MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5249,
MSP430F5239, MSP430F5247,
MSP430F5237, MSP430F5244,
MSP430F5234, MSP430F5242
MSP430F5232
MSP430F5239,SLAS897C
MSP430F5237,
MSP430F5234,
MSP430F5232
– SEPTEMBER
2013 – REVISED
OCTOBER 2020
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
MSP430F524x, MSP430F523x Mixed-Signal Microcontrollers
1 Features
•
•
•
•
•
•
Low supply-voltage range:
3.6 V down to 1.8 V
Ultra-low power consumption
– Active mode (AM):
all system clocks active
290 µA/MHz at 8 MHz, 3.0 V, flash program
execution (typical)
150 µA/MHz at 8 MHz, 3.0 V, RAM program
execution (typical)
– Standby mode (LPM3):
real-time clock (RTC) with crystal, watchdog,
and supply supervisor operational, full RAM
retention, fast wakeup:
1.9 µA at 2.2 V, 2.1 µA at 3.0 V (typical)
low-power oscillator (VLO), general-purpose
counter, watchdog, and supply supervisor
operational, full RAM retention, fast wakeup:
1.4 µA at 3.0 V (typical)
– Off mode (LPM4):
full RAM retention, supply supervisor
operational, fast wakeup:
1.1 µA at 3.0 V (typical)
– Shutdown mode (LPM4.5):
0.18 µA at 3.0 V (Typical)
Wake up from standby mode in 3.5 µs (typical)
16-bit RISC architecture, extended memory, up to
25-MHz system clock
Flexible power-management system
– Fully integrated LDO with programmable
regulated core supply voltage
– Supply voltage supervision, monitoring, and
brownout
Unified clock system
– FLL control loop for frequency stabilization
– Low-power low-frequency internal clock source
(VLO)
– Low-frequency trimmed internal reference
source (REFO)
•
•
•
•
•
•
•
•
•
•
•
•
– 32-kHz watch crystals (XT1)
– High-frequency crystals up to 32 MHz (XT2)
16-bit timer TA0, Timer_A with five capture/
compare registers
16-bit timer TA1, Timer_A with three capture/
compare registers
16-bit timer TA2, Timer_A with three capture/
compare registers
16-bit timer TB0, Timer_B with seven capture/
compare shadow registers
Two universal serial communication interfaces
(USCIs)
– USCI_A0 and USCI_A1 each support:
• Enhanced UART with automatic baud-rate
detection
• IrDA encoder and decoder
• Synchronous SPI
– USCI_B0 and USCI_B1 each support:
• I2C
• Synchronous SPI
10-bit analog-to-digital converter (ADC) with
internal reference, sample-and-hold
Comparator
Hardware multiplier supports 32-bit operations
Serial onboard programming, no external
programming voltage needed
3-channel internal DMA
Basic timer with RTC feature
Device Comparison summarizes the family
members
2 Applications
•
•
•
•
Analog Sensor Systems
Digital Sensor Systems
Data Loggers
General-Purpose Applications
3 Description
The TI MSP family of ultra-low-power microcontrollers consists of several devices featuring different sets of
peripherals targeted for various applications. The architecture, combined with extensive low-power modes, is
optimized to achieve extended battery life in portable measurement applications. The device features a powerful
16-bit RISC CPU, 16-bit registers, and constant generators that contribute to maximum code efficiency. The
digitally controlled oscillator (DCO) allows the device to wake up from low-power modes to active mode in 3.5 µs
(typical).
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,
Submit Document Feedback
Copyright
© 2020 Texas
Instruments
Incorporated
intellectual
property
matters
and other important disclaimers. PRODUCTION DATA.
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
1
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
The MSP430F524x series are microcontroller configurations with four 16-bit timers, a high-performance 10-bit
ADC, two USCIs, a hardware multiplier, DMA, a comparator, and an RTC module with alarm capabilities.
The MSP430F523x series microcontrollers include all of the peripherals of the MSP430F524x series except for
the ADC.
For complete module descriptions, see the MSP430F5xx and MSP430F6xx Family User's Guide.
Device Information
PACKAGE
BODY SIZE(1)
MSP430F5249IRGC
VQFN (64)
9 mm × 9 mm
MSP430F5249IZQE
BGA (80)
5 mm × 5 mm
PART NUMBER
MSP430F5244IRGZ
VQFN (48)
7 mm × 7 mm
MSP430F5249IZXH
nFBGA (80)
5 mm × 5 mm
MicroStar Junior™ BGA (80)
5 mm × 5 mm
MSP430F5249IZQE(2)
(1)
(2)
2
The sizes shown here are approximations. For the package dimensions with tolerances, see the
Mechanical Data in Section Mechanical, Packaging, and Orderable Information.
All orderable part numbers in the ZQE (MicroStar Junior BGA) package have been changed to a
status of Last Time Buy. Visit the Product life cycle page for details on this status.
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
4 Functional Block Diagrams
Figure 4-1 shows the functional block diagram for the MSP430F5249 and MSP430F5247 devices in the RGC,
ZXH, and ZQE packages.
XIN XOUT
XT2IN
XT2OUT
Unified
Clock
System
ACLK
128KB
64KB
8KB
4KB
Power
Management
RAM
LDO
SVM/SVS
Brownout
PA
VCORE
P1.x
SYS
Flash
P2.x
P1
1×8 I/Os
P3.x
PB
P4.x
P5.x
PB
1×13 I/Os
Watchdog
Port Map
Control
(P4)
I/O Ports
Interrupt & Wakeup
PC
P6.x
PJ
PD
P7.x PJ.x
P3
P4
P5
P6
P7
1×5 I/Os 1×8 I/Os 1×6 I/Os 1×8 I/Os 1×6 I/Os
P2
1×8 I/Os
PA
1×16 I/Os
SMCLK
MCLK
CPUXV2
and
Working
Registers
DVCC AVCC
DVSS AVSS
RSTDVCC RST/NMI
PC
1×14 I/Os
USCI0,1
PD
PJ
1×6 I/Os 1×4 I/Os
I/O Ports
USCI_Ax:
UART,
IrDA, SPI
USCI_Bx:
SPI, I2C
MAB
DMA
MDB
3 Channel
EEM
(S: 3+1)
ADC10_A
JTAG,
SBW
Interface
MPY32
TA0
TA1
TA2
TB0
Timer_A
5 CC
Registers
Timer_A
3 CC
Registers
Timer_A
3 CC
Registers
Timer_B
7 CC
Registers
RTC_A
CRC16
10 Bit
200 ksps
12 Channels
(10 ext, 2 int)
COMP_B
REF
8 Channels
Copyright © 2016, Texas Instruments Incorporated
Figure 4-1. Functional Block Diagram – F5249, F5247 – RGC, ZXH, ZQE Packages
Figure 4-2 shows the functional block diagram for the MSP430F5244 and MSP430F5242 devices in the RGZ
package.
XIN XOUT
XT2IN
XT2OUT
Unified
Clock
System
ACLK
128KB
64KB
8KB
4KB
Power
Management
RAM
LDO
SVM, SVS
Brownout
Flash
PA
VCORE
SYS
P1.x
P2.x
P1
1×8 I/Os
P2
1×1 I/Os
P3.x
PB
P4.x
P5.x
PA
1×9 I/Os
Port Map
Control
(P4)
I/O Ports
Interrupt & Wakeup
PC
P6.x
PJ
PJ.x
P3
P4
P5
P6
1×5 I/Os 1×7 I/Os 1×6 I/Os 1×6 I/Os
PB
1×12 I/Os
Watchdog
SMCLK
MCLK
CPUXV2
and
Working
Registers
DVCC AVCC
DVSS AVSS
RSTDVCC RST/NMI
PC
1×12 I/Os
USCI0,1
PJ
1×4 I/Os
USCI_Ax:
UART,
IrDA, SPI
I/O Ports
USCI_Bx:
SPI, I2C
MAB
DMA
MDB
3 Channel
EEM
(S: 3+1)
ADC10_A
JTAG,
SBW
Interface
MPY32
TA0
TA1
TA2
TB0
Timer_A
5 CC
Registers
Timer_A
3 CC
Registers
Timer_A
3 CC
Registers
Timer_B
7 CC
Registers
RTC_A
CRC16
10 Bit
200 ksps
COMP_B
REF
6 Channels
10 Channels
(8 ext, 2 int)
Copyright © 2016, Texas Instruments Incorporated
Figure 4-2. Functional Block Diagram – F5244, F5242 – RGZ Package
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
3
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
Figure 4-3 shows the functional block diagram for the MSP430F5239 and MSP430F5237 devices in the RGC,
ZXH, and ZQE packages.
XIN XOUT
XT2IN
XT2OUT
Unified
Clock
System
ACLK
128KB
64KB
8KB
4KB
Power
Management
RAM
LDO
SVM/SVS
Brownout
PA
VCORE
P1.x
SYS
Flash
P2.x
P1
1×8 I/Os
P3.x
PB
P4.x
P5.x
PB
1×13 I/Os
Watchdog
Port Map
Control
(P4)
I/O Ports
Interrupt & Wakeup
PC
P6.x
PJ
PD
P7.x PJ.x
P3
P4
P5
P6
P7
1×5 I/Os 1×8 I/Os 1×6 I/Os 1×8 I/Os 1×6 I/Os
P2
1×8 I/Os
PA
1×16 I/Os
SMCLK
MCLK
CPUXV2
and
Working
Registers
DVCC AVCC
DVSS AVSS
RSTDVCC RST/NMI
PC
1×14 I/Os
USCI0,1
PD
PJ
1×6 I/Os 1×4 I/Os
I/O Ports
USCI_Ax:
UART,
IrDA, SPI
USCI_Bx:
SPI, I2C
MAB
DMA
MDB
3 Channel
EEM
(S: 3+1)
JTAG,
SBW
Interface
MPY32
TA0
TA1
TA2
TB0
Timer_A
5 CC
Registers
Timer_A
3 CC
Registers
Timer_A
3 CC
Registers
Timer_B
7 CC
Registers
COMP_B
RTC_A
REF
CRC16
8 Channels
Copyright © 2016, Texas Instruments Incorporated
Figure 4-3. Functional Block Diagram – F5239, F5237 – RGC, ZXH, and ZQE Packages
Figure 4-4 shows the functional block diagram for the MSP430F5234 and MSP430F5232 devices in the RGZ
package.
XIN XOUT
XT2IN
XT2OUT
Unified
Clock
System
ACLK
128KB
64KB
8KB
4KB
Power
Management
RAM
LDO
SVM, SVS
Brownout
Flash
PA
VCORE
P1.x
SYS
P2.x
P1
1×8 I/Os
P3.x
P2
1×1 I/Os
PB
P4.x
P5.x
Port Map
Control
(P4)
I/O Ports
Interrupt & Wakeup
PC
P6.x
PJ
PJ.x
P3
P4
P5
P6
1×5 I/Os 1×7 I/Os 1×6 I/Os 1×6 I/Os
PB
1×12 I/Os
Watchdog
PA
1×9 I/Os
SMCLK
MCLK
CPUXV2
and
Working
Registers
DVCC AVCC
DVSS AVSS
RSTDVCC RST/NMI
PC
1×12 I/Os
USCI0,1
PJ
1×4 I/Os
USCI_Ax:
UART,
IrDA, SPI
I/O Ports
USCI_Bx:
SPI, I2C
MAB
DMA
MDB
3 Channel
EEM
(S: 3+1)
JTAG,
SBW
Interface
MPY32
TA0
TA1
TA2
TB0
Timer_A
5 CC
Registers
Timer_A
3 CC
Registers
Timer_A
3 CC
Registers
Timer_B
7 CC
Registers
COMP_B
RTC_A
CRC16
REF
6 Channels
Copyright © 2016, Texas Instruments Incorporated
Figure 4-4. Functional Block Diagram – F5234, F5232 – RGZ Package
4
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
Table of Contents
1 Features............................................................................1
2 Applications..................................................................... 1
3 Description.......................................................................1
4 Functional Block Diagrams............................................ 3
5 Revision History.............................................................. 6
6 Device Comparison......................................................... 7
6.1 Related Products........................................................ 7
7 Terminal Configuration and Functions..........................8
7.1 Pin Diagrams.............................................................. 8
7.2 Signal Descriptions................................................... 13
8 Specifications................................................................ 18
8.1 Absolute Maximum Ratings...................................... 18
8.2 ESD Ratings............................................................. 18
8.3 Recommended Operating Conditions.......................18
8.4 Active Mode Supply Current Into VCC Excluding
External Current.......................................................... 20
8.5 Low-Power Mode Supply Currents (Into VCC)
Excluding External Current..........................................21
8.6 Thermal Resistance Characteristics......................... 22
8.7 Schmitt-Trigger Inputs – General-Purpose I/O
(P1.0 to P1.7, P2.0 to P2.7, P3.0 to P3.4, P4.0 to
P4.7, P5.0 to P5.5, P6.0 to P6.7, P7.0 to P7.5,
PJ.0 to PJ.3, RSTDVCC/SBWTDIO, RST/NMI)..........23
8.8 Inputs – Interrupts (P1.0 to P1.7, P2.0 to P2.7)........ 23
8.9 Leakage Current – General-Purpose I/O (P1.0 to
P1.7, P2.0 to P2.7, P3.0 to P3.4, P4.0 to P4.7,
P5.0 to P5.5, P6.0 to P6.7, P7.0 to P7.5, PJ.0 to
PJ.3)............................................................................ 23
8.10 Outputs – General-Purpose I/O (Full Drive
Strength) (P1.0 to P1.7, P2.0 to P2.7, P3.0 to
P3.4, P4.0 to P4.7, P5.0 to P5.5, P6.0 to P6.7,
P7.0 to P7.5, PJ.0 to PJ.3).......................................... 23
8.11 Outputs – General-Purpose I/O (Reduced Drive
Strength) (P1.0 to P1.7, P2.0 to P2.7, P3.0 to
P3.4, P4.0 to P4.7, P5.0 to P5.5, P6.0 to P6.7,
P7.0 to P7.5, PJ.0 to PJ.3).......................................... 24
8.12 Output Frequency – General-Purpose I/O (P1.0
to P1.7, P2.0 to P2.7, P3.0 to P3.4, P4.0 to P4.7,
P5.0 to P5.5, P6.0 to P6.7, P7.0 to P7.5, PJ.0 to
PJ.3)............................................................................ 24
8.13 Typical Characteristics – Outputs, Reduced
Drive Strength (PxDS.y = 0)........................................ 25
8.14 Typical Characteristics – Outputs, Full Drive
Strength (PxDS.y = 1)................................................. 26
8.15 Crystal Oscillator, XT1, Low-Frequency Mode........27
8.16 Crystal Oscillator, XT2............................................ 28
8.17 Internal Very-Low-Power Low-Frequency
Oscillator (VLO)...........................................................29
8.18 Internal Reference, Low-Frequency Oscillator
(REFO)........................................................................ 29
Copyright © 2020 Texas Instruments Incorporated
8.19 DCO Frequency...................................................... 30
8.20 PMM, Brownout Reset (BOR).................................31
8.21 PMM, Core Voltage.................................................31
8.22 PMM, SVS High Side..............................................32
8.23 PMM, SVM High Side............................................. 33
8.24 PMM, SVS Low Side...............................................33
8.25 PMM, SVM Low Side.............................................. 34
8.26 Wake-up Times From Low-Power Modes and
Reset........................................................................... 34
8.27 Timer_A...................................................................35
8.28 Timer_B...................................................................35
8.29 USCI (UART Mode) Clock Frequency.................... 35
8.30 USCI (UART Mode)................................................ 35
8.31 USCI (SPI Master Mode) Clock Frequency............ 36
8.32 USCI (SPI Master Mode)........................................ 36
8.33 USCI (SPI Slave Mode).......................................... 38
8.34 USCI (I2C Mode).....................................................40
8.35 10-Bit ADC, Power Supply and Input Range
Conditions................................................................... 41
8.36 10-Bit ADC, Timing Parameters..............................41
8.37 10-Bit ADC, Linearity Parameters...........................42
8.38 REF, External Reference........................................ 42
8.39 REF, Built-In Reference.......................................... 43
8.40 Comparator_B.........................................................44
8.41 Flash Memory......................................................... 45
8.42 JTAG and Spy-Bi-Wire Interface.............................45
9 Detailed Description......................................................46
9.1 CPU ......................................................................... 46
9.2 Operating Modes...................................................... 47
9.3 Interrupt Vector Addresses....................................... 48
9.4 Memory Organization................................................49
9.5 Bootloader (BSL)...................................................... 50
9.6 JTAG Operation........................................................ 50
9.7 Flash Memory .......................................................... 51
9.8 RAM ......................................................................... 51
9.9 Peripherals................................................................51
9.10 Input/Output Diagrams............................................72
9.11 Device Descriptors.................................................. 88
10 Device and Documentation Support..........................94
10.1 Getting Started and Next Steps.............................. 94
10.2 Device Nomenclature..............................................94
10.3 Tools and Software................................................. 96
10.4 Documentation Support.......................................... 99
10.5 Related Links........................................................ 100
10.6 Support Resources............................................... 100
10.7 Trademarks........................................................... 100
10.8 Electrostatic Discharge Caution............................101
10.9 Export Control Notice............................................101
10.10 Glossary..............................................................101
Submit Document Feedback
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
5
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
5 Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.
Changes from revision B to revision C
Changes from September 28, 2018 to October 20, 2020
Page
• Updated the numbering for sections, tables, figures, and cross-references throughout the document..............1
• Added nFBGA package (ZXH) information throughout document......................................................................1
• Added note about status change for all orderable part numbers in the ZQE package in Table 3-1 .................. 1
• Changed the MAX value of the IERASE and IMERASE, IBANK parameters in Section 8.41, Flash Memory ......... 45
Changes from revision A to revision B
Changes from November 26, 2015 to September 27, 2018
Page
• Added Section 6.1, Related Products ................................................................................................................7
• Added typical conditions statements at the beginning of Section 8, Specifications .........................................18
• Changed the MIN value of the V(DVCC_BOR_hys) parameter from 60 mV to 50 mV in Section 8.20, PMM,
Brownout Reset (BOR) .................................................................................................................................... 31
• Updated notes (1) and (2) and added note (3) in Section 8.26, Wake-up Times From Low-Power Modes and
Reset ............................................................................................................................................................... 34
• Removed ADC10DIV from the formula for the TYP value in the second row of the tCONVERT parameter in
Section 8.36, 10-Bit ADC, Timing Parameters, because ADC10CLK is after division..................................... 41
• Added second row for tEN_CMP with Test Conditions of "CBPWRMD = 10" and MAX value of 100 µs in Section
8.40, Comparator_B ........................................................................................................................................ 44
• Renamed FCTL4.MGR0 and MGR1 bits in the fMCLK,MGR parameter in Section 8.41, Flash Memory, to be
consistent with header files ..............................................................................................................................45
• Throughout document, changed all instances of "bootstrap loader" to "bootloader"........................................ 50
• Replaced former section Development Tools Support with Section 10.3, Tools and Software ....................... 96
• Updated list of related documentation in Section 10.4, Documentation Support .............................................99
6
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
6 Device Comparison
Table 6-1 summarizes the available family members.
Table 6-1. Device Comparison
USCI
DEVICE(1) (2)
FLASH
(KB)
SRAM
(KB)
Timer_A(3)
Timer_B(4)
CHANNEL A:
UART, IrDA,
SPI
CHANNEL B:
SPI, I2C
ADC10_A
(Ch)
Comp_B
(Ch)
I/Os
PACKAGE
MSP430F5249
128
8
5, 3, 3
7
2
2
10 ext, 2 int
8
53
64 RGC,
80 ZXH,
80 ZQE
MSP430F5247
64
8
5, 3, 3
7
2
2
10 ext, 2 int
8
53
64 RGC,
80 ZXH,
80 ZQE
MSP430F5244
128
8
5, 3, 3
7
2
2
8 ext, 2 int
6
37
48 RGZ
MSP430F5242
64
8
5, 3, 3
7
2
2
8 ext, 2 int
6
37
48 RGZ
MSP430F5239
128
8
5, 3, 3
7
2
2
-
8
53
64 RGC,
80 ZXH,
80 ZQE
MSP430F5237
64
8
5, 3, 3
7
2
2
-
8
53
64 RGC,
80 ZXH,
80 ZQE
MSP430F5234
128
8
5, 3, 3
7
2
2
-
6
37
48 RGZ
MSP430F5232
64
8
5, 3, 3
7
2
2
-
6
37
48 RGZ
(1)
(2)
(3)
(4)
For the most current package and ordering information, see the Package Option Addendum in Section Mechanical, Packaging, and
Orderable Information, or see the TI website at www.ti.com.
Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/
packaging.
Each number in the sequence represents an instantiation of Timer_A with its associated number of capture compare registers and
PWM output generators available. For example, a number sequence of 3, 5 would represent two instantiations of Timer_A, the first
instantiation having 3 and the second instantiation having 5 capture compare registers and PWM output generators, respectively.
Each number in the sequence represents an instantiation of Timer_B with its associated number of capture compare registers and
PWM output generators available. For example, a number sequence of 3, 5 would represent two instantiations of Timer_B, the first
instantiation having 3 and the second instantiation having 5 capture compare registers and PWM output generators, respectively.
6.1 Related Products
For information about other devices in this family of products or related products, see the following links.
Products for TI Microcontrollers
TI's low-power and high-performance MCUs, with wired and wireless connectivity options, are optimized for a
broad range of applications.
Products for MSP430 Ultra-Low-Power Microcontrollers
One platform. One ecosystem. Endless possibilities. Enabling the connected world with innovations in ultra-lowpower microcontrollers with advanced peripherals for precise sensing and measurement.
Companion Products for MSP430F5249
Review products that are frequently purchased or used in conjunction with this product.
TI Reference Designs
Find reference designs that leverage the best in TI technology to solve your system-level challenges.
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
7
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
7 Terminal Configuration and Functions
7.1 Pin Diagrams
P7.0/TB0.0
P7.1/TB0.1
P7.2/TB0.2
P7.3/TB0.3
P7.4/TB0.4
P7.5/TB0.5
NC
RST/NMI
P5.2/XT2IN
P5.3/XT2OUT
TEST/SBWTCK
PJ.0/TDO
PJ.1/TDI/TCLK
PJ.2/TMS
PJ.3/TCK
RSTDVCC/SBWTDIO
Figure 7-1 shows the pinout for the MSP430F5249 and MSP430F5247 devices in the 64-pin RGC package.
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
P6.0/A0/CB0
1
48
P4.7/PM_NONE
P6.1/A1/CB1
2
47
P4.6/PM_NONE
P6.2/A2/CB2
3
46
P4.5/PM_UCA1RXD/PM_UCA1SOMI
P6.3/A3/CB3
4
45
P4.4/PM_UCA1TXD/PM_UCA1SIMO
P6.4/A4/CB4
5
44
P4.3/PM_UCB1CLK/PM_UCA1STE
P6.5/A5/CB5
6
43
P4.2/PM_UCB1SOMI/PM_UCB1SCL
P6.6/A6/CB6
7
42
P4.1/PM_UCB1SIMO/PM_UCB1SDA
P6.7/A7/CB7
8
41
P4.0/PM_UCB1STE/PM_UCA1CLK
MSP430F5249IRGC
MSP430F5247IRGC
P5.0/A8/VeREF+
9
40
DVCC
P5.1/A9/VeREF-
10
39
DVSS
AVCC
11
38
P3.4/UCA0RXD/UCA0SOMI
P5.4/XIN
12
37
P3.3/UCA0TXD/UCA0SIMO
P5.5/XOUT
13
36
P3.2/UCB0CLK/UCA0STE
P2.7/UCB0STE/UCA0CLK
P2.6/RTCCLK/DMAE0
P2.5/TA2.2
P2.4/TA2.1
P2.3/TA2.0
P2.1/TA1.2
P2.2/TA2CLK/SMCLK
P2.0/TA1.1
P1.7/TA1.0
P1.6/TA1CLK/CBOUT
P1.5/TA0.4
33
16
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
P1.4/TA0.3
DVSS
P1.3/TA0.2
P3.0/UCB0SIMO/UCB0SDA
P1.2/TA0.1
P3.1/UCB0SOMI/UCB0SCL
34
P1.1/TA0.0
35
15
VCORE
14
P1.0/TA0CLK/ACLK
AVSS
DVCC
A. TI recommends connecting the exposed thermal pad to VSS.
Figure 7-1. 64-Pin RGC Package (Top View) – MSP430F5249, MSP430F5247
8
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
RST/NMI
P5.2/XT2IN
P5.3/XT2OUT
TEST/SBWTCK
PJ.0/TDO
PJ.1/TDI/TCLK
PJ.2/TMS
PJ.3/TCK
RSTDVCC/SBWTDIO
P6.0/A0/CB0
P6.1/A1/CB1
P6.2/A2/CB2
Figure 7-2 shows the pinout for the MSP430F5244 and MSP430F5242 devices in the 48-pin RGZ package.
48 47 46 45 44 43 42 41 40 39 38 37
P6.3/A3/CB3
1
36
NC
P6.4/A4/CB4
2
35
P4.6/PM_NONE
P6.5/A5/CB5
3
34
P4.5/PM_UCA1RXD/PM_UCA1SOMI
P5.0/A8/VeREF+
4
33
P4.4/PM_UCA1TXD/PM_UCA1SIMO
P5.1/A9/VeREF-
5
32
P4.3/PM_UCB1CLK/PM_UCA1STE
31
P4.2/PM_UCB1SOMI/PM_UCB1SCL
30
P4.1/PM_UCB1SIMO/PM_UCB1SDA
AVCC
6
P5.4/XIN
7
P5.5/XOUT
8
29
P4.0/PM_UCB1STE/PM_UCA1CLK
AVSS
9
28
DVCC
DVCC
10
27
DVSS
11
26
P3.4/UCA0RXD/UCA0SOMI
12
25
13 14 15 16 17 18 19 20 21 22 23 24
P3.3/UCA0TXD/UCA0SIMO
P3.2/UCB0CLK/UCA0STE
P3.1/UCB0SOMI/UCB0SCL
P2.7/UCB0STE/UCA0CLK
P3.0/UCB0SIMO/UCB0SDA
P1.7/TA1.0
P1.6/TA1CLK/CBOUT
P1.5/TA0.4
P1.4/TA0.3
P1.3/TA0.2
P1.2/TA0.1
P1.0/TA0CLK/ACLK
P1.1/TA0.0
DVSS
VCORE
MSP430F5244IRGZ
MSP430F5242IRGZ
A. TI recommends connecting the exposed thermal pad to VSS.
Figure 7-2. 48-Pin RGZ Package (Top View) – MSP430F5244, MSP430F5242
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
9
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
P7.0/TB0.0
P7.1/TB0.1
P7.2/TB0.2
P7.3/TB0.3
P7.4/TB0.4
P7.5/TB0.5
NC
RST/NMI
P5.2/XT2IN
P5.3/XT2OUT
TEST/SBWTCK
PJ.0/TDO
PJ.1/TDI/TCLK
PJ.2/TMS
PJ.3/TCK
RSTDVCC/SBWTDIO
Figure 7-3 shows the pinout for the MSP430F5239 and MSP430F5237 devices in the 64-pin RGC package.
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
P6.0/CB0
1
48
P4.7/PM_NONE
P6.1/CB1
2
47
P4.6/PM_NONE
P6.2/CB2
3
46
P4.5/PM_UCA1RXD/PM_UCA1SOMI
P6.3/CB3
4
45
P4.4/PM_UCA1TXD/PM_UCA1SIMO
P6.4/CB4
5
44
P4.3/PM_UCB1CLK/PM_UCA1STE
P6.5/CB5
6
43
P4.2/PM_UCB1SOMI/PM_UCB1SCL
P6.6/CB6
7
42
P4.1/PM_UCB1SIMO/PM_UCB1SDA
P6.7/CB7
8
41
P4.0/PM_UCB1STE/PM_UCA1CLK
MSP430F5239IRGC
MSP430F5237IRGC
P5.0
9
40
DVCC
P5.1
10
39
DVSS
AVCC
11
38
P3.4/UCA0RXD/UCA0SOMI
P5.4/XIN
12
37
P3.3/UCA0TXD/UCA0SIMO
P5.5/XOUT
13
36
P3.2/UCB0CLK/UCA0STE
P2.5/TA2.2
P2.7/UCB0STE/UCA0CLK
P2.6/RTCCLK/DMAE0
P2.4/TA2.1
P2.3/TA2.0
P2.2/TA2CLK/SMCLK
P2.1/TA1.2
P2.0/TA1.1
P1.7/TA1.0
P1.6/TA1CLK/CBOUT
P1.5/TA0.4
33
16
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
P1.4/TA0.3
DVSS
P1.3/TA0.2
P3.0/UCB0SIMO/UCB0SDA
P1.2/TA0.1
P3.1/UCB0SOMI/UCB0SCL
34
P1.1/TA0.0
35
15
P1.0/TA0CLK/ACLK
14
VCORE
AVSS
DVCC
A. TI recommends connecting the exposed thermal pad to VSS.
Figure 7-3. 64-Pin RGC Package (Top View) – MSP430F5239, MSP430F5237
10
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
P5.2/XT2IN
RST/NMI
P5.3/XT2OUT
TEST/SBWTCK
PJ.0/TDO
PJ.1/TDI/TCLK
PJ.2/TMS
PJ.3/TCK
RSTDVCC/SBWTDIO
P6.0/CB0
P6.1/CB1
P6.2/CB2
Figure 7-4 shows the pinout for the MSP430F5234 and MSP430F5232 devices in the 48-pin RGZ package.
48 47 46 45 44 43 42 41 40 39 38 37
P6.3/CB3
1
36
NC
P6.4/CB4
2
35
P4.6/PM_NONE
P6.5/CB5
3
34
P4.5/PM_UCA1RXD/PM_UCA1SOMI
P5.0
4
33
P4.4/PM_UCA1TXD/PM_UCA1SIMO
P5.1
5
32
P4.3/PM_UCB1CLK/PM_UCA1STE
31
P4.2/PM_UCB1SOMI/PM_UCB1SCL
30
P4.1/PM_UCB1SIMO/PM_UCB1SDA
AVCC
6
P5.4/XIN
7
P5.5/XOUT
8
29
P4.0/PM_UCB1STE/PM_UCA1CLK
AVSS
9
28
DVCC
DVCC
10
27
DVSS
11
26
P3.4/UCA0RXD/UCA0SOMI
12
25
13 14 15 16 17 18 19 20 21 22 23 24
P3.3/UCA0TXD/UCA0SIMO
P3.2/UCB0CLK/UCA0STE
P3.1/UCB0SOMI/UCB0SCL
P3.0/UCB0SIMO/UCB0SDA
P1.7/TA1.0
P2.7/UCB0STE/UCA0CLK
P1.5/TA0.4
P1.6/TA1CLK/CBOUT
P1.4/TA0.3
P1.3/TA0.2
P1.2/TA0.1
P1.0/TA0CLK/ACLK
P1.1/TA0.0
DVSS
VCORE
MSP430F5234IRGZ
MSP430F5232IRGZ
A. TI recommends connecting the exposed thermal pad to VSS.
Figure 7-4. 48-Pin RGZ Package (Top View) – MSP430F5234, MSP430F5232
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
11
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
Figure 7-5 shows the pinout for the MSP430F5249, MSP430F5247, MSP430F5239, and MSP430F5237 devices
in the 80-pin ZXH or ZQE package.
P6.0 RSTDVCC
P7.5
P7.4
P7.3
P7.1
A2
A3
A4
A5
A6
A7
A8
A9
P6.2
P6.1
PJ.3
P5.3
P5.2
NC
P7.2
B1
B2
B3
B4
B5
B6
B7
B8
B9
P6.4
P6.3
PJ.1
PJ.0
P4.7
P4.6
P4.5
C1
C2
C4
C5
C6
C7
C8
C9
P6.6
P6.5
P6.7
P4.4
P4.3
P4.2
D1
D2
D3
D4
D5
D6
D7
D8
D9
P5.0
P5.1
E1
E2
E3
E4
E5
E6
E7
E8
P5.4
AVCC
F1
F2
F3
F4
F5
F6
F7
F8
F9
P5.5
AVSS
P1.3
P1.6
P2.1
P3.4
P3.2
P3.3
G1
G2
G3
G4
G5
G6
G7
G8
G9
P1.0
P1.1
P1.4
P1.7
P2.3
P2.7
P3.0
P3.1
H2
H3
H4
H5
H6
H7
H8
H9
VCORE
P1.2
P1.5
P2.0
P2.2
P2.4
P2.5
P2.6
J2
J3
J4
J5
J6
J7
J8
J9
DVCC
H1
DVSS
J1
PJ.2
TEST RST/NMI
A1
P4.1
P7.0
P4.0
DVCC
E9
DVSS
Figure 7-5. 80-Pin ZHX or ZQE Package (Top View) – MSP430F5249, MSP430F5247, MSP430F5239,
MSP430F5237
12
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
7.2 Signal Descriptions
Table 7-1 describes the signals for all device variants and package options.
Table 7-1. Signal Descriptions
TERMINAL
NO.
NAME
I/O(1)
RGC
ZXH,
ZQE
RGZ
5
C1
2
DESCRIPTION
General-purpose digital I/O
P6.4/CB4/A4
I/O
Comparator_B input CB4
Analog input A4 for the ADC (not available on all device types)
General-purpose digital I/O
P6.5/CB5/A5
6
D2
3
I/O
Comparator_B input CB5
Analog input A5 for the ADC (not available on all device types)
General-purpose digital I/O (not available on all device types)
P6.6/CB6/A6
7
D1
N/A
I/O
Comparator_B input CB6 (not available on all device types)
Analog input A6 for the ADC (not available on all device types)
General-purpose digital I/O (not available on all device types)
P6.7/CB7/A7
8
D3
N/A
I/O
Comparator_B input CB7 (not available on all device types)
Analog input A7 for the ADC (not available on all device types)
General-purpose digital I/O
P5.0/A8/VeREF+
9
E1
4
I/O
Analog input A8 for the ADC (not available on all device types)
Input for an external reference voltage to the ADC (not available on all
device types)
General-purpose digital I/O
I/O
Analog input A9 for the ADC (not available on all device types)
P5.1/A9/VeREF-
10
E2
5
AVCC
11
F2
6
P5.4/XIN
12
F1
7
I/O
P5.5/XOUT
13
G1
8
I/O
AVSS
14
G2
9
Analog ground supply
DVCC
15
H1
10
Digital power supply
DVSS
16
J1
11
Digital ground supply
VCORE(4)
17
J2
12
Regulated core power supply output (internal use only, no external current
loading)
P1.0/TA0CLK/ACLK
18
H2
13
Negative terminal for the ADC reference voltage for an external applied
reference voltage (not available on all device types)
Analog power supply
General-purpose digital I/O
Input terminal for crystal oscillator XT1
General-purpose digital I/O
Output terminal of crystal oscillator XT1
General-purpose digital I/O with port interrupt
I/O
TA0 clock signal TA0CLK input
ACLK output (divided by 1, 2, 4, 8, 16, or 32)
General-purpose digital I/O with port interrupt
P1.1/TA0.0
19
H3
14
I/O
TA0 CCR0 capture: CCI0A input, compare: Out0 output
BSL transmit output
General-purpose digital I/O with port interrupt
P1.2/TA0.1
20
J3
15
I/O
TA0 CCR1 capture: CCI1A input, compare: Out1 output
BSL receive input
P1.3/TA0.2
21
G4
Copyright © 2020 Texas Instruments Incorporated
16
I/O
General-purpose digital I/O with port interrupt
TA0 CCR2 capture: CCI2A input, compare: Out2 output
Submit Document Feedback
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
13
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
Table 7-1. Signal Descriptions (continued)
TERMINAL
NO.
NAME
I/O(1)
RGC
ZXH,
ZQE
RGZ
P1.4/TA0.3
22
H4
17
I/O
P1.5/TA0.4
23
J4
18
I/O
P1.6/TA1CLK/CBOUT
24
G5
19
I/O
DESCRIPTION
General-purpose digital I/O with port interrupt
TA0 CCR3 capture: CCI3A input compare: Out3 output
General-purpose digital I/O with port interrupt
TA0 CCR4 capture: CCI4A input, compare: Out4 output
General-purpose digital I/O with port interrupt
TA1 clock signal TA1CLK input
Comparator_B output
P1.7/TA1.0
25
P2.0/TA1.1
26
P2.1/TA1.2
27
P2.2/TA2CLK/SMCLK
28
H5
J5
G6
J6
20
N/A
N/A
N/A
I/O
I/O
I/O
I/O
General-purpose digital I/O with port interrupt
TA1 CCR0 capture: CCI0A input, compare: Out0 output
General-purpose digital I/O with port interrupt (not available on all device
types)
TA1 CCR1 capture: CCI1A input, compare: Out1 output (not available on all
device types)
General-purpose digital I/O with port interrupt (not available on all device
types)
TA1 CCR2 capture: CCI2A input, compare: Out2 output (not available on all
device types)
General-purpose digital I/O with port interrupt (not available on all device
types)
TA2 clock signal TA2CLK input
SMCLK output (not available on all device types)
P2.3/TA2.0
29
P2.4/TA2.1
30
P2.5/TA2.2
31
P2.6/RTCCLK/DMAE0
32
H6
J7
J8
J9
N/A
N/A
N/A
N/A
I/O
I/O
I/O
I/O
General-purpose digital I/O with port interrupt (not available on all device
types)
TA2 CCR0 capture: CCI0A input, compare: Out0 output (not available on all
device types)
General-purpose digital I/O with port interrupt (not available on all device
types)
TA2 CCR1 capture: CCI1A input, compare: Out1 output (not available on all
device types)
General-purpose digital I/O with port interrupt (not available on all device
types)
TA2 CCR2 capture: CCI2A input, compare: Out2 output (not available on all
device types)
General-purpose digital I/O with port interrupt (not available on all device
types)
RTC clock output for calibration (not available on all device types)
DMA external trigger input (not available on all device types)
General-purpose digital I/O
P2.7/UCB0STE/UCA0CLK
33
H7
21
I/O
Slave transmit enable for USCI_B0 SPI mode
Clock signal input for USCI_A0 SPI slave mode
Clock signal output for USCI_A0 SPI master mode
General-purpose digital I/O
P3.0/UCB0SIMO/UCB0SDA
34
H8
22
I/O
Slave in, master out for USCI_B0 SPI mode
I2C data for USCI_B0 I2C mode
General-purpose digital I/O
P3.1/UCB0SOMI/UCB0SCL
35
H9
23
I/O
Slave out, master in for USCI_B0 SPI mode
I2C clock for USCI_B0 I2C mode
14
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
Table 7-1. Signal Descriptions (continued)
TERMINAL
NO.
NAME
RGC
ZXH,
ZQE
I/O(1)
DESCRIPTION
RGZ
General-purpose digital I/O
P3.2/UCB0CLK/UCA0STE
36
G8
24
I/O
Clock signal input for USCI_B0 SPI slave mode
Clock signal output for USCI_B0 SPI master mode
Slave transmit enable for USCI_A0 SPI mode
General-purpose digital I/O
P3.3/UCA0TXD/UCA0SIMO
37
G9
25
I/O
Transmit data for USCI_A0 UART mode
Slave in, master out for USCI_A0 SPI mode
General-purpose digital I/O
I/O
Receive data for USCI_A0 UART mode
P3.4/UCA0RXD/UCA0SOMI
38
G7
26
DVSS
39
F9
27
Digital ground supply
DVCC
40
E9
28
Digital power supply
Slave out, master in for USCI_A0 SPI mode
General-purpose digital I/O with reconfigurable port mapping secondary
function
P4.0/PM_UCB1STE/
PM_UCA1CLK
41
E8
29
I/O
Default mapping: Slave transmit enable for USCI_B1 SPI mode
Default mapping: Clock signal input for USCI_A1 SPI slave mode
Default mapping: Clock signal output for USCI_A1 SPI master mode
P4.1/PM_UCB1SIMO/
PM_UCB1SDA
42
E7
30
I/O
General-purpose digital I/O with reconfigurable port mapping secondary
function
Default mapping: Slave in, master out for USCI_B1 SPI mode
Default mapping: I2C data for USCI_B1 I2C mode
P4.2/PM_UCB1SOMI/
PM_UCB1SCL
43
D9
31
I/O
General-purpose digital I/O with reconfigurable port mapping secondary
function
Default mapping: Slave out, master in for USCI_B1 SPI mode
Default mapping: I2C clock for USCI_B1 I2C mode
General-purpose digital I/O with reconfigurable port mapping secondary
function
P4.3/PM_UCB1CLK/
PM_UCA1STE
44
D8
32
I/O
Default mapping: Clock signal input for USCI_B1 SPI slave mode
Default mapping: Clock signal output for USCI_B1 SPI master mode
Default mapping: Slave transmit enable for USCI_A1 SPI mode
P4.4/PM_UCA1TXD/
PM_UCA1SIMO
45
D7
33
I/O
General-purpose digital I/O with reconfigurable port mapping secondary
function
Default mapping: Transmit data for USCI_A1 UART mode
Default mapping: Slave in, master out for USCI_A1 SPI mode
P4.5/PM_UCA1RXD/
PM_UCA1SOMI
46
C9
34
I/O
General-purpose digital I/O with reconfigurable port mapping secondary
function
Default mapping: Receive data for USCI_A1 UART mode
Default mapping: Slave out, master in for USCI_A1 SPI mode
P4.6/PM_NONE
47
C8
35
I/O
General-purpose digital I/O with reconfigurable port mapping secondary
function
Default mapping: no secondary function.
P4.7/PM_NONE
48
C7
N/A
I/O
General-purpose digital I/O with reconfigurable port mapping secondary
function (not available on all device types)
Default mapping: no secondary function. (not available on all device types)
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
15
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
Table 7-1. Signal Descriptions (continued)
TERMINAL
NO.
NAME
I/O(1)
RGC
ZXH,
ZQE
RGZ
P7.0/TB0.0
49
B8,
B9
N/A
I/O
P7.1/TB0.1
50
A9
N/A
I/O
P7.2/TB0.2
51
B7
N/A
I/O
P7.3/TB0.3
52
A8
N/A
I/O
P7.4/TB0.4
53
A7
N/A
I/O
P7.5/TB0.5
54
A6
N/A
I/O
RST/NMI
56
A5
37
I
P5.2/XT2IN
57
B5
38
I/O
P5.3/XT2OUT
58
B4
39
I/O
TEST/SBWTCK(5)
59
A4
40
I
PJ.0/TDO(6)
60
C5
41
I/O
PJ.1/TDI/TCLK(6)
61
C4
42
I/O
PJ.2/TMS(6)
62
A3
43
I/O
PJ.3/TCK(6)
63
B3
44
I/O
RSTDVCC/SBWTDIO(6)
64
A2
45
I/O
DESCRIPTION
General-purpose digital I/O (not available on all device types)
TB0 CCR0 capture: CCI0A input, compare: Out0 output (not available on all
device types)
General-purpose digital I/O (not available on all device types)
TB0 CCR1 capture: CCI1A input, compare: Out1 output (not available on all
device types)
General-purpose digital I/O (not available on all device types)
TB0 CCR2 capture: CCI2A input, compare: Out2 output (not available on all
device types)
General-purpose digital I/O (not available on all device types)
TB0 CCR3 capture: CCI3A input, compare: Out3 output (not available on all
device types)
General-purpose digital I/O (not available on all device types)
TB0 CCR4 capture: CCI4A input, compare: Out4 output (not available on all
device types)
General-purpose digital I/O (not available on all device types)
TB0 CCR5 capture: CCI5A input, compare: Out5 output (not available on all
device types)
Reset input, active low (also see Section 7.2.1)(7)
Nonmaskable interrupt input
General-purpose digital I/O
Input terminal for crystal oscillator XT2
General-purpose digital I/O \
Output terminal of crystal oscillator XT2
Test mode pin – Selects four-wire JTAG operation
Spy-Bi-Wire input clock when Spy-Bi-Wire operation activated
General-purpose digital I/O
JTAG test data output port
General-purpose digital I/O
JTAG test data input or test clock input
General-purpose digital I/O
JTAG test mode select
General-purpose digital I/O
JTAG test clock
Reset input active low (also see Section 7.2.1)(8)
Spy-Bi-Wire data input/output when Spy-Bi-Wire operation activated
General-purpose digital I/O
P6.0/CB0/A0
1
A1
46
I/O
Comparator_B input CB0
Analog input A0 for the ADC (not available on all device types)
General-purpose digital I/O
P6.1/CB1/A1
2
B2
47
I/O
Comparator_B input CB1
Analog input A1 for the ADC (not available on all device types)
General-purpose digital I/O
P6.2/CB2/A2
3
B1
48
I/O
Comparator_B input CB2
Analog input A2 for the ADC (not available on all device types)
16
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
Table 7-1. Signal Descriptions (continued)
TERMINAL
NO.
NAME
I/O(1)
DESCRIPTION
RGC
ZXH,
ZQE
RGZ
4
C2
1
Reserved
55(2)
(3)
36(2)
Reserved
QFN Pad
Pad
N/A
Pad
QFN package pad. Connection to VSS recommended.
General-purpose digital I/O
P6.3/CB3/A3
I/O
Comparator_B input CB3
Analog input A3 for the ADC (not available on all device types)
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
I = input, O = output, N/A = not available
This pin is reserved and can be left unconnected or connected to ground.
Pins C6, D4, D5, D6, E3, E4, E5, E6, F3, F4, F5, F6, F7, F8, G3 are reserved and should be connected to ground. Pin B6 is reserved
and can be left unconnected or connected to ground.
VCORE is for internal use only. No external current loading is possible. VCORE should only be connected to the recommended
capacitor value, CVCORE.
See Section 9.5 and Section 9.6 for use with BSL and JTAG functions, respectively.
See Section 9.6 for use with JTAG function.
When this pin is configured as reset, the internal pullup resistor is enabled by default.
This nonconfigurable reset has an internal pullup to DVCC.
7.2.1 RST/NMI and RSTDVCC/SBWTDIO Pins
The RST/NMI and RSTDVCC/SBWTDIO pins have overlapping function when configured as reset but they are
differentiated as shown here:
•
•
•
Both can be used for the reset function. When both are used as reset, they can be tied together.
RST/NMI also includes the external NMI function and has a configurable pullup or pulldown when used as
reset.
RSTDVCC/SBWTDIO also includes the SBWTDIO function and has a nonconfigurable pullup when used as
reset.
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
17
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
8 Specifications
All graphs in this section are for typical conditions, unless otherwise noted.
Typical (TYP) values are specified at VCC = 3.3 V and TA = 25°C, unless otherwise noted.
8.1 Absolute Maximum Ratings
over operating free-air temperature range (unless otherwise noted)(1)
MIN
MAX
Voltage applied at VCC to VSS
–0.3
4.1
V
Voltage applied to any pin (excluding VCORE)(2)
–0.3 VCC + 0.3
V
Diode current at any device pin
Storage temperature, Tstg (3)
(1)
(2)
(3)
–55
UNIT
±2
mA
150
°C
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
All voltages are referenced to VSS. VCORE is for internal device use only. No external DC loading or voltage should be applied.
Higher temperature may be applied during board soldering according to the current JEDEC J-STD-020 specification with peak reflow
temperatures not higher than classified on the device label on the shipping boxes or reels.
8.2 ESD Ratings
VALUE
V(ESD)
(1)
(2)
Electrostatic discharge
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)
±1000
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)
±250
UNIT
V
JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Pins listed as
±1000 V may actually have higher performance.
JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Pins listed as
±250 V may actually have higher performance.
8.3 Recommended Operating Conditions
MIN
Supply voltage during program execution and
flash programming (AVCC = DVCC)(1) (2)
VCC
1.8
3.6
PMMCOREVx = 0, 1
2.0
3.6
PMMCOREVx = 0, 1, 2
2.2
3.6
PMMCOREVx = 0, 1, 2, 3
2.4
3.6
Supply voltage (AVSS = DVSS)
TA
Operating free-air temperature
–40
TJ
Operating junction temperature
–40
CVCORE
Recommended capacitor at VCORE(3)
CDVCC/ C
Capacitor ratio of DVCC to VCORE
fSYSTEM
(1)
(2)
18
Processor frequency (maximum MCLK
frequency)(4) (see Figure 8-2)
MAX
PMMCOREVx = 0
VSS
VCORE
NOM
0
UNIT
V
V
85
85
470
°C
°C
nF
10
PMMCOREVx = 0 (default condition),
1.8 V ≤ VCC ≤ 3.6 V
0
8.0
PMMCOREVx = 1,
2.0 V ≤ VCC ≤ 3.6 V
0
12.0
PMMCOREVx = 2,
2.2 V ≤ VCC ≤ 3.6 V
0
20.0
PMMCOREVx = 3,
2.4 V ≤ VCC ≤ 3.6 V
0
25.0
MHz
TI recommends powering AVCC and DVCC from the same source. A maximum difference of 0.3 V between AVCC and DVCC can be
tolerated during power up and operation.
The minimum supply voltage is defined by the supervisor SVS levels when it is enabled. See the threshold parameters in Section 8.22
for the exact values and further details.
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
(3)
(4)
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
A capacitor tolerance of ±20% or better is required.
Modules may have a different maximum input clock specification. See the specification of the respective module in this data sheet.
VCC
V(SVSH_+), min
tWAKE_UP_RESET
tWAKE_UP_RESET
tWAKE_UP_RESET
DVCC
VCC
VIT+
RSTDVCC
VCC ≥ VRSTDVCC
VRSTDVCC = VCC
tWAKE_UP_RESET
tWAKE_UP_RESET
VCC
VIT+
RST
VCC ≥ VRST
VRST = VCC
A. The device remains in reset based on the conditions of the RSTDVCC/SBWTDIO and RST pins, along with the voltage present on
DVCC voltage supply. Holding RSTDVCC/SBWTDIO or RST at a logic low or holding DVCC below the SVSH_+ minimum threshold
causes the device to remain in its reset condition; that is, these conditions form a logical OR with respect to device reset.
Figure 8-1. Reset Timing
25
System Frequency - MHz
3
20
2
2, 3
1
1, 2
1, 2, 3
0, 1
0, 1, 2
0, 1, 2, 3
12
8
0
0
1.8
2.0
2.2
2.4
3.6
Supply Voltage - V
NOTE: The numbers within the fields denote the supported PMMCOREVx settings.
Figure 8-2. Maximum System Frequency
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
19
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
8.4 Active Mode Supply Current Into VCC Excluding External Current
over recommended operating free-air temperature (unless otherwise noted)(1) (2) (3)
PARAMETER
IAM, Flash
IAM, RAM
(1)
(2)
(3)
20
EXECUTION
MEMORY
Flash
RAM
FREQUENCY (fDCO = fMCLK = fSMCLK)
VCC
3.0 V
3.0 V
PMMCOREVx
1 MHz
8 MHz
12 MHz
TYP
MAX
TYP
MAX
0
0.36
0.47
2.32
2.60
1
0.40
2
0.44
20 MHz
TYP
MAX
2.65
4.0
4.4
2.90
3.10
MAX
4.3
7.1
7.7
4.6
7.6
3
0.46
0
0.20
1
0.22
1.35
2.0
2
0.24
1.50
2.2
3.7
3
0.26
1.60
2.4
3.9
0.29
1.20
25 MHz
TYP
TYP
UNIT
MAX
mA
10.1
11.0
1.30
2.2
mA
4.2
5.3
6.2
All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.
The currents are characterized with a Micro Crystal MS1V-T1K crystal with a load capacitance of 12.5 pF. The internal and external
load capacitance are chosen to closely match the required 12.5 pF.
Characterized with program executing typical data processing.
fACLK = 32786 Hz, fDCO = fMCLK = fSMCLK at specified frequency.
XTS = CPUOFF = SCG0 = SCG1 = OSCOFF = SMCLKOFF = 0.
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
8.5 Low-Power Mode Supply Currents (Into VCC) Excluding External Current
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1) (2)
TEMPERATURE (TA)
PARAMETER
VCC
PMMCOREVx
–40°C
TYP
ILPM0,1MHz
Low-power mode 0(3) (9)
ILPM2
Low-power mode 2(4) (9)
97
3.0 V
3
79
83
99
88
95
107
2.2 V
0
6.5
6.5
12
10
11
17
3.0 V
3
7.0
7.0
13
11
12
18
0
1.60
1.90
2,8
6.0
1
1.65
2.00
3.0
6.3
2
1.75
2.15
3.2
6.6
0
1.8
2.1
3.0
6.2
1
1.9
2.3
3.2
6.5
2
2.0
2.4
3.3
6.8
3
2.0
2.5
3.9
3.4
6.8
10.9
0
1.1
1.4
2.7
2.0
6.1
9.7
1
1.1
1.4
2.2
6.4
2
1.2
1.5
2.3
6.8
3
1.3
1.6
3.0
2.3
6.8
10.9
0
0.9
1.1
1.5
2.0
5.1
8.8
1
1.1
1.2
2.1
5.3
2
1.2
1.2
2.2
5.5
3.0 V
Low-power mode 4.5(8)
3.0 V
3
(6)
(7)
(8)
(9)
MAX
85
ILPM4.5
(5)
UNIT
TYP
80
3.0 V
(4)
85°C
MAX
91
Low-power mode 4(7) (9)
(3)
TYP
77
ILPM4
(1)
(2)
MAX
73
3.0 V
ILPM3,VLO
60°C
TYP
0
Low-power mode 3, crystal
mode(5) (9)
Low-power mode 3,
VLO mode(6) (9)
MAX
2.2 V
2.2 V
ILPM3,XT1LF
25°C
2.9
9.4
µA
µA
µA
µA
µA
1.3
1.3
1.6
2.2
5.5
9.8
0.15
0.18
0.35
0.26
0.5
1.0
µA
All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.
The currents are characterized with a Micro Crystal MS1V-T1K crystal with a load capacitance of 12.5 pF. The internal and external
load capacitance are chosen to closely match the required 12.5 pF.
Current for watchdog timer clocked by SMCLK included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0).
CPUOFF = 1, SCG0 = 0, SCG1 = 0, OSCOFF = 0 (LPM0), fACLK = 32768 Hz, fMCLK = 0 MHz, fSMCLK = fDCO = 1 MHz
Current for watchdog timer and RTC clocked by ACLK included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0).
CPUOFF = 1, SCG0 = 0, SCG1 = 1, OSCOFF = 0 (LPM2), fACLK = 32768 Hz, fMCLK = 0 MHz, fSMCLK = fDCO = 0 MHz, DCO setting = 1
MHz operation, DCO bias generator enabled.)
Current for watchdog timer and RTC clocked by ACLK included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0).
CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3), fACLK = 32768 Hz, fMCLK = fSMCLK = fDCO = 0 MHz
Current for watchdog timer and RTC clocked by ACLK included. ACLK = VLO.
CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3), fACLK = fVLO, fMCLK = fSMCLK = fDCO = 0 MHz
CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1 (LPM4), fDCO = fACLK = fMCLK = fSMCLK = 0 MHz
Internal regulator disabled. No data retention.
CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1, PMMREGOFF = 1 (LPM4.5), fDCO = fACLK = fMCLK = fSMCLK = 0 MHz
Current for brownout, high side supervisor (SVSH) normal mode included. Low-side supervisor (SVSL) and low-side monitor (SVML)
disabled. High-side monitor (SVMH) disabled. RAM retention enabled.
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
21
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
8.6 Thermal Resistance Characteristics
THERMAL METRIC(1)
RθJA
Junction-to-ambient thermal resistance, still air
RθJC(TOP)
RθJC(BOTTOM)
Junction-to-case (top) thermal resistance
Junction-to-case (bottom) thermal resistance
VALUE
VQFN 48 (RGZ)
27.8
VQFN 64 (RGC)
29.6
BGA 80 (ZQE)
48.1
VQFN 48 (RGZ)
13.6
VQFN 64 (RGC)
14.7
BGA 80 (ZQE)
20.9
VQFN 48 (RGZ)
0.9
VQFN 64 (RGC)
1.4
BGA 80 (ZQE)
VQFN 48 (RGZ)
RθJB
ΨJT
ΨJB
(1)
(2)
22
Junction-to-board thermal resistance
Junction-to-package-top thermal characterization parameter
Junction-to-board thermal characterization parameter
UNIT
°C/W
°C/W
°C/W
N/A(2)
4.7
VQFN 64 (RGC)
8.5
BGA 80 (ZQE)
25.7
VQFN 48 (RGZ)
0.2
VQFN 64 (RGC)
0.2
BGA 80 (ZQE)
0.4
VQFN 48 (RGZ)
4.6
VQFN 64 (RGC)
8.4
BGA 80 (ZQE)
25.7
°C/W
°C/W
°C/W
These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RθJC] value, which is based on a
JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these EIA/
JEDEC standards:
• JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)
• JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages
• JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages
• JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements
N/A = not applicable
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
8.7 Schmitt-Trigger Inputs – General-Purpose I/O
(P1.0 to P1.7, P2.0 to P2.7, P3.0 to P3.4, P4.0 to P4.7, P5.0 to P5.5, P6.0 to P6.7, P7.0 to P7.5,
PJ.0 to PJ.3, RSTDVCC/SBWTDIO, RST/NMI)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)
PARAMETER
TEST CONDITIONS
VIT+
Positive-going input threshold voltage
VIT–
Negative-going input threshold voltage
Vhys
Input voltage hysteresis (VIT+ – VIT–)
RPull
Pullup or pulldown resistor(2)
For pullup: VIN = VSS
For pulldown: VIN = VCC
CI
Input capacitance
VIN = VSS or VCC
(1)
(2)
VCC
MIN
1.8 V
0.80
TYP
1.40
3V
1.50
2.10
1.8 V
0.45
1.00
3V
0.75
1.65
1.8 V
0.3
0.8
3V
0.4
1.0
20
35
MAX
UNIT
V
V
V
50
kΩ
5
pF
The same parametrics apply to clock input pin when crystal bypass mode is used on XT1 (XIN) or XT2 (XT2IN).
Also applies to RST pin when pullup or pulldown resistor is enabled.
8.8 Inputs – Interrupts
(P1.0 to P1.7, P2.0 to P2.7)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
t(int)
(1)
External interrupt
timing(1)
TEST CONDITIONS
VCC
External trigger pulse duration to set interrupt flag
MIN
1.8 V, 3 V
MAX
UNIT
20
ns
An external signal sets the interrupt flag every time the minimum interrupt pulse width t(int) is met. It may be set by trigger signals
shorter than t(int).
8.9 Leakage Current – General-Purpose I/O
(P1.0 to P1.7, P2.0 to P2.7, P3.0 to P3.4, P4.0 to P4.7, P5.0 to P5.5, P6.0 to P6.7, P7.0 to P7.5,
PJ.0 to PJ.3)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
Ilkg(Px.y)
(1)
(2)
TEST CONDITIONS
(1) (2)
High-impedance leakage current
VCC
MIN
MAX
1.8 V, 3 V
–50
50
UNIT
nA
The leakage current is measured with VSS or VCC applied to the corresponding pins, unless otherwise noted.
The leakage of the digital port pins is measured individually. The port pin is selected for input and the pullup or pulldown resistor is
disabled.
8.10 Outputs – General-Purpose I/O (Full Drive Strength) (P1.0 to P1.7, P2.0 to P2.7, P3.0 to
P3.4, P4.0 to P4.7, P5.0 to P5.5, P6.0 to P6.7, P7.0 to P7.5, PJ.0 to PJ.3)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
I(OHmax) = –3
VOH
High-level output voltage
mA(1)
I(OHmax) = –10 mA(2)
I(OHmax) = –5
mA(1)
I(OHmax) = –15 mA(2)
Copyright © 2020 Texas Instruments Incorporated
VCC
1.8 V
3V
MIN
MAX
VCC – 0.25
VCC
VCC – 0.60
VCC
VCC – 0.25
VCC
VCC – 0.60
VCC
UNIT
V
Submit Document Feedback
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
23
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
8.10 Outputs – General-Purpose I/O (Full Drive Strength) (P1.0 to P1.7, P2.0 to P2.7, P3.0 to
P3.4, P4.0 to P4.7, P5.0 to P5.5, P6.0 to P6.7, P7.0 to P7.5, PJ.0 to PJ.3) (continued)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
I(OLmax) = 3
VOL
Low-level output voltage
VCC
mA(1)
1.8 V
I(OLmax) = 10 mA(2)
I(OLmax) = 5
mA(1)
3V
I(OLmax) = 15 mA(2)
(1)
(2)
MIN
MAX
VSS
VSS + 0.25
VSS
VSS + 0.60
VSS
VSS + 0.25
VSS
VSS + 0.60
UNIT
V
The maximum total current, I(OHmax) and I(OLmax), for all outputs combined should not exceed ±48 mA to hold the maximum voltage
drop specified.
The maximum total current, I(OHmax)and I(OLmax), for all outputs combined should not exceed ±100 mA to hold the maximum voltage
drop specified.
8.11 Outputs – General-Purpose I/O (Reduced Drive Strength)
(P1.0 to P1.7, P2.0 to P2.7, P3.0 to P3.4, P4.0 to P4.7, P5.0 to P5.5, P6.0 to P6.7, P7.0 to P7.5,
PJ.0 to PJ.3)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(3)
PARAMETER
TEST CONDITIONS
I(OHmax) = –1
VOH
High-level output voltage
VCC
mA(1)
1.8 V
I(OHmax) = –3 mA(2)
I(OHmax) = –2
mA(1)
3.0 V
I(OHmax) = –6 mA(2)
I(OLmax) = 1
VOL
Low-level output voltage
mA(1)
1.8 V
I(OLmax) = 3 mA(2)
I(OLmax) = 2
mA(1)
3.0 V
I(OLmax) = 6 mA(2)
(1)
(2)
(3)
MIN
MAX
VCC – 0.25
VCC
VCC – 0.60
VCC
VCC – 0.25
VCC
VCC – 0.60
VCC
VSS
VSS + 0.25
VSS
VSS + 0.60
VSS
VSS + 0.25
VSS
VSS + 0.60
UNIT
V
V
The maximum total current, I(OHmax)and I(OLmax), for all outputs combined, should not exceed ±48 mA to hold the maximum voltage
drop specified.
The maximum total current, I(OHmax)and I(OLmax), for all outputs combined, should not exceed ±100 mA to hold the maximum voltage
drop specified.
Selecting reduced drive strength may reduce EMI.
8.12 Output Frequency – General-Purpose I/O
(P1.0 to P1.7, P2.0 to P2.7, P3.0 to P3.4, P4.0 to P4.7, P5.0 to P5.5, P6.0 to P6.7, P7.0 to P7.5,
PJ.0 to PJ.3)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
fPx.y
fPort_CLK
(1)
(2)
24
TEST CONDITIONS
Port output frequency
(with load)
See (1) (2)
Clock output frequency
ACLK, SMCLK, or MCLK ,
CL = 20 pF(2)
MIN
MAX
VCC = 1.8 V,
PMMCOREVx = 0
16
VCC = 3 V,
PMMCOREVx = 3
25
VCC = 1.8 V,
PMMCOREVx = 0
16
VCC = 3 V,
PMMCOREVx = 3
25
UNIT
MHz
MHz
A resistive divider with 2 × R1 between VCC and VSS is used as load. The output is connected to the center tap of the divider. For full
drive strength, R1 = 550 Ω. For reduced drive strength, R1 = 1.6 kΩ. CL = 20 pF is connected to the output to VSS.
The output voltage reaches at least 10% and 90% VCC at the specified toggle frequency.
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
8.13 Typical Characteristics – Outputs, Reduced Drive Strength (PxDS.y = 0)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
8.0
VCC = 3.0 V
Px.y
IOL – Typical Low-Level Output Current – mA
IOL – Typical Low-Level Output Current – mA
25.0
TA = 25°C
20.0
TA = 85°C
15.0
10.0
5.0
0.0
0.0
0.5
1.0
1.5
2.0
2.5
3.0
7.0
5.0
4.0
3.0
2.0
1.0
VOL – Low-Level Output Voltage – V
IOH – Typical High-Level Output Current – mA
IOH – Typical High-Level Output Current – mA
0.0
VCC = 3.0 V
Px.y
−5.0
−10.0
−25.0
0.0
TA = 85°C
TA = 25°C
0.5
1.0
1.5
2.0
2.5
3.0
3.5
VOH – High-Level Output Voltage – V
Figure 8-5. Typical High-Level Output Current vs
High-Level Output Voltage
Copyright © 2020 Texas Instruments Incorporated
1.0
1.5
2.0
Figure 8-4. Typical Low-Level Output Current vs
Low-Level Output Voltage
0.0
−20.0
0.5
VOL – Low-Level Output Voltage – V
Figure 8-3. Typical Low-Level Output Current vs
Low-Level Output Voltage
−15.0
TA = 85°C
6.0
0.0
0.0
3.5
TA = 25°C
VCC = 1.8 V
Px.y
−1.0
VCC = 1.8 V
Px.y
−2.0
−3.0
−4.0
−5.0
−6.0
TA = 85°C
TA = 25°C
−7.0
−8.0
0.0
0.5
1.0
1.5
VOH – High-Level Output Voltage – V
2.0
Figure 8-6. Typical High-Level Output Current vs
High-Level Output Voltage
Submit Document Feedback
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
25
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
8.14 Typical Characteristics – Outputs, Full Drive Strength (PxDS.y = 1)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
55.0
24
TA = 25°C
VCC = 3.0 V
Px.y
50.0
IOL – Typical Low-Level Output Current – mA
IOL – Typical Low-Level Output Current – mA
60.0
TA = 85°C
45.0
40.0
35.0
30.0
25.0
20.0
15.0
10.0
5.0
0.0
0.0
0.5
1.0
1.5
2.0
2.5
3.0
12
8
4
IOH – Typical High-Level Output Current – mA
IOH – Typical High-Level Output Current – mA
1.5
2.0
0
VCC = 3.0 V
Px.y
−10.0
−15.0
−20.0
−25.0
−30.0
−35.0
−40.0
−45.0
TA = 85°C
−55.0
VCC = 1.8 V
Px.y
−4
−8
−12
TA = 85°C
−16
TA = 25°C
TA = 25°C
0.5
1.0
1.5
2.0
2.5
3.0
3.5
VOH – High-Level Output Voltage – V
Figure 8-9. Typical High-Level Output Current vs
High-Level Output Voltage
26
1.0
Figure 8-8. Typical Low-Level Output Current vs
Low-Level Output Voltage
0.0
−60.0
0.0
0.5
VOL – Low-Level Output Voltage – V
Figure 8-7. Typical Low-Level Output Current vs
Low-Level Output Voltage
−50.0
TA = 85°C
16
VOL – Low-Level Output Voltage – V
−5.0
TA = 25°C
20
0
0.0
3.5
VCC = 1.8 V
Px.y
Submit Document Feedback
−20
0.0
0.5
1.0
1.5
2.0
VOH – High-Level Output Voltage – V
Figure 8-10. Typical High-Level Output Current vs
High-Level Output Voltage
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
8.15 Crystal Oscillator, XT1, Low-Frequency Mode
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)
PARAMETER
TEST CONDITIONS
VCC
MIN
fOSC = 32768 Hz, XTS = 0,
XT1BYPASS = 0, XT1DRIVEx = 1,
TA = 25°C
ΔIDVCC.LF
Differential XT1 oscillator crystal fOSC = 32768 Hz, XTS = 0,
current consumption from lowest XT1BYPASS = 0, XT1DRIVEx = 2,
drive setting, LF mode
TA = 25°C
32768
XT1 oscillator logic-level squareXTS = 0, XT1BYPASS = 1(2) (3)
wave input frequency, LF mode
10
32.768
XTS = 0,
XT1BYPASS = 0, XT1DRIVEx = 0,
fXT1,LF = 32768 Hz, CL,eff = 6 pF
210
XTS = 0,
XT1BYPASS = 0, XT1DRIVEx = 1,
fXT1,LF = 32768 Hz, CL,eff = 12 pF
300
Integrated effective load
capacitance, LF mode(5)
fFault,LF
tSTART,LF
(1)
(2)
(3)
(4)
(5)
5.5
XTS = 0, XCAPx = 2
8.5
XTS = 0, XCAPx = 3
12.0
XTS = 0, Measured at ACLK,
fXT1,LF = 32768 Hz
Oscillator fault frequency,
LF mode(7)
XTS = 0
XT1BYPASS = 1(8)
Start-up time, LF mode
fOSC = 32768 Hz, XTS = 0,
XT1BYPASS = 0, XT1DRIVEx = 0,
TA = 25°C, CL,eff = 6 pF
fOSC = 32768 Hz, XTS = 0,
XT1BYPASS = 0, XT1DRIVEx = 3,
TA = 25°C, CL,eff = 12 pF
50
kHz
1
XTS = 0, XCAPx = 1
Duty cycle, LF mode
Hz
kΩ
XTS = 0, XCAPx = 0(6)
CL,eff
UNIT
µA
0.170
XTS = 0, XT1BYPASS = 0
fXT1,LF,SW
OALF
3.0 V
0.290
XT1 oscillator crystal frequency,
LF mode
MAX
0.075
fOSC = 32768 Hz, XTS = 0,
XT1BYPASS = 0, XT1DRIVEx = 3,
TA = 25°C
fXT1,LF0
Oscillation allowance for
LF crystals(4)
TYP
pF
30%
70%
10
10000
Hz
1000
3.0 V
ms
500
To improve EMI on the XT1 oscillator, the following guidelines should be observed.
• Keep the trace between the device and the crystal as short as possible.
• Design a good ground plane around the oscillator pins.
• Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.
• Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.
• Use assembly materials and processes that avoid any parasitic load on the oscillator XIN and XOUT pins.
• If conformal coating is used, make sure that it does not induce capacitive or resistive leakage between the oscillator pins.
When XT1BYPASS is set, XT1 circuits are automatically powered down. Input signal is a digital square wave with parametrics defined
in the Schmitt-trigger Inputs section of this datasheet. When in crystal bypass mode, XIN can be configured so that it can support an
input digital waveform with swing levels from DVSS to DVCC.
Maximum frequency of operation of the entire device cannot be exceeded.
Oscillation allowance is based on a safety factor of 5 for recommended crystals. The oscillation allowance is a function of the
XT1DRIVEx settings and the effective load. In general, comparable oscillator allowance can be achieved based on the following
guidelines, but should be evaluated based on the actual crystal selected for the application:
• For XT1DRIVEx = 0, CL,eff ≤ 6 pF.
• For XT1DRIVEx = 1, 6 pF ≤ CL,eff ≤ 9 pF.
• For XT1DRIVEx = 2, 6 pF ≤ CL,eff ≤ 10 pF.
• For XT1DRIVEx = 3, CL,eff ≥ 6 pF.
Includes parasitic bond and package capacitance (approximately 2 pF per pin).
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
27
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
(6)
(7)
(8)
Because the PCB adds additional capacitance, verify the correct load by measuring the ACLK frequency. For a correct setup, the
effective load capacitance should always match the specification of the used crystal.
Requires external capacitors at both terminals. Values are specified by crystal manufacturers.
Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag.
Frequencies between the MIN and MAX specifications might set the flag.
Measured with logic-level input frequency but also applies to operation with crystals.
8.16 Crystal Oscillator, XT2
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1) (2)
PARAMETER
TEST CONDITIONS
VCC
MIN
fOSC = 4 MHz, XT2OFF = 0, TA = 25°C,
XT2BYPASS = 0, XT2DRIVEx = 0
IDVCC.XT2
XT2 oscillator crystal current
consumption
fOSC = 12 MHz, XT2OFF = 0, TA = 25°C,
XT2BYPASS = 0, XT2DRIVEx = 1
fOSC = 20 MHz, XT2OFF = 0, TA = 25°C,
XT2BYPASS = 0, XT2DRIVEx = 2
TYP
MAX
UNIT
200
260
3.0 V
µA
325
fOSC = 32 MHz, XT2OFF = 0, TA = 25°C,
XT2BYPASS = 0, XT2DRIVEx = 3
450
fXT2,HF0
XT2 oscillator crystal frequency,
mode 0
XT2DRIVEx = 0, XT2BYPASS = 0(3)
4
8
MHz
fXT2,HF1
XT2 oscillator crystal frequency,
mode 1
XT2DRIVEx = 1, XT2BYPASS = 0(3)
8
16
MHz
fXT2,HF2
XT2 oscillator crystal frequency,
mode 2
XT2DRIVEx = 2, XT2BYPASS = 0(3)
16
24
MHz
fXT2,HF3
XT2 oscillator crystal frequency,
mode 3
XT2DRIVEx = 3, XT2BYPASS = 0(3)
24
32
MHz
fXT2,HF,SW
XT2 oscillator logic-level squarewave input frequency, bypass mode
XT2BYPASS = 1(3) (4)
0.7
32
MHz
Oscillation allowance for
HF crystals(5)
OAHF
tSTART,HF
fFault,HF
(4)
28
XT2DRIVEx = 1, XT2BYPASS = 0,
fXT2,HF1 = 12 MHz, CL,eff = 15 pF
320
XT2DRIVEx = 2, XT2BYPASS = 0,
fXT2,HF2 = 20 MHz, CL,eff = 15 pF
200
XT2DRIVEx = 3, XT2BYPASS = 0,
fXT2,HF3 = 32 MHz, CL,eff = 15 pF
200
fOSC = 6 MHz, XT2BYPASS = 0,
XT2DRIVEx = 0, TA = 25°C, CL,eff = 15 pF
Start-up time
fOSC = 20 MHz, XT2BYPASS = 0,
XT2DRIVEx = 2, TA = 25°C, CL,eff = 15 pF
Duty cycle
(3)
450
Ω
0.5
3.0 V
ms
0.3
Integrated effective load
capacitance, HF mode(1) (6)
CL,eff
(1)
(2)
XT2DRIVEx = 0, XT2BYPASS = 0,
fXT2,HF0 = 6 MHz, CL,eff = 15 pF
Oscillator fault
1
Measured at ACLK, fXT2,HF2 = 20 MHz
frequency(7)
XT2BYPASS =
1(8)
40%
50%
30
pF
60%
300
kHz
Requires external capacitors at both terminals. Values are specified by crystal manufacturers.
To improve EMI on the XT2 oscillator the following guidelines should be observed.
• Keep the traces between the device and the crystal as short as possible.
• Design a good ground plane around the oscillator pins.
• Prevent crosstalk from other clock or data lines into oscillator pins XT2IN and XT2OUT.
• Avoid running PCB traces underneath or adjacent to the XT2IN and XT2OUT pins.
• Use assembly materials and processes that avoid any parasitic load on the oscillator XT2IN and XT2OUT pins.
• If conformal coating is used, make sure that it does not induce capacitive or resistive leakage between the oscillator pins.
This represents the maximum frequency that can be input to the device externally. Maximum frequency achievable on the device
operation is based on the frequencies present on ACLK, MCLK, and SMCLK cannot be exceed for a given range of operation.
When XT2BYPASS is set, the XT2 circuit is automatically powered down. Input signal is a digital square wave with parametrics defined
in the Schmitt-trigger Inputs section of this datasheet. When in crystal bypass mode, XT2IN can be configured so that it can support an
input digital waveform with swing levels from DVSS to DVCC.
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
(5)
(6)
(7)
(8)
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
Oscillation allowance is based on a safety factor of 5 for recommended crystals.
Includes parasitic bond and package capacitance (approximately 2 pF per pin).
Because the PCB adds additional capacitance, verify the correct load by measuring the ACLK frequency. For a correct setup, the
effective load capacitance should always match the specification of the used crystal.
Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag.
Frequencies between the MIN and MAX specifications might set the flag.
Measured with logic-level input frequency but also applies to operation with crystals. In general, an effective load capacitance of up to
18 pF can be supported.
8.17 Internal Very-Low-Power Low-Frequency Oscillator (VLO)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
fVLO
VLO frequency
dfVLO/dT
VLO frequency temperature drift
dfVLO/dVCC VLO frequency supply voltage drift
Duty cycle
(1)
(2)
TEST CONDITIONS
Measured at ACLK
VCC
1.8 V to 3.6 V
MIN
TYP
MAX
6
9.4
14
UNIT
kHz
ACLK(1)
1.8 V to 3.6 V
0.5
%/°C
Measured at ACLK(2)
1.8 V to 3.6 V
4
%/V
Measured at ACLK
1.8 V to 3.6 V
Measured at
40%
50%
60%
Calculated using the box method: (MAX(–40°C to 85°C) – MIN(–40°C to 85°C)) / MIN(–40°C to 85°C) / (85°C – (–40°C))
Calculated using the box method: (MAX(1.8 V to 3.6 V) – MIN(1.8 V to 3.6 V)) / MIN(1.8 V to 3.6 V) / (3.6 V – 1.8 V)
8.18 Internal Reference, Low-Frequency Oscillator (REFO)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
IREFO
fREFO
(1)
(2)
MIN
TYP
MAX
UNIT
TA = 25°C
1.8 V to 3.6 V
3
µA
REFO frequency calibrated
Measured at ACLK
1.8 V to 3.6 V
32768
Hz
Full temperature range
1.8 V to 3.6 V
–3.5%
3.5%
3V
–1.5%
1.5%
REFO frequency temperature drift
dfREFO/dVCC REFO frequency supply voltage drift
tSTART
VCC
REFO oscillator current consumption
REFO absolute tolerance calibrated
dfREFO/dT
TEST CONDITIONS
TA = 25°C
ACLK(1)
1.8 V to 3.6 V
0.01
%/°C
Measured at ACLK(2)
1.8 V to 3.6 V
1.0
%/V
Measured at
Duty cycle
Measured at ACLK
1.8 V to 3.6 V
REFO start-up time
40%/60% duty cycle
1.8 V to 3.6 V
40%
50%
25
60%
µs
Calculated using the box method: (MAX(–40°C to 85°C) – MIN(–40°C to 85°C)) / MIN(–40°C to 85°C) / (85°C – (–40°C))
Calculated using the box method: (MAX(1.8 V to 3.6 V) – MIN(1.8 V to 3.6 V)) / MIN(1.8 V to 3.6 V) / (3.6 V – 1.8 V)
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
29
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
8.19 DCO Frequency
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
0)(1)
fDCO(0,0)
DCO frequency (0,
fDCO(0,31)
DCO frequency (0, 31)(1)
0)(1)
fDCO(1,0)
DCO frequency (1,
fDCO(1,31)
DCO frequency (1, 31)(1)
0)(1)
fDCO(2,0)
DCO frequency (2,
fDCO(2,31)
DCO frequency (2, 31)(1)
0)(1)
fDCO(3,0)
DCO frequency (3,
fDCO(3,31)
DCO frequency (3, 31)(1)
0)(1)
MIN
TYP
MAX
UNIT
DCORSELx = 0, DCOx = 0, MODx = 0
0.07
0.20
MHz
DCORSELx = 0, DCOx = 31, MODx = 0
0.70
1.70
MHz
DCORSELx = 1, DCOx = 0, MODx = 0
0.15
0.36
MHz
DCORSELx = 1, DCOx = 31, MODx = 0
1.47
3.45
MHz
DCORSELx = 2, DCOx = 0, MODx = 0
0.32
0.75
MHz
DCORSELx = 2, DCOx = 31, MODx = 0
3.17
7.38
MHz
DCORSELx = 3, DCOx = 0, MODx = 0
0.64
1.51
MHz
DCORSELx = 3, DCOx = 31, MODx = 0
6.07
14.0
MHz
fDCO(4,0)
DCO frequency (4,
DCORSELx = 4, DCOx = 0, MODx = 0
1.3
3.2
MHz
fDCO(4,31)
DCO frequency (4, 31)(1)
DCORSELx = 4, DCOx = 31, MODx = 0
12.3
28.2
MHz
fDCO(5,0)
DCO frequency (5, 0)(1)
DCORSELx = 5, DCOx = 0, MODx = 0
2.5
6.0
MHz
DCORSELx = 5, DCOx = 31, MODx = 0
23.7
54.1
MHz
DCORSELx = 6, DCOx = 0, MODx = 0
4.6
10.7
MHz
DCORSELx = 6, DCOx = 31, MODx = 0
39.0
88.0
MHz
DCORSELx = 7, DCOx = 0, MODx = 0
8.5
19.6
MHz
31)(1)
fDCO(5,31)
DCO frequency (5,
fDCO(6,0)
DCO frequency (6, 0)(1)
31)(1)
fDCO(6,31)
DCO frequency (6,
fDCO(7,0)
DCO frequency (7, 0)(1)
31)(1)
fDCO(7,31)
DCO frequency (7,
DCORSELx = 7, DCOx = 31, MODx = 0
60
135
MHz
SDCORSEL
Frequency step between range
DCORSEL and DCORSEL + 1
SRSEL = fDCO(DCORSEL+1,DCO)/fDCO(DCORSEL,DCO)
1.2
2.3
ratio
SDCO
Frequency step between tap DCO
and DCO + 1
SDCO = fDCO(DCORSEL,DCO+1)/fDCO(DCORSEL,DCO)
1.02
1.12
ratio
Duty cycle
Measured at SMCLK
40%
drift(2)
dfDCO/dT
DCO frequency temperature
dfDCO/dVCC
DCO frequency voltage drift(3)
(1)
(2)
(3)
50%
60%
fDCO = 1 MHz,
0.1
%/°C
fDCO = 1 MHz
1.9
%/V
When selecting the proper DCO frequency range (DCORSELx), the target DCO frequency, fDCO, should be set to reside within the
range of fDCO(n, 0),MAX ≤ fDCO ≤ fDCO(n, 31),MIN, where fDCO(n, 0),MAX represents the maximum frequency specified for the DCO frequency,
range n, tap 0 (DCOx = 0) and fDCO(n,31),MIN represents the minimum frequency specified for the DCO frequency, range n, tap 31
(DCOx = 31). This ensures that the target DCO frequency resides within the range selected. It should also be noted that if the actual f
DCO frequency for the selected range causes the FLL or the application to select tap 0 or 31, the DCO fault flag is set to report that the
selected range is at its minimum or maximum tap setting.
Calculated using the box method: (MAX(–40°C to 85°C) – MIN(–40°C to 85°C)) / MIN(–40°C to 85°C) / (85°C – (–40°C))
Calculated using the box method: (MAX(1.8 V to 3.6 V) – MIN(1.8 V to 3.6 V)) / MIN(1.8 V to 3.6 V) / (3.6 V – 1.8 V)
100
VCC = 3.0 V
TA = 25°C
fDCO – MHz
10
DCOx = 31
1
0.1
DCOx = 0
0
1
2
3
4
5
6
7
DCORSEL
Figure 8-11. Typical DCO Frequency
30
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
8.20 PMM, Brownout Reset (BOR)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
V(DVCC_BOR_IT–)
BORH on voltage, DVCC falling level
| dDVCC/dt | < 3 V/s
V(DVCC_BOR_IT+)
BORH off voltage, DVCC rising level
| dDVCC/dt | < 3 V/s
V(DVCC_BOR_hys)
BORH hysteresis
tRESET
Pulse duration required at RST/NMI pin to
accept a reset
MIN
TYP
0.80
1.30
50
MAX
UNIT
1.45
V
1.50
V
250
mV
2
µs
8.21 PMM, Core Voltage
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNIT
VCORE3(AM)
Core voltage, active mode, PMMCOREV = 3
2.4 V ≤ DVCC ≤ 3.6 V
1.90
V
VCORE2(AM)
Core voltage, active mode, PMMCOREV = 2
2.2 V ≤ DVCC ≤ 3.6 V
1.80
V
VCORE1(AM)
Core voltage, active mode, PMMCOREV = 1
2.0 V ≤ DVCC ≤ 3.6 V
1.60
V
VCORE0(AM)
Core voltage, active mode, PMMCOREV = 0
1.8 V ≤ DVCC ≤ 3.6 V
1.40
V
VCORE3(LPM) Core voltage, low-current mode, PMMCOREV = 3
2.4 V ≤ DVCC ≤ 3.6 V
1.94
V
VCORE2(LPM) Core voltage, low-current mode, PMMCOREV = 2
2.2 V ≤ DVCC ≤ 3.6 V
1.84
V
VCORE1(LPM) Core voltage, low-current mode, PMMCOREV = 1
2.0 V ≤ DVCC ≤ 3.6 V
1.64
V
VCORE0(LPM) Core voltage, low-current mode, PMMCOREV = 0
1.8 V ≤ DVCC ≤ 3.6 V
1.44
V
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
31
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
8.22 PMM, SVS High Side
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
SVSHE = 0, DVCC = 3.6 V
I(SVSH)
SVS current consumption
V(SVSH_IT+)
tpd(SVSH)
t(SVSH)
dVDVCC/dt
(1)
32
SVSH on voltage level(1)
SVSH off voltage level(1)
SVSH propagation delay
SVSH on or off delay time
DVCC rise time
MAX UNIT
0
SVSHE = 1, DVCC = 3.6 V, SVSHFP = 0
nA
200
SVSHE = 1, DVCC = 3.6 V, SVSHFP = 1
V(SVSH_IT–)
TYP
1.5
µA
SVSHE = 1, SVSHRVL = 0
1.57
1.68
1.78
SVSHE = 1, SVSHRVL = 1
1.79
1.88
1.98
SVSHE = 1, SVSHRVL = 2
1.98
2.08
2.21
SVSHE = 1, SVSHRVL = 3
2.10
2.18
2.31
SVSHE = 1, SVSMHRRL = 0
1.62
1.74
1.85
SVSHE = 1, SVSMHRRL = 1
1.88
1.94
2.07
SVSHE = 1, SVSMHRRL = 2
2.07
2.14
2.28
SVSHE = 1, SVSMHRRL = 3
2.20
2.30
2.42
SVSHE = 1, SVSMHRRL = 4
2.32
2.40
2.55
SVSHE = 1, SVSMHRRL = 5
2.52
2.70
2.88
SVSHE = 1, SVSMHRRL = 6
2.90
3.10
3.23
SVSHE = 1, SVSMHRRL = 7
2.90
3.10
3.23
SVSHE = 1, dVDVCC/dt = 10 mV/µs,
SVSHFP = 1
2.5
SVSHE = 1, dVDVCC/dt = 1 mV/µs,
SVSHFP = 0
20
V
V
µs
SVSHE = 0 → 1, dVDVCC/dt = 10 mV/µs,
SVSHFP = 1
12.5
SVSHE = 0 → 1, dVDVCC/dt = 1 mV/µs,
SVSHFP = 0
100
µs
0
1000
V/s
The SVSH settings available depend on the VCORE (PMMCOREVx) setting. See the Power Management Module and Supply Voltage
Supervisor chapter in the MSP430x5xx and MSP430x6xx Family User's Guide on recommended settings and use.
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
8.23 PMM, SVM High Side
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
TYP
SVMHE = 0, DVCC = 3.6 V
I(SVMH)
SVMH current consumption
0
SVMHE= 1, DVCC = 3.6 V, SVMHFP = 0
SVMH on or off voltage level(1)
1.5
t(SVMH)
(1)
SVMH propagation delay
SVMH on or off delay time
µA
SVMHE = 1, SVSMHRRL = 0
1.62
1.74
1.85
SVMHE = 1, SVSMHRRL = 1
1.88
1.94
2.07
SVMHE = 1, SVSMHRRL = 2
2.07
2.14
2.28
SVMHE = 1, SVSMHRRL = 3
2.20
2.30
2.42
SVMHE = 1, SVSMHRRL = 4
2.32
2.40
2.55
SVMHE = 1, SVSMHRRL = 5
2.52
2.70
2.88
SVMHE = 1, SVSMHRRL = 6
2.90
3.10
3.23
SVMHE = 1, SVSMHRRL = 7
2.90
3.10
3.23
SVMHE = 1, SVMHOVPE = 1
tpd(SVMH)
nA
200
SVMHE = 1, DVCC = 3.6 V, SVMHFP = 1
V(SVMH)
MAX UNIT
V
3.75
SVMHE = 1, dVDVCC/dt = 10 mV/µs,
SVMHFP = 1
2.5
SVMHE = 1, dVDVCC/dt = 1 mV/µs,
SVMHFP = 0
20
µs
SVMHE = 0 → 1, dVDVCC/dt = 10 mV/µs,
SVMHFP = 1
12.5
SVMHE = 0 → 1, dVDVCC/dt = 1 mV/µs,
SVMHFP = 0
100
µs
The SVMH settings available depend on the VCORE (PMMCOREVx) setting. See the Power Management Module and Supply Voltage
Supervisor chapter in the MSP430x5xx and MSP430x6xx Family User's Guide on recommended settings and use.
8.24 PMM, SVS Low Side
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
TYP
SVSLE = 0, PMMCOREV = 2
I(SVSL)
SVSL current consumption
tpd(SVSL)
SVSL propagation delay
t(SVSL)
SVSL on or off delay time
Copyright © 2020 Texas Instruments Incorporated
SVSLE = 1, PMMCOREV = 2, SVSLFP = 0
0
200
SVSLE = 1, PMMCOREV = 2, SVSLFP = 1
1.5
SVSLE = 1, dVCORE/dt = 10 mV/µs, SVSLFP = 1
2.5
SVSLE = 1, dVCORE/dt = 1 mV/µs, SVSLFP = 0
20
SVSLE = 0 → 1, dVCORE/dt = 10 mV/µs, SVSLFP = 1
12.5
SVSLE = 0 → 1, dVCORE/dt = 1 mV/µs, SVSLFP = 0
100
MAX
UNIT
nA
µA
µs
µs
Submit Document Feedback
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
33
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
8.25 PMM, SVM Low Side
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
TYP
SVMLE = 0, PMMCOREV = 2
I(SVML)
SVML current consumption
tpd(SVML)
SVML propagation delay
t(SVML)
SVML on or off delay time
MAX
0
SVMLE= 1, PMMCOREV = 2, SVMLFP = 0
200
SVMLE= 1, PMMCOREV = 2, SVMLFP = 1
1.5
SVMLE = 1, dVCORE/dt = 10 mV/µs, SVMLFP = 1
2.5
SVMLE = 1, dVCORE/dt = 1 mV/µs, SVMLFP = 0
20
SVMLE = 0 → 1, dVCORE/dt = 10 mV/µs, SVMLFP = 1
12.5
SVMLE = 0 → 1, dVCORE/dt = 1 mV/µs, SVMLFP = 0
100
UNIT
nA
µA
µs
µs
8.26 Wake-up Times From Low-Power Modes and Reset
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
tWAKE-UP-FAST
Wake-up time from LPM2,
LPM3, or LPM4 to active
mode(1)
PMMCOREV = SVSMLRRL = n
(where n = 0, 1, 2, or 3),
SVSLFP = 1
tWAKE-UP-SLOW
Wake-up time from LPM2,
LPM3 or LPM4 to active
mode(2) (3)
PMMCOREV = SVSMLRRL = n
(where n = 0, 1, 2, or 3),
SVSLFP = 0
tWAKE-UP-LPM5
tWAKE-UP-RESET
(1)
(2)
(3)
(4)
34
MIN TYP MAX
UNIT
fMCLK ≥ 4 MHz
3.5
7.5
1 MHz < fMCLK < 4 MHz
4.5
9
150
175
µs
Wake-up time from LPM4.5 to
active mode(4)
2
3
ms
Wake-up time from RST or
BOR event to active mode(4)
2
3
ms
µs
This value represents the time from the wake-up event to the first active edge of MCLK. The wake-up time depends on the
performance mode of the low-side supervisor (SVSL) and low-side monitor (SVML). tWAKE-UP-FAST is possible with SVSL and SVML in
full performance mode or disabled. For specific register settings, see the Low-Side SVS and SVM Control and Performance Mode
Selection section in the Power Management Module and Supply Voltage Supervisor chapter of the MSP430x5xx and MSP430x6xx
Family User's Guide.
This value represents the time from the wake-up event to the first active edge of MCLK. The wake-up time depends on the
performance mode of the low-side supervisor (SVSL) and low-side monitor (SVML). tWAKE-UP-SLOW is set with SVSL and SVML in
normal mode (low current mode). For specific register settings, see the Low-Side SVS and SVM Control and Performance Mode
Selection section in the Power Management Module and Supply Voltage Supervisor chapter of the MSP430x5xx and MSP430x6xx
Family User's Guide.
The wake-up times from LPM0 and LPM1 to AM are not specified. They are proportional to MCLK cycle time but are not affected by
the performance mode settings as for LPM2, LPM3, and LPM4.
This value represents the time from the wake-up event to the reset vector execution.
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
8.27 Timer_A
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
VCC
MIN
MAX UNIT
25
Timer_A input clock frequency
Internal: SMCLK or ACLK,
External: TACLK,
Duty cycle = 50% ±10%
1.8 V
fTA
3.0 V
25
tTA,cap
Timer_A capture timing(1)
All capture inputs, minimum pulse
duration required for capture
1.8 V
20
3.0 V
20
(1)
MHz
ns
The external signal sets the interrupt flag every time the minimum parameters are met. It may be set even with trigger signals shorter
than tTA,cap.
8.28 Timer_B
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
fTB
Timer_B input clock frequency
Internal: SMCLK or ACLK,
External: TBCLK,
Duty cycle = 50% ±10%
tTB,cap
Timer_B capture timing(1)
All capture inputs, minimum pulse
duration required for capture
(1)
VCC
MIN
MAX UNIT
1.8 V
25
3.0 V
25
1.8 V
20
3.0 V
20
MHz
ns
The external signal sets the interrupt flag every time the minimum parameters are met. It may be set even with trigger signals shorter
than tTB,cap.
8.29 USCI (UART Mode) Clock Frequency
PARAMETER
TEST CONDITIONS
MIN
Internal: SMCLK or ACLK,
External: UCLK,
Duty cycle = 50% ±10%
fUSCI
USCI input clock frequency
fBITCLK
BITCLK clock frequency (equals baud rate in MBaud)
MAX UNIT
fSYSTEM
MHz
1
MHz
8.30 USCI (UART Mode)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
tτ
(1)
UART receive deglitch time(1)
VCC
MIN
1.8 V
50
MAX UNIT
600
3.0 V
50
600
ns
Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. To make sure that pulses are
correctly recognized, their duration should exceed the maximum specification of the deglitch time.
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
35
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
8.31 USCI (SPI Master Mode) Clock Frequency
PARAMETER
fUSCI
TEST CONDITIONS
MIN
Internal: SMCLK or ACLK,
Duty cycle = 50% ±10%
USCI input clock frequency
MAX UNIT
fSYSTEM
MHz
MAX
UNIT
fSYSTEM
MHz
8.32 USCI (SPI Master Mode)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)
(see Figure 8-12 and Figure 8-13)
PARAMETER
fUSCI
USCI input clock frequency
TEST CONDITIONS
PMMCOREV = 0
tSU,MI
SOMI input data setup time
PMMCOREV = 3
PMMCOREV = 0
tHD,MI
SOMI input data hold time
PMMCOREV = 3
tVALID,MO
SIMO output data valid time(2)
UCLK edge to SIMO valid,
CL = 20 pF, PMMCOREV = 0
UCLK edge to SIMO valid,
CL = 20 pF, PMMCOREV = 3
CL = 20 pF, PMMCOREV = 0
tHD,MO
SIMO output data hold time(3)
CL = 20 pF, PMMCOREV = 3
(1)
(2)
(3)
36
VCC
MIN
SMCLK, ACLK,
Duty cycle = 50% ±10%
1.8 V
55
3.0 V
38
2.4 V
30
3.0 V
25
1.8 V
0
3.0 V
0
2.4 V
0
3.0 V
0
ns
ns
1.8 V
20
3.0 V
18
2.4 V
16
3.0 V
1.8 V
ns
15
–10
3.0 V
–8
2.4 V
–10
3.0 V
–8
ns
fUCxCLK = 1/2tLO/HI with tLO/HI ≥ max(tVALID,MO(USCI) + tSU,SI(Slave), tSU,MI(USCI) + tVALID,SO(Slave))
For the slave parameters tSU,SI(Slave) and tVALID,SO(Slave), see the SPI parameters of the attached slave.
Specifies the time to drive the next valid data to the SIMO output after the output changing UCLK clock edge. Refer to the timing
diagrams in Figure 8-12 and Figure 8-13.
Specifies how long data on the SIMO output is valid after the output changing UCLK clock edge. Negative values indicate that the data
on the SIMO output can become invalid before the output changing clock edge observed on UCLK. Refer to the timing diagrams in
Figure 8-12 and Figure 8-13.
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
1/fUCxCLK
CKPL = 0
UCLK
CKPL = 1
tLO/HI
tLO/HI
tSU,MI
tHD,MI
SOMI
tHD,MO
tVALID,MO
SIMO
Figure 8-12. SPI Master Mode, CKPH = 0
1/fUCxCLK
CKPL = 0
UCLK
CKPL = 1
tLO/HI
tLO/HI
tSU,MI
tHD,MI
SOMI
tHD,MO
tVALID,MO
SIMO
Figure 8-13. SPI Master Mode, CKPH = 1
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
37
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
8.33 USCI (SPI Slave Mode)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)
(see Figure 8-14 and Figure 8-15)
PARAMETER
TEST CONDITIONS
PMMCOREV = 0
tSTE,LEAD
STE lead time, STE low to clock
PMMCOREV = 3
PMMCOREV = 0
tSTE,LAG
STE lag time, Last clock to STE high
PMMCOREV = 3
PMMCOREV = 0
tSTE,ACC
STE access time, STE low to SOMI data out
PMMCOREV = 3
PMMCOREV = 0
tSTE,DIS
STE disable time, STE high to SOMI high impedance
PMMCOREV = 3
PMMCOREV = 0
tSU,SI
SIMO input data setup time
PMMCOREV = 3
PMMCOREV = 0
tHD,SI
SIMO input data hold time
PMMCOREV = 3
tVALID,SO
SOMI output data valid time(2)
(2)
(3)
38
11
3.0 V
8
2.4 V
7
3.0 V
6
1.8 V
3
3.0 V
3
2.4 V
3
3.0 V
3
MAX
ns
1.8 V
66
3.0 V
50
2.4 V
36
3.0 V
30
1.8 V
30
3.0 V
23
2.4 V
16
3.0 V
ns
ns
13
1.8 V
5
3.0 V
5
2.4 V
2
3.0 V
2
1.8 V
5
3.0 V
5
2.4 V
5
3.0 V
5
ns
ns
76
3.0 V
60
UCLK edge to SOMI valid,
CL = 20 pF, PMMCOREV = 3
2.4 V
44
3.0 V
40
SOMI output data hold time(3)
UNIT
ns
UCLK edge to SOMI valid,
CL = 20 pF, PMMCOREV = 0
CL = 20 pF, PMMCOREV = 3
(1)
MIN
1.8 V
CL = 20 pF, PMMCOREV = 0
tHD,SO
VCC
1.8 V
1.8 V
18
3.0 V
12
2.4 V
10
3.0 V
8
ns
ns
fUCxCLK = 1/2tLO/HI with tLO/HI ≥ max(tVALID,MO(Master) + tSU,SI(USCI), tSU,MI(Master) + tVALID,SO(USCI))
For the master parameters tSU,MI(Master) and tVALID,MO(Master), see the SPI parameters of the attached master.
Specifies the time to drive the next valid data to the SOMI output after the output changing UCLK clock edge. Refer to the timing
diagrams in Figure 8-12 and Figure 8-13.
Specifies how long data on the SOMI output is valid after the output changing UCLK clock edge. Refer to the timing diagrams in Figure
8-12 and Figure 8-13.
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
tSTE,LEAD
tSTE,LAG
STE
1/fUCxCLK
CKPL = 0
UCLK
CKPL = 1
tLO/HI
tSU,SI
tLO/HI
tHD,SI
SIMO
tHD,SO
tVALID,SO
tSTE,ACC
tSTE,DIS
SOMI
Figure 8-14. SPI Slave Mode, CKPH = 0
tSTE,LAG
tSTE,LEAD
STE
1/fUCxCLK
CKPL = 0
UCLK
CKPL = 1
tLO/HI
tLO/HI
tHD,SI
tSU,SI
SIMO
tSTE,ACC
tHD,MO
tVALID,SO
tSTE,DIS
SOMI
Figure 8-15. SPI Slave Mode, CKPH = 1
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
39
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
8.34 USCI (I2C Mode)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 8-16)
PARAMETER
fUSCI
USCI input clock frequency
fSCL
SCL clock frequency
TEST CONDITIONS
VCC
MIN
Internal: SMCLK or ACLK,
External: UCLK
Duty cycle = 50% ±10%
2.2 V, 3 V
tHD,STA
Hold time (repeated) START
tSU,STA
Setup time for a repeated START
tHD,DAT
Data hold time
tSU,DAT
Data setup time
fSCL ≤ 100 kHz
fSCL ≤ 100 kHz
fSCL ≤ 100 kHz
Setup time for STOP
tSP
Pulse duration of spikes suppressed by input filter
400
kHz
µs
µs
0.6
2.2 V, 3 V
0
ns
2.2 V, 3 V
250
ns
4.0
µs
0.6
2.2 V, 3 V
tSU,STA
tHD,STA
MHz
4.7
2.2 V, 3 V
fSCL > 100 kHz
fSYSTEM
0.6
2.2 V, 3 V
fSCL > 100 kHz
UNIT
4.0
2.2 V, 3 V
fSCL > 100 kHz
tSU,STO
0
MAX
50
tHD,STA
600
ns
tBUF
SDA
tLOW
tHIGH
tSP
SCL
tSU,DAT
tSU,STO
tHD,DAT
Figure 8-16. I2C Mode Timing
40
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
8.35 10-Bit ADC, Power Supply and Input Range Conditions
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)
PARAMETER
TEST CONDITIONS
VCC
AVCC
Analog supply voltage
AVCC and DVCC are connected together,
AVSS and DVSS are connected together,
V(AVSS) = V(DVSS) = 0 V
V(Ax)
Analog input voltage range(2)
All ADC10_A pins: P1.0 to P1.5, P3.6, and
P3.7 terminals
Operating supply current into
AVCC terminal, REF module
and reference buffer off
fADC10CLK = 5.0 MHz, ADC10ON = 1,
REFON = 0, SHT0 = 0, SHT1 = 0,
ADC10DIV = 0, ADC10SREF = 00
IADC10_A
TYP
MAX
3.6
V
0
AVCC
V
60
100
3V
75
110
Operating supply current into
fADC10CLK = 5.0 MHz, ADC10ON = 1,
AVCC terminal, REF module on, REFON = 1, SHT0 = 0, SHT1 = 0,
reference buffer on
ADC10DIV = 0, ADC10SREF = 01
3V
113
150
fADC10CLK = 5.0 MHz, ADC10ON = 1,
Operating supply current into
REFON = 0, SHT0 = 0, SHT1 = 0,
AVCC terminal, REF module off,
ADC10DIV = 0, ADC10SREF = 10,
reference buffer on
VEREF = 2.5 V
3V
105
140
fADC10CLK = 5.0 MHz, ADC10ON = 1,
Operating supply current into
REFON = 0, SHT0 = 0, SHT1 = 0,
AVCC terminal, REF module off,
ADC10DIV = 0, ADC10SREF = 11,
reference buffer off
VEREF = 2.5 V
3V
70
110
2.2 V
3.5
Input capacitance
RI
Input MUX ON resistance
UNIT
1.8
2.2 V
CI
(1)
(2)
MIN
µA
Only one terminal Ax can be selected at
one time from the pad to the ADC10_A
capacitor array including wiring and pad
pF
AVCC > 2.0 V, 0 V ≤ VAx ≤ AVCC
36
1.8 V < AVCC < 2 V, 0 V ≤ VAx ≤ AVCC
96
kΩ
The leakage current is defined in the leakage current table with P6.x/Ax parameter.
The analog input voltage range must be within the selected reference voltage range VR+ to VR– for valid conversion results. The
external reference voltage requires decoupling capacitors. Two decoupling capacitors, 10 µF and 100 nF, should be connected to
VREF to decouple the dynamic current required for an external reference source if it is used for the ADC10_A. See also the
MSP430x5xx and MSP430x6xx Family User's Guide.
8.36 10-Bit ADC, Timing Parameters
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
VCC
MIN
TYP
MAX
UNIT
For specified performance of ADC10_A
linearity parameters
2.2 V, 3 V
0.45
5
5.5
MHz
Internal ADC10_A
oscillator(3)
ADC10DIV = 0, fADC10CLK = fADC10OSC
2.2 V, 3 V
4.2
4.8
5.4
MHz
2.2 V, 3 V
2.4
Conversion time
REFON = 0, Internal oscillator,
12 ADC10CLK cycles, 10-bit mode,
fADC10OSC = 4 MHz to 5 MHz
fADC10CLK
fADC10OSC
tCONVERT
TEST CONDITIONS
µs
External fADC10CLK from ACLK, MCLK or
SMCLK, ADC10SSEL ≠ 0
tADC10ON
Turnon settling time of
the ADC
See (1)
tSample
Sampling time
RS = 1000 Ω, RI = 96 k Ω, CI = 3.5 pF(2)
(1)
(2)
(3)
3.0
12 × 1 / f
ADC10CLK
100
1.8 V
3
3.0 V
1
ns
µs
The condition is that the error in a conversion started after tADC10ON is less than ±0.5 LSB. The reference and input signal are already
settled.
Approximately 8 Tau (τ) are needed to get an error of less than ±0.5 LSB
The ADC10OSC is sourced directly from MODOSC inside the UCS.
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
41
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
8.37 10-Bit ADC, Linearity Parameters
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
1.4 V ≤ (VeREF+ – VeREF–) ≤ 1.6 V, CVeREF+ = 20 pF
VCC
MIN
TYP
MAX
±1.0
UNIT
EI
Integral
linearity error
ED
Differential
linearity error
1.4 V ≤ (VeREF+ – VeREF–), CVeREF+ = 20 pF
2.2 V, 3 V
±1.0
LSB
EO
Offset error
1.4 V ≤ (VeREF+ – VeREF–), CVeREF+ = 20 pF,
Internal impedance of source RS < 100 Ω
2.2 V, 3 V
±1.0
LSB
EG
Gain error
1.4 V ≤ (VeREF+ – VeREF–), CVeREF+ = 20 pF,
ADC10SREFx = 11b
2.2 V, 3 V
±1.0
LSB
ET
Total unadjusted
error
1.4 V ≤ (VeREF+ – VeREF–), CVeREF+ = 20 pF,
ADC10SREFx = 11b
2.2 V, 3 V
±2.0
LSB
MAX
UNIT
1.6 V < (VeREF+ – VeREF–) ≤ VAVCC, CVeREF+ = 20 pF
2.2 V, 3 V
±1.0
±1.0
LSB
8.38 REF, External Reference
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)
PARAMETER
TEST CONDITIONS
VCC
MIN
TYP
VeREF+
Positive external
reference voltage input
VeREF+ > VeREF– (2)
1.4
AVCC
V
VeREF–
Negative external
reference voltage input
VeREF+ > VeREF– (3)
0
1.2
V
(VeREF+ –
VeREF–)
Differential external
reference voltage input
VeREF+ > VeREF– (4)
1.4
AVCC
V
–26
26
IVeREF+
IVeREF–
CVREF+/(1)
(2)
(3)
(4)
(5)
42
Static input current
1.4 V ≤ VeREF+ ≤ VAVCC , VeREF– = 0 V,
fADC10CLK = 5 MHz, ADC10SHTx = 0x0001,
Conversion rate 200 ksps
2.2 V, 3 V
1.4 V ≤ VeREF+ ≤ VAVCC , VeREF– = 0 V,
fADC10CLK = 5 MHZ, ADC10SHTX = 0x1000,
Conversion rate 20 ksps
2.2 V, 3 V
Capacitance at VeREF+
See
or VeREF- terminal
(5)
µA
–1
10
1
µF
The external reference is used during ADC conversion to charge and discharge the capacitance array. The input capacitance, CI, is
also the dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the
recommendations on analog-source impedance to allow the charge to settle for 10-bit accuracy.
The accuracy limits the minimum positive external reference voltage. Lower reference voltage levels may be applied with reduced
accuracy requirements.
The accuracy limits the maximum negative external reference voltage. Higher reference voltage levels may be applied with reduced
accuracy requirements.
The accuracy limits minimum external differential reference voltage. Lower differential reference voltage levels may be applied with
reduced accuracy requirements.
Two decoupling capacitors, 10 µF and 100 nF, should be connected to VREF to decouple the dynamic current required for an external
reference source if it is used for the ADC10_A. See also the MSP430x5xx and MSP430x6xx Family User's Guide.
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
8.39 REF, Built-In Reference
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)
PARAMETER
VREF+
AVCC(min)
Positive built-in reference
voltage
AVCC minimum voltage,
Positive built-in reference
active
Operating supply current into
AVCC terminal(1)
IREF+
TEST CONDITIONS
VCC
MIN
TYP
MAX
REFVSEL = {2} for 2.5 V, REFON = 1
3V
2.472
2.51
2.548
REFVSEL = {1} for 2.0 V, REFON = 1
3V
1.96
1.99
2.02
REFVSEL = {0} for 1.5 V, REFON = 1
2.2 V, 3 V
1.472
1.495
1.518
REFVSEL = {0} for 1.5 V
1.8
REFVSEL = {1} for 2.0 V
2.2
REFVSEL = {2} for 2.5 V
2.7
UNIT
V
V
fADC10CLK = 5.0 MHz,
REFON = 1, REFBURST = 0,
REFVSEL = {2} for 2.5 V
3V
18
24
µA
fADC10CLK = 5.0 MHz,
REFON = 1, REFBURST = 0,
REFVSEL = {1} for 2.0 V
3V
15.5
21
µA
fADC10CLK = 5.0 MHz,
REFON = 1, REFBURST = 0,
REFVSEL = {0} for 1.5 V
3V
13.5
21
µA
30
50
ppm/
°C
TCREF+
Temperature coefficient of built- IVREF+ = 0 A,
in reference(2)
REFVSEL = {0, 1, 2}, REFON = 1
ISENSOR
Operating supply current into
AVCC terminal(4)
REFON = 0, INCH = 0Ah,
ADC10ON = N/A, TA = 30°C
2.2 V
20
22
3V
20
22
VSENSOR
See (5)
ADC10ON = 1, INCH = 0Ah,
TA = 30°C
2.2 V
770
3V
770
VMID
AVCC divider at channel 11
ADC10ON = 1, INCH = 0Bh,
VMID ≈ 0.5 × VAVCC
2.2 V
1.06
1.1
1.14
3V
1.46
1.5
1.54
tSENSOR(sample)
Sample time required if
channel 10 is selected(6)
ADC10ON = 1, INCH = 0Ah,
Error of conversion result ≤ 1 LSB
30
µs
tVMID(sample)
Sample time required if
channel 11 is selected(7)
ADC10ON = 1, INCH = 0Bh,
Error of conversion result ≤ 1 LSB
1
µs
PSRR_DC
Power supply rejection ratio
(DC)
AVCC = AVCC(min) to AVCC(max),
TA = 25 °C,
REFVSEL = {0, 1, 2}, REFON = 1
120
µV/V
PSRR_AC
Power supply rejection ratio
(AC)
AVCC = AVCC(min) to AVCC(max),
TA = 25°C, f = 1 kHz, ΔVpp = 100 mV,
REFVSEL = {0, 1, 2}, REFON = 1
6.4
mV/V
tSETTLE
Settling time of reference
voltage(3)
AVCC = AVCC(min) to AVCC(max),
REFVSEL = {0, 1, 2}, REFON = 0 → 1
75
µs
(1)
(2)
(3)
(4)
(5)
(6)
(7)
µA
mV
V
The internal reference current is supplied through the AVCC terminal. Consumption is independent of the ADC10ON control bit, unless
a conversion is active. The REFON bit enables to settle the built-in reference before starting an A/D conversion.
Calculated using the box method: (MAX(–40°C to 85°C) – MIN(–40°C to 85°C)) / MIN(–40°C to 85°C)/(85°C – (–40°C)).
The condition is that the error in a conversion started after tREFON is less than ±0.5 LSB.
The sensor current ISENSOR is consumed if (ADC10ON = 1 and REFON = 1) or (ADC10ON = 1 and INCH = 0Ah and sample signal is
high). When REFON = 1, ISENSOR is already included in IREF+.
The temperature sensor offset can be significant. TI recommends a single-point calibration to minimize the offset error of the built-in
temperature sensor.
The typical equivalent impedance of the sensor is 51 kΩ. The sample time required includes the sensor-on time tSENSOR(on).
The on-time tVMID(on) is included in the sampling time tVMID(sample); no additional on time is needed.
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
43
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
8.40 Comparator_B
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
VCC
TEST CONDITIONS
VCC
Supply voltage
MIN
TYP
1.8
3.6
1.8 V
CBPWRMD = 00, CBON = 1,
CBRSx = 00
IAVCC_COMP
VREF
Comparator operating supply
current into AVCC, excludes
reference resistor ladder
Reference voltage level
IAVCC_REF
Quiescent current of resistor
ladder into AVCC, includes
REF module current
VIC
Common mode input range
VOFFSET
Input offset voltage
CIN
Input capacitance
RSIN
Series input resistance
Propagation delay, response
time
tPD
tPD,filter
tEN_CMP
tEN_REF
TCCB_REF
VCB_REF
44
Propagation delay with filter
active
Comparator enable time
Resistor reference enable time
2.2 V
31
38
3V
32
39
CBPWRMD = 01, CBON = 1,
CBRSx = 00
2.2 V, 3 V
10
17
CBPWRMD = 10, CBON = 1,
CBRSx = 00
2.2 V, 3 V
0.2
0.85
CBREFLx = 01, CBREFACC = 0
≥ 1.8 V
1.44
±2.5%
CBREFLx = 10, CBREFACC = 0
≥ 2.2 V
1.92
±2.5%
CBREFLx = 11, CBREFACC = 0
≥ 3.0 V
2.39
±2.5%
CBREFACC = 1, CBREFLx = 01,
CBRSx = 10, REFON = 0,
CBON = 0
2.2 V, 3 V
17
22
CBREFACC = 0, CBREFLx = 01,
CBRSx = 10, REFON = 0,
CBON = 0
2.2 V, 3 V
µA
33
CBPWRMD = 00
–20
20
CBPWRMD = 01 or 10
–10
10
5
On (switch closed)
3
50
CBPWRMD = 01, CBF = 0
600
CBPWRMD = 10, CBF = 0
50
CBPWRMD = 00, CBON = 1,
CBF = 1, CBFDLY = 00
0.35
0.6
1.5
CBPWRMD = 00, CBON = 1,
CBF = 1, CBFDLY = 01
0.6
1.0
1.8
CBPWRMD = 00, CBON = 1,
CBF = 1, CBFDLY = 10
1.0
1.8
3.4
CBPWRMD = 00, CBON = 1,
CBF = 1, CBFDLY = 11
1.8
3.4
6.5
1
2
kΩ
ns
µs
µs
µs
CBON = 0 to CBON = 1,
CBPWRMD = 10
VIN = reference into resistor ladder,
n = 0 to 31
mV
MΩ
450
CBON = 0 to CBON = 1
V
pF
4
CBPWRMD = 00, CBF = 0
100
1.0
CB_REF
Submit Document Feedback
40
VCC – 1
CBON = 0 to CBON = 1,
CBPWRMD = 00 or 01
V
µA
0
Off (switch open)
V
38
Temperature coefficient of V
Reference voltage for a given
tap
MAX UNIT
1.5
µs
50
ppm/
°C
VIN ×
VIN ×
VIN ×
(n + 0.5) / (n + 1) / (n + 1.5) /
32
32
32
V
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
8.41 Flash Memory
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TJ
DVCC(PGM/ERASE) Program and erase supply voltage
IPGM
MIN
TYP
1.8
MAX
3.6
UNIT
V
Average supply current from DVCC during program
3
5
IERASE
Average supply current from DVCC during erase
6
15
mA
IMERASE, IBANK
Average supply current from DVCC during mass erase or bank erase
6
15
mA
tCPT
Cumulative program time(1)
16
104
Program and erase endurance
tRetention
Data retention duration
tWord
Word or byte program time(2)
25°C
word(2)
105
mA
ms
cycles
100
years
64
85
µs
tBlock, 0
Block program time for first byte or
49
65
µs
tBlock, 1–(N–1)
Block program time for each additional byte or word, except for last
byte or word(2)
37
49
µs
tBlock, N
Block program time for last byte or word(2)
55
73
µs
tErase
Erase time for segment, mass erase, and bank erase when available(2)
23
32
ms
fMCLK,MGR
MCLK frequency in marginal read mode
(FCTL4.MGR0 = 1 or FCTL4. MGR1 = 1)
0
1
MHz
(1)
(2)
The cumulative program time must not be exceeded when writing to a 128-byte flash block. This parameter applies to all programming
methods: individual word write, individual byte write, and block write modes.
These values are hardwired into the state machine of the flash controller.
8.42 JTAG and Spy-Bi-Wire Interface
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
MAX
UNIT
fSBW
Spy-Bi-Wire input frequency
PARAMETER
2.2 V, 3 V
VCC
0
20
MHz
0.025
15
µs
1
µs
tSBW,Low
Spy-Bi-Wire low clock pulse length
2.2 V, 3 V
tSBW, En
Spy-Bi-Wire enable time (TEST high to acceptance of first clock edge)(1)
2.2 V, 3 V
tSBW,Rst
Spy-Bi-Wire return to normal operation time
fTCK
TCK input frequency - 4-wire JTAG(2)
Rinternal
Internal pulldown resistance on TEST
(1)
(2)
2.2 V
MIN
TYP
15
100
0
5
MHz
10
MHz
80
kΩ
3V
0
2.2 V, 3 V
45
60
µs
Tools that access the Spy-Bi-Wire interface must wait for the tSBW,En time after pulling the TEST/SBWTCK pin high before applying the
first SBWTCK clock edge.
fTCK may be restricted to meet the timing requirements of the module selected.
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
45
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
9 Detailed Description
9.1 CPU
The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All operations,
other than program-flow instructions, are performed as register operations in conjunction with seven addressing
modes for source operand and four addressing modes for destination operand.
The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to-register
operation execution time is one cycle of the CPU clock. Four of the registers, R0 to R3, are dedicated as
program counter, stack pointer, status register, and constant generator, respectively. The remaining registers are
general-purpose registers (see Figure 9-1).
Peripherals are connected to the CPU using data, address, and control buses. Peripherals can be managed with
all instructions.
The instruction set consists of the original 51 instructions with three formats and seven address modes and
additional instructions for the expanded address range. Each instruction can operate on word and byte data.
Program Counter
PC/R0
Stack Pointer
SP/R1
Status Register
Constant Generator
SR/CG1/R2
CG2/R3
General-Purpose Register
R4
General-Purpose Register
R5
General-Purpose Register
R6
General-Purpose Register
R7
General-Purpose Register
R8
General-Purpose Register
R9
General-Purpose Register
R10
General-Purpose Register
R11
General-Purpose Register
R12
General-Purpose Register
R13
General-Purpose Register
R14
General-Purpose Register
R15
Figure 9-1. CPU Registers
46
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
9.2 Operating Modes
The microcontrollers has one active mode and six software selectable low-power modes of operation. An
interrupt event can wake up the device from any of the low-power modes, service the request, and restore back
to the low-power mode on return from the interrupt program.
Software can configure the following operating modes:
•
•
•
•
•
•
•
Active mode (AM)
– All clocks are active
Low-power mode 0 (LPM0)
– CPU is disabled
– ACLK and SMCLK remain active, MCLK is disabled
– FLL loop control remains active
Low-power mode 1 (LPM1)
– CPU is disabled
– FLL loop control is disabled
– ACLK and SMCLK remain active, MCLK is disabled
Low-power mode 2 (LPM2)
– CPU is disabled
– MCLK and FLL loop control and DCOCLK are disabled
– DC generator of the DCO remains enabled
– ACLK remains active
Low-power mode 3 (LPM3)
– CPU is disabled
– MCLK, FLL loop control, and DCOCLK are disabled
– DC generator of the DCO is disabled
– ACLK remains active
Low-power mode 4 (LPM4)
– CPU is disabled
– ACLK is disabled
– MCLK, FLL loop control, and DCOCLK are disabled
– DC generator of the DCO is disabled
– Crystal oscillator is stopped
– Complete data retention
Low-power mode 4.5 (LPM4.5)
– Internal regulator disabled
– No data retention
– Wake-up input from RST/NMI, P1, and P2
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
47
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
9.3 Interrupt Vector Addresses
The interrupt vectors and the power-up start address are in the address range 0FFFFh to 0FF80h (see Table
9-1). The vector contains the 16-bit address of the interrupt-handler instruction sequence.
Table 9-1. Interrupt Sources, Flags, and Vectors
INTERRUPT SOURCE
INTERRUPT FLAG
SYSTEM
INTERRUPT
WORD
ADDRESS
PRIORITY
System Reset
Power up
External reset
Watchdog time-out, password violation
Flash memory password violation
PMM password violation
WDTIFG, KEYV (SYSRSTIV)(1) (3)
Reset
0FFFEh
63, highest
SVMLIFG, SVMHIFG, DLYLIFG, DLYHIFG, VLRLIFG,
VLRHIFG, VMAIFG, JMBNIFG, JMBOUTIFG (SYSSNIV)
(Non)maskable
0FFFCh
62
User NMI
NMI
Oscillator fault
Flash memory access violation
NMIIFG, OFIFG, ACCVIFG, BUSIFG (SYSUNIV)(1) (3)
(Non)maskable
0FFFAh
61
COMP_B
Comparator B interrupt flags (CBIV)(1) (2)
Maskable
0FFF8h
60
TB0
TB0CCR0 CCIFG0 (2)
Maskable
0FFF6h
59
TB0
TB0CCR1 CCIFG1 to TB0CCR6 CCIFG6,
TB0IFG (TB0IV)(1) (2)
Maskable
0FFF4h
58
System NMI
PMM
Vacant memory access
JTAG mailbox
(1)
(2)
(3)
(4)
(5)
48
(1)
WDT_A interval timer mode
WDTIFG
Maskable
0FFF2h
57
USCI_A0 receive or transmit
UCA0RXIFG, UCA0TXIFG (UCA0IV)(1) (2)
Maskable
0FFF0h
56
USCI_B0 receive or transmit
(UCB0IV)(1) (2)
Maskable
0FFEEh
55
ADC10_A
UCB0RXIFG, UCB0TXIFG
ADC10IFG0(1) (2) (5)
Maskable
0FFECh
54
TA0
TA0CCR0 CCIFG0(2)
Maskable
0FFEAh
53
TA0
TA0CCR1 CCIFG1 to TA0CCR4 CCIFG4,
TA0IFG (TA0IV)(1) (2)
Maskable
0FFE8h
52
Reserved
Reserved
Maskable
0FFE6h
51
DMA
DMA0IFG, DMA1IFG, DMA2IFG (DMAIV)(1) (2)
Maskable
0FFE4h
50
TA1
TA1CCR0 CCIFG0(2)
Maskable
0FFE2h
49
TA1
TA1CCR1 CCIFG1 to TA1CCR2 CCIFG2,
TA1IFG (TA1IV)(1) (2)
Maskable
0FFE0h
48
I/O port P1
P1IFG.0 to P1IFG.7 (P1IV)(1) (2)
Maskable
0FFDEh
47
USCI_A1 receive or transmit
UCA1RXIFG, UCA1TXIFG
(UCA1IV)(1) (2)
Maskable
0FFDCh
46
USCI_B1 receive or transmit
UCB1RXIFG, UCB1TXIFG (UCB1IV)(1) (2)
Maskable
0FFDAh
45
TA2
TA2CCR0 CCIFG0(2)
Maskable
0FFD8h
44
TA2
TA2CCR1 CCIFG1 to TA2CCR2 CCIFG2,
TA2IFG (TA2IV)(1) (2)
Maskable
0FFD6h
43
I/O port P2
P2IFG.0 to P2IFG.7 (P2IV)(1) (2)
Maskable
0FFD4h
42
RTC_A
RTCRDYIFG, RTCTEVIFG, RTCAIFG, RT0PSIFG,
RT1PSIFG (RTCIV)(1) (2)
Maskable
0FFD2h
41
0FFD0h
40
Reserved
Reserved(4)
⋮
⋮
0FF80h
0, lowest
Multiple source flags
Interrupt flags are in the module.
A reset is generated if the CPU tries to fetch instructions from within peripheral space or vacant memory space.
(Non)maskable: the individual interrupt enable bit can disable an interrupt event, but the general interrupt enable bit cannot disable it.
Reserved interrupt vectors at addresses are not used in this device and can be used for regular program code if necessary. To
maintain compatibility with other devices, TI recommends reserving these locations.
Only on devices with ADC, otherwise reserved.
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
9.4 Memory Organization
Table 9-2 summarizes the memory map of all device variants.
Table 9-2. Memory Organization
Memory (flash)
Main: interrupt vector
MSP430F5247,
MSP430F5242,
MSP430F5237,
MSP430F5232
MSP430F5249,
MSP430F5244,
MSP430F5239,
MSP430F5234
64KB
00FFFFh to 00FF80h
128KB
00FFFFh to 00FF80h
Bank D
N/A(1)
32KB
0243FFh to 01C400h
Bank C
N/A
32KB
01C3FFh to 014400h
Bank B
32KB
0143FFh to 00C400h
32KB
0143FFh to 00C400h
Bank A
32KB
00C3FFh to 004400h
32KB
00C3FFh to 004400h
Sector 3
2KB
0043FFh to 003C00h
2KB
0043FFh to 003C00h
Sector 2
2KB
003BFFh to 003400h
2KB
003BFFh to 003400h
Sector 1
2KB
0033FFh to 002C00h
2KB
0033FFh to 002C00h
Sector 0
2KB
002BFFh to 002400h
2KB
002BFFh to 002400h
A
128 B
001BFFh to 001B80h
128 B
001BFFh to 001B80h
B
128 B
001B7Fh to 001B00h
128 B
001B7Fh to 001B00h
C
128 B
001AFFh to 001A80h
128 B
001AFFh to 001A80h
D
128 B
001A7Fh to 001A00h
128 B
001A7Fh to 001A00h
Info A
128 B
0019FFh to 001980h
128 B
0019FFh to 001980h
Info B
128 B
00197Fh to 001900h
128 B
00197Fh to 001900h
Info C
128 B
0018FFh to 001880h
128 B
0018FFh to 001880h
Info D
128 B
00187Fh to 001800h
128 B
00187Fh to 001800h
BSL 3
512 B
0017FFh to 001600h
512 B
0017FFh to 001600h
BSL 2
512 B
0015FFh to 001400h
512 B
0015FFh to 001400h
BSL 1
512 B
0013FFh to 001200h
512 B
0013FFh to 001200h
BSL 0
512 B
0011FFh to 001000h
512 B
0011FFh to 001000h
4KB
000FFFh to 0h
4KB
000FFFh to 0h
Total Size
Main: code memory
RAM
TI factory memory (ROM)
Information memory (flash)
Bootloader (BSL) memory
(flash)
Peripherals
(1)
Size
N/A = Not available
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
49
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
9.5 Bootloader (BSL)
The BSL enables users to program the flash memory or RAM using a UART serial interface. Access to the
device memory by the BSL is protected by an user-defined password. The BSL requires a specific entry
sequence on the RSTDVCC/SBWTDIO and TEST/SBWTCK pins. Table 9-3 lists the required pins and their
functions. For details on interfacing to development tools and device programmers, see the MSP430 Hardware
Tools User's Guide. For a complete description of the features of the BSL and its implementation, see the
MSP430 Flash Device Bootloader (BSL) User's Guide.
Note
Devices from TI come factory programmed with the timer based UART BSL only. If the USCI based
BSL is preferred, it is also available, but must be programmed by the user.
Table 9-3. BSL Pin Requirements and Functions
DEVICE SIGNAL
BSL FUNCTION
RSTDVCC/SBWTDIO
External reset
TEST/SBWTCK
Enable BSL
P1.1
Data transmit
P1.2
Data receive
DVCC, AVCC
Device power supply
DVSS
Ground supply
9.6 JTAG Operation
9.6.1 JTAG Standard Interface
The MSP430 family supports the standard JTAG interface which requires four signals for sending and receiving
data. The JTAG signals are shared with general-purpose I/O. The TEST/SBWTCK pin is used to enable the
JTAG signals. In addition to these signals, the SBWTDIO is required to interface with MSP430 development
tools and device programmers. Table 9-4 lists the JTAG pin requirements. For details on interfacing to
development tools and device programmers, see the MSP430 Hardware Tools User's Guide. For a complete
description of the features of the JTAG interface and its implementation, see MSP430 Programming With the
JTAG Interface.
Table 9-4. JTAG Pin Requirements and Functions
DEVICE SIGNAL
DIRECTION
FUNCTION
PJ.3/TCK
IN
JTAG clock input
PJ.2/TMS
IN
JTAG state control
PJ.1/TDI/TCLK
IN
JTAG data input, TCLK input
PJ.0/TDO
OUT
JTAG data output
TEST/SBWTCK
IN
Enable JTAG pins
RSTDVCC/SBWTDIO
IN
External reset
DVCC, AVCC
Device power supply
DVSS
Ground supply
9.6.2 Spy-Bi-Wire Interface
In addition to the standard JTAG interface, the MSP430 family supports the two-wire Spy-Bi-Wire interface. SpyBi-Wire can be used to interface with MSP430 development tools and device programmers. Table 9-5 lists the
Spy-Bi-Wire interface pin requirements. For details on interfacing to development tools and device programmers,
see the MSP430 Hardware Tools User's Guide). For a complete description of the features of the JTAG interface
and its implementation, see MSP430 Programming With the JTAG Interface.
50
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
Table 9-5. Spy-Bi-Wire Pin Requirements and Functions
DEVICE SIGNAL
DIRECTION
FUNCTION
TEST/SBWTCK
IN
Spy-Bi-Wire clock input
SBWTDIO
IN, OUT
Spy-Bi-Wire data input/output
DVCC, AVCC
Device power supply
DVSS
Ground supply
9.7 Flash Memory
The flash memory can be programmed using the JTAG port, Spy-Bi-Wire (SBW), the BSL, or in-system by the
CPU. The CPU can perform single-byte, single-word, and long-word writes to the flash memory. Features of the
flash memory include:
•
•
•
•
Flash memory has n segments of main memory and four segments of information memory (A to D) of
128 bytes each. Each segment in main memory is 512 bytes in size.
Segments 0 to n may be erased in one step, or each segment may be individually erased.
Segments A to D can be erased individually. Segments A to D are also called information memory.
Segment A can be locked separately.
9.8 RAM
The RAM is made up of n sectors. Each sector can be completely powered down to save leakage; however, all
data is lost. Features of the RAM include:
•
•
•
RAM memory has n sectors. The size of a sector can be found in Section 9.4.
Each sector 0 to n can be complete disabled; however, data retention is lost.
Each sector 0 to n automatically enters low-power retention mode when possible.
9.9 Peripherals
Peripherals are connected to the CPU through data, address, and control buses. Peripherals can be managed
using all instructions. For complete module descriptions, see the MSP430F5xx and MSP430F6xx Family User's
Guide.
9.9.1 Digital I/O
•
•
•
•
•
•
•
All individual I/O bits are independently programmable.
Any combination of input, output, and interrupt conditions is possible.
Pullup or pulldown on all ports is programmable.
Drive strength on all ports is programmable.
All bits of ports P1 and P2 support edge-selectable interrupt and LPM4.5 wake-up input.
All instructions support read and write access to port-control registers.
Ports can be accessed byte-wise or word-wise in pairs.
9.9.2 Port Mapping Controller
The port mapping controller allows the flexible and reconfigurable mapping of digital functions to port P4 (see
Table 9-6).
Table 9-6. Port Mapping Mnemonics and Functions
VALUE
0
1
2
PxMAPy MNEMONIC
INPUT PIN FUNCTION
OUTPUT PIN FUNCTION
PM_NONE
None
DVSS
PM_CBOUT0
–
COMP_B output
PM_TB0CLK
TB0 clock input
–
PM_ADC10CLK
–
ADC10CLK
PM_DMAE0
DMAE0 input
–
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
51
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
Table 9-6. Port Mapping Mnemonics and Functions (continued)
VALUE
3
PxMAPy MNEMONIC
INPUT PIN FUNCTION
OUTPUT PIN FUNCTION
PM_SVMOUT
–
SVM output
PM_TB0OUTH
TB0 high impedance input TB0OUTH
–
4
PM_TB0CCR0A
TB0 CCR0 capture input CCI0A
TB0 CCR0 compare output Out0
5
PM_TB0CCR1A
TB0 CCR1 capture input CCI1A
TB0 CCR1 compare output Out1
6
PM_TB0CCR2A
TB0 CCR2 capture input CCI2A
TB0 CCR2 compare output Out2
7
PM_TB0CCR3A
TB0 CCR3 capture input CCI3A
TB0 CCR3 compare output Out3
8
PM_TB0CCR4A
TB0 CCR4 capture input CCI4A
TB0 CCR4 compare output Out4
9
PM_TB0CCR5A
TB0 CCR5 capture input CCI5A
TB0 CCR5 compare output Out5
10
PM_TB0CCR6A
TB0 CCR6 capture input CCI6A
TB0 CCR6 compare output Out6
11
12
13
14
15
16
PM_UCA1RXD
USCI_A1 UART RXD (Direction controlled by USCI – input)
PM_UCA1SOMI
USCI_A1 SPI slave out master in (direction controlled by USCI)
PM_UCA1TXD
USCI_A1 UART TXD (Direction controlled by USCI – output)
PM_UCA1SIMO
USCI_A1 SPI slave in master out (direction controlled by USCI)
PM_UCA1CLK
USCI_A1 clock input/output (direction controlled by USCI)
PM_UCB1STE
USCI_B1 SPI slave transmit enable (direction controlled by USCI)
PM_UCB1SOMI
USCI_B1 SPI slave out master in (direction controlled by USCI)
PM_UCB1SCL
USCI_B1 I2C clock (open drain and direction controlled by USCI)
PM_UCB1SIMO
USCI_B1 SPI slave in master out (direction controlled by USCI)
PM_UCB1SDA
USCI_B1 I2C data (open drain and direction controlled by USCI)
PM_UCB1CLK
USCI_B1 clock input/output (direction controlled by USCI)
PM_UCA1STE
USCI_A1 SPI slave transmit enable (direction controlled by USCI)
17
PM_CBOUT1
None
COMP_B output
18
PM_MCLK
None
MCLK
None
RTCCLK output
19
20
21
22
23
24
25
PM_RTCCLK
PM_UCA0RXD
USCI_A0 UART RXD (Direction controlled by USCI – input)
PM_UCA0SOMI
USCI_A0 SPI slave out master in (direction controlled by USCI)
PM_UCA0TXD
USCI_A0 UART TXD (Direction controlled by USCI – output)
PM_UCA0SIMO
USCI_A0 SPI slave in master out (direction controlled by USCI)
PM_UCA0CLK
USCI_A0 clock input/output (direction controlled by USCI)
PM_UCB0STE
USCI_B0 SPI slave transmit enable (direction controlled by USCI)
PM_UCB0SOMI
USCI_B0 SPI slave out master in (direction controlled by USCI)
PM_UCB0SCL
USCI_B0 I2C clock (open drain and direction controlled by USCI)
PM_UCB0SIMO
USCI_B0 SPI slave in master out (direction controlled by USCI)
PM_UCB0SDA
USCI_B0 I2C data (open drain and direction controlled by USCI)
PM_UCB0CLK
USCI_B0 clock input/output (direction controlled by USCI)
PM_UCA0STE
USCI_A0 SPI slave transmit enable (direction controlled by USCI)
26–30
31 (0FFh)(1)
(1)
Reserved
PM_ANALOG
None
DVSS
Disables the output driver and the input Schmitt-trigger to prevent parasitic
cross currents when applying analog signals.
The value of the PM_ANALOG mnemonic is set to 0FFh. The port mapping registers are only 5 bits wide, and the upper bits are
ignored, which results in a read value of 31.
Table 9-7 lists the default settings for all pins that support port mapping.
52
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
Table 9-7. Default Mapping
PIN
(1)
PxMAPy MNEMONIC
INPUT PIN FUNCTION
OUTPUT PIN FUNCTION
P4.0/P4MAP0
PM_UCB1STE/PM_UCA1CLK
USCI_B1 SPI slave transmit enable (direction controlled by USCI)
USCI_A1 clock input/output (direction controlled by USCI)
P4.1/P4MAP1
PM_UCB1SIMO/PM_UCB1SDA
USCI_B1 SPI slave in master out (direction controlled by USCI)
USCI_B1 I2C data (open drain and direction controlled by USCI)
P4.2/P4MAP2
PM_UCB1SOMI/PM_UCB1SCL
USCI_B1 SPI slave out master in (direction controlled by USCI)
USCI_B1 I2C clock (open drain and direction controlled by USCI)
P4.3/P4MAP3
PM_UCB1CLK/PM_UCA1STE
USCI_A1 SPI slave transmit enable (direction controlled by USCI)
USCI_B1 clock input/output (direction controlled by USCI)
P4.4/P4MAP4
PM_UCA1TXD/PM_UCA1SIMO
USCI_A1 UART TXD (Direction controlled by USCI – output)
USCI_A1 SPI slave in master out (direction controlled by USCI)
P4.5/P4MAP5
PM_UCA1RXD/PM_UCA1SOMI
USCI_A1 UART RXD (Direction controlled by USCI – input)
USCI_A1 SPI slave out master in (direction controlled by USCI)
P4.6/P4MAP6
PM_NONE
None
DVSS
P4.7/P4MAP7(1)
PM_NONE
None
DVSS
Not available on all devices
9.9.3 Oscillator and System Clock
The clock system in the MSP430F524x and MSP430F523x family of devices is supported by the Unified Clock
System (UCS) module that includes support for a 32-kHz watch crystal oscillator (XT1 LF mode only; XT1 HF
mode is not supported), an internal very low-power low-frequency oscillator (VLO), an internal trimmed lowfrequency oscillator (REFO), an integrated internal digitally controlled oscillator (DCO), and a high-frequency
crystal oscillator (XT2). The UCS module is designed to meet the requirements of both low system cost and low
power consumption. The UCS module features digital frequency-locked loop (FLL) hardware that, in conjunction
with a digital modulator, stabilizes the DCO frequency to a programmable multiple of the selected FLL reference
frequency. The internal DCO provides a fast turnon clock source and stabilizes in 3.5 µs (typical). The UCS
module provides the following clock signals:
•
•
•
•
Auxiliary clock (ACLK), sourced from a 32-kHz watch crystal (XT1), a high-frequency crystal (XT2), the
internal low-frequency oscillator (VLO), the trimmed low-frequency oscillator (REFO), or the internal DCO.
Main clock (MCLK), the system clock used by the CPU. MCLK can be sourced by same sources made
available to ACLK.
Sub-Main clock (SMCLK), the subsystem clock used by the peripheral modules. SMCLK can be sourced by
same sources made available to ACLK.
ACLK/n, the buffered output of ACLK, ACLK/2, ACLK/4, ACLK/8, ACLK/16, ACLK/32.
9.9.4 Power-Management Module (PMM)
The PMM includes an integrated voltage regulator that supplies the core voltage to the device and contains
programmable output levels to provide for power optimization. The PMM also includes supply voltage supervisor
(SVS) and supply voltage monitoring (SVM) circuitry, as well as brownout protection. The brownout circuit is
implemented to provide the proper internal reset signal to the device during power-on and power-off. The SVS
and SVM circuitry detects if the supply voltage drops below a user-selectable level and supports both supply
voltage supervision (the device is automatically reset) and supply voltage monitoring (SVM) (the device is not
automatically reset). SVS and SVM circuitry is available on the primary supply and core supply.
9.9.5 Hardware Multiplier (MPY)
The multiplication operation is supported by a dedicated peripheral module. The module performs operations
with 32-, 24-, 16-, and 8-bit operands. The module supports signed and unsigned multiplication as well as signed
and unsigned multiply-and-accumulate operations.
9.9.6 Real-Time Clock (RTC_A)
The RTC_A module can be used as a general-purpose 32-bit counter (counter mode) or as an integrated realtime clock (RTC) (calendar mode). In counter mode, the RTC_A also includes two independent 8-bit timers that
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
53
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
can be cascaded to form a 16-bit timer/counter. Both timers can be read and written by software. Calendar mode
integrates an internal calendar which compensates for months with less than 31 days and includes leap year
correction. The RTC_A also supports flexible alarm functions and offset-calibration hardware.
9.9.7 Watchdog Timer (WDT_A)
The primary function of the WDT_A module is to perform a controlled system restart after a software problem
occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed
in an application, the module can be configured as an interval timer and can generate interrupts at selected time
intervals.
54
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
9.9.8 System (SYS) Module
The SYS module handles many of the system functions within the device. These include power-on reset (POR)
and power-up clear (PUC) handling, NMI source selection and management, reset interrupt vector generators,
bootloader entry mechanisms, and configuration management (device descriptors). It also includes a data
exchange mechanism through JTAG called a JTAG mailbox that can be used in the application. Table 9-8 lists
the SYS module interrupt vector registers.
Table 9-8. System Module Interrupt Vector Registers
INTERRUPT VECTOR REGISTER
ADDRESS
SYSRSTIV, System Reset
SYSSNIV, System NMI
SYSUNIV, User NMI
Copyright © 2020 Texas Instruments Incorporated
019Eh
019Ch
019Ah
INTERRUPT EVENT
VALUE
No interrupt pending
00h
Brownout (BOR)
02h
RST/NMI (BOR)
04h
PMMSWBOR (BOR)
06h
Wakeup from LPMx.5
08h
Security violation (BOR)
0Ah
SVSL (POR)
0Ch
SVSH (POR)
0Eh
SVML_OVP (POR)
10h
SVMH_OVP (POR)
12h
PMMSWPOR (POR)
14h
WDT time-out (PUC)
16h
WDT password violation (PUC)
18h
KEYV flash password violation (PUC)
1Ah
Reserved
1Ch
Peripheral area fetch (PUC)
1Eh
PMM password violation (PUC)
20h
Reserved
22h to 3Eh
No interrupt pending
00h
SVMLIFG
02h
SVMHIFG
04h
SVSMLDLYIFG
06h
SVSMHDLYIFG
08h
VMAIFG
0Ah
JMBINIFG
0Ch
JMBOUTIFG
0Eh
SVMLVLRIFG
10h
SVMHVLRIFG
12h
Reserved
14h to 1Eh
No interrupt pending
00h
NMIIFG
02h
OFIFG
04h
ACCVIFG
06h
Reserved
08h
Reserved
0Ah to 1Eh
PRIORITY
Highest
Lowest
Highest
Lowest
Highest
Lowest
Submit Document Feedback
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
55
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
9.9.9 DMA Controller
The DMA controller allows movement of data from one memory address to another without CPU intervention.
For example, the DMA controller can move data from the ADC10_A conversion memory to RAM. Using the DMA
controller can increase the throughput of peripheral modules. The DMA controller reduces system power
consumption by allowing the CPU to remain in sleep mode, without having to awaken to move data to or from a
peripheral. Table 9-9 lists the sources that can trigger the DMA.
Table 9-9. DMA Trigger Assignments
TRIGGER
(1)
(2)
56
CHANNEL(1)
0
1
2
0
DMAREQ
DMAREQ
DMAREQ
1
TA0CCR0 CCIFG
TA0CCR0 CCIFG
TA0CCR0 CCIFG
2
TA0CCR2 CCIFG
TA0CCR2 CCIFG
TA0CCR2 CCIFG
3
TA1CCR0 CCIFG
TA1CCR0 CCIFG
TA1CCR0 CCIFG
4
TA1CCR2 CCIFG
TA1CCR2 CCIFG
TA1CCR2 CCIFG
5
TA2CCR0 CCIFG
TA2CCR0 CCIFG
TA2CCR0 CCIFG
6
TA2CCR2 CCIFG
TA2CCR2 CCIFG
TA2CCR2 CCIFG
7
TB0CCR0 CCIFG
TB0CCR0 CCIFG
TB0CCR0 CCIFG
8
TB0CCR2 CCIFG
TB0CCR2 CCIFG
TB0CCR2 CCIFG
9
Reserved
Reserved
Reserved
10
Reserved
Reserved
Reserved
11
Reserved
Reserved
Reserved
12
Reserved
Reserved
Reserved
13
Reserved
Reserved
Reserved
14
Reserved
Reserved
Reserved
15
Reserved
Reserved
Reserved
16
UCA0RXIFG
UCA0RXIFG
UCA0RXIFG
17
UCA0TXIFG
UCA0TXIFG
UCA0TXIFG
18
UCB0RXIFG
UCB0RXIFG
UCB0RXIFG
19
UCB0TXIFG
UCB0TXIFG
UCB0TXIFG
20
UCA1RXIFG
UCA1RXIFG
UCA1RXIFG
21
UCA1TXIFG
UCA1TXIFG
UCA1TXIFG
22
UCB1RXIFG
UCB1RXIFG
UCB1RXIFG
23
UCB1TXIFG
UCB1TXIFG
UCB1TXIFG
24
ADC10IFG0(2)
ADC10IFG0(2)
ADC10IFG0(2)
25
Reserved
Reserved
Reserved
26
Reserved
Reserved
Reserved
27
Reserved
Reserved
Reserved
28
Reserved
Reserved
Reserved
29
MPY ready
MPY ready
MPY ready
30
DMA2IFG
DMA0IFG
DMA1IFG
31
DMAE0
DMAE0
DMAE0
If a reserved trigger source is selected, no trigger is generated.
Only on devices with ADC. Reserved on devices without ADC.
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
9.9.10 Universal Serial Communication Interface (USCI)
The USCI modules are used for serial data communication. The USCI module supports synchronous
communication protocols such as SPI (3- or 4-pin) and I2C, and asynchronous communication protocols such as
UART, enhanced UART with automatic baud-rate detection, and IrDA. Each USCI module contains two portions,
A and B.
The USCI_An module provides support for SPI (3- or 4-pin), UART, enhanced UART, or IrDA.
The USCI_Bn module provides support for SPI (3- or 4-pin) or I2C.
The MSP430F524x and MSP430F523x series include two complete USCI modules (n = 0, 1).
9.9.11 TA0
TA0 is a 16-bit timer/counter (Timer_A type) with five capture/compare registers. TA0 can support multiple
captures and compares, PWM outputs, and interval timing (see Table 9-10). TA0 also has extensive interrupt
capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/
compare registers.
Table 9-10. TA0 Signal Connections
INPUT PIN NUMBER
RGC, ZXH,
ZQE
RGZ
DEVICE
INPUT
SIGNAL
MODULE
INPUT
SIGNAL
18, H2-P1.0
13-P1.0
TA0CLK
TACLK
ACLK
(internal)
ACLK
SMCLK
(internal)
SMCLK
18, H2-P1.0
13-P1.0
TA0CLK
TACLK
19, H3-P1.1
14-P1.1
TA0.0
CCI0A
DVSS
CCI0B
DVSS
GND
20, J3-P1.2
21, G4-P1.3
22, H4-P1.4
23, J4-P1.5
15-P1.2
16-P1.3
17-P1.4
18-P1.5
DVCC
VCC
TA0.1
CCI1A
CBOUT
(internal)
CCI1B
DVSS
GND
DVCC
VCC
TA0.2
CCI2A
ACLK
(internal)
CCI2B
DVSS
GND
DVCC
VCC
TA0.3
CCI3A
DVSS
CCI3B
DVSS
GND
DVCC
VCC
TA0.4
CCI4A
DVSS
CCI4B
DVSS
GND
DVCC
VCC
Copyright © 2020 Texas Instruments Incorporated
MODULE
BLOCK
MODULE
OUTPUT
SIGNAL
DEVICE
OUTPUT
SIGNAL
Timer
NA
NA
CCR0
CCR1
CCR2
CCR3
CCR4
TA0
TA1
TA2
TA3
TA4
OUTPUT PIN NUMBER
RGC, ZXH, ZQE
RGZ
19, H3-P1.1
14-P1.1
20, J3-P1.2
15-P1.2
TA0.0
TA0.1
ADC10 (internal) ADC10 (internal)
ADC10SHSx = {1} ADC10SHSx = {1}
21, G4-P1.3
16-P1.3
22, H4-P1.4
17-P1.4
23, J4-P1.5
18-P1.5
TA0.2
TA0.3
TA0.4
Submit Document Feedback
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
57
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
9.9.12 TA1
TA1 is a 16-bit timer/counter (Timer_A type) with three capture/compare registers. TA1 can support multiple
captures and compares, PWM outputs, and interval timing (see Table 9-11). TA1 also has extensive interrupt
capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/
compare registers.
Table 9-11. TA1 Signal Connections
INPUT PIN NUMBER
RGC, ZXH,
ZQE
24, G5-P1.6
RGZ
DEVICE
INPUT
SIGNAL
MODULE
INPUT
SIGNAL
19-P1.6
TA1CLK
TACLK
ACLK
(internal)
ACLK
SMCLK
(internal)
SMCLK
24, G5-P1.6
19-P1.6
TA1CLK
TACLK
25, H5-P1.7
20-P1.7
TA1.0
CCI0A
DVSS
CCI0B
DVSS
GND
DVCC
VCC
26, J5-P2.0
TA1.1
CCI1A
CBOUT
(internal)
CCI1B
DVSS
GND
DVCC
VCC
TA1.2
CCI2A
ACLK
(internal)
CCI2B
DVSS
GND
DVCC
VCC
27, G6-P2.1
58
Submit Document Feedback
MODULE
BLOCK
MODULE
OUTPUT
SIGNAL
DEVICE
OUTPUT
SIGNAL
Timer
NA
NA
CCR0
TA0
OUTPUT PIN NUMBER
RGC, ZXH,
ZQE
RGZ
25, H5-P1.7
20-P1.7
TA1.0
26, J5-P2.0
CCR1
TA1
TA1.1
27, G6-P2.1
CCR2
TA2
TA1.2
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
9.9.13 TA2
TA2 is a 16-bit timer/counter (Timer_A type) with three capture/compare registers. TA2 can support multiple
captures and compares, PWM outputs, and interval timing (see Table 9-12). TA2 also has extensive interrupt
capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/
compare registers.
Table 9-12. TA2 Signal Connections
INPUT PIN NUMBER
DEVICE
INPUT
SIGNAL
MODULE
INPUT
SIGNAL
TA2CLK
TACLK
ACLK
(internal)
ACLK
SMCLK
(internal)
SMCLK
28, J6-P2.2
TA2CLK
TACLK
29, H6-P2.3
TA2.0
CCI0A
DVSS
CCI0B
DVSS
GND
DVCC
VCC
RGC, ZXH,
ZQE
28, J6-P2.2
30, J7-P2.4
31, J8-P2.5
RGZ
TA2.1
CCI1A
CBOUT
(internal)
CCI1B
DVSS
GND
DVCC
VCC
TA2.2
CCI2A
ACLK
(internal)
CCI2B
DVSS
GND
DVCC
VCC
Copyright © 2020 Texas Instruments Incorporated
MODULE
BLOCK
MODULE
OUTPUT
SIGNAL
DEVICE
OUTPUT
SIGNAL
Timer
NA
NA
OUTPUT PIN NUMBER
RGC, ZXH,
ZQE
RGZ
29, H6-P2.3
CCR0
TA0
TA2.0
30, J7-P2.4
CCR1
TA1
TA2.1
31, J8-P2.5
CCR2
TA2
TA2.2
Submit Document Feedback
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
59
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
9.9.14 TB0
TB0 is a 16-bit timer/counter (Timer_B type) with seven capture/compare registers. TB0 can support multiple
captures and compares, PWM outputs, and interval timing (see Table 9-13). TB0 also has extensive interrupt
capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/
compare registers.
Table 9-13. TB0 Signal Connections
INPUT PIN NUMBER
RGC, ZXH,
ZQE
RGZ
(1)
(1)
DEVICE
INPUT
SIGNAL
MODULE
INPUT
SIGNAL
TB0CLK
TBCLK
ACLK
(internal)
ACLK
SMCLK
(internal)
SMCLK
(1)
(1)
TB0CLK
TBCLK
49, B8(9)P7.0(1)
(1)
TB0.0
CCI0A
49, B8(9)P7.0(1)
(1)
TB0.0
CCI0B
DVSS
GND
50, A9-P7.1(1)
DVCC
VCC
TB0.1
CCI1A
CBOUT
(internal)
CCI1B
(1)
DVSS
GND
DVCC
VCC
B7-P7.2(1)
(1)
TB0.2
CCI2A
51, B7-P7.2(1)
(1)
TB0.2
CCI2B
DVSS
GND
51,
DVCC
VCC
A8-P7.3(1)
(1)
TB0.3
CCI3A
52, A8-P7.3(1)
(1)
TB0.3
CCI3B
DVSS
GND
52,
DVCC
VCC
A7-P7.4(1)
(1)
TB0.4
CCI4A
53, A7-P7.4(1)
(1)
TB0.4
CCI4B
DVSS
GND
53,
DVCC
VCC
A6-P7.5(1)
(1)
TB0.5
CCI5A
54, A6-P7.5(1)
(1)
TB0.5
CCI5B
DVSS
GND
DVCC
VCC
TB0.6
CCI6A
ACLK
(internal)
CCI6B
DVSS
GND
DVCC
VCC
54,
(1)
(1)
60
(1)
MODULE
BLOCK
MODULE
OUTPUT
SIGNAL
DEVICE
OUTPUT
SIGNAL
Timer
NA
NA
CCR0
TB0
TB0.0
OUTPUT PIN NUMBER
RGC, ZXH, ZQE
RGZ
49, B8(9)-P7.0(1)
(1)
ADC10 (internal) ADC10 (internal)
ADC10SHSx = {2} ADC10SHSx = {2}
50, A9-P7.1(1)
CCR1
CCR2
CCR3
CCR4
CCR5
CCR6
TB1
TB2
TB3
TB4
TB5
TB6
TB0.1
(1)
ADC10 (internal) ADC10 (internal)
ADC10SHSx = {3} ADC10SHSx = {3}
51, B7-P7.2(1)
(1)
52, A8-P7.3(1)
(1)
53, A7-P7.4(1)
(1)
54, A6-P7.5(1)
(1)
(1)
(1)
TB0.2
TB0.3
TB0.4
TB0.5
TB0.6
Timer functions are available through the port mapping controller.
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
9.9.15 Comparator_B
The primary function of the Comparator_B module is to support precision slope analog-to-digital conversions,
battery voltage supervision, and monitoring of external analog signals.
9.9.16 ADC10_A
The ADC10_A module supports fast 10-bit analog-to-digital conversions. The module implements a 10-bit SAR
core, sample select control, reference generator, and a conversion result buffer. A window comparator with lower
and upper limits allows CPU-independent result monitoring with three window comparator interrupt flags.
9.9.17 CRC16
The CRC16 module produces a signature based on a sequence of entered data values and can be used for data
checking purposes. The CRC16 module signature is based on the CRC-CCITT standard.
9.9.18 Reference (REF) Module Voltage Reference
The REF generates all of the critical reference voltages that can be used by the various analog peripherals in the
device.
9.9.19 Embedded Emulation Module (EEM) (S Version)
The EEM supports real-time in-system debugging. The S version of the EEM has the following features:
• Three hardware triggers or breakpoints on memory access
• One hardware trigger or breakpoint on CPU register write access
• Up to four hardware triggers can be combined to form complex triggers or breakpoints
• One cycle counter
• Clock control on module level
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
61
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
9.9.20 Peripheral File Map
Table 9-14 lists the register base address and offset range for all peripherals.
Table 9-14. Peripherals
62
MODULE NAME
BASE ADDRESS
OFFSET ADDRESS
RANGE
Special Functions (see Table 9-15)
0100h
000h to 01Fh
PMM (see Table 9-16)
0120h
000h to 010h
Flash Control (see Table 9-17)
0140h
000h to 00Fh
CRC16 (see Table 9-18)
0150h
000h to 007h
RAM Control (see Table 9-19)
0158h
000h to 001h
Watchdog (see Table 9-20)
015Ch
000h to 001h
UCS (see Table 9-21)
0160h
000h to 01Fh
SYS (see Table 9-22)
0180h
000h to 01Fh
Shared Reference (see Table 9-23)
01B0h
000h to 001h
Port Mapping Control (see Table 9-24)
01C0h
000h to 002h
Port Mapping Port P4 (see Table 9-24)
01E0h
000h to 007h
Port P1, P2 (see Table 9-25)
0200h
000h to 01Fh
Port P3, P4 (see Table 9-26)
0220h
000h to 00Bh
Port P5, P6 (see Table 9-27)
0240h
000h to 00Bh
Port P7 (see Table 9-28)
0260h
000h to 00Bh
Port PJ (see Table 9-29)
0320h
000h to 01Fh
TA0 (see Table 9-30)
0340h
000h to 02Eh
TA1 (see Table 9-31)
0380h
000h to 02Eh
TB0 (see Table 9-32)
03C0h
000h to 02Eh
TA2 (see Table 9-33)
0400h
000h to 02Eh
Real-Time Clock (RTC_A) (see Table 9-34)
04A0h
000h to 01Bh
32-Bit Hardware Multiplier (see Table 9-35)
04C0h
000h to 02Fh
DMA General Control (see Table 9-36)
0500h
000h to 00Fh
DMA Channel 0 (see Table 9-36)
0510h
000h to 00Ah
DMA Channel 1 (see Table 9-36)
0520h
000h to 00Ah
DMA Channel 2 (see Table 9-36)
0530h
000h to 00Ah
USCI_A0 (see Table 9-37)
05C0h
000h to 01Fh
USCI_B0 (see Table 9-38)
05E0h
000h to 01Fh
USCI_A1 (see Table 9-39)
0600h
000h to 01Fh
USCI_B1 (see Table 9-40)
0620h
000h to 01Fh
ADC10_A (see Table 9-41)
0740h
000h to 01Fh
Comparator_B (see Table 9-42)
08C0h
000h to 00Fh
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
Table 9-15. Special Function Registers (Base Address: 0100h)
REGISTER DESCRIPTION
REGISTER
OFFSET
SFR interrupt enable
SFRIE1
00h
SFR interrupt flag
SFRIFG1
02h
SFR reset pin control
SFRRPCR
04h
Table 9-16. PMM Registers (Base Address: 0120h)
REGISTER DESCRIPTION
REGISTER
OFFSET
PMM control 0
PMMCTL0
00h
PMM control 1
PMMCTL1
02h
SVS high side control
SVSMHCTL
04h
SVS low side control
SVSMLCTL
06h
PMM interrupt flags
PMMIFG
0Ch
PMM interrupt enable
PMMIE
0Eh
PMM power mode 5 control
PM5CTL0
10h
Table 9-17. Flash Control Registers (Base Address: 0140h)
REGISTER DESCRIPTION
REGISTER
OFFSET
Flash control 1
FCTL1
00h
Flash control 3
FCTL3
04h
Flash control 4
FCTL4
06h
Table 9-18. CRC16 Registers (Base Address: 0150h)
REGISTER DESCRIPTION
REGISTER
OFFSET
CRC data input
CRC16DI
00h
CRC data input reverse byte
CRCDIRB
02h
CRC initialization and result
CRCINIRES
04h
CRC result reverse byte
CRCRESR
06h
Table 9-19. RAM Control Registers (Base Address: 0158h)
REGISTER DESCRIPTION
RAM control 0
REGISTER
RCCTL0
OFFSET
00h
Table 9-20. Watchdog Registers (Base Address: 015Ch)
REGISTER DESCRIPTION
Watchdog timer control
Copyright © 2020 Texas Instruments Incorporated
REGISTER
WDTCTL
OFFSET
00h
Submit Document Feedback
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
63
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
Table 9-21. UCS Registers (Base Address: 0160h)
REGISTER DESCRIPTION
REGISTER
OFFSET
UCS control 0
UCSCTL0
00h
UCS control 1
UCSCTL1
02h
UCS control 2
UCSCTL2
04h
UCS control 3
UCSCTL3
06h
UCS control 4
UCSCTL4
08h
UCS control 5
UCSCTL5
0Ah
UCS control 6
UCSCTL6
0Ch
UCS control 7
UCSCTL7
0Eh
UCS control 8
UCSCTL8
10h
UCS control 9
UCSCTL9
12h
Table 9-22. SYS Registers (Base Address: 0180h)
REGISTER DESCRIPTION
REGISTER
OFFSET
System control
SYSCTL
00h
Bootloader configuration area
SYSBSLC
02h
JTAG mailbox control
SYSJMBC
06h
JTAG mailbox input 0
SYSJMBI0
08h
JTAG mailbox input 1
SYSJMBI1
0Ah
JTAG mailbox output 0
SYSJMBO0
0Ch
JTAG mailbox output 1
SYSJMBO1
0Eh
User NMI vector generator
SYSUNIV
1Ah
System NMI vector generator
SYSSNIV
1Ch
Reset vector generator
SYSRSTIV
1Eh
Table 9-23. Shared Reference Registers (Base Address: 01B0h)
REGISTER DESCRIPTION
Shared reference control
REGISTER
REFCTL
OFFSET
00h
Table 9-24. Port Mapping Registers
(Base Address of Port Mapping Control: 01C0h, Port P4: 01E0h)
REGISTER DESCRIPTION
REGISTER
OFFSET
Port mapping key/ID
PMAPKEYID
00h
Port mapping control
PMAPCTL
02h
Port P4.0 mapping
P4MAP0
00h
Port P4.1 mapping
P4MAP1
01h
Port P4.2 mapping
P4MAP2
02h
Port P4.3 mapping
P4MAP3
03h
Port P4.4 mapping
P4MAP4
04h
Port P4.5 mapping
P4MAP5
05h
Port P4.6 mapping
P4MAP6
06h
Port P4.7 mapping
P4MAP7
07h
64
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
Table 9-25. Port P1, P2 Registers (Base Address: 0200h)
REGISTER DESCRIPTION
REGISTER
OFFSET
Port P1 input
P1IN
00h
Port P1 output
P1OUT
02h
Port P1 direction
P1DIR
04h
Port P1 resistor enable
P1REN
06h
Port P1 drive strength
P1DS
08h
Port P1 selection
P1SEL
0Ah
Port P1 interrupt vector word
P1IV
0Eh
Port P1 interrupt edge select
P1IES
18h
Port P1 interrupt enable
P1IE
1Ah
Port P1 interrupt flag
P1IFG
1Ch
Port P2 input
P2IN
01h
Port P2 output
P2OUT
03h
Port P2 direction
P2DIR
05h
Port P2 resistor enable
P2REN
07h
Port P2 drive strength
P2DS
09h
Port P2 selection
P2SEL
0Bh
Port P2 interrupt vector word
P2IV
1Eh
Port P2 interrupt edge select
P2IES
19h
Port P2 interrupt enable
P2IE
1Bh
Port P2 interrupt flag
P2IFG
1Dh
Table 9-26. Port P3, P4 Registers (Base Address: 0220h)
REGISTER DESCRIPTION
REGISTER
OFFSET
Port P3 input
P3IN
00h
Port P3 output
P3OUT
02h
Port P3 direction
P3DIR
04h
Port P3 resistor enable
P3REN
06h
Port P3 drive strength
P3DS
08h
Port P3 selection
P3SEL
0Ah
Port P4 input
P4IN
01h
Port P4 output
P4OUT
03h
Port P4 direction
P4DIR
05h
Port P4 resistor enable
P4REN
07h
Port P4 drive strength
P4DS
09h
Port P4 selection
P4SEL
0Bh
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
65
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
Table 9-27. Port P5, P6 Registers (Base Address: 0240h)
REGISTER DESCRIPTION
REGISTER
OFFSET
Port P5 input
P5IN
00h
Port P5 output
P5OUT
02h
Port P5 direction
P5DIR
04h
Port P5 resistor enable
P5REN
06h
Port P5 drive strength
P5DS
08h
Port P5 selection
P5SEL
0Ah
Port P6 input
P6IN
01h
Port P6 output
P6OUT
03h
Port P6 direction
P6DIR
05h
Port P6 resistor enable
P6REN
07h
Port P6 drive strength
P6DS
09h
Port P6 selection
P6SEL
0Bh
Table 9-28. Port P7 Registers (Base Address: 0260h)
REGISTER DESCRIPTION
REGISTER
OFFSET
Port P7 input
P7IN
00h
Port P7 output
P7OUT
02h
Port P7 direction
P7DIR
04h
Port P7 resistor enable
P7REN
06h
Port P7 drive strength
P7DS
08h
Port P7 selection
P7SEL
0Ah
Table 9-29. Port J Registers (Base Address: 0320h)
REGISTER DESCRIPTION
REGISTER
OFFSET
Port PJ input
PJIN
00h
Port PJ output
PJOUT
02h
Port PJ direction
PJDIR
04h
Port PJ resistor enable
PJREN
06h
Port PJ drive strength
PJDS
08h
Table 9-30. TA0 Registers (Base Address: 0340h)
REGISTER DESCRIPTION
REGISTER
OFFSET
TA0 control
TA0CTL
00h
Capture/compare control 0
TA0CCTL0
02h
Capture/compare control 1
TA0CCTL1
04h
Capture/compare control 2
TA0CCTL2
06h
Capture/compare control 3
TA0CCTL3
08h
Capture/compare control 4
TA0CCTL4
0Ah
TA0 counter
TA0R
10h
Capture/compare 0
TA0CCR0
12h
Capture/compare 1
TA0CCR1
14h
Capture/compare 2
TA0CCR2
16h
Capture/compare 3
TA0CCR3
18h
Capture/compare 4
TA0CCR4
1Ah
TA0 expansion 0
TA0EX0
20h
TA0 interrupt vector
TA0IV
2Eh
66
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
Table 9-31. TA1 Registers (Base Address: 0380h)
REGISTER DESCRIPTION
REGISTER
OFFSET
TA1 control
TA1CTL
00h
Capture/compare control 0
TA1CCTL0
02h
Capture/compare control 1
TA1CCTL1
04h
Capture/compare control 2
TA1CCTL2
06h
TA1 counter
TA1R
10h
Capture/compare 0
TA1CCR0
12h
Capture/compare 1
TA1CCR1
14h
Capture/compare 2
TA1CCR2
16h
TA1 expansion 0
TA1EX0
20h
TA1 interrupt vector
TA1IV
2Eh
Table 9-32. TB0 Registers (Base Address: 03C0h)
REGISTER DESCRIPTION
REGISTER
OFFSET
TB0 control
TB0CTL
00h
Capture/compare control 0
TB0CCTL0
02h
Capture/compare control 1
TB0CCTL1
04h
Capture/compare control 2
TB0CCTL2
06h
Capture/compare control 3
TB0CCTL3
08h
Capture/compare control 4
TB0CCTL4
0Ah
Capture/compare control 5
TB0CCTL5
0Ch
Capture/compare control 6
TB0CCTL6
0Eh
TB0 counter
TB0R
10h
Capture/compare 0
TB0CCR0
12h
Capture/compare 1
TB0CCR1
14h
Capture/compare 2
TB0CCR2
16h
Capture/compare 3
TB0CCR3
18h
Capture/compare 4
TB0CCR4
1Ah
Capture/compare 5
TB0CCR5
1Ch
Capture/compare 6
TB0CCR6
1Eh
TB0 expansion 0
TB0EX0
20h
TB0 interrupt vector
TB0IV
2Eh
Table 9-33. TA2 Registers (Base Address: 0400h)
REGISTER DESCRIPTION
REGISTER
OFFSET
TA2 control
TA2CTL
00h
Capture/compare control 0
TA2CCTL0
02h
Capture/compare control 1
TA2CCTL1
04h
Capture/compare control 2
TA2CCTL2
06h
TA2 counter
TA2R
10h
Capture/compare 0
TA2CCR0
12h
Capture/compare 1
TA2CCR1
14h
Capture/compare 2
TA2CCR2
16h
TA2 expansion 0
TA2EX0
20h
TA2 interrupt vector
TA2IV
2Eh
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
67
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
Table 9-34. Real-Time Clock Registers (Base Address: 04A0h)
REGISTER DESCRIPTION
REGISTER
OFFSET
RTC control 0
RTCCTL0
00h
RTC control 1
RTCCTL1
01h
RTC control 2
RTCCTL2
02h
RTC control 3
RTCCTL3
03h
RTC prescaler 0 control
RTCPS0CTL
08h
RTC prescaler 1 control
RTCPS1CTL
0Ah
RTC prescaler 0
RTCPS0
0Ch
RTC prescaler 1
RTCPS1
0Dh
RTC interrupt vector word
RTCIV
0Eh
RTC seconds/counter 1
RTCSEC/RTCNT1
10h
RTC minutes/counter 2
RTCMIN/RTCNT2
11h
RTC hours/counter 3
RTCHOUR/RTCNT3
12h
RTC day of week/counter 4
RTCDOW/RTCNT4
13h
RTC days
RTCDAY
14h
RTC month
RTCMON
15h
RTC year low
RTCYEARL
16h
RTC year high
RTCYEARH
17h
RTC alarm minutes
RTCAMIN
18h
RTC alarm hours
RTCAHOUR
19h
RTC alarm day of week
RTCADOW
1Ah
RTC alarm days
RTCADAY
1Bh
Table 9-35. 32-Bit Hardware Multiplier Registers (Base Address: 04C0h)
REGISTER DESCRIPTION
16-bit operand 1 – multiply
REGISTER
MPY
OFFSET
00h
16-bit operand 1 – signed multiply
MPYS
02h
16-bit operand 1 – multiply accumulate
MAC
04h
16-bit operand 1 – signed multiply accumulate
MACS
06h
16-bit operand 2
OP2
08h
16 × 16 result low word
RESLO
0Ah
16 × 16 result high word
RESHI
0Ch
16 × 16 sum extension
SUMEXT
0Eh
32-bit operand 1 – multiply low word
MPY32L
10h
32-bit operand 1 – multiply high word
MPY32H
12h
32-bit operand 1 – signed multiply low word
MPYS32L
14h
32-bit operand 1 – signed multiply high word
MPYS32H
16h
32-bit operand 1 – multiply accumulate low word
MAC32L
18h
32-bit operand 1 – multiply accumulate high word
MAC32H
1Ah
32-bit operand 1 – signed multiply accumulate low word
MACS32L
1Ch
32-bit operand 1 – signed multiply accumulate high word
MACS32H
1Eh
32-bit operand 2 – low word
OP2L
20h
32-bit operand 2 – high word
OP2H
22h
32 × 32 result 0 – least significant word
RES0
24h
32 × 32 result 1
RES1
26h
32 × 32 result 2
RES2
28h
32 × 32 result 3 – most significant word
RES3
2Ah
68
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
Table 9-35. 32-Bit Hardware Multiplier Registers (Base Address: 04C0h) (continued)
REGISTER DESCRIPTION
MPY32 control 0
REGISTER
MPY32CTL0
OFFSET
2Ch
Table 9-36. DMA Registers (Base Address DMA General Control: 0500h,
DMA Channel 0: 0510h, DMA Channel 1: 0520h, DMA Channel 2: 0530h)
REGISTER DESCRIPTION
REGISTER
OFFSET
DMA channel 0 control
DMA0CTL
00h
DMA channel 0 source address low
DMA0SAL
02h
DMA channel 0 source address high
DMA0SAH
04h
DMA channel 0 destination address low
DMA0DAL
06h
DMA channel 0 destination address high
DMA0DAH
08h
DMA channel 0 transfer size
DMA0SZ
0Ah
DMA channel 1 control
DMA1CTL
00h
DMA channel 1 source address low
DMA1SAL
02h
DMA channel 1 source address high
DMA1SAH
04h
DMA channel 1 destination address low
DMA1DAL
06h
DMA channel 1 destination address high
DMA1DAH
08h
DMA channel 1 transfer size
DMA1SZ
0Ah
DMA channel 2 control
DMA2CTL
00h
DMA channel 2 source address low
DMA2SAL
02h
DMA channel 2 source address high
DMA2SAH
04h
DMA channel 2 destination address low
DMA2DAL
06h
DMA channel 2 destination address high
DMA2DAH
08h
DMA channel 2 transfer size
DMA2SZ
0Ah
DMA module control 0
DMACTL0
00h
DMA module control 1
DMACTL1
02h
DMA module control 2
DMACTL2
04h
DMA module control 3
DMACTL3
06h
DMA module control 4
DMACTL4
08h
DMA interrupt vector
DMAIV
0Eh
Table 9-37. USCI_A0 Registers (Base Address: 05C0h)
REGISTER DESCRIPTION
REGISTER
OFFSET
USCI control 1
UCA0CTL1
00h
USCI control 0
UCA0CTL0
01h
USCI baud rate 0
UCA0BR0
06h
USCI baud rate 1
UCA0BR1
07h
USCI modulation control
UCA0MCTL
08h
USCI status
UCA0STAT
0Ah
USCI receive buffer
UCA0RXBUF
0Ch
USCI transmit buffer
UCA0TXBUF
0Eh
USCI LIN control
UCA0ABCTL
10h
USCI IrDA transmit control
UCA0IRTCTL
12h
USCI IrDA receive control
UCA0IRRCTL
13h
USCI interrupt enable
UCA0IE
1Ch
USCI interrupt flags
UCA0IFG
1Dh
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
69
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
Table 9-37. USCI_A0 Registers (Base Address: 05C0h) (continued)
REGISTER DESCRIPTION
USCI interrupt vector word
REGISTER
UCA0IV
OFFSET
1Eh
Table 9-38. USCI_B0 Registers (Base Address: 05E0h)
REGISTER DESCRIPTION
REGISTER
OFFSET
USCI synchronous control 1
UCB0CTL1
00h
USCI synchronous control 0
UCB0CTL0
01h
USCI synchronous bit rate 0
UCB0BR0
06h
USCI synchronous bit rate 1
UCB0BR1
07h
USCI synchronous status
UCB0STAT
0Ah
USCI synchronous receive buffer
UCB0RXBUF
0Ch
USCI synchronous transmit buffer
UCB0TXBUF
0Eh
USCI I2C own address
UCB0I2COA
10h
USCI I2C slave address
UCB0I2CSA
12h
USCI interrupt enable
UCB0IE
1Ch
USCI interrupt flags
UCB0IFG
1Dh
USCI interrupt vector word
UCB0IV
1Eh
Table 9-39. USCI_A1 Registers (Base Address: 0600h)
REGISTER DESCRIPTION
REGISTER
OFFSET
USCI control 1
UCA1CTL1
00h
USCI control 0
UCA1CTL0
01h
USCI baud rate 0
UCA1BR0
06h
USCI baud rate 1
UCA1BR1
07h
USCI modulation control
UCA1MCTL
08h
USCI status
UCA1STAT
0Ah
USCI receive buffer
UCA1RXBUF
0Ch
USCI transmit buffer
UCA1TXBUF
0Eh
USCI LIN control
UCA1ABCTL
10h
USCI IrDA transmit control
UCA1IRTCTL
12h
USCI IrDA receive control
UCA1IRRCTL
13h
USCI interrupt enable
UCA1IE
1Ch
USCI interrupt flags
UCA1IFG
1Dh
USCI interrupt vector word
UCA1IV
1Eh
Table 9-40. USCI_B1 Registers (Base Address: 0620h)
REGISTER DESCRIPTION
REGISTER
OFFSET
USCI synchronous control 1
UCB1CTL1
00h
USCI synchronous control 0
UCB1CTL0
01h
USCI synchronous bit rate 0
UCB1BR0
06h
USCI synchronous bit rate 1
UCB1BR1
07h
USCI synchronous status
UCB1STAT
0Ah
USCI synchronous receive buffer
UCB1RXBUF
0Ch
USCI synchronous transmit buffer
UCB1TXBUF
0Eh
USCI I2C own address
UCB1I2COA
10h
USCI I2C slave address
UCB1I2CSA
12h
USCI interrupt enable
UCB1IE
1Ch
USCI interrupt flags
UCB1IFG
1Dh
70
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
Table 9-40. USCI_B1 Registers (Base Address: 0620h) (continued)
REGISTER DESCRIPTION
USCI interrupt vector word
REGISTER
OFFSET
UCB1IV
1Eh
Table 9-41. ADC10_A Registers (Base Address: 0740h)
REGISTER DESCRIPTION
REGISTER
OFFSET
ADC10_A control 0
ADC10CTL0
00h
ADC10_A control 1
ADC10CTL1
02h
ADC10_A control 2
ADC10CTL2
04h
ADC10_A window comparator low threshold
ADC10LO
06h
ADC10_A window comparator high threshold
ADC10HI
08h
ADC10_A memory control 0
ADC10MCTL0
0Ah
ADC10_A conversion memory
ADC10MEM0
12h
ADC10_A interrupt enable
ADC10IE
1Ah
ADC10_A interrupt flags
ADC10IGH
1Ch
ADC10_A interrupt vector word
ADC10IV
1Eh
Table 9-42. Comparator_B Registers (Base Address: 08C0h)
REGISTER DESCRIPTION
REGISTER
OFFSET
Comp_B control 0
CBCTL0
00h
Comp_B control 1
CBCTL1
02h
Comp_B control 2
CBCTL2
04h
Comp_B control 3
CBCTL3
06h
Comp_B interrupt
CBINT
0Ch
Comp_B interrupt vector word
CBIV
0Eh
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
71
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
9.10 Input/Output Diagrams
9.10.1 Port P1 (P1.0 to P1.7) Input/Output With Schmitt Trigger
Figure 9-2 shows the port diagram. Table 9-43 summarizes the selection of the pin function.
Pad Logic
P1REN.x
P1DIR.x
0
From module
1
P1OUT.x
0
From module
1
DVSS
0
(P1.0 to P1.3) DVCC
(P1.4 to P1.7) DVIO
1
Direction
0: Input
1: Output
P1DS.x
0: Low drive
1: High drive
P1SEL.x
P1IN.x
EN
To module
1
P1.0/TA0CLK/ACLK
P1.1/TA0.0
P1.2/TA0.1
P1.3/TA0.2
P1.4/TA0.3
P1.5/TA0.4
P1.6/TA1CLK/CBOUT
P1.7/TA1.0
D
P1IE.x
EN
P1IRQ.x
Q
P1IFG.x
P1SEL.x
P1IES.x
Set
Interrupt
Edge
Select
Figure 9-2. Port P1 (P1.0 to P1.7) Diagram
72
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
Table 9-43. Port P1 (P1.0 to P1.7) Pin Functions
PIN NAME (P1.x)
x
FUNCTION
P1.0 (I/O)
P1.0/TA0CLK/ACLK
0 TA0CLK
ACLK
P1.1 (I/O)
P1.1/TA0.0
1 TA0.CCI0A
TA0.0
P1.2 (I/O)
P1.2/TA0.1
2 TA0.CCI1A
TA0.1
P1.3 (I/O)
P1.3/TA0.2
3 TA0.CCI2A
TA0.2
P1.4 (I/O)
4 TA0.CCI3A
P1.4/TA0.3
TA0.3
P1.5 (I/O)
5 TA0.CCI4A
P1.5/TA0.4
TA0.4
P1.6 (I/O)
P1.6/TA1CLK/CBOUT
6 TA1CLK
CBOUT comparator B
P1.7 (I/O)
P1.7/TA1.0
7 TA1.CCI0A
TA1.0
Copyright © 2020 Texas Instruments Incorporated
CONTROL BITS OR SIGNALS
P1DIR.x
P1SEL.x
I: 0; O: 1
0
0
1
1
1
I: 0; O: 1
0
0
1
1
1
I: 0; O: 1
0
0
1
1
1
I: 0; O: 1
0
0
1
1
1
I: 0; O: 1
0
0
1
1
1
I: 0; O: 1
0
0
1
1
1
I: 0; O: 1
0
0
1
1
1
I: 0; O: 1
0
0
1
1
1
Submit Document Feedback
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
73
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
9.10.2 Port P2 (P2.0 to P2.7) Input/Output With Schmitt Trigger
Figure 9-3 shows the port diagram. Table 9-44 summarizes the selection of the pin function.
Pad Logic
P2REN.x
P2DIR.x
0
From module
1
P2OUT.x
0
From module
1
DVSS
0
DVIO
1
Direction
0: Input
1: Output
P2DS.x
0: Low drive
1: High drive
P2SEL.x
P2IN.x
EN
To module
1
P2.0/TA1.1
P2.1/TA1.2
P2.2/TA2CLK/SMCLK
P2.3/TA2.0
P2.4/TA2.1
P2.5/TA2.2
P2.6/RTCCLK/DMAE0
P2.7/UB0STE/UCA0CLK
D
P2IE.x
EN
To module
Q
P2IFG.x
P2SEL.x
P2IES.x
Set
Interrupt
Edge
Select
Figure 9-3. Port P2 (P2.0 to P2.7) Diagram
74
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
Table 9-44. Port P2 (P2.0 to P2.7) Pin Functions
PIN NAME (P2.x)
x
FUNCTION
P2.0 (I/O)
P2.0/TA1.1(4)
0 TA1.CCI1A
TA1.1
P2.1 (I/O)
P2.1/TA1.2(4)
1 TA1.CCI2A
TA1.2
P2.2 (I/O)
P2.2/TA2CLK/SMCLK(4)
2 TA2CLK
SMCLK
P2.3 (I/O)
P2.3/TA2.0(4)
3 TA2.CCI0A
TA2.0
P2.4 (I/O)
P2.4/TA2.1(4)
4 TA2.CCI1A
TA2.1
(4)
1
1
1
I: 0; O: 1
0
0
1
1
1
I: 0; O: 1
0
0
1
1
1
I: 0; O: 1
0
0
1
1
1
I: 0; O: 1
0
0
1
0
1
1
1
I: 0; O: 1
0
0
1
RTCCLK
1
1
P2.7 (I/O)
I: 0; O: 1
0
X
1
P2.6 (I/O)
(1)
(2)
(3)
0
0
0
6 DMAE0
7
I: 0; O: 1
1
TA2.2
P2.7/UCB0STE/UCA0CLK
P2SEL.x
1
5 TA2.CCI2A
P2.6/RTCCLK/DMAE0(4)
P2DIR.x
I: 0; O: 1
P2.5 (I/O)
P2.5/TA2.2(4)
CONTROL BITS OR SIGNALS(1)
UCB0STE/UCA0CLK(2) (3)
X = Don't care
The pin direction is controlled by the USCI module.
UCA0CLK function takes precedence over UCB0STE function. If the pin is required as UCA0CLK input or output, USCI B0 is forced to
3-wire SPI mode if 4-wire SPI mode is selected.
Not available on RGZ packages.
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
75
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
9.10.3 Port P3 (P3.0 to P3.4) Input/Output With Schmitt Trigger
Figure 9-4 shows the port diagram. Table 9-45 summarizes the selection of the pin function.
Pad Logic
P3REN.x
P3DIR.x
0
From module
1
P3OUT.x
0
From module
1
DVSS
0
DVIO
1
1
Direction
0: Input
1: Output
P3.0/UCB0SIMO/UCB0SDA
P3.1/UCB0SOMI/UCB0SCL
P3.2/UCB0CLK/UCA0STE
P3.3/UCA0TXD/UCA0SIMO
P3.4/UCA0RXD/UCA0SOMI
P3DS.x
0: Low drive
1: High drive
P3SEL.x
P3IN.x
EN
D
To module
Figure 9-4. Port P3 (P3.0 to P3.4) Diagram
Table 9-45. Port P3 (P3.0 to P3.4) Pin Functions
PIN NAME (P3.x)
P3.0/UCB0SIMO/UCB0SDA
P3.1/UCB0SOMI/UCB0SCL
P3.2/UCB0CLK/UCA0STE
P3.3/UCA0TXD/UCA0SIMO
P3.4/UCA0RXD/UCA0SOMI
(1)
(2)
(3)
(4)
76
x
0
1
2
3
4
FUNCTION
P3.0 (I/O)
UCB0SIMO/UCB0SDA(2) (3)
P3.1 (I/O)
UCB0SOMI/UCB0SCL(2) (3)
P3.2 (I/O)
UCB0CLK/UCA0STE(2) (4)
P3.3 (I/O)
UCA0TXD/UCA0SIMO(2)
P3.4 (I/O)
UCA0RXD/UCA0SOMI(2)
CONTROL BITS OR SIGNALS(1)
P3DIR.x
P3SEL.x
I: 0; O: 1
0
X
1
I: 0; O: 1
0
X
1
I: 0; O: 1
0
X
1
I: 0; O: 1
0
X
1
I: 0; O: 1
0
X
1
X = Don't care
The pin direction is controlled by the USCI module.
If the I2C functionality is selected, the output drives only the logical 0 to VSS level.
UCB0CLK function takes precedence over UCA0STE function. If the pin is required as UCB0CLK input or output, USCI_A0 is forced to
3-wire SPI mode if 4-wire SPI mode is selected.
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
9.10.4 Port P4 (P4.0 to P4.7) Input/Output With Schmitt Trigger
Figure 9-5 shows the port diagram. Table 9-46 summarizes the selection of the pin function.
Pad Logic
P4REN.x
P4DIR.x
0
from Port Mapping Control
1
P4OUT.x
0
from Port Mapping Control
1
DVSS
0
DVIO
1
1
Direction
0: Input
1: Output
P4.0/P4MAP0
P4.1/P4MAP1
P4.2/P4MAP2
P4.3/P4MAP3
P4.4/P4MAP4
P4.5/P4MAP5
P4.6/P4MAP6
P4.7/P4MAP7
P4DS.x
0: Low drive
1: High drive
P4SEL.x
P4IN.x
EN
D
to Port Mapping Control
Figure 9-5. Port P4 (P4.0 to P4.7) Diagram
Table 9-46. Port P4 (P4.0 to P4.7) Pin Functions
PIN NAME (P4.x)
x
P4.0/P4MAP0
0
P4.1/P4MAP1
1
P4.2/P4MAP2
2
P4.3/P4MAP3
3
P4.4/P4MAP4
4
P4.5/P4MAP5
5
P4.6/P4MAP6
6
P4.7/P4MAP7(2)
7
(1)
(2)
FUNCTION
P4.0 (I/O)
Mapped secondary digital function
P4.1 (I/O)
Mapped secondary digital function
P4.2 (I/O)
Mapped secondary digital function
P4.3 (I/O)
Mapped secondary digital function
P4.4 (I/O)
Mapped secondary digital function
P4.5 (I/O)
Mapped secondary digital function
P4.6 (I/O)
Mapped secondary digital function
P4.7 (I/O)
Mapped secondary digital function
CONTROL BITS OR SIGNALS
P4DIR.x(1)
P4SEL.x
I: 0; O: 1
0
X
X
1
≤ 30
I: 0; O: 1
0
X
X
1
≤ 30
I: 0; O: 1
0
X
X
1
≤ 30
I: 0; O: 1
0
X
X
1
≤ 30
I: 0; O: 1
0
X
X
1
≤ 30
I: 0; O: 1
0
X
X
1
≤ 30
I: 0; O: 1
0
X
X
1
≤ 30
I: 0; O: 1
0
X
X
1
≤ 30
P4MAPx
The direction of some mapped secondary functions are controlled directly by the module. See Table 9-6 for specific direction control
information of mapped secondary functions.
Not available on RGZ packages.
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
77
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
9.10.5 Port P5 (P5.0 and P5.1) Input/Output With Schmitt Trigger
Figure 9-6 shows the port diagram. Table 9-47 summarizes the selection of the pin function.
Pad Logic
To and From Reference
(n/a MSP430F523x)
(n/a MSPF430F523x)
to ADC10
(n/a MSPF430F523x)
INCHx = x
P5REN.x
P5DIR.x
DVSS
0
DVCC
1
1
0
1
P5OUT.x
0
From module
1
P5.0/(A8/VeREF+)
P5.1/(A9/VeREF–)
P5DS.x
0: Low drive
1: High drive
P5SEL.x
P5IN.x
Bus
Keeper
EN
To module
D
Figure 9-6. Port P5 (P5.0 and P5.1) Diagram
Table 9-47. Port P5 (P5.0 and P5.1) Pin Functions
PIN NAME (P5.x)
P5.0/A8/VeREF+
P5.1/A9/VeREF–
(1)
(2)
(3)
(4)
(5)
78
x
0
1
FUNCTION
P5.0
(I/O)(2)
A8/VeREF+(4)
P5.1 (I/O)(2)
A9/VeREF–(5)
CONTROL BITS OR SIGNALS(1)
P5DIR.x
P5SEL.x
REFOUT(3)
I: 0; O: 1
0
X
X
1
0
I: 0; O: 1
0
X
X
1
0
X = Don't care
Default condition
REFOUT resides in the REF module.
Setting the P5SEL.0 bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying
analog signals. An external voltage can be applied to VeREF+ and used as the reference for the ADC10_A. Channel A8, when
selected with the INCHx bits, is connected to the VeREF+ pin.
Setting the P5SEL.1 bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying
analog signals. An external voltage can be applied to VeREF- and used as the reference for the ADC10_A. Channel A9, when selected
with the INCHx bits, is connected to the VeREF- pin.
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
9.10.6 Port P5 (P5.2 and P5.3) Input/Output With Schmitt Trigger
Figure 9-7 and Figure 9-8 show the port diagrams. Table 9-48 summarizes the selection of the pin function.
Pad Logic
To XT2
P5REN.2
P5DIR.2
DVSS
0
DVCC
1
1
0
1
P5OUT.2
0
Module X OUT
1
P5.2/XT2IN
P5DS.2
0: Low drive
1: High drive
P5SEL.2
P5IN.2
EN
Module X IN
Bus
Keeper
D
Figure 9-7. Port P5 (P5.2) Diagram
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
79
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
Pad Logic
To XT2
P5REN.3
P5DIR.3
DVSS
0
DVCC
1
1
0
1
P5OUT.3
0
Module X OUT
1
P5SEL.2
P5.3/XT2OUT
P5DS.3
0: Low drive
1: High drive
XT2BYPASS
P5SEL.3
P5IN.3
Bus
Keeper
EN
Module X IN
D
Figure 9-8. Port P5 (P5.3) Diagram
Table 9-48. Port P5 (P5.2 and P5.3) Pin Functions
PIN NAME (P5.x)
x
FUNCTION
P5.2 (I/O)
P5.2/XT2IN
2 XT2IN crystal mode(2)
XT2IN bypass
mode(2)
P5.3 (I/O)
P5.3/XT2OUT
3 XT2OUT crystal mode(3)
P5.3 (I/O)(3)
(1)
(2)
(3)
80
CONTROL BITS OR SIGNALS(1)
P5DIR.x
P5SEL.2
P5SEL.3
XT2BYPASS
I: 0; O: 1
0
X
X
X
1
X
0
X
1
X
1
I: 0; O: 1
0
0
X
X
1
X
0
X
1
0
1
X = Don't care
Setting P5SEL.2 causes the general-purpose I/O to be disabled. Pending the setting of XT2BYPASS, P5.2 is configured for crystal
mode or bypass mode.
Setting P5SEL.2 causes the general-purpose I/O to be disabled in crystal mode. When using bypass mode, P5.3 can be used as
general-purpose I/O.
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
9.10.7 Port P5 (P5.4 and P5.5) Input/Output With Schmitt Trigger
Figure 9-9 and Figure 9-10 show the port diagrams. Table 9-49 summarizes the selection of the pin function.
Pad Logic
to XT1
P5REN.4
P5DIR.4
DVSS
0
DVCC
1
1
0
1
P5OUT.4
0
Module X OUT
1
P5.4/XIN
P5DS.4
0: Low drive
1: High drive
P5SEL.4
P5IN.4
EN
Module X IN
Bus
Keeper
D
Figure 9-9. Port P5 (P5.4) Diagram
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
81
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
Pad Logic
to XT1
P5REN.5
P5DIR.5
DVSS
0
DVCC
1
1
0
1
P5OUT.5
0
Module X OUT
1
P5.5/XOUT
P5SEL.4
P5DS.5
0: Low drive
1: High drive
XT1BYPASS
P5SEL.5
P5IN.5
Bus
Keeper
EN
Module X IN
D
Figure 9-10. Port P5 (P5.5) Diagram
Table 9-49. Port P5 (P5.4 and P5.5) Pin Functions
PIN NAME (P5.x)
x
FUNCTION
P5.4 (I/O)
P5.4/XIN
4 XIN crystal mode(2)
XIN bypass
mode(2)
P5.5 (I/O)
P5.5/XOUT
5 XOUT crystal mode(3)
P5.5 (I/O)(3)
(1)
(2)
(3)
82
CONTROL BITS OR SIGNALS(1)
P5DIR.x
P5SEL.4
P5SEL.5
XT1BYPASS
I: 0; O: 1
0
X
X
X
1
X
0
X
1
X
1
I: 0; O: 1
0
0
X
X
1
X
0
X
1
0
1
X = Don't care
Setting P5SEL.4 causes the general-purpose I/O to be disabled. Pending the setting of XT1BYPASS, P5.4 is configured for crystal
mode or bypass mode.
Setting P5SEL.4 causes the general-purpose I/O to be disabled in crystal mode. When using bypass mode, P5.5 can be used as
general-purpose I/O.
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
9.10.8 Port P6 (P6.0 to P6.7) Input/Output With Schmitt Trigger
Figure 9-11 shows the port diagram. Table 9-50 summarizes the selection of the pin function.
Pad Logic
to ADC10
(n/a MSPF430F523x)
INCHx = x
(n/a MSPF430F523x)
to Comparator_B
from Comparator_B
CBPD.x
P6REN.x
P6DIR.x
0
0
From module
1
0
DVCC
1
1
Direction
0: Input
1: Output
1
P6OUT.x
DVSS
P6.0/CB0/(A0)
P6.1/CB1/(A1)
P6.2/CB2/(A2)
P6.3/CB3/(A3)
P6.4/CB4/(A4)
P6.5/CB5/(A5)
P6.6/CB6/(A6)
P6.7/CB7/(A7)
P6DS.x
0: Low drive
1: High drive
P6SEL.x
P6IN.x
Bus
Keeper
EN
To module
D
Figure 9-11. Port P6 (P6.0 to P6.7) Diagram
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
83
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
Table 9-50. Port P6 (P6.0 to P6.7) Pin Functions
PIN NAME (P6.x)
x
FUNCTION
P6.0 (I/O)
P6.0/CB0/(A0)
0 A0
CB0(1)
P6.1 (I/O)
P6.1/CB1/(A1)
1 A1
CB1(1)
P6.2 (I/O)
P6.2/CB2/(A2)
2 A2
CB2(1)
P6.3 (I/O)
P6.3/CB3/(A3)
3 A3
CB3(1)
P6.4 (I/O)
P6.4/CB4/(A4)
4 A4
CB4(1)
P6.5 (I/O)
P6.5/CB5/(A5)
5 A5
CB5(1)
P6.6 (I/O)
P6.6/CB6/(A6)(2)
6 A6
CB6(1)
P6.7 (I/O)
P6.7/CB7/(A7)(2)
7 A7
CB7(1)
(1)
(2)
84
CONTROL BITS OR SIGNALS
P6DIR.x
P6SEL.x
CBPD
I: 0; O: 1
0
0
X
1
X
X
X
1
I: 0; O: 1
0
0
X
1
X
X
X
1
I: 0; O: 1
0
0
X
1
X
X
X
1
I: 0; O: 1
0
0
X
1
X
X
X
1
I: 0; O: 1
0
0
X
1
X
X
X
1
I: 0; O: 1
0
0
X
1
X
X
X
1
I: 0; O: 1
0
0
X
1
X
X
X
1
I: 0; O: 1
0
0
X
1
X
X
X
1
Setting the CBPD.x bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog
signals. Selecting the CBx input pin to the comparator multiplexer with the CBx bits automatically disables output driver and input
buffer for that pin, regardless of the state of the associated CBPD.x bit.
Not available on RGZ packages.
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
9.10.9 Port P7 (P7.0 to P7.5) Input/Output With Schmitt Trigger
Figure 9-12 shows the port diagram. Table 9-51 summarizes the selection of the pin function.
Pad Logic
P7REN.x
P7DIR.x
0
From module
1
P7OUT.x
0
DVSS
0
DVIO
1
1
Direction
0: Input
1: Output
1
P7.0/TB0.0
P7.1/TB0.1
P7.2/TB0.2
P7.3/TB0.3
P7.4/TB0.4
P7.5/TB0.5
P7DS.x
0: Low drive
1: High drive
P7SEL.x
P7IN.x
EN
D
To module
Figure 9-12. Port P7 (P7.0 to P7.5) Diagram
Table 9-51. Port P7 (P7.0 to P7.5) Pin Functions
PIN NAME (P7.x)
x
FUNCTION
P7.0 (I/O)
P7.0/TB0.0(1)
0 TB0.CCI0A
TB0.0
P7.1 (I/O)
P7.1/TB0.1(1)
1 TB0.CCI1A
TB0.1
P7.2 (I/O)
P7.2/TB0.2(1)
2 TB0.CCI2A
TB0.2
P7.3 (I/O)
P7.3/TB0.3(1)
3 TB0.CCI3A
TB0.3
P7.4 (I/O)
P7.4/TB0.4(1)
4 TB0.CCI4A
TB0.4
P7.5 (I/O)
P7.5/TB0.5(1)
5 TB0.CCI5A
TB0.5
(1)
CONTROL BITS OR SIGNALS
P7DIR.x
P7SEL.x
I: 0; O: 1
0
0
1
1
1
I: 0; O: 1
0
0
1
1
1
I: 0; O: 1
0
0
1
1
1
I: 0; O: 1
0
0
1
1
1
I: 0; O: 1
0
0
1
1
1
I: 0; O: 1
0
0
1
1
1
Not available on RGZ packages.
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
85
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
9.10.10 Port J (PJ.0) JTAG Pin TDO, Input/Output With Schmitt Trigger or Output
Figure 9-13 and Figure 9-14 show the port diagrams. Table 9-52 summarizes the selection of the pin function.
Pad Logic
PJREN.0
PJDIR.0
0
DVCC
1
PJOUT.0
0
From JTAG
1
DVSS
0
DVCC
1
1
PJDS.0
0: Low drive
1: High drive
From JTAG
PJ.0/TDO
PJIN.0
EN
D
Figure 9-13. Port PJ (PJ.0) Diagram
86
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
9.10.11 Port J (PJ.1 to PJ.3) JTAG Pins TMS, TCK, TDI/TCLK, Input/Output With Schmitt Trigger or Output
Pad Logic
PJREN.x
PJDIR.x
0
DVSS
1
PJOUT.x
0
From JTAG
1
DVSS
0
DVCC
1
1
PJ.1/TDI/TCLK
PJ.2/TMS
PJ.3/TCK
PJDS.x
0: Low drive
1: High drive
From JTAG
PJIN.x
EN
D
To JTAG
Figure 9-14. Port PJ (PJ.1 to PJ.3) Diagram
Table 9-52. Port PJ (PJ.0 to PJ.3) Pin Functions
PIN NAME (PJ.x)
x
CONTROL BITS
OR SIGNALS(1)
FUNCTION
PJDIR.x
PJ.0/TDO
PJ.1/TDI/TCLK
PJ.2/TMS
PJ.3/TCK
(1)
(2)
(3)
(4)
0
1
2
3
PJ.0 (I/O)(2)
I: 0; O: 1
TDO(3)
X
PJ.1 (I/O)(2)
I: 0; O: 1
TDI/TCLK(3) (4)
X
PJ.2 (I/O)(2)
I: 0; O: 1
TMS(3) (4)
X
PJ.3 (I/O)(2)
I: 0; O: 1
TCK(3) (4)
X
X = Don't care
Default condition
The pin direction is controlled by the JTAG module.
In JTAG mode, pullups are activated automatically on TMS, TCK, and TDI/TCLK. PJREN.x are don't care.
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
87
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
9.11 Device Descriptors
Table 9-53 and Table 9-54 show the contents of the device descriptor tag-length-value (TLV) structure for each
device type.
Table 9-53. MSP430F524x Device Descriptor Table
SIZE
(bytes)
F5249
F5247
F5244
F5242
Info length
01A00h
1
06h
06h
06h
06h
CRC length
01A01h
1
06h
06h
06h
06h
CRC value
01A02h
2
Per unit
Per unit
Per unit
Per unit
Device ID
01A04h
1
F3h
F4h
F5h
F6h
Device ID
01A05h
1
81h
81h
81h
81h
Hardware revision
01A06h
1
Per unit
Per unit
Per unit
Per unit
Firmware revision
01A07h
1
Per unit
Per unit
Per unit
Per unit
Die record tag
01A08h
1
08h
08h
08h
08h
Die record length
01A09h
1
0Ah
0Ah
0Ah
0Ah
Lot/wafer ID
01A0Ah
4
Per unit
Per unit
Per unit
Per unit
Die X position
01A0Eh
2
Per unit
Per unit
Per unit
Per unit
Die Y position
01A10h
2
Per unit
Per unit
Per unit
Per unit
Test results
01A12h
2
Per unit
Per unit
Per unit
Per unit
13h
Info Block
Die Record
ADC10 Calibration
REF Calibration
88
VALUE(1)
ADDRESS
DESCRIPTION
ADC10 calibration tag
01A14h
1
13h
13h
13h
ADC10 calibration length
01A15h
1
10h
10h
10h
10h
ADC gain factor
01A16h
2
Per unit
Per unit
Per unit
Per unit
ADC offset
01A18h
2
Per unit
Per unit
Per unit
Per unit
ADC 1.5-V reference
Temperature sensor 30°C
01A1Ah
2
Per unit
Per unit
Per unit
Per unit
ADC 1.5-V reference
Temperature sensor 85°C
01A1Ch
2
Per unit
Per unit
Per unit
Per unit
ADC 2.0-V reference
Temperature sensor 30°C
01A1Eh
2
Per unit
Per unit
Per unit
Per unit
ADC 2.0-V reference
Temperature sensor 85°C
01A20h
2
Per unit
Per unit
Per unit
Per unit
ADC 2.5-V reference
Temperature sensor 30°C
01A22h
2
Per unit
Per unit
Per unit
Per unit
ADC 2.5-V reference
Temperature sensor 85°C
01A24h
2
Per unit
Per unit
Per unit
Per unit
12h
REF calibration tag
01A26h
1
12h
12h
12h
REF calibration length
01A27h
1
06h
06h
06h
06h
REF 1.5-V reference factor
01A28h
2
Per unit
Per unit
Per unit
Per unit
REF 2.0-V reference factor
01A2Ah
2
Per unit
Per unit
Per unit
Per unit
REF 2.5-V reference factor
01A2Ch
2
Per unit
Per unit
Per unit
Per unit
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
Table 9-53. MSP430F524x Device Descriptor Table (continued)
Peripheral Descriptor
VALUE(1)
ADDRESS
SIZE
(bytes)
F5249
F5247
F5244
Peripheral descriptor tag
01A2Eh
1
02h
02h
02h
02h
Peripheral descriptor length
01A2Fh
1
5Fh
5Fh
5Dh
5Dh
Memory 1
2
08h
8Ah
08h
8Ah
08h
8Ah
08h
8Ah
Memory 2
2
0Ch
86h
0Ch
86h
0Ch
86h
0Ch
86h
Memory 3
2
12h
2Eh
12h
2Eh
12h
2Eh
12h
2Eh
Memory 4
2
22h
96h
22h
94h
22h
96h
22h
94h
DESCRIPTION
F5242
Memory 5
2
N/A
N/A
N/A
N/A
Memory 6
1/2
N/A
N/A
N/A
N/A
Delimiter
1
00h
00h
00h
00h
Peripheral count
1
20h
20h
1Fh
1Fh
MSP430CPUXV2
2
00h
23h
00h
23h
00h
23h
00h
23h
JTAG
2
00h
09h
00h
09h
00h
09h
00h
09h
SBW
2
00h
0Fh
00h
0Fh
00h
0Fh
00h
0Fh
EEM-S
2
00h
03h
00h
03h
00h
03h
00h
05h
TI BSL
2
00h
FCh
00h
FCh
00h
FCh
00h
FCh
SFR
2
10h
41h
10h
41h
10h
41h
10h
41h
PMM
2
02h
30h
02h
30h
02h
30h
02h
30h
FCTL
2
02h
38h
02h
38h
02h
38h
02h
38h
CRC16
2
01h
3Ch
01h
3Ch
01h
3Ch
01h
3Ch
CRC16_RB
2
00h
3Dh
00h
3Dh
00h
3Dh
00h
3Dh
RAMCTL
2
00h
44h
00h
44h
00h
44h
00h
44h
WDT_A
2
00h
40h
00h
40h
00h
40h
00h
40h
UCS
2
01h
48h
01h
48h
01h
48h
01h
48h
SYS
2
02h
42h
02h
42h
02h
42h
02h
42h
REF
2
03h
A0h
03h
A0h
03h
A0h
03h
A0h
Port Mapping
2
01h
10h
01h
10h
01h
10h
01h
10h
Port 1 and 2
2
04h
51h
04h
51h
04h
51h
04h
51h
Port 3 and 4
2
02h
52h
02h
52h
02h
52h
02h
52h
Port 5 and 6
2
02h
53h
02h
53h
02h
53h
02h
53h
Port 7 and 8
2
02h
54h
02h
54h
N/A
N/A
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
89
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
Table 9-53. MSP430F524x Device Descriptor Table (continued)
DESCRIPTION
VALUE(1)
F5249
F5247
F5244
F5242
0Ch
5Fh
0Eh
5Fh
0Eh
5Fh
JTAG
2
TA0
2
02h
62h
02h
62h
02h
62h
02h
62h
TA1
2
04h
61h
04h
61h
04h
61h
04h
61h
TB0
2
04h
67h
04h
67h
04h
67h
04h
67h
TA2
2
04h
61h
04h
61h
04h
61h
04h
61h
RTC
2
0Ah
68h
0Ah
68h
0Ah
68h
0Ah
68h
MPY32
2
02h
85h
02h
85h
02h
85h
02h
85h
DMA-3
2
04h
47h
04h
47h
04h
47h
04h
47h
USCI_A and USCI_B
2
0Ch
90h
0Ch
90h
0Ch
90h
0Ch
90h
USCI_A and USCI_B
2
04h
90h
04h
90h
04h
90h
04h
90h
ADC10_A
2
14h
D3h
14h
D3h
14h
D3h
14h
D3h
COMP_B
2
18h
A8h
18h
A8h
18h
A8h
18h
A8h
COMP_B
1
A8h
A8h
A8h
A8h
TB0.CCIFG0
1
64h
64h
64h
64h
TB0.CCIFG1...6
1
65h
65h
65h
65h
WDTIFG
1
40h
40h
40h
40h
USCI_A0
1
90h
90h
90h
90h
USCI_B0
1
91h
91h
91h
91h
ADC10_A
1
D0h
D0h
D0h
D0h
TA0.CCIFG0
1
60h
60h
60h
60h
TA0.CCIFG1...4
1
61h
61h
61h
61h
Reserved
1
01h
01h
01h
01h
DMA
1
46h
46h
46h
46h
Interrupts
90
SIZE
(bytes)
0Ch
5Fh
Peripheral Descriptor
(continued)
(1)
ADDRESS
TA1.CCIFG0
1
62h
62h
62h
62h
TA1.CCIFG1...2
1
63h
63h
63h
63h
P1
1
50h
50h
50h
50h
USCI_A1
1
92h
92h
92h
92h
USCI_B1
1
93h
93h
93h
93h
TA1.CCIFG0
1
66h
66h
66h
66h
TA1.CCIFG1...2
1
67h
67h
67h
67h
P2
1
51h
51h
51h
51h
RTC_A
1
68h
68h
68h
68h
delimiter
1
00h
00h
00h
00h
N/A = Not applicable, blank = unused and reads FFh
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
Table 9-54. MSP430F523x Device Descriptor Table
Info Block
Die Record
ADC10 Calibration
REF Calibration
VALUE(1)
ADDRESS
SIZE
(bytes)
F5239
F5237
F5234
F5232
Info length
01A00h
1
06h
06h
06h
06h
CRC length
01A01h
1
06h
06h
06h
06h
CRC value
01A02h
2
Per unit
Per unit
Per unit
Per unit
Device ID
01A04h
1
F7h
F8h
F9h
FAh
Device ID
01A05h
1
81h
81h
81h
81h
Hardware revision
01A06h
1
Per unit
Per unit
Per unit
Per unit
Firmware revision
01A07h
1
Per unit
Per unit
Per unit
Per unit
Die record tag
01A08h
1
08h
08h
08h
08h
Die record length
01A09h
1
0Ah
0Ah
0Ah
0Ah
Lot/wafer ID
01A0Ah
4
Per unit
Per unit
Per unit
Per unit
Die X position
01A0Eh
2
Per unit
Per unit
Per unit
Per unit
Die Y position
01A10h
2
Per unit
Per unit
Per unit
Per unit
Test results
01A12h
2
Per unit
Per unit
Per unit
Per unit
ADC10 calibration tag
01A14h
1
13h
13h
13h
13h
ADC10 calibration length
01A15h
1
10h
10h
10h
10h
ADC gain factor
01A16h
2
blank
blank
blank
blank
DESCRIPTION
ADC offset
01A18h
2
blank
blank
blank
blank
ADC 1.5-V reference
Temperature sensor 30°C
01A1Ah
2
blank
blank
blank
blank
ADC 1.5-V reference
Temperature sensor 85°C
01A1Ch
2
blank
blank
blank
blank
ADC 2.0-V reference
Temperature sensor 30°C
01A1Eh
2
blank
blank
blank
blank
ADC 2.0-V reference
Temperature sensor 85°C
01A20h
2
blank
blank
blank
blank
ADC 2.5-V reference
Temperature sensor 30°C
01A22h
2
blank
blank
blank
blank
ADC 2.5-V reference
Temperature sensor 85°C
01A24h
2
blank
blank
blank
blank
12h
REF calibration tag
01A26h
1
12h
12h
12h
REF calibration length
01A27h
1
06h
06h
06h
06h
REF 1.5-V reference factor
01A28h
2
Per unit
Per unit
Per unit
Per unit
REF 2.0-V reference factor
01A2Ah
2
Per unit
Per unit
Per unit
Per unit
REF 2.5-V reference factor
01A2Ch
2
Per unit
Per unit
Per unit
Per unit
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
91
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
Table 9-54. MSP430F523x Device Descriptor Table (continued)
SIZE
(bytes)
F5239
F5237
F5234
Peripheral descriptor tag
01A2Eh
1
02h
02h
02h
02h
Peripheral descriptor length
01A2Fh
1
5Dh
5Dh
5Bh
5Bh
Memory 1
2
08h
8Ah
08h
8Ah
08h
8Ah
08h
8Ah
Memory 2
2
0Ch
86h
0Ch
86h
0Ch
86h
0Ch
86h
Memory 3
2
12h
2Eh
12h
2Eh
12h
2Eh
12h
2Eh
Memory 4
2
22h
96h
22h
94h
22h
96h
22h
94h
F5232
Memory 5
2
N/A
N/A
N/A
N/A
Memory 6
1/2
N/A
N/A
N/A
N/A
Delimiter
1
00h
00h
00h
00h
Peripheral count
1
1Fh
1Fh
1Eh
1Eh
MSP430CPUXV2
2
00h
23h
00h
23h
00h
23h
00h
23h
JTAG
2
00h
09h
00h
09h
00h
09h
00h
09h
SBW
2
00h
0Fh
00h
0Fh
00h
0Fh
00h
0Fh
EEM-S
2
00h
03h
00h
03h
00h
03h
00h
05h
TI BSL
2
00h
FCh
00h
FCh
00h
FCh
00h
FCh
SFR
2
10h
41h
10h
41h
10h
41h
10h
41h
PMM
2
02h
30h
02h
30h
02h
30h
02h
30h
FCTL
2
02h
38h
02h
38h
02h
38h
02h
38h
CRC16
2
01h
3Ch
01h
3Ch
01h
3Ch
01h
3Ch
CRC16_RB
2
00h
3Dh
00h
3Dh
00h
3Dh
00h
3Dh
RAMCTL
2
00h
44h
00h
44h
00h
44h
00h
44h
WDT_A
2
00h
40h
00h
40h
00h
40h
00h
40h
UCS
2
01h
48h
01h
48h
01h
48h
01h
48h
SYS
2
02h
42h
02h
42h
02h
42h
02h
42h
REF
2
03h
A0h
03h
A0h
03h
A0h
03h
A0h
Port mapping
2
01h
10h
01h
10h
01h
10h
01h
10h
Port 1 and 2
2
04h
51h
04h
51h
04h
51h
04h
51h
Port 3 and 4
2
02h
52h
02h
52h
02h
52h
02h
52h
Port 5 and 6
2
02h
53h
02h
53h
02h
53h
02h
53h
Port 7 and 8
2
02h
54h
02h
54h
N/A
N/A
Peripheral Descriptor
92
VALUE(1)
ADDRESS
DESCRIPTION
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
Table 9-54. MSP430F523x Device Descriptor Table (continued)
DESCRIPTION
Peripheral Descriptor
(continued)
Interrupts
(1)
ADDRESS
SIZE
(bytes)
VALUE(1)
F5239
F5237
F5234
F5232
0Ch
5Fh
0Eh
5Fh
0Eh
5Fh
JTAG
2
0Ch
5Fh
TA0
2
02h
62h
02h
62h
02h
62h
02h
62h
TA1
2
04h
61h
04h
61h
04h
61h
04h
61h
TB0
2
04h
67h
04h
67h
04h
67h
04h
67h
TA2
2
04h
61h
04h
61h
04h
61h
04h
61h
RTC
2
0Ah
68h
0Ah
68h
0Ah
68h
0Ah
68h
MPY32
2
02h
85h
02h
85h
02h
85h
02h
85h
DMA-3
2
04h
47h
04h
47h
04h
47h
04h
47h
USCI_A and USCI_B
2
0Ch
90h
0Ch
90h
0Ch
90h
0Ch
90h
USCI_A and USCI_B
2
04h
90h
04h
90h
04h
90h
04h
90h
ADC10_A
2
N/A
N/A
N/A
N/A
COMP_B
2
2Ch
A8h
2Ch
A8h
2Ch
A8h
2Ch
A8h
COMP_B
1
A8h
A8h
A8h
A8h
TB0.CCIFG0
1
64h
64h
64h
64h
TB0.CCIFG1...6
1
65h
65h
65h
65h
WDTIFG
1
40h
40h
40h
40h
USCI_A0
1
90h
90h
90h
90h
USCI_B0
1
91h
91h
91h
91h
Reserved
1
01h
01h
01h
01h
TA0.CCIFG0
1
60h
60h
60h
60h
TA0.CCIFG1...4
1
61h
61h
61h
61h
Reserved
1
01h
01h
01h
01h
DMA
1
46h
46h
46h
46h
TA1.CCIFG0
1
62h
62h
62h
62h
TA1.CCIFG1...2
1
63h
63h
63h
63h
P1
1
50h
50h
50h
50h
USCI_A1
1
92h
92h
92h
92h
USCI_B1
1
93h
93h
93h
93h
TA2.CCIFG0
1
66h
66h
66h
66h
TA2.CCIFG1...2
1
67h
67h
67h
67h
P2
1
51h
51h
51h
51h
RTC_A
1
68h
68h
68h
68h
Delimiter
1
00h
00h
00h
00h
N/A = Not applicable, blank = unused and reads FFh
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
93
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
10 Device and Documentation Support
10.1 Getting Started and Next Steps
For more information on the MSP430™ family of devices and the tools and libraries that are available to help with
your development, visit the MSP430 ultra-low-power sensing and measurement MCUs overview.
10.2 Device Nomenclature
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all MSP
MCU devices. Each MSP MCU commercial family member has one of two prefixes: MSP or XMS. These
prefixes represent evolutionary stages of product development from engineering prototypes (XMS) through fully
qualified production devices (MSP).
XMS – Experimental device that is not necessarily representative of the final device's electrical specifications
MSP – Fully qualified production device
XMS devices are shipped against the following disclaimer:
"Developmental product is intended for internal evaluation purposes."
MSP devices have been characterized fully, and the quality and reliability of the device have been demonstrated
fully. TI's standard warranty applies.
Predictions show that prototype devices (XMS) have a greater failure rate than the standard production devices.
TI recommends that these devices not be used in any production system because their expected end-use failure
rate still is undefined. Only qualified production devices are to be used.
TI device nomenclature also includes a suffix with the device family name. This suffix indicates the temperature
range, package type, and distribution format. Figure 10-1 provides a legend for reading the complete device
name.
94
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
MSP 430 F 5 438 A I PM T -EP
Processor Family
Optional: Additional Features
MCU Platform
Optional: Tape and Reel
Device Type
Packaging
Series
Feature Set
Processor Family
MCU Platform
Optional: Temperature Range
Optional: Revision
CC = Embedded RF Radio
MSP = Mixed-Signal Processor
XMS = Experimental Silicon
PMS = Prototype Device
430 = MSP430 low-power microcontroller platform
Device Type
Memory Type
C = ROM
F = Flash
FR = FRAM
G = Flash
L = No nonvolatile memory
Specialized Application
AFE = Analog front end
BQ = Contactless power
CG = ROM medical
FE = Flash energy meter
FG = Flash medical
FW = Flash electronic flow meter
Series
1 = Up to 8 MHz
2 = Up to 16 MHz
3 = Legacy
4 = Up to 16 MHz with LCD driver
5 = Up to 25 MHz
6 = Up to 25 MHz with LCD driver
0 = Low-voltage series
Feature Set
Various levels of integration within a series
Optional: Revision
Updated version of the base part number
Optional: Temperature Range S = 0°C to 50°C
C = 0°C to 70°C
I = –40°C to 85°C
T = –40°C to 105°C
Packaging
http://www.ti.com/packaging
Optional: Tape and Reel
T = Small reel
R = Large reel
No markings = Tube or tray
Optional: Additional Features -EP = Enhanced product (–40°C to 105°C)
-HT = Extreme temperature parts (–55°C to 150°C)
-Q1 = Automotive Q100 qualified
Figure 10-1. Device Nomenclature
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
95
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
10.3 Tools and Software
All MSP microcontrollers are supported by a wide variety of software and hardware development tools. Tools are
available from TI and various third parties. See them all at MSP430 Ultra-Low-Power MCUs – Tools & software.
Table 10-1 lists the debug features of the MSP430F522x MCUs. See the Code Composer Studio for MSP430
User's Guide for details on the available features.
Table 10-1. Hardware Debug Features
MSP430
ARCHITECTURE
4-WIRE
JTAG
2-WIRE
JTAG
BREAKPOINTS
(N)
RANGE
BREAKPOINTS
CLOCK
CONTROL
STATE
SEQUENCER
TRACE
BUFFER
LPMx.5
DEBUGGING
SUPPORT
MSP430Xv2
Yes
Yes
3
Yes
Yes
No
No
No
Design Kits and Evaluation Modules
64-pin Target Development Board and MSP-FET Programmer Bundle for MSP430F5x MCUs
The MSP-FET430U64C is a powerful tool that includes the hardware and software required to complete much of
your application development work. The flash memory can be erased and programmed in seconds with only a
few keystrokes, and because the MSP430 flash is extremely low power, no external power supply is required.
64-Pin Target Development Board for MSP430F5x MCUs
The MSP-TS430RGC64C is a stand-alone 64-pin ZIF socket target board used to program and debug the
MSP430 MCU in-system through the JTAG interface or the Spy Bi-Wire (2-wire JTAG) protocol.
Software
MSP430Ware™ Software
MSP430Ware software is a collection of code examples, data sheets, and other design resources for all
MSP430 devices delivered in a convenient package. In addition to providing a complete collection of existing
MSP430 MCU design resources, MSP430Ware software also includes a high-level API called MSP Driver
Library. This library makes it easy to program MSP430 hardware. MSP430Ware software is available as a
component of CCS or as a stand-alone package.
MSP430F524x, MSP430F523x Code Examples
C code examples that configure each of the integrated peripherals for various application needs.
MSP Driver Library
Driver Library's abstracted API keeps you above the bits and bytes of the MSP430 hardware by providing easyto-use function calls. Thorough documentation is delivered through a helpful API Guide, which includes details
on each function call and the recognized parameters. Developers can use Driver Library functions to write
complete projects with minimal overhead.
MSP EnergyTrace™ Technology
EnergyTrace technology for MSP430 microcontrollers is an energy-based code analysis tool that measures and
displays the application's energy profile and helps to optimize it for ultra-low-power consumption.
ULP (Ultra-Low Power) Advisor
ULP Advisor™ software is a tool for guiding developers to write more efficient code to fully utilize the unique
ultra-low power features of MSP and MSP432 microcontrollers. Aimed at both experienced and new
microcontroller developers, ULP Advisor checks your code against a thorough ULP checklist to squeeze every
last nano amp out of your application. At build time, ULP Advisor will provide notifications and remarks to
highlight areas of your code that can be further optimized for lower power.
96
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
IEC60730 Software Package
The IEC60730 MSP430 software package was developed to be useful in assisting customers in complying with
IEC 60730-1:2010 (Automatic Electrical Controls for Household and Similar Use – Part 1: General
Requirements) for up to Class B products, which includes home appliances, arc detectors, power converters,
power tools, e-bikes, and many others. The IEC60730 MSP430 software package can be embedded in customer
applications running on MSP430 MCUs to help simplify the customer's certification efforts of functional safetycompliant consumer devices to IEC 60730-1:2010 Class B.
Fixed Point Math Library for MSP
The MSP IQmath and Qmath Libraries are collections of highly optimized and high-precision mathematical
functions for C programmers to seamlessly port a floating-point algorithm into fixed-point code on MSP430 and
MSP432 MCUs. These routines are typically used in computationally intensive real-time applications where
optimal execution speed, high accuracy, and ultra-low energy are critical. By using the IQmath and Qmath
libraries, it is possible to achieve execution speeds considerably faster and energy consumption considerably
lower than equivalent code written using floating-point math.
Floating Point Math Library for MSP430
Continuing to innovate in the low power and low cost microcontroller space, TI brings you MSPMATHLIB.
Leveraging the intelligent peripherals of our devices, this floating point math library of scalar functions brings you
up to 26x better performance. This library is free and is integrated in both Code Composer Studio and IAR IDEs.
Read the user's guide for an in depth look at the math library and relevant benchmarks.
Development Tools
Code Composer Studio™ Integrated Development Environment for MSP Microcontrollers
Code Composer Studio is an integrated development environment (IDE) that supports all MSP microcontroller
devices. This suite of embedded software utilities is used to develop and debug embedded applications. It
includes an optimizing C/C++ compiler, source code editor, project build environment, debugger, profiler, and
many other features. The intuitive IDE provides a single user interface taking you through each step of the
application development flow. Familiar utilities and interfaces let you get started faster than ever before. Code
Composer Studio combines the advantages of the Eclipse software framework with advanced embedded debug
capabilities from TI resulting in a compelling feature-rich development environment for embedded developers.
Command-Line Programmer
MSP Flasher is an open-source shell-based interface for programming MSP microcontrollers through a FET
programmer or eZ430 using JTAG or Spy-Bi-Wire (SBW) communication. MSP Flasher can download binary
files (.txt or .hex) files directly to the MSP microcontroller without an IDE.
MSP MCU Programmer and Debugger
The MSP-FET is a powerful emulation development tool – often called a debug probe – which allows users to
quickly begin application development on MSP low-power microcontrollers (MCU). Creating MCU software
usually requires downloading the resulting binary program to the MSP device for validation and debugging. The
MSP-FET provides a debug communication pathway between a host computer and the target MSP.
Furthermore, the MSP-FET also provides a Backchannel UART connection between the computer's USB
interface and the MSP UART. This affords the MSP programmer a convenient method for communicating serially
between the MSP and a terminal running on the computer.
MSP-GANG Production Programmer
The MSP Gang Programmer is an MSP430 or MSP432 device programmer that can program up to eight
identical Flash or FRAM devices at the same time. The programmer connects to a host PC using a standard
RS-232 or USB connection and provides flexible programming options that let you fully customize the process.
The MSP Gang Programmer includes the Gang Splitter expansion board that implements the interconnections
between the MSP Gang Programmer and multiple target devices. Eight cables are provided that connect the
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
97
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
expansion board to eight target devices (through JTAG or Spy-Bi-Wire connectors). Programming can be done
with a PC or as a stand-alone device.
98
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
10.4 Documentation Support
The following documents describe the MSP430F524x and MPS430F543x devices. Copies of these documents
are available on the Internet at www.ti.com.
Receiving Notification of Document Updates
To receive notification of documentation updates—including silicon errata—go to the product folder for your
device on ti.com (for links to the product folders, see Section 10.5). In the upper right corner, click the "Alert me"
button. This registers you to receive a weekly digest of product information that has changed (if any). For change
details, check the revision history of any revised document.
Errata
MSP430F5249 Device Erratasheet
Describes the known exceptions to the functional specifications.
MSP430F5247 Device Erratasheet
Describes the known exceptions to the functional specifications.
MSP430F5244 Device Erratasheet
Describes the known exceptions to the functional specifications.
MSP430F5242 Device Erratasheet
Describes the known exceptions to the functional specifications.
MSP430F5239 Device Erratasheet
Describes the known exceptions to the functional specifications.
MSP430F5237 Device Erratasheet
Describes the known exceptions to the functional specifications.
MSP430F5234 Device Erratasheet
Describes the known exceptions to the functional specifications.
MSP430F5232 Device Erratasheet
Describes the known exceptions to the functional specifications.
User's Guides
MSP430F5xx and MSP430F6xx Family User's Guide
Detailed information on the modules and peripherals available in this device family.
MSP430 Flash Device Bootloader (BSL) User's Guide
The MSP430 bootloader (BSL, formerly known as the bootstrap loader) allows users to communicate with
embedded memory in the MSP430 microcontroller during the prototyping phase, final production, and in service.
Both the programmable memory (flash memory) and the data memory (RAM) can be modified as required. Do
not confuse the bootloader with the bootstrap loader programs found in some digital signal processors (DSPs)
that automatically load program code (and data) from external memory to the internal memory of the DSP.
MSP430 Programming With the JTAG Interface
This document describes the functions that are required to erase, program, and verify the memory module of the
MSP430 flash-based and FRAM-based microcontroller families using the JTAG communication port. In addition,
it describes how to program the JTAG access security fuse that is available on all MSP430 devices. This
document describes device access using both the standard 4-wire JTAG interface and the 2-wire JTAG
interface, which is also referred to as Spy-Bi-Wire (SBW).
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
99
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
MSP430 Hardware Tools User's Guide
This manual describes the hardware of the TI MSP-FET430 Flash Emulation Tool (FET). The FET is the
program development tool for the MSP430 ultra-low-power microcontroller. Both available interface types, the
parallel port interface and the USB interface, are described.
Application Reports
MSP430 32-kHz Crystal Oscillators
Selection of the right crystal, correct load circuit, and proper board layout are important for a stable crystal
oscillator. This application report summarizes crystal oscillator function and explains the parameters to select the
correct crystal for MSP430 ultra-low-power operation. In addition, hints and examples for correct board layout
are given. The document also contains detailed information on the possible oscillator tests to ensure stable
oscillator operation in mass production.
MSP430 System-Level ESD Considerations
System-Level ESD has become increasingly demanding as silicon technology scales to lower voltages and the
need for designing cost-effective and ultra-low-power components. This application report addresses three ESD
topics to help board designers and OEMs understand and design robust system-level designs: (1) Componentlevel ESD testing and system-level ESD testing; (2) General design guidelines for system-level ESD protection;
(3) Introduction to System Efficient ESD Design (SEED), a co-design methodology of on-board and on-chip ESD
protection.
10.5 Related Links
Table 10-2 lists quick access links. Categories include technical documents, support and community resources,
tools and software, and quick access to sample or buy.
Table 10-2. Related Links
PARTS
PRODUCT FOLDER
ORDER NOW
TECHNICAL
DOCUMENTS
TOOLS &
SOFTWARE
SUPPORT &
COMMUNITY
MSP430F5249
Click here
Click here
Click here
Click here
Click here
MSP430F5247
Click here
Click here
Click here
Click here
Click here
MSP430F5244
Click here
Click here
Click here
Click here
Click here
MSP430F5242
Click here
Click here
Click here
Click here
Click here
MSP430F5239
Click here
Click here
Click here
Click here
Click here
MSP430F5237
Click here
Click here
Click here
Click here
Click here
MSP430F5234
Click here
Click here
Click here
Click here
Click here
MSP430F5232
Click here
Click here
Click here
Click here
Click here
10.6 Support Resources
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight
from the experts. Search existing answers or ask your own question to get the quick design help you need.
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do
not necessarily reflect TI's views; see TI's Terms of Use.
10.7 Trademarks
MicroStar Junior™, MSP430™, MSP430Ware™, EnergyTrace™, ULP Advisor™, Code Composer Studio™, and TI
E2E™ are trademarks of Texas Instruments.
All other trademarks are the property of their respective owners.
100
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
10.8 Electrostatic Discharge Caution
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may
be more susceptible to damage because very small parametric changes could cause the device not to meet its published
specifications.
10.9 Export Control Notice
Recipient agrees to not knowingly export or re-export, directly or indirectly, any product or technical data (as
defined by the U.S., EU, and other Export Administration Regulations) including software, or any controlled
product restricted by other applicable national regulations, received from disclosing party under nondisclosure
obligations (if any), or any direct product of such technology, to any destination to which such export or re-export
is restricted or prohibited by U.S. or other applicable laws, without obtaining prior authorization from U.S.
Department of Commerce and other competent Government authorities to the extent required by those laws.
10.10 Glossary
TI Glossary
This glossary lists and explains terms, acronyms, and definitions.
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
101
MSP430F5249, MSP430F5247, MSP430F5244, MSP430F5242
MSP430F5239, MSP430F5237, MSP430F5234, MSP430F5232
www.ti.com
SLAS897C – SEPTEMBER 2013 – REVISED OCTOBER 2020
Mechanical, Packaging, and Orderable Information
The following pages include mechanical, packaging, and orderable information. This information is the most
current data available for the designated devices. This data is subject to change without notice and revision of
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.
102
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F5249 MSP430F5247 MSP430F5244 MSP430F5242 MSP430F5239
MSP430F5237 MSP430F5234 MSP430F5232
PACKAGE OPTION ADDENDUM
www.ti.com
28-Jan-2021
PACKAGING INFORMATION
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
(2)
Lead finish/
Ball material
MSL Peak Temp
Op Temp (°C)
Device Marking
(3)
(4/5)
(6)
MSP430F5232IRGZR
ACTIVE
VQFN
RGZ
48
2500
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 85
F5232
MSP430F5232IRGZT
ACTIVE
VQFN
RGZ
48
250
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 85
F5232
MSP430F5234IRGZR
ACTIVE
VQFN
RGZ
48
2500
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 85
F5234
MSP430F5234IRGZT
ACTIVE
VQFN
RGZ
48
250
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 85
F5234
MSP430F5237IRGCR
ACTIVE
VQFN
RGC
64
2000
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 85
F5237
MSP430F5237IRGCT
ACTIVE
VQFN
RGC
64
250
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 85
F5237
MSP430F5239IRGCR
ACTIVE
VQFN
RGC
64
2000
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 85
F5239
MSP430F5239IRGCT
ACTIVE
VQFN
RGC
64
250
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 85
F5239
MSP430F5242IRGZR
ACTIVE
VQFN
RGZ
48
2500
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 85
F5242
MSP430F5242IRGZT
ACTIVE
VQFN
RGZ
48
250
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 85
F5242
MSP430F5244IRGZR
ACTIVE
VQFN
RGZ
48
2500
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 85
F5244
MSP430F5244IRGZT
ACTIVE
VQFN
RGZ
48
250
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 85
F5244
MSP430F5247IRGCR
ACTIVE
VQFN
RGC
64
2000
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 85
F5247
MSP430F5247IRGCT
ACTIVE
VQFN
RGC
64
250
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 85
F5247
MSP430F5249IRGCR
ACTIVE
VQFN
RGC
64
2000
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 85
F5249
MSP430F5249IRGCT
ACTIVE
VQFN
RGC
64
250
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 85
F5249
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
Addendum-Page 1
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
28-Jan-2021
(2)
RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may
reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of