power mode 3 (LPM3), f(MCLK) = f(SMCLK) = 0 MHz, f(ACLK) = 32768 Hz, SCG0 = 1, Basic Timer1 enabled , ACLK selected selected, LCD LCD_A A enabled, LCDCPEN = 0, ((static mode,, fLCD = f(ACLK)//32)) (see Notes 2 and 3) MIN A A A A A A A A A A MSP430F41x2 MIXED SIGNAL MICROCONTROLLER SLAS648E -- APRIL 2009 -- REVISED MARCH 2011 typical characteristics -- LPM4 current ILPM4 -- Low--power mode current -- uA 3.0 2.5 2.0 1.5 Vcc = 3.6V 1.0 Vcc = 3.0V Vcc = 2.2V 0.5 0.0 --40.0 --20.0 Vcc = 1.8V 0.0 20.0 40.0 60.0 80.0 100.0 TA -- Temperature -- C Figure 2. ILPM4 -- LPM4 Current vs Temperature POST OFFICE BOX 655303  DALLAS, TEXAS 75265 25 MSP430F41x2 MIXED SIGNAL MICROCONTROLLER SLAS648E -- APRIL 2009 -- REVISED MARCH 2011 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) Schmitt-trigger inputs -- ports P1, P2, P3, P4, P5, P6, and P7, RST/NMI, JTAG (TCK, TMS, TDI/TCLK, TDO/TDI) PARAMETER VIT+ Positi e going input Positive-going inp t threshold voltage oltage VIT-- Negati e going input Negative-going inp t threshold voltage oltage Vhys Input voltage hysteresis (VIT+ -- VIT-- ) VCC MIN MAX 2.2 V 1.1 1.55 3V 1.5 1.98 2.2 V 0.4 0.9 3V 0.9 1.3 2.2 V 0.3 1.1 3V 0.5 1 TEST CONDITIONS VCC MIN MAX 2.2 V 62 3V 50 2.2 V 62 3V 50 UNIT V V V inputs Px.y, TAx PARAMETER t(int) External interrupt timing Port P1, P2: P1.x to P2.x, external trigger signal for the interrupt flag (see Note 1) t(cap) Timer A capture timing Timer_A TA0, TA0 TA1, TA1 TA2 f(TAext) Timer_A clock frequency externally applied to pin TACLK, INCLK: t(H) = t(L) TACLK f(TAint) Timer A clock frequency Timer_A, SMCLK or ACLK signal selected UNIT ns ns 2.2 V 8 3V 10 2.2 V 8 3V 10 MHz MHz NOTES: 1. The external signal sets the interrupt flag every time the minimum t(int) parameters are met. It may be set even with trigger signals shorter than t(int). leakage current -- ports P1, P2, P3, P4, P5, P6, and P7 (see Note 1) PARAMETER Ilkg(Px.y) Leakage current TEST CONDITIONS Port Px V(Px.y) (see Note 2) VCC MIN 2.2 V/3 V NOTES: 1. The leakage current is measured with VSS or VCC applied to the corresponding pin(s), unless otherwise noted. 2. The port pin must be selected as input. 26 POST OFFICE BOX 655303  DALLAS, TEXAS 75265 MAX UNIT 50 nA MSP430F41x2 MIXED SIGNAL MICROCONTROLLER SLAS648E -- APRIL 2009 -- REVISED MARCH 2011 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) outputs -- ports P1, P2, P3, P4, P5, P6, and P7 PARAMETER VOH VOL High le el output High-level o tp t voltage oltage Low level output voltage Low-level TEST CONDITIONS MIN MAX IOH(max) = --1.5 mA, VCC = 2.2 V (see Note 1) VCC --0.25 VCC IOH(max) = --6 mA, VCC = 2.2 V (see Note 2) VCC --0.6 VCC IOH(max) = --1.5 mA, VCC = 3 V (see Note 1) VCC --0.25 VCC IOH(max) = --6 mA, VCC = 3 V (see Note 2) VCC --0.6 VCC IOL(max) = 1.5 mA, VCC = 2.2 V (see Note 1) VSS VSS+0.25 IOL(max) = 6 mA, VCC = 2.2 V (see Note 2) VSS VSS+0.6 IOL(max) = 1.5 mA, VCC = 3 V (see Note 1) VSS VSS+0.25 IOL(max) = 6 mA, VCC = 3 V (see Note 2) VSS VSS+0.6 UNIT V V NOTES: 1. The maximum total current, IOH(max) and IOL(max), for all outputs combined, should not exceed 12 mA to satisfy the maximum specified voltage drop. 2. The maximum total current, IOH(max) and IOL(max), for all outputs combined, should not exceed 48 mA to satisfy the maximum specified voltage drop. output frequency PARAMETER TEST CONDITIONS f(Px.y) (x = 1, 2, 3, 4, 5, 6, 7, 0  y  7) CL = 20 pF, IL = 1.5 mA f(MCLK) P1.1/TA0.0/MCLK/S30 CL = 20 pF t(Xdc) Duty cycle of output frequency P1.1/TA0.0/MCLK/S30, CL = 20 pF, VCC = 2.2 V / 3 V POST OFFICE BOX 655303 VCC = 2.2 V / 3 V f(MCLK) = f(XT1) f(MCLK) = f(DCOCLK)  DALLAS, TEXAS 75265 MIN TYP dc 40% 50%-15 ns MAX UNIT fSystem MHz fSystem MHz 60% 50% 50%+ 15 ns 27 MSP430F41x2 MIXED SIGNAL MICROCONTROLLER SLAS648E -- APRIL 2009 -- REVISED MARCH 2011 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) outputs -- ports Px (continued) TYPICAL LOW-LEVEL OUTPUT CURRENT vs LOW-LEVEL OUTPUT VOLTAGE TYPICAL LOW-LEVEL OUTPUT CURRENT vs LOW-LEVEL OUTPUT VOLTAGE 50 VCC = 2.2 V P1.0 25 TA = --40C I OL -- Typical Low-level Output Current -- mA I OL -- Typical Low-level Output Current -- mA 30 TA = 25C 20 TA = 85C 15 10 5 0 0.0 0.5 1.0 1.5 2.0 VCC = 3 V P1.0 45 TA = --40C TA = 25C 40 TA = 85C 35 30 25 20 15 10 5 0 0.0 2.5 0.5 VOL -- Low-Level Output Voltage -- V 1.0 Figure 3 I OH -- Typical High-level Output Current -- mA I OH -- Typical High-level Output Current -- mA 0.0 VCC = 2.2 V P1.0 --10.0 --15.0 --20.0 TA = 25C TA = 85C TA = --40C --30.0 --35.0 0.0 0.5 1.0 1.5 2.0 2.5 --5.0 3.0 3.5 --10.0 VCC = 3 V P1.0 --15.0 --20.0 --25.0 --30.0 --35.0 --40.0 TA = 85C --45.0 TA = 25C --50.0 --55.0 TA = --40C --60.0 --65.0 0.0 0.5 VOH -- High-Level Output Voltage -- V 1.0 1.5 Figure 6 POST OFFICE BOX 655303 2.0 2.5 3.0 VOH -- High-Level Output Voltage -- V Figure 5 28 2.5 TYPICAL HIGH-LEVEL OUTPUT CURRENT vs HIGH-LEVEL OUTPUT VOLTAGE 0.0 --25.0 2.0 Figure 4 TYPICAL HIGH-LEVEL OUTPUT CURRENT vs HIGH-LEVEL OUTPUT VOLTAGE --5.0 1.5 VOL -- Low-Level Output Voltage -- V  DALLAS, TEXAS 75265 3.5 MSP430F41x2 MIXED SIGNAL MICROCONTROLLER SLAS648E -- APRIL 2009 -- REVISED MARCH 2011 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) wake-up LPM3 PARAMETER TEST CONDITIONS MIN f = 1 MHz td(LPM3) f = 2 MHz Delay time MAX UNIT 6 6 VCC = 2.2 V/3 V f = 3 MHz s 6 POR/brownout reset (BOR) (see Note 1) PARAMETER TEST CONDITIONS MIN TYP td(BOR) VCC(start) V(B_IT--) Vhys(B_IT--) dVCC/dt  3 V/s (see Figure 7) Brownout (see Note 2) UNIT 2000 s 0.7  V(B_IT--) dVCC/dt  3 V/s (see Figure 7) V 1.71 dVCC/dt  3 V/s (see Figure 7) V mV Pulse length needed at RST/NMI pin to accepted reset internally, VCC = 2.2 V/3 V t(reset) MAX 2 s NOTES: 1. The current consumption of the brownout module is already included in the ICC current consumption data. The voltage level V(B_IT--) + Vhys(B_IT--) is  1.8V. 2. During power up, the CPU begins code execution following a period of td(BOR) after VCC = V(B_IT--) + Vhys(B_IT--). The default FLL+ settings must not be changed until VCC  VCC(min), where VCC(min) is the minimum supply voltage for the desired operating frequency. See the MSP430x4xx Family User’s Guide (SLAU056) for more information on the brownout. typical characteristics VCC Vhys(B_IT--) V(B_IT--) VCC(start) 1 0 t d(BOR) Figure 7. POR/Brownout Reset (BOR) vs Supply Voltage POST OFFICE BOX 655303  DALLAS, TEXAS 75265 29 MSP430F41x2 MIXED SIGNAL MICROCONTROLLER SLAS648E -- APRIL 2009 -- REVISED MARCH 2011 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) typical characteristics (continued) VCC 3V VCC(min) -- V 2 VCC = 3 V Typical Conditions 1.5 t pw 1 VCC(min) 0.5 0 0.001 1 1000 1 ns tpw -- Pulse Width -- s 1 ns tpw -- Pulse Width -- s Figure 8. V(CC)min Level With a Square Voltage Drop to Generate a POR/Brownout Signal VCC 2 3V VCC(min) -- V VCC = 3 V 1.5 t pw Typical Conditions 1 VCC(min) 0.5 0 0.001 tf = tr 1 1000 tf tr tpw -- Pulse Width -- s tpw -- Pulse Width -- s Figure 9. VCC(min) Level With a Triangle Voltage Drop to Generate a POR/Brownout Signal 30 POST OFFICE BOX 655303  DALLAS, TEXAS 75265 MSP430F41x2 MIXED SIGNAL MICROCONTROLLER SLAS648E -- APRIL 2009 -- REVISED MARCH 2011 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) SVS (supply voltage supervisor/monitor) PARAMETER t(SVSR) TEST CONDITIONS MIN dVCC/dt > 30 V/ms (see Figure 10) 5 dVCC/dt  30 V/ms td(SVSon) SVSON, switch from VLD = 0 to VLD  0, VCC = 3 V tsettle VLD  0‡ V(SVSstart) VLD  0, VCC/dt  3 V/s (see Figure 10) 150 1.55 VLD = 1 VCC/dt  3 V/s (see Figure 10) VLD = 2 to 14 Vhys(SVS_IT--) hys(SVS IT--) VCC/dt  3 V/s (see Figure 10), External voltage applied on A7 VCC/dt  3 V/s (see Figure 10 and Figure 11) V(SVS_IT--) (SVS IT ) VCC/dt  3 V/s (see Figure 10 and Figure 11), External voltage applied on A7 ICC(SVS) (see Note 1) TYP VLD = 15 70 120 MAX UNIT 150 s 2000 s 300 s 12 s 1.7 V 210 mV V(SVS_IT--)  0.001 V(SVS_IT--)  0.016 4.4 20 VLD = 1 1.8 1.9 2.05 VLD = 2 1.94 2.1 2.25 VLD = 3 2.05 2.2 2.37 VLD = 4 2.14 2.3 2.48 VLD = 5 2.24 2.4 2.6 VLD = 6 2.33 2.5 2.71 VLD = 7 2.46 2.65 2.86 VLD = 8 2.58 2.8 3 VLD = 9 2.69 2.9 3.13 VLD = 10 2.83 3.05 3.29 VLD = 11 2.94 3.2 3.42 VLD = 12 3.11 3.35 3.61† VLD = 13 3.24 3.5 3.76† VLD = 14 3.43 3.7† 3.99† VLD = 15 1.1 1.2 1.3 10 15 VLD  0, VCC = 2.2 V/3 V mV V A † The recommended operating voltage range is limited to 3.6 V. tsettle is the settling time that the comparator o/p needs to have a stable level after VLD is switched VLD  0 to a different VLD value somewhere between 2 and 15. The overdrive is assumed to be > 50 mV. NOTE 1: The current consumption of the SVS module is not included in the ICC current consumption data. ‡ POST OFFICE BOX 655303  DALLAS, TEXAS 75265 31 MSP430F41x2 MIXED SIGNAL MICROCONTROLLER SLAS648E -- APRIL 2009 -- REVISED MARCH 2011 typical characteristics AVCC V(SVS_IT--) V(SVSstart) Software sets VLD > 0: SVS is active Vhys(SVS_IT--) Vhys(B_IT--) V(B_IT--) VCC(start) Brownout Brownout Region Brownout Region 1 0 SVS out td(BOR) 1 0 td(SVSon) Set POR 1 t d(BOR) SVS Circuit is Active From VLD > to VCC < V(B_IT--) td(SVSR) undefined 0 Figure 10. SVS Reset (SVSR) vs Supply Voltage VCC 3V t pw 2 Rectangular Drop VCC(min) VCC(min) -- V 1.5 Triangular Drop 1 1 ns 1 ns VCC 0.5 t pw 3V 0 1 10 100 1000 tpw -- Pulse Width -- s VCC(min) tf = tr tf tr t -- Pulse Width -- s Figure 11. VCC(min): Square Voltage Drop and Triangle Voltage Drop to Generate an SVS Signal (VLD = 1) 32 POST OFFICE BOX 655303  DALLAS, TEXAS 75265 MSP430F41x2 MIXED SIGNAL MICROCONTROLLER SLAS648E -- APRIL 2009 -- REVISED MARCH 2011 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) DCO PARAMETER TEST CONDITIONS VCC f(DCOCLK) N(DCO) = 01E0h, FN_8 = FN_4 = FN_3 = FN_2 = 0, D = 2, DCOPLUS = 0 f(DCO2) FN 8 = FN_4 FN_8 FN 4 = FN_3 FN 3 = FN_2 FN 2 = 0 0, DCOPLUS = 1 f(DCO27) FN 8 = FN_4 FN_8 FN 4 = FN_3 FN 3 = FN_2 FN 2 = 0, 0 DCOPLUS = 1 (see Note 1) f(DCO2) FN 8 = FN_4 FN_8 FN 4 = FN_3 FN 3 = 0, 0 FN FN_2 2=1 1, DCOPLUS = 1 f(DCO27) FN 8 = FN_4 FN_8 FN 4 = FN_3 FN 3 = 0, 0 FN FN_2 2 = 1, 1 DCOPLUS = 1 (see Note 1) f(DCO2) FN 8 = FN_4 FN_8 FN 4 = 0, 0 FN FN_3 3 = 1, 1 FN FN_2 2 = x, DCOPLUS = 1 f(DCO27) FN 8 = FN_4 FN_8 FN 4 = 0, 0 FN FN_3 3 = 1, 1 FN FN_2 2 = x, DCOPLUS = 1 (see Note 1) f(DCO2) FN 8 = 0, FN_8 0 FN FN_4 4 = 1, 1 FN FN_3 3 = FN_2 FN 2 = x, DCOPLUS = 1 f(DCO27) FN 8 = 0, FN_8 0 FN FN_4 4 = 1, 1 FN FN_3 3 = FN_2 FN 2 = x, DCOPLUS = 1 (see Note 1) f(DCO2) FN 8 = 1, FN_8 1 FN FN_4 4 = FN_3 FN 3 = FN_2 FN 2 = x, DCOPLUS = 1 f(DCO27) FN 8 = 1,FN_4 FN_8 1 FN 4 = FN_3 FN 3 = FN_2 FN 2 = x, DCOPLUS = 1 (see Note 1) Sn Step size between adjacent DCO taps: Sn = fDCO(Tap n+1) / fDCO(Tap n), (see Figure 13 for taps 21 to 27) Dt Temperature drift, N(DCO) = 01E0h, FN_8 = FN_4 = FN_3 = FN_2 = 0, D = 2, DCOPLUS = 0 DV Drift with VCC variation, N(DCO) = 01E0h, FN_8 = FN_4 = FN_3 = FN_2 = 0, D = 2, DCOPLUS = 0 MIN 2.2 V/3 V TYP MAX 1 MHz 2.2 V 0.3 0.65 1.25 3V 0.3 0.7 1.3 2.2 V 2.5 5.6 10.5 3V 2.7 6.1 11.3 2.2 V 0.7 1.3 2.3 3V 0.8 1.5 2.5 2.2 V 5.7 10.8 18 3V 6.5 12.1 20 2.2 V 1.2 2 3 3V 1.3 2.2 3.5 9 15.5 25 3V 10.3 17.9 28.5 2.2 V 1.8 2.8 4.2 3V 2.1 3.4 5.2 2.2 V 2.2 V UNIT 13.5 21.5 33 3V 16 26.6 41 2.2 V 2.8 4.2 6.2 3V 4.2 6.3 9.2 2.2 V 21 32 46 3V 30 46 70 1 < TAP  20 1.06 1.11 TAP = 27 1.07 1.17 2.2 V –0.2 –0.4 --0.6 3V –0.2 –0.4 --0.6 0 5 15 MH MHz MH MHz MH MHz MH MHz MH MHz MH MHz MH MHz MH MHz MH MHz MH MHz %_C %/V NOTES: 1. Do not exceed the maximum system frequency. f f f (DCO) f (DCO3V) (DCO) (DCO20C) 1.0 1.0 0 1.8 2.4 3.0 3.6 VCC -- V --40 --20 0 20 40 60 85 TA -- C Figure 12. DCO Frequency vs Supply Voltage VCC and vs Ambient Temperature POST OFFICE BOX 655303  DALLAS, TEXAS 75265 33 MSP430F41x2 MIXED SIGNAL MICROCONTROLLER SLAS648E -- APRIL 2009 -- REVISED MARCH 2011 Sn - Stepsize Ratio between DCO Taps electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) 1.17 Max 1.11 1.07 1.06 Min 1 20 27 DCO Tap Figure 13. DCO Tap Step Size f(DCO) Legend Tolerance at Tap 27 DCO Frequency Adjusted by Bits 29 to 25 in SCFI1 {N{DCO}} Tolerance at Tap 2 Overlapping DCO Ranges: Uninterrupted Frequency Range FN_2=0 FN_3=0 FN_4=0 FN_8=0 FN_2=1 FN_3=0 FN_4=0 FN_8=0 FN_2=x FN_3=1 FN_4=0 FN_8=0 FN_2=x FN_3=x FN_4=1 FN_8=0 FN_2=x FN_3=x FN_4=x FN_8=1 Figure 14. Five Overlapping DCO Ranges Controlled by FN_x Bits 34 POST OFFICE BOX 655303  DALLAS, TEXAS 75265 MSP430F41x2 MIXED SIGNAL MICROCONTROLLER SLAS648E -- APRIL 2009 -- REVISED MARCH 2011 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) crystal oscillator, LFXT1, low-frequency modes (see Note 4) PARAMETER LFXT1 oscillator crystal frequency, LF mode 0, 1 fLFXT1,LF Oscillation allowance for LF crystals OALF Integrated effective load capacitance LF mode capacitance, (see Note 1) CL,eff TEST CONDITIONS XTS = 0, LFXT1Sx = 0 or 1 VCC MIN 1.8 V to 3.6 V TYP 32768 XTS = 0, LFXT1Sx = 0, fLFXT1,LF = 32768 kHz, CL,eff = 6 pF 500 XTS = 0, LFXT1Sx = 0, fLFXT1,LF = 32768 kHz, CL,eff = 12 pF 200 1 XTS = 0, XCAPx = 1 5.5 XTS = 0, XCAPx = 2 8.5 XTS = 0, XCAPx = 3 11 Duty cycle LF mode fFault,LF Oscillator fault frequency, LF mode (see Note 3) XTS = 0, XCAPx = 0. LFXT1Sx = 3 (see Note 2) UNIT Hz kΩ XTS = 0, XCAPx = 0 XTS = 0, Measured at P1.6/ACLK, fLFXT1,LF = 32768Hz MAX 2.2 V/3 V 30 2.2 V/3 V 10 50 pF 70 % 10000 Hz NOTES: 1. Includes parasitic bond and package capacitance (approximately 2 pF per pin). Since the PCB adds additional capacitance it is recommended to verify the correct load by measuring the ACLK frequency. For a correct setup the effective load capacitance should always match the specification of the used crystal. 2. Measured with logic level input frequency but also applies to operation with crystals. 3. Frequencies below the MIN specification set the fault flag, frequencies above the MAX specification do not set the fault flag, and frequencies in between might set the flag. 4. To improve EMI on the LFXT1 oscillator the following guidelines should be observed. -- Keep the trace between the device and the crystal as short as possible. -- Design a good ground plane around the oscillator pins. -- Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT. -- Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins. ---- Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins. If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins. Do not route the XOUT line to the JTAG header to support the serial programming adapter as shown in other documentation. This signal is no longer required for the serial programming adapter. POST OFFICE BOX 655303  DALLAS, TEXAS 75265 35 MSP430F41x2 MIXED SIGNAL MICROCONTROLLER SLAS648E -- APRIL 2009 -- REVISED MARCH 2011 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) crystal oscillator, LFXT1, high frequency modes PARAMETER TEST CONDITIONS fLFXT1 LFXT1 oscillator crystal cr stal frequency freq enc CL,eff Integrated effective load capacitance, HF mode (see Note 1) Duty cycle VCC MIN TYP Ceramic resonator 1.8 V to 3.6 V 0.45 6 Crystal resonator 1.8 V to 3.6 V 1 6 See Note 2 MAX 1 Measured at P1.6/ACLK 2.2 V/3 V 40 UNIT MH MHz pF 50 60 % NOTES: 1. Includes parasitic bond and package capacitance (approximately 2 pF per pin). Since the PCB adds additional capacitance it is recommended to verify the correct load by measuring the ACLK frequency. For a correct setup the effective load capacitance should always match the specification of the used crystal. 2. Requires external capacitors at both terminals. Values are specified by crystal manufacturers. internal very low power, low-frequency oscillator (VLO) PARAMETER TEST CONDITIONS VCC fVLO VLO frequency TA = --40C to 85C 2.2 V/3 V dfVLO/dT VLO frequency temperature drift See Note 2.2 V/3 V dfVLO/dVCC VLO frequency supply voltage drift See Note 2 1.8V to 3.6V MIN 4 TYP MAX 12 20 UNIT kHz 0.5 %/C 4 %/V NOTES: 1. Calculated using the box method: I Version: (MAX(--40_C to 85_C) -- MIN(--40_C to 85_C))/MIN(--40_C to 85_C)/(85_C -- (--40_C)) 2. Calculated using the box method: (MAX(1.8 V to 3.6 V) -- MIN(1.8 V to 3.6 V))/MIN(1.8 V to 3.6 V)/(3.6 V -- 1.8 V) RAM PARAMETER VRAMh TEST CONDITIONS See Note 1 CPU halted MIN 1.6 MAX UNIT V NOTE 1: This parameter defines the minimum supply voltage when the data in program memory RAM remain unchanged. No program execution should take place during this supply voltage condition. 36 POST OFFICE BOX 655303  DALLAS, TEXAS 75265 MSP430F41x2 MIXED SIGNAL MICROCONTROLLER SLAS648E -- APRIL 2009 -- REVISED MARCH 2011 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) LCD_A PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT VCC(LCD) Supply voltage range Charge pump enabled (LCDCPEN = 1, VLCDx > 0000) 2.2 CLCD Capacitor on LCDCAP (see Note 1) Charge pump enabled (LCDCPEN = 1, VLCDx > 0000) 4.7 ICC(LCD) Average supply current (see Note 2) VLCD(typ)=3V, LCDCPEN = 1, VLCDx= 1000, all segments on fLCD= fACLK/32 no LCD connected (see Note 3) TA = 25C fLCD LCD frequency VLCD LCD voltage VLCDx = 0000 VCC V VLCD LCD voltage VLCDx = 0001 2.60 V VLCD LCD voltage VLCDx = 0010 2.66 V VLCD LCD voltage VLCDx = 0011 2.72 V VLCD LCD voltage VLCDx = 0100 2.78 V VLCD LCD voltage VLCDx = 0101 2.84 V VLCD LCD voltage VLCDx = 0110 2.90 V VLCD LCD voltage VLCDx = 0111 2.96 V VLCD LCD voltage VLCDx = 1000 3.02 V VLCD LCD voltage VLCDx = 1001 3.08 V VLCD LCD voltage VLCDx = 1010 3.14 V VLCD LCD voltage VLCDx = 1011 3.20 V VLCD LCD voltage VLCDx = 1100 3.26 V VLCD LCD voltage VLCDx = 1101 3.32 V VLCD LCD voltage VLCDx = 1110 3.38 V VLCD LCD voltage VLCDx = 1111 3.44 LCD driver output impedance VLCD = 3 V, LCDCPEN = 1, VLCDx = 1000, ILOAD = 10 A RLCD 2.2 V 3.6 F 3.8 A 1.1 2.2 V V 3.60 10 kHz V k NOTES: 1. Enabling the internal charge pump with an external capacitor smaller than the minimum specified might damage the device. 2. Refer to the supply current specifications I(LPM3) for additional current specifications with the LCD_A module active. 3. Connecting an actual display will increase the current consumption depending on the size of the LCD. POST OFFICE BOX 655303  DALLAS, TEXAS 75265 37 MSP430F41x2 MIXED SIGNAL MICROCONTROLLER SLAS648E -- APRIL 2009 -- REVISED MARCH 2011 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) Comparator_A+ (see Note 1) PARAMETER TEST CONDITIONS I(CC) CAON = 1, 1 CARSEL = 0 0, CAREF = 0 I(Refladder/RefDiode) CAON = 1, CARSEL = 0, CAREF = 1/2/3, No load at P1.6/CA0 and P1.7/CA1 V(Ref025) V(Ref050) Voltage @ 0.25 V V CC Voltage @ 0.5 V V MIN TYP MAX 2.2 V 25 40 3V 45 60 2.2 V 30 50 3V 45 80 node PCA0 = 1, CARSEL = 1, CAREF = 1, No load at P1.6/CA0 and P1.7/CA1 2.2 V / 3 V 0.23 0.24 0.25 node PCA0 = 1, CARSEL = 1, CAREF = 2, No load at P1.6/CA0 and P1.7/CA1 2.2V / 3 V 0.47 0.48 0.5 2.2 V 390 480 540 3V 400 490 550 CC CC VCC CC UNIT A A A A V(RefVT) See Figure 15 and Figure 16 PCA0 = 1, CARSEL = 1, CAREF = 3, No load at P1.6/CA0 P1 6/CA0 and P1 P1.7/CA1, 7/CA1 TA = 85C VIC Common-mode input voltage range CAON = 1 2.2 V / 3 V 0 VCC --1 Vp --VS Offset voltage See Note 2 2.2 V / 3 V --30 30 mV Vhys Input hysteresis CAON = 1 2.2 V / 3 V 0 0.7 1.4 mV TA = 25 25C, C, Overdrive 10 mV, without filter: CAF = 0 2.2 V 80 165 300 3V 70 120 240 TA = 25 25C C Overdrive 10 mV, with filter: CAF = 1 2.2 V 1.4 1.9 2.8 3V 0.9 1.5 2.2 t(response LH and HL) (see Note 3) mV V ns s s NOTES: 1. The leakage current for the Comparator_A terminals is identical to Ilkg(Px.x) specification. 2. The input offset voltage can be cancelled by using the CAEX bit to invert the Comparator_A inputs on successive measurements. The two successive measurements are then summed together. 3. The response time is measured at P1.6/CA0 with an input voltage step and the Comparator_A already enabled (CAON=1). If CAON is set at the same time, a settling time of up to 300ns is added to the response time. 38 POST OFFICE BOX 655303  DALLAS, TEXAS 75265 MSP430F41x2 MIXED SIGNAL MICROCONTROLLER SLAS648E -- APRIL 2009 -- REVISED MARCH 2011 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) typical characteristics REFERENCE VOLTAGE vs FREE-AIR TEMPERATURE REFERENCE VOLTAGE vs FREE-AIR TEMPERATURE 650 650 VCC = 2.2 V 600 VREF -- Reference Voltage -- mV VREF -- Reference Voltage -- mV VCC = 3 V Typical 550 500 450 400 --45 --25 --5 15 35 55 75 600 Typical 550 500 450 400 --45 95 --25 TA -- Free-Air Temperature -- C 0 15 35 55 75 95 TA -- Free-Air Temperature -- C Figure 15. V(RefVT) vs Temperature 0V --5 Figure 16. V(RefVT) vs Temperature VCC CAF 1 CAON Low-Pass Filter V+ V-- + _ 0 0 1 1 To Internal Modules CAOUT Set CAIFG Flag   2 s Figure 17. Block Diagram of Comparator_A Module VCAOUT Overdrive V-400 mV V+ t(response) Figure 18. Overdrive Definition POST OFFICE BOX 655303  DALLAS, TEXAS 75265 39 MSP430F41x2 MIXED SIGNAL MICROCONTROLLER SLAS648E -- APRIL 2009 -- REVISED MARCH 2011 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) 10-bit ADC, power supply and input range conditions (see Note ) PARAMETER TEST CONDITIONS VCC Analog supply voltage range VSS = 0 V VAx Analog input voltage range (see Note 2) All Ax terminals, Analog inputs selected in ADC10AE register IADC10 ADC10 supply current (see Note 3) fADC10CLK = 5 MHz, ADC10ON = 1, 1 REFON = 0 ADC10SHT0 = 1, ADC10SHT1 = 0, ADC10DIV = 0 IREF+ Reference supply current reference buffer current, disabled (see Note 4) CI Input capacitance Only one terminal Ax selected at a time RI Input MUX ON resistance 0V  VAx  VCC 40 3.6 V 0 VCC V 3V 0.6 1.2 3V 2.2 V/3 V 2.2 V/3 V 2.2 V/3 V mA mA 0.4 04 mA 1.1 2.2 V/3 V 2.2 V/3 V UNIT 2.2 0 25 0.25 fADC10CLK = 5 MHz, ADC10ON = 0, REFON = 1, REF2_5V = 0, REFOUT = 1, ADC10SR = 1 MAX 1.05 fADC10CLK = 5 MHz, ADC10ON = 0, REF2_5V = 1, REFON = 1, REFOUT = 0 Reference buffer supply current with ADC10SR = 1 (see Note 4) NOTES: 1. 2. 3. 4. TYP 0.52 2.2 V/3 V fADC10CLK = 5 MHz, ADC10ON = 0, 1, REF2 REF2_5V REFON = 1 5V = 0 0, REFOUT = 1, ADC10SR = 0 IREFB,1 MIN 2.2 V fADC10CLK = 5 MHz, ADC10ON = 0, REF2_5V = 0, REFON = 1, REFOUT = 0 Reference buffer supply current with ADC10SR = 0 (see Note 4) IREFB,0 VCC 0.5 1.4 mA 1.8 mA 0.7 mA 0.8 mA 27 pF 2000  The leakage current is defined in the leakage current table with Px.x/Ax parameter. The analog input voltage range must be within the selected reference voltage range VR+ to VR-- for valid conversion results. The internal reference supply current is not included in current consumption parameter IADC10. The internal reference current is supplied via terminal VCC. Consumption is independent of the ADC10ON control bit, unless a conversion is active. The REFON bit enables the built-in reference to settle before starting an A/D conversion. POST OFFICE BOX 655303  DALLAS, TEXAS 75265 MSP430F41x2 MIXED SIGNAL MICROCONTROLLER SLAS648E -- APRIL 2009 -- REVISED MARCH 2011 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) 10-bit ADC, built-in voltage reference PARAMETER VCC,REF+ VREF+ Positive P iti built-in b ilt i reference f analog l supply voltage range Positive built built-in in reference voltage TEST CONDITIONS 2.2 IVREF+  0.5 mA, REF2_5V = 1 2.8 IVREF+  1 mA, REF2_5V = 1 2.9 IVREF+  IVREF+max, REF2_5V = 0 TYP MAX V 1.41 1.5 1.59 V 3V 2.35 2.5 2.65 V 0.5 1 IVREF+ = 500 A  100 A, Analog input voltage VAx  0.75 V, REF2_5V = 0 2.2 V/ 3V 2 LSB IVREF+ = 500 A  100 A, Analog input voltage VAx  1.25 V, REF2_5V = 1 3V 2 LSB ADC10SR = 0 3V 400 ADC10SR = 1 3V 2000 100 IVREF+ = 100 A900 A, VAx  0.5 0 5 x VREF+, Error of conversion result  1 LSB CVREF+ Max. capacitance at pin VREF+ (see Note 1) IVREF+  1 mA, REFON = 1, REFOUT = 1 2.2 V/ 3V TCREF+ Temperature coefficient IVREF+ = const. with 0 mA  IVREF+  1 mA (see Note 3) 2.2 V/ 3V tREFON Settling time of internal reference voltage (see Note 2) IVREF+ = 0.5 mA, REF2_5V = 0, REFON = 0  1 3.6 V 30 Settling time of reference buffer (see Note 2) mA 3V VREF+ load regulation response time tREFBURST UNIT 2.2 V/ 3V 2.2 V Ma im m VREF+ load current Maximum c rrent VREF+ load regulation reg lation MIN IVREF+  1 mA, REF2_5V = 0 IVREF+  IVREF+max, REF2_5V = 1 ILD,VREF+ VCC ns pF 100 ppm/C IVREF+ = 0.5 mA, REF2 5V = 0, REF2_5V REFON = 1, REFBURST = 1 ADC10SR = 0 2.2 V 1 ADC10SR = 1 2.2 V 2.5 IVREF+ = 0.5 mA, REF2 5V = 1, REF2_5V REFON = 1, REFBURST = 1 ADC10SR = 0 3V 2 ADC10SR = 1 3V 4.5 s s s NOTES: 1. The capacitance applied to the internal buffer operational amplifier, if switched to terminal P6.4/UCB0CLK/UCA0STE/A4/CA6/Veref+/Vref+ (REFOUT = 1), must be limited; the reference buffer may become unstable, otherwise. 2. The condition is that the error in a conversion started after tREFON or tRefBuf is less than 0.5 LSB. 3. Calculated using the box method: ((MAX(VREF(T)) -- MIN(VREF(T))) / MIN(VREF(T)) / (TMAX -- TMIN) POST OFFICE BOX 655303  DALLAS, TEXAS 75265 41 MSP430F41x2 MIXED SIGNAL MICROCONTROLLER SLAS648E -- APRIL 2009 -- REVISED MARCH 2011 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) 10-bit ADC, external reference (see Note 1) PARAMETER VeREF+ Positive external reference input voltage range (see Note 2) TEST CONDITIONS UNIT VeREF--  VeREF+  (VCC -- 0.15 V) SREF1 = 1, SREF0 = 1 (see Note 3) 1.4 3.0 0 1.2 V 1.4 VCC V VeREF Differential external reference input voltage range VeREF = VeREF+ -- VeREF-- VeREF+ > VeREF-- (see Note 5) Static input current into VeREF-- MAX VCC VeREF+ > VeREF-- IVeREF-- TYP 1.4 Negative external reference input voltage range (see Note 4) Static input current into VeREF+ MIN VeREF+ > VeREF-- , SREF1 = 1, SREF0 = 0 VeREF-- IVeREF+ VCC V 0V  VeREF+  VCC, SREF1 = 1, SREF0 = 0 2.2 V/3 V 1 0V  VeREF+  (VCC -- 0.15 V)  3 V, SREF1 = 1, SREF0 = 1 (see Note 3) 2.2 V/3 V 0 0V  VeREF--  VCC 2.2 V/3 V 1 A A A NOTES: 1. The external reference is used during conversion to charge and discharge the capacitance array. The input capacitance, CI, is also the dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the recommendations on analog-source impedance to allow the charge to settle for 10-bit accuracy. 2. The accuracy limits the minimum positive external reference voltage. Lower reference voltage levels may be applied with reduced accuracy requirements. 3. Under this condition the external reference is internally buffered. The reference buffer is active and requires the reference buffer supply current IREFB. The current consumption can be limited to the sample and conversion period with REBURST = 1. 4. The accuracy limits the maximum negative external reference voltage. Higher reference voltage levels may be applied with reduced accuracy requirements. 5. The accuracy limits the minimum external differential reference voltage. Lower differential reference voltage levels may be applied with reduced accuracy requirements. 42 POST OFFICE BOX 655303  DALLAS, TEXAS 75265 MSP430F41x2 MIXED SIGNAL MICROCONTROLLER SLAS648E -- APRIL 2009 -- REVISED MARCH 2011 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) 10-bit ADC, timing parameters PARAMETER TEST CONDITIONS For specified performance of ADC10 linearity parameters fADC10CLK ADC10 inp inputt clock frequency freq enc fADC10OSC ADC10 built-in oscillator frequency tCONVERT tADC10ON Con ersion time Conversion VCC MIN MAX UNIT ADC10SR = 0 2.2 V/3 V 0.45 6.3 ADC10SR = 1 2.2 V/3 V 0.45 1.5 ADC10DIVx = 0, ADC10SSELx = 0 fADC10CLK = fADC10OSC 2.2 V/3 V 3.7 6.3 MHz ADC10 built-in oscillator, ADC10SSELx = 0 fADC10CLK = fADC10OSC 2.2 V/3 V 2.06 3.51 s MH MHz 13 ADC10DIV 1/fADC10CLK fADC10CLK from ACLK, MCLK or SMCLK: ADC10SSELx  0 Turn on settling time of the ADC TYP See Note 1 s 100 ns NOTE 1: The condition is that the error in a conversion started after tADC10ON is less than 0.5 LSB. The reference and input signals are already settled. 10-bit ADC, linearity parameters PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT EI Integral linearity error 2.2 V/3 V 1 LSB ED Differential linearity error 2.2 V/3 V 1 LSB EO Offset error EG ET Gain error Total unadjusted error Source impedance RS < 100  1 LSB SREFx = 010, Unbuffered external reference, VeREF+ = 1.5 V 2.2 V/3 V 2.2 V 1.1 2 LSB SREFx = 010, Unbuffered external reference, VeREF+ = 2.5 V 3V 1.1 2 LSB SREFx = 011, Buffered external reference (see Note 2), VeREF+ = 1.5 V 2.2 V 1.1 4 LSB SREFx = 011, Buffered external reference (see Note 2), VeREF+ = 2.5 V 3V 1.1 3 LSB SREFx = 010, Unbuffered external reference, VeREF+ = 1.5 V 2.2 V 2 5 LSB SREFx = 010, Unbuffered external reference, VeREF+ = 2.5 V 3V 2 5 LSB SREFx = 011, Buffered external reference (see Note 2), VeREF+ = 1.5 V 2.2 V 2 7 LSB SREFx = 011, Buffered external reference (see Note 2), VeREF+ = 2.5 V 3V 2 6 LSB NOTE 1: The reference buffer’s offset adds to the gain and total unadjusted error. POST OFFICE BOX 655303  DALLAS, TEXAS 75265 43 MSP430F41x2 MIXED SIGNAL MICROCONTROLLER SLAS648E -- APRIL 2009 -- REVISED MARCH 2011 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) 10-bit ADC, temperature sensor and built-in VMID PARAMETER ISENSOR Temperature sensor supply current (see Note ) VSensor Sensor offset voltage Sensor output voltage ((see Note 3)) VCC REFON = 0, INCHx = 0Ah, ADC10ON = 1, TA = 25_C ADC10ON = 1, INCHx = 0Ah (see Note 2) TCSENSOR VOffset,Sensor TEST CONDITIONS MIN TYP MAX UNIT 2.2 V 40 120 3V 60 160 2.2 V/3 V ADC10ON = 1, INCHx = 0Ah (see Note 2) A A 3.55 mV/C --100 100 mV mV Temperature sensor voltage at TA = 85C 2.2 V/3 V 1195 1295 1395 Temperature sensor voltage at TA = 25C 2.2 V/3 V 985 1085 1185 Temperature sensor voltage at TA = 0C 2.2 V/3 V 895 995 1095 2.2 V/3 V 30 mV tSensor(sample) Sample time required if channel 10 is selected (see Note 4) ADC10ON = 1, INCHx = 0Ah, Error of conversion result  1 LSB IVMID Current into divider at channel11 (see Note 5) ADC10ON = 1 1, INCHx = 0Bh VMID VCC divider at channel 11 ADC10ON = 1, INCHx = 0Bh, VMID is 0.5 x VCC 2.2 V 1.06 1.1 1.14 3V 1.46 1.5 1.54 tVMID(sample) Sample time required if channel 11 is selected (see Note 6) ADC10ON = 1, INCHx = 0Bh, Error of conversion result  1 LSB 2.2 V 1400 3V 1220 s 2.2 V NA 3V NA A A V ns NOTES: 1. The sensor current ISENSOR is consumed if (ADC10ON = 1 and REFON = 1), or (ADC10ON = 1 and INCH = 0Ah and sample signal is high). When REFON = 1, ISENSOR is included in IREF+. When REFON = 0, ISENSOR applies during conversion of the temperature sensor input (INCH = 0Ah). 2. The following formula can be used to calculate the temperature sensor output voltage: VSensor,typ = TCSensor ( 273 + T [C] ) + VOffset,sensor [mV] or VSensor,typ = TCSensor T [C] + VSensor(TA = 0C) [mV] 3. Results based on characterization and/or production test, not TCSensor or VOffset,sensor. 4. The typical equivalent impedance of the sensor is 51 k. The sample time required includes the sensor-on time tSENSOR(on). 5. No additional current is needed. The VMID is used during sampling. 6. The on-time tVMID(on) is included in the sampling time tVMID(sample); no additional on time is needed. Timer0_A3, Timer1_A5 PARAMETER TEST CONDITIONS fTA Timer A clock frequency Timer_A Internal: SMCLK, ACLK, External: TACLK, TACLK INCLK INCLK, Duty cycle = 50% 10% tTA,cap Timer_A, capture timing TA0, TA1, TA2 44 POST OFFICE BOX 655303  DALLAS, TEXAS 75265 VCC MIN MAX 2.2 V 8 3V 10 2.2 V/3 V 20 UNIT MHz ns MSP430F41x2 MIXED SIGNAL MICROCONTROLLER SLAS648E -- APRIL 2009 -- REVISED MARCH 2011 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) USCI (UART mode) PARAMETER TEST CONDITIONS VCC MIN TYP Internal: SMCLK, ACLK External: UCLK Duty cycle = 50%  10% fUSCI USCI input clock frequency fmax,BITCLK Maximum BITCLK clock frequency (equals baudrate in MBaud) (see Note 1) t UART receive deglitch time (see Note 2) 2.2V /3 V 2 2.2 V 50 150 3V 50 100 MAX UNIT fSYSTEM MHz MHz ns NOTES: 1. The DCO wake-up time must be considered in LPM3/4 for baudrates above 1 MHz. 2. Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. USCI (SPI master mode) (see Figure 19 and Figure 20) PARAMETER fUSCI USCI input clock frequency tSU,MI SOMI input data setup time tHD,MI SOMI input data hold time tVALID,MO SIMO output data valid time NOTE: f UCxCLK = TEST CONDITIONS VCC MIN SMCLK, ACLK Duty cycle = 50%  10% UCLK edge to SIMO valid, CL = 20 pF 2.2 V 110 3V 75 2.2 V 0 3V 0 MAX UNIT fSYSTEM MHz ns ns 2.2 V 30 3V 20 ns 1 with t LO∕HI ≥ max(t VALID,MO(USCI) + t SU,SI(Slave), t SU,MI(USCI) + t VALID,SO(Slave)). 2t LO∕HI For the slave’s parameters tSU,SI(Slave) and tVALID,SO(Slave) refer to the SPI parameters of the attached slave. USCI (SPI slave mode) (see Figure 21 and Figure 22) PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT tSTE,LEAD STE lead time STE low to clock 2.2 V/3 V tSTE,LAG STE lag time Last clock to STE high 2.2 V/3 V tSTE,ACC STE access time STE low to SOMI data out 2.2 V/3 V 50 ns tSTE,DIS STE disable time STE high to SOMI high impedance 2.2 V/3 V 50 ns tSU,SI SIMO input inp t data setup set p time tHD,SI SIMO inp inputt data hold time tVALID,SO SOMI o output tp t data valid alid time NOTE: f UCxCLK = UCLK edge to SOMI valid, CL = 20 pF 50 ns 10 2.2 V 20 3V 15 2.2 V 10 3V 10 ns ns ns 2.2 V 75 110 3V 50 75 ns 1 with t LO∕HI ≥ max(t VALID,MO(Master) + t SU,SI(USCI), t SU,MI(Master) + t VALID,SO(USCI)) . 2t LO∕HI For the master’s parameters tSU,MI(Master) and tVALID,MO(Master) refer to the SPI parameters of the attached master. POST OFFICE BOX 655303  DALLAS, TEXAS 75265 45 MSP430F41x2 MIXED SIGNAL MICROCONTROLLER SLAS648E -- APRIL 2009 -- REVISED MARCH 2011 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) 1/fUCxCLK CKPL=0 UCLK CKPL=1 tLO/HI tLO/HI tSU,MI tHD,MI SOMI tVALID,MO SIMO Figure 19. SPI Master Mode, CKPH = 0 1/fUCxCLK CKPL=0 UCLK CKPL=1 tLO/HI tLO/HI tSU,MI SOMI tVALID,MO SIMO Figure 20. SPI Master Mode, CKPH = 1 46 POST OFFICE BOX 655303  DALLAS, TEXAS 75265 tHD,MI MSP430F41x2 MIXED SIGNAL MICROCONTROLLER SLAS648E -- APRIL 2009 -- REVISED MARCH 2011 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) tSTE,LEAD tSTE,LAG STE 1/fUCxCLK CKPL=0 UCLK CKPL=1 tLO/HI tLO/HI tSU,SI tHD,SI SIMO tSTE,ACC tVALID,SO tSTE,DIS SOMI Figure 21. SPI Slave Mode, CKPH = 0 tSTE,LEAD tSTE,LAG STE 1/fUCxCLK CKPL=0 UCLK CKPL=1 tLO/HI tLO/HI tSU,SI tHD,SI SIMO tSTE,ACC tVALID,SO tSTE,DIS SOMI Figure 22. SPI Slave Mode, CKPH = 1 POST OFFICE BOX 655303  DALLAS, TEXAS 75265 47 MSP430F41x2 MIXED SIGNAL MICROCONTROLLER SLAS648E -- APRIL 2009 -- REVISED MARCH 2011 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) USCI (I2C mode) (see Figure 23) PARAMETER fUSCI USCI input clock frequency fSCL SCL clock frequency TEST CONDITIONS VCC MIN TYP Internal: SMCLK, ACLK External: UCLK Duty cycle = 50%  10% MAX UNIT fSYSTEM MHz 400 kHz 2.2 V/3 V 0 fSCL  100kHz 2.2 V/3 V 4.0 us fSCL > 100kHz 2.2 V/3 V 0.6 us fSCL  100kHz 2.2 V/3 V 4.7 us fSCL > 100kHz 2.2 V/3 V 0.6 us tHD,STA Hold time (repeated) START tSU,STA Set p time for a repeated START Setup tHD,DAT Data hold time 2.2 V/3 V 0 ns tSU,DAT Data set--up time 2.2 V/3 V 250 ns tSU,STO Setup time for STOP 2.2 V/3 V 4.0 us tSP Pulse width of spikes suppressed by input filter 2.2 V 50 150 600 ns 3V 50 100 600 ns tHD,STA tSU,STA tHD,STA SDA 1/fSCL tSP SCL tSU,DAT tSU,STO tHD,DAT Figure 23. I2C Mode Timing 48 POST OFFICE BOX 655303  DALLAS, TEXAS 75265 MSP430F41x2 MIXED SIGNAL MICROCONTROLLER SLAS648E -- APRIL 2009 -- REVISED MARCH 2011 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) flash memory TEST CONDITIONS PARAMETER VCC(PGM/ VCC ERASE) Program and Erase supply voltage fFTG Flash Timing Generator frequency IPGM Supply current from DVCC during program IERASE Supply current from DVCC during erase tCPT Cumulative program time see Note 1 2.5V/3.6V tCMErase Cumulative mass erase time see Note 2 2.5V/3.6V MIN NOM 2.2 257 2.5V/3.6V 3 2.5V/3.6V 3 TJ = 25C V 476 kHz 5 mA 7 mA 10 ms ms 105 tRetention Data retention duration tWord Word or byte program time 35 tBlock, 0 Block program time for 1st byte or word 30 tBlock, 1-63 Block program time for each additional byte or word tBlock, End Block program end-sequence wait time tMass Erase Mass erase time 5297 tSeg Erase Segment erase time 4819 cycles 100 years 21 see Note 3 UNIT 3.6 200 104 Program/Erase endurance MAX tFTG 6 NOTES: 1. The cumulative program time must not be exceeded when writing to a 64--byte flash block. This parameter applies to all programming methods: individual word/byte write and block write modes. 2. The mass erase duration generated by the flash timing generator is at least 11.1 ms ( = 5297x1 / fFTG, max = 5297 x 1 / 476 kHz). To achieve the required cumulative mass erase time the Flash Controller’s mass erase operation can be repeated until this time is met. (A worst case minimum of 19 cycles is required.) 3. These values are hardwired into the Flash Controller’s state machine (tFTG = 1 / fFTG). JTAG and Spy-Bi-Wire interface TEST CONDITIONS PARAMETER VCC MIN TYP MAX UNIT fSBW Spy-Bi-Wire input frequency 2.2 V/3 V 0 8 MHz tSBW,Low Spy-Bi-Wire low clock pulse length 2.2 V/3 V 0.025 15 us tSBW,En Spy-Bi-Wire enable time, TEST high to acceptance of first clock edge (see Note 1) 2.2 V/3 V 1 us tSBW,Ret Spy-Bi-Wire return to normal operation time 2.2 V/3 V 15 100 us fTCK TCK input frequency (see Note 2) 2.2 V 0 5 MHz 3V 0 10 MHz RInternal Internal pulldown resistance on TEST 2.2 V/3 V 25 90 k 60 NOTES: 1. Tools accessing the Spy-Bi-Wire interface need to wait for the maximum tSBW,En time after pulling the TEST/SBWCLK pin high before applying the first SBWCLK clock edge. 2. fTCK may be restricted to meet the timing requirements of the module selected. POST OFFICE BOX 655303  DALLAS, TEXAS 75265 49 MSP430F41x2 MIXED SIGNAL MICROCONTROLLER SLAS648E -- APRIL 2009 -- REVISED MARCH 2011 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) JTAG fuse (see Note 1) TEST CONDITIONS PARAMETER VCC(FB) Supply voltage during fuse-blow condition VFB Voltage level on TDI/TCLK for fuse-blow IFB Supply current into TDI/TCLK during fuse blow tFB Time to blow fuse TA = 25C VCC MIN MAX 2.5 6 UNIT V 7 V 100 mA 1 ms NOTES: 1. Once the fuse is blown, no further access to the MSP430 JTAG/Test and emulation features is possible. The JTAG block is switched to bypass mode. 50 POST OFFICE BOX 655303  DALLAS, TEXAS 75265 MSP430F41x2 MIXED SIGNAL MICROCONTROLLER SLAS648E -- APRIL 2009 -- REVISED MARCH 2011 APPLICATION INFORMATION Port P1 pin schematic: P1.0 to P1.4, input/output with Schmitt trigger Pad Logic LCDS24/28 Segment Sy P1DIR.x 0 Direction 0: Input 1: Output 1 P1OUT.x 0 Module X OUT 1 Bus Keeper EN P1SEL.x P1IN.x P1.0/TA0.0/S31 P1.1/TA0.0/MCLK/S30 P1.2/TA0.1/S29 P1.3/TA1.0/SVSOUT/S28 P1.4/TA1.0/S27 EN Module X IN D P1IE.x P1IRQ.x EN Q P1IFG.x P1SEL.x P1IES.x Set Interrupt Edge Select POST OFFICE BOX 655303  DALLAS, TEXAS 75265 51 MSP430F41x2 MIXED SIGNAL MICROCONTROLLER SLAS648E -- APRIL 2009 -- REVISED MARCH 2011 Port P1 (P1.0 to P1.4) pin functions CONTROL BITS / SIGNALS PIN NAME (P1.X) P1.0/TA0.0/S31 / / X 0 FUNCTION P1.x (I/O) P1.2/TA0.1/S29 / / 1 2 P1.4/TA1.0/S27 / / 3 4 0 0 0 1 0 Timer0_A3.TA0 1 1 0 x x 1 (LCDS28) I: 0, O: 1 0 0 Timer0_A3.CCI0B 0 1 0 MCLK 1 1 0 S30 x x 1 (LCDS28) P1.x (I/O) P1.x (I/O) I: 0, O: 1 0 0 Timer0_A3.CCI1A 0 1 0 Timer0_A3.TA1 1 1 0 x x 1 (LCDS28) I: 0, O: 1 0 0 Timer1_A5.CCI0B 0 1 0 SVSOUT 1 1 0 S28 x x 1 (LCDS28) P1.x (I/O) P1.x (I/O) I: 0, O: 1 0 0 Timer1_A5.CCI0A 0 1 0 Timer1_A5.TA0 1 1 0 S27 x x 1 (LCDS24) NOTES: 1. x: Don’t care 52 LCDS24 LCDS28 I: 0, O: 1 S29 P1.3/TA1.0/SVSOUT/S28 / / / P1SEL.x Timer0_A3.CCI0A S31 P1.1/TA0.0/MCLK/S30 / / / P1DIR.x POST OFFICE BOX 655303  DALLAS, TEXAS 75265 MSP430F41x2 MIXED SIGNAL MICROCONTROLLER SLAS648E -- APRIL 2009 -- REVISED MARCH 2011 APPLICATION INFORMATION Port P1 pin schematic: P1.5, input/output with Schmitt trigger Pad Logic LCDS24 Segment Sy P1DIR.x 0 Direction 0: Input 1: Output 1 P1OUT.x 0 Module X OUT 1 P1SEL.x P1.5/TA0CLK/ CAOUT/S26 Bus Keeper EN P1IN.x from TA0CLK of P1.7 TA0CLK EN D P1IE.x EN P1IRQ.x Q Set P1IFG.x P1SEL.x Interrupt Edge Select P1IES.x Port P1 (P1.5) pin functions CONTROL BITS / SIGNALS PIN NAME (P1.X) X P1.5/TA0CLK/CAOUT/S26 / / / 5 FUNCTION P1DIR.x P1SEL.x LCDS24 LCDS28 I: 0, O: 1 0 0 Timer0_A3.TACLK 0 1 0 CAOUT 1 1 0 S26 x x 1 (LCDS24) P1.x (I/O) NOTES: 1. x: Don’t care 2. The input TA0CLK of P1.5 and P1.7 are logically ORed. Therefore only one of them should be enabled at a time to feed in TA0CLK. POST OFFICE BOX 655303  DALLAS, TEXAS 75265 53 MSP430F41x2 MIXED SIGNAL MICROCONTROLLER SLAS648E -- APRIL 2009 -- REVISED MARCH 2011 APPLICATION INFORMATION Port P1 pin schematic: P1.6, input/output with Schmitt trigger Pad Logic To Comparator_A From Comparator_A CAPD.y P1DIR.x 0 Direction 0: Input 1: Output 1 P1OUT.x 0 Module Out 1 P1.6/ACLK/CA0 Bus Keeper EN P1SEL.x P1IN.x EN Module X IN D P1IE.x P1IRQ.x EN Q P1IFG.x P1SEL.x P1IES.x Set Interrupt Edge Select Port P1 (P1.6) pin functions PIN NAME (P1.X) (P1 X) P1.6/ACLK/CA0 / / X 6 CONTROL BITS / SIGNALS FUNCTION CAPD P1DIR.x P1SEL.x P1.x (I/O) 0 I: 0, O: 1 0 ACLK 0 1 1 1 (CAPD.0) x x CA0 NOTES: 1. x: Don’t care 54 POST OFFICE BOX 655303  DALLAS, TEXAS 75265 MSP430F41x2 MIXED SIGNAL MICROCONTROLLER SLAS648E -- APRIL 2009 -- REVISED MARCH 2011 APPLICATION INFORMATION Port P1 pin schematic: P1.7, input/output with Schmitt trigger Pad Logic To Comparator_A From Comparator_A CAPD.y P1DIR.x 0 Direction 0: Input 1: Output 1 P1OUT.x 0 Module Out 1 P1.7/TA0CLK/ CAOUT/CA1 Bus Keeper EN P1SEL.x P1IN.x EN TA0CLK to P1.5 D P1IE.x EN P1IRQ.x Q Set P1IFG.x P1SEL.x Interrupt Edge Select P1IES.x Port P1 (P1.7) pin functions PIN NAME (P1.X) (P1 X) X P1.7/TA0CLK/CAOUT/CA1 / / / 7 CONTROL BITS / SIGNALS FUNCTION CAPD P1DIR.x P1SEL.x P1.x (I/O) 0 I: 0, O: 1 0 Timer0_A3.TACLK 0 0 1 0 1 1 1 (CAPD.1) x x CAOUT CA1 NOTES: 1. x: Don’t care 2. The input TA0CLK of P1.5 and P1.7 are combined by a logical OR. Therefore, only one of them should be enabled at a time to feed in TA0CLK. POST OFFICE BOX 655303  DALLAS, TEXAS 75265 55 MSP430F41x2 MIXED SIGNAL MICROCONTROLLER SLAS648E -- APRIL 2009 -- REVISED MARCH 2011 APPLICATION INFORMATION Port P2 pin schematic: P2.0 to P2.7 input/output with Schmitt trigger Pad Logic LCDS8/12 Segment Sy 0 P2DIR.x Direction 0: Input 1: Output 1 P2OUT.x 0 Module X OUT 1 Bus Keeper EN P2SEL.x P2IN.x EN Module X IN D P2IE.x P2IRQ.x P2IFG.x P2SEL.x P2IES.x 56 EN Q Set Interrupt Edge Select POST OFFICE BOX 655303  DALLAS, TEXAS 75265 P2.0/TA1.1/S15 P2.1/TA1.2/S14 P2.2/TA1.3/S13 P2.3/TA1.4/S12 P2.4/S11 P2.5/S10 P2.6/S9 P2.7/S8 MSP430F41x2 MIXED SIGNAL MICROCONTROLLER SLAS648E -- APRIL 2009 -- REVISED MARCH 2011 Port P2 (P2.0 to P2.7) pin functions CONTROL BITS / SIGNALS PIN NAME (P2.X) P2.0/TA1.1/S15 / / P2.1/TA1.2/S14 / / X 0 1 FUNCTION P2.x (I/O) 1 0 S15 x x 1 (LCDS12) I: 0, O: 1 0 0 1 1 0 P2.x (I/O) P2.x (I/O) S13 3 P2.x (I/O) Timer1_A5.TA4 S12 P2.4/S11 / 4 P2.x (I/O) S11 P2.5/S10 / 5 P2.x (I/O) S10 P2.6/S9 / 6 P2.x (I/O) S9 P2.7/S8 / 7 0 0 1 Timer1_A5.TA3 P2.3/TA1.4/S12 / / LCDS8 LCDS12 I: 0, O: 1 S14 2 P2SEL.x Timer1_A5.TA1 Timer1_A5.TA2 P2.2/TA1.3/S13 / / P2DIR.x P2.x (I/O) S8 x x 1 (LCDS12) I: 0, O: 1 0 0 1 1 0 x x 1 (LCDS12) I: 0, O: 1 0 0 1 1 0 1 (LCDS12) x x I: 0, O: 1 0 0 x x 1 (LCDS8) I: 0, O: 1 0 0 x x 1 (LCDS8) I: 0, O: 1 0 0 x x 1 (LCDS8) I: 0, O: 1 0 0 x x 1 (LCDS8) NOTES: 1. x: Don’t care POST OFFICE BOX 655303  DALLAS, TEXAS 75265 57 MSP430F41x2 MIXED SIGNAL MICROCONTROLLER SLAS648E -- APRIL 2009 -- REVISED MARCH 2011 APPLICATION INFORMATION Port P3 pin schematic: P3.0 to P3.7 input/output with Schmitt trigger Pad Logic LCDS16/20 Segment Sy P3DIR.x 0 1 P3OUT.x 0 Module X OUT 1 Direction 0: Input 1: Output Bus Keeper EN P3SEL.x P3IN.x EN Module X IN 58 D POST OFFICE BOX 655303  DALLAS, TEXAS 75265 P3.0/TA1.2/S23 P3.1/TA1.3/S22 P3.2/TA1.4/S21 P3.3/TA0.0/TA1CLK/S20 P3.4/CAOUT/S19 P3.5/S18 P3.6/S17 P3.7/S16 MSP430F41x2 MIXED SIGNAL MICROCONTROLLER SLAS648E -- APRIL 2009 -- REVISED MARCH 2011 Port P3 (P3.0 to P3.7) pin functions CONTROL BITS / SIGNALS PIN NAME (P3.X) P3.0/TA1.2/S23 / / X 0 FUNCTION P3.x (I/O) P3.2/TA1.4/S21 / / 1 2 P3.4/CAOUT/S19 / / P3.5/S18 / 3 4 5 0 0 0 1 0 Timer1_A5.TA2 1 1 0 x x 1 (LCDS20) I: 0, O: 1 0 0 Timer1_A5.CCI3A 0 1 0 Timer1_A5.TA3 1 1 0 S22 x x 1 (LCDS20) P3.x (I/O) P3.x (I/O) I: 0, O: 1 0 0 Timer1_A5.CCI4A 0 1 0 Timer1_A5.TA4 1 1 0 x x 1 (LCDS20) I: 0, O: 1 0 0 Timer1_A5.TACLK 0 1 0 Timer0_A3.TA0 1 1 0 S20 x x 1 (LCDS20) 0 P3.x (I/O) P3.x (I/O) I: 0, O: 1 0 CAOUT 1 1 0 S19 x x 1 (LCDS16) I: 0, O: 1 0 0 x x 1 (LCDS16) I: 0, O: 1 0 0 1 (LCDS16) P3.x (I/O) S18 P3.6/S17 / 6 P3.7/S16 / 7 LCDS16 LCDS20 I: 0, O: 1 S21 P3.3/TA0.0/TA1CLK/S20 / / / P3SEL.x Timer1_A5.CCI2A S23 P3.1/TA1.3/S22 / / P3DIR.x P3.x (I/O) S17 P3.x (I/O) S16 x x I: 0, O: 1 0 0 x x 1 (LCDS16) NOTES: 1. x: Don’t care POST OFFICE BOX 655303  DALLAS, TEXAS 75265 59 MSP430F41x2 MIXED SIGNAL MICROCONTROLLER SLAS648E -- APRIL 2009 -- REVISED MARCH 2011 APPLICATION INFORMATION Port P4 pin schematic: P4.0 to P4.7 input/output with Schmitt trigger LCDS0/4 Pad Logic Segment Sy P4DIR.x 0 Direction 0: Input 1: Output 1 P4OUT.x 0 Module X Out 1 P4.0/S7 P4.1/S6 P4.2/S5 P4.3/S4 P4.4/S3 P4.5/S2 P4.6/S1 P4.7/ADC10CLK/S0 Bus Keeper EN P4SEL.x P4IN.x Port P4 (P4.0 to P4.7) pin functions CONTROL BITS / SIGNALS PIN NAME (P4.X) P4.0/S7 / X 0 FUNCTION P4.x (I/O) S7 P4.1/S6 / 1 P4.x (I/O) S6 P4.2/S5 / 2 P4.3/S4 / 3 P4.x (I/O) S5 P4.x (I/O) S4 P4.4/S3 / 4 P4.x (I/O) S3 P4.5/S2 / 5 P4.6/S1 / 6 P4.x (I/O) S2 P4.x (I/O) S1 P4.7/ADC10CLK/S0 / / 7 P4.x (I/O) P4SEL.x I: 0, O: 1 0 0 x x 1 (LCDS4) I: 0, O: 1 0 0 x x 1 (LCDS4) I: 0, O: 1 0 0 1 (LCDS4) x x I: 0, O: 1 0 0 x x 1 (LCDS4) I: 0, O: 1 0 0 x x 1 (LCDS0) I: 0, O: 1 0 0 1 (LCDS0) x x I: 0, O: 1 0 0 x x 1 (LCDS0) I: 0, O: 1 0 0 ADC10CLK 1 1 0 S0 x x 1 (LCDS0) NOTES: 1. x: Don’t care 60 LCDS4 LCDS0 P4DIR.x POST OFFICE BOX 655303  DALLAS, TEXAS 75265 MSP430F41x2 MIXED SIGNAL MICROCONTROLLER SLAS648E -- APRIL 2009 -- REVISED MARCH 2011 APPLICATION INFORMATION Port P5 pin schematic: P5.0, input/output with Schmitt trigger Pad Logic LCDS24 Segment Sy 0 P5DIR.x 1 P5OUT.x 0 Module X OUT 1 Direction 0: Input 1: Output P5.0/TA1.1/S24 Bus Keeper EN P5SEL.x P5IN.x EN Module X IN D Port P5 (P5.0) pin functions PIN NAME (P5.X) (P5 X) P5.0/TA1.1/S24 / / X 0 CONTROL BITS / SIGNALS FUNCTION P5.x (I/O) P5DIR.x P5SEL.x LCDS24 I: 0, O: 1 0 0 Timer1_A5.CCI1A 0 1 0 Timer1_A5.TA1 1 1 0 S24 x x 1 NOTES: 1. x: Don’t care POST OFFICE BOX 655303  DALLAS, TEXAS 75265 61 MSP430F41x2 MIXED SIGNAL MICROCONTROLLER SLAS648E -- APRIL 2009 -- REVISED MARCH 2011 APPLICATION INFORMATION Port P5 pin schematic: P5.1 to P5.7, input/output with Schmitt trigger Pad Logic LCD Signal P5DIR.x 0 1 P5OUT.x 0 0/1 1 Direction 0: Input 1: Output P5.1/R23 P5.2/R13LCDREF P5.3/R03 P5.4/COM3 P5.5/COM2 P5.6/COM1 P5.7/COM0 Bus Keeper EN P5SEL.x P5IN.x Port P5 (P5.1 to P5.7) pin functions PIN NAME (P5.X) (P5 X) P5.1/R23 X 1 FUNCTION P5.x (I/O) R23 P5.2/LCDREF/R13 / / 2 P5.x (I/O) R13 or LCDREF P5.3/R03 / 3 P5.4/COM3 / 4 P5.x (I/O) R03 P5.x (I/O) COM3 P5.5/COM2 / 5 P5.x (I/O) COM2 P5.6/COM1 / 6 P5.7/COM0 / 7 P5.x (I/O) COM1 P5.x (I/O) COM0 NOTES: 1. x: Don’t care 62 POST OFFICE BOX 655303  DALLAS, TEXAS 75265 CONTROL BITS / SIGNALS P5DIR.x P5SEL.x I: 0, O: 1 0 x 1 I: 0, O: 1 0 x 1 I: 0, O: 1 0 x 1 I: 0, O: 1 0 x 1 I: 0, O: 1 0 x 1 I: 0, O: 1 0 x 1 I: 0, O: 1 0 x 1 MSP430F41x2 MIXED SIGNAL MICROCONTROLLER SLAS648E -- APRIL 2009 -- REVISED MARCH 2011 APPLICATION INFORMATION Port P6 pin schematic: P6.0, input/output with Schmitt trigger Pad Logic To Comparator_A From Comparator_A CAPD.4 ADC10AE0.2 INCH=2 To ADC10 P6DIR.x 0 Direction 0: Input 1: Output 1 P6OUT.x 0 Module Out 1 P6.0/TA1.2/A2/CA4 Bus Keeper EN P6SEL.x P6IN.x EN Module X IN D Port P6 (P6.0) pin functions PIN NAME (P6.X) (P6 X) X P6.0/TA1.2/A2/CA4 / / / 0 FUNCTION CONTROL BITS / SIGNALS CAPD ADC10AE0.y P6DIR.x P6SEL.x P6.x (I/O) 0 0 I: 0, O: 1 0 Timer1_A5.TA2 0 0 1 1 x 1 (y=2) x x 1 (CAPD.4) x x x A2 CA4 NOTES: 1. x: Don’t care POST OFFICE BOX 655303  DALLAS, TEXAS 75265 63 MSP430F41x2 MIXED SIGNAL MICROCONTROLLER SLAS648E -- APRIL 2009 -- REVISED MARCH 2011 APPLICATION INFORMATION Port P6 pin schematic: P6.1 and P6.2, inpututput with Schmitt trigger P6DIR.x 0 Module direction 1 P6OUT.x 0 Module X OUT Pad Logic Direction 0: Input 1: Output 1 P6.1/UCB0SOMI/UCB0SCL P6.2/UCB0SIMO/UCB0SDA P6SEL.x P6IN.x EN Module X IN D Port P6 (P6.1 and P6.2) pin functions PIN NAME (P6.X) (P6 X) X P6.1/UCB0SOMI/UCB0SCL / / 1 FUNCTION P6.x (I/O) UCB0SOMI/UCB0SCL (see Note 2) P6.2/UCB0SIMO/UCB0SDA / / 2 P6.x (I/O) UCB0SIMO/UCB0SDA (see Note 2) NOTES: 1. x: Don’t care 2. The pin direction is controlled by the USCI module. 64 POST OFFICE BOX 655303  DALLAS, TEXAS 75265 CONTROL BITS / SIGNALS P6DIR.x P6SEL.x I: 0, O: 1 0 x 1 I: 0, O: 1 0 x 1 MSP430F41x2 MIXED SIGNAL MICROCONTROLLER SLAS648E -- APRIL 2009 -- REVISED MARCH 2011 APPLICATION INFORMATION Port P6 pin schematic: P6.3 and P6.4, input/output with Schmitt trigger Pad Logic To Comparator_A From Comparator_A CAPD.5/6 ADC10AE0.3/4 INCH=3/4 To ADC10 P6DIR.x 0 from Module 1 P6OUT.x 0 Module Out 1 Direction 0: Input 1: Output P6.3/UCB0STE/ UCA0CLK/A3/CA5/ Veref-/VrefP6.4/UCB0CLK/ UCA0STE/A4/CA6/ Veref+/Vref+ Bus Keeper EN P6SEL.x P6IN.x EN Module X IN D Port P6 (P6.3 and P6.4) pin functions PIN NAME (P6.X) (P6 X) X P6.3/UCB0STE/ / / UCA0CLK/A3/CA5/ /Veref-f /Vref-f 3 FUNCTION CAPD ADC10AE0.y P6DIR.x P6SEL.x P6.x (I/O) 0 0 I: 0, O: 1 0 UCB0STE/UCA0CLK (see Note 2) 0 0 x 1 x A3/Veref-- /Vref-- x 1 (y=3) x 1 (CAPD.5) x x x P6.x (I/O) 0 0 I: 0, O: 1 0 UCB0CLK/UCA0STE (see Note 2) 0 0 x 1 A4/Veref+/Vref+ x 1 (y=4) x x 1 (CAPD.6) x x x CA5 P6.4/UCB0CLK/ / / UCA0STE/A4/CA6/ /Veref+ f /Vref+ f 4 CONTROL BITS / SIGNALS CA6 NOTES: 1. x: Don’t care 2. The pin direction is controlled by the USCI module. POST OFFICE BOX 655303  DALLAS, TEXAS 75265 65 MSP430F41x2 MIXED SIGNAL MICROCONTROLLER SLAS648E -- APRIL 2009 -- REVISED MARCH 2011 APPLICATION INFORMATION Port P6 pin schematic: P6.5 and P6.6, input/output with Schmitt trigger INCHx = 5/6 Pad Logic To ADC10 ADC10AE0.5/6 P6DIR.x 0 Module direction 1 P6OUT.x 0 Module X OUT Direction 0: Input 1: Output 1 P6.5/UCA0RXD/ UCA0SOMI/A5 P6.6/UCA0TXD/ UCA0SIMO/A6 Bus Keeper EN P6SEL.x P6IN.x EN Module X IN D Port P6 (P6.5 and P6.6) pin functions PIN NAME (P6.X) (P6 X) P6.5/UCA0RXD/ / / UCA0SOMI/A5 X 5 CONTROL BITS / SIGNALS FUNCTION P6.x (I/O) UCA0RXD/UCA0SOMI (see Note 2) A5 P6.6/UCA0TXD/ / / UCA0SIMO/A6 6 P6.x (I/O) UCA0TXD/UCA0SIMO (see Note 2) A6 NOTES: 1. x: Don’t care 2. The pin direction is controlled by the USCI module. 66 POST OFFICE BOX 655303  DALLAS, TEXAS 75265 ADC10AE0.y P6DIR.x P6SEL.x 0 I: 0, O: 1 0 1 0 x 1 (y=5) x x 0 I: 0, O: 1 0 0 x 1 1 (y=6) x x MSP430F41x2 MIXED SIGNAL MICROCONTROLLER SLAS648E -- APRIL 2009 -- REVISED MARCH 2011 APPLICATION INFORMATION Port P6 pin schematic: P6.7, input/output with Schmitt trigger Pad Logic to SVS Mux VLD = 15 To Comparator_A From Comparator_A CAPD.7 ADC10AE0.7 INCH=7 To ADC10 P6DIR.x 0 Direction 0: Input 1: Output 1 P6OUT.x 0 0/1 1 P6.7/A7/CA7/SVSIN Bus Keeper EN P6SEL.x P6IN.x Port P6 (P6.7) pin functions PIN NAME (P6.X) (P6 X) X P6.7/A7/CA7/SVSIN / / / 7 FUNCTION CONTROL BITS / SIGNALS VLDx = 15 CAPD ADC10AE0 P6DIR.x P6SEL.x P7.x (I/O) 0 A7 0 0 0 I: 0, O: 1 0 x 1 (y = 7) x CA7 x 0 1 (CAPD.7) x x x SVSIN 1 0 0 x x NOTES: 1. x: Don’t care POST OFFICE BOX 655303  DALLAS, TEXAS 75265 67 MSP430F41x2 MIXED SIGNAL MICROCONTROLLER SLAS648E -- APRIL 2009 -- REVISED MARCH 2011 /APPLICATION INFORMATION Port P7 pin schematic: P7.0 to P7.3, input/output with Schmitt trigger Pad Logic Sy LCDS32 P7DIR.x 0 Direction 0: Input 1: Output 1 P7OUT.x 0 0/1 1 P7.0/TDO/TDI/S32 P7.1/TDI/TCLK/S33 P7.2/TMS/S34 P7.3/TCK/S35 Bus Keeper EN P7SEL.x P7IN.x To JTAG From JTAG Port P7 (P7.0 to P7.3) pin functions PIN NAME (P7.X) (P7 X) P7.0/TDO/TDI/S32 / / / P7.1/TDI/TCLK/S33 / / / P7.2/TMS/S34 / / P7.3/TCK/S35 / / X 0 1 2 3 FUNCTION CONTROL BITS / SIGNALS JTAG Mode P7DIR.x P7SEL.x LCDS32 P7.x (I/O) 0 I: 0, O: 1 0 0 TDO/TDI (see Note 1) 1 x x x S32 0 x x 1 P7.x (I/O) 0 I: 0, O: 1 0 0 TDI/TCLK (see Note 1) 1 x x x S33 0 x x 1 P7.x (I/O) 0 I: 0, O: 1 0 0 TMS (see Note 1) 1 x x x S34 0 x x 1 P7.3 (I/O) 0 I: 0, O: 1 0 0 TCK (see Note 1) 1 x x x S35 0 x x 1 NOTES: 1. In JTAG Mode the internal pullup/pulldown resistors are disabled. 2. X: Don’t care. 68 POST OFFICE BOX 655303  DALLAS, TEXAS 75265 MSP430F41x2 MIXED SIGNAL MICROCONTROLLER SLAS648E -- APRIL 2009 -- REVISED MARCH 2011 APPLICATION INFORMATION Port P7 pin schematic: P7.4 and P7.5, input/output with Schmitt trigger Pad Logic To Comparator_A From Comparator_A CAPD.2/3 ADC10AE0.0/1 INCH=0/1 To ADC10 P7DIR.x 0 Direction 0: Input 1: Output 1 P7OUT.x 0 Module Out 1 P7.4/TA1.4/A0/CA2 P7.5/TA1.3/A1/CA3 Bus Keeper EN P7SEL.x P7IN.x EN Module X IN D Port P7 (P7.4 and P7.5) pin functions PIN NAME (P7.X) (P7 X) X P7.4/TA1.4/A0/CA2 / / / 4 FUNCTION CAPD ADC10AE0.y P7DIR.x P7SEL.x P7.x (I/O) 0 0 I: 0, O: 1 0 Timer1_A5.TA4 0 0 1 1 Timer1_A5.CCI4B 0 0 0 1 A0 x 1 (y=0) x x 1 (CAPD.2) x x x P7.x (I/O) 0 0 I: 0, O: 1 0 Timer1_A5.TA3 0 0 1 1 Timer1_A5.CCI3B 0 0 0 1 A1 x 1 (y=1) x x 1 (CAPD.3) x x x CA2 P7.5/TA1.3/A1/CA3 / / / 5 CONTROL BITS / SIGNALS CA3 NOTES: 1. x: Don’t care POST OFFICE BOX 655303  DALLAS, TEXAS 75265 69 MSP430F41x2 MIXED SIGNAL MICROCONTROLLER SLAS648E -- APRIL 2009 -- REVISED MARCH 2011 APPLICATION INFORMATION Port P7 pin schematic: P7.6, input/output with Schmitt trigger Pad Logic LCDS24 Segment Sy 0 P7DIR.x Direction 0: Input 1: Output 1 P7OUT.x 0 Module X OUT 1 P7.6/TA0.2/S25 Bus Keeper EN P7SEL.x P7IN.x EN Module X IN D Port P7 (P7.6) pin functions PIN NAME (P7.X) (P7 X) P7.6/TA0.2/S25 / / X 6 CONTROL BITS / SIGNALS FUNCTION P7DIR.x P7SEL.x LCDS24 I: 0, O: 1 0 0 Timer0_A3.CCI2A 0 1 0 Timer0_A3.TA2 1 1 0 S25 x x 1 P7.x (I/O) NOTES: 1. x: Don’t care 70 POST OFFICE BOX 655303  DALLAS, TEXAS 75265 MSP430F41x2 MIXED SIGNAL MICROCONTROLLER SLAS648E -- APRIL 2009 -- REVISED MARCH 2011 APPLICATION INFORMATION JTAG pins: TMS, TCK, TDI/TCLK, TDO/TDI, input/output with Schmitt trigger TDO Controlled by JTAG Controlled by JTAG JTAG TDO/TDI Controlled by JTAG DVCC DVCC TDI Fuse Burn & Test Fuse Test TDI/TCLK and DVCC Emulation Module TMS TMS DVCC During Programming Activity and During Blowing of the Fuse, Pin TDO/TDI Is Used to Apply the Test Input Data for JTAG Circuitry TCK TCK JTAG fuse check mode For details on the JTAG fuse check mode, see the MSP430 Memory Programming User’s Guide (SLAU265) chapter ”Fuse Check and Reset of the JTAG State Machine (TAP Controller)”. POST OFFICE BOX 655303  DALLAS, TEXAS 75265 71 MSP430F41x2 MIXED SIGNAL MICROCONTROLLER SLAS648E -- APRIL 2009 -- REVISED MARCH 2011 Data Sheet Revision History LITERATURE NUMBER SLAS648 SLAS648A SLAS648B SLAS648C SLAS648D SLAS648E 72 SUMMARY Production Data release Changed TDI/TCLK to TEST in Note 1 of “absolute maximum ratings” table (page 23) Changed lower limit of Storage temperature, Programmed device from --40C to --55C in “absolute maximum ratings” table (page 23) Corrected Timer_A3 Signal Connections and Timer_A5 Signal Connections tables (pages 17, 18) Removed bullet indicating that Segment A contains calibration data (page 15) Added note to functional block diagram (page 5) In “absolute maximum ratings” table, changed LFXT1 crystal frequency, f(LFXT1) MIN from 450 to 0.45 MHz (with ceramic resonator) and from 1000 to 1 MHz (with crystal) (page 23) In “crystal oscillator, LFXT1, high frequency modes” table, changed fLFXT1 MAX from 8 to 6 MHz for both ceramic and crystal resonator (page 36)td(SVSon) Changed limits on td(SVSon) parameter (page 31) POST OFFICE BOX 655303  DALLAS, TEXAS 75265 PACKAGE OPTION ADDENDUM www.ti.com 10-Dec-2020 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) (6) MSP430F4132IPM ACTIVE LQFP PM 64 160 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 M430F4132 MSP430F4132IPMR ACTIVE LQFP PM 64 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 M430F4132 MSP430F4132IRGZR ACTIVE VQFN RGZ 48 2500 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 M430 F4132 MSP430F4132IRGZT ACTIVE VQFN RGZ 48 250 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 M430 F4132 MSP430F4152IPM ACTIVE LQFP PM 64 160 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 M430F4152 MSP430F4152IPMR ACTIVE LQFP PM 64 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 M430F4152 MSP430F4152IRGZR ACTIVE VQFN RGZ 48 2500 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 M430 F4152 MSP430F4152IRGZT ACTIVE VQFN RGZ 48 250 RoHS & Green NIPDAU Level-3-260C-168 HR M430 F4152 (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
MSP430F4132IPMR 价格&库存

很抱歉,暂时无法提供与“MSP430F4132IPMR”相匹配的价格&库存,您可以联系我们找货

免费人工找货