Product
Folder
Order
Now
Technical
Documents
Tools &
Software
Support &
Community
Reference
Design
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
MSP430F522x, MSP430F521x Mixed-Signal Microcontrollers
1 Device Overview
1.1
Features
1
• Dual-Supply Voltage Device
– Primary Supply (AVCC, DVCC):
– Powered From External Supply:
3.6 V Down to 1.8 V
– Up to 22 General-Purpose I/Os With up to
Four External Interrupts
– Low-Voltage Interface Supply (DVIO):
– Powered From Separate External Supply:
1.62 V to 1.98 V
– Up to 31 General-Purpose I/Os With up to
12 External Interrupts
– Serial Communications
• Ultra-Low Power Consumption
– Active Mode (AM):
All System Clocks Active
290 µA/MHz at 8 MHz, 3.0 V, Flash Program
Execution (Typical)
150 µA/MHz at 8 MHz, 3.0 V, RAM Program
Execution (Typical)
– Standby Mode (LPM3):
Real-Time Clock (RTC) With Crystal, Watchdog,
and Supply Supervisor Operational, Full RAM
Retention, Fast Wakeup:
1.9 µA at 2.2 V, 2.1 µA at 3.0 V (Typical)
Low-Power Oscillator (VLO), General-Purpose
Counter, Watchdog, and Supply Supervisor
Operational, Full RAM Retention, Fast Wakeup:
1.4 µA at 3.0 V (Typical)
– Off Mode (LPM4):
Full RAM Retention, Supply Supervisor
Operational, Fast Wakeup:
1.1 µA at 3.0 V (Typical)
– Shutdown Mode (LPM4.5):
0.18 µA at 3.0 V (Typical)
• Wake up From Standby Mode in 3.5 µs (Typical)
• 16-Bit RISC Architecture, Extended Memory, up to
25-MHz System Clock
• Flexible Power-Management System
– Fully Integrated LDO With Programmable
Regulated Core Supply Voltage
– Supply Voltage Supervision, Monitoring, and
Brownout
• Unified Clock System
– FLL Control Loop for Frequency Stabilization
– Low-Power Low-Frequency Internal Clock
Source (VLO)
– Low-Frequency Trimmed Internal Reference
Source (REFO)
– 32-kHz Watch Crystals (XT1)
– High-Frequency Crystals up to 32 MHz (XT2)
• 16-Bit Timer TA0, Timer_A With Five
Capture/Compare Registers
• 16-Bit Timer TA1, Timer_A With Three
Capture/Compare Registers
• 16-Bit Timer TA2, Timer_A With Three
Capture/Compare Registers
• 16-Bit Timer TB0, Timer_B With Seven
Capture/Compare Shadow Registers
• Two Universal Serial Communication Interfaces
– USCI_A0 and USCI_A1 Each Support:
– Enhanced UART With Automatic Baud Rate
Detection
– IrDA Encoder and Decoder
– Synchronous SPI
– USCI_B0 and USCI_B1 Each Support:
– I2C
– Synchronous SPI
• 10-Bit Analog-to-Digital Converter (ADC) With
Internal Reference, Sample-and-Hold
• Comparator
• Hardware Multiplier Supports 32-Bit Operations
• Serial Onboard Programming, No External
Programming Voltage Needed
• Three-Channel Internal DMA
• Basic Timer With RTC Feature
• Device Comparison Summarizes Available Family
Members
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,
intellectual property matters and other important disclaimers. PRODUCTION DATA.
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
1.2
•
•
Applications
Analog and Digital Sensor Systems
Data Loggers
1.3
www.ti.com
•
General-Purpose Applications
Description
The TI MSP430™ family of ultra-low-power microcontrollers consists of several devices featuring different
sets of peripherals targeted for various applications. The architecture, combined with extensive low-power
modes, is optimized to achieve extended battery life in portable measurement applications. The device
features a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that contribute to
maximum code efficiency. The digitally controlled oscillator (DCO) allows the device to wake up from lowpower modes to active mode in 3.5 µs (typical).
The MSP430F522x series are microcontrollers with four 16-bit timers, a high-performance 10-bit ADC, two
universal serial communication interfaces (USCIs), a hardware multiplier, DMA, a comparator, and an
RTC module with alarm capabilities.
The MSP430F521x series include all of the peripherals of the MSP430F522x series with the exception of
the ADC.
All devices have a split I/O supply system that allows for a seamless interface to other devices that have a
nominal 1.8-V I/O interface without the need for external level translation.
For complete module descriptions, see the MSP430F5xx and MSP430F6xx Family User's Guide. For
design guidelines, see Designing With MSP430F522x and MSP430F521x Devices.
Device Information (1)
PACKAGE
BODY SIZE (2)
MSP430F5229IRGC
VQFN (64)
9 mm × 9 mm
MSP430F5229IZQE
BGA (80)
5 mm × 5 mm
PART NUMBER
MSP430F5224IRGZ
VQFN (48)
7 mm × 7 mm
MSP430F5219IYFF
DSBGA (64)
See Section 8
(1)
(2)
2
For the most current part, package, and ordering information, see the Package Option Addendum in
Section 8, or see the TI website at www.ti.com.
The dimensions shown here are approximations. For the package dimensions with tolerances, see the
Mechanical Data in Section 8.
Device Overview
Copyright © 2012–2018, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
1.4
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
Functional Block Diagrams
Figure 1-1 shows the functional block diagram for the MSP430F5229 and MSP430F5227 devices in the
RGC, ZQE, YFF packages.
XIN XOUT
XT2IN
XT2OUT
Unified
Clock
System
RSTDVCC RST/NMI BSLEN
ACLK
8KB
Power
Management
Flash
RAM
LDO
SVM/SVS
Brownout
PA
DVIO VCORE
P1.x
P2.x
SYS
P1
P1
P2
1×4 I/Os 1×4 I/Os 1×8 I/Os
Watchdog
PA
1×16 I/Os
Port Map
Control
(P4)
I/O Ports
Interrupt and Wakeup
SMCLK
MCLK
CPUXV2
and
Working
Registers
128KB
64KB
DVCC AVCC
DVSS AVSS
P3.x
PB
P4.x
P5.x
PC
P6.x
PJ
PD
P7.x PJ.x
P3
P4
P5
P6
P7
1×5 I/Os 1×8 I/Os 1×6 I/Os 1×8 I/Os 1×6 I/Os
PB
1×13 I/Os
PC
1×14 I/Os
USCI0,1
PD
PJ
1×6 I/Os 1×4 I/Os
I/O Ports
USCI_Ax:
UART,
IrDA, SPI
USCI_Bx:
SPI, I2C
MAB
DMA
MDB
3 Channel
EEM
(S: 3+1)
ADC10_A
JTAG,
SBW
Interface
MPY32
TA0
TA1
TA2
TB0
Timer_A
5 CC
Registers
Timer_A
3 CC
Registers
Timer_A
3 CC
Registers
Timer_B
7 CC
Registers
I/O are supplied by DVIO
RTC_A
CRC16
10 Bit
200 KSPS
COMP_B
REF
12 Channels
(10 ext,2 int)
8 Channels
Copyright © 2016, Texas Instruments Incorporated
Figure 1-1. Functional Block Diagram – F5229, F5227 – RGC, ZQE, YFF Packages
Device Overview
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2018, Texas Instruments Incorporated
3
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
www.ti.com
Figure 1-2 shows the functional block diagram for the MSP430F5224 and MSP430F5222 devices in the
RGZ package.
XIN XOUT
RSTDVCC RST/NMI BSLEN
DVCC AVCC
DVSS AVSS
PA
DVIO VCORE
P1.x
XT2IN
XT2OUT
Unified
Clock
System
ACLK
8KB
Power
Management
SYS
P1
P1
P2
1×4 I/Os 1×4 I/Os 1×1 I/Os
Watchdog
PA
1×9 I/Os
Port Map
Control
(P4)
I/O Ports
Interrupt and Wakeup
SMCLK
MCLK
CPUXV2
and
Working
Registers
128KB
64KB
Flash
RAM
LDO
SVM,SVS
Brownout
P2.x
P3.x
PB
P4.x
P5.x
PC
P6.x
PJ
PJ.x
P3
P4
P5
P6
1×5 I/Os 1×7 I/Os 1×6 I/Os 1×6 I/Os
PB
1×12 I/Os
PC
1×12 I/Os
USCI0,1
PJ
1×4 I/Os
USCI_Ax:
UART,
IrDA, SPI
I/O Ports
USCI_Bx:
SPI, I2C
MAB
DMA
MDB
3 Channel
EEM
(S: 3+1)
ADC10_A
JTAG,
SBW
Interface
MPY32
TA0
TA1
TA2
TB0
Timer_A
5 CC
Registers
Timer_A
3 CC
Registers
Timer_A
3 CC
Registers
Timer_B
7 CC
Registers
RTC_A
CRC16
10 Bit
200 KSPS
COMP_B
REF
6 Channels
10 Channels
(8 ext, 2 int)
I/O are supplied by DVIO
Copyright © 2016, Texas Instruments Incorporated
Figure 1-2. Functional Block Diagram – F5224, F5222 – RGZ Package
Figure 1-3 shows the functional block diagram for the MSP430F5219 and MSP430F5217 devices in the
RGC, ZQE, and YFF packages.
XIN XOUT
XT2IN
XT2OUT
Unified
Clock
System
RSTDVCC RST/NMI BSLEN
ACLK
8KB
Power
Management
Flash
RAM
LDO
SVM/SVS
Brownout
PA
DVIO VCORE
P1.x
P2.x
SYS
P1
P1
P2
1×4 I/Os 1×4 I/Os 1×8 I/Os
Watchdog
PA
1×16 I/Os
Port Map
Control
(P4)
I/O Ports
Interrupt and Wakeup
SMCLK
MCLK
CPUXV2
and
Working
Registers
128KB
64KB
DVCC AVCC
DVSS AVSS
P3.x
PB
P4.x
P5.x
PC
P6.x
PJ
PD
P7.x PJ.x
P3
P4
P5
P6
P7
1×5 I/Os 1×8 I/Os 1×6 I/Os 1×8 I/Os 1×6 I/Os
PB
1×13 I/Os
PC
1×14 I/Os
USCI0,1
PD
PJ
1×6 I/Os 1×4 I/Os
I/O Ports
USCI_Ax:
UART,
IrDA, SPI
USCI_Bx:
SPI, I2C
MAB
DMA
MDB
3 Channel
EEM
(S: 3+1)
JTAG,
SBW
Interface
MPY32
I/O are supplied by DVIO
TA0
TA1
TA2
TB0
Timer_A
5 CC
Registers
Timer_A
3 CC
Registers
Timer_A
3 CC
Registers
Timer_B
7 CC
Registers
COMP_B
RTC_A
CRC16
REF
8 Channels
Copyright © 2016, Texas Instruments Incorporated
Figure 1-3. Functional Block Diagram – F5219, F5217 – RGC, ZQE, YFF Packages
4
Device Overview
Copyright © 2012–2018, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
Figure 1-4 shows the functional block diagram for the MSP430F5214 and MSP430F5212 devices in the
RGZ package.
XIN XOUT
XT2IN
XT2OUT
Unified
Clock
System
RSTDVCC RST/NMI BSLEN
ACLK
8KB
Power
Management
Flash
RAM
LDO
SVM, SVS
Brownout
PA
DVIO VCORE
P1.x
P2.x
SYS
P1
P1
P2
1×4 I/Os 1×4 I/Os 1×1 I/Os
Watchdog
PA
1×9 I/Os
Port Map
Control
(P4)
I/O Ports
Interrupt and Wakeup
SMCLK
MCLK
CPUXV2
and
Working
Registers
128KB
64KB
DVCC AVCC
DVSS AVSS
P3.x
PB
P4.x
P5.x
PC
P6.x
PJ
PJ.x
P3
P4
P5
P6
1×5 I/Os 1×7 I/Os 1×6 I/Os 1×6 I/Os
PB
1×12 I/Os
PC
1×12 I/Os
USCI0,1
PJ
1×4 I/Os
USCI_Ax:
UART,
IrDA, SPI
I/O Ports
USCI_Bx:
SPI, I2C
MAB
DMA
MDB
3 Channel
EEM
(S: 3+1)
JTAG,
SBW
Interface
TA1
TA2
TB0
Timer_A
3 CC
Registers
Timer_A
3 CC
Registers
Timer_B
7 CC
Registers
TA0
MPY32
Timer_A
5 CC
Registers
I/O are supplied by DVIO
COMP_B
RTC_A
CRC16
REF
6 Channels
Copyright © 2016, Texas Instruments Incorporated
Figure 1-4. Functional Block Diagram – F5214, F5212 – RGZ Package
Device Overview
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2018, Texas Instruments Incorporated
5
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
www.ti.com
Table of Contents
1
2
3
Device Overview ......................................... 1
1.1
Features .............................................. 1
1.2
Applications ........................................... 2
1.3
Description ............................................ 2
1.4
Functional Block Diagrams ........................... 3
5
5.20
Related Products ..................................... 9
Terminal Configuration and Functions ............ 10
4.1
Pin Diagrams ........................................ 10
4.2
Signal Descriptions .................................. 16
Output Frequency – General-Purpose I/O DVIO
Domain
(P1.4 to P1.7, P2.0 to P2.7, P3.0 to P3.4, P4.0 to
P4.7, P7.0 to P7.5) .................................. 30
Typical Characteristics – Outputs, Reduced Drive
Strength (PxDS.y = 0) ............................... 31
Typical Characteristics – Outputs, Full Drive
Strength (PxDS.y = 1) ............................... 32
5.21
Crystal Oscillator, XT1, Low-Frequency Mode ...... 33
5.22
5.23
Crystal Oscillator, XT2 .............................. 34
Internal Very-Low-Power Low-Frequency Oscillator
(VLO) ................................................ 35
Internal Reference, Low-Frequency Oscillator
(REFO) .............................................. 35
5.24
Specifications ........................................... 21
5.1
Absolute Maximum Ratings ......................... 21
5.25
DCO Frequency ..................................... 36
5.2
ESD Ratings
........................................
Recommended Operating Conditions ...............
21
5.26
PMM, Brownout Reset (BOR)....................... 37
21
5.27
PMM, Core Voltage ................................. 37
Active Mode Supply Current Into VCC Excluding
External Current ..................................... 24
Low-Power Mode Supply Currents (Into VCC)
Excluding External Current.......................... 25
5.28
PMM, SVS High Side
5.29
PMM, SVM High Side ............................... 39
5.30
PMM, SVS Low Side ................................ 39
5.31
5.32
PMM, SVM Low Side ............................... 40
Wake-up Times From Low-Power Modes and
Reset ................................................ 40
5.33
Timer_A
5.34
5.35
Timer_B ............................................. 41
USCI (UART Mode), Recommended Operating
Conditions ........................................... 42
5.36
5.37
USCI (UART Mode) ................................. 42
USCI (SPI Master Mode), Recommended Operating
Conditions ........................................... 42
5.38
USCI (SPI Master Mode)............................ 42
5.39
USCI (SPI Slave Mode) ............................. 44
5.40
5.41
USCI (I2C Mode) .................................... 46
10-Bit ADC, Power Supply and Input Range
Conditions ........................................... 47
5.42
10-Bit ADC, Timing Parameters
5.43
10-Bit ADC, Linearity Parameters................... 48
5.44
REF, External Reference
5.45
REF, Built-In Reference ............................. 49
5.46
Comparator_B ....................................... 50
5.47
Flash Memory ....................................... 51
5.48
JTAG and Spy-Bi-Wire Interface .................... 51
5.49
DVIO BSL Entry ..................................... 52
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
6
5.19
Revision History ......................................... 8
Device Comparison ..................................... 9
3.1
4
5.18
Thermal Resistance Characteristics ................ 26
Schmitt-Trigger Inputs – General-Purpose I/O
DVCC Domain
(P1.0 to P1.3, P5.0 to P5.5, P6.0 to P6.7, PJ.0 to
PJ.3, RSTDVCC) ................................... 27
Schmitt-Trigger Inputs – General-Purpose I/O DVIO
Domain
(P1.4 to P1.7, P2.0 to P2.7, P3.0 to P3.4, P4.0 to
P4.7, P7.0 to P7.5, RST/NMI, BSLEN) ............. 27
Inputs – Interrupts DVCC Domain Port P1
(P1.0 to P1.3) ....................................... 27
Inputs – Interrupts DVIO Domain Ports P1 and P2
(P1.4 to P1.7, P2.0 to P2.7)......................... 27
Leakage Current – General-Purpose I/O DVCC
Domain
(P1.0 to P1.3, P5.0 to P5.5, P6.0 to P6.7, PJ.0 to
PJ.3) ................................................. 28
Leakage Current – General-Purpose I/O DVIO Domain
(P1.4 to P1.7, P2.0 to P2.7, P3.0 to P3.4, P4.0 to
P4.7, P7.0 to P7.5) .................................. 28
Outputs – General-Purpose I/O DVCC Domain (Full
Drive Strength)
(P1.0 to P1.3, P5.0 to P5.5, P6.0 to P6.7, PJ.0 to
PJ.3) ................................................. 28
Outputs – General-Purpose I/O DVCC Domain
(Reduced Drive Strength)
(P1.0 to P1.3, P5.0 to P5.5, P6.0 to P6.7, PJ.0 to
PJ.3) ................................................. 28
Outputs – General-Purpose I/O DVIO Domain (Full
Drive Strength)
(P1.4 to P1.7, P2.0 to P2.7, P3.0 to P3.4, P4.0 to
P4.7, P7.0 to P7.5) .................................. 29
Outputs – General-Purpose I/O DVIO Domain
(Reduced Drive Strength)
(P1.4 to P1.7, P2.0 to P2.7, P3.0 to P3.4, P4.0 to
P4.7, P7.0 to P7.5) .................................. 29
Output Frequency – General-Purpose I/O DVCC
Domain
(P1.0 to P1.3, P5.0 to P5.5, P6.0 to P6.7, PJ.0 to
PJ.3) ................................................. 30
Table of Contents
6
...............................
.............................................
....................
...........................
38
41
47
48
Detailed Description ................................... 53
6.1
CPU (Link to user's guide) .......................... 53
6.2
Operating Modes .................................... 54
6.3
Interrupt Vector Addresses.......................... 55
6.4
Memory Organization ............................... 56
6.5
Bootloader (BSL) .................................... 58
6.6
JTAG Operation ..................................... 59
6.7
Flash Memory (Link to user's guide) ................ 60
6.8
RAM (Link to user's guide) .......................... 60
..........................................
6.9
Peripherals
6.10
Input/Output Diagrams .............................. 82
61
Copyright © 2012–2018, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
Device Descriptors .................................. 99
7.5
Related Links
Device and Documentation Support .............. 105
7.6
Community Resources............................. 110
7.1
Getting Started ..................................... 105
7.7
Trademarks ........................................ 110
7.2
Device Nomenclature .............................. 105
7.8
Electrostatic Discharge Caution
7.3
Tools and Software ................................ 107
7.9
Glossary............................................ 110
7.4
Documentation Support ............................ 108
6.11
7
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
8
......................................
...................
110
Mechanical, Packaging, and Orderable
Information ............................................. 110
Table of Contents
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2018, Texas Instruments Incorporated
110
7
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
www.ti.com
2 Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.
Changes from June 29, 2016 to September 26, 2018
•
•
•
•
•
•
•
•
•
•
•
8
Page
Added Section 3.1, Related Products ............................................................................................. 9
Removed D and E dimension lines on the YFF pinout (for the package dimesions with tolerances, see the
Mechanical Data in Section 8) ..................................................................................................... 15
Added typical conditions statements at the beginning of Section 5, Specifications ........................................ 21
Changed the MIN value of the V(DVCC_BOR_hys) parameter from 60 mV to 50 mV in Section 5.26, PMM,
Brownout Reset (BOR) ............................................................................................................. 37
Updated notes (1) and (2) and added note (3) in Section 5.32, Wake-up Times From Low-Power Modes and
Reset .................................................................................................................................. 40
Removed ADC10DIV from the formula for the TYP value in the second row of the tCONVERT parameter in
Section 5.42, 10-Bit ADC, Timing Parameters (removed because ADC10CLK is after division)......................... 47
Added second row for tEN_CMP with Test Conditions of "CBPWRMD = 10" and MAX value of 100 μs in
Section 5.46, Comparator_B ....................................................................................................... 50
Renamed FCTL4.MGR0 and MGR1 in Section 5.47, Flash Memory, to be consistent with header files ............... 51
Throughout document, changed all instances of "bootstrap loader" to "bootloader" ....................................... 58
Replaced former section Development Tools Support with Section 7.3, Tools and Software ........................... 107
Added content to Section 7.4, Documentation Support ...................................................................... 108
Revision History
Copyright © 2012–2018, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
3 Device Comparison
Table 3-1 summarizes the available family members.
Table 3-1. Family Members (1) (2)
USCI
DEVICE
FLASH
(KB)
SRAM
(KB)
Timer_A (3)
Timer_B (4)
ADC10_A
(Ch)
Comp_B
(Ch)
I/O
DVCC (5)
I/O
DVIO (6)
PACKAGE
MSP430F5229
128
8
5, 3, 3
7
2
2
10 ext,
2 int
8
22
31
64 RGC
64 YFF
80 ZQE
MSP430F5227
64
8
5, 3, 3
7
2
2
10 ext,
2 int
8
22
31
64 RGC
64 YFF
80 ZQE
MSP430F5224
128
8
5, 3, 3
MSP430F5222
64
8
5, 3, 3
7
2
2
8 ext, 2 int
6
20
17
48 RGZ
7
2
2
8 ext, 2 int
6
20
17
48 RGZ
CHANNEL A: CHANNEL B:
UART, IrDA,
SPI, I2C
SPI
MSP430F5219
128
8
5, 3, 3
7
2
2
-
8
22
31
64 RGC
64 YFF
80 ZQE
MSP430F5217
64
8
5, 3, 3
7
2
2
-
8
22
31
64 RGC
64 YFF
80 ZQE
MSP430F5214
128
8
5, 3, 3
7
2
2
-
6
20
17
48 RGZ
MSP430F5212
64
8
5, 3, 3
7
2
2
-
6
20
17
48 RGZ
(1)
(2)
(3)
(4)
(5)
(6)
3.1
For the most current device, package, and ordering information, see the Package Option Addendum in Section 8, or see the TI website
at www.ti.com.
Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at
www.ti.com/packaging.
Each number in the sequence represents an instantiation of Timer_A with its associated number of capture compare registers and PWM
output generators available. For example, a number sequence of 3, 5 would represent two instantiations of Timer_A, the first
instantiation having 3 and the second instantiation having 5 capture compare registers and PWM output generators, respectively.
Each number in the sequence represents an instantiation of Timer_B with its associated number of capture compare registers and PWM
output generators available. For example, a number sequence of 3, 5 would represent two instantiations of Timer_B, the first
instantiation having 3 and the second instantiation having 5 capture compare registers and PWM output generators, respectively.
All of these I/Os reside on a single voltage rail supplied by DVCC.
All of these I/Os reside on a single voltage rail supplied by DVIO.
Related Products
For information about other devices in this family of products or related products, see the following links.
Products for TI Microcontrollers TI's low-power and high-performance MCUs, with wired and wireless
connectivity options, are optimized for a broad range of applications.
Products for MSP430 Ultra-Low-Power Microcontrollers One platform. One ecosystem. Endless
possibilities. Enabling the connected world with innovations in ultra-low-power
microcontrollers with advanced peripherals for precise sensing and measurement.
Companion Products for MSP430F5229 Review products that are frequently purchased or used with
this product.
Reference Designs for MSP430F5229 Find reference designs that leverage the best in TI technology to
solve your system-level challenges.
Device Comparison
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2018, Texas Instruments Incorporated
9
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
www.ti.com
4 Terminal Configuration and Functions
4.1
Pin Diagrams
P7.0/TB0.0
P7.1/TB0.1
P7.2/TB0.2
P7.3/TB0.3
P7.4/TB0.4
P7.5/TB0.5
BSLEN
RST/NMI
P5.2/XT2IN
P5.3/XT2OUT
TEST/SBWTCK
PJ.0/TDO
PJ.1/TDI/TCLK
PJ.2/TMS
RSTDVCC/SBWTDIO
PJ.3/TCK
Figure 4-1 shows the pinout for the MSP430F5229 and MSP430F5227 devices in the 64-pin RGC
package.
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
P6.0/A0/CB0
1
48
P4.7/PM_NONE
P6.1/A1/CB1
2
47
P4.6/PM_NONE
P6.2/A2/CB2
3
46
P4.5/PM_UCA1RXD/PM_UCA1SOMI
P6.3/A3/CB3
4
45
P4.4/PM_UCA1TXD/PM_UCA1SIMO
P6.4/A4/CB4
5
44
P4.3/PM_UCB1CLK/PM_UCA1STE
P6.5/A5/CB5
6
43
P4.2/PM_UCB1SOMI/PM_UCB1SCL
P6.6/A6/CB6
7
42
P4.1/PM_UCB1SIMO/PM_UCB1SDA
P6.7/A7/CB7
8
41
P4.0/PM_UCB1STE/PM_UCA1CLK
MSP430F5229IRGC
MSP430F5227IRGC
P5.0/A8/VeREF+
9
40
DVIO
P5.1/A9/VeREF-
10
39
DVSS
AVCC
11
38
P3.4/UCA0RXD/UCA0SOMI
P5.4/XIN
12
37
P3.3/UCA0TXD/UCA0SIMO
P5.5/XOUT
13
36
P3.2/UCB0CLK/UCA0STE
P2.7/UCB0STE/UCA0CLK
P2.6/RTCCLK/DMAE0
P2.5/TA2.2
P2.4/TA2.1
P2.3/TA2.0
P2.1/TA1.2
P2.2/TA2CLK/SMCLK
P2.0/TA1.1
P1.7/TA1.0
P1.6/TA1CLK/CBOUT
P1.5/TA0.4
16
33
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
P1.4/TA0.3
DVSS
P1.3/TA0.2
P3.0/UCB0SIMO/UCB0SDA
P1.2/TA0.1
P3.1/UCB0SOMI/UCB0SCL
34
P1.1/TA0.0
35
15
VCORE
14
P1.0/TA0CLK/ACLK
AVSS
DVCC
Supplied by DVIO
NOTE: TI recommends connection of exposed thermal pad to VSS.
Figure 4-1. 64-Pin RGC Package – F5229, F5227
10
Terminal Configuration and Functions
Copyright © 2012–2018, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
RST/NMI
P5.2/XT2IN
P5.3/XT2OUT
TEST/SBWTCK
PJ.0/TDO
PJ.1/TDI/TCLK
PJ.2/TMS
PJ.3/TCK
RSTDVCC/SBWTDIO
P6.0/A0/CB0
P6.1/A1/CB1
P6.2/A2/CB2
Figure 4-2 shows the pinout for the MSP430F5224 and MSP430F5222 devices in the 48-pin RGZ
package.
48 47 46 45 44 43 42 41 40 39 38 37
P6.3/A3/CB3
1
36
BSLEN
P6.4/A4/CB4
2
35
P4.6/PM_NONE
P6.5/A5/CB5
3
34
P4.5/PM_UCA1RXD/PM_UCA1SOMI
P5.0/A8/VeREF+
4
33
P4.4/PM_UCA1TXD/PM_UCA1SIMO
P5.1/A9/VeREF-
5
32
P4.3/PM_UCB1CLK/PM_UCA1STE
AVCC
6
31
P4.2/PM_UCB1SOMI/PM_UCB1SCL
P5.4/XIN
7
30
P4.1/PM_UCB1SIMO/PM_UCB1SDA
P5.5/XOUT
8
29
P4.0/PM_UCB1STE/PM_UCA1CLK
MSP430F5224IRGZ
MSP430F5222IRGZ
P1.0/TA0CLK/ACLK
P3.2/UCB0CLK/UCA0STE
P3.3/UCA0TXD/UCA0SIMO
P3.1/UCB0SOMI/UCB0SCL
25
12
13 14 15 16 17 18 19 20 21 22 23 24
VCORE
P2.7/UCB0STE/UCA0CLK
P3.4/UCA0RXD/UCA0SOMI
P3.0/UCB0SIMO/UCB0SDA
26
P1.7/TA1.0
11
P1.6/TA1CLK/CBOUT
DVSS
P1.5/TA0.4
DVSS
P1.4/TA0.3
DVIO
27
P1.3/TA0.2
28
P1.2/TA0.1
9
10
P1.1/TA0.0
AVSS
DVCC
Supplied by DVIO
NOTE: TI recommends connection of exposed thermal pad to VSS.
Figure 4-2. 48-Pin RGZ Package – F5224, F5222
Terminal Configuration and Functions
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2018, Texas Instruments Incorporated
11
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
www.ti.com
P7.0/TB0.0
P7.1/TB0.1
P7.2/TB0.2
P7.3/TB0.3
P7.4/TB0.4
P7.5/TB0.5
RST/NMI
BSLEN
P5.2/XT2IN
P5.3/XT2OUT
TEST/SBWTCK
PJ.0/TDO
PJ.1/TDI/TCLK
PJ.2/TMS
PJ.3/TCK
RSTDVCC/SBWTDIO
Figure 4-3 shows the pinout for the MSP430F5219 and MSP430F5217 devices in the 64-pin RGC
package.
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
P6.0/CB0
1
48
P4.7/PM_NONE
P6.1/CB1
2
47
P4.6/PM_NONE
P6.2/CB2
3
46
P4.5/PM_UCA1RXD/PM_UCA1SOMI
P6.3/CB3
4
45
P4.4/PM_UCA1TXD/PM_UCA1SIMO
P6.4/CB4
5
44
P4.3/PM_UCB1CLK/PM_UCA1STE
P6.5/CB5
6
43
P4.2/PM_UCB1SOMI/PM_UCB1SCL
P6.6/CB6
7
42
P4.1/PM_UCB1SIMO/PM_UCB1SDA
P6.7/CB7
8
41
P4.0/PM_UCB1STE/PM_UCA1CLK
MSP430F5219IRGC
MSP430F5217IRGC
P5.0
9
40
DVIO
P5.1
10
39
DVSS
AVCC
11
38
P3.4/UCA0RXD/UCA0SOMI
P5.4/XIN
12
37
P3.3/UCA0TXD/UCA0SIMO
P5.5/XOUT
13
36
P3.2/UCB0CLK/UCA0STE
P2.7/UCB0STE/UCA0CLK
P2.6/RTCCLK/DMAE0
P2.5/TA2.2
P2.4/TA2.1
P2.3/TA2.0
P2.1/TA1.2
P2.2/TA2CLK/SMCLK
P2.0/TA1.1
P1.7/TA1.0
P1.6/TA1CLK/CBOUT
P1.5/TA0.4
33
16
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
P1.4/TA0.3
DVSS
P1.3/TA0.2
P3.0/UCB0SIMO/UCB0SDA
P1.2/TA0.1
P3.1/UCB0SOMI/UCB0SCL
34
P1.1/TA0.0
35
15
VCORE
14
P1.0/TA0CLK/ACLK
AVSS
DVCC
Supplied by DVIO
NOTE: TI recommends connection of exposed thermal pad to VSS.
Figure 4-3. 64-Pin RGC Package – F5219, F5217
12
Terminal Configuration and Functions
Copyright © 2012–2018, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
RST/NMI
P5.2/XT2IN
P5.3/XT2OUT
TEST/SBWTCK
PJ.0/TDO
PJ.1/TDI/TCLK
PJ.2/TMS
PJ.3/TCK
RSTDVCC/SBWTDIO
P6.0/CB0
P6.1/CB1
P6.2/CB2
Figure 4-4 shows the pinout for the MSP430F5214 and MSP430F5212 devices in the 48-pin RGZ
package.
48 47 46 45 44 43 42 41 40 39 38 37
P6.3/CB3
1
36
BSLEN
P6.4/CB4
2
35
P4.6/PM_NONE
P6.5/CB5
3
34
P4.5/PM_UCA1RXD/PM_UCA1SOMI
P5.0
4
33
P4.4/PM_UCA1TXD/PM_UCA1SIMO
P5.1
5
32
P4.3/PM_UCB1CLK/PM_UCA1STE
31
P4.2/PM_UCB1SOMI/PM_UCB1SCL
30
P4.1/PM_UCB1SIMO/PM_UCB1SDA
AVCC
6
P5.4/XIN
7
P5.5/XOUT
8
29
P4.0/PM_UCB1STE/PM_UCA1CLK
AVSS
9
28
DVIO
DVCC
10
27
DVSS
11
26
P3.4/UCA0RXD/UCA0SOMI
12
25
13 14 15 16 17 18 19 20 21 22 23 24
P3.3/UCA0TXD/UCA0SIMO
P3.2/UCB0CLK/UCA0STE
P3.1/UCB0SOMI/UCB0SCL
P2.7/UCB0STE/UCA0CLK
P3.0/UCB0SIMO/UCB0SDA
P1.7/TA1.0
P1.6/TA1CLK/CBOUT
P1.5/TA0.4
P1.4/TA0.3
P1.3/TA0.2
P1.2/TA0.1
P1.0/TA0CLK/ACLK
P1.1/TA0.0
DVSS
VCORE
MSP430F5214IRGZ
MSP430F5212IRGZ
Supplied by DVIO
NOTE: TI recommends connection of exposed thermal pad to VSS.
Figure 4-4. 48-Pin RGZ Package – F5214, F5212
Terminal Configuration and Functions
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2018, Texas Instruments Incorporated
13
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
www.ti.com
Figure 4-5 shows the pinout for the MSP430F5229, MSP430F5227, MSP430F5219, and MSP430F5217
devices in the 80-pin ZQE package.
TEST RST/NMI P7.5
P7.4
P7.3
P7.1
A4
A5
A7
A8
A9
PJ.3
P5.3
P5.2
B3
B4
B5
P6.3
PJ.1
PJ.0
C2
C4
C5
C6
D4
D5
D6
P6.0 RSTDVCC PJ.2
A1
A2
A3
P6.2
P6.1
B1
B2
P6.4
C1
P6.6
P6.5
P6.7
D1
D2
D3
P5.0
P5.1
E1
E2
P5.4
AVCC
F1
F2
P5.5
AVSS
G1
G2
G3
DVCC
P1.0
H1
H2
J2
BSLEN P7.2
B6
P7.0
B7
B8
B9
P4.7
P4.6
P4.5
C7
C8
C9
P4.4
P4.3
P4.2
D7
D8
D9
P4.1
P4.0
DVIO
E3
E4
E5
E6
E7
E8
F3
F4
F5
F6
F7
F8
E9
F9
P1.3
P1.6
P2.1
P3.4
P3.2
P3.3
G4
G5
G6
G7
G8
G9
P1.1
P1.4
P1.7
P2.3
P2.7
P3.0
P3.1
H3
H4
H5
H6
H7
H8
H9
P1.5
P2.0
P2.2
P2.4
P2.5
P2.6
J4
J5
J6
J7
J8
J9
DVSS
DVSS VCORE P1.2
J1
A6
J3
Supplied by DVIO
Figure 4-5. 80-Pin ZQE Package – F5229, F5227, F5219, F5217
14
Terminal Configuration and Functions
Copyright © 2012–2018, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
Figure 4-6 shows the pinout for the MSP430F5229, MSP430F5227, MSP430F5219, and MSP430F5217
devices in the 64-pin YFF package.
Top View
Ball-Side View
H8
P3.0
H7
P3.3
H6
DVSS
H5
DVIO
H4
P4.1
H3
P4.4
H2
P4.6
H1
P7.0
H1
P7.0
H2
P4.6
H3
P4.4
H4
P4.1
H5
DVIO
H6
DVSS
H7
P3.3
H8
P3.0
G8
P2.6
G7
P3.1
G6
P3.2
G5
P3.4
G4
P4.3
G3
P4.7
G2
P7.1
G1
P7.3
G1
P7.3
G2
P7.1
G3
P4.7
G4
P4.3
G5
P3.4
G6
P3.2
G7
P3.1
G8
P2.6
F8
P2.3
F7
P2.5
F6
P2.7
F5
P4.0
F4
P4.5
F3
P7.2
F2
P7.4
F1
P7.5
F1
P7.5
F2
P7.4
F3
P7.2
F4
P4.5
F5
P4.0
F6
P2.7
F7
P2.5
F8
P2.3
E4
E3
E2
E1
E1
E2
E3
E4
E8
E7
E6
E5
P2.0
P2.2
P2.4
P4.2
D8
P1.5
D7
P1.6
P1.7
D5
D3
D4
P2.1 RSTDVCC PJ.2
D2
PJ.0
D1
P5.3
D1
P5.3
D2
PJ.0
D5
D3
D4
PJ.2 RSTDVCC P2.1
C8
P1.2
C7
P1.1
C6
P1.3
C5
P1.4
C4
P6.6
C3
P6.3
C2
P6.0
C1
PJ.1
C1
PJ.1
C2
P6.0
C3
P6.3
C4
P6.6
B8
B7
VCORE P1.0
B6
AVSS
B5
AVCC
B4
P5.0
B3
P6.5
B2
P6.2
B1
PJ.3
B1
PJ.3
B2
P6.2
B3
P6.5
A6
P5.5
A5
P5.4
A4
P5.1
A3
P6.7
A2
P6.4
A1
P6.1
A1
P6.1
A2
P6.4
A3
P6.7
A8
A7
DVSS DVCC
D6
TEST RST/NMI BSLEN P5.2
E5
E6
E7
E8
P4.2
P2.4
P2.2
P2.0
D6
P1.7
D7
P1.6
D8
P1.5
C5
P1.4
C6
P1.3
C7
P1.1
C8
P1.2
B4
P5.0
B5
AVCC
B6
AVSS
B8
B7
P1.0 VCORE
A4
P5.1
A5
P5.4
A6
P5.5
P5.2 BSLEN RST/NMI TEST
A8
A7
DVCC DVSS
Supplied by DVIO
Figure 4-6. 64-Pin YFF Package – F5229, F5227, F5219, F5217
Terminal Configuration and Functions
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2018, Texas Instruments Incorporated
15
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
4.2
www.ti.com
Signal Descriptions
Table 4-1 describes the signals for all device variants and package options.
Table 4-1. Terminal Functions
TERMINAL
NAME
I/O (1)
NO.
RGC
ZQE
YFF
SUPPLY
DESCRIPTION
RGZ
General-purpose digital I/O
P6.0/CB0/A0
1
A1
C2
46
I/O
DVCC
Comparator_B input CB0
Analog input A0 for ADC (not available on all device types)
General-purpose digital I/O
P6.1/CB1/A1
2
B2
A1
47
I/O
DVCC
Comparator_B input CB1
Analog input A1 for ADC (not available on all device types)
General-purpose digital I/O
P6.2/CB2/A2
3
B1
B2
48
I/O
DVCC
Comparator_B input CB2
Analog input A2 for ADC (not available on all device types)
General-purpose digital I/O
P6.3/CB3/A3
4
C2
C3
1
I/O
DVCC
Comparator_B input CB3
Analog input A3 for ADC (not available on all device types)
General-purpose digital I/O
P6.4/CB4/A4
5
C1
A2
2
I/O
DVCC
Comparator_B input CB4
Analog input A4 for ADC (not available on all device types)
General-purpose digital I/O
P6.5/CB5/A5
6
D2
B3
3
I/O
DVCC
Comparator_B input CB5
Analog input A5 for ADC (not available on all device types)
General-purpose digital I/O (not available on all device types)
P6.6/CB6/A6
7
D1
C4
N/A
I/O
DVCC
Comparator_B input CB6 (not available on all device types)
Analog input A6 for ADC (not available on all device types)
General-purpose digital I/O (not available on all device types)
P6.7/CB7/A7
8
D3
A3
N/A
I/O
DVCC
Comparator_B input CB7 (not available on all device types)
Analog input A7 for ADC (not available on all device types)
General-purpose digital I/O
P5.0/A8/VeREF+
9
E1
B4
4
I/O
DVCC
Analog input A8 for ADC (not available on all device types)
Input for an external reference voltage to the ADC (not available
on all device types)
General-purpose digital I/O
P5.1/A9/VeREF-
10
E2
A4
5
I/O
DVCC
Analog input A9 for ADC (not available on all device types)
Negative terminal for the ADC reference voltage for an external
applied reference voltage (not available on all device types)
AVCC
11
F2
B5
6
Analog power supply
P5.4/XIN
12
F1
A5
7
I/O
DVCC
P5.5/XOUT
13
G1
A6
8
I/O
DVCC
AVSS
14
G2
B6
9
General-purpose digital I/O
Input terminal for crystal oscillator XT1 (2)
General-purpose digital I/O
Output terminal of crystal oscillator XT1
(1)
(2)
16
Analog ground supply
I = input, O = output, N/A = not available
When in crystal bypass mode, XIN can be configured so that it can support an input digital waveform with swing levels from DVSS to
DVCC or DVSS to DVIO. In this case, it is required that the pin be configured properly for the intended input swing.
Terminal Configuration and Functions
Copyright © 2012–2018, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
Table 4-1. Terminal Functions (continued)
TERMINAL
NAME
I/O (1)
NO.
SUPPLY
DESCRIPTION
RGC
ZQE
YFF
RGZ
DVCC
15
H1
A7
10
Digital power supply
DVSS
16
J1
A8
11
Digital ground supply
VCORE (3)
17
J2
B8
12
DVCC
Regulated core power supply output (internal use only, no
external current loading)
General-purpose digital I/O with port interrupt
P1.0/TA0CLK/ACLK
18
H2
B7
13
I/O
DVCC
TA0 clock signal TA0CLK input
ACLK output (divided by 1, 2, 4, 8, 16, or 32)
General-purpose digital I/O with port interrupt
P1.1/TA0.0
19
H3
C7
14
I/O
DVCC
TA0 CCR0 capture: CCI0A input, compare: Out0 output
BSL transmit output
General-purpose digital I/O with port interrupt
P1.2/TA0.1
20
J3
C8
15
I/O
DVCC
TA0 CCR1 capture: CCI1A input, compare: Out1 output
BSL receive input
General-purpose digital I/O with port interrupt
P1.3/TA0.2
21
G4
C6
16
I/O
DVCC
TA0 CCR2 capture: CCI2A input, compare: Out2 output
P1.4/TA0.3
22
H4
C5
17
I/O
DVIO (4)
General-purpose digital I/O with port interrupt
TA0 CCR3 capture: CCI3A input compare: Out3 output
P1.5/TA0.4
23
J4
D8
18
I/O
DVIO (4)
General-purpose digital I/O with port interrupt
TA0 CCR4 capture: CCI4A input, compare: Out4 output
General-purpose digital I/O with port interrupt
P1.6/TA1CLK/CBOUT
24
G5
D7
19
I/O
DVIO (4)
TA1 clock signal TA1CLK input
Comparator_B output
P1.7/TA1.0
25
H5
D6
20
I/O
DVIO (4)
General-purpose digital I/O with port interrupt
TA1 CCR0 capture: CCI0A input, compare: Out0 output
P2.0/TA1.1
26
J5
E8
N/A
I/O
DVIO
(4)
General-purpose digital I/O with port interrupt (not available on
all device types)
TA1 CCR1 capture: CCI1A input, compare: Out1 output (not
available on all device types)
P2.1/TA1.2
27
G6
D5
N/A
I/O
DVIO
(4)
General-purpose digital I/O with port interrupt (not available on
all device types)
TA1 CCR2 capture: CCI2A input, compare: Out2 output (not
available on all device types)
General-purpose digital I/O with port interrupt (not available on
all device types)
P2.2/TA2CLK/SMCLK
28
J6
E7
N/A
I/O
DVIO (4)
TA2 clock signal TA2CLK input
SMCLK output (not available on all device types)
P2.3/TA2.0
29
H6
F8
N/A
I/O
DVIO
(4)
General-purpose digital I/O with port interrupt (not available on
all device types)
TA2 CCR0 capture: CCI0A input, compare: Out0 output (not
available on all device types)
P2.4/TA2.1
30
J7
E6
N/A
I/O
DVIO (4)
General-purpose digital I/O with port interrupt (not available on
all device types)
TA2 CCR1 capture: CCI1A input, compare: Out1 output (not
available on all device types)
(3)
(4)
VCORE is for internal use only. No external current loading is possible. VCORE should only be connected to the recommended
capacitor value, CVCORE.
This pin function is supplied by DVIO. See Section 5.8 for input and output requirements.
Terminal Configuration and Functions
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2018, Texas Instruments Incorporated
17
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
www.ti.com
Table 4-1. Terminal Functions (continued)
TERMINAL
NAME
P2.5/TA2.2
I/O (1)
NO.
RGC
31
ZQE
J8
YFF
F7
SUPPLY
DESCRIPTION
RGZ
N/A
I/O
DVIO
(4)
General-purpose digital I/O with port interrupt (not available on
all device types)
TA2 CCR2 capture: CCI2A input, compare: Out2 output (not
available on all device types)
General-purpose digital I/O with port interrupt (not available on
all device types)
P2.6/RTCCLK/DMAE0
32
J9
G8
N/A
I/O
DVIO (4)
RTC clock output for calibration (not available on all device
types)
DMA external trigger input (not available on all device types)
General-purpose digital I/O
P2.7/UCB0STE/
UCA0CLK
33
H7
F6
21
I/O
DVIO (4)
Slave transmit enable – USCI_B0 SPI mode
Clock signal input – USCI_A0 SPI slave
Clock signal output – USCI_A0 SPI master mode
mode
General-purpose digital I/O
P3.0/UCB0SIMO/
UCB0SDA
34
H8
H8
22
I/O
DVIO
(4)
Slave in, master out – USCI_B0 SPI mode
I2C data – USCI_B0 I2C mode
General-purpose digital I/O
P3.1/UCB0SOMI/
UCB0SCL
35
H9
G7
23
I/O
DVIO (4)
Slave out, master in – USCI_B0 SPI mode
I2C clock – USCI_B0 I2C mode
General-purpose digital I/O
P3.2/UCB0CLK/
UCA0STE
36
G8
G6
24
I/O
DVIO (4)
Clock signal input – USCI_B0 SPI slave
Clock signal output – USCI_B0 SPI master mode
mode
Slave transmit enable – USCI_A0 SPI mode
General-purpose digital I/O
P3.3/UCA0TXD/
UCA0SIMO
37
G9
H7
25
I/O
DVIO (4)
Transmit data – USCI_A0 UART mode
Slave in, master out – USCI_A0 SPI mode
General-purpose digital I/O
P3.4/UCA0RXD/
UCA0SOMI
38
G7
G5
26
DVSS
39
F9
H6
27
Digital ground supply
DVIO (5)
40
E9
H5
28
Digital I/O power supply
I/O
DVIO
(4)
Receive data – USCI_A0 UART mode
Slave out, master in – USCI_A0 SPI mode
P4.0/PM_UCB1STE/
PM_UCA1CLK
P4.1/PM_UCB1SIMO/
PM_UCB1SDA
41
E8
F5
29
I/O
DVIO (4)
General-purpose digital I/O with reconfigurable port mapping
secondary function Default mapping: Slave transmit enable –
USCI_B1 SPI mode
Default mapping: Clock signal input – USCI_A1 SPI slave mode
Default mapping: Clock signal output – USCI_A1 SPI master
mode
General-purpose digital I/O with reconfigurable port mapping
secondary function
42
E7
H4
30
I/O
DVIO (4)
Default mapping: Slave in, master out – USCI_B1 SPI mode
Default mapping: I2C data – USCI_B1 I2C mode
P4.2/PM_UCB1SOMI/
PM_UCB1SCL
General-purpose digital I/O with reconfigurable port mapping
secondary function
43
D9
E5
31
I/O
DVIO (4)
Default mapping: Slave out, master in – USCI_B1 SPI mode
Default mapping: I2C clock – USCI_B1 I2C mode
(5)
18
The voltage on DVIO is not supervised or monitored.
Terminal Configuration and Functions
Copyright © 2012–2018, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
Table 4-1. Terminal Functions (continued)
TERMINAL
NAME
I/O (1)
NO.
RGC
ZQE
YFF
SUPPLY
DESCRIPTION
RGZ
General-purpose digital I/O with reconfigurable port mapping
secondary function
P4.3/PM_UCB1CLK/
PM_UCA1STE
44
D8
G4
32
I/O
DVIO (4)
Default mapping: Clock signal input – USCI_B1 SPI slave mode
Default mapping: Clock signal output – USCI_B1 SPI master
mode
Default mapping: Slave transmit enable – USCI_A1 SPI mode
P4.4/PM_UCA1TXD/
PM_UCA1SIMO
General-purpose digital I/O with reconfigurable port mapping
secondary function
45
D7
H3
33
I/O
DVIO (4)
Default mapping: Transmit data – USCI_A1 UART mode
Default mapping: Slave in, master out – USCI_A1 SPI mode
P4.5/PM_UCA1RXD/
PM_UCA1SOMI
General-purpose digital I/O with reconfigurable port mapping
secondary function
46
C9
F4
34
I/O
DVIO (4)
Default mapping: Receive data – USCI_A1 UART mode
Default mapping: Slave out, master in – USCI_A1 SPI mode
P4.6/PM_NONE
47
C8
H2
35
I/O
DVIO (4)
General-purpose digital I/O with reconfigurable port mapping
secondary function
Default mapping: no secondary function
P4.7/PM_NONE
48
C7
G3
N/A
I/O
DVIO
(4)
General-purpose digital I/O with reconfigurable port mapping
secondary function (not available on all device types)
Default mapping: no secondary function (not available on all
device types)
General-purpose digital I/O (not available on all device types)
P7.0/TB0.0
49
B8,
B9
H1
N/A
I/O
DVIO (4)
P7.1/TB0.1
50
A9
G2
N/A
I/O
DVIO (4)
P7.2/TB0.2
51
B7
F3
N/A
I/O
DVIO (4)
P7.3/TB0.3
52
A8
G1
N/A
I/O
DVIO (4)
P7.4/TB0.4
53
A7
F2
N/A
I/O
DVIO (4)
P7.5/TB0.5
54
A6
F1
N/A
I/O
DVIO (4)
BSLEN
55
B6
E2
36
I
DVIO (4)
RST/NMI
56
A5
E3
37
I
DVIO (4)
P5.2/XT2IN
57
B5
E1
38
I/O
DVCC
TB0 CCR0 capture: CCI0A input, compare: Out0 output (not
available on all device types)
General-purpose digital I/O (not available on all device types)
TB0 CCR1 capture: CCI1A input, compare: Out1 output (not
available on all device types)
General-purpose digital I/O (not available on all device types)
TB0 CCR2 capture: CCI2A input, compare: Out2 output (not
available on all device types)
General-purpose digital I/O (not available on all device types)
TB0 CCR3 capture: CCI3A input, compare: Out3 output (not
available on all device types)
General-purpose digital I/O (not available on all device types)
TB0 CCR4 capture: CCI4A input, compare: Out4 output (not
available on all device types)
General-purpose digital I/O (not available on all device types)
TB0 CCR5 capture: CCI5A input, compare: Out5 output (not
available on all device types)
BSL enable with internal pulldown
Reset input active low (6) (7)
Nonmaskable interrupt input (6)
General-purpose digital I/O
(6)
(7)
(8)
Input terminal for crystal oscillator XT2 (8)
This pin is configurable as reset or NMI and resides on the DVIO supply domain. When driven from external, input swing levels from
DVSS to DVIO are required.
When this pin is configured as reset, the internal pullup resistor is enabled by default.
When in crystal bypass mode, XT2IN can be configured so that it can support an input digital waveform with swing levels from DVSS to
DVCC or DVSS to DVIO. In this case, it is required that the pin be configured properly for the intended input swing.
Terminal Configuration and Functions
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2018, Texas Instruments Incorporated
19
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
www.ti.com
Table 4-1. Terminal Functions (continued)
TERMINAL
NAME
NO.
RGC
ZQE
YFF
RGZ
58
B4
D1
39
I/O (1)
SUPPLY
I/O
DVCC
DESCRIPTION
General-purpose digital I/O
P5.3/XT2OUT
Output terminal of crystal oscillator XT2
TEST/SBWTCK (9)
Test mode pin – Selects four wire JTAG operation
59
A4
E4
40
I
DVCC
Spy-Bi-Wire input clock when Spy-Bi-Wire operation activated
PJ.0/TDO (10)
General-purpose digital I/O
60
C5
D2
41
I/O
DVCC
JTAG test data output port
PJ.1/TDI/TCLK (10)
General-purpose digital I/O
61
C4
C1
42
I/O
DVCC
JTAG test data input or test clock input
PJ.2/TMS (10)
General-purpose digital I/O
62
A3
D3
43
I/O
DVCC
JTAG test mode select
PJ.3/TCK (10)
General-purpose digital I/O
63
B3
B1
44
I/O
DVCC
JTAG test clock
Reset input, active-low (11)
RSTDVCC/
SBWTDIO (10)
64
Reserved
N/A
(12)
N/A
N/A
Reserved
QFN Pad
Pad
N/A
N/A
Pad
QFN thermal pad. TI recommends connecting to VSS.
A2
D4
45
I/O
DVCC
Spy-Bi-Wire data input/output when Spy-Bi-Wire operation
activated
(9) See Section 6.5 and Section 6.6 for use with BSL and JTAG functions.
(10) See Section 6.6 for use with JTAG function.
(11) This nonconfigurable reset resides on the DVCC supply domain and has an internal pullup to DVCC. When driven from external, input
swing levels from DVSS to DVCC are required. This reset must be used for Spy-Bi-Wire communication and is not the same RST/NMI
reset as found on other devices in the MSP430 family. See Section 6.5 and Section 6.6 for details regarding the use of this pin.
(12) C6, D4, D5, D6, E3, E4, E5, E6, F3, F4, F5, F6, F7, F8, G3 are reserved and should be connected to ground.
20
Terminal Configuration and Functions
Copyright © 2012–2018, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
5 Specifications
All graphs in this section are for typical conditions, unless otherwise noted.
Typical (TYP) values are specified at VCC = 3.3 V and TA = 25°C, unless otherwise noted.
5.1
Absolute Maximum Ratings
over operating free-air temperature range (unless otherwise noted) (1)
MIN
MAX
Voltage applied at VCC to VSS
–0.3
4.1
V
Voltage applied at VIO to VSS
–0.3
2.2
V
Voltage applied to any pin (excluding VCORE and VIO pins) (2)
–0.3
VCC + 0.3
V
Voltage applied to VIO pins
–0.3
VIO + 0.2
Diode current at any device pin
Storage temperature, Tstg (3)
(1)
(2)
(3)
–55
UNIT
V
±2
mA
150
°C
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
All voltages referenced to VSS. VCORE is for internal device use only. No external DC loading or voltage should be applied.
Higher temperature may be applied during board soldering according to the current JEDEC J-STD-020 specification with peak reflow
temperatures not higher than classified on the device label on the shipping boxes or reels.
5.2
ESD Ratings
VALUE
V(ESD)
(1)
(2)
5.3
Electrostatic discharge
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001
(1)
±1000
Charged-device model (CDM), per JEDEC specification JESD22-C101 (2)
Recommended Operating Conditions
VCC
Supply voltage during program execution and flash
programming (AVCC = DVCC) (1) (2) (3)
VIO
Supply voltage applied to DVIO referenced to VSS (2)
VSS
Supply voltage (AVSS = DVSS)
TA
Operating free-air temperature
TJ
Operating junction temperature
CVCORE
Recommended capacitor at VCORE
CDVCC/
CVCORE
Capacitor ratio of DVCC to VCORE
(3)
(4)
NOM
MAX
PMMCOREVx = 0
1.8
3.6
PMMCOREVx = 0, 1
2.0
3.6
PMMCOREVx = 0, 1, 2
2.2
3.6
PMMCOREVx = 0, 1, 2, 3
(2)
V
±250
JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Pins listed as
±1000 V may actually have higher performance.
JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Pins listed as ±250 V
may actually have higher performance.
MIN
(1)
UNIT
UNIT
V
2.4
3.6
1.62
1.98
V
–40
85
°C
–40
85
°C
0
(4)
V
470
nF
10
TI recommends powering AVCC and DVCC from the same source. A maximum difference of 0.3 V between AVCC and DVCC can be
tolerated during power up and operation.
During VCC and VIO power up, it is required that VIO ≥ VCC during the ramp up phase of VIO. During VCC and VIO power down, it is
required that VIO ≥ VCC during the ramp down phase of VIO (see Figure 5-1).
The minimum supply voltage is defined by the supervisor SVS levels when it is enabled. See the Section 5.28 threshold parameters for
the exact values and further details.
A capacitor tolerance of ±20% or better is required.
Specifications
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2018, Texas Instruments Incorporated
21
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
www.ti.com
Recommended Operating Conditions (continued)
MIN
fSYSTEM
(5)
Processor frequency (maximum MCLK frequency) (5)
(see Figure 5-3)
NOM
MAX
PMMCOREVx = 0
(default condition),
1.8 V ≤ VCC ≤ 3.6 V
0
8
PMMCOREVx = 1,
2.0 V ≤ VCC ≤ 3.6 V
0
12
PMMCOREVx = 2,
2.2 V ≤ VCC ≤ 3.6 V
0
20
PMMCOREVx = 3,
2.4 V ≤ VCC ≤ 3.6 V
0
25
UNIT
MHz
Modules may have a different maximum input clock specification. See the specification of the respective module in this data sheet.
VCC
VIO
VIO,min
VSS
t
VCC ≤ VIO
while VIO < VIO,min
VIO ≤ VCC
VCC ≤ VIO
while VIO < VIO,min
NOTE: The device supports continuous operation with VCC = VSS while VIO is fully within its specification. During this time, the
general-purpose I/Os that reside on the VIO supply domain are configured as inputs and pulled down to VSS through
their internal pulldown resistors. RST/NMI is high impedance. BSLEN is configured as an input and is pulled down to
VSS through its internal pulldown resistor. When VCC reaches above the BOR threshold, the general-purpose I/Os
become high-impedance inputs (no resistor enabled), RST/NMI becomes an input pulled up to VIO through its internal
pullup resistor, and BSLEN remains pulled down to VSS through its internal pulldown resistor.
NOTE: Under certain condtions during the rising transition of VCC, the general-purpose I/Os residing on the VIO supply
domain may actively transition high momentarily before settling to high-impedance inputs. These voltage transitions
are temporary (typically resolving to high-impedance inputs when VCC exceeds approximately 0.9 V) and are bounded
by the VIO supply.
Figure 5-1. VCC and VIO Power Sequencing
22
Specifications
Copyright © 2012–2018, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
VCC
V(SVSH_+), min
tWAKE_UP_RESET
tWAKE_UP_RESET
tWAKE_UP_RESET
DVCC
VCC
VIT+
RSTDVCC
VCC ≥ VRSTDVCC
VRSTDVCC = VCC
VIO
tWAKE_UP_RESET
tWAKE_UP_RESET
DVIO
VIO
VIT+
RST
VIO ≥ VRST
VRST = VIO
t
NOTE: The device remains in reset based on the conditions of the RSTDVCC and RST pins and the voltage present on
DVCC voltage supply. If RSTDVCC or RST is held at a logic low or if DVCC is below the SVSH_+ minimum
threshold, the device remains in its reset condition; that is, these conditions form a logical OR with respect to device
reset.
Figure 5-2. Reset Timing
Specifications
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2018, Texas Instruments Incorporated
23
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
www.ti.com
25
System Frequency - MHz
3
20
2
2, 3
1
1, 2
1, 2, 3
0, 1
0, 1, 2
0, 1, 2, 3
12
8
0
0
1.8
2.0
2.2
2.4
3.6
Supply Voltage - V
NOTE: The numbers within the fields denote the supported PMMCOREVx settings.
Figure 5-3. Maximum System Frequency
5.4
Active Mode Supply Current Into VCC Excluding External Current
over recommended operating free-air temperature (unless otherwise noted) (1)
(2) (3)
FREQUENCY (fDCO = fMCLK = fSMCLK)
PARAMETER
IAM,
IAM,
(1)
(2)
(3)
24
Flash
RAM
EXECUTION
MEMORY
Flash
RAM
VCC
3.0 V
3.0 V
PMMCOREVx
1 MHz
8 MHz
12 MHz
20 MHz
TYP
MAX
TYP
MAX
TYP
MAX
0
0.36
0.47
2.32
2.60
1
0.40
2.65
2
0.44
4.0
4.4
2.90
3
0.46
0
0.20
1
0.22
1.35
2.0
2
0.24
1.50
2.2
3.7
3
0.26
1.60
2.4
3.9
3.10
0.29
1.20
25 MHz
TYP
MAX
4.3
7.1
7.7
4.6
7.6
TYP
UNIT
MAX
mA
10.1
11.0
1.30
2.2
mA
4.2
5.3
6.2
All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.
The currents are characterized with a Micro Crystal MS1V-T1K crystal with a load capacitance of 12.5 pF. The internal and external load
capacitance are chosen to closely match the required 12.5 pF.
Characterized with program executing typical data processing.
fACLK = 32786 Hz, fDCO = fMCLK = fSMCLK at specified frequency.
XTS = CPUOFF = SCG0 = SCG1 = OSCOFF= SMCLKOFF = 0.
Specifications
Copyright © 2012–2018, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
5.5
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
Low-Power Mode Supply Currents (Into VCC) Excluding External Current
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1) (2)
PARAMETER
ILPM0,1MHz
Low-power mode 0 (3) (4)
ILPM2
Low-power mode 2 (5) (4)
VCC
PMMCOREVx
2.2 V
0
3.0 V
3
2.2 V
3.0 V
2.2 V
ILPM3,XT1LF
Low-power mode 3, crystal
mode (6) (4)
3.0 V
ILPM3,VLO
Low-power mode 3,
VLO mode (7) (4)
3.0 V
–40°C
TYP
25°C
MAX
60°C
85°C
TYP
MAX
TYP
73
77
91
80
85
97
79
83
99
88
95
107
0
6.5
6.5
12
10
11
17
3
7.0
7.0
13
11
12
18
0
1.60
1.90
2,8
6.0
1
1.65
2.00
3.0
6.3
2
1.75
2.15
3.2
6.6
0
1.8
2.1
3.0
6.2
1
1.9
2.3
3.2
6.5
2
2.0
2.4
3.3
6.8
3
2.0
2.5
3.9
3.4
6.8
10.9
0
1.1
1.4
2.7
2.0
6.1
9.7
1
1.1
1.4
2.2
6.4
2
1.2
1.5
2.3
6.8
3
1.3
1.6
3.0
2.3
6.8
10.9
0
0.9
1.1
1.5
2.0
5.1
8.8
1
1.1
1.2
2.1
5.3
2
1.2
1.2
2.2
5.5
2.9
MAX
TYP
MAX
9.4
Low-power mode 4 (8) (4)
3.0 V
1.3
1.3
1.6
2.2
5.5
9.8
ILPM4.5
Low-power mode 4.5 (9)
3.0 V
0.15
0.18
0.35
0.26
0.5
1.0
IDVIO_START
Current supplied from
DVIO while
DVCC = AVCC = 0 V,
DVIO = 1.62 V to 1.98 V,
All DVIO I/O floating
including BSLEN and
RST/NMI
0V
1.8
1.8
1.8
1.8
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
µA
µA
µA
µA
ILPM4
3
UNIT
µA
µA
µA
All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.
The currents are characterized with a Micro Crystal MS1V-T1K crystal with a load capacitance of 12.5 pF. The internal and external load
capacitance are chosen to closely match the required 12.5 pF.
Current for the watchdog timer clocked by SMCLK included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0).
CPUOFF = 1, SCG0 = 0, SCG1 = 0, OSCOFF = 0 (LPM0), fACLK = 32768 Hz, fMCLK = 0 MHz, fSMCLK = fDCO = 1 MHz
Current for brownout and high-side supervisor (SVSH) normal mode included. Low-side supervisor (SVSL) and low-side monitor (SVML)
disabled. High-side monitor (SVMH) disabled. RAM retention enabled.
Current for watchdog timer and RTC clocked by ACLK included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0).
CPUOFF = 1, SCG0 = 0, SCG1 = 1, OSCOFF = 0 (LPM2), fACLK = 32768 Hz, fMCLK = 0 MHz, fSMCLK = fDCO = 0 MHz; DCO setting = 1
MHz operation, DCO bias generator enabled.)
Current for watchdog timer and RTC clocked by ACLK included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0).
CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3), fACLK = 32768 Hz, fMCLK = fSMCLK = fDCO = 0 MHz
Current for watchdog timer and RTC clocked by ACLK included. ACLK = VLO.
CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3), fACLK = fVLO, fMCLK = fSMCLK = fDCO = 0 MHz
CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1 (LPM4), fDCO = fACLK = fMCLK = fSMCLK = 0 MHz
Internal regulator disabled. No data retention.
CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1, PMMREGOFF = 1 (LPM4.5), fDCO = fACLK = fMCLK = fSMCLK = 0 MHz
Specifications
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2018, Texas Instruments Incorporated
25
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
5.6
www.ti.com
Thermal Resistance Characteristics
THERMAL METRIC (1)
RθJA
Junction-to-ambient thermal resistance, still air
RθJC(TOP)
Junction-to-case (top) thermal resistance
RθJC(BOTTOM)
RθJB
ΨJT
ΨJB
(1)
(2)
(3)
26
Junction-to-case (bottom) thermal resistance
Junction-to-board thermal resistance
Junction-to-package-top thermal characterization parameter
Junction-to-board thermal characterization parameter
VALUE (2)
VQFN 48 (RGZ)
27.8
VQFN 64 (RGC)
29.6
DSBGA 64 (YFF)
44.3
BGA 80 (ZQE)
35.2
VQFN 48 (RGZ)
13.6
VQFN 64 (RGC)
14.8
DSBGA 64 (YFF)
0.2
BGA 80 (ZQE)
17.6
VQFN 48 (RGZ)
0.9
VQFN 64 (RGC)
1.4
DSBGA 64 (YFF)
N/A (3)
BGA 80 (ZQE)
N/A
VQFN 48 (RGZ)
4.7
VQFN 64 (RGC)
8.5
DSBGA 64 (YFF)
6.0
BGA 80 (ZQE)
16.7
VQFN 48 (RGZ)
0.2
VQFN 64 (RGC)
0.2
DSBGA 64 (YFF)
0.6
BGA 80 (ZQE)
0.3
VQFN 48 (RGZ)
4.7
VQFN 64 (RGC)
8.4
DSBGA 64 (YFF)
6.0
BGA 80 (ZQE)
9.6
UNIT
°C/W
°C/W
°C/W
°C/W
°C/W
°C/W
For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics.
These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RθJC] value, which is based on a
JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these
EIA/JEDEC standards:
• JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)
• JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages
• JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages
• JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements
N/A = not applicable
Specifications
Copyright © 2012–2018, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
Schmitt-Trigger Inputs – General-Purpose I/O DVCC Domain (1)
(P1.0 to P1.3, P5.0 to P5.5, P6.0 to P6.7, PJ.0 to PJ.3, RSTDVCC)
5.7
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
VIT+
Positive-going input threshold voltage
VIT–
Negative-going input threshold voltage
Vhys
Input voltage hysteresis (VIT+ – VIT–)
RPull
Pullup or pulldown resistor (2)
For pullup: VIN = VSS,
For pulldown: VIN = VCC
CI
Input capacitance
VIN = VSS or VCC
(1)
(2)
VCC
MIN
1.8 V
0.80
TYP
1.40
3V
1.50
2.10
1.8 V
0.45
1.00
3V
0.75
1.65
1.8 V
0.3
0.8
3V
0.4
1.0
20
35
MAX
50
5
UNIT
V
V
V
kΩ
pF
Same parametrics apply to clock input pin when crystal bypass mode is used on XT1 (XIN) or XT2 (XT2IN).
RSTDVCC has a fixed pullup resistor that cannot be disabled.
5.8
Schmitt-Trigger Inputs – General-Purpose I/O DVIO Domain
(P1.4 to P1.7, P2.0 to P2.7, P3.0 to P3.4, P4.0 to P4.7, P7.0 to P7.5, RST/NMI, BSLEN)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
VIT+
Positive-going input threshold voltage
VCC = 3.0 V
VIT–
Negative-going input threshold voltage
VCC = 3.0 V
Vhys
Input voltage hysteresis (VIT+ – VIT–)
VCC = 3.0 V
RPull
Pullup or pulldown resistor (1)
For pullup: VIN = VSS,
For pulldown: VIN = VIO
CI
Input capacitance
VIN = VSS or VIO
(1)
5.9
VIO
MIN
1.62 V
0.8
TYP
1.25
1.98 V
1.1
1.40
1.62 V
0.3
0.7
1.98 V
0.5
1.0
1.62 V to 1.98 V
0.3
0.8
V
50
kΩ
20
MAX
35
5
UNIT
V
V
pF
Also applies to RST pin when pullup or pulldown resistor is enabled.
Inputs – Interrupts DVCC Domain Port P1
(P1.0 to P1.3)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
t(int)
(1)
External interrupt timing
TEST CONDITIONS
(1)
External trigger pulse duration to set interrupt flag
VCC
1.8 V, 3 V
MIN
MAX
20
UNIT
ns
An external signal sets the interrupt flag every time the minimum interrupt pulse duration t(int) is met. It may be set by trigger signals
shorter than t(int).
5.10 Inputs – Interrupts DVIO Domain Ports P1 and P2
(P1.4 to P1.7, P2.0 to P2.7)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
t(int)
(1)
(2)
External interrupt timing (2)
TEST CONDITIONS
External trigger pulse duration to set interrupt flag,
VCC = 1.8 V or 3.0 V
VIO (1)
1.62 V to 1.98 V
MIN
MAX
20
UNIT
ns
In all test conditions, VIO ≤ VCC.
An external signal sets the interrupt flag every time the minimum interrupt pulse duration t(int) is met. It may be set by trigger signals
shorter than t(int).
Specifications
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2018, Texas Instruments Incorporated
27
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
www.ti.com
5.11 Leakage Current – General-Purpose I/O DVCC Domain
(P1.0 to P1.3, P5.0 to P5.5, P6.0 to P6.7, PJ.0 to PJ.3)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
Ilkg(Px.y)
(1)
(2)
High-impedance leakage current
TEST CONDITIONS
(1) (2)
VCC
MIN
MAX
1.8 V, 3 V
–50
50
UNIT
nA
The leakage current is measured with VSS or VCC applied to the corresponding pins, unless otherwise noted.
The leakage of the digital port pins is measured individually. The port pin is selected for input and the pullup or pulldown resistor is
disabled.
5.12 Leakage Current – General-Purpose I/O DVIO Domain
(P1.4 to P1.7, P2.0 to P2.7, P3.0 to P3.4, P4.0 to P4.7, P7.0 to P7.5)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
Ilkg(Px.y)
(1)
(2)
(3)
High-impedance leakage current
TEST CONDITIONS
(2) (3)
VIO
(1)
1.62 V to 1.98 V
MIN
MAX
–50
50
UNIT
nA
In all test conditions, VIO ≤ VCC.
The leakage current is measured with VSS or VIO applied to the corresponding pins, unless otherwise noted.
The leakage of the digital port pins is measured individually. The port pin is selected for input and the pullup or pulldown resistor is
disabled.
5.13 Outputs – General-Purpose I/O DVCC Domain (Full Drive Strength)
(P1.0 to P1.3, P5.0 to P5.5, P6.0 to P6.7, PJ.0 to PJ.3)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
I(OHmax) = –3 mA (1)
VOH
High-level output voltage
I(OHmax) = –10 mA (2)
VCC
1.8 V
I(OHmax) = –5 mA (1)
3V
I(OHmax) = –15 mA (2)
I(OLmax) = 3 mA
VOL
Low-level output voltage
(2)
MAX
VCC
VCC – 0.60
VCC
VCC – 0.25
VCC
VCC – 0.60
VCC
VSS
VSS + 0.25
VSS
VSS + 0.60
VSS
VSS + 0.25
VSS
VSS + 0.60
(1)
1.8 V
I(OLmax) = 10 mA (2)
I(OLmax) = 5 mA (1)
3V
I(OLmax) = 15 mA (2)
(1)
MIN
VCC – 0.25
UNIT
V
V
The maximum total current, I(OHmax) and I(OLmax), for all outputs combined should not exceed ±48 mA to hold the maximum voltage drop
specified.
The maximum total current, I(OHmax) and I(OLmax), for all outputs combined should not exceed ±100 mA to hold the maximum voltage
drop specified.
5.14 Outputs – General-Purpose I/O DVCC Domain (Reduced Drive Strength)
(P1.0 to P1.3, P5.0 to P5.5, P6.0 to P6.7, PJ.0 to PJ.3)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1)
PARAMETER
TEST CONDITIONS
I(OHmax) = –1 mA
VOH
High-level output voltage
I(OHmax) = –3 mA (3)
I(OHmax) = –2 mA (2)
I(OHmax) = –6 mA (3)
I(OLmax) = 1 mA
VOL
Low-level output voltage
(3)
28
1.8 V
3.0 V
(2)
I(OLmax) = 3 mA (3)
I(OLmax) = 2 mA (2)
I(OLmax) = 6 mA (3)
(1)
(2)
VCC
(2)
1.8 V
3.0 V
MIN
MAX
VCC – 0.25
VCC
VCC – 0.60
VCC
VCC – 0.25
VCC
VCC – 0.60
VCC
VSS
VSS + 0.25
VSS
VSS + 0.60
VSS
VSS + 0.25
VSS
VSS + 0.60
UNIT
V
V
Selecting reduced drive strength may reduce EMI.
The maximum total current, I(OHmax) and I(OLmax), for all outputs combined, should not exceed ±48 mA to hold the maximum voltage drop
specified.
The maximum total current, I(OHmax) and I(OLmax), for all outputs combined, should not exceed ±100 mA to hold the maximum voltage
drop specified.
Specifications
Copyright © 2012–2018, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
5.15 Outputs – General-Purpose I/O DVIO Domain (Full Drive Strength)
(P1.4 to P1.7, P2.0 to P2.7, P3.0 to P3.4, P4.0 to P4.7, P7.0 to P7.5)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
VOH
High-level output voltage
VOL
Low-level output voltage
(1)
(2)
TEST CONDITIONS
I(OHmax) = –3 mA
VIO (1)
(2)
I(OHmax) = –6 mA (2)
I(OLmax) = 3 mA (2)
I(OLmax) = 6 mA (2)
1.62 V to 1.98 V
MIN
MAX
VIO – 0.25
VIO
VIO – 0.50
VIO
VSS VSS + 0.25
1.62 V to 1.98 V
VSS VSS + 0.50
UNIT
V
V
In all test conditions, VIO ≤ VCC.
The maximum total current, I(OHmax) and I(OLmax), for all outputs combined, should not exceed ±48 mA to hold the maximum voltage drop
specified.
5.16 Outputs – General-Purpose I/O DVIO Domain (Reduced Drive Strength)
(P1.4 to P1.7, P2.0 to P2.7, P3.0 to P3.4, P4.0 to P4.7, P7.0 to P7.5)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1)
PARAMETER
VOH
High-level output voltage
VOL
Low-level output voltage
(1)
(2)
(3)
TEST CONDITIONS
I(OHmax) = –1 mA
VIO (2)
(3)
I(OHmax) = –2 mA (3)
I(OLmax) = 1 mA (3)
I(OLmax) = 2 mA (3)
1.62 V to 1.98 V
1.62 V to 1.98 V
MIN
MAX
VIO – 0.25
VIO
VIO – 0.50
VIO
VSS VSS + 0.25
VSS VSS + 0.50
UNIT
V
V
Selecting reduced drive strength may reduce EMI.
In all test conditions, VIO ≤ VCC.
The maximum total current, I(OHmax) and I(OLmax), for all outputs combined, should not exceed ±48 mA to hold the maximum voltage drop
specified.
Specifications
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2018, Texas Instruments Incorporated
29
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
www.ti.com
5.17 Output Frequency – General-Purpose I/O DVCC Domain
(P1.0 to P1.3, P5.0 to P5.5, P6.0 to P6.7, PJ.0 to PJ.3)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
Port output frequency
(with load)
fPx.y
fPort_CLK
(1)
(2)
Clock output frequency
TEST CONDITIONS
(1) (2)
ACLK, SMCLK, or MCLK,
CL = 20 pF (2)
MIN
MAX
VCC = 1.8 V,
PMMCOREVx = 0
16
VCC = 3 V,
PMMCOREVx = 3
25
VCC = 1.8 V,
PMMCOREVx = 0
16
VCC = 3 V,
PMMCOREVx = 3
25
UNIT
MHz
MHz
A resistive divider with 2 × R1 between VCC and VSS is used as load. The output is connected to the center tap of the divider. For full
drive strength, R1 = 550 Ω. For reduced drive strength, R1 = 1.6 kΩ. CL = 20 pF is connected to the output to VSS.
The output voltage reaches at least 10% and 90% VCC at the specified toggle frequency.
5.18 Output Frequency – General-Purpose I/O DVIO Domain
(P1.4 to P1.7, P2.0 to P2.7, P3.0 to P3.4, P4.0 to P4.7, P7.0 to P7.5)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
Port output frequency
(with load)
fPx.y
fPort_CLK
(1)
(2)
(3)
30
Clock output frequency
TEST CONDITIONS
(1) (2)
ACLK, SMCLK, or MCLK,
CL = 20 pF (2)
MIN
MAX
VIO = 1.62 V to 1.98 V (3),
PMMCOREVx = 0
16
VIO = 1.62 V to 1.98 V (3),
PMMCOREVx = 3
25
VIO = 1.62 V to 1.98 V (3),
PMMCOREVx = 0
16
VIO = 1.62 V to 1.98 V (3),
PMMCOREVx = 3
25
UNIT
MHz
MHz
A resistive divider with 2 × R1 between VIO and VSS is used as load. The output is connected to the center tap of the divider. For full
drive strength, R1 = 550 Ω. For reduced drive strength, R1 = 1.6 kΩ. CL = 20 pF is connected to the output to VSS.
The output voltage reaches at least 10% and 90% VIO at the specified toggle frequency.
In all test conditions, VIO ≤ VCC.
Specifications
Copyright © 2012–2018, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
5.19 Typical Characteristics – Outputs, Reduced Drive Strength (PxDS.y = 0)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
8.0
VCC = 3.0 V
Px.y
IOL – Typical Low-Level Output Current – mA
IOL – Typical Low-Level Output Current – mA
25.0
TA = 25°C
20.0
TA = 85°C
15.0
10.0
5.0
0.0
0.0
0.5
1.0
1.5
2.0
2.5
3.0
IOH – Typical High-Level Output Current – mA
IOH – Typical High-Level Output Current – mA
−10.0
−20.0
−25.0
0.0
4.0
3.0
2.0
1.0
0.0
−5.0
−15.0
5.0
TA = 85°C
TA = 25°C
0.5
1.0
1.5
2.0
2.5
3.0
3.5
VOH – High-Level Output Voltage – V
Figure 5-6. Typical High-Level Output Current vs High-Level
Output Voltage
0.5
1.0
1.5
−1.0
VCC = 1.8 V
Px.y
−2.0
−3.0
−4.0
−5.0
−6.0
TA = 85°C
TA = 25°C
−7.0
−8.0
0.0
0.5
1.0
1.5
2.0
VOH – High-Level Output Voltage – V
Figure 5-7. Typical High-Level Output Current vs High-Level
Output Voltage
Specifications
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2018, Texas Instruments Incorporated
2.0
VOL – Low-Level Output Voltage – V
Figure 5-5. Typical Low-Level Output Current vs Low-Level
Output Voltage
0.0
VCC = 3.0 V
Px.y
TA = 85°C
6.0
0.0
0.0
3.5
VOL – Low-Level Output Voltage – V
Figure 5-4. Typical Low-Level Output Current vs Low-Level
Output Voltage
7.0
TA = 25°C
VCC = 1.8 V
Px.y
31
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
www.ti.com
5.20 Typical Characteristics – Outputs, Full Drive Strength (PxDS.y = 1)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
55.0
24
TA = 25°C
VCC = 3.0 V
Px.y
50.0
IOL – Typical Low-Level Output Current – mA
IOL – Typical Low-Level Output Current – mA
60.0
TA = 85°C
45.0
40.0
35.0
30.0
25.0
20.0
15.0
10.0
0.5
1.0
1.5
2.0
2.5
3.0
TA = 85°C
16
12
8
4
0
0.0
3.5
VOL – Low-Level Output Voltage – V
Figure 5-8. Typical Low-Level Output Current vs Low-Level
Output Voltage
−10.0
−15.0
−20.0
−25.0
−30.0
−35.0
−40.0
−45.0
−50.0
TA = 85°C
−55.0
−60.0
0.0
1.0
1.5
2.0
0
VCC = 3.0 V
Px.y
IOH – Typical High-Level Output Current – mA
−5.0
0.5
VOL – Low-Level Output Voltage – V
Figure 5-9. Typical Low-Level Output Current vs Low-Level
Output Voltage
0.0
IOH – Typical High-Level Output Current – mA
TA = 25°C
20
5.0
0.0
0.0
TA = 25°C
0.5
1.0
1.5
2.0
2.5
3.0
3.5
VOH – High-Level Output Voltage – V
Figure 5-10. Typical High-Level Output Current vs High-Level
Output Voltage
32
VCC = 1.8 V
Px.y
Specifications
VCC = 1.8 V
Px.y
−4
−8
−12
TA = 85°C
−16
TA = 25°C
−20
0.0
0.5
1.0
1.5
2.0
VOH – High-Level Output Voltage – V
Figure 5-11. Typical High-Level Output Current vs High-Level
Output Voltage
Copyright © 2012–2018, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
5.21 Crystal Oscillator, XT1, Low-Frequency Mode
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1)
PARAMETER
TEST CONDITIONS
VCC
MIN
fOSC = 32768 Hz, XTS = 0,
XT1BYPASS = 0, XT1DRIVEx = 1,
TA = 25°C
ΔIDVCC.LF
Differential XT1 oscillator crystal
current consumption from lowest
drive setting, LF mode
fOSC = 32768 Hz, XTS = 0,
XT1BYPASS = 0, XT1DRIVEx = 2,
TA = 25°C
0.170
32768
XTS = 0, XT1BYPASS = 0
fXT1,LF,SW
XT1 oscillator logic-level squarewave input frequency, LF mode
XTS = 0, XT1BYPASS = 1 (2) (3)
XT1BYPASSLV = 0 or 1
OALF
3.0 V
0.290
XT1 oscillator crystal frequency,
LF mode
10
CL,eff
fFault,LF
tSTART,LF
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
32.768
XTS = 0, XT1BYPASS = 0,
XT1DRIVEx = 0,
fXT1,LF = 32768 Hz, CL,eff = 6 pF
210
XTS = 0,
XT1BYPASS = 0, XT1DRIVEx = 1,
fXT1,LF = 32768 Hz, CL,eff = 12 pF
300
µA
Hz
50
5.5
XTS = 0, XCAPx = 2
8.5
XTS = 0, XCAPx = 3
12.0
pF
Duty cycle, LF mode
XTS = 0, Measured at ACLK,
fXT1,LF = 32768 Hz
30%
70%
Oscillator fault frequency,
LF mode (7)
XTS = 0, XT1BYPASS = 1 (8),
XT1BYPASSLV = 0 or 1
10
10000
Start-up time, LF mode
fOSC = 32768 Hz, XTS = 0,
XT1BYPASS = 0, XT1DRIVEx = 3,
TA = 25°C, CL,eff = 12 pF
kHz
1
XTS = 0, XCAPx = 1
fOSC = 32768 Hz, XTS = 0,
XT1BYPASS = 0, XT1DRIVEx = 0,
TA = 25°C, CL,eff = 6 pF
UNIT
kΩ
XTS = 0, XCAPx = 0 (6)
Integrated effective load
capacitance, LF mode (5)
MAX
0.075
fOSC = 32768 Hz, XTS = 0,
XT1BYPASS = 0, XT1DRIVEx = 3,
TA = 25°C
fXT1,LF0
Oscillation allowance for
LF crystals (4)
TYP
Hz
1000
3.0 V
ms
500
To improve EMI on the XT1 oscillator, the following guidelines should be observed.
• Keep the trace between the device and the crystal as short as possible.
• Design a good ground plane around the oscillator pins.
• Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.
• Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.
• Use assembly materials and processes that avoid any parasitic load on the oscillator XIN and XOUT pins.
• If conformal coating is used, make sure that it does not induce capacitive or resistive leakage between the oscillator pins.
When XT1BYPASS is set, XT1 circuits are automatically powered down. Input signal is a digital square wave with parametrics defined in
the Schmitt-Trigger Inputs section of this data sheet. When in crystal bypass mode, XIN can be configured so that it can support an
input digital waveform with swing levels from DVSS to DVCC (XT1BYPASSLV = 0) or DVSS to DVIO (XT1BYPASSLV = 1). In this case,
the pin must be configured properly for the intended input swing.
Maximum frequency of operation of the entire device cannot be exceeded.
Oscillation allowance is based on a safety factor of 5 for recommended crystals. The oscillation allowance is a function of the
XT1DRIVEx settings and the effective load. In general, comparable oscillator allowance can be achieved based on the following
guidelines, but each application should be evaluated based on the actual crystal selected:
• For XT1DRIVEx = 0, CL,eff ≤ 6 pF
• For XT1DRIVEx = 1, 6 pF ≤ CL,eff ≤ 9 pF
• For XT1DRIVEx = 2, 6 pF ≤ CL,eff ≤ 10 pF
• For XT1DRIVEx = 3, CL,eff ≥ 6 pF
Includes parasitic bond and package capacitance (approximately 2 pF per pin).
Because the PCB adds additional capacitance, verify the correct load by measuring the ACLK frequency. For a correct setup, the
effective load capacitance should always match the specification of the used crystal.
Requires external capacitors at both terminals. Values are specified by crystal manufacturers.
Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag.
Frequencies between the MIN and MAX specifications might set the flag.
Measured with logic-level input frequency but also applies to operation with crystals.
Specifications
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2018, Texas Instruments Incorporated
33
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
www.ti.com
5.22 Crystal Oscillator, XT2
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1) (2)
PARAMETER
TEST CONDITIONS
VCC
MIN
fOSC = 4 MHz, XT2OFF = 0,
XT2BYPASS = 0, XT2DRIVEx = 0,
TA = 25°C
IDVCC.XT2
XT2 oscillator crystal current
consumption
fOSC = 12 MHz, XT2OFF = 0,
XT2BYPASS = 0, XT2DRIVEx = 1,
TA = 25°C
fOSC = 20 MHz, XT2OFF = 0,
XT2BYPASS = 0, XT2DRIVEx = 2,
TA = 25°C
TYP
MAX
UNIT
200
260
3.0 V
µA
325
fOSC = 32 MHz, XT2OFF = 0,
XT2BYPASS = 0, XT2DRIVEx = 3,
TA = 25°C
450
fXT2,HF0
XT2 oscillator crystal frequency,
mode 0
XT2DRIVEx = 0, XT2BYPASS = 0 (3)
4
8
MHz
fXT2,HF1
XT2 oscillator crystal frequency,
mode 1
XT2DRIVEx = 1, XT2BYPASS = 0 (3)
8
16
MHz
fXT2,HF2
XT2 oscillator crystal frequency,
mode 2
XT2DRIVEx = 2, XT2BYPASS = 0 (3)
16
24
MHz
fXT2,HF3
XT2 oscillator crystal frequency,
mode 3
XT2DRIVEx = 3, XT2BYPASS = 0 (3)
24
32
MHz
fXT2,HF,SW
XT2 oscillator logic-level squarewave input frequency, bypass
mode
XT2BYPASS = 1 (4) (3)
XT2BYPASSLV = 0 or 1
0.7
32
MHz
Oscillation allowance for
HF crystals (5)
OAHF
tSTART,HF
CL,eff
Start-up time
Integrated effective load
capacitance, HF mode (6)
Duty cycle
(1)
(2)
(3)
(4)
(5)
(6)
34
XT2DRIVEx = 0, XT2BYPASS = 0,
fXT2,HF0 = 6 MHz, CL,eff = 15 pF
450
XT2DRIVEx = 1, XT2BYPASS = 0,
fXT2,HF1 = 12 MHz, CL,eff = 15 pF
320
XT2DRIVEx = 2, XT2BYPASS = 0,
fXT2,HF2 = 20 MHz, CL,eff = 15 pF
200
XT2DRIVEx = 3, XT2BYPASS = 0,
fXT2,HF3 = 32 MHz, CL,eff = 15 pF
200
fOSC = 6 MHz,
XT2BYPASS = 0, XT2DRIVEx = 0,
TA = 25°C, CL,eff = 15 pF
0.5
fOSC = 20 MHz,
XT2BYPASS = 0, XT2DRIVEx = 2,
TA = 25°C, CL,eff = 15 pF
Ω
3.0 V
ms
0.3
1
(1)
Measured at ACLK, fXT2,HF2 = 20 MHz
40%
50%
pF
60%
Requires external capacitors at both terminals. Values are specified by crystal manufacturers.
To improve EMI on the XT2 oscillator the following guidelines should be observed.
• Keep the traces between the device and the crystal as short as possible.
• Design a good ground plane around the oscillator pins.
• Prevent crosstalk from other clock or data lines into oscillator pins XT2IN and XT2OUT.
• Avoid running PCB traces underneath or adjacent to the XT2IN and XT2OUT pins.
• Use assembly materials and processes that avoid any parasitic load on the oscillator XT2IN and XT2OUT pins.
• If conformal coating is used, make sure that it does not induce capacitive or resistive leakage between the oscillator pins.
This represents the maximum frequency that can be input to the device externally. Maximum frequency achievable on the device
operation is based on the frequencies present on ACLK, MCLK, and SMCLK cannot be exceed for a given range of operation.
When XT2BYPASS is set, the XT2 circuit is automatically powered down. Input signal is a digital square wave with parametrics defined
in the Schmitt-trigger Inputs section of this data sheet. When in crystal bypass mode, XT2IN can be configured so that it can support an
input digital waveform with swing levels from DVSS to DVCC (XT2BYPASSLV = 0) or DVSS to DVIO (XT2BYPASSLV = 1). In this case,
it is required that the pin be configured properly for the intended input swing.
Oscillation allowance is based on a safety factor of 5 for recommended crystals.
Includes parasitic bond and package capacitance (approximately 2 pF per pin).
Because the PCB adds additional capacitance, verify the correct load by measuring the ACLK frequency. For a correct setup, the
effective load capacitance should always match the specification of the used crystal.
Specifications
Copyright © 2012–2018, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
Crystal Oscillator, XT2 (continued)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)(2)
PARAMETER
fFault,HF
(7)
(8)
Oscillator fault frequency
TEST CONDITIONS
(7)
VCC
XT2BYPASS = 1 (8),
XT2BYPASSLV = 0 or 1
MIN
TYP
30
MAX
UNIT
300
kHz
Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag.
Frequencies between the MIN and MAX specifications might set the flag.
Measured with logic-level input frequency but also applies to operation with crystals. In general, an effective load capacitance of up to
18 pF can be supported.
5.23 Internal Very-Low-Power Low-Frequency Oscillator (VLO)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
VCC
MIN
TYP
MAX
6
9.4
14
UNIT
fVLO
VLO frequency
Measured at ACLK
1.8 V to 3.6 V
dfVLO/dT
VLO frequency temperature drift
Measured at ACLK (1)
1.8 V to 3.6 V
0.5
%/°C
Measured at ACLK (2)
1.8 V to 3.6 V
4
%/V
Measured at ACLK
1.8 V to 3.6 V
dfVLO/dVCC VLO frequency supply voltage drift
Duty cycle
(1)
(2)
40%
50%
kHz
60%
Calculated using the box method: (MAX(–40°C to 85°C) – MIN(–40°C to 85°C)) / MIN(–40°C to 85°C) / (85°C – (–40°C))
Calculated using the box method: (MAX(1.8 V to 3.6 V) – MIN(1.8 V to 3.6 V)) / MIN(1.8 V to 3.6 V) / (3.6 V – 1.8 V)
5.24 Internal Reference, Low-Frequency Oscillator (REFO)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
IREFO
fREFO
TEST CONDITIONS
VCC
MIN
TYP
REFO oscillator current consumption TA = 25°C
1.8 V to 3.6 V
3
REFO frequency
Measured at ACLK
1.8 V to 3.6 V
32768
Full temperature range
1.8 V to 3.6 V
–3.5%
3.5%
3V
–1.5%
1.5%
REFO absolute tolerance
TA = 25°C
(1)
dfREFO/dT
REFO frequency temperature drift
Measured at ACLK
1.8 V to 3.6 V
0.01
dfREFO/dVCC
REFO frequency supply voltage drift
Measured at ACLK (2)
1.8 V to 3.6 V
1.0
Duty cycle
Measured at ACLK
1.8 V to 3.6 V
REFO start-up time
40%/60% duty cycle
1.8 V to 3.6 V
tSTART
(1)
(2)
MAX
40%
50%
UNIT
µA
Hz
%/°C
%/V
60%
25
µs
Calculated using the box method: (MAX(–40°C to 85°C) – MIN(–40°C to 85°C)) / MIN(–40°C to 85°C) / (85°C – (–40°C))
Calculated using the box method: (MAX(1.8 V to 3.6 V) – MIN(1.8 V to 3.6 V)) / MIN(1.8 V to 3.6 V) / (3.6 V – 1.8 V)
Specifications
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2018, Texas Instruments Incorporated
35
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
www.ti.com
5.25 DCO Frequency
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
(1)
MIN
TYP
MAX
UNIT
fDCO(0,0)
DCO frequency (0, 0)
DCORSELx = 0, DCOx = 0, MODx = 0
0.07
0.20
MHz
fDCO(0,31)
DCO frequency (0, 31) (1)
DCORSELx = 0, DCOx = 31, MODx = 0
0.70
1.70
MHz
fDCO(1,0)
DCO frequency (1, 0) (1)
DCORSELx = 1, DCOx = 0, MODx = 0
0.15
0.36
MHz
fDCO(1,31)
DCO frequency (1, 31) (1)
DCORSELx = 1, DCOx = 31, MODx = 0
1.47
3.45
MHz
(1)
fDCO(2,0)
DCO frequency (2, 0)
DCORSELx = 2, DCOx = 0, MODx = 0
0.32
0.75
MHz
fDCO(2,31)
DCO frequency (2, 31) (1)
DCORSELx = 2, DCOx = 31, MODx = 0
3.17
7.38
MHz
fDCO(3,0)
DCO frequency (3, 0) (1)
DCORSELx = 3, DCOx = 0, MODx = 0
0.64
1.51
MHz
(1)
fDCO(3,31)
DCO frequency (3, 31)
DCORSELx = 3, DCOx = 31, MODx = 0
6.07
14.0
MHz
fDCO(4,0)
DCO frequency (4, 0) (1)
DCORSELx = 4, DCOx = 0, MODx = 0
1.3
3.2
MHz
fDCO(4,31)
DCO frequency (4, 31) (1)
DCORSELx = 4, DCOx = 31, MODx = 0
12.3
28.2
MHz
(1)
fDCO(5,0)
DCO frequency (5, 0)
DCORSELx = 5, DCOx = 0, MODx = 0
2.5
6.0
MHz
fDCO(5,31)
DCO frequency (5, 31) (1)
DCORSELx = 5, DCOx = 31, MODx = 0
23.7
54.1
MHz
fDCO(6,0)
DCO frequency (6, 0) (1)
DCORSELx = 6, DCOx = 0, MODx = 0
4.6
10.7
MHz
fDCO(6,31)
DCO frequency (6, 31) (1)
DCORSELx = 6, DCOx = 31, MODx = 0
39.0
88.0
MHz
(1)
fDCO(7,0)
DCO frequency (7, 0)
DCORSELx = 7, DCOx = 0, MODx = 0
8.5
19.6
MHz
fDCO(7,31)
DCO frequency (7, 31) (1)
DCORSELx = 7, DCOx = 31, MODx = 0
60
135
MHz
SDCORSEL
Frequency step between range
DCORSEL and DCORSEL + 1
SRSEL = fDCO(DCORSEL+1,DCO)/fDCO(DCORSEL,DCO)
1.2
2.3
ratio
SDCO
Frequency step between tap
DCO and DCO + 1
SDCO = fDCO(DCORSEL,DCO+1)/fDCO(DCORSEL,DCO)
1.02
1.12
ratio
Duty cycle
Measured at SMCLK
40%
DCO frequency temperature
drift (2)
dfDCO/dT
dfDCO/dVCC
(1)
(2)
(3)
DCO frequency voltage drift
(3)
50%
60%
fDCO = 1 MHz
0.1
%/°C
fDCO = 1 MHz
1.9
%/V
When selecting the proper DCO frequency range (DCORSELx), the target DCO frequency, fDCO, should be set to reside within the
range of fDCO(n, 0),MAX ≤ fDCO ≤ fDCO(n, 31),MIN, where fDCO(n, 0),MAX represents the maximum frequency specified for the DCO frequency,
range n, tap 0 (DCOx = 0) and fDCO(n,31),MIN represents the minimum frequency specified for the DCO frequency, range n, tap 31 (DCOx
= 31). This ensures that the target DCO frequency resides within the range selected. It should also be noted that if the actual fDCO
frequency for the selected range causes the FLL or the application to select tap 0 or 31, the DCO fault flag is set to report that the
selected range is at its minimum or maximum tap setting.
Calculated using the box method: (MAX(–40°C to 85°C) – MIN(–40°C to 85°C)) / MIN(–40°C to 85°C) / (85°C – (–40°C))
Calculated using the box method: (MAX(1.8 V to 3.6 V) – MIN(1.8 V to 3.6 V)) / MIN(1.8 V to 3.6 V) / (3.6 V – 1.8 V)
100
VCC = 3.0 V
TA = 25°C
fDCO – MHz
10
DCOx = 31
1
0.1
DCOx = 0
0
1
2
3
4
5
6
7
DCORSEL
Figure 5-12. Typical DCO Frequency
36
Specifications
Copyright © 2012–2018, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
5.26 PMM, Brownout Reset (BOR)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
VDVCC_BOR_IT–
BORH on voltage, DVCC falling level
| dDVCC/dt | < 3 V/s
VDVCC_BOR_IT+
BORH off voltage, DVCC rising level
| dDVCC/dt | < 3 V/s
VDVCC_BOR_hys
BORH hysteresis
tRESET
Pulse duration required at RST/NMI pin to accept
a reset
MIN
TYP
0.80
1.30
50
MAX
UNIT
1.45
V
1.50
V
250
mV
2
µs
5.27 PMM, Core Voltage
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNIT
VCORE3(AM)
Core voltage, active mode,
PMMCOREV = 3
2.4 V ≤ DVCC ≤ 3.6 V
1.90
V
VCORE2(AM)
Core voltage, active mode,
PMMCOREV = 2
2.2 V ≤ DVCC ≤ 3.6 V
1.80
V
VCORE1(AM)
Core voltage, active mode,
PMMCOREV = 1
2.0 V ≤ DVCC ≤ 3.6 V
1.60
V
VCORE0(AM)
Core voltage, active mode,
PMMCOREV = 0
1.8 V ≤ DVCC ≤ 3.6 V
1.40
V
VCORE3(LPM)
Core voltage, low-current mode,
PMMCOREV = 3
2.4 V ≤ DVCC ≤ 3.6 V
1.94
V
VCORE2(LPM)
Core voltage, low-current mode,
PMMCOREV = 2
2.2 V ≤ DVCC ≤ 3.6 V
1.84
V
VCORE1(LPM)
Core voltage, low-current mode,
PMMCOREV = 1
2.0 V ≤ DVCC ≤ 3.6 V
1.64
V
VCORE0(LPM)
Core voltage, low-current mode,
PMMCOREV = 0
1.8 V ≤ DVCC ≤ 3.6 V
1.44
V
Specifications
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2018, Texas Instruments Incorporated
37
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
www.ti.com
5.28 PMM, SVS High Side
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
SVSHE = 0, DVCC = 3.6 V
I(SVSH)
SVS current consumption
V(SVSH_IT+)
tpd(SVSH)
t(SVSH)
38
SVSH off voltage level (1)
SVSH propagation delay
SVSH on or off delay time
dVDVCC/dt
(1)
SVSH on voltage level (1)
DVCC rise time
MAX
0
SVSHE = 1, DVCC = 3.6 V, SVSHFP = 0
1.5
µA
SVSHE = 1, SVSHRVL = 0
1.57
1.68
1.78
SVSHE = 1, SVSHRVL = 1
1.79
1.88
1.98
SVSHE = 1, SVSHRVL = 2
1.98
2.08
2.21
SVSHE = 1, SVSHRVL = 3
2.10
2.18
2.31
SVSHE = 1, SVSMHRRL = 0
1.62
1.74
1.85
SVSHE = 1, SVSMHRRL = 1
1.88
1.94
2.07
SVSHE = 1, SVSMHRRL = 2
2.07
2.14
2.28
SVSHE = 1, SVSMHRRL = 3
2.20
2.30
2.42
SVSHE = 1, SVSMHRRL = 4
2.32
2.40
2.55
SVSHE = 1, SVSMHRRL = 5
2.52
2.70
2.88
SVSHE = 1, SVSMHRRL = 6
2.90
3.10
3.23
SVSHE = 1, SVSMHRRL = 7
2.90
3.10
3.23
SVSHE = 1, dVDVCC/dt = 10 mV/µs,
SVSHFP = 1
2.5
SVSHE = 1, dVDVCC/dt = 1 mV/µs,
SVSHFP = 0
20
UNIT
nA
200
SVSHE = 1, DVCC = 3.6 V, SVSHFP = 1
V(SVSH_IT–)
TYP
V
V
µs
SVSHE = 0 → 1, dVDVCC/dt = 10 mV/µs,
SVSHFP = 1
12.5
SVSHE = 0 → 1, dVDVCC/dt = 1 mV/µs,
SVSHFP = 0
100
µs
0
1000
V/s
The SVSH settings available depend on the VCORE (PMMCOREVx) setting. See the Power Management Module and Supply Voltage
Supervisor chapter in the MSP430F5xx and MSP430F6xx Family User's Guide on recommended settings and use.
Specifications
Copyright © 2012–2018, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
5.29 PMM, SVM High Side
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
TYP
SVMHE = 0, DVCC = 3.6 V
I(SVMH)
SVMH current consumption
0
SVMHE= 1, DVCC = 3.6 V, SVMHFP = 0
V(SVMH)
SVMH on or off voltage level
1.5
tpd(SVMH)
t(SVMH)
(1)
SVMH propagation delay
SVMH on or off delay time
µA
SVMHE = 1, SVSMHRRL = 0
1.62
1.74
1.85
SVMHE = 1, SVSMHRRL = 1
1.88
1.94
2.07
SVMHE = 1, SVSMHRRL = 2
2.07
2.14
2.28
SVMHE = 1, SVSMHRRL = 3
2.20
2.30
2.42
SVMHE = 1, SVSMHRRL = 4
2.32
2.40
2.55
SVMHE = 1, SVSMHRRL = 5
2.52
2.70
2.88
SVMHE = 1, SVSMHRRL = 6
2.90
3.10
3.23
SVMHE = 1, SVSMHRRL = 7
2.90
3.10
3.23
SVMHE = 1, SVMHOVPE = 1
UNIT
nA
200
SVMHE = 1, DVCC = 3.6 V, SVMHFP = 1
(1)
MAX
V
3.75
SVMHE = 1, dVDVCC/dt = 10 mV/µs,
SVMHFP = 1
2.5
SVMHE = 1, dVDVCC/dt = 1 mV/µs,
SVMHFP = 0
20
µs
SVMHE = 0 → 1, dVDVCC/dt = 10 mV/µs,
SVMHFP = 1
12.5
SVMHE = 0 → 1, dVDVCC/dt = 1 mV/µs,
SVMHFP = 0
100
µs
The SVMH settings available depend on the VCORE (PMMCOREVx) setting. See the Power Management Module and Supply Voltage
Supervisor chapter in the MSP430F5xx and MSP430F6xx Family User's Guide on recommended settings and use.
5.30 PMM, SVS Low Side
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
SVSLE = 0, PMMCOREV = 2
I(SVSL)
SVSL current consumption
tpd(SVSL)
SVSL propagation delay
t(SVSL)
SVSL on or off delay time
MIN
TYP
MAX
0
SVSLE = 1, PMMCOREV = 2, SVSLFP = 0
200
SVSLE = 1, PMMCOREV = 2, SVSLFP = 1
1.5
SVSLE = 1, dVCORE/dt = 10 mV/µs, SVSLFP = 1
2.5
SVSLE = 1, dVCORE/dt = 1 mV/µs, SVSLFP = 0
20
SVSLE = 0 → 1, dVCORE/dt = 10 mV/µs, SVSLFP = 1
12.5
SVSLE = 0 → 1, dVCORE/dt = 1 mV/µs, SVSLFP = 0
100
Specifications
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2018, Texas Instruments Incorporated
UNIT
nA
µA
µs
µs
39
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
www.ti.com
5.31 PMM, SVM Low Side
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
SVMLE = 0, PMMCOREV = 2
I(SVML)
SVML current consumption
tpd(SVML)
SVML propagation delay
t(SVML)
SVML on or off delay time
TYP
MAX
0
SVMLE= 1, PMMCOREV = 2, SVMLFP = 0
200
SVMLE= 1, PMMCOREV = 2, SVMLFP = 1
1.5
SVMLE = 1, dVCORE/dt = 10 mV/µs, SVMLFP = 1
2.5
SVMLE = 1, dVCORE/dt = 1 mV/µs, SVMLFP = 0
20
SVMLE = 0 → 1, dVCORE/dt = 10 mV/µs, SVMLFP = 1
12.5
SVMLE = 0 → 1, dVCORE/dt = 1 mV/µs, SVMLFP = 0
100
UNIT
nA
µA
µs
µs
5.32 Wake-up Times From Low-Power Modes and Reset
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
TYP
MAX
fMCLK ≥ 4.0 MHz
MIN
3.5
7.5
UNIT
1.0 MHz < fMCLK <
4.0 MHz
4.5
9
150
175
µs
tWAKE-UP-FAST
Wake-up time from LPM2,
LPM3, or LPM4 to active
mode (1)
PMMCOREV = SVSMLRRL = n
(where n = 0, 1, 2, or 3),
SVSLFP = 1
tWAKE-UP-SLOW
Wake-up time from LPM2,
LPM3, or LPM4 to active
mode (2) (3)
PMMCOREV = SVSMLRRL = n
(where n = 0, 1, 2, or 3),
SVSLFP = 0
tWAKE-UP-LPM5
Wake-up time from LPM4.5
to active mode (4)
2
3
ms
tWAKE-UP-RESET
Wake-up time from RST or
BOR event to active mode (4)
2
3
ms
(1)
(2)
(3)
(4)
40
µs
This value represents the time from the wake-up event to the first active edge of MCLK. The wake-up time depends on the performance
mode of the low-side supervisor (SVSL) and low-side monitor (SVML). tWAKE-UP-FAST is possible with SVSL and SVML in full performance
mode or disabled. For specific register settings, see the Low-Side SVS and SVM Control and Performance Mode Selection section in
the Power Management Module and Supply Voltage Supervisor chapter of the MSP430F5xx and MSP430F6xx Family User's Guide.
This value represents the time from the wake-up event to the first active edge of MCLK. The wake-up time depends on the performance
mode of the low-side supervisor (SVSL) and low-side monitor (SVML). tWAKE-UP-SLOW is set with SVSL and SVML in normal mode (low
current mode). For specific register settings, see the Low-Side SVS and SVM Control and Performance Mode Selection section in the
Power Management Module and Supply Voltage Supervisor chapter of the MSP430F5xx and MSP430F6xx Family User's Guide.
The wake-up times from LPM0 and LPM1 to AM are not specified. They are proportional to MCLK cycle time but are not affected by the
performance mode settings as for LPM2, LPM3, and LPM4.
This value represents the time from the wake-up event to the reset vector execution.
Specifications
Copyright © 2012–2018, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
5.33 Timer_A
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
VCC
VIO
MIN
TYP
MAX UNIT
1.62 V to 1.8 V
25
Timer_A input clock frequency
Internal: SMCLK or ACLK,
External: TACLK,
Duty cycle = 50% ±10%
1.8 V
fTA
3.0 V
1.62 V to 1.98 V
25
Timer_A capture timing (1)
All capture inputs,
Minimum pulse duration
required for capture
1.8 V
1.62 V to 1.8 V
20
tTA,cap
3.0 V
1.62 V to 1.98 V
20
(1)
MHz
ns
The external signal sets the interrupt flag every time the minimum parameters are met. It may be set even with trigger signals shorter
than tTA,cap.
5.34 Timer_B
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
VCC
VIO
MIN
TYP
MAX UNIT
1.62 V to 1.8 V
25
Timer_B input clock frequency
Internal: SMCLK or ACLK,
External: TBCLK,
Duty cycle = 50% ±10%
1.8 V
fTB
3.0 V
1.62 V to 1.98 V
25
Timer_B capture timing (1)
All capture inputs,
Minimum pulse duration
required for capture
1.8 V
1.62 V to 1.8 V
20
tTB,cap
3.0 V
1.62 V to 1.98 V
20
(1)
MHz
ns
The external signal sets the interrupt flag every time the minimum parameters are met. It may be set even with trigger signals shorter
than tTB,cap.
Specifications
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2018, Texas Instruments Incorporated
41
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
www.ti.com
5.35 USCI (UART Mode), Recommended Operating Conditions
PARAMETER
fUSCI
USCI input clock frequency
fBITCLK
BITCLK clock frequency
(equals baud rate in MBaud)
TEST CONDITIONS
MIN
Internal: SMCLK or ACLK,
External: UCLK,
Duty cycle = 50% ±10%
MAX
UNIT
fSYSTEM
MHz
1
MHz
UNIT
5.36 USCI (UART Mode)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
VIO
MIN
MAX
1.8 V
1.62 V to
1.80 V
50
600
3.0 V
1.62 V to
1.98 V
50
600
UART receive deglitch time (1)
tτ
(1)
VCC
ns
Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. To ensure that pulses are
correctly recognized, their duration should exceed the maximum specification of the deglitch time.
5.37 USCI (SPI Master Mode), Recommended Operating Conditions
PARAMETER
fUSCI
USCI input clock frequency
TEST CONDITIONS
MIN
Internal: SMCLK or ACLK,
Duty cycle = 50% ±10%
MAX
UNIT
fSYSTEM
MHz
5.38 USCI (SPI Master Mode)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1)
(see Figure 5-13 and Figure 5-14)
PARAMETER
fUSCI
USCI input clock frequency
TEST CONDITIONS
PMMCOREV = 0
tSU,MI
SOMI input data setup time
PMMCOREV = 3
PMMCOREV = 0
tHD,MI
SOMI input data hold time
PMMCOREV = 3
tVALID,MO
tHD,MO
(1)
(2)
(3)
42
SIMO output data valid time (2)
SIMO output data hold time (3)
VCC
VIO
MIN
SMCLK or ACLK,
Duty cycle = 50% ±10%
1.8 V
1.62 V to 1.80 V
55
3.0 V
1.62 V to 1.98 V
55
2.4 V
1.62 V to 1.98 V
35
3.0 V
1.62 V to 1.98 V
35
1.8 V
1.62 V to 1.80 V
0
3.0 V
1.62 V to 1.98 V
0
2.4 V
1.62 V to 1.98 V
0
0
MAX
UNIT
fSYSTEM
MHz
ns
ns
3.0 V
1.62 V to 1.98 V
UCLK edge to SIMO valid,
CL = 20 pF,
PMMCOREV = 0
1.8 V
1.62 V to 1.80 V
20
3.0 V
1.62 V to 1.98 V
20
UCLK edge to SIMO valid,
CL = 20 pF,
PMMCOREV = 3
2.4 V
1.62 V to 1.98 V
16
3.0 V
1.62 V to 1.98 V
16
CL = 20 pF,
PMMCOREV = 0
1.8 V
1.62 V to 1.80 V
–10
3.0 V
1.62 V to 1.98 V
–10
CL = 20 pF,
PMMCOREV = 3
2.4 V
1.62 V to 1.98 V
–10
3.0 V
1.62 V to 1.98 V
–10
ns
ns
fUCxCLK = 1/2tLO/HI with tLO/HI ≥ max(tVALID,MO(USCI) + tSU,SI(Slave), tSU,MI(USCI) + tVALID,SO(Slave))
For the slave parameters tSU,SI(Slave) and tVALID,SO(Slave), see the SPI parameters of the attached slave.
Specifies the time to drive the next valid data to the SIMO output after the output changing UCLK clock edge. See the timing diagrams
in Figure 5-13 and Figure 5-14.
Specifies how long data on the SIMO output is valid after the output changing UCLK clock edge. Negative values indicate that the data
on the SIMO output can become invalid before the output changing clock edge observed on UCLK. See the timing diagrams in Figure 513 and Figure 5-14.
Specifications
Copyright © 2012–2018, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
1/fUCxCLK
CKPL = 0
UCLK
CKPL = 1
tLO/HI
tLO/HI
tSU,MI
tHD,MI
SOMI
tHD,MO
tVALID,MO
SIMO
Figure 5-13. SPI Master Mode, CKPH = 0
1/fUCxCLK
CKPL = 0
UCLK
CKPL = 1
tLO/HI
tLO/HI
tSU,MI
tHD,MI
SOMI
tHD,MO
tVALID,MO
SIMO
Figure 5-14. SPI Master Mode, CKPH = 1
Specifications
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2018, Texas Instruments Incorporated
43
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
www.ti.com
5.39 USCI (SPI Slave Mode)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1)
(see Figure 5-15 and Figure 5-16)
PARAMETER
TEST CONDITIONS
PMMCOREV = 0
tSTE,LEAD
STE lead time, STE low to clock
PMMCOREV = 3
PMMCOREV = 0
tSTE,LAG
STE lag time, Last clock to STE high
PMMCOREV = 3
PMMCOREV = 0
tSTE,ACC
STE access time, STE low to SOMI
data out
PMMCOREV = 3
PMMCOREV = 0
STE disable time, STE high to SOMI
high impedance
tSTE,DIS
PMMCOREV = 3
PMMCOREV = 0
tSU,SI
SIMO input data setup time
PMMCOREV = 3
PMMCOREV = 0
tHD,SI
SIMO input data hold time
PMMCOREV = 3
tVALID,SO
tHD,SO
(1)
(2)
(3)
44
SOMI output data valid time (2)
SOMI output data hold time (3)
VCC
VIO
1.8 V
1.62 V to 1.80 V
MIN
12
MAX
3.0 V
1.62 V to 1.98 V
12
2.4 V
1.62 V to 1.98 V
10
3.0 V
1.62 V to 1.98 V
10
1.8 V
1.62 V to 1.80 V
6
3.0 V
1.62 V to 1.98 V
6
2.4 V
1.62 V to 1.98 V
6
3.0 V
1.62 V to 1.98 V
6
1.8 V
1.62 V to 1.80 V
65
3.0 V
1.62 V to 1.98 V
65
2.4 V
1.62 V to 1.98 V
45
3.0 V
1.62 V to 1.98 V
45
1.8 V
1.62 V to 1.80 V
35
3.0 V
1.62 V to 1.98 V
35
2.4 V
1.62 V to 1.98 V
25
3.0 V
1.62 V to 1.98 V
1.8 V
1.62 V to 1.80 V
5
3.0 V
1.62 V to 1.98 V
5
2.4 V
1.62 V to 1.98 V
5
3.0 V
1.62 V to 1.98 V
5
1.8 V
1.62 V to 1.80 V
5
3.0 V
1.62 V to 1.98 V
5
2.4 V
1.62 V to 1.98 V
5
5
UNIT
ns
ns
ns
ns
25
ns
ns
3.0 V
1.62 V to 1.98 V
UCLK edge to SOMI valid,
CL = 20 pF,
PMMCOREV = 0
1.8 V
1.62 V to 1.80 V
75
3.0 V
1.62 V to 1.98 V
75
UCLK edge to SOMI valid,
CL = 20 pF,
PMMCOREV = 3
2.4 V
1.62 V to 1.98 V
50
3.0 V
1.62 V to 1.98 V
50
CL = 20 pF,
PMMCOREV = 0
1.8 V
1.62 V to 1.80 V
18
3.0 V
1.62 V to 1.98 V
18
CL = 20 pF,
PMMCOREV = 3
2.4 V
1.62 V to 1.98 V
10
3.0 V
1.62 V to 1.98 V
10
ns
ns
fUCxCLK = 1/2tLO/HI with tLO/HI ≥ max(tVALID,MO(Master) + tSU,SI(USCI), tSU,MI(Master) + tVALID,SO(USCI))
For the master parameters tSU,MI(Master) and tVALID,MO(Master), see the SPI parameters of the attached master.
Specifies the time to drive the next valid data to the SOMI output after the output changing UCLK clock edge. See the timing diagrams
in Figure 5-15 and Figure 5-16.
Specifies how long data on the SOMI output is valid after the output changing UCLK clock edge. See the timing diagrams in Figure 5-15
and Figure 5-16.
Specifications
Copyright © 2012–2018, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
tSTE,LEAD
tSTE,LAG
STE
1/fUCxCLK
CKPL = 0
UCLK
CKPL = 1
tLO/HI
tSU,SI
tLO/HI
tHD,SI
SIMO
tHD,SO
tVALID,SO
tSTE,ACC
tSTE,DIS
SOMI
Figure 5-15. SPI Slave Mode, CKPH = 0
tSTE,LAG
tSTE,LEAD
STE
1/fUCxCLK
CKPL = 0
UCLK
CKPL = 1
tLO/HI
tLO/HI
tHD,SI
tSU,SI
SIMO
tSTE,ACC
tHD,MO
tVALID,SO
tSTE,DIS
SOMI
Figure 5-16. SPI Slave Mode, CKPH = 1
Specifications
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2018, Texas Instruments Incorporated
45
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
www.ti.com
5.40 USCI (I2C Mode)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5-17)
PARAMETER
TEST CONDITIONS
fUSCI
USCI input clock frequency
fSCL
SCL clock frequency
tHD,STA
Hold time (repeated) START
tSU,STA
Setup time for a repeated START
tHD,DAT
tSU,DAT
MIN
Internal: SMCLK or ACLK,
External: UCLK,
Duty cycle = 50% ±10%
UNIT
fSYSTEM
MHz
400
kHz
1.62 V to 1.98 V
2.2 V, 3 V
1.62 V to 1.98 V
2.2 V, 3 V
1.62 V to 1.98 V
Data hold time
2.2 V, 3 V
1.62 V to 1.98 V
0
ns
Data setup time
2.2 V, 3 V
1.62 V to 1.98 V
250
ns
Setup time for STOP
tSP
Pulse duration of spikes
suppressed by input filter
fSCL ≤ 100 kHz
fSCL > 100 kHz
fSCL ≤ 100 kHz
fSCL > 100 kHz
fSCL ≤ 100 kHz
fSCL > 100 kHz
2.2 V, 3 V
1.62 V to 1.98 V
2.2 V, 3 V
1.62 V to 1.98 V
0
MAX
2.2 V, 3 V
tSU,STO
(1)
VIO (1)
VCC
4.0
µs
0.6
4.7
µs
0.6
4.0
µs
0.6
50
600
ns
In all test conditions, VIO ≤ VCC
tSU,STA
tHD,STA
tHD,STA
tBUF
SDA
tLOW
tHIGH
tSP
SCL
tSU,DAT
tSU,STO
tHD,DAT
Figure 5-17. I2C Mode Timing
46
Specifications
Copyright © 2012–2018, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
5.41 10-Bit ADC, Power Supply and Input Range Conditions
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1)
PARAMETER
TEST CONDITIONS
VCC
AVCC
Analog supply voltage
AVCC and DVCC are connected together,
AVSS and DVSS are connected together,
V(AVSS) = V(DVSS) = 0 V
V(Ax)
Analog input voltage range (2)
All ADC10_A pins: P1.0 to P1.5 and P3.6 and
P3.7 terminals
Operating supply current into
AVCC terminal, REF module
and reference buffer off
fADC10CLK = 5.0 MHz, ADC10ON = 1,
REFON = 0, SHT0 = 0, SHT1 = 0,
ADC10DIV = 0, ADC10SREF = 00
Operating supply current into
AVCC terminal, REF module
on, reference buffer on
MIN
TYP
MAX
1.8
3.6
V
0
AVCC
V
2.2 V
60
100
3V
75
110
fADC10CLK = 5.0 MHz, ADC10ON = 1,
REFON = 1, SHT0 = 0, SHT1 = 0,
ADC10DIV = 0, ADC10SREF = 01
3V
113
150
Operating supply current into
AVCC terminal, REF module
off, reference buffer on
fADC10CLK = 5.0 MHz, ADC10ON = 1,
REFON = 0, SHT0 = 0, SHT1 = 0,
ADC10DIV = 0, ADC10SREF = 10,
VEREF = 2.5 V
3V
105
140
Operating supply current into
AVCC terminal, REF module
off, reference buffer off
fADC10CLK = 5.0 MHz, ADC10ON = 1,
REFON = 0, SHT0 = 0, SHT1 = 0,
ADC10DIV = 0, ADC10SREF = 11,
VEREF = 2.5 V
3V
70
110
CI
Input capacitance
Only one terminal Ax can be selected at one
time from the pad to the ADC10_A capacitor
array including wiring and pad.
2.2 V
3.5
RI
Input MUX ON resistance
IADC10_A
(1)
(2)
UNIT
µA
pF
AVCC > 2 V, 0 V ≤ VAx ≤ AVCC
36
1.8 V < AVCC < 2 V, 0 V ≤ VAx ≤ AVCC
96
kΩ
The leakage current is defined in the leakage current table with P6.x/Ax parameter.
The analog input voltage range must be within the selected reference voltage range VR+ to VR– for valid conversion results. The external
reference voltage requires decoupling capacitors. See ().
5.42 10-Bit ADC, Timing Parameters
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
VCC
MIN
TYP
MAX
UNIT
2.2 V, 3 V
0.45
5
5.5
MHz
4.8
5.4
MHz
fADC10CLK
Input clock frequency
For specified performance of ADC10_A linearity
parameters
fADC10OSC
Internal ADC10_A
oscillator (1)
ADC10DIV = 0, fADC10CLK = fADC10OSC
2.2 V, 3 V
4.2
2.2 V, 3 V
2.4
Conversion time
REFON = 0, Internal oscillator, 12 ADC10CLK
cycles, 10-bit mode,
fADC10OSC = 4 MHz to 5 MHz
tCONVERT
µs
External fADC10CLK from ACLK, MCLK or
SMCLK, ADC10SSEL ≠ 0
tADC10ON
Turn on settling time of
the ADC
See
tSample
Sampling time
RS = 1000 Ω, RI = 96 k Ω, CI = 3.5 pF (3)
(1)
(2)
(3)
3.0
12 ×
1 / fADC10CLK
(2)
100
ns
1.8 V
3
µs
3.0 V
1
µs
The ADC10OSC is sourced directly from MODOSC inside the UCS.
The condition is that the error in a conversion started after tADC10ON is less than ±0.5 LSB. The reference and input signal are already
settled.
Approximately 8 Tau (τ) are needed to get an error of less than ±0.5 LSB
Specifications
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2018, Texas Instruments Incorporated
47
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
www.ti.com
5.43 10-Bit ADC, Linearity Parameters
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
1.4 V ≤ (VeREF+ – VeREF–) ≤ 1.6 V, CVeREF+ = 20 pF
VCC
MIN
TYP
MAX
±1.0
UNIT
EI
Integral
linearity error
ED
Differential
linearity error
1.4 V ≤ (VeREF+ – VeREF–), CVeREF+ = 20 pF
2.2 V, 3 V
±1.0
LSB
EO
Offset error
1.4 V ≤ (VeREF+ – VeREF–), CVeREF+ = 20 pF
Internal impedance of source RS < 100 Ω
2.2 V, 3 V
±1.0
LSB
EG
Gain error
1.4 V ≤ (VeREF+ – VeREF–), CVeREF+ = 20 pF,
ADC10SREFx = 11b
2.2 V, 3 V
±1.0
LSB
ET
Total unadjusted
error
1.4 V ≤ (VeREF+ – VeREF–), CVeREF+ = 20 pF,
ADC10SREFx = 11b
2.2 V, 3 V
±2.0
LSB
1.6 V < (VeREF+ – VeREF–) ≤ VAVCC, CVeREF+ = 20 pF
2.2 V, 3 V
±1.0
±1.0
LSB
5.44 REF, External Reference
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1)
PARAMETER
MIN
MAX
UNIT
VeREF+ > VeREF–
(2)
1.4
AVCC
V
Negative external
reference voltage input
VeREF+ > VeREF–
(3)
0
1.2
V
Differential external
reference voltage input
VeREF+ > VeREF–
(4)
1.4
AVCC
V
–26
26
VeREF+
Positive external
reference voltage input
VeREF–
(VeREF+ –
VeREF–)
IVeREF+,
IVeREF–
CVREF+,
CVREF(1)
(2)
(3)
(4)
(5)
48
Static input current
Capacitance at VeREF+
or VeREF- terminal
TEST CONDITIONS
VCC
1.4 V ≤ VeREF+ ≤ VAVCC , VeREF– = 0 V,
fADC10CLK = 5 MHz, ADC10SHTx = 0x0001,
Conversion rate = 200 ksps
2.2 V, 3 V
1.4 V ≤ VeREF+ ≤ VAVCC , VeREF– = 0 V,
fADC10CLK = 5 MHZ, ADC10SHTX = 0x1000,
Conversion rate = 20 ksps
2.2 V, 3 V
(5)
µA
–1
1
10
µF
The external reference is used during ADC conversion to charge and discharge the capacitance array. The input capacitance (CI) is also
the dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the
recommendations on analog-source impedance to allow the charge to settle for 10-bit accuracy.
The accuracy limits the minimum positive external reference voltage. Lower reference voltage levels may be applied with reduced
accuracy requirements.
The accuracy limits the maximum negative external reference voltage. Higher reference voltage levels may be applied with reduced
accuracy requirements.
The accuracy limits minimum external differential reference voltage. Lower differential reference voltage levels may be applied with
reduced accuracy requirements.
Two decoupling capacitors, 10 µF and 100 nF, should be connected to VREF to decouple the dynamic current required for an external
reference source if it is used for the ADC10_A. See also the MSP430F5xx and MSP430F6xx Family User's Guide.
Specifications
Copyright © 2012–2018, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
5.45 REF, Built-In Reference
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1)
PARAMETER
Positive built-in reference
voltage
VREF+
AVCC minimum voltage,
Positive built-in reference
active
AVCC(min)
Operating supply current
into AVCC terminal (2)
IREF+
TEST CONDITIONS
VCC
MIN
TYP
MAX
REFVSEL = {2} for 2.5 V, REFON = 1
3V
2.472
2.51
2.548
REFVSEL = {1} for 2.0 V, REFON = 1
3V
1.96
1.99
2.02
REFVSEL = {0} for 1.5 V, REFON = 1
2.2 V, 3 V
1.472
1.495
1.518
REFVSEL = {0} for 1.5 V
1.8
REFVSEL = {1} for 2.0 V
2.2
REFVSEL = {2} for 2.5 V
2.7
UNIT
V
V
fADC10CLK = 5.0 MHz,
REFON = 1, REFBURST = 0,
REFVSEL = {2} for 2.5 V
3V
18
24
fADC10CLK = 5.0 MHz,
REFON = 1, REFBURST = 0,
REFVSEL = {1} for 2.0 V
3V
15.5
21
fADC10CLK = 5.0 MHz,
REFON = 1, REFBURST = 0,
REFVSEL = {0} for 1.5 V
3V
13.5
21
30
50
µA
TCREF+
Temperature coefficient of
built-in reference (3)
IVREF+ = 0 A,
REFVSEL = (0, 1, 2}, REFON = 1
ISENSOR
Operating supply current
into AVCC terminal (4)
REFON = 0, INCH = 0Ah,
ADC10ON = N A, TA = 30°C
2.2 V
20
22
3V
20
22
VSENSOR
See
ADC10ON = 1, INCH = 0Ah,
TA = 30°C
2.2 V
770
3V
770
VMID
AVCC divider at channel 11
ADC10ON = 1, INCH = 0Bh,
VMID ≈ 0.5 × VAVCC
2.2 V
1.06
1.1
1.14
3V
1.46
1.5
1.54
tSENSOR(sample)
Sample time required if
channel 10 is selected (6)
ADC10ON = 1, INCH = 0Ah,
Error of conversion result ≤ 1 LSB
30
µs
tVMID(sample)
Sample time required if
channel 11 is selected (7)
ADC10ON = 1, INCH = 0Bh,
Error of conversion result ≤ 1 LSB
1
µs
PSRR_DC
Power supply rejection ratio
(DC)
AVCC = AVCC (min) to AVCC(max),
TA = 25°C,
REFVSEL = {0, 1, 2}, REFON = 1
120
µV/V
PSRR_AC
Power supply rejection ratio
(AC)
AVCC = AVCC (min) to AVCC(max),
TA = 25°C, f = 1 kHz, ΔVpp = 100 mV
REFVSEL = {0, 1, 2}, REFON = 1
6.4
mV/V
tSETTLE
Settling time of reference
voltage (8)
AVCC = AVCC (min) to AVCC(max)
REFVSEL = {0, 1, 2}, REFON = 0 → 1
75
µs
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(5)
ppm/
°C
µA
mV
V
The leakage current is defined in the leakage current table with P6.x/Ax parameter.
The internal reference current is supplied from terminal AVCC. Consumption is independent of the ADC10ON control bit, unless a
conversion is active. The REFON bit enables to settle the built-in reference before starting an analog-to-digital conversion.
Calculated using the box method: (MAX(–40°C to 85°C) – MIN(–40°C to 85°C)) / MIN(–40°C to 85°C)/(85°C – (–40°C)).
The sensor current ISENSOR is consumed if (ADC10ON = 1 and REFON = 1) or (ADC10ON = 1 and INCH = 0Ah and sample signal is
high). When REFON = 1, ISENSOR is already included in IREF+.
The temperature sensor offset can be significant. TI recommends a single-point calibration to minimize the offset error of the built-in
temperature sensor.
The typical equivalent impedance of the sensor is 51 kΩ. The sample time required includes the sensor-on time tSENSOR(on).
The on-time tVMID(on) is included in the sampling time tVMID(sample); no additional on time is needed.
The condition is that the error in a conversion started after tREFON is less than ±0.5 LSB.
Specifications
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2018, Texas Instruments Incorporated
49
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
www.ti.com
5.46 Comparator_B
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
VCC
TEST CONDITIONS
VCC
Supply voltage
MIN
TYP
1.8
MAX
3.6
1.8 V
CBPWRMD = 00, CBON = 1,
CBRSx = 00
IAVCC_COMP
VREF
Comparator operating supply
current into AVCC, excludes
reference resistor ladder
Reference voltage level
IAVCC_REF
VIC
Quiescent current of resistor
ladder into AVCC, including
REF module current
VOFFSET
Input offset voltage
CIN
Input capacitance
RSIN
Series input resistance
31
38
3V
32
39
CBPWRMD = 01, CBON = 1,
CBRSx = 00
2.2 V,
3V
10
17
CBPWRMD = 10, CBON = 1,
CBRSx = 00
2.2 V,
3V
0.2
0.85
CBREFLx = 01, CBREFACC = 0
≥ 1.8 V
1.44
±2.5%
CBREFLx = 10, CBREFACC = 0
≥ 2.2 V
1.92
±2.5%
CBREFLx = 11, CBREFACC = 0
≥ 3.0 V
2.39
±2.5%
CBREFACC = 1, CBREFLx = 01,
CBRSx = 10, REFON = 0, CBON = 0
2.2 V,
3V
17
22
CBREFACC = 0, CBREFLx = 01,
CBRSx = 10, REFON = 0, CBON = 0
2.2 V,
3V
33
40
tPD
Propagation delay, response
time
Propagation delay with filter
active
tPD,filter
tEN_CMP
Comparator enable time
µA
0
VCC – 1
–20
20
CBPWRMD = 01 or 10
–10
10
5
On (switch closed)
Resistor reference enable time
TCCB_REF
Temperature coefficient
reference of VCB_REF
VCB_REF
Reference voltage for a given
tap
50
Specifications
4
50
mV
kΩ
MΩ
CBPWRMD = 00, CBF = 0
450
CBPWRMD = 01, CBF = 0
600
CBPWRMD = 10, CBF = 0
50
CBPWRMD = 00, CBON = 1,
CBF = 1, CBFDLY = 00
0.35
0.6
1.5
CBPWRMD = 00, CBON = 1,
CBF = 1, CBFDLY = 01
0.6
1.0
1.8
CBPWRMD = 00, CBON = 1,
CBF = 1, CBFDLY = 10
1.0
1.8
3.4
CBPWRMD = 00, CBON = 1,
CBF = 1, CBFDLY = 11
1.8
3.4
6.5
1
2
ns
µs
µs
CBON = 0 → 1, CBPWRMD = 00 or
01
µs
100
CBON = 0 → 1
VIN = reference into resistor ladder,
n = 0 to 31
V
pF
3
CBON = 0 → 1, CBPWRMD = 10
tEN_REF
V
µA
CBPWRMD = 00
Off (switch open)
V
38
2.2 V
Common mode input range
UNIT
1.0
VIN ×
(n + 0.5)
/ 32
VIN ×
(n + 1)
/ 32
1.5
µs
50
ppm/
°C
VIN ×
(n + 1.5)
/ 32
V
Copyright © 2012–2018, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
5.47 Flash Memory
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TJ
DVCC(PGM/ERASE) Program and erase supply voltage
MIN
TYP
1.8
MAX
3.6
UNIT
V
IPGM
Average supply current from DVCC during program
3
5
mA
IERASE
Average supply current from DVCC during erase
6
11
mA
IMERASE, IBANK
Average supply current from DVCC during mass erase or bank erase
6
11
mA
tCPT
Cumulative program time
(1)
16
104
Program and erase endurance
tRetention
Data retention duration
tWord
ms
cycles
100
years
64
85
µs
0
Block program time for first byte or word (2)
49
65
µs
tBlock,
1–(N–1)
Block program time for each additional byte or word, except for last byte or
word (2)
37
49
µs
tBlock,
N
Block program time for last byte or word (2)
55
73
µs
tErase
Erase time for segment, mass erase, and bank erase when available (2)
23
32
ms
fMCLK,MGR
MCLK frequency in marginal read mode
(FCTL4.MGR0 = 1 or FCTL4. MGR1 = 1)
0
1
MHz
tBlock,
(1)
(2)
Word or byte program time
25°C
(2)
105
The cumulative program time must not be exceeded when writing to a 128-byte flash block. This parameter applies to all programming
methods: individual word or byte write mode and block write mode.
These values are hardwired into the state machine of the flash controller.
5.48 JTAG and Spy-Bi-Wire Interface
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
VCC
VIO
MIN
TYP
MAX
UNIT
fSBW
Spy-Bi-Wire input frequency
2.2 V, 3 V
1.62 V to
1.98 V
0
20
MHz
tSBW,Low
Spy-Bi-Wire low clock pulse duration
2.2 V, 3 V
1.62 V to
1.98 V
0.025
15
µs
tSBW, En
Spy-Bi-Wire enable time (TEST high to acceptance of first clock
edge) (1)
2.2 V, 3 V
1.62 V to
1.98 V
1
µs
tSBW,Rst
Spy-Bi-Wire return to normal operation time
2.2 V, 3 V
1.62 V to
1.98 V
15
100
µs
2.2 V
1.62 V to
1.98 V
0
5
3V
1.62 V to
1.98 V
0
10
2.2 V, 3 V
1.62 V to
1.98 V
45
fTCK
TCK input frequency for 4-wire JTAG
Rinternal
(1)
(2)
(2)
Internal pulldown resistance on TEST
MHz
60
80
kΩ
Tools that access the Spy-Bi-Wire interface must wait for the tSBW,En time after pulling the TEST/SBWTCK pin high before applying the
first SBWTCK clock edge.
fTCK may be restricted to meet the timing requirements of the module selected.
Specifications
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2018, Texas Instruments Incorporated
51
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
www.ti.com
5.49 DVIO BSL Entry
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
(1)
tSU, BSLEN
Setup time BSLEN to RST/NMI
tHO,
Hold time BSLEN to RST/NMI (2)
(1)
(2)
BSLEN
VCC
VIO
MIN
MAX
UNIT
2.2 V, 3 V
1.62 V to 1.98 V
100
ns
2.2 V, 3 V
1.62 V to 1.98 V
350
µs
AVCC, DVCC, and DVIO stable and within specification.
BSLEN must remain logic high long enough for the boot code to detect its level and enter the BSL sequence. After the minimum hold
time is achieved, BSLEN is a don't care.
BSLEN
VIT+
VITtHO,BSLEN
VIT+
VITRST/NMI
(DVIO domain)
t
tSU,BSLEN
Figure 5-18. DVIO BSL Entry Timing
52
Specifications
Copyright © 2012–2018, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
6 Detailed Description
6.1
CPU (Link to user's guide)
The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All
operations, other than program-flow instructions, are performed as register operations in conjunction with
seven addressing modes for source operand and four addressing modes for destination operand.
The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-toregister operation execution time is one cycle of the CPU clock.
Four of the registers, R0 to R3, are dedicated as program counter, stack pointer, status register, and
constant generator, respectively. The remaining registers are general-purpose registers (see Figure 6-1).
Peripherals are connected to the CPU using data, address, and control buses. Peripherals can be handled
with all instructions.
The instruction set consists of the original 51 instructions with three formats and seven address modes
and additional instructions for the expanded address range. Each instruction can operate on word and
byte data.
Program Counter
PC/R0
Stack Pointer
SP/R1
Status Register
Constant Generator
SR/CG1/R2
CG2/R3
General-Purpose Register
R4
General-Purpose Register
R5
General-Purpose Register
R6
General-Purpose Register
R7
General-Purpose Register
R8
General-Purpose Register
R9
General-Purpose Register
R10
General-Purpose Register
R11
General-Purpose Register
R12
General-Purpose Register
R13
General-Purpose Register
R14
General-Purpose Register
R15
Figure 6-1. CPU Registers
Detailed Description
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2018, Texas Instruments Incorporated
53
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
6.2
www.ti.com
Operating Modes
These MCUs have one active mode and six software selectable low-power modes of operation. An
interrupt event can wake up the device from any of the low-power modes, service the request, and restore
back to the low-power mode on return from the interrupt program.
Software can configure the following operating modes:
• Active mode (AM)
– All clocks are active
• Low-power mode 0 (LPM0)
– CPU is disabled
– ACLK and SMCLK remain active, MCLK is disabled
– FLL loop control remains active
• Low-power mode 1 (LPM1)
– CPU is disabled
– FLL loop control is disabled
– ACLK and SMCLK remain active, MCLK is disabled
• Low-power mode 2 (LPM2)
– CPU is disabled
– MCLK, FLL loop control, and DCOCLK are disabled
– DCO dc-generator remains enabled
– ACLK remains active
• Low-power mode 3 (LPM3)
– CPU is disabled
– MCLK, FLL loop control, and DCOCLK are disabled
– DCO dc generator is disabled
– ACLK remains active
• Low-power mode 4 (LPM4)
– CPU is disabled
– ACLK is disabled
– MCLK, FLL loop control, and DCOCLK are disabled
– DCO dc generator is disabled
– Crystal oscillator is stopped
– Complete data retention
• Low-power mode 4.5 (LPM4.5)
– Internal regulator disabled
– No data retention
– Wake-up signal from RST/NMI, P1, and P2
54
Detailed Description
Copyright © 2012–2018, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
6.3
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
Interrupt Vector Addresses
The interrupt vectors and the power-up start address are in the address range 0FFFFh to 0FF80h (see
Table 6-1). The vector contains the 16-bit address of the appropriate interrupt-handler instruction
sequence.
Table 6-1. Interrupt Sources, Flags, and Vectors
INTERRUPT SOURCE
INTERRUPT FLAG
SYSTEM
INTERRUPT
WORD
ADDRESS
PRIORITY
System Reset
Power up
External reset
Watchdog time-out, password
violation
Flash memory password violation
PMM password violation
WDTIFG, KEYV (SYSRSTIV) (1) (2)
Reset
0FFFEh
63, highest
System NMI
PMM
Vacant memory access
JTAG mailbox
SVMLIFG, SVMHIFG, DLYLIFG, DLYHIFG,
VLRLIFG, VLRHIFG, VMAIFG, JMBNIFG,
JMBOUTIFG (SYSSNIV) (1)
(Non)maskable
0FFFCh
62
User NMI
NMI
Oscillator fault
Flash memory access violation
NMIIFG, OFIFG, ACCVIFG, BUSIFG
(SYSUNIV) (1) (2)
(Non)maskable
0FFFAh
61
COMP_B
Comparator B interrupt flags (CBIV) (1) (3)
Maskable
0FFF8h
60
TB0
TB0CCR0 CCIFG0
Maskable
0FFF6h
59
TB0
TB0CCR1 CCIFG1 to TB0CCR6 CCIFG6,
TB0IFG (TB0IV) (1) (3)
Maskable
0FFF4h
58
Watchdog timer interval timer
mode
WDTIFG
Maskable
0FFF2h
57
USCI_A0 receive or transmit
UCA0RXIFG, UCA0TXIFG (UCA0IV) (1) (3)
Maskable
0FFF0h
56
USCI_B0 receive or transmit
UCB0RXIFG, UCB0TXIFG (UCB0IV) (1) (3)
Maskable
0FFEEh
55
ADC10_A
(3)
(4)
ADC10IFG0
(1) (3) (4)
Maskable
0FFECh
54
TA0
TA0CCR0 CCIFG0 (3)
Maskable
0FFEAh
53
TA0
TA0CCR1 CCIFG1 to TA0CCR4 CCIFG4,
TA0IFG (TA0IV) (1) (3)
Maskable
0FFE8h
52
Reserved
Reserved
Maskable
0FFE6h
51
DMA
DMA0IFG, DMA1IFG, DMA2IFG (DMAIV) (1) (3)
Maskable
0FFE4h
50
TA1
TA1CCR0 CCIFG0 (3)
Maskable
0FFE2h
49
TA1
TA1CCR1 CCIFG1 to TA1CCR2 CCIFG2,
TA1IFG (TA1IV) (1) (3)
Maskable
0FFE0h
48
I/O Port P1
(1)
(2)
(3)
P1IFG.0 to P1IFG.7 (P1IV)
(1) (3)
Maskable
0FFDEh
47
USCI_A1 receive or transmit
UCA1RXIFG, UCA1TXIFG (UCA1IV) (1) (3)
Maskable
0FFDCh
46
USCI_B1 receive or transmit
(1) (3)
Maskable
0FFDAh
45
TA2
UCB1RXIFG, UCB1TXIFG (UCB1IV)
TA2CCR0 CCIFG0 (3)
Maskable
0FFD8h
44
TA2
TA2CCR1 CCIFG1 to TA2CCR2 CCIFG2,
TA2IFG (TA2IV) (1) (3)
Maskable
0FFD6h
43
I/O port P2
P2IFG.0 to P2IFG.7 (P2IV) (1) (3)
Maskable
0FFD4h
42
RTC_A
RTCRDYIFG, RTCTEVIFG, RTCAIFG,
RT0PSIFG, RT1PSIFG (RTCIV) (1) (3)
Maskable
0FFD2h
41
Multiple source flags
A reset is generated if the CPU tries to fetch instructions from within peripheral space or vacant memory space.
(Non)maskable: the individual interrupt-enable bit can disable an interrupt event, but the general-interrupt enable cannot disable it.
Interrupt flags are located in the module.
Only on devices with ADC, otherwise reserved
Detailed Description
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2018, Texas Instruments Incorporated
55
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
www.ti.com
Table 6-1. Interrupt Sources, Flags, and Vectors (continued)
(5)
INTERRUPT SOURCE
INTERRUPT FLAG
Reserved
Reserved (5)
SYSTEM
INTERRUPT
WORD
ADDRESS
PRIORITY
0FFD0h
40
⋮
⋮
0FF80h
0, lowest
Reserved interrupt vectors at addresses are not used in this device and can be used for regular program code if necessary. To maintain
compatibility with other devices, TI recommends reserving these locations.
6.4
Memory Organization
Table 6-2 summarizes the memory map.
Table 6-2. Memory Organization (1)
Memory (flash)
Main: interrupt vector
MSP430F5227
MSP430F5222
MSP430F5217
MSP430F5212
MSP430F5229
MSP430F5224
MSP430F5219
MSP430F5214
64KB
00FFFFh to 00FF80h
128KB
00FFFFh to 00FF80h
Bank D
N/A
32KB
0243FFh to 01C400h
Bank C
N/A
32KB
01C3FFh to 014400h
Bank B
32KB
0143FFh to 00C400h
32KB
0143FFh to 00C400h
Bank A
32KB
00C3FFh to 004400h
32KB
00C3FFh to 004400h
Sector 3
2KB
0043FFh to 003C00h
2KB
0043FFh to 003C00h
Sector 2
2KB
003BFFh to 003400h
2KB
003BFFh to 003400h
Sector 1
2KB
0033FFh to 002C00h
2KB
0033FFh to 002C00h
Sector 0
2KB
002BFFh to 002400h
2KB
002BFFh to 002400h
A
128 B
001BFFh to 001B80h
128 B
001BFFh to 001B80h
B
128 B
001B7Fh to 001B00h
128 B
001B7Fh to 001B00h
C
128 B
001AFFh to 001A80h
128 B
001AFFh to 001A80h
D
128 B
001A7Fh to 001A00h
128 B
001A7Fh to 001A00h
Info A
128 B
0019FFh to 001980h
128 B
0019FFh to 001980h
Info B
128 B
00197Fh to 001900h
128 B
00197Fh to 001900h
Info C
128 B
0018FFh to 001880h
128 B
0018FFh to 001880h
Info D
128 B
00187Fh to 001800h
128 B
00187Fh to 001800h
Total Size
Main: code memory
RAM
TI factory memory (ROM)
Information memory (flash)
(1)
56
N/A = Not available
Detailed Description
Copyright © 2012–2018, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
Table 6-2. Memory Organization(1) (continued)
MSP430F5227
MSP430F5222
MSP430F5217
MSP430F5212
MSP430F5229
MSP430F5224
MSP430F5219
MSP430F5214
BSL 3
512 B
0017FFh to 001600h
512 B
0017FFh to 001600h
BSL 2
512 B
0015FFh to 001400h
512 B
0015FFh to 001400h
BSL 1
512 B
0013FFh to 001200h
512 B
0013FFh to 001200h
BSL 0
512 B
0011FFh to 001000h
512 B
0011FFh to 001000h
4KB
000FFFh to 0h
4KB
000FFFh to 0h
Bootloader (BSL) memory (flash)
Peripherals
Size
Detailed Description
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2018, Texas Instruments Incorporated
57
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
6.5
www.ti.com
Bootloader (BSL)
The BSL enables users to program the flash memory or RAM using a UART serial interface. Access to the
device memory by the BSL is protected by an user-defined password. Because the F522x and F521x
have split I/O power domains, it is possible to interface with the BSL from either the DVCC or DVIO supply
domains. This is useful when the MSP430 is interfacing to a host on the DVIO supply domain. The BSL
interface on the DVIO supply domain (see Table 6-3) uses the USCI_A0 module configured as a UART.
The BSL interface on the DVCC supply domain (see Table 6-4) uses a timer-based UART.
NOTE
Devices from TI come factory programmed with the timer-based UART BSL only. If the
USCI-based BSL is preferred, it is also available, but it must be programmed by the user.
When using the DVIO supply domain for the BSL, entry to the BSL requires a specific sequence on the
RST/NMI and BSLEN pins. Table 6-3 shows the required pins and their functions. For further details on
interfacing to development tools and device programmers, see the MSP430 Hardware Tools User's Guide.
For a complete description of the features of the BSL and its implementation, see the MSP430 Flash
Device Bootloader (BSL) User's Guide. The BSL on the DVIO supply domain uses the USCI_A0 module
configured as a UART.
NOTE
To invoke the BSL from the DVIO domain, the RST/NMI and BSLEN pins must be used for
the entry sequence (see Section 5.49). It is critical not to confuse the RST/NMI pin with the
RSTDVCC/SBWTDIO pin. In other MSP430 devices, SBWTDIO is shared with the RST/NMI
pin and RSTDVCC does not exist. Additional information can be found in Designing With
MSP430F522x and MSP430F521x Devices.
Table 6-3. DVIO BSL Pin Requirements and Functions
DEVICE SIGNAL
BSL FUNCTION
RST/NMI
External reset
BSLEN
Enable BSL
P3.3
Data transmit
P3.4
Data receive
DVCC, AVCC
Device power supply
DVIO
I/O power supply
DVSS
Ground supply
For applications in which it is desirable to have BSL communication based on the DVCC supply domain,
entry to the BSL requires a specific sequence on the RSTDVCC/SBWTDIO and TEST/SBWTCK pins.
Table 6-4 shows the required pins and their function.
NOTE
To invoke the BSL from the DVCC domain, the RSTDVCC/SBWTDIO and TEST/SBWTCK
pins must be used for the entry sequence. It is critical not to confuse the RST/NMI pin with
the RSTDVCC/SBWTDIO pin. In other MSP430 devices, SBWTDIO is shared with the
RST/NMI pin and RSTDVCC does not exist. Additional information can be found in
Designing With MSP430F522x and MSP430F521x Devices.
58
Detailed Description
Copyright © 2012–2018, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
Table 6-4. DVCC BSL Pin Requirements and Functions
6.6
6.6.1
DEVICE SIGNAL
BSL FUNCTION
RSTDVCC/SBWTDIO
External reset
TEST/SBWTCK
Enable BSL
P1.1
Data transmit
P1.2
Data receive
DVCC, AVCC
Device power supply
DVIO
I/O power supply
DVSS
Ground supply
JTAG Operation
JTAG Standard Interface
The MSP430 family supports the standard JTAG interface which requires four signals for sending and
receiving data. The JTAG signals are shared with general-purpose I/O. The TEST/SBWTCK pin is used to
enable the JTAG signals. In addition to these signals, the RSTDVCC/SBWTDIO is required to interface
with MSP430 development tools and device programmers. The JTAG pin requirements are shown in
Table 6-5. For further details on interfacing to development tools and device programmers, see the
MSP430 Hardware Tools User's Guide. For a complete description of the features of the JTAG interface
and its implementation, see MSP430 Programming With the JTAG Interface. Additional information can be
found in Designing With MSP430F522x and MSP430F521x Devices.
NOTE
All JTAG I/O pins are supplied by DVCC.
NOTE
On other MSP430 devices, the RST/NMI pin has been used for SBWTDIO, so care must be
taken not to mistakenly use the incorrect pin. On the F522x and F521x series of devices,
RSTDVCC is used for SBWTDIO as shown in Table 6-5. Additional information can be found
in Designing With MSP430F522x and MSP430F521x Devices.
Table 6-5. JTAG Pin Requirements and Functions
DEVICE SIGNAL
DIRECTION
FUNCTION
PJ.3/TCK
IN
JTAG clock input
PJ.2/TMS
IN
JTAG state control
PJ.1/TDI/TCLK
IN
JTAG data input, TCLK input
PJ.0/TDO
OUT
JTAG data output
TEST/SBWTCK
IN
Enable JTAG pins
RSTDVCC/SBWTDIO
IN
External reset
DVCC, AVCC
Device power supply
DVIO
I/O power supply
DVSS
Ground supply
Detailed Description
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2018, Texas Instruments Incorporated
59
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
6.6.2
www.ti.com
Spy-Bi-Wire Interface
In addition to the standard JTAG interface, the MSP430 family supports the 2-wire Spy-Bi-Wire interface.
Spy-Bi-Wire can be used to interface with MSP430 development tools and device programmers. The SpyBi-Wire interface pin requirements are shown in Table 6-6. For further details on interfacing to
development tools and device programmers, see the MSP430 Hardware Tools User's Guide. For a
complete description of the features of the JTAG interface and its implementation, see MSP430
Programming With the JTAG Interface.Additional information can be found in Designing With
MSP430F522x and MSP430F521x Devices.
NOTE
All SBW I/O pins are supplied by DVCC.
NOTE
On other MSP430 devices, the RST/NMI pin has been used for SBWTDIO, so care must be
taken not to mistakenly use the incorrect pin. On the F522x and F521x series of devices,
RSTDVCC is used for SBWTDIO as shown in Table 6-6. Additional information can be found
in Designing With MSP430F522x and MSP430F521x Devices.
Table 6-6. Spy-Bi-Wire Pin Requirements and Functions
DEVICE SIGNAL
6.7
DIRECTION
FUNCTION
TEST/SBWTCK
IN
Spy-Bi-Wire clock input
RSTDVCC/SBWTDIO
IN, OUT
Spy-Bi-Wire data input/output
DVCC, AVCC
Device power supply
DVIO
I/O power supply
DVSS
Ground supply
Flash Memory (Link to user's guide)
The flash memory can be programmed through the JTAG port, Spy-Bi-Wire (SBW), the BSL, or in-system
by the CPU. The CPU can perform single-byte, single-word, and long-word writes to the flash memory.
Features of the flash memory include:
• Flash memory has n segments of main memory and four segments of information memory (A to D) of
128 bytes each. Each segment in main memory is 512 bytes in size.
• Segments 0 to n may be erased in one step, or each segment may be individually erased.
• Segments A to D can be erased individually. Segments A to D are also called information memory.
• Segment A can be locked separately.
6.8
RAM (Link to user's guide)
The RAM is made up of n sectors. Each sector can be completely powered down to reduce leakage;
however, all data is lost during power down. Features of the RAM include:
• RAM has n sectors. The sizes of the sectors can be found in Section 6.4.
• Each sector 0 to n can be complete disabled; however, all data in a sector is lost when it is disabled.
• Each sector 0 to n automatically enters low-power retention mode when possible.
60
Detailed Description
Copyright © 2012–2018, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
6.9
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
Peripherals
Peripherals are connected to the CPU through data, address, and control buses. Peripherals can be
managed using all instructions. For complete module descriptions, see the MSP430F5xx and
MSP430F6xx Family User's Guide.
6.9.1
Digital I/O (Link to user's guide)
•
•
•
•
•
All individual I/O bits are independently programmable.
Any combination of input, output, and interrupt conditions is possible.
Pullup or pulldown on all ports is programmable.
Drive strength on all ports is programmable.
Edge-selectable interrupt and LPM4.5 wakeup input capability is available for all bits of ports P1 and
P2.
Read and write access to port-control registers is supported by all instructions.
Ports can be accessed byte-wise or word-wise in pairs.
•
•
6.9.2
Port Mapping Controller (Link to user's guide)
The port mapping controller allows the flexible and reconfigurable mapping of digital functions to port P4.
Table 6-7 lists the valid settings.
Table 6-7. Port Mapping Mnemonics and Functions
VALUE
PxMAPy MNEMONIC
INPUT PIN FUNCTION
OUTPUT PIN FUNCTION
0
PM_NONE
None
DVSS
PM_CBOUT0
–
COMP_B output
PM_TB0CLK
TB0 clock input
–
PM_ADC10CLK
–
ADC10CLK
1
2
PM_DMAE0
DMAE0 input
–
PM_SVMOUT
–
SVM output
PM_TB0OUTH
TB0 high-impedance input TB0OUTH
–
4
PM_TB0CCR0A
TB0 CCR0 capture input CCI0A
TB0 CCR0 compare output Out0
5
PM_TB0CCR1A
TB0 CCR1 capture input CCI1A
TB0 CCR1 compare output Out1
6
PM_TB0CCR2A
TB0 CCR2 capture input CCI2A
TB0 CCR2 compare output Out2
7
PM_TB0CCR3A
TB0 CCR3 capture input CCI3A
TB0 CCR3 compare output Out3
8
PM_TB0CCR4A
TB0 CCR4 capture input CCI4A
TB0 CCR4 compare output Out4
9
PM_TB0CCR5A
TB0 CCR5 capture input CCI5A
TB0 CCR5 compare output Out5
10
PM_TB0CCR6A
TB0 CCR6 capture input CCI6A
TB0 CCR6 compare output Out6
3
11
12
13
14
15
16
PM_UCA1RXD
USCI_A1 UART RXD (direction controlled by USCI – input)
PM_UCA1SOMI
USCI_A1 SPI slave out master in (direction controlled by USCI)
PM_UCA1TXD
USCI_A1 UART TXD (direction controlled by USCI – output)
PM_UCA1SIMO
USCI_A1 SPI slave in master out (direction controlled by USCI)
PM_UCA1CLK
USCI_A1 clock input/output (direction controlled by USCI)
PM_UCB1STE
USCI_B1 SPI slave transmit enable (direction controlled by USCI)
PM_UCB1SOMI
USCI_B1 SPI slave out master in (direction controlled by USCI)
PM_UCB1SCL
USCI_B1 I2C clock (open drain and direction controlled by USCI)
PM_UCB1SIMO
USCI_B1 SPI slave in master out (direction controlled by USCI)
PM_UCB1SDA
USCI_B1 I2C data (open drain and direction controlled by USCI)
PM_UCB1CLK
USCI_B1 clock input/output (direction controlled by USCI)
PM_UCA1STE
USCI_A1 SPI slave transmit enable (direction controlled by USCI)
17
PM_CBOUT1
None
COMP_B output
18
PM_MCLK
None
MCLK
Detailed Description
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2018, Texas Instruments Incorporated
61
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
www.ti.com
Table 6-7. Port Mapping Mnemonics and Functions (continued)
VALUE
PxMAPy MNEMONIC
INPUT PIN FUNCTION
OUTPUT PIN FUNCTION
19
PM_RTCCLK
None
RTCCLK output
20
21
22
23
24
25
(1)
PM_UCA0RXD
USCI_A0 UART RXD (direction controlled by USCI - input)
PM_UCA0SOMI
USCI_A0 SPI slave out master in (direction controlled by USCI)
PM_UCA0TXD
USCI_A0 UART TXD (direction controlled by USCI - output)
PM_UCA0SIMO
USCI_A0 SPI slave in master out (direction controlled by USCI)
PM_UCA0CLK
USCI_A0 clock input/output (direction controlled by USCI)
PM_UCB0STE
USCI_B0 SPI slave transmit enable (direction controlled by USCI)
PM_UCB0SOMI
USCI_B0 SPI slave out master in (direction controlled by USCI)
PM_UCB0SCL
USCI_B0 I2C clock (open drain and direction controlled by USCI)
PM_UCB0SIMO
USCI_B0 SPI slave in master out (direction controlled by USCI)
PM_UCB0SDA
USCI_B0 I2C data (open drain and direction controlled by USCI)
PM_UCB0CLK
USCI_B0 clock input/output (direction controlled by USCI)
PM_UCA0STE
USCI_A0 SPI slave transmit enable (direction controlled by USCI)
26 - 30
Reserved
31 (0FFh) (1)
PM_ANALOG
None
DVSS
Disables the output driver and the input Schmitt trigger to prevent parasitic
cross currents when applying analog signals
The value of the PM_ANALOG mnemonic is set to 0FFh. The port mapping registers are only 5 bits wide and the upper bits are ignored,
resulting in a read out value of 31.
Table 6-8. Default Mapping
PIN
PxMAPy MNEMONIC
INPUT PIN FUNCTION
OUTPUT PIN FUNCTION
P4.0/P4MAP0
PM_UCB1STE/PM_UCA1CLK
USCI_B1 SPI slave transmit enable (direction controlled by USCI)
USCI_A1 clock input/output (direction controlled by USCI)
P4.1/P4MAP1
PM_UCB1SIMO/PM_UCB1SDA
USCI_B1 SPI slave in master out (direction controlled by USCI)
USCI_B1 I2C data (open drain and direction controlled by USCI)
P4.2/P4MAP2
PM_UCB1SOMI/PM_UCB1SCL
USCI_B1 SPI slave out master in (direction controlled by USCI)
USCI_B1 I2C clock (open drain and direction controlled by USCI)
P4.3/P4MAP3
PM_UCB1CLK/PM_UCA1STE
USCI_A1 SPI slave transmit enable (direction controlled by USCI)
USCI_B1 clock input/output (direction controlled by USCI)
P4.4/P4MAP4
PM_UCA1TXD/PM_UCA1SIMO
USCI_A1 UART TXD (Direction controlled by USCI - output)
USCI_A1 SPI slave in master out (direction controlled by USCI)
P4.5/P4MAP5
PM_UCA1RXD/PM_UCA1SOMI
USCI_A1 UART RXD (Direction controlled by USCI - input)
USCI_A1 SPI slave out master in (direction controlled by USCI)
P4.6/P4MAP6
PM_NONE
None
DVSS
PM_NONE
None
DVSS
P4.7/P4MAP7
(1)
(1)
Not available on all devices
62
Detailed Description
Copyright © 2012–2018, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
6.9.3
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
Oscillator and System Clock (Link to user's guide)
The clock system in the MSP430F522x and MSP430F521x family of devices is supported by the Unified
Clock System (UCS) module, which includes support for a 32-kHz watch crystal oscillator (XT1 LF mode)
(XT1 HF mode is not supported), an internal very-low-power low-frequency oscillator (VLO), an internal
trimmed low-frequency oscillator (REFO), an integrated internal digitally controlled oscillator (DCO), and a
high-frequency crystal oscillator (XT2). The UCS module is designed to meet the requirements of both low
system cost and low power consumption. The UCS module features digital frequency locked loop (FLL)
hardware that, in conjunction with a digital modulator, stabilizes the DCO frequency to a programmable
multiple of the selected FLL reference frequency. The internal DCO provides a fast turnon clock source
and stabilizes in 3.5 µs (typical). The UCS module provides the following clock signals:
• Auxiliary clock (ACLK), sourced from a 32-kHz watch crystal (XT1), a high-frequency crystal (XT2), the
internal low-frequency oscillator (VLO), the trimmed low-frequency oscillator (REFO), or the internal
digitally controlled oscillator DCO.
• Main clock (MCLK), the system clock used by the CPU. MCLK can be sourced by same sources made
available to ACLK.
• Sub-Main clock (SMCLK), the subsystem clock used by the peripheral modules. SMCLK can be
sourced by same sources made available to ACLK.
• ACLK/n, the buffered output of ACLK, ACLK/2, ACLK/4, ACLK/8, ACLK/16, ACLK/32.
6.9.4
Power-Management Module (PMM) (Link to user's guide)
The PMM includes an integrated voltage regulator that supplies the core voltage to the device and
contains programmable output levels to provide for power optimization. The PMM also includes supply
voltage supervisor (SVS) and supply voltage monitoring (SVM) circuitry, and brownout protection. The
brownout circuit is implemented to provide the proper internal reset signal to the device during power-on
and power-off. The SVS and SVM circuitry detects if the supply voltage drops below a user-selectable
level and supports both supply voltage supervision (the device is automatically reset) and supply voltage
monitoring (the device is not automatically reset). SVS and SVM circuitry is available on the primary
supply and core supply.
6.9.5
Hardware Multiplier (Link to user's guide)
The multiplication operation is supported by a dedicated peripheral module. The module performs
operations with 32-, 24-, 16-, and 8-bit operands. The module supports signed and unsigned multiplication
as well as signed and unsigned multiply-and-accumulate operations.
6.9.6
Real-Time Clock (RTC_A) (Link to user's guide)
The RTC_A module can be used as a general-purpose 32-bit counter (counter mode) or as an integrated
real-time clock (RTC) (calendar mode). In counter mode, the RTC_A also includes two independent 8-bit
timers that can be cascaded to form a 16-bit timer or counter. Both timers can be read and written by
software. Calendar mode integrates an internal calendar that compensates for months with less than
31 days and includes leap year correction. The RTC_A also supports flexible alarm functions and offsetcalibration hardware.
6.9.7
Watchdog Timer (WDT_A) (Link to user's guide)
The primary function of the WDT_A module is to perform a controlled system restart after a software
problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog function
is not needed in an application, the module can be configured as an interval timer and can generate
interrupts at selected time intervals.
Detailed Description
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2018, Texas Instruments Incorporated
63
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
6.9.8
www.ti.com
System Module (SYS) (Link to user's guide)
The SYS module handles many of the system functions within the device. These include power-on reset
(POR) and power-up clear (PUC) handling, NMI source selection and management, reset interrupt vector
generators, bootloader (BSL) entry mechanisms, and configuration management (device descriptors). It
also includes a data exchange mechanism when using JTAG that is called a JTAG mailbox and that can
be used in the application. Table 6-9 lists the SYS module interrupt vector registers.
Table 6-9. System Module Interrupt Vector Registers
INTERRUPT VECTOR REGISTER
SYSRSTIV, System Reset
SYSSNIV, System NMI
SYSUNIV, User NMI
64
Detailed Description
ADDRESS
019Eh
019Ch
019Ah
INTERRUPT EVENT
VALUE
No interrupt pending
00h
Brownout (BOR)
02h
RST/NMI (BOR)
04h
PMMSWBOR (BOR)
06h
Wakeup from LPMx.5
08h
Security violation (BOR)
0Ah
SVSL (POR)
0Ch
SVSH (POR)
0Eh
SVML_OVP (POR)
10h
SVMH_OVP (POR)
12h
PMMSWPOR (POR)
14h
WDT time-out (PUC)
16h
WDT password violation (PUC)
18h
KEYV flash password violation (PUC)
1Ah
Reserved
1Ch
Peripheral area fetch (PUC)
1Eh
PMM password violation (PUC)
20h
Reserved
22h to 3Eh
No interrupt pending
00h
SVMLIFG
02h
SVMHIFG
04h
SVSMLDLYIFG
06h
SVSMHDLYIFG
08h
VMAIFG
0Ah
JMBINIFG
0Ch
JMBOUTIFG
0Eh
SVMLVLRIFG
10h
SVMHVLRIFG
12h
Reserved
14h to 1Eh
No interrupt pending
00h
NMIIFG
02h
OFIFG
04h
ACCVIFG
06h
Reserved
08h
Reserved
0Ah to 1Eh
PRIORITY
Highest
Lowest
Highest
Lowest
Highest
Lowest
Copyright © 2012–2018, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
6.9.9
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
DMA Controller (Link to user's guide)
The DMA controller allows movement of data from one memory address to another without CPU
intervention. For example, the DMA controller can be used to move data from the ADC10_A conversion
memory to RAM. Using the DMA controller can increase the throughput of peripheral modules. The DMA
controller reduces system power consumption by allowing the CPU to remain in sleep mode, without
having to awaken to move data to or from a peripheral. Table 6-10 lists the trigger assignments.
Table 6-10. DMA Trigger Assignments (1)
TRIGGER
(1)
(2)
CHANNEL
0
1
2
0
DMAREQ
DMAREQ
DMAREQ
1
TA0CCR0 CCIFG
TA0CCR0 CCIFG
TA0CCR0 CCIFG
2
TA0CCR2 CCIFG
TA0CCR2 CCIFG
TA0CCR2 CCIFG
3
TA1CCR0 CCIFG
TA1CCR0 CCIFG
TA1CCR0 CCIFG
4
TA1CCR2 CCIFG
TA1CCR2 CCIFG
TA1CCR2 CCIFG
5
TA2CCR0 CCIFG
TA2CCR0 CCIFG
TA2CCR0 CCIFG
6
TA2CCR2 CCIFG
TA2CCR2 CCIFG
TA2CCR2 CCIFG
7
TB0CCR0 CCIFG
TB0CCR0 CCIFG
TB0CCR0 CCIFG
8
TB0CCR2 CCIFG
TB0CCR2 CCIFG
TB0CCR2 CCIFG
9
Reserved
Reserved
Reserved
10
Reserved
Reserved
Reserved
11
Reserved
Reserved
Reserved
12
Reserved
Reserved
Reserved
13
Reserved
Reserved
Reserved
14
Reserved
Reserved
Reserved
15
Reserved
Reserved
Reserved
16
UCA0RXIFG
UCA0RXIFG
UCA0RXIFG
17
UCA0TXIFG
UCA0TXIFG
UCA0TXIFG
18
UCB0RXIFG
UCB0RXIFG
UCB0RXIFG
19
UCB0TXIFG
UCB0TXIFG
UCB0TXIFG
20
UCA1RXIFG
UCA1RXIFG
UCA1RXIFG
21
UCA1TXIFG
UCA1TXIFG
UCA1TXIFG
22
UCB1RXIFG
UCB1RXIFG
UCB1RXIFG
23
UCB1TXIFG
UCB1TXIFG
UCB1TXIFG
(2)
ADC10IFG0
(2)
ADC10IFG0 (2)
24
ADC10IFG0
25
Reserved
Reserved
Reserved
26
Reserved
Reserved
Reserved
27
Reserved
Reserved
Reserved
28
Reserved
Reserved
Reserved
29
MPY ready
MPY ready
MPY ready
30
DMA2IFG
DMA0IFG
DMA1IFG
31
DMAE0
DMAE0
DMAE0
If a reserved trigger source is selected, no trigger is generated.
Only on devices with ADC; reserved on devices without ADC
Detailed Description
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2018, Texas Instruments Incorporated
65
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
www.ti.com
6.9.10 Universal Serial Communication Interface (USCI) (Links to user's guide: UART
Mode, SPI Mode, I2C Mode)
The USCI modules are used for serial data communication. The USCI module supports synchronous
communication protocols such as SPI (3- or 4-pin) and I2C, and asynchronous communication protocols
such as UART, enhanced UART with automatic baudrate detection, and IrDA. Each USCI module
contains two portions, A and B.
The USCI_An module provides support for SPI (3- or 4-pin), UART, enhanced UART, or IrDA.
The USCI_Bn module provides support for SPI (3- or 4-pin) or I2C.
The MSP430F522x and MSP430F521x series include two complete USCI modules (n = 0, 1).
66
Detailed Description
Copyright © 2012–2018, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
6.9.11 TA0 (Link to user's guide)
TA0 is a 16-bit timer/counter (Timer_A type) with five capture/compare registers. TA0 can support multiple
captures or compares, PWM outputs, and interval timing (see Table 6-11). TA0 also has extensive
interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each
of the capture/compare registers.
Table 6-11. TA0 Signal Connections
INPUT PIN NUMBER
RGC, ZQE,
YFF
18, H2, B7P1.0
RGZ
DEVICE
INPUT
SIGNAL
MODULE
INPUT
SIGNAL
13-P1.0
TA0CLK
TACLK
ACLK
(internal)
ACLK
SMCLK
(internal)
SMCLK
18, H2, B7P1.0
13-P1.0
TA0CLK
TACLK
19, H3, C7P1.1
14-P1.1
TA0.0
CCI0A
DVSS
CCI0B
DVSS
GND
DVCC
VCC
TA0.1
CCI1A
CBOUT
(internal)
CCI1B
20, J3, C8P1.2
21, G4, C6P1.3
22, H4, C5P1.4
23, J4, D8P1.5
15-P1.2
16-P1.3
17-P1.4
18-P1.5
DVSS
GND
DVCC
VCC
TA0.2
CCI2A
ACLK
(internal)
CCI2B
DVSS
GND
DVCC
VCC
TA0.3
CCI3A
DVSS
CCI3B
DVSS
GND
DVCC
VCC
TA0.4
CCI4A
DVSS
CCI4B
DVSS
GND
DVCC
VCC
MODULE
BLOCK
MODULE
OUTPUT
SIGNAL
DEVICE
OUTPUT
SIGNAL
Timer
NA
NA
CCR0
CCR1
CCR2
CCR3
CCR4
TA0
TA1
TA2
TA3
TA4
OUTPUT PIN NUMBER
RGC, ZQE, YFF
RGZ
19, H3, C7-P1.1
14-P1.1
20, J3, C8-P1.2
15-P1.2
ADC10 (internal)
ADC10SHSx =
{1}
ADC10 (internal)
ADC10SHSx =
{1}
21, G4, C6-P1.3
16-P1.3
22, H4, C5-P1.4
17-P1.4
23, J4, D8-P1.5
18-P1.5
TA0.0
TA0.1
TA0.2
TA0.3
TA0.4
Detailed Description
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2018, Texas Instruments Incorporated
67
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
www.ti.com
6.9.12 TA1 (Link to user's guide)
TA1 is a 16-bit timer/counter (Timer_A type) with three capture/compare registers. TA1 can support
multiple captures or compares, PWM outputs, and interval timing (see Table 6-12). TA1 also has
extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and
from each of the capture/compare registers.
Table 6-12. TA1 Signal Connections
INPUT PIN NUMBER
RGC, ZQE,
YFF
24, G5, D7P1.6
RGZ
DEVICE
INPUT
SIGNAL
MODULE
INPUT
SIGNAL
19-P1.6
TA1CLK
TACLK
ACLK
(internal)
ACLK
SMCLK
(internal)
SMCLK
24, G5, D7P1.6
19-P1.6
TA1CLK
TACLK
25, H5, D6P1.7
20-P1.7
TA1.0
CCI0A
DVSS
CCI0B
DVSS
GND
DVCC
VCC
TA1.1
CCI1A
CBOUT
(internal)
CCI1B
DVSS
GND
DVCC
VCC
TA1.2
CCI2A
ACLK
(internal)
CCI2B
DVSS
GND
DVCC
VCC
26, J5, E8P2.0
27, G6, D5P2.1
68
Detailed Description
MODULE
BLOCK
MODULE
OUTPUT
SIGNAL
DEVICE
OUTPUT
SIGNAL
Timer
NA
NA
CCR0
TA0
OUTPUT PIN NUMBER
RGC, ZQE,
YFF
RGZ
25, H5, D6P1.7
20-P1.7
TA1.0
26, J5, E8P2.0
CCR1
TA1
TA1.1
27, G6, D5P2.1
CCR2
TA2
TA1.2
Copyright © 2012–2018, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
6.9.13 TA2 (Link to user's guide)
TA2 is a 16-bit timer/counter (Timer_A type) with three capture/compare registers. TA2 can support
multiple captures or compares, PWM outputs, and interval timing (see Table 6-13). TA2 also has
extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and
from each of the capture/compare registers.
Table 6-13. TA2 Signal Connections
INPUT PIN NUMBER
DEVICE
INPUT
SIGNAL
MODULE
INPUT
SIGNAL
TA2CLK
TACLK
ACLK
(internal)
ACLK
SMCLK
(internal)
SMCLK
28, J6, E7P2.2
TA2CLK
TACLK
29, H6, F8P2.3
TA2.0
CCI0A
DVSS
CCI0B
DVSS
GND
DVCC
VCC
TA2.1
CCI1A
CBOUT
(internal)
CCI1B
DVSS
GND
DVCC
VCC
TA2.2
CCI2A
ACLK
(internal)
CCI2B
DVSS
GND
DVCC
VCC
RGC, ZQE,
YFF
28, J6, E7P2.2
30, J7, E6P2.4
31, J8, F7P2.5
RGZ
MODULE
BLOCK
MODULE
OUTPUT
SIGNAL
DEVICE
OUTPUT
SIGNAL
Timer
NA
NA
OUTPUT PIN NUMBER
RGC, ZQE,
YFF
RGZ
29, H6, F8P2.3
CCR0
TA0
TA2.0
30, J7, E6P2.4
CCR1
TA1
TA2.1
31, J8, F7P2.5
CCR2
TA2
TA2.2
Detailed Description
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2018, Texas Instruments Incorporated
69
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
www.ti.com
6.9.14 TB0 (Link to user's guide)
TB0 is a 16-bit timer/counter (Timer_B type) with seven capture/compare registers. TB0 can support
multiple captures or compares, PWM outputs, and interval timing (see Table 6-14). TB0 also has
extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and
from each of the capture/compare registers.
Table 6-14. TB0 Signal Connections
INPUT PIN NUMBER
DEVICE
INPUT
SIGNAL
MODULE
INPUT
SIGNAL
TB0CLK
TBCLK
ACLK
(internal)
ACLK
SMCLK
(internal)
SMCLK
(1)
TB0CLK
TBCLK
49, B8(9), H1P7.0 (1)
(1)
TB0.0
CCI0A
49, B8(9), H1P7.0 (1)
(1)
TB0.0
CCI0B
RGC, ZQE,
YFF
(1)
(1)
(1)
50, A9, G2P7.1 (1)
(1)
DVSS
GND
DVCC
VCC
TB0.1
CCI1A
CBOUT
(internal)
CCI1B
DVSS
GND
DVCC
VCC
51, B7, F3P7.2 (1)
(1)
TB0.2
CCI2A
51, B7, F3P7.2 (1)
(1)
TB0.2
CCI2B
DVSS
GND
DVCC
VCC
52, A8, G1P7.3 (1)
(1)
TB0.3
CCI3A
52, A8, G1P7.3 (1)
(1)
TB0.3
CCI3B
(1)
DVSS
GND
DVCC
VCC
53, A7, F2P7.4 (1)
(1)
TB0.4
CCI4A
53, A7, F2P7.4 (1)
(1)
TB0.4
CCI4B
DVSS
GND
DVCC
VCC
54, A6, F1P7.5 (1)
(1)
TB0.5
CCI5A
54, A6, F1P7.5 (1)
(1)
TB0.5
CCI5B
DVSS
GND
(1)
70
RGZ
(1)
DVCC
VCC
TB0.6
CCI6A
ACLK
(internal)
CCI6B
DVSS
GND
DVCC
VCC
MODULE
BLOCK
MODULE
OUTPUT
SIGNAL
DEVICE
OUTPUT
SIGNAL
Timer
NA
NA
CCR0
CCR1
CCR2
CCR3
CCR4
CCR5
CCR6
TB0
TB1
TB2
TB3
TB4
TB5
TB6
TB0.0
TB0.1
OUTPUT PIN NUMBER
RGC, ZQE, YFF
RGZ
49, B8(9), H1P7.0 (1)
(1)
ADC10 (internal)
ADC10SHSx = {2}
ADC10 (internal)
ADC10SHSx = {2}
50, A9, G2-P7.1 (1)
(1)
ADC10 (internal)
ADC10SHSx = {3}
ADC10 (internal)
ADC10SHSx = {3}
51, B7, F3-P7.2 (1)
(1)
52, A8, G1-P7.3 (1)
(1)
53, A7, F2-P7.4 (1)
(1)
54, A6, F1-P7.5 (1)
(1)
(1)
(1)
TB0.2
TB0.3
TB0.4
TB0.5
TB0.6
Timer functions can be assigned by the port mapping controller.
Detailed Description
Copyright © 2012–2018, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
6.9.15 Comparator_B (Link to user's guide)
The primary function of the Comparator_B module is to support precision slope analog-to-digital
conversions, battery voltage supervision, and monitoring of external analog signals.
6.9.16 ADC10_A (Link to user's guide)
The ADC10_A module supports fast 10-bit analog-to-digital conversions. The module implements a 10-bit
SAR core, sample select control, reference generator, and a conversion result buffer. A window
comparator with lower and upper limits allows CPU-independent result monitoring with three window
comparator interrupt flags.
6.9.17 CRC16 (Link to user's guide)
The CRC16 module produces a signature based on a sequence of entered data values and can be used
for data checking purposes. The CRC16 module signature is based on the CRC-CCITT standard.
6.9.18 REF Voltage Reference (Link to user's guide)
The REF is responsible for generation of all critical reference voltages that can be used by the various
analog peripherals in the device.
6.9.19 Embedded Emulation Module (EEM) (S Version) (Link to user's guide)
The EEM supports real-time in-system debugging. The S version of the EEM has the following features:
• Three hardware triggers or breakpoints on memory access
• One hardware trigger or breakpoint on CPU register write access
• Up to four hardware triggers can be combined to form complex triggers or breakpoints
• One cycle counter
• Clock control on module level
Detailed Description
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2018, Texas Instruments Incorporated
71
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
www.ti.com
6.9.20 Peripheral File Map
Table 6-15 lists the base address for the registers of each peripheral.
Table 6-15. Peripherals
72
MODULE NAME
BASE ADDRESS
OFFSET ADDRESS
RANGE
Special Functions (see Table 6-16)
0100h
000h-01Fh
PMM (see Table 6-17)
0120h
000h-010h
Flash Control (see Table 6-18)
0140h
000h-00Fh
CRC16 (see Table 6-19)
0150h
000h-007h
RAM Control (see Table 6-20)
0158h
000h-001h
Watchdog (see Table 6-21)
015Ch
000h-001h
UCS (see Table 6-22)
0160h
000h-01Fh
SYS (see Table 6-23)
0180h
000h-01Fh
Shared Reference (see Table 6-24)
01B0h
000h-001h
Port Mapping Control (see Table 6-25)
01C0h
000h-002h
Port Mapping Port P4 (see Table 6-25)
01E0h
000h-007h
Port P1, P2 (see Table 6-26)
0200h
000h-01Fh
Port P3, P4 (see Table 6-27)
0220h
000h-00Bh
Port P5, P6 (see Table 6-28)
0240h
000h-00Bh
Port P7 (see Table 6-29)
0260h
000h-00Bh
Port PJ (see Table 6-30)
0320h
000h-01Fh
TA0 (see Table 6-31)
0340h
000h-02Eh
TA1 (see Table 6-32)
0380h
000h-02Eh
TB0 (see Table 6-33)
03C0h
000h-02Eh
TA2 (see Table 6-34)
0400h
000h-02Eh
Real-Time Clock (RTC_A) (see Table 6-35)
04A0h
000h-01Bh
32-Bit Hardware Multiplier (see Table 6-36)
04C0h
000h-02Fh
DMA General Control (see Table 6-37)
0500h
000h-00Fh
DMA Channel 0 (see Table 6-37)
0510h
000h-00Ah
DMA Channel 1 (see Table 6-37)
0520h
000h-00Ah
DMA Channel 2 (see Table 6-37)
0530h
000h-00Ah
USCI_A0 (see Table 6-38)
05C0h
000h-01Fh
USCI_B0 (see Table 6-39)
05E0h
000h-01Fh
USCI_A1 (see Table 6-40)
0600h
000h-01Fh
USCI_B1 (see Table 6-41)
0620h
000h-01Fh
ADC10_A (see Table 6-42)
0740h
000h-01Fh
Comparator_B (see Table 6-43)
08C0h
000h-00Fh
Detailed Description
Copyright © 2012–2018, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
Table 6-16. Special Function Registers (Base Address: 0100h)
REGISTER DESCRIPTION
REGISTER
OFFSET
SFR interrupt enable
SFRIE1
00h
SFR interrupt flag
SFRIFG1
02h
SFR reset pin control
SFRRPCR
04h
Table 6-17. PMM Registers (Base Address: 0120h)
REGISTER DESCRIPTION
REGISTER
OFFSET
PMM control 0
PMMCTL0
00h
PMM control 1
PMMCTL1
02h
SVS high-side control
SVSMHCTL
04h
SVS low-side control
SVSMLCTL
06h
PMM interrupt flags
PMMIFG
0Ch
PMM interrupt enable
PMMIE
0Eh
PMM power mode 5 control
PM5CTL0
10h
Table 6-18. Flash Control Registers (Base Address: 0140h)
REGISTER DESCRIPTION
REGISTER
OFFSET
Flash control 1
FCTL1
00h
Flash control 3
FCTL3
04h
Flash control 4
FCTL4
06h
Table 6-19. CRC16 Registers (Base Address: 0150h)
REGISTER DESCRIPTION
REGISTER
OFFSET
CRC data input
CRC16DI
00h
CRC data input reverse byte
CRCDIRB
02h
CRC initialization and result
CRCINIRES
04h
CRC result reverse byte
CRCRESR
06h
Table 6-20. RAM Control Registers (Base Address: 0158h)
REGISTER DESCRIPTION
RAM control 0
REGISTER
RCCTL0
OFFSET
00h
Table 6-21. Watchdog Registers (Base Address: 015Ch)
REGISTER DESCRIPTION
Watchdog timer control
REGISTER
WDTCTL
OFFSET
00h
Table 6-22. UCS Registers (Base Address: 0160h)
REGISTER DESCRIPTION
REGISTER
OFFSET
UCS control 0
UCSCTL0
00h
UCS control 1
UCSCTL1
02h
UCS control 2
UCSCTL2
04h
UCS control 3
UCSCTL3
06h
UCS control 4
UCSCTL4
08h
UCS control 5
UCSCTL5
0Ah
UCS control 6
UCSCTL6
0Ch
UCS control 7
UCSCTL7
0Eh
Detailed Description
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2018, Texas Instruments Incorporated
73
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
www.ti.com
Table 6-22. UCS Registers (Base Address: 0160h) (continued)
REGISTER DESCRIPTION
REGISTER
OFFSET
UCS control 8
UCSCTL8
10h
UCS control 9
UCSCTL9
12h
Table 6-23. SYS Registers (Base Address: 0180h)
REGISTER DESCRIPTION
REGISTER
OFFSET
System control
SYSCTL
00h
Bootloader configuration area
SYSBSLC
02h
JTAG mailbox control
SYSJMBC
06h
JTAG mailbox input 0
SYSJMBI0
08h
JTAG mailbox input 1
SYSJMBI1
0Ah
JTAG mailbox output 0
SYSJMBO0
0Ch
JTAG mailbox output 1
SYSJMBO1
0Eh
User NMI vector generator
SYSUNIV
1Ah
System NMI vector generator
SYSSNIV
1Ch
Reset vector generator
SYSRSTIV
1Eh
Table 6-24. Shared Reference Registers (Base Address: 01B0h)
REGISTER DESCRIPTION
Shared reference control
REGISTER
REFCTL
OFFSET
00h
Table 6-25. Port Mapping Registers
(Base Address of Port Mapping Control: 01C0h, Port P4: 01E0h)
REGISTER DESCRIPTION
REGISTER
OFFSET
Port mapping key/ID
PMAPKEYID
00h
Port mapping control
PMAPCTL
02h
Port P4.0 mapping
P4MAP0
00h
Port P4.1 mapping
P4MAP1
01h
Port P4.2 mapping
P4MAP2
02h
Port P4.3 mapping
P4MAP3
03h
Port P4.4 mapping
P4MAP4
04h
Port P4.5 mapping
P4MAP5
05h
Port P4.6 mapping
P4MAP6
06h
Port P4.7 mapping
P4MAP7
07h
Table 6-26. Port P1, P2 Registers (Base Address: 0200h)
REGISTER DESCRIPTION
REGISTER
OFFSET
Port P1 input
P1IN
00h
Port P1 output
P1OUT
02h
Port P1 direction
P1DIR
04h
Port P1 resistor enable
P1REN
06h
Port P1 drive strength
P1DS
08h
Port P1 selection
P1SEL
0Ah
Port P1 interrupt vector word
P1IV
0Eh
Port P1 interrupt edge select
P1IES
18h
Port P1 interrupt enable
P1IE
1Ah
Port P1 interrupt flag
P1IFG
1Ch
74
Detailed Description
Copyright © 2012–2018, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
Table 6-26. Port P1, P2 Registers (Base Address: 0200h) (continued)
REGISTER DESCRIPTION
REGISTER
OFFSET
Port P2 input
P2IN
01h
Port P2 output
P2OUT
03h
Port P2 direction
P2DIR
05h
Port P2 resistor enable
P2REN
07h
Port P2 drive strength
P2DS
09h
Port P2 selection
P2SEL
0Bh
Port P2 interrupt vector word
P2IV
1Eh
Port P2 interrupt edge select
P2IES
19h
Port P2 interrupt enable
P2IE
1Bh
Port P2 interrupt flag
P2IFG
1Dh
Table 6-27. Port P3, P4 Registers (Base Address: 0220h)
REGISTER DESCRIPTION
REGISTER
OFFSET
Port P3 input
P3IN
00h
Port P3 output
P3OUT
02h
Port P3 direction
P3DIR
04h
Port P3 resistor enable
P3REN
06h
Port P3 drive strength
P3DS
08h
Port P3 selection
P3SEL
0Ah
Port P4 input
P4IN
01h
Port P4 output
P4OUT
03h
Port P4 direction
P4DIR
05h
Port P4 resistor enable
P4REN
07h
Port P4 drive strength
P4DS
09h
Port P4 selection
P4SEL
0Bh
Table 6-28. Port P5, P6 Registers (Base Address: 0240h)
REGISTER DESCRIPTION
REGISTER
OFFSET
Port P5 input
P5IN
00h
Port P5 output
P5OUT
02h
Port P5 direction
P5DIR
04h
Port P5 resistor enable
P5REN
06h
Port P5 drive strength
P5DS
08h
Port P5 selection
P5SEL
0Ah
Port P6 input
P6IN
01h
Port P6 output
P6OUT
03h
Port P6 direction
P6DIR
05h
Port P6 resistor enable
P6REN
07h
Port P6 drive strength
P6DS
09h
Port P6 selection
P6SEL
0Bh
Table 6-29. Port P7 Registers (Base Address: 0260h)
REGISTER DESCRIPTION
REGISTER
OFFSET
Port P7 input
P7IN
00h
Port P7 output
P7OUT
02h
Port P7 direction
P7DIR
04h
Detailed Description
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2018, Texas Instruments Incorporated
75
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
www.ti.com
Table 6-29. Port P7 Registers (Base Address: 0260h) (continued)
REGISTER DESCRIPTION
REGISTER
OFFSET
Port P7 resistor enable
P7REN
06h
Port P7 drive strength
P7DS
08h
Port P7 selection
P7SEL
0Ah
Table 6-30. Port J Registers (Base Address: 0320h)
REGISTER DESCRIPTION
REGISTER
OFFSET
Port PJ input
PJIN
00h
Port PJ output
PJOUT
02h
Port PJ direction
PJDIR
04h
Port PJ resistor enable
PJREN
06h
Port PJ drive strength
PJDS
08h
Table 6-31. TA0 Registers (Base Address: 0340h)
REGISTER DESCRIPTION
REGISTER
OFFSET
TA0 control
TA0CTL
00h
Capture/compare control 0
TA0CCTL0
02h
Capture/compare control 1
TA0CCTL1
04h
Capture/compare control 2
TA0CCTL2
06h
Capture/compare control 3
TA0CCTL3
08h
Capture/compare control 4
TA0CCTL4
0Ah
TA0 counter
TA0R
10h
Capture/compare 0
TA0CCR0
12h
Capture/compare 1
TA0CCR1
14h
Capture/compare 2
TA0CCR2
16h
Capture/compare 3
TA0CCR3
18h
Capture/compare 4
TA0CCR4
1Ah
TA0 expansion 0
TA0EX0
20h
TA0 interrupt vector
TA0IV
2Eh
Table 6-32. TA1 Registers (Base Address: 0380h)
REGISTER DESCRIPTION
REGISTER
OFFSET
TA1 control
TA1CTL
00h
Capture/compare control 0
TA1CCTL0
02h
Capture/compare control 1
TA1CCTL1
04h
Capture/compare control 2
TA1CCTL2
06h
TA1 counter
TA1R
10h
Capture/compare 0
TA1CCR0
12h
Capture/compare 1
TA1CCR1
14h
Capture/compare 2
TA1CCR2
16h
TA1 expansion 0
TA1EX0
20h
TA1 interrupt vector
TA1IV
2Eh
Table 6-33. TB0 Registers (Base Address: 03C0h)
REGISTER DESCRIPTION
REGISTER
OFFSET
TB0 control
TB0CTL
00h
Capture/compare control 0
TB0CCTL0
02h
76
Detailed Description
Copyright © 2012–2018, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
Table 6-33. TB0 Registers (Base Address: 03C0h) (continued)
REGISTER DESCRIPTION
REGISTER
OFFSET
Capture/compare control 1
TB0CCTL1
04h
Capture/compare control 2
TB0CCTL2
06h
Capture/compare control 3
TB0CCTL3
08h
Capture/compare control 4
TB0CCTL4
0Ah
Capture/compare control 5
TB0CCTL5
0Ch
Capture/compare control 6
TB0CCTL6
0Eh
TB0 counter
TB0R
10h
Capture/compare 0
TB0CCR0
12h
Capture/compare 1
TB0CCR1
14h
Capture/compare 2
TB0CCR2
16h
Capture/compare 3
TB0CCR3
18h
Capture/compare 4
TB0CCR4
1Ah
Capture/compare 5
TB0CCR5
1Ch
Capture/compare 6
TB0CCR6
1Eh
TB0 expansion 0
TB0EX0
20h
TB0 interrupt vector
TB0IV
2Eh
Table 6-34. TA2 Registers (Base Address: 0400h)
REGISTER DESCRIPTION
REGISTER
OFFSET
TA2 control
TA2CTL
00h
Capture/compare control 0
TA2CCTL0
02h
Capture/compare control 1
TA2CCTL1
04h
Capture/compare control 2
TA2CCTL2
06h
TA2 counter
TA2R
10h
Capture/compare 0
TA2CCR0
12h
Capture/compare 1
TA2CCR1
14h
Capture/compare 2
TA2CCR2
16h
TA2 expansion 0
TA2EX0
20h
TA2 interrupt vector
TA2IV
2Eh
Table 6-35. Real-Time Clock Registers (Base Address: 04A0h)
REGISTER DESCRIPTION
REGISTER
OFFSET
RTC control 0
RTCCTL0
00h
RTC control 1
RTCCTL1
01h
RTC control 2
RTCCTL2
02h
RTC control 3
RTCCTL3
03h
RTC prescaler 0 control
RTCPS0CTL
08h
RTC prescaler 1 control
RTCPS1CTL
0Ah
RTC prescaler 0
RTCPS0
0Ch
RTC prescaler 1
RTCPS1
0Dh
RTC interrupt vector word
RTCIV
0Eh
RTC seconds/counter 1
RTCSEC/RTCNT1
10h
RTC minutes/counter 2
RTCMIN/RTCNT2
11h
RTC hours/counter 3
RTCHOUR/RTCNT3
12h
RTC day of week/counter 4
RTCDOW/RTCNT4
13h
RTC days
RTCDAY
14h
RTC month
RTCMON
15h
Detailed Description
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2018, Texas Instruments Incorporated
77
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
www.ti.com
Table 6-35. Real-Time Clock Registers (Base Address: 04A0h) (continued)
REGISTER DESCRIPTION
REGISTER
OFFSET
RTC year low
RTCYEARL
16h
RTC year high
RTCYEARH
17h
RTC alarm minutes
RTCAMIN
18h
RTC alarm hours
RTCAHOUR
19h
RTC alarm day of week
RTCADOW
1Ah
RTC alarm days
RTCADAY
1Bh
Table 6-36. 32-Bit Hardware Multiplier Registers (Base Address: 04C0h)
REGISTER DESCRIPTION
REGISTER
OFFSET
16-bit operand 1 – multiply
MPY
00h
16-bit operand 1 – signed multiply
MPYS
02h
16-bit operand 1 – multiply accumulate
MAC
04h
16-bit operand 1 – signed multiply accumulate
MACS
06h
16-bit operand 2
OP2
08h
16 × 16 result low word
RESLO
0Ah
16 × 16 result high word
RESHI
0Ch
16 × 16 sum extension
SUMEXT
0Eh
32-bit operand 1 – multiply low word
MPY32L
10h
32-bit operand 1 – multiply high word
MPY32H
12h
32-bit operand 1 – signed multiply low word
MPYS32L
14h
32-bit operand 1 – signed multiply high word
MPYS32H
16h
32-bit operand 1 – multiply accumulate low word
MAC32L
18h
32-bit operand 1 – multiply accumulate high word
MAC32H
1Ah
32-bit operand 1 – signed multiply accumulate low word
MACS32L
1Ch
32-bit operand 1 – signed multiply accumulate high word
MACS32H
1Eh
32-bit operand 2 – low word
OP2L
20h
32-bit operand 2 – high word
OP2H
22h
32 × 32 result 0 – least significant word
RES0
24h
32 × 32 result 1
RES1
26h
32 × 32 result 2
RES2
28h
32 × 32 result 3 – most significant word
RES3
2Ah
MPY32 control 0
MPY32CTL0
2Ch
Table 6-37. DMA Registers (Base Address DMA General Control: 0500h,
DMA Channel 0: 0510h, DMA Channel 1: 0520h, DMA Channel 2: 0530h)
REGISTER DESCRIPTION
REGISTER
OFFSET
DMA channel 0 control
DMA0CTL
00h
DMA channel 0 source address low
DMA0SAL
02h
DMA channel 0 source address high
DMA0SAH
04h
DMA channel 0 destination address low
DMA0DAL
06h
DMA channel 0 destination address high
DMA0DAH
08h
DMA channel 0 transfer size
DMA0SZ
0Ah
DMA channel 1 control
DMA1CTL
00h
DMA channel 1 source address low
DMA1SAL
02h
DMA channel 1 source address high
DMA1SAH
04h
DMA channel 1 destination address low
DMA1DAL
06h
DMA channel 1 destination address high
DMA1DAH
08h
78
Detailed Description
Copyright © 2012–2018, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
Table 6-37. DMA Registers (Base Address DMA General Control: 0500h,
DMA Channel 0: 0510h, DMA Channel 1: 0520h, DMA Channel 2: 0530h) (continued)
REGISTER DESCRIPTION
REGISTER
OFFSET
DMA channel 1 transfer size
DMA1SZ
0Ah
DMA channel 2 control
DMA2CTL
00h
DMA channel 2 source address low
DMA2SAL
02h
DMA channel 2 source address high
DMA2SAH
04h
DMA channel 2 destination address low
DMA2DAL
06h
DMA channel 2 destination address high
DMA2DAH
08h
DMA channel 2 transfer size
DMA2SZ
0Ah
DMA module control 0
DMACTL0
00h
DMA module control 1
DMACTL1
02h
DMA module control 2
DMACTL2
04h
DMA module control 3
DMACTL3
06h
DMA module control 4
DMACTL4
08h
DMA interrupt vector
DMAIV
0Eh
Table 6-38. USCI_A0 Registers (Base Address: 05C0h)
REGISTER DESCRIPTION
REGISTER
OFFSET
USCI control 1
UCA0CTL1
00h
USCI control 0
UCA0CTL0
01h
USCI baud rate 0
UCA0BR0
06h
USCI baud rate 1
UCA0BR1
07h
USCI modulation control
UCA0MCTL
08h
USCI status
UCA0STAT
0Ah
USCI receive buffer
UCA0RXBUF
0Ch
USCI transmit buffer
UCA0TXBUF
0Eh
USCI LIN control
UCA0ABCTL
10h
USCI IrDA transmit control
UCA0IRTCTL
12h
USCI IrDA receive control
UCA0IRRCTL
13h
USCI interrupt enable
UCA0IE
1Ch
USCI interrupt flags
UCA0IFG
1Dh
USCI interrupt vector word
UCA0IV
1Eh
Table 6-39. USCI_B0 Registers (Base Address: 05E0h)
REGISTER DESCRIPTION
REGISTER
OFFSET
USCI synchronous control 1
UCB0CTL1
00h
USCI synchronous control 0
UCB0CTL0
01h
USCI synchronous bit rate 0
UCB0BR0
06h
USCI synchronous bit rate 1
UCB0BR1
07h
USCI synchronous status
UCB0STAT
0Ah
USCI synchronous receive buffer
UCB0RXBUF
0Ch
USCI synchronous transmit buffer
UCB0TXBUF
0Eh
USCI I2C own address
UCB0I2COA
10h
USCI I2C slave address
UCB0I2CSA
12h
USCI interrupt enable
UCB0IE
1Ch
USCI interrupt flags
UCB0IFG
1Dh
USCI interrupt vector word
UCB0IV
1Eh
Detailed Description
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2018, Texas Instruments Incorporated
79
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
www.ti.com
Table 6-40. USCI_A1 Registers (Base Address: 0600h)
REGISTER DESCRIPTION
REGISTER
OFFSET
USCI control 1
UCA1CTL1
00h
USCI control 0
UCA1CTL0
01h
USCI baud rate 0
UCA1BR0
06h
USCI baud rate 1
UCA1BR1
07h
USCI modulation control
UCA1MCTL
08h
USCI status
UCA1STAT
0Ah
USCI receive buffer
UCA1RXBUF
0Ch
USCI transmit buffer
UCA1TXBUF
0Eh
USCI LIN control
UCA1ABCTL
10h
USCI IrDA transmit control
UCA1IRTCTL
12h
USCI IrDA receive control
UCA1IRRCTL
13h
USCI interrupt enable
UCA1IE
1Ch
USCI interrupt flags
UCA1IFG
1Dh
USCI interrupt vector word
UCA1IV
1Eh
Table 6-41. USCI_B1 Registers (Base Address: 0620h)
REGISTER DESCRIPTION
REGISTER
OFFSET
USCI synchronous control 1
UCB1CTL1
00h
USCI synchronous control 0
UCB1CTL0
01h
USCI synchronous bit rate 0
UCB1BR0
06h
USCI synchronous bit rate 1
UCB1BR1
07h
USCI synchronous status
UCB1STAT
0Ah
USCI synchronous receive buffer
UCB1RXBUF
0Ch
USCI synchronous transmit buffer
UCB1TXBUF
0Eh
USCI I2C own address
UCB1I2COA
10h
USCI I2C slave address
UCB1I2CSA
12h
USCI interrupt enable
UCB1IE
1Ch
USCI interrupt flags
UCB1IFG
1Dh
USCI interrupt vector word
UCB1IV
1Eh
Table 6-42. ADC10_A Registers (Base Address: 0740h)
REGISTER DESCRIPTION
REGISTER
OFFSET
ADC10_A control 0
ADC10CTL0
00h
ADC10_A control 1
ADC10CTL1
02h
ADC10_A control 2
ADC10CTL2
04h
ADC10_A window comparator low threshold
ADC10LO
06h
ADC10_A window comparator high threshold
ADC10HI
08h
ADC10_A memory control 0
ADC10MCTL0
0Ah
ADC10_A conversion memory
ADC10MEM0
12h
ADC10_A interrupt enable
ADC10IE
1Ah
ADC10_A interrupt flags
ADC10IGH
1Ch
ADC10_A interrupt vector word
ADC10IV
1Eh
80
Detailed Description
Copyright © 2012–2018, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
Table 6-43. Comparator_B Registers (Base Address: 08C0h)
REGISTER DESCRIPTION
REGISTER
OFFSET
Comp_B control 0
CBCTL0
00h
Comp_B control 1
CBCTL1
02h
Comp_B control 2
CBCTL2
04h
Comp_B control 3
CBCTL3
06h
Comp_B interrupt
CBINT
0Ch
Comp_B interrupt vector word
CBIV
0Eh
Detailed Description
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2018, Texas Instruments Incorporated
81
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
www.ti.com
6.10 Input/Output Diagrams
6.10.1 Port P1 (P1.0 to P1.7) Input/Output With Schmitt Trigger
Figure 6-2 shows the port diagram. Table 6-44 summarizes the selection of the port function.
Pad Logic
P1REN.x
P1DIR.x
0
From module
1
P1OUT.x
0
From module
1
DVSS
0
(P1.0 to P1.3) DVCC
(P1.4 to P1.7) DVIO
1
1
Direction
0: Input
1: Output
P1DS.x
0: Low drive
1: High drive
P1SEL.x
P1IN.x
EN
To module
P1.0/TA0CLK/ACLK
P1.1/TA0.0
P1.2/TA0.1
P1.3/TA0.2
P1.4/TA0.3
P1.5/TA0.4
P1.6/TA1CLK/CBOUT
P1.7/TA1.0
D
P1IE.x
EN
P1IRQ.x
Q
P1IFG.x
P1SEL.x
P1IES.x
Set
Interrupt
Edge
Select
Figure 6-2. Port P1 (P1.0 to P1.7) Diagram
82
Detailed Description
Copyright © 2012–2018, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
Table 6-44. Port P1 (P1.0 to P1.7) Pin Functions
PIN NAME (P1.x)
P1.0/TA0CLK/ACLK
x
0
FUNCTION
P1DIR.x
P1SEL.x
P1.0 (I/O)
I: 0; O: 1
0
TA0CLK
0
1
ACLK
P1.1 (I/O)
P1.1/TA0.0
1
TA0.CCI0A
TA0.0
P1.2 (I/O)
P1.2/TA0.1
2
TA0.CCI1A
TA0.1
3
4
P1.6/TA1CLK/CBOUT
5
6
7
1
1
1
I: 0; O: 1
0
0
1
0
TA0.CCI2A
0
1
TA0.2
1
1
I: 0; O: 1
0
TA0.CCI3A
0
1
TA0.3
1
1
I: 0; O: 1
0
TA0.CCI4A
0
1
TA0.4
1
1
P1.6 (I/O)
I: 0; O: 1
0
TA1CLK
0
1
CBOUT comparator B
1
1
I: 0; O: 1
0
TA1.CCI0A
0
1
TA1.0
1
1
P1.7 (I/O)
P1.7/TA1.0
0
0
1
P1.5 (I/O)
P1.5/TA0.4
1
1
P1.4 (I/O)
P1.4/TA0.3
1
I: 0; O: 1
I: 0; O: 1
P1.3 (I/O)
P1.3/TA0.2
CONTROL BITS OR SIGNALS
Detailed Description
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2018, Texas Instruments Incorporated
83
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
www.ti.com
6.10.2 Port P2 (P2.0 to P2.7) Input/Output With Schmitt Trigger
Figure 6-3 shows the port diagram. Table 6-45 summarizes the selection of the port function.
Pad Logic
P2REN.x
P2DIR.x
0
From module
1
P2OUT.x
0
From module
1
DVSS
0
DVIO
1
1
Direction
0: Input
1: Output
P2DS.x
0: Low drive
1: High drive
P2SEL.x
P2IN.x
EN
To module
P2.0/TA1.1
P2.1/TA1.2
P2.2/TA2CLK/SMCLK
P2.3/TA2.0
P2.4/TA2.1
P2.5/TA2.2
P2.6/RTCCLK/DMAE0
P2.7/UB0STE/UCA0CLK
D
P2IE.x
EN
To module
Q
P2IFG.x
P2SEL.x
P2IES.x
Set
Interrupt
Edge
Select
Figure 6-3. Port P2 (P2.0 to P2.7) Diagram
84
Detailed Description
Copyright © 2012–2018, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
Table 6-45. Port P2 (P2.0 to P2.7) Pin Functions
PIN NAME (P2.x)
x
FUNCTION
P2.0 (I/O)
P2.0/TA1.1 (2)
0
TA1.CCI1A
TA1.1
P2.1 (I/O)
P2.1/TA1.2 (2)
1
TA1.CCI2A
TA1.2
P2.2/TA2CLK/SMCLK (2)
2
4
5
P2.7/UCB0STE/UCA0CLK
(1)
(2)
(3)
(4)
6
7
1
1
I: 0; O: 1
0
0
1
0
TA2CLK
0
1
1
1
I: 0; O: 1
0
TA2.CCI0A
0
1
TA2.0
1
1
I: 0; O: 1
0
TA2.CCI1A
0
1
TA2.1
1
1
I: 0; O: 1
0
TA2.CCI2A
0
1
TA2.2
1
1
P2.6 (I/O)
P2.6/RTCCLK/DMAE0 (2)
1
1
P2.5 (I/O)
P2.5/TA2.2 (2)
0
0
1
P2.4 (I/O)
P2.4/TA2.1 (2)
P2SEL.x
I: 0; O: 1
P2.3 (I/O)
3
P2DIR.x
I: 0; O: 1
P2.2 (I/O)
SMCLK
P2.3/TA2.0 (2)
CONTROL BITS OR SIGNALS (1)
I: 0; O: 1
0
DMAE0
0
1
RTCCLK
1
1
P2.7 (I/O)
I: 0; O: 1
0
X
1
UCB0STE/UCA0CLK
(3) (4)
X = Don't care
Not available on RGZ package types.
The pin direction is controlled by the USCI module.
UCA0CLK function takes precedence over UCB0STE function. If the pin is required as UCA0CLK input or output, USCI_B0 is forced to
3-wire SPI mode if 4-wire SPI mode is selected.
Detailed Description
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2018, Texas Instruments Incorporated
85
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
www.ti.com
6.10.3 Port P3 (P3.0 to P3.4) Input/Output With Schmitt Trigger
Figure 6-4 shows the port diagram. Table 6-46 summarizes the selection of the port function.
Pad Logic
P3REN.x
P3DIR.x
0
From module
1
P3OUT.x
0
From module
1
DVSS
0
DVIO
1
1
Direction
0: Input
1: Output
P3DS.x
0: Low drive
1: High drive
P3SEL.x
P3IN.x
P3.0/UCB0SIMO/UCB0SDA
P3.1/UCB0SOMI/UCB0SCL
P3.2/UCB0CLK/UCA0STE
P3.3/UCA0TXD/UCA0SIMO
P3.4/UCA0RXD/UCA0SOMI
EN
To module
D
Figure 6-4. Port P3 (P3.0 to P3.4) Diagram
Table 6-46. Port P3 (P3.0 to P3.4) Pin Functions
PIN NAME (P3.x)
P3.0/UCB0SIMO/UCB0SDA
P3.1/UCB0SOMI/UCB0SCL
P3.2/UCB0CLK/UCA0STE
x
0
1
2
P3.3/UCA0TXD/UCA0SIMO
3
P3.4/UCA0RXD/UCA0SOMI
4
(1)
(2)
(3)
(4)
86
FUNCTION
P3.0 (I/O)
UCB0SIMO/UCB0SDA
(2) (3)
P3.1 (I/O)
UCB0SOMI/UCB0SCL (2)
(3)
P3.2 (I/O)
UCB0CLK/UCA0STE
(2) (4)
P3.3 (I/O)
UCA0TXD/UCA0SIMO (2)
P3.4 (I/O)
UCA0RXD/UCA0SOMI (2)
CONTROL BITS OR SIGNALS (1)
P3DIR.x
P3SEL.x
I: 0; O: 1
0
X
1
I: 0; O: 1
0
X
1
I: 0; O: 1
0
X
1
I: 0; O: 1
0
X
1
I: 0; O: 1
0
X
1
X = Don't care
The pin direction is controlled by the USCI module.
If the I2C functionality is selected, the output drives only the logical 0 to VSS level.
UCB0CLK function takes precedence over UCA0STE function. If the pin is required as UCB0CLK input or output, USCI_A0 is forced to
3-wire SPI mode if 4-wire SPI mode is selected.
Detailed Description
Copyright © 2012–2018, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
6.10.4 Port P4 (P4.0 to P4.7) Input/Output With Schmitt Trigger
Figure 6-5 shows the port diagram. Table 6-47 summarizes the selection of the port function.
Pad Logic
P4REN.x
P4DIR.x
0
From Port Mapping Control
1
P4OUT.x
0
From Port Mapping Control
1
DVSS
0
DVIO
1
1
Direction
0: Input
1: Output
P4.0/P4MAP0
P4.1/P4MAP1
P4.2/P4MAP2
P4.3/P4MAP3
P4.4/P4MAP4
P4.5/P4MAP5
P4.6/P4MAP6
P4.7/P4MAP7
P4DS.x
0: Low drive
1: High drive
P4SEL.x
P4IN.x
EN
D
To Port Mapping Control
Figure 6-5. Port P4 (P4.0 to P4.7) Diagram
Table 6-47. Port P4 (P4.0 to P4.7) Pin Functions
PIN NAME (P4.x)
x
P4.0/P4MAP0
0
P4.1/P4MAP1
1
P4.2/P4MAP2
2
P4.3/P4MAP3
3
P4.4/P4MAP4
4
P4.5/P4MAP5
5
P4.6/P4MAP6
6
P4.7/P4MAP7 (3)
(1)
(2)
(3)
7
FUNCTION
P4.0 (I/O)
Mapped secondary digital function
P4.1 (I/O)
Mapped secondary digital function
P4.2 (I/O)
Mapped secondary digital function
P4.3 (I/O)
Mapped secondary digital function
P4.4 (I/O)
Mapped secondary digital function
P4.5 (I/O)
Mapped secondary digital function
P4.6 (I/O)
Mapped secondary digital function
P4.7 (I/O)
Mapped secondary digital function
CONTROL BITS OR SIGNALS (1)
P4DIR.x (2)
P4SEL.x
I: 0; O: 1
0
X
X
1
≤ 30
I: 0; O: 1
0
X
≤ 30
P4MAPx
X
1
I: 0; O: 1
0
X
X
1
≤ 30
I: 0; O: 1
0
X
X
1
≤ 30
I: 0; O: 1
0
X
X
1
≤ 30
I: 0; O: 1
0
X
X
1
≤ 30
I: 0; O: 1
0
X
≤ 30
X
1
I: 0; O: 1
0
X
X
1
≤ 30
X = Don't care
The direction of some mapped secondary functions are controlled directly by the module. See Table 6-7 for specific direction control
information of mapped secondary functions.
Not available on RGZ package types.
Detailed Description
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2018, Texas Instruments Incorporated
87
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
www.ti.com
6.10.5 Port P5 (P5.0 and P5.1) Input/Output With Schmitt Trigger
Figure 6-6 shows the port diagram. Table 6-48 summarizes the selection of the port function.
Pad Logic
To or from Reference
(not available on F521x)
(not available on F521x)
to ADC10
(not available on F521x)
INCHx = x
P5REN.x
P5DIR.x
DVSS
0
DVCC
1
1
0
1
P5OUT.x
0
From module
1
P5.0/(A8/VeREF+)
P5.1/(A9/VeREF–)
P5DS.x
0: Low drive
1: High drive
P5SEL.x
P5IN.x
Bus
Keeper
EN
To module
D
Figure 6-6. Port P5 (P5.0 and P5.1) Diagram
Table 6-48. Port P5 (P5.0 and P5.1) Pin Functions
PIN NAME (P5.x)
P5.0/A8/VeREF+
P5.1/A9/VeREF–
(1)
(2)
(3)
(4)
(5)
88
x
0
1
FUNCTION
P5.0 (I/O)
(3)
A8/VeREF+ (4)
P5.1 (I/O)
(3)
A9/VeREF– (5)
CONTROL BITS OR SIGNALS (1)
P5DIR.x
P5SEL.x
REFOUT (2)
I: 0; O: 1
0
X
X
1
0
I: 0; O: 1
0
X
X
1
0
X = Don't care
REFOUT resides in the REF module.
Default condition
Setting the P5SEL.0 bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog
signals. An external voltage can be applied to VeREF+ and used as the reference for the ADC10_A. Channel A8, when selected with
the INCHx bits, is connected to the VeREF+ pin.
Setting the P5SEL.1 bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog
signals. An external voltage can be applied to VeREF- and used as the reference for the ADC10_A. Channel A9, when selected with the
INCHx bits, is connected to the VeREF- pin.
Detailed Description
Copyright © 2012–2018, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
6.10.6 Port P5 (P5.2) Input/Output With Schmitt Trigger
Figure 6-7 shows the port diagram. Table 6-49 summarizes the selection of the port function.
Pad Logic
To XT2
P5REN.2
P5DIR.2
DVSS
0
DVCC
1
1
0
1
P5OUT.2
0
Module X OUT
1
P5DS.2
0: Low drive
1: High drive
P5SEL.2
P5.2/XT2IN
P5IN.2
Bus
Keeper
EN
Module X IN
D
Figure 6-7. Port P5 (P5.2) Diagram
6.10.7 Port P5 (P5.3) Input/Output With Schmitt Trigger
Figure 6-8 shows the port diagram. Table 6-49 summarizes the selection of the port function.
Detailed Description
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2018, Texas Instruments Incorporated
89
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
www.ti.com
Pad Logic
To XT2
P5REN.3
P5DIR.3
DVSS
0
DVCC
1
1
0
1
P5OUT.3
0
Module X OUT
1
P5SEL.2
P5.3/XT2OUT
P5DS.3
0: Low drive
1: High drive
XT2BYPASS
P5SEL.3
P5IN.3
Bus
Keeper
EN
Module X IN
D
Figure 6-8. Port P5 (P5.3) Diagram
Table 6-49. Port P5 (P5.2 and P5.3) Pin Functions
PIN NAME (P5.x)
x
FUNCTION
P5.2 (I/O)
P5.2/XT2IN
2
XT2IN crystal mode (2)
XT2IN bypass mode
(2)
P5.3 (I/O)
P5.3/XT2OUT
3
XT2OUT crystal mode (3)
P5.3 (I/O)
(1)
(2)
(3)
90
(3)
CONTROL BITS OR SIGNALS (1)
P5DIR.x
P5SEL.2
P5SEL.3
XT2BYPASS
I: 0; O: 1
0
X
X
X
1
X
0
X
1
X
1
I: 0; O: 1
0
0
X
X
1
X
0
X
1
0
1
X = Don't care
Setting P5SEL.2 causes the general-purpose I/O to be disabled. Pending the setting of XT2BYPASS, P5.2 is configured for crystal
mode or bypass mode.
Setting P5SEL.2 causes the general-purpose I/O to be disabled in crystal mode. When using bypass mode, P5.3 can be used as
general-purpose I/O.
Detailed Description
Copyright © 2012–2018, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
6.10.8 Port P5 (P5.4 and P5.5) Input/Output With Schmitt Trigger
Figure 6-9 and Figure 6-10 show the port diagrams. Table 6-50 summarizes the selection of the port
function.
Pad Logic
to XT1
P5REN.4
P5DIR.4
DVSS
0
DVCC
1
1
0
1
P5OUT.4
0
Module X OUT
1
P5DS.4
0: Low drive
1: High drive
P5SEL.4
P5.4/XIN
P5IN.4
Bus
Keeper
EN
Module X IN
D
Figure 6-9. Port P5 (P5.4) Diagram
Detailed Description
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2018, Texas Instruments Incorporated
91
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
www.ti.com
Pad Logic
to XT1
P5REN.5
P5DIR.5
DVSS
0
DVCC
1
1
0
1
P5OUT.5
0
Module X OUT
1
P5.5/XOUT
P5SEL.4
P5DS.5
0: Low drive
1: High drive
XT1BYPASS
P5SEL.5
P5IN.5
Bus
Keeper
EN
Module X IN
D
Figure 6-10. Port P5 (P5.5) Diagram
Table 6-50. Port P5 (P5.4 and P5.5) Pin Functions
PIN NAME (P5.x)
x
FUNCTION
P5.4 (I/O)
P5.4/XIN
4
XIN crystal mode (2)
XIN bypass mode
(2)
5
(3)
92
P5SEL.4
P5SEL.5
XT1BYPASS
0
X
X
X
1
X
0
X
1
X
1
0
0
X
XOUT crystal mode (3)
X
1
X
0
(3)
X
1
0
1
P5.5 (I/O)
(1)
(2)
P5DIR.x
I: 0; O: 1
I: 0; O: 1
P5.5 (I/O)
P5.5/XOUT
CONTROL BITS OR SIGNALS (1)
X = Don't care
Setting P5SEL.4 causes the general-purpose I/O to be disabled. Pending the setting of XT1BYPASS, P5.4 is configured for crystal
mode or bypass mode.
Setting P5SEL.4 causes the general-purpose I/O to be disabled in crystal mode. When using bypass mode, P5.5 can be used as
general-purpose I/O.
Detailed Description
Copyright © 2012–2018, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
6.10.9 Port P6 (P6.0 to P6.7) Input/Output With Schmitt Trigger
Figure 6-11 shows the port diagram. Table 6-51 summarizes the selection of the port function.
Pad Logic
to ADC10
(n/a MSPF430F521x)
INCHx = x
(n/a MSPF430F521x)
to Comparator_B
from Comparator_B
CBPD.x
P6REN.x
P6DIR.x
0
0
From module
1
0
DVCC
1
P6DS.x
0: Low drive
1: High drive
P6SEL.x
P6IN.x
Bus
Keeper
EN
To module
1
Direction
0: Input
1: Output
1
P6OUT.x
DVSS
P6.0/CB0/(A0)
P6.1/CB1/(A1)
P6.2/CB2/(A2)
P6.3/CB3/(A3)
P6.4/CB4/(A4)
P6.5/CB5/(A5)
P6.6/CB6/(A6)
P6.7/CB7/(A7)
D
Figure 6-11. Port P6 (P6.0 to P6.7) Diagram
Detailed Description
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2018, Texas Instruments Incorporated
93
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
www.ti.com
Table 6-51. Port P6 (P6.0 to P6.7) Pin Functions
PIN NAME (P6.x)
x
FUNCTION
P6.0 (I/O)
P6.0/CB0/(A0)
0
A0
CB0 (1)
P6.1 (I/O)
P6.1/CB1/(A1)
1
A1
CB1 (1)
P6.2 (I/O)
P6.2/CB2/(A2)
2
A2
CB2 (1)
3
4
5
6
(1)
(2)
94
7
X
1
X
X
I: 0; O: 1
0
0
X
1
X
1
X
X
I: 0; O: 1
0
0
X
1
X
1
0
X
1
X
CB3 (1)
X
X
1
I: 0; O: 1
0
0
A4
X
1
X
CB4 (1)
X
X
1
I: 0; O: 1
0
0
A5
X
1
X
CB5 (1)
X
X
1
I: 0; O: 1
0
0
X
1
X
X
X
1
I: 0; O: 1
0
0
A6
P6.7 (I/O)
P6.7/CB7/(A7)
1
A3
CB6 (1)
(2)
0
X
0
P6.6 (I/O)
P6.6/CB6/(A6) (2)
CBPD
X
P6.5 (I/O)
P6.5/CB5/(A5)
0
X
P6.4 (I/O)
P6.4/CB4/(A4)
P6SEL.x
I: 0; O: 1
I: 0; O: 1
P6.3 (I/O)
P6.3/CB3/(A3)
CONTROL BITS OR SIGNALS
P6DIR.x
A7
X
1
X
CB7 (1)
X
X
1
Setting the CBPD.x bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog
signals. Selecting the CBx input pin to the comparator multiplexer with the CBx bits automatically disables output driver and input buffer
for that pin, regardless of the state of the associated CBPD.x bit.
Not available on RGZ package types.
Detailed Description
Copyright © 2012–2018, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
6.10.10 Port P7 (P7.0 to P7.5) Input/Output With Schmitt Trigger
Figure 6-12 shows the port diagram. Table 6-52 summarizes the selection of the port function.
Pad Logic
P7REN.x
P7DIR.x
0
From module
1
P7OUT.x
0
DVSS
0
DVIO
1
1
Direction
0: Input
1: Output
1
P7.0/TB0.0
P7.1/TB0.1
P7.2/TB0.2
P7.3/TB0.3
P7.4/TB0.4
P7.5/TB0.5
P7DS.x
0: Low drive
1: High drive
P7SEL.x
P7IN.x
EN
D
To module
Figure 6-12. Port P7 (P7.0 to P7.5) Diagram
Table 6-52. Port P7 (P7.0 to P7.5) Pin Functions
PIN NAME (P7.x)
x
FUNCTION
P7DIR.x
P7SEL.x
I: 0; O: 1
0
TB0.CCI0A
0
1
TB0.0
1
1
P7.0 (I/O)
P7.0/TB0.0 (1)
0
P7.1 (I/O)
P7.1/TB0.1 (1)
1
I: 0; O: 1
0
TB0.CCI1A
0
1
TB0.1
1
1
P7.2 (I/O)
P7.2/TB0.2 (1)
2
I: 0; O: 1
0
TB0.CCI2A
0
1
TB0.2
1
1
P7.3 (I/O)
P7.3/TB0.3 (1)
3
I: 0; O: 1
0
TB0.CCI3A
0
1
TB0.3
1
1
I: 0; O: 1
0
TB0.CCI4A
0
1
TB0.4
1
1
I: 0; O: 1
0
TB0.CCI5A
0
1
TB0.5
1
1
P7.4 (I/O)
P7.4/TB0.4
(1)
4
P7.5 (I/O)
P7.5/TB0.5
(1)
(1)
5
CONTROL BITS OR SIGNALS
Not available on RGZ package types.
Detailed Description
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2018, Texas Instruments Incorporated
95
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
www.ti.com
6.10.11 Port PJ (PJ.0) JTAG Pin TDO, Input/Output With Schmitt Trigger or Output
Figure 6-13 shows the port diagram. Table 6-53 summarizes the selection of the port function.
Pad Logic
PJREN.0
PJDIR.0
0
DVCC
1
PJOUT.0
0
From JTAG
1
DVSS
0
DVCC
1
PJDS.0
0: Low drive
1: High drive
From JTAG
1
PJ.0/TDO
PJIN.0
EN
D
Figure 6-13. Port PJ (PJ.0) Diagram
6.10.12 Port PJ (PJ.1 to PJ.3) JTAG Pins TMS, TCK, TDI/TCLK, Input/Output With Schmitt
Trigger or Output
Figure 6-14 shows the port diagram. Table 6-53 summarizes the selection of the port function.
96
Detailed Description
Copyright © 2012–2018, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
Pad Logic
PJREN.x
PJDIR.x
0
DVSS
1
PJOUT.x
0
From JTAG
1
DVSS
0
DVCC
1
PJDS.x
0: Low drive
1: High drive
From JTAG
1
PJ.1/TDI/TCLK
PJ.2/TMS
PJ.3/TCK
PJIN.x
EN
To JTAG
D
Figure 6-14. Port PJ (PJ.1 to PJ.3) Diagram
Detailed Description
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2018, Texas Instruments Incorporated
97
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
www.ti.com
Table 6-53. Port PJ (PJ.0 to PJ.3) Pin Functions
PIN NAME (PJ.x)
x
CONTROL BITS OR
SIGNALS (1)
FUNCTION
PJDIR.x
PJ.0/TDO
0
PJ.1/TDI/TCLK
PJ.2/TMS
2
PJ.3/TCK
(1)
(2)
(3)
(4)
98
1
3
PJ.0 (I/O) (2)
I: 0; O: 1
TDO (3)
X
PJ.1 (I/O) (2)
TDI/TCLK (3)
PJ.2 (I/O)
TMS (3)
I: 0; O: 1
(4)
X
(2)
I: 0; O: 1
(4)
X
PJ.3 (I/O) (2)
TCK (3)
I: 0; O: 1
(4)
X
X = Don't care
Default condition
The pin direction is controlled by the JTAG module.
In JTAG mode, pullups are activated automatically on TMS, TCK, and TDI/TCLK. PJREN.x are do not care.
Detailed Description
Copyright © 2012–2018, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
6.11 Device Descriptors
Table 6-54 and Table 6-55 list the contents of the device descriptor tag-length-value (TLV) structure for
each device type.
Table 6-54. MSP430F522x Device Descriptor Table (1)
Info Block
Die Record
ADC10
Calibration
REF Calibration
(1)
VALUE
ADDRESS
SIZE
(BYTES)
F5229
F5227
F5224
F5222
Info length
01A00h
1
06h
06h
06h
06h
CRC length
01A01h
1
06h
06h
06h
06h
CRC value
01A02h
2
Per unit
Per unit
Per unit
Per unit
Device ID
01A04h
1
51h
4Fh
4Ch
4Ah
DESCRIPTION
Device ID
01A05h
1
81h
81h
81h
81h
Hardware revision
01A06h
1
Per unit
Per unit
Per unit
Per unit
Firmware revision
01A07h
1
Per unit
Per unit
Per unit
Per unit
Die record tag
01A08h
1
08h
08h
08h
08h
Die record length
01A09h
1
0Ah
0Ah
0Ah
0Ah
Lot/wafer ID
01A0Ah
4
Per unit
Per unit
Per unit
Per unit
Die X position
01A0Eh
2
Per unit
Per unit
Per unit
Per unit
Die Y position
01A10h
2
Per unit
Per unit
Per unit
Per unit
Test results
01A12h
2
Per unit
Per unit
Per unit
Per unit
ADC10 calibration tag
01A14h
1
13h
13h
13h
13h
ADC10 calibration length
01A15h
1
10h
10h
10h
10h
ADC gain factor
01A16h
2
Per unit
Per unit
Per unit
Per unit
ADC offset
01A18h
2
Per unit
Per unit
Per unit
Per unit
ADC 1.5-V reference
Temperature sensor 30°C
01A1Ah
2
Per unit
Per unit
Per unit
Per unit
ADC 1.5-V reference
Temperature sensor 85°C
01A1Ch
2
Per unit
Per unit
Per unit
Per unit
ADC 2.0-V reference
Temperature sensor 30°C
01A1Eh
2
Per unit
Per unit
Per unit
Per unit
ADC 2.0-V reference
Temperature sensor 85°C
01A20h
2
Per unit
Per unit
Per unit
Per unit
ADC 2.5-V reference
Temperature sensor 30°C
01A22h
2
Per unit
Per unit
Per unit
Per unit
ADC 2.5-V reference
Temperature sensor 85°C
01A24h
2
Per unit
Per unit
Per unit
Per unit
12h
REF calibration tag
01A26h
1
12h
12h
12h
REF calibration length
01A27h
1
06h
06h
06h
06h
REF 1.5-V reference factor
01A28h
2
Per unit
Per unit
Per unit
Per unit
REF 2.0-V reference factor
01A2Ah
2
Per unit
Per unit
Per unit
Per unit
REF 2.5-V reference factor
01A2Ch
2
Per unit
Per unit
Per unit
Per unit
NA = Not applicable
Detailed Description
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2018, Texas Instruments Incorporated
99
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
www.ti.com
Table 6-54. MSP430F522x Device Descriptor Table(1) (continued)
SIZE
(BYTES)
Peripheral descriptor tag
01A2Eh
1
02h
02h
02h
02h
Peripheral descriptor length
01A2Fh
1
5Fh
5Fh
5Dh
5Dh
Memory 1
2
08h
8Ah
08h
8Ah
08h
8Ah
08h
8Ah
Memory 2
2
0Ch
86h
0Ch
86h
0Ch
86h
0Ch
86h
Memory 3
2
12h
2Eh
12h
2Eh
12h
2Eh
12h
2Eh
Memory 4
2
22h
96h
22h
94h
22h
96h
22h
94h
Memory 5
2
N/A
N/A
N/A
N/A
Memory 6
1/2
N/A
N/A
N/A
N/A
Delimiter
1
00h
00h
00h
00h
Peripheral count
1
20h
20h
1Fh
1Fh
MSP430CPUXV2
2
00h
23h
00h
23h
00h
23h
00h
23h
JTAG
2
00h
09h
00h
09h
00h
09h
00h
09h
SBW
2
00h
0Fh
00h
0Fh
00h
0Fh
00h
0Fh
EEM-S
2
00h
03h
00h
03h
00h
03h
00h
05h
TI BSL
2
00h
FCh
00h
FCh
00h
FCh
00h
FCh
SFR
2
10h
41h
10h
41h
10h
41h
10h
41h
PMM
2
02h
30h
02h
30h
02h
30h
02h
30h
FCTL
2
02h
38h
02h
38h
02h
38h
02h
38h
CRC16
2
01h
3Ch
01h
3Ch
01h
3Ch
01h
3Ch
CRC16_RB
2
00h
3Dh
00h
3Dh
00h
3Dh
00h
3Dh
RAMCTL
2
00h
44h
00h
44h
00h
44h
00h
44h
WDT_A
2
00h
40h
00h
40h
00h
40h
00h
40h
UCS
2
01h
48h
01h
48h
01h
48h
01h
48h
SYS
2
02h
42h
02h
42h
02h
42h
02h
42h
REF
2
03h
A0h
03h
A0h
03h
A0h
03h
A0h
Port mapping
2
01h
10h
01h
10h
01h
10h
01h
10h
Port 1/2
2
04h
51h
04h
51h
04h
51h
04h
51h
Port 3/4
2
02h
52h
02h
52h
02h
52h
02h
52h
Port 5/6
2
02h
53h
02h
53h
02h
53h
02h
53h
Peripheral
Descriptor
100
VALUE
ADDRESS
DESCRIPTION
Detailed Description
F5229
F5227
F5224
F5222
Copyright © 2012–2018, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
Table 6-54. MSP430F522x Device Descriptor Table(1) (continued)
DESCRIPTION
Peripheral
Descriptor
(continued)
Interrupts
ADDRESS
SIZE
(BYTES)
VALUE
F5229
F5227
F5224
F5222
Port 7/8
2
02h
54h
02h
54h
N/A
N/A
JTAG
2
0Ch
5Fh
0Ch
5Fh
0Eh
5Fh
0Eh
5Fh
TA0
2
02h
62h
02h
62h
02h
62h
02h
62h
TA1
2
04h
61h
04h
61h
04h
61h
04h
61h
TB0
2
04h
67h
04h
67h
04h
67h
04h
67h
TA2
2
04h
61h
04h
61h
04h
61h
04h
61h
RTC
2
0Ah
68h
0Ah
68h
0Ah
68h
0Ah
68h
MPY32
2
02h
85h
02h
85h
02h
85h
02h
85h
DMA-3
2
04h
47h
04h
47h
04h
47h
04h
47h
USCI_A/B
2
0Ch
90h
0Ch
90h
0Ch
90h
0Ch
90h
USCI_A/B
2
04h
90h
04h
90h
04h
90h
04h
90h
ADC10_A
2
14h
D3h
14h
D3h
14h
D3h
14h
D3h
COMP_B
2
18h
A8h
18h
A8h
18h
A8h
18h
A8h
COMP_B
1
A8h
A8h
A8h
A8h
TB0.CCIFG0
1
64h
64h
64h
64h
TB0.CCIFG1..6
1
65h
65h
65h
65h
WDTIFG
1
40h
40h
40h
40h
USCI_A0
1
90h
90h
90h
90h
USCI_B0
1
91h
91h
91h
91h
ADC10_A
1
D0h
D0h
D0h
D0h
TA0.CCIFG0
1
60h
60h
60h
60h
TA0.CCIFG1..4
1
61h
61h
61h
61h
Reserved
1
01h
01h
01h
01h
DMA
1
46h
46h
46h
46h
TA1.CCIFG0
1
62h
62h
62h
62h
TA1.CCIFG1..2
1
63h
63h
63h
63h
P1
1
50h
50h
50h
50h
USCI_A1
1
92h
92h
92h
92h
USCI_B1
1
93h
93h
93h
93h
TA1.CCIFG0
1
66h
66h
66h
66h
TA1.CCIFG1..2
1
67h
67h
67h
67h
P2
1
51h
51h
51h
51h
RTC_A
1
68h
68h
68h
68h
Delimiter
1
00h
00h
00h
00h
Detailed Description
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2018, Texas Instruments Incorporated
101
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
www.ti.com
Table 6-55. MSP430F521x Device Descriptor Table (1)
Info Block
Die Record
ADC10
Calibration
REF Calibration
(1)
102
VALUE
ADDRESS
SIZE
(BYTES)
F5219
F5217
F5214
F5212
Info length
01A00h
1
06h
06h
06h
06h
CRC length
01A01h
1
06h
06h
06h
06h
CRC value
01A02h
2
Per unit
Per unit
Per unit
Per unit
Device ID
01A04h
1
47h
45h
42h
40h
Device ID
01A05h
1
81h
81h
81h
81h
Hardware revision
01A06h
1
Per unit
Per unit
Per unit
Per unit
Firmware revision
01A07h
1
Per unit
Per unit
Per unit
Per unit
Die record tag
01A08h
1
08h
08h
08h
08h
Die record length
01A09h
1
0Ah
0Ah
0Ah
0Ah
Lot/wafer ID
01A0Ah
4
Per unit
Per unit
Per unit
Per unit
Die X position
01A0Eh
2
Per unit
Per unit
Per unit
Per unit
Die Y position
01A10h
2
Per unit
Per unit
Per unit
Per unit
DESCRIPTION
Test results
01A12h
2
Per unit
Per unit
Per unit
Per unit
ADC10 calibration tag
01A14h
1
13h
13h
13h
13h
ADC10 calibration length
01A15h
1
10h
10h
10h
10h
ADC gain factor
01A16h
2
Blank
Blank
Blank
Blank
ADC offset
01A18h
2
Blank
Blank
Blank
Blank
ADC 1.5-V reference
Temperature sensor 30°C
01A1Ah
2
Blank
Blank
Blank
Blank
ADC 1.5-V Reference
Temperature sensor 85°C
01A1Ch
2
Blank
Blank
Blank
Blank
ADC 2.0-V reference
Temperature sensor 30°C
01A1Eh
2
Blank
Blank
Blank
Blank
ADC 2.0-V reference
Temperature sensor 85°C
01A20h
2
Blank
Blank
Blank
Blank
ADC 2.5-V reference
Temperature sensor 30°C
01A22h
2
Blank
Blank
Blank
Blank
ADC 2.5-V reference
Temperature sensor 85°C
01A24h
2
Blank
Blank
Blank
Blank
12h
REF calibration tag
01A26h
1
12h
12h
12h
REF calibration length
01A27h
1
06h
06h
06h
06h
REF 1.5-V reference factor
01A28h
2
Per unit
Per unit
Per unit
Per unit
REF 2.0-V reference factor
01A2Ah
2
Per unit
Per unit
Per unit
Per unit
REF 2.5-V reference factor
01A2Ch
2
Per unit
Per unit
Per unit
Per unit
NA = Not applicable, Blank = unused and reads FFh
Detailed Description
Copyright © 2012–2018, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
Table 6-55. MSP430F521x Device Descriptor Table(1) (continued)
Peripheral
Descriptor
VALUE
ADDRESS
SIZE
(BYTES)
Peripheral descriptor tag
01A2Eh
1
02h
02h
02h
02h
Peripheral descriptor length
01A2Fh
1
5Dh
5Dh
5Bh
5Bh
Memory 1
2
08h
8Ah
08h
8Ah
08h
8Ah
08h
8Ah
Memory 2
2
0Ch
86h
0Ch
86h
0Ch
86h
0Ch
86h
Memory 3
2
12h
2Eh
12h
2Eh
12h
2Eh
12h
2Eh
Memory 4
2
22h
96h
22h
94h
22h
96h
22h
94h
Memory 5
2
N/A
N/A
N/A
N/A
Memory 6
1/2
N/A
N/A
N/A
N/A
Delimiter
1
00h
00h
00h
00h
Peripheral count
1
1Fh
1Fh
1Eh
1Eh
MSP430CPUXV2
2
00h
23h
00h
23h
00h
23h
00h
23h
JTAG
2
00h
09h
00h
09h
00h
09h
00h
09h
SBW
2
00h
0Fh
00h
0Fh
00h
0Fh
00h
0Fh
EEM-S
2
00h
03h
00h
03h
00h
03h
00h
05h
TI BSL
2
00h
FCh
00h
FCh
00h
FCh
00h
FCh
SFR
2
10h
41h
10h
41h
10h
41h
10h
41h
PMM
2
02h
30h
02h
30h
02h
30h
02h
30h
FCTL
2
02h
38h
02h
38h
02h
38h
02h
38h
CRC16
2
01h
3Ch
01h
3Ch
01h
3Ch
01h
3Ch
CRC16_RB
2
00h
3Dh
00h
3Dh
00h
3Dh
00h
3Dh
RAMCTL
2
00h
44h
00h
44h
00h
44h
00h
44h
WDT_A
2
00h
40h
00h
40h
00h
40h
00h
40h
UCS
2
01h
48h
01h
48h
01h
48h
01h
48h
SYS
2
02h
42h
02h
42h
02h
42h
02h
42h
REF
2
03h
A0h
03h
A0h
03h
A0h
03h
A0h
Port mapping
2
01h
10h
01h
10h
01h
10h
01h
10h
Port 1/2
2
04h
51h
04h
51h
04h
51h
04h
51h
Port 3/4
2
02h
52h
02h
52h
02h
52h
02h
52h
Port 5/6
2
02h
53h
02h
53h
02h
53h
02h
53h
DESCRIPTION
F5219
F5217
F5214
F5212
Detailed Description
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2018, Texas Instruments Incorporated
103
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
www.ti.com
Table 6-55. MSP430F521x Device Descriptor Table(1) (continued)
DESCRIPTION
Peripheral
Descriptor
(continued)
Interrupts
104
Detailed Description
ADDRESS
SIZE
(BYTES)
VALUE
F5219
F5217
F5214
F5212
Port 7/8
2
02h
54h
02h
54h
N/A
N/A
JTAG
2
0Ch
5Fh
0Ch
5Fh
0Eh
5Fh
0Eh
5Fh
TA0
2
02h
62h
02h
62h
02h
62h
02h
62h
TA1
2
04h
61h
04h
61h
04h
61h
04h
61h
TB0
2
04h
67h
04h
67h
04h
67h
04h
67h
TA2
2
04h
61h
04h
61h
04h
61h
04h
61h
RTC
2
0Ah
68h
0Ah
68h
0Ah
68h
0Ah
68h
MPY32
2
02h
85h
02h
85h
02h
85h
02h
85h
DMA-3
2
04h
47h
04h
47h
04h
47h
04h
47h
USCI_A/B
2
0Ch
90h
0Ch
90h
0Ch
90h
0Ch
90h
USCI_A/B
2
04h
90h
04h
90h
04h
90h
04h
90h
ADC10_A
2
N/A
N/A
N/A
N/A
COMP_B
2
2Ch
A8h
2Ch
A8h
2Ch
A8h
2Ch
A8h
COMP_B
1
A8h
A8h
A8h
A8h
TB0.CCIFG0
1
64h
64h
64h
64h
TB0.CCIFG1..6
1
65h
65h
65h
65h
WDTIFG
1
40h
40h
40h
40h
USCI_A0
1
90h
90h
90h
90h
USCI_B0
1
91h
91h
91h
91h
Reserved
1
01h
01h
01h
01h
TA0.CCIFG0
1
60h
60h
60h
60h
TA0.CCIFG1..4
1
61h
61h
61h
61h
Reserved
1
01h
01h
01h
01h
DMA
1
46h
46h
46h
46h
TA1.CCIFG0
1
62h
62h
62h
62h
TA1.CCIFG1..2
1
63h
63h
63h
63h
P1
1
50h
50h
50h
50h
USCI_A1
1
92h
92h
92h
92h
USCI_B1
1
93h
93h
93h
93h
TA2.CCIFG0
1
66h
66h
66h
66h
TA2.CCIFG1..2
1
67h
67h
67h
67h
P2
1
51h
51h
51h
51h
RTC_A
1
68h
68h
68h
68h
Delimiter
1
00h
00h
00h
00h
Copyright © 2012–2018, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
7 Device and Documentation Support
7.1
Getting Started
For more information on the MSP430 family of devices and the tools and libraries that are available to
help with your development, visit the MSP430 ultra-low-power sensing and measurement MCUs overview.
7.2
Device Nomenclature
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all
MSP MCU devices. Each MSP MCU commercial family member has one of two prefixes: MSP or XMS.
These prefixes represent evolutionary stages of product development from engineering prototypes (XMS)
through fully qualified production devices (MSP).
XMS – Experimental device that is not necessarily representative of the final device's electrical
specifications
MSP – Fully qualified production device
XMS devices are shipped against the following disclaimer:
"Developmental product is intended for internal evaluation purposes."
MSP devices have been characterized fully, and the quality and reliability of the device have been
demonstrated fully. TI's standard warranty applies.
Predictions show that prototype devices (XMS) have a greater failure rate than the standard production
devices. TI recommends that these devices not be used in any production system because their expected
end-use failure rate still is undefined. Only qualified production devices are to be used.
TI device nomenclature also includes a suffix with the device family name. This suffix indicates the
temperature range, package type, and distribution format. Figure 7-1 provides a legend for reading the
complete device name.
Device and Documentation Support
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2018, Texas Instruments Incorporated
105
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
www.ti.com
MSP 430 F 5 438 A I ZQW T -EP
Processor Family
Optional: Additional Features
MCU Platform
Optional: Tape and Reel
Device Type
Packaging
Series
Feature Set
Processor Family
MCU Platform
Optional: Temperature Range
Optional: A = Revision
CC = Embedded RF Radio
MSP = Mixed-Signal Processor
XMS = Experimental Silicon
PMS = Prototype Device
430 = MSP430 low-power microcontroller platform
Device Type
Memory Type
C = ROM
F = Flash
FR = FRAM
G = Flash or FRAM (Value Line)
L = No Nonvolatile Memory
Specialized Application
AFE = Analog Front End
BQ = Contactless Power
CG = ROM Medical
FE = Flash Energy Meter
FG = Flash Medical
FW = Flash Electronic Flow Meter
Series
1 = Up to 8 MHz
2 = Up to 16 MHz
3 = Legacy
4 = Up to 16 MHz with LCD
5 = Up to 25 MHz
6 = Up to 25 MHz with LCD
0 = Low-Voltage Series
Feature Set
Various levels of integration within a series
Optional: A = Revision
N/A
Optional: Temperature Range S = 0°C to 50°C
C = 0°C to 70°C
I = –40°C to 85°C
T = –40°C to 105°C
Packaging
http://www.ti.com/packaging
Optional: Tape and Reel
T = Small reel
R = Large reel
No markings = Tube or tray
Optional: Additional Features -EP = Enhanced Product (–40°C to 105°C)
-HT = Extreme Temperature Parts (–55°C to 150°C)
-Q1 = Automotive Q100 Qualified
Figure 7-1. Device Nomenclature
106
Device and Documentation Support
Copyright © 2012–2018, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
7.3
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
Tools and Software
All MSP microcontrollers are supported by a wide variety of software and hardware development tools.
Tools are available from TI and various third parties. See them all at MSP430 Ultra-Low-Power MCUs –
Tools & software.
Table 7-1 lists the debug features of the MSP430F522x and MSP430F521x MCUs. See the Code
Composer Studio for MSP430 User's Guide for details on the available features.
Table 7-1. Hardware Debug Features
MSP430
ARCHITECTURE
4-WIRE
JTAG
2-WIRE
JTAG
BREAKPOINTS
(N)
RANGE
BREAKPOINTS
CLOCK
CONTROL
STATE
SEQUENCER
TRACE
BUFFER
LPMx.5
DEBUGGING
SUPPORT
EnergyTrace++
Technology
MSP430Xv2
Yes
Yes
3
Yes
Yes
No
No
Yes
Yes
Design Kits and Evaluation Modules
MSP-TS430RGC64C - 64-pin Target Development Board for MSP430F5x MCUs
The
MSPTS430RGC64C is a stand-alone 64-pin ZIF socket target board used to program and debug
the MSP430 MCU in system through the JTAG interface or the Spy-Bi-Wire (2-wire JTAG)
protocol.
Bluetooth® and MSP430 Audio Source Reference Design Board The Bluetooth and MSP430 Audio
Source reference design can be used by customers to create a variety of applications for
low-end, low-power audio source solutions for applications including toys, projectors, smart
remotes and any audio streaming accessories.
Dual-Mode Bluetooth CC2564 Module With Integrated Antenna Evaluation Board
The
CC2564MODAEM evaluation board contains the Bluetooth BR/EDR/LE HCI solution. Based
on TI's CC2564B dual-mode Bluetooth single-chip device, the bCC2564MODA is intended
for evaluation and design purposes, reducing design effort and enabling fast time to market.
Software
MSP430Ware™ Software MSP430Ware software is a collection of code examples, data sheets, and
other design resources for all MSP430 devices delivered in a convenient package. In
addition to providing a complete collection of existing MSP430 MCU design resources,
MSP430Ware software also includes a high-level API called MSP Driver Library. This library
makes it easy to program MSP430 hardware. MSP430Ware software is available as a
component of CCS or as a stand-alone package.
MSP430F522x, MSP430F521x Code Examples C code examples that configure each of the integrated
peripherals for various application needs.
MSP Driver Library The abstracted API of MSP Driver Library provides easy-to-use function calls that
free you from directly manipulating the bits and bytes of the MSP430 hardware. Thorough
documentation is delivered through a helpful API Guide, which includes details on each
function call and the recognized parameters. Developers can use Driver Library functions to
write complete projects with minimal overhead.
MSP EnergyTrace™ Technology EnergyTrace technology for MSP430 microcontrollers is an energybased code analysis tool that measures and displays the energy profile of the application
and helps to optimize it for ultra-low-power consumption.
ULP (Ultra-Low Power) Advisor ULP Advisor™ software is a tool for guiding developers to write more
efficient code to fully use the unique ultra-low-power features of MSP and MSP432
microcontrollers. Aimed at both experienced and new microcontroller developers, ULP
Advisor checks your code against a thorough ULP checklist to help minimize the energy
consumption of your application. At build time, ULP Advisor provides notifications and
remarks to highlight areas of your code that can be further optimized for lower power.
IEC60730 Software Package The IEC60730 MSP430 software package was developed to help
customers comply with IEC 60730-1:2010 (Automatic Electrical Controls for Household and
Similar Use – Part 1: General Requirements) for up to Class B products, which includes
home appliances, arc detectors, power converters, power tools, e-bikes, and many others.
The IEC60730 MSP430 software package can be embedded in customer applications
running on MSP430s to help simplify the customer’s certification efforts of functional safetycompliant consumer devices to IEC 60730-1:2010 Class B.
Device and Documentation Support
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2018, Texas Instruments Incorporated
107
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
www.ti.com
Fixed Point Math Library for MSP The MSP IQmath and Qmath Libraries are a collection of highly
optimized and high-precision mathematical functions for C programmers to seamlessly port a
floating-point algorithm into fixed-point code on MSP430 and MSP432 devices. These
routines are typically used in computationally intensive real-time applications where optimal
execution speed, high accuracy, and ultra-low energy are critical. By using the IQmath and
Qmath libraries, it is possible to achieve execution speeds considerably faster and energy
consumption considerably lower than equivalent code written using floating-point math.
Floating Point Math Library for MSP430 Continuing to innovate in the low-power and low-cost
microcontroller space, TI provides MSPMATHLIB. Leveraging the intelligent peripherals of
our devices, this floating-point math library of scalar functions that are up to 26 times faster
than the standard MSP430 math functions. Mathlib is easy to integrate into your designs.
This library is free and is integrated in both Code Composer Studio IDE and IAR Embedded
Workbench IDE.
Development Tools
Code Composer Studio™ Integrated Development Environment for MSP Microcontrollers
Code
Composer Studio (CCS) integrated development environment (IDE) supports all MSP
microcontroller devices. CCS comprises a suite of embedded software utilities used to
develop and debug embedded applications. CCS includes an optimizing C/C++ compiler,
source code editor, project build environment, debugger, profiler, and many other features.
Command-Line Programmer MSP Flasher is an open-source shell-based interface for programming
MSP microcontrollers through a FET programmer or eZ430 using JTAG or Spy-Bi-Wire
(SBW) communication. MSP Flasher can download binary files (.txt or .hex) directly to the
MSP microcontroller without an IDE.
MSP MCU Programmer and Debugger The MSP-FET is a powerful emulation development tool – often
called a debug probe – which lets users quickly begin application development on MSP lowpower MCUs. Creating MCU software usually requires downloading the resulting binary
program to the MSP device for validation and debugging.
MSP-GANG Production Programmer The MSP Gang Programmer is an MSP430 or MSP432 device
programmer that can program up to eight identical MSP430 or MSP432 flash or FRAM
devices at the same time. The MSP Gang Programmer connects to a host PC using a
standard RS-232 or USB connection and provides flexible programming options that let the
user fully customize the process.
7.4
Documentation Support
The following documents describe the MSP430F522x and MSP430F521x MCUs. Copies of these
documents are available on the Internet at www.ti.com.
Receiving Notification of Document Updates
To receive notification of documentation updates—including silicon errata—go to the product folder for
your device on ti.com (see Section 7.5 for links to product folders). In the upper right corner, click the
"Alert me" button. This registers you to receive a weekly digest of product information that has changed (if
any). For change details, check the revision history of any revised document.
Errata
MSP430F5229 Device Erratasheet Describes the known exceptions to the functional specifications for
the MSP430F5229 device.
MSP430F5227 Device Erratasheet Describes the known exceptions to the functional specifications for
the MSP430F5227 device.
MSP430F5224 Device Erratasheet Describes the known exceptions to the functional specifications for
the MSP430F5224 device.
MSP430F5222 Device Erratasheet Describes the known exceptions to the functional specifications for
the MSP430F5222 device.
MSP430F5219 Device Erratasheet Describes the known exceptions to the functional specifications for
the MSP430F5219 device.
MSP430F5217 Device Erratasheet Describes the known exceptions to the functional specifications for
the MSP430F5217 device.
108
Device and Documentation Support
Copyright © 2012–2018, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
www.ti.com
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
MSP430F5214 Device Erratasheet Describes the known exceptions to the functional specifications for
the MSP430F5214 device.
MSP430F5212 Device Erratasheet Describes the known exceptions to the functional specifications for
the MSP430F5212 device.
User's Guides
MSP430F5xx and MSP430F6xx Family User's Guide
peripherals available in this device family.
Detailed information on the modules and
MSP430 Flash Device Bootloader (BSL) User's Guide The MSP430 bootloader (BSL) (formerly known
as the bootstrap loader) lets users communicate with embedded memory in the MSP430
microcontroller during the prototyping phase, final production, and in service. Both the
programmable memory (flash memory) and the data memory (RAM) can be modified as
required. Do not confuse the bootloader with the bootstrap loader programs found in some
digital signal processors (DSPs) that automatically load program code (and data) from
external memory to the internal memory of the DSP.
MSP430 Programming With the JTAG Interface This document describes the functions that are
required to erase, program, and verify the memory module of the MSP430 flash-based and
FRAM-based microcontroller families using the JTAG communication port. In addition, it
describes how to program the JTAG access security fuse that is available on all MSP430
devices. This document describes device access using both the standard 4-wire JTAG
interface and the 2-wire JTAG interface, which is also referred to as Spy-Bi-Wire (SBW).
MSP430 Hardware Tools User's Guide This manual describes the hardware of the TI MSP-FET430
Flash Emulation Tool (FET). The FET is the program development tool for the MSP430 ultralow-power microcontroller.
Application Reports
Designing with MSP430F522x and MSP430F521x Devices The MSP430F522x and MSP430F521x
devices support a split supply I/O system that is essential in systems in which the MCU is
required to interface with external devices (such as sensors or other processors) that
operate at different voltage level compared to the MCU device supply. Additionally, the split
supply input voltage range of the F522x and F521x devices starts as low as 1.62 V (see the
device data sheet specifications), and this allows for nominal 1.8-V I/O interface without the
need for external level translation. This application report describes the various design
considerations to keep in mind while designing the F522x and F521x devices in an
application.
General Oversampling of MSP ADCs for Higher Resolution
Multiple
MSP
ultra-low-power
microcontrollers offer analog-to-digital converters (ADCs) to convert physical quantities into
digital numbers, a function that is widely used across numerous applications. There are
times, however, when a customer design demands a higher resolution than the ADC of the
selected MSP can offer. This application report, which is based on the previously-published
Oversampling the ADC12 for Higher Resolution (SLAA323), therefore describes how an
oversampling method can be incorporated to increase ADC resolution past the currently
available number of bits.
MSP430 32-kHz Crystal Oscillators Selection of the correct crystal, correct load circuit, and proper
board layout are important for a stable crystal oscillator. This application report summarizes
crystal oscillator function and explains the parameters to select the correct crystal for
MSP430 ultra-low-power operation. In addition, hints and examples for correct board layout
are given. The document also contains detailed information on the possible oscillator tests to
ensure stable oscillator operation in mass production.
MSP430 System-Level ESD Considerations System-Level ESD has become increasingly demanding
as silicon technology scales to lower voltages and the need for designing cost-effective and
ultra-low-power components. This application report addresses three ESD topics to help
board designers and OEMs understand and design robust system-level designs: (1)
Component-level ESD testing and system-level ESD testing; (2) General design guidelines
for system-level ESD protection; (3) Introduction to System Efficient ESD Design (SEED), a
co-design methodology of on-board and on-chip ESD protection. A few real-world systemlevel ESD protection design examples and their results are discussed.
Device and Documentation Support
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
Copyright © 2012–2018, Texas Instruments Incorporated
109
MSP430F5229, MSP430F5227, MSP430F5224, MSP430F5222
MSP430F5219, MSP430F5217, MSP430F5214, MSP430F5212
SLAS718H – NOVEMBER 2012 – REVISED SEPTEMBER 2018
7.5
www.ti.com
Related Links
Table 7-2 lists quick access links. Categories include technical documents, support and community
resources, tools and software, and quick access to sample or buy.
Table 7-2. Related Links
7.6
PARTS
PRODUCT FOLDER
ORDER NOW
TECHNICAL
DOCUMENTS
TOOLS &
SOFTWARE
SUPPORT &
COMMUNITY
MSP430F5229
Click here
Click here
Click here
Click here
Click here
MSP430F5227
Click here
Click here
Click here
Click here
Click here
MSP430F5224
Click here
Click here
Click here
Click here
Click here
MSP430F5222
Click here
Click here
Click here
Click here
Click here
MSP430F5219
Click here
Click here
Click here
Click here
Click here
MSP430F5217
Click here
Click here
Click here
Click here
Click here
MSP430F5214
Click here
Click here
Click here
Click here
Click here
MSP430F5212
Click here
Click here
Click here
Click here
Click here
Community Resources
The following links connect to TI community resources. Linked contents are provided "AS IS" by the
respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views;
see TI's Terms of Use.
TI E2E™ Community
TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At
e2e.ti.com, you can ask questions, share knowledge, explore ideas, and help solve problems with fellow
engineers.
TI Embedded Processors Wiki
Texas Instruments Embedded Processors Wiki. Established to help developers get started with embedded
processors from Texas Instruments and to foster innovation and growth of general knowledge about the
hardware and software surrounding these devices.
7.7
Trademarks
MSP430, MSP430Ware, EnergyTrace, ULP Advisor, Code Composer Studio, E2E are trademarks of
Texas Instruments.
Bluetooth is a registered trademark of Bluetooth SIG.
All other trademarks are the property of their respective owners.
7.8
Electrostatic Discharge Caution
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.
7.9
Glossary
TI Glossary This glossary lists and explains terms, acronyms, and definitions.
8 Mechanical, Packaging, and Orderable Information
The following pages include mechanical, packaging, and orderable information. This information is the
most current data available for the designated devices. This data is subject to change without notice and
revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.
110
Mechanical, Packaging, and Orderable Information
Copyright © 2012–2018, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5229 MSP430F5227 MSP430F5224 MSP430F5222 MSP430F5219 MSP430F5217
MSP430F5214 MSP430F5212
PACKAGE OPTION ADDENDUM
www.ti.com
28-Jan-2021
PACKAGING INFORMATION
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
(2)
Lead finish/
Ball material
MSL Peak Temp
Op Temp (°C)
Device Marking
(3)
(4/5)
(6)
MSP430F5212IRGZT
ACTIVE
VQFN
RGZ
48
250
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 85
F5212
MSP430F5214IRGZR
ACTIVE
VQFN
RGZ
48
2500
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 85
F5214
MSP430F5217IRGCT
ACTIVE
VQFN
RGC
64
250
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 85
F5217
MSP430F5217IYFFR
ACTIVE
DSBGA
YFF
64
2500
RoHS & Green
SNAGCU
Level-1-260C-UNLIM
-40 to 85
M430F5217
MSP430F5219IYFFT
ACTIVE
DSBGA
YFF
64
250
RoHS & Green
SNAGCU
Level-1-260C-UNLIM
-40 to 85
M430F5219
MSP430F5222IRGZR
ACTIVE
VQFN
RGZ
48
2500
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 85
F5222
MSP430F5222IRGZT
ACTIVE
VQFN
RGZ
48
250
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 85
F5222
MSP430F5224IRGZR
ACTIVE
VQFN
RGZ
48
2500
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 85
F5224
MSP430F5229IRGCR
ACTIVE
VQFN
RGC
64
2000
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 85
F5229
MSP430F5229IRGCT
ACTIVE
VQFN
RGC
64
250
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 85
F5229
MSP430F5229IYFFR
ACTIVE
DSBGA
YFF
64
2500
RoHS & Green
SNAGCU
Level-1-260C-UNLIM
-40 to 85
M430F5229
MSP430F5229IYFFT
ACTIVE
DSBGA
YFF
64
250
RoHS & Green
SNAGCU
Level-1-260C-UNLIM
-40 to 85
M430F5229
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may
reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of