Product
Folder
Order
Now
Technical
Documents
Tools &
Software
Support &
Community
Reference
Design
MSP430F5310, MSP430F5309, MSP430F5308, MSP430F5304
SLAS677G – SEPTEMBER 2010 – REVISED MAY 2020
MSP430F5310, MSP430F530x Mixed-Signal Microcontrollers
1 Device Overview
1.1
Features
1
• Low supply-voltage range:
3.6 V down to 1.8 V
• Ultra-low power consumption
– Active mode (AM)
All system clocks active
– 195 µA/MHz (typical) at 8 MHz, 3 V, flash
program execution
– 115 µA/MHz (typical) at 8 MHz, 3 V, RAM
program execution
– Standby mode (LPM3)
– Real-time clock (RTC) with crystal, watchdog,
and supply supervisor operational, full RAM
retention, fast wakeup:
1.9 µA (typical) at 2.2 V,
2.1 µA (typical) at 3 V
– Low-power oscillator (VLO), general-purpose
counter, watchdog, and supply supervisor
operational, full RAM retention, fast wakeup:
1.4 µA (Typical) at 3 V
– Off mode (LPM4)
Full RAM retention, supply supervisor
operational, fast wakeup:
1.1 µA at 3 V (typical)
– Shutdown mode (LPM4.5)
0.18 µA at 3 V (typical)
• Wake up from standby mode in less than 5 µs
• 16-bit RISC architecture, extended memory, up to
25-MHz system clock
• Flexible power-management system
– Fully integrated LDO with programmable
regulated core supply voltage
– Supply voltage supervision, monitoring, and
brownout
• Unified clock system (UCS)
– FLL control loop for frequency stabilization
1.2
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
– Low-power low-frequency internal clock source
(VLO)
– Low-frequency trimmed internal reference
source (REFO)
– 32-kHz watch crystals (XT1)
– High-frequency crystals up to 32 MHz (XT2)
16-bit Timer TA0, Timer_A with five
capture/compare registers
16-bit Timer TA1, Timer_A with three
capture/compare registers
16-bit Timer TA2, Timer_A with three
capture/compare registers
16-bit Timer TB0, Timer_B with seven
capture/compare shadow registers
Two universal serial communication interfaces
(USCIs)
– USCI_A0 and USCI_A1
– Enhanced UART supports automatic baudrate detection
– IrDA encoder and decoder
– Synchronous SPI
– USCI_B0 and USCI_B1
– I2C
– Synchronous SPI
Integrated 3.3-V power system
10-bit analog-to-digital converter (ADC) with
window comparator
Comparator
Hardware multiplier supports 32-bit operations
Serial onboard programming, no external
programming voltage needed
3-channel internal DMA
Basic timer with RTC feature
Device Comparison summarizes the available
family members
Applications
Analog and digital sensor systems
Digital motor control
Remote controls
•
•
•
Thermostats
Digital timers
Hand-held meters
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,
intellectual property matters and other important disclaimers. PRODUCTION DATA.
MSP430F5310, MSP430F5309, MSP430F5308, MSP430F5304
SLAS677G – SEPTEMBER 2010 – REVISED MAY 2020
1.3
www.ti.com
Description
The TI MSP family of ultra-low-power microcontrollers consists of several devices featuring different sets
of peripherals targeted for various applications. The architecture, combined with five low-power modes, is
optimized to achieve extended battery life in portable measurement applications. The device features a
powerful 16-bit RISC CPU, 16-bit registers, and constant generators that contribute to maximum code
efficiency. The digitally controlled oscillator (DCO) allows the device to wake up from low-power modes to
active mode in less than 5 µs.
The MSP430F5310, MSP430F5309, and MSP430F5308 devices are microcontroller configurations with a
3.3-V LDO, four 16-bit timers, a high-performance 10-bit ADC, two USCIs (1), a hardware multiplier, DMA,
an RTC module with alarm capabilities, and 31 or 47 I/O pins.
The MSP430F5304 device is a configuration with a 3.3-V LDO, four 16-bit timers, a high-performance 10bit ADC, one USCI, a hardware multiplier, DMA, an RTC module with alarm capabilities, and 31 I/O pins.
For complete module descriptions, see the MSP430F5xx and MSP430F6xx Family User's Guide.
(1)
In the 48-pin packages, the USCI functions that are pinned out are limited to what the user configures on port 4 with the port mapping
controller. It may not be possible to bring out all functions simultaneously.
Device Information (1)
PACKAGE
BODY SIZE (2)
VQFN (64)
9 mm × 9 mm
MSP430F5310IPT
LQFP (48)
7 mm × 7 mm
MSP430F5310IRGZ
VQFN (48)
7 mm × 7 mm
MSP430F5310IZXH
nFBGA (80)
5 mm × 5 mm
MicroStar Junior™ BGA (80)
5 mm × 5 mm
PART NUMBER
MSP430F5310IRGC
MSP430F5310IZQE (3)
(1)
(2)
(3)
2
For the most current part, package, and ordering information, see the Package Option Addendum in
Section 8, or see the TI website at www.ti.com.
The sizes shown here are approximations. For the package dimensions with tolerances, see the
Mechanical Data in Section 8.
All orderable part numbers in the ZQE package have been changed to a status of Last Time Buy. Visit
the Product life cycle page for details on this status.
Device Overview
Copyright © 2010–2020, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5310 MSP430F5309 MSP430F5308 MSP430F5304
MSP430F5310, MSP430F5309, MSP430F5308, MSP430F5304
www.ti.com
1.4
SLAS677G – SEPTEMBER 2010 – REVISED MAY 2020
Functional Block Diagrams
Figure 1-1 through Figure 1-3 show the functional block diagrams.
XIN XOUT RST/NMI DVCC DVSS VCORE AVCC AVSS
P1.x
XT2IN
XT2OUT
Unified
Clock
System
ACLK
SMCLK
MCLK
CPUXV2
and
Working
Registers
32KB
24KB
16KB
6KB
Flash
RAM
Power
Management
LDO
SVM/SVS
Brownout
SYS
Watchdog
Port Map
Control
(P4)
PA
P2.x
P3.x
PB
P4.x
P5.x
PC
P6.x
I/O Ports
P1, P2
2×8 I/Os
Interrupt,
Wakeup
I/O Ports
P3, P4
1×5 I/Os
1×8 I/Os
I/O Ports
P5, P6
1×6 I/Os
1×8 I/Os
PA
1×16 I/Os
PB
1×13 I/Os
PC
1×14 I/Os
REF
COMP_B
ADC10_A
10 Bit
200 KSPS
12 Channels
(10 ext, 2 int)
Window
Comparator
MAB
DMA
MDB
3 Channel
EEM
(S:3+1)
JTAG,
SBW
Interface
TA0
MPY32
Timer_A
5 CC
Registers
TA1
Timer_A
3 CC
Registers
TA2
Timer_A
3 CC
Registers
USCI0,1
PU Port
Ax: UART,
IrDA, SPI
LDO
TB0
Timer_B
7 CC
Registers
RTC_A
CRC16
Bx: SPI, I2C
PU.0, PU.1
Copyright © 2016, Texas Instruments Incorporated
Figure 1-1. Functional Block Diagram – RGC, ZXH, or ZQE Package – MSP430F5310, MSP430F5309,
MSP430F5308
Copyright © 2010–2020, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5310 MSP430F5309 MSP430F5308 MSP430F5304
Device Overview
3
MSP430F5310, MSP430F5309, MSP430F5308, MSP430F5304
SLAS677G – SEPTEMBER 2010 – REVISED MAY 2020
www.ti.com
XIN XOUT RST/NMI DVCC DVSS VCORE AVCC AVSS
P1.x
XT2IN
XT2OUT
ACLK
Unified
Clock
System
SMCLK
MCLK
32KB
24KB
16KB
6KB
Flash
RAM
Power
Management
LDO
SVM/SVS
Brownout
SYS
Watchdog
Port Map
Control
(P4)
PA
P2.x
I/O Ports
P1, P2
1×8 I/Os
1×1 I/Os
Interrupt,
Wakeup
PA
1×9 I/Os
P3.x
PB
P4.x
P5.x
PC
P6.x
I/O Ports
P4
1×8 I/Os
I/O Ports
P5, P6
1×6 I/Os
1×4 I/Os
PB
1×8 I/Os
PC
1×10 I/Os
REF
COMP_B
ADC10_A
10 Bit
200 KSPS
8 Channels
(6 ext, 2 int)
Window
Comparator
MAB
CPUXV2
and
Working
Registers
DMA
MDB
3 Channel
EEM
(S:3+1)
TA0
JTAG,
SBW
Interface
MPY32
Timer_A
5 CC
Registers
TA1
Timer_A
3 CC
Registers
TA2
Timer_A
3 CC
Registers
USCI0,1
PU Port
Ax: UART,
IrDA, SPI
LDO
TB0
RTC_A
Timer_B
7 CC
Registers
CRC16
Bx: SPI, I2C
PU.0, PU.1
Copyright © 2016, Texas Instruments Incorporated
NOTE: See Table 3-1 for limitations on the simultaneous availability of USCI module signals.
Figure 1-2. Functional Block Diagram – RGZ or PT Package – MSP430F5310, MSP430F5309,
MSP430F5308
XIN XOUT RST/NMI DVCC DVSS VCORE AVCC AVSS
P1.x
XT2IN
XT2OUT
ACLK
Unified
Clock
System
8KB
SMCLK
Flash
6KB
RAM
MCLK
CPUXV2
and
Working
Registers
Power
Management
LDO
SVM/SVS
Brownout
SYS
Watchdog
Port Map
Control
(P4)
PA
P2.x
I/O Ports
P1, P2
1×8 I/Os
1×1 I/Os
Interrupt,
Wakeup
PA
1×9 I/Os
P3.x
PB
P4.x
P5.x
PC
P6.x
I/O Ports
P4
1×8 I/Os
I/O Ports
P5, P6
1×6 I/Os
1×4 I/Os
PB
1×8 I/Os
PC
1×10 I/Os
REF
ADC10_A
10 Bit
200 KSPS
8 Channels
(6 int, 2 ext)
Window
Comparator
MAB
DMA
MDB
3 Channel
EEM
(S:3+1)
TA0
JTAG,
SBW
Interface
MPY32
Timer_A
5 CC
Registers
TA1
Timer_A
3 CC
Registers
TA2
Timer_A
3 CC
Registers
USCI1
PU Port
A1: UART,
IrDA, SPI
LDO
TB0
Timer_B
7 CC
Registers
RTC_A
CRC16
B1: SPI, I2C
PU.0, PU.1
Copyright © 2016, Texas Instruments Incorporated
Figure 1-3. Functional Block Diagram – RGZ or PT Package – MSP430F5304
4
Device Overview
Copyright © 2010–2020, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5310 MSP430F5309 MSP430F5308 MSP430F5304
MSP430F5310, MSP430F5309, MSP430F5308, MSP430F5304
www.ti.com
SLAS677G – SEPTEMBER 2010 – REVISED MAY 2020
Table of Contents
1
2
3
Device Overview ......................................... 1
5.23
PMM, SVS Low Side ................................ 28
1.1
Features .............................................. 1
1.2
Applications ........................................... 1
5.24
5.25
1.3
Description ............................................ 2
PMM, SVM Low Side ............................... 28
Wake-up Times From Low-Power Modes and
Reset ................................................ 29
1.4
Functional Block Diagrams ........................... 3
5.26
Timer_A
Revision History ......................................... 6
Device Comparison ..................................... 7
5.27
Timer_B
Related Products ..................................... 7
5.29
Terminal Configuration and Functions .............. 8
5.30
Pin Diagrams ......................................... 8
5.31
Signal Descriptions .................................. 12
5.32
Specifications ........................................... 16
5.33
5.34
3.1
4
4.1
4.2
5
5.1
Absolute Maximum Ratings ......................... 16
5.2
ESD Ratings
5.3
5.4
Recommended Operating Conditions ............... 16
Active Mode Supply Current Into VCC Excluding
External Current ..................................... 17
Low-Power Mode Supply Currents (Into VCC)
Excluding External Current.......................... 18
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
........................................
16
Thermal Resistance Characteristics ................ 19
Schmitt-Trigger Inputs – General-Purpose I/O
(P1.0 to P1.7, P2.0 to P2.7, P3.0 to P3.4, P4.0 to P4.7)
(P5.0 to P5.5, P6.0 to P6.7, PJ.0 to PJ.3,
RST/NMI) ............................................ 20
Inputs – Ports P1 and P2
(P1.0 to P1.7, P2.0 to P2.7)......................... 20
Leakage Current – General-Purpose I/O
(P1.0 to P1.7, P2.0 to P2.7, P3.0 to P3.4, P4.0 to P4.7)
(P5.0 to P5.5, P6.0 to P6.7, PJ.0 to PJ.3,
RST/NMI) ............................................ 20
Outputs – General-Purpose I/O (Full Drive Strength)
(P1.0 to P1.7, P2.0 to P2.7, P3.0 to P3.4, P4.0 to
P4.7, P5.0 to P5.5, P6.0 to P6.7, PJ.0 to PJ.3) ..... 20
Outputs – General-Purpose I/O (Reduced Drive
Strength)
(P1.0 to P1.7, P2.0 to P2.7, P3.0 to P3.4, P4.0 to
P4.7, P5.0 to P5.5, P6.0 to P6.7, PJ.0 to PJ.3) ..... 21
Output Frequency – General-Purpose I/O
(P1.0 to P1.7, P2.0 to P2.7, P3.0 to P3.4, P4.0 to
P4.7, P5.0 to P5.5, P6.0 to P6.7, PJ.0 to PJ.3) ..... 21
Typical Characteristics – Outputs, Reduced Drive
Strength (PxDS.y = 0) ............................... 22
.....
Crystal Oscillator, XT2 ..............................
Crystal Oscillator, XT1, Low-Frequency Mode
5.28
7
23
24
Internal Very-Low-Power Low-Frequency Oscillator
(VLO) ................................................ 25
Internal Reference, Low-Frequency Oscillator
(REFO) .............................................. 25
5.18
DCO Frequency ..................................... 26
5.19
PMM, Brownout Reset (BOR)....................... 27
5.20
PMM, Core Voltage ................................. 27
5.21
PMM, SVS High Side ............................... 27
5.22
PMM, SVM High Side ............................... 28
8
29
29
30
30
30
30
32
34
10-Bit ADC, Power Supply and Input Range
Conditions ........................................... 35
....................
5.35
10-Bit ADC, Timing Parameters
5.36
10-Bit ADC, Linearity Parameters................... 36
...........................
5.38 REF, Built-In Reference .............................
5.39 Comparator_B .......................................
5.40 Ports PU.0 and PU.1 ................................
5.41 LDO-PWR (LDO Power System) ...................
5.42 Flash Memory .......................................
5.43 JTAG and Spy-Bi-Wire Interface ....................
Detailed Description ...................................
6.1
CPU (Link to User's Guide) .........................
6.2
Operating Modes ....................................
6.3
Interrupt Vector Addresses..........................
6.4
Memory Organization ...............................
6.5
Bootloader (BSL) ....................................
6.6
JTAG Operation .....................................
6.7
Flash Memory (Link to User's Guide) ...............
6.8
RAM (Link to User's Guide) .........................
6.9
Peripherals ..........................................
6.10 Peripheral File Map .................................
6.11 Input/Output Diagrams ..............................
6.12 Device Descriptors ..................................
Device and Documentation Support ...............
7.1
Getting Started and Next Steps .....................
7.2
Device Nomenclature ...............................
7.3
Tools and Software .................................
7.4
Documentation Support .............................
7.5
Related Links ........................................
7.6
Community Resources ..............................
7.7
Trademarks..........................................
7.8
Electrostatic Discharge Caution .....................
7.9
Glossary .............................................
5.37
6
.............................................
.............................................
USCI (UART Mode) Clock Frequency ..............
USCI (UART Mode) .................................
USCI (SPI Master Mode) Clock Frequency .........
USCI (SPI Master Mode)............................
USCI (SPI Slave Mode) .............................
USCI (I2C Mode) ....................................
REF, External Reference
35
36
37
38
39
40
41
41
42
42
43
44
45
46
46
47
47
47
58
69
85
88
88
88
90
92
93
93
93
93
93
Mechanical, Packaging, and Orderable
Information .............................................. 94
Copyright © 2010–2020, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5310 MSP430F5309 MSP430F5308 MSP430F5304
Table of Contents
5
MSP430F5310, MSP430F5309, MSP430F5308, MSP430F5304
SLAS677G – SEPTEMBER 2010 – REVISED MAY 2020
www.ti.com
2 Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.
Changes from September 26, 2018 to May 1, 2020
•
•
6
Page
Throughout the document, added the ZXH package ............................................................................ 1
Changed the status of all orderable part numbers in the ZQE package ...................................................... 2
Revision History
Copyright © 2010–2020, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5310 MSP430F5309 MSP430F5308 MSP430F5304
MSP430F5310, MSP430F5309, MSP430F5308, MSP430F5304
www.ti.com
SLAS677G – SEPTEMBER 2010 – REVISED MAY 2020
3 Device Comparison
Table 3-1 summarizes the available family members.
Table 3-1. Family Members (1) (2)
DEVICE
MSP430F5310
MSP430F5309
MSP430F5308
MSP430F5304
(1)
(2)
(3)
(4)
(5)
3.1
PROGRAM
MEMORY
(KB)
SRAM
(KB)
32
6
24
6
16
6
8
6
Timer_A (3)
5, 3, 3
5, 3, 3
5, 3, 3
5, 3, 3
Timer_B (4)
USCI_A:
UART, LIN,
IrDA, SPI
USCI_B:
SPI, I2C
ADC10_A
(CH)
Comp_B
(CH)
I/Os
PACKAGE
2
2
10 ext, 2 int
8
47
64 RGC,
80 ZXH,
80 ZQE
2 (5)
2 (5)
6 ext, 2 int
4
31
48 PT,
48 RGZ
2
2
10 ext, 2 int
8
47
64 RGC,
80 ZXH,
80 ZQE
2 (5)
2 (5)
6 ext, 2 int
4
31
48 PT,
48 RGZ,
2
2
10 ext, 2 int
8
47
64 RGC,
80 ZXH,
80 ZQE
2 (5)
2 (5)
6 ext, 2 int
4
31
48 PT,
48 RGZ,
1
1
6 ext, 2 int
-
31
48 PT,
48 RGZ
7
7
7
7
For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI
website at www.ti.com.
Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at
www.ti.com/packaging.
Each number in the sequence represents an instantiation of Timer_A with its associated number of capture compare registers and PWM
output generators available. For example, a number sequence of 3, 5 would represent two instantiations of Timer_A, the first
instantiation having 3 and the second instantiation having 5 capture compare registers and PWM output generators, respectively.
Each number in the sequence represents an instantiation of Timer_B with its associated number of capture compare registers and PWM
output generators available. For example, a number sequence of 3, 5 would represent two instantiations of Timer_B, the first
instantiation having 3 and the second instantiation having 5 capture compare registers and PWM output generators, respectively.
Two USCIs are available; however, pinned out functions are limited to what the user configures on port 4 with the port mapping
controller (see Section 6.9.2). It may not be possible to bring out all functions simultaneously.
Related Products
For information about other devices in this family of products or related products, see the following links.
Products for TI Microcontrollers TI's low-power and high-performance MCUs, with wired and wireless
connectivity options, are optimized for a broad range of applications.
Products for MSP430 Ultra-Low-Power Microcontrollers One platform. One ecosystem. Endless
possibilities. Enabling the connected world with innovations in ultra-low-power
microcontrollers with advanced peripherals for precise sensing and measurement.
Companion Products for MSP430F5310 Review products that are frequently purchased or used in
conjunction with this product.
Reference Designs for MSP430F5310 Find reference designs that leverage the best in TI technology to
solve your system-level challenges.
Device Comparison
Submit Documentation Feedback
Product Folder Links: MSP430F5310 MSP430F5309 MSP430F5308 MSP430F5304
Copyright © 2010–2020, Texas Instruments Incorporated
7
MSP430F5310, MSP430F5309, MSP430F5308, MSP430F5304
SLAS677G – SEPTEMBER 2010 – REVISED MAY 2020
www.ti.com
4 Terminal Configuration and Functions
4.1
Pin Diagrams
P6.0/CB0/A0
VSSU
PU.0
PU.1
NC
LDOI
NC
LDOO
P5.2/XT2IN
AVSS2
TEST/SBWTCK
P5.3/XT2OUT
PJ.0/TDO
PJ.2/TMS
PJ.1/TDI/TCLK
PJ.3/TCK
RST/NMI/SBWTDIO
Figure 4-1 shows the pinout for the MSP430F5310, MSP430F5309, and MSP430F5308 devices in the 64pin RGC package.
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
48
1
P4.7/PM_NONE
P6.1/CB1/A1
2
47
P4.6/PM_NONE
P6.2/CB2/A2
3
46
P4.5/PM_UCA1RXD/PM_UCA1SOMI
P6.3/CB3/A3
P6.4/CB4/A4
4
45
P4.4/PM_UCA1TXD/PM_UCA1SIMO
5
44
P4.3/PM_UCB1CLK/PM_UCA1STE
P6.5/CB5/A5
6
43
P4.2/PM_UCB1SOMI/PM_UCB1SCL
P6.6/CB6/A6
7
42
P4.1/PM_UCB1SIMO/PM_UCB1SDA
P6.7/CB7/A7
8
41
P4.0/PM_UCB1STE/PM_UCA1CLK
P5.0/A8/VeREF+
9
40
DVCC2
P5.1/A9/VeREF−
10
39
DVSS2
AVCC1
11
38
P3.4/UCA0RXD/UCA0SOMI
P5.4/XIN
12
37
P3.3/UCA0TXD/UCA0SIMO
P5.5/XOUT
AVSS1
13
36
P3.2/UCB0CLK/UCA0STE
P2.5/TA2.2
P2.7/UCB0STE/UCA0CLK
P2.6/RTCCLK/DMAE0
P2.4/TA2.1
P2.3/TA2.0
P2.2/TA2CLK/SMCLK
P2.0/TA1.1
P2.1/TA1.2
P1.7/TA1.0
P1.6/TA1CLK/CBOUT
P1.5/TA0.4
P1.4/TA0.3
P3.0/UCB0SIMO/UCB0SDA
P1.3/TA0.2
34
16
33
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
P1.2/TA0.1
15
DVSS1
P1.1/TA0.0
P3.1/UCB0SOMI/UCB0SCL
VCORE
35
P1.0/TA0CLK/ACLK
14
DVCC1
NOTE: TI recommends connection of exposed thermal pad to VSS.
Figure 4-1. 64-Pin RGC Package (Top View)
8
Terminal Configuration and Functions
Copyright © 2010–2020, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5310 MSP430F5309 MSP430F5308 MSP430F5304
MSP430F5310, MSP430F5309, MSP430F5308, MSP430F5304
www.ti.com
SLAS677G – SEPTEMBER 2010 – REVISED MAY 2020
Figure 4-2 shows the pinout for the MSP430F5310, MSP430F5309, and MSP430F5308 devices in the 80pin ZXH or ZQE package.
A1
A2
A3
A4
A5
A6
A7
A8
A9
B1
B2
B3
B4
B5
B6
B7
B8
B9
C1
C2
C4
C5
C6
C7
C8
C9
D1
D2
D3
D4
D5
D6
D7
D8
D9
E1
E2
E3
E4
E5
E6
E7
E8
E9
F1
F2
F3
F4
F5
F6
F7
F8
F9
G1
G2
G3
G4
G5
G6
G7
G8
G9
H1
H2
H3
H4
H5
H6
H7
H8
H9
J1
J2
J3
J4
J5
J6
J7
J8
J9
Figure 4-2. 80-Pin ZXH or ZQE Package (Top View)
Terminal Configuration and Functions
Submit Documentation Feedback
Product Folder Links: MSP430F5310 MSP430F5309 MSP430F5308 MSP430F5304
Copyright © 2010–2020, Texas Instruments Incorporated
9
MSP430F5310, MSP430F5309, MSP430F5308, MSP430F5304
SLAS677G – SEPTEMBER 2010 – REVISED MAY 2020
www.ti.com
PU.0
VSSU
PU.1
NC
LDOI
NC
LDOO
P5.2/XT2IN
AVSS2
P5.3/XT2OUT
TEST/SBWTCK
RST/NMI/SBWTDIO
Figure 4-3 shows the pinout for the MSP430F5310, MSP430F5309, and MSP430F5308 devices in the 48pin RGZ and PT packages.
P6.0/CB0/A0
1
48 47 46 45 44 43 42 41 40 39 38 37
36
P4.7/PM_NONE
P6.1/CB1/A1
2
35
P4.6/PM_NONE
P6.2/CB2/A2
3
34
P4.5/PM_UCA1RXD/PM_UCA1SOMI
P6.3/CB3/A3
4
33
P4.4/PM_UCA1TXD/PM_UCA1SIMO
P5.0/A8/VeREF+
5
32
P4.3/PM_UCB1CLK/PM_UCA1STE
P5.1/A9/VeREF-
6
31
P4.2/PM_UCB1SOMI/PM_UCB1SCL
AVCC1
7
30
P4.1/PM_UCB1SIMO/PM_UCB1SDA
PJ.2/TMS
PJ.0/TDO
25
12
13 14 15 16 17 18 19 20 21 22 23 24
PJ.1/TDI/TCLK
PJ.3/TCK
DVSS1
P2.0/TA1.1
DVCC1
P1.7/TA1.0
DVSS2
26
P1.6/TA1CLK/CBOUT
27
11
P1.5/TA0.4
10
P1.4/TA0.3
AVSS1
P1.3/TA0.2
DVCC2
P1.2/TA0.1
P4.0/PM_UCB1STE/PM_UCA1CLK
28
P1.1/TA0.0
29
9
P1.0/TA0CLK/ACLK
8
VCORE
P5.4/XIN
P5.5/XOUT
NOTE: For the RGZ package, TI recommends connection of exposed thermal pad to VSS.
Figure 4-3. 48-Pin RGZ or PT Package (Top View) – MSP430F5310, MSP430F5309, MSP430F5308
10
Terminal Configuration and Functions
Copyright © 2010–2020, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5310 MSP430F5309 MSP430F5308 MSP430F5304
MSP430F5310, MSP430F5309, MSP430F5308, MSP430F5304
www.ti.com
SLAS677G – SEPTEMBER 2010 – REVISED MAY 2020
PU.0
VSSU
PU.1
NC
LDOO
LDOI
AVSS2
NC
P5.2/XT2IN
TEST/SBWTCK
P5.3/XT2OUT
RST/NMI/SBWTDIO
Figure 4-4 shows the pinout for the MSP430F5304 device in the 48-pin RGZ and PT packages.
P6.0/A0
1
48 47 46 45 44 43 42 41 40 39 38 37
36
P4.7/PM_NONE
P6.1/A1
2
35
P4.6/PM_NONE
P6.2/A2
3
34
P4.5/PM_UCA1RXD/PM_UCA1SOMI
P6.3/A3
4
33
P4.4/PM_UCA1TXD/PM_UCA1SIMO
P5.0/A8/VeREF+
5
32
P4.3/PM_UCB1CLK/PM_UCA1STE
27
DVSS2
DVCC1
11
26
PJ.3/TCK
DVSS1
25
12
13 14 15 16 17 18 19 20 21 22 23 24
PJ.2/TMS
PJ.1/TDI/TCLK
10
PJ.0/TDO
DVCC2
AVSS1
P1.7/TA1.0
P5.5/XOUT
P2.0/TA1.1
P4.0/PM_UCB1STE/PM_UCA1CLK
28
P1.5/TA0.4
29
9
P1.6/TA1CLK/CBOUT
8
P1.3/TA0.2
P5.4/XIN
P1.4/TA0.3
P4.1/PM_UCB1SIMO/PM_UCB1SDA
P1.2/TA0.1
P4.2/PM_UCB1SOMI/PM_UCB1SCL
30
P1.1/TA0.0
31
7
P1.0/TA0CLK/ACLK
6
AVCC1
VCORE
P5.1/A9/VeREF-
NOTE: For the RGZ package, TI recommends connection of exposed thermal pad to VSS.
Figure 4-4. 48-Pin RGZ or RT Package (Top View) – MSP430F5304
Terminal Configuration and Functions
Submit Documentation Feedback
Product Folder Links: MSP430F5310 MSP430F5309 MSP430F5308 MSP430F5304
Copyright © 2010–2020, Texas Instruments Incorporated
11
MSP430F5310, MSP430F5309, MSP430F5308, MSP430F5304
SLAS677G – SEPTEMBER 2010 – REVISED MAY 2020
4.2
www.ti.com
Signal Descriptions
Table 4-1 describes the signals for all device variants and package options.
Table 4-1. Signal Descriptions
TERMINAL
NO.
NAME
I/O (1)
DESCRIPTION
RGZ, ZXH,
RGC
PT ZQE
P6.4/CB4/A4
5
N/A
C1
I/O
General-purpose digital I/O
Comparator_B input CB4 (not available on RGZ or PT package devices)
Analog input A4 for ADC (not available on RGZ or PT package devices)
P6.5/CB5/A5
6
N/A
D2
I/O
General-purpose digital I/O
Comparator_B input CB5 (not available on RGZ or PT package devices)
Analog input A5 for ADC (not available on RGZ or PT package devices)
P6.6/CB6/A6
7
N/A
D1
I/O
General-purpose digital I/O
Comparator_B input CB6 (not available on RGZ or PT package devices)
Analog input A6 for ADC (not available on RGZ or PT package devices)
P6.7/CB7/A7
8
N/A
D3
I/O
General-purpose digital I/O
Comparator_B input CB7 (not available on RGZ or PT package devices)
Analog input A7 for ADC (not available on RGZ or PT package devices)
P5.0/A8/VeREF+
9
5
E1
I/O
General-purpose digital I/O
Analog input A8 for ADC
Input for an external reference voltage to the ADC
P5.1/A9/VeREF-
10
6
E2
I/O
General-purpose digital I/O
Analog input A9 for ADC
Negative terminal for an externally provided ADC reference
AVCC1
11
7
F2
P5.4/XIN
12
8
F1
I/O
General-purpose digital I/O
Input terminal for crystal oscillator XT1
P5.5/XOUT
13
9
G1
I/O
General-purpose digital I/O
Output terminal of crystal oscillator XT1
AVSS1
14
10
G2
Analog ground supply
DVCC1
15
11
H1
Digital power supply
DVSS1
16
12
J1
Digital ground supply
VCORE (2)
17
13
J2
Regulated core power supply output (internal use only, no external current
loading)
P1.0/TA0CLK/ACLK
18
14
H2
I/O
General-purpose digital I/O with port interrupt
TA0 clock signal TA0CLK input
ACLK output (divided by 1, 2, 4, 8, 16, or 32)
P1.1/TA0.0
19
15
H3
I/O
General-purpose digital I/O with port interrupt
TA0 CCR0 capture: CCI0A input, compare: Out0 output
BSL transmit output
P1.2/TA0.1
20
16
J3
I/O
General-purpose digital I/O with port interrupt
TA0 CCR1 capture: CCI1A input, compare: Out1 output
BSL receive input
P1.3/TA0.2
21
17
G4
I/O
General-purpose digital I/O with port interrupt
TA0 CCR2 capture: CCI2A input, compare: Out2 output
P1.4/TA0.3
22
18
H4
I/O
General-purpose digital I/O with port interrupt
TA0 CCR3 capture: CCI3A input compare: Out3 output
P1.5/TA0.4
23
19
J4
I/O
General-purpose digital I/O with port interrupt
TA0 CCR4 capture: CCI4A input, compare: Out4 output
P1.6/TA1CLK/CBOUT
24
20
G5
I/O
General-purpose digital I/O with port interrupt
TA1 clock signal TA1CLK input
Comparator_B output
P1.7/TA1.0
25
21
H5
I/O
General-purpose digital I/O with port interrupt
TA1 CCR0 capture: CCI0A input, compare: Out0 output
(1)
(2)
12
Analog power supply
I = input, O = output, N/A = not available
VCORE is for internal use only. No external current loading is possible. VCORE should only be connected to the recommended
capacitor value, CVCORE.
Terminal Configuration and Functions
Copyright © 2010–2020, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5310 MSP430F5309 MSP430F5308 MSP430F5304
MSP430F5310, MSP430F5309, MSP430F5308, MSP430F5304
www.ti.com
SLAS677G – SEPTEMBER 2010 – REVISED MAY 2020
Table 4-1. Signal Descriptions (continued)
TERMINAL
NO.
NAME
I/O (1)
DESCRIPTION
RGZ, ZXH,
RGC
PT ZQE
P2.0/TA1.1
26
22
J5
I/O
General-purpose digital I/O with port interrupt
TA1 CCR1 capture: CCI1A input, compare: Out1 output
P2.1/TA1.2
27
N/A
G6
I/O
General-purpose digital I/O with port interrupt
TA1 CCR2 capture: CCI2A input, compare: Out2 output
P2.2/TA2CLK/SMCLK
28
N/A
J6
I/O
General-purpose digital I/O with port interrupt
TA2 clock signal TA2CLK input ; SMCLK output
P2.3/TA2.0
29
N/A
H6
I/O
General-purpose digital I/O with port interrupt
TA2 CCR0 capture: CCI0A input, compare: Out0 output
P2.4/TA2.1
30
N/A
J7
I/O
General-purpose digital I/O with port interrupt
TA2 CCR1 capture: CCI1A input, compare: Out1 output
P2.5/TA2.2
31
N/A
J8
I/O
General-purpose digital I/O with port interrupt
TA2 CCR2 capture: CCI2A input, compare: Out2 output
P2.6/RTCCLK/DMAE0
32
N/A
J9
I/O
General-purpose digital I/O with port interrupt
RTC clock output for calibration
DMA external trigger input
P2.7/UCB0STE/UCA0CLK
33
N/A
H7
I/O
General-purpose digital I/O with port interrupt
Slave transmit enable – USCI_B0 SPI mode
Clock signal input – USCI_A0 SPI slave mode
Clock signal output – USCI_A0 SPI master mode
P3.0/UCB0SIMO/UCB0SDA
34
N/A
H8
I/O
General-purpose digital I/O
Slave in, master out – USCI_B0 SPI mode
I2C data – USCI_B0 I2C mode
P3.1/UCB0SOMI/UCB0SCL
35
N/A
H9
I/O
General-purpose digital I/O
Slave out, master in – USCI_B0 SPI mode
I2C clock – USCI_B0 I2C mode
P3.2/UCB0CLK/UCA0STE
36
N/A
G8
I/O
General-purpose digital I/O
Clock signal input – USCI_B0 SPI slave mode
Clock signal output – USCI_B0 SPI master mode
Slave transmit enable – USCI_A0 SPI mode
P3.3/UCA0TXD/UCA0SIMO
37
N/A
G9
I/O
General-purpose digital I/O
Transmit data – USCI_A0 UART mode
Slave in, master out – USCI_A0 SPI mode
P3.4/UCA0RXD/UCA0SOMI
38
N/A
G7
I/O
General-purpose digital I/O
Receive data – USCI_A0 UART mode
Slave out, master in – USCI_A0 SPI mode
P4.0/PM_UCB1STE/
PM_UCA1CLK
41
29
E8
I/O
General-purpose digital I/O with reconfigurable port mapping secondary
function
Default mapping: Slave transmit enable – USCI_B1 SPI mode
Default mapping: Clock signal input – USCI_A1 SPI slave mode
Default mapping: Clock signal output – USCI_A1 SPI master mode
P4.1/PM_UCB1SIMO/
PM_UCB1SDA
42
30
E7
I/O
General-purpose digital I/O with reconfigurable port mapping secondary
function
Default mapping: Slave in, master out – USCI_B1 SPI mode
Default mapping: I2C data – USCI_B1 I2C mode
P4.2/PM_UCB1SOMI/
PM_UCB1SCL
43
31
D9
I/O
General-purpose digital I/O with reconfigurable port mapping secondary
function
Default mapping: Slave out, master in – USCI_B1 SPI mode
Default mapping: I2C clock – USCI_B1 I2C mode
I/O
General-purpose digital I/O with reconfigurable port mapping secondary
function
Default mapping: Clock signal input – USCI_B1 SPI slave mode
Default mapping: Clock signal output – USCI_B1 SPI master mode
Default mapping: Slave transmit enable – USCI_A1 SPI mode
P4.3/PM_UCB1CLK/
PM_UCA1STE
44
32
D8
DVSS2
39
27
F9
Digital ground supply
DVCC2
40
28
E9
Digital power supply
Terminal Configuration and Functions
Submit Documentation Feedback
Product Folder Links: MSP430F5310 MSP430F5309 MSP430F5308 MSP430F5304
Copyright © 2010–2020, Texas Instruments Incorporated
13
MSP430F5310, MSP430F5309, MSP430F5308, MSP430F5304
SLAS677G – SEPTEMBER 2010 – REVISED MAY 2020
www.ti.com
Table 4-1. Signal Descriptions (continued)
TERMINAL
NO.
NAME
P4.4/PM_UCA1TXD/
PM_UCA1SIMO
I/O (1)
DESCRIPTION
RGZ, ZXH,
RGC
PT ZQE
45
33
D7
I/O
General-purpose digital I/O with reconfigurable port mapping secondary
function
Default mapping: Transmit data – USCI_A1 UART mode
Default mapping: Slave in, master out – USCI_A1 SPI mode
P4.5/PM_UCA1RXD/
PM_UCA1SOMI
46
34
C9
I/O
General-purpose digital I/O with reconfigurable port mapping secondary
function
Default mapping: Receive data – USCI_A1 UART mode
Default mapping: Slave out, master in – USCI_A1 SPI mode
P4.6/PM_NONE
47
35
C8
I/O
General-purpose digital I/O with reconfigurable port mapping secondary
function
Default mapping: no secondary function.
P4.7/PM_NONE
48
36
C7
I/O
General-purpose digital I/O with reconfigurable port mapping secondary
function
Default mapping: no secondary function.
VSSU
49
37
B8,
B9
PU.0
50
38
A9
I/O
General-purpose digital I/O - controlled by PU control register.
Port U is supplied by the LDOO rail.
NC
51
39
B7
I/O
No connect.
PU.1
52
40
A8
I/O
General-purpose digital I/O - controlled by PU control register
Port U is supplied by the LDOO rail.
LDOI
53
41
A7
LDO input
LDOO
54
42
A6
LDO output
NC
55
43
B6
No connect.
AVSS2
56
44
A5
Analog ground supply
P5.2/XT2IN
57
45
B5
I/O
General-purpose digital I/O
Input terminal for crystal oscillator XT2
P5.3/XT2OUT
58
46
B4
I/O
General-purpose digital I/O
Output terminal of crystal oscillator XT2
TEST/SBWTCK
59
47
A4
I
PJ.0/TDO
60
23
C5
I/O
General-purpose digital I/O
Test data output port
PJ.1/TDI/TCLK
61
24
C4
I/O
General-purpose digital I/O
Test data input or test clock input
PJ.2/TMS
62
25
A3
I/O
General-purpose digital I/O
Test mode select
PJ.3/TCK
63
26
B3
I/O
General-purpose digital I/O
Test clock
RST/NMI/SBWTDIO
64
48
A2
I/O
Reset input active low (3)
Nonmaskable interrupt input
Spy-Bi-Wire data input/output
P6.0/CB0/A0
1
1
A1
I/O
General-purpose digital I/O
Comparator_B input CB0 (not available on F5304 device)
Analog input A0 for ADC
P6.1/CB1/A1
2
2
B2
I/O
General-purpose digital I/O
Comparator_B input CB1 (not available on F5304 device)
Analog input A1 for ADC
P6.2/CB2/A2
3
3
B1
I/O
General-purpose digital I/O
Comparator_B input CB2 (not available on F5304 device)
Analog input A2 for ADC
(3)
14
PU ground supply
Test mode pin – select digital I/O on JTAG pins
Spy-Bi-Wire input clock
When this pin is configured as reset, the internal pullup resistor is enabled by default.
Terminal Configuration and Functions
Copyright © 2010–2020, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5310 MSP430F5309 MSP430F5308 MSP430F5304
MSP430F5310, MSP430F5309, MSP430F5308, MSP430F5304
www.ti.com
SLAS677G – SEPTEMBER 2010 – REVISED MAY 2020
Table 4-1. Signal Descriptions (continued)
TERMINAL
NO.
NAME
P6.3/CB3/A3
I/O (1)
4
4
Reserved
N/A
N/A
(4)
Thermal Pad
Pad
Pad
N/A
(4)
DESCRIPTION
RGZ, ZXH,
RGC
PT ZQE
C2
I/O
General-purpose digital I/O
Comparator_B input CB3 (not available on F5304 device)
Analog input A3 for ADC
Exposed thermal pad on QFN packages. TI recommends connection to VSS
(not available on PT package devices).
C6, D4, D5, D6, E3, E4, E5, E6, F3, F4, F5, F6, F7, F8, G3 are reserved and should be connected to ground.
Terminal Configuration and Functions
Submit Documentation Feedback
Product Folder Links: MSP430F5310 MSP430F5309 MSP430F5308 MSP430F5304
Copyright © 2010–2020, Texas Instruments Incorporated
15
MSP430F5310, MSP430F5309, MSP430F5308, MSP430F5304
SLAS677G – SEPTEMBER 2010 – REVISED MAY 2020
www.ti.com
5 Specifications
All graphs in this section are for typical conditions, unless otherwise noted.
Typical (TYP) values are specified at VCC = 3.3 V and TA = 25°C, unless otherwise noted.
Absolute Maximum Ratings (1)
5.1
over operating free-air temperature range (unless otherwise noted)
Voltage applied at VCC to VSS
Voltage applied to any pin (excluding VCORE, LDOI)
(2)
MIN
MAX
–0.3
4.1
–0.3
VCC + 0.3
Diode current at any device pin
(1)
(2)
(3)
–55
95
°C
150
°C
ESD Ratings
VALUE
V(ESD)
(2)
Electrostatic discharge
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)
±1000
Charged-device model (CDM), per JEDEC specification JESD22-C101 (2)
±250
3.6
PMMCOREVx = 0, 1
2.0
3.6
PMMCOREVx = 0, 1, 2
2.2
3.6
PMMCOREVx = 0, 1, 2, 3
2.4
VSS
Supply voltage (AVSS = DVSS1/2 = DVSS)
TA
Operating free-air temperature
–40
TJ
Operating junction temperature
–40
CVCORE
Capacitor at VCORE (3)
CDVCC/
CVCORE
Capacitor ratio of DVCC to VCORE
16
Processor frequency (maximum MCLK frequency)
Figure 5-1)
MAX
1.8
Supply voltage during program execution and flash
programming (AVCC = DVCC1 = DVCC2 = VCC) (1) (2)
fSYSTEM
NOM
PMMCOREVx = 0
VCC
(3)
(4)
V
Recommended Operating Conditions
MIN
(2)
UNIT
JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with
less than 500-V HBM is possible with the necessary precautions. Pins listed as ±1000 V may actually have higher performance.
JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with
less than 250-V CDM is possible with the necessary precautions. Pins listed as ±250 V may actually have higher performance.
5.3
(1)
V
mA
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
All voltages referenced to VSS. VCORE is for internal device use only. No external DC loading or voltage should be applied.
Higher temperature may be applied during board soldering according to the current JEDEC J-STD-020 specification with peak reflow
temperatures not higher than classified on the device label on the shipping boxes or reels.
5.2
(1)
V
±2
Maximum junction temperature, TJ
Storage temperature, Tstg (3)
UNIT
UNIT
V
3.6
0
V
85
85
470
°C
°C
nF
10
(4)
(see
PMMCOREVx = 0,
1.8 V ≤ VCC ≤ 3.6 V
(default condition)
0
8.0
PMMCOREVx = 1,
2.0 V ≤ VCC ≤ 3.6 V
0
12.0
PMMCOREVx = 2,
2.2 V ≤ VCC ≤ 3.6 V
0
20.0
PMMCOREVx = 3,
2.4 V ≤ VCC ≤ 3.6 V
0
25.0
MHz
TI recommends powering AVCC and DVCC from the same source. A maximum difference of 0.3 V between AVCC and DVCC can be
tolerated during power up and operation.
The minimum supply voltage is defined by the supervisor SVS levels when it is enabled. See the threshold parameters in Section 5.21
for the exact values and further details.
A capacitor tolerance of ±20% or better is required.
Modules may have a different maximum input clock specification. See the specification of the respective module in this data sheet.
Specifications
Copyright © 2010–2020, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5310 MSP430F5309 MSP430F5308 MSP430F5304
MSP430F5310, MSP430F5309, MSP430F5308, MSP430F5304
www.ti.com
SLAS677G – SEPTEMBER 2010 – REVISED MAY 2020
25
System Frequency - MHz
3
20
2
2, 3
1
1, 2
1, 2, 3
0, 1
0, 1, 2
0, 1, 2, 3
12
8
0
0
1.8
2.0
2.2
2.4
3.6
Supply Voltage - V
NOTE: The numbers within the fields denote the supported PMMCOREVx settings.
Figure 5-1. Maximum System Frequency
5.4
Active Mode Supply Current Into VCC Excluding External Current
over recommended operating free-air temperature (unless otherwise noted)
(1) (2) (3)
FREQUENCY (fDCO = fMCLK = fSMCLK)
PARAMETER
IAM,
IAM,
(1)
(2)
(3)
Flash
RAM
EXECUTION
MEMORY
Flash
RAM
VCC
PMMCOREVx
3V
3V
1 MHz
8 MHz
12 MHz
TYP
MAX
1.74
2.58
2.78
1.91
20 MHz
TYP
MAX
TYP
MAX
0
0.25
0.27
1.55
1.68
1
0.28
2
0.30
3
0.32
0
0.17
1
0.19
1.03
1.54
2
0.20
1.16
1.73
2.84
3
0.21
1.24
1.87
3.1
2.09
0.19
0.91
TYP
MAX
2.84
4.68
5.06
3.10
5.13
25 MHz
TYP
UNIT
MAX
mA
6.0
6.5
1.00
1.67
mA
3.11
3.9
4.3
All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.
The currents are characterized with a Micro Crystal MS1V-T1K crystal with a load capacitance of 12.5 pF. The internal and external load
capacitance are chosen to closely match the required 12.5 pF.
Characterized with program executing typical data processing. LDO disabled (LDOEN = 0).
fACLK = 32786 Hz, fDCO = fMCLK = fSMCLK at specified frequency.
XTS = CPUOFF = SCG0 = SCG1 = OSCOFF= SMCLKOFF = 0.
Copyright © 2010–2020, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5310 MSP430F5309 MSP430F5308 MSP430F5304
Specifications
17
MSP430F5310, MSP430F5309, MSP430F5308, MSP430F5304
SLAS677G – SEPTEMBER 2010 – REVISED MAY 2020
5.5
www.ti.com
Low-Power Mode Supply Currents (Into VCC) Excluding External Current
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
(1) (2)
TEMPERATURE (TA)
PARAMETER
VCC
PMMCOREVx
–40°C
TYP
LPM0,1MHz
Low-power mode 0
(3) (4)
ILPM2
Low-power mode 2
(5) (4)
77
85
80
80
97
83
92
88
95
105
2.2 V
0
6.5
6.5
8
7.5
8
11
3V
3
7.0
7.0
9
7.9
8.9
13
0
1.60
1.90
2.6
3.4
1
1.65
2.00
2.7
3.6
2
1.75
2.15
2.9
3.8
0
1.8
2.1
2.8
3.6
1
1.9
2.3
2.9
3.8
2
2.0
2.4
3.0
4.0
3
2.0
2.5
3.0
3.1
4.0
6.5
0
1.1
1.3
1.8
1.9
2.7
5.0
1
1.1
1.4
2.0
2.8
2
1.2
1.5
2.1
2.9
3
1.3
1.5
2.0
2.2
3.0
5.5
0
0.9
1.1
1.5
1.8
2.5
4.8
1
1.1
1.2
2.0
2.6
2
1.2
1.2
2.1
2.7
3V
ILPM4.5
Low-power mode 4.5 (9)
3V
3
(5)
(6)
(7)
(8)
(9)
18
UNIT
MAX
79
3V
(4)
TYP
73
Low-power mode 4 (8) (4)
(3)
85°C
MAX
3
ILPM4
(1)
(2)
TYP
0
Low-power mode 3,
crystal mode (6) (4)
Low-power mode 3,
VLO mode (7) (4)
60°C
MAX
3V
3V
ILPM3,VLO
25°C
TYP
2.2 V
2.2 V
ILPM3,XT1LF
MAX
2.6
6.0
µA
µA
µA
µA
µA
1.3
1.3
1.6
2.2
2.8
5.0
0.15
0.18
0.35
0.26
0.45
0.8
µA
All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.
The currents are characterized with a Micro Crystal MS1V-T1K crystal with a load capacitance of 12.5 pF. The internal and external load
capacitance are chosen to closely match the required 12.5 pF.
Current for watchdog timer clocked by SMCLK included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0).
CPUOFF = 1, SCG0 = 0, SCG1 = 0, OSCOFF = 0 (LPM0), fACLK = 32768 Hz, fMCLK = 0 MHz, fSMCLK = fDCO = 1 MHz
LDO disabled (LDOEN = 0).
Current for brownout, high-side supervisor (SVSH) normal mode included. Low-side supervisor (SVSL) and low-side monitor (SVML)
disabled. High-side monitor (SVMH) disabled. RAM retention enabled.
Current for watchdog timer and RTC clocked by ACLK included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0).
CPUOFF = 1, SCG0 = 0, SCG1 = 1, OSCOFF = 0 (LPM2), fACLK = 32768 Hz, fMCLK = 0 MHz, fSMCLK = fDCO = 0 MHz; DCO setting = 1MHz operation, DCO bias generator enabled.
LDO disabled (LDOEN = 0)
Current for watchdog timer and RTC clocked by ACLK included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0).
CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3), fACLK = 32768 Hz, fMCLK = fSMCLK = fDCO = 0 MHz
LDO disabled (LDOEN = 0)
Current for watchdog timer and RTC clocked by ACLK included. ACLK = VLO.
CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3), fACLK = fVLO, fMCLK = fSMCLK = fDCO = 0 MHz
LDO disabled (LDOEN = 0)
CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1 (LPM4), fDCO = fACLK = fMCLK = fSMCLK = 0 MHz
LDO disabled (LDOEN = 0)
Internal regulator disabled. No data retention.
CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1, PMMREGOFF = 1 (LPM4.5), fDCO = fACLK = fMCLK = fSMCLK = 0 MHz
Specifications
Copyright © 2010–2020, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5310 MSP430F5309 MSP430F5308 MSP430F5304
MSP430F5310, MSP430F5309, MSP430F5308, MSP430F5304
www.ti.com
SLAS677G – SEPTEMBER 2010 – REVISED MAY 2020
Thermal Resistance Characteristics (1)
5.6
THERMAL METRIC
RθJA
RθJC(TOP)
RθJC(BOTTOM)
RθJB
(1)
(2)
(3)
(4)
(5)
Junction-to-ambient thermal resistance, still air
Junction-to-case (top) thermal resistance
(3)
Junction-to-case (bottom) thermal resistance
Junction-to-board thermal resistance
(5)
(2)
(4)
VALUE
VQFN (RGC)
30
VQFN (RGZ)
28.6
LQFP (PT)
62.8
BGA (ZQE)
55.5
VQFN (RGC)
15.6
VQFN (RGZ)
14.4
LQFP (PT)
18.2
BGA (ZQE)
21.2
VQFN (RGC)
1.6
VQFN (RGZ)
1.6
LQFP (PT)
N/A
BGA (ZQE)
N/A
VQFN (RGC)
8.9
VQFN (RGZ)
5.5
LQFP (PT)
28.3
BGA (ZQE)
19.3
UNIT
°C/W
°C/W
°C/W
°C/W
N/A = not applicable
The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, High-K board, as
specified in JESD51-7, in an environment described in JESD51-2a.
The junction-to-case(top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific JEDEC-standard
test exists, but a close description can be found in the ANSI SEMI standard G30-88.
The junction-to-case(bottom) thermal resistance is obtained by simulating a cold plate test on the exposed (power) pad. No specific
JEDEC standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.
The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB
temperature, as described in JESD51-8.
Copyright © 2010–2020, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5310 MSP430F5309 MSP430F5308 MSP430F5304
Specifications
19
MSP430F5310, MSP430F5309, MSP430F5308, MSP430F5304
SLAS677G – SEPTEMBER 2010 – REVISED MAY 2020
www.ti.com
Schmitt-Trigger Inputs – General-Purpose I/O (1)
(P1.0 to P1.7, P2.0 to P2.7, P3.0 to P3.4, P4.0 to P4.7)
(P5.0 to P5.5, P6.0 to P6.7, PJ.0 to PJ.3, RST/NMI)
5.7
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
VIT+
Positive-going input threshold voltage
VIT–
Negative-going input threshold voltage
Vhys
Input voltage hysteresis (VIT+ – VIT–)
RPull
Pullup or pulldown resistor (2)
For pullup: VIN = VSS
For pulldown: VIN = VCC
CI
Input capacitance
VIN = VSS or VCC
(1)
(2)
VCC
MIN
1.8 V
0.80
TYP
1.40
3V
1.50
2.10
1.8 V
0.45
1.00
3V
0.75
1.65
1.8 V
0.3
0.85
3V
0.4
1.0
20
35
MAX
UNIT
V
V
V
50
kΩ
5
pF
The same parametrics apply to the clock input pin when the crystal bypass mode is used on XT1 (XIN) or XT2 (XT2IN).
Also applies to the RST pin when its pullup or pulldown resistor is enabled.
Inputs – Ports P1 and P2 (1)
(P1.0 to P1.7, P2.0 to P2.7)
5.8
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
t(int)
(1)
(2)
External interrupt timing
(2)
TEST CONDITIONS
VCC
Port P1, P2: P1.x to P2.x, External trigger pulse duration
to set interrupt flag
2.2 V, 3 V
MIN
MAX
UNIT
20
ns
Some devices may contain additional ports with interrupts. See the block diagram and terminal function descriptions.
An external signal sets the interrupt flag every time the minimum interrupt pulse duration t(int) is met. It may be set by trigger signals
shorter than t(int).
5.9
Leakage Current – General-Purpose I/O
(P1.0 to P1.7, P2.0 to P2.7, P3.0 to P3.4, P4.0 to P4.7)
(P5.0 to P5.5, P6.0 to P6.7, PJ.0 to PJ.3, RST/NMI)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
Ilkg(Px.y)
(1)
(2)
TEST CONDITIONS
VCC
(1) (2)
High-impedance leakage current
MIN
1.8 V, 3 V
MAX
UNIT
±50
nA
The leakage current is measured with VSS or VCC applied to the corresponding pin(s), unless otherwise noted.
The leakage of the digital port pins is measured individually. The port pin is selected for input and the pullup or pulldown resistor is
disabled.
5.10 Outputs – General-Purpose I/O (Full Drive Strength)
(P1.0 to P1.7, P2.0 to P2.7, P3.0 to P3.4, P4.0 to P4.7, P5.0 to P5.5, P6.0 to P6.7, PJ.0
to PJ.3)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
I(OHmax) = –3 mA
VOH
High-level output voltage
I(OHmax) = –10 mA
I(OHmax) = –5 mA
OL
Low-level output voltage
(2)
20
(2)
3V
MAX
VCC – 0.25
VCC
VCC – 0.60
VCC
VCC – 0.25
VCC
VCC – 0.60
VCC
(2)
VSS
VSS + 0.25
VSS
VSS + 0.60
VSS
VSS + 0.25
VSS
VSS + 0.60
1.8 V
(1)
I(OLmax) = 15 mA
(1)
1.8 V
MIN
(1)
I(OLmax) = 10 mA
I(OLmax) = 5 mA
(2)
(1)
I(OHmax) = –15 mA
I(OLmax) = 3 mA
VCC
(1)
(2)
3V
UNIT
V
V
The maximum total current, I(OHmax) and I(OLmax), for all outputs combined should not exceed ±48 mA to hold the maximum voltage drop
specified.
The maximum total current, I(OHmax) and I(OLmax), for all outputs combined should not exceed ±100 mA to hold the maximum voltage
drop specified.
Specifications
Copyright © 2010–2020, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5310 MSP430F5309 MSP430F5308 MSP430F5304
MSP430F5310, MSP430F5309, MSP430F5308, MSP430F5304
www.ti.com
SLAS677G – SEPTEMBER 2010 – REVISED MAY 2020
5.11 Outputs – General-Purpose I/O (Reduced Drive Strength)
(P1.0 to P1.7, P2.0 to P2.7, P3.0 to P3.4, P4.0 to P4.7, P5.0 to P5.5, P6.0 to P6.7, PJ.0
to PJ.3)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
VOH
High-level output voltage
VOL
(1)
(2)
(3)
TEST CONDITIONS
Low-level output voltage
I(OHmax) = –1 mA
(2)
I(OHmax) = –3 mA
(3)
I(OHmax) = –2 mA
(2)
I(OHmax) = –6 mA
(3)
I(OLmax) = 1 mA
(2)
I(OLmax) = 3 mA
(3)
I(OLmax) = 2 mA
(2)
I(OLmax) = 6 mA
(3)
VCC
1.8 V
3V
(1)
MIN
MAX
VCC – 0.25
VCC
VCC – 0.60
VCC
VCC – 0.25
VCC
VCC – 0.60
VCC
VSS
VSS + 0.25
VSS
VSS + 0.60
VSS
VSS + 0.25
VSS
VSS + 0.60
1.8 V
3V
UNIT
V
V
Selecting reduced drive strength may reduce EMI.
The maximum total current, I(OHmax) and I(OLmax), for all outputs combined, should not exceed ±48 mA to hold the maximum voltage drop
specified.
The maximum total current, I(OHmax) and I(OLmax), for all outputs combined, should not exceed ±100 mA to hold the maximum voltage
drop specified.
5.12 Output Frequency – General-Purpose I/O
(P1.0 to P1.7, P2.0 to P2.7, P3.0 to P3.4, P4.0 to P4.7, P5.0 to P5.5, P6.0 to P6.7, PJ.0
to PJ.3)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
fPx.y
Port output frequency (with load)
fPort_CLK
(1)
(2)
Clock output frequency
TEST CONDITIONS
See
(1) (2)
ACLK, SMCLK, MCLK,
CL = 20 pF (2)
MIN
MAX
VCC = 1.8 V
PMMCOREVx = 0
16
VCC = 3 V
PMMCOREVx = 3
25
VCC = 1.8 V
PMMCOREVx = 0
16
VCC = 3 V
PMMCOREVx = 3
25
UNIT
MHz
MHz
A resistive divider with 2 × R1 between VCC and VSS is used as load. The output is connected to the center tap of the divider. For full
drive strength, R1 = 550 Ω. For reduced drive strength, R1 = 1.6 kΩ. CL = 20 pF is connected to the output to VSS.
The output voltage reaches at least 10% and 90% VCC at the specified toggle frequency.
Copyright © 2010–2020, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5310 MSP430F5309 MSP430F5308 MSP430F5304
Specifications
21
MSP430F5310, MSP430F5309, MSP430F5308, MSP430F5304
SLAS677G – SEPTEMBER 2010 – REVISED MAY 2020
www.ti.com
5.13 Typical Characteristics – Outputs, Reduced Drive Strength (PxDS.y = 0)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
8.0
VCC = 3.0 V
Px.y
IOL – Typical Low-Level Output Current – mA
IOL – Typical Low-Level Output Current – mA
25.0
TA = 25°C
20.0
TA = 85°C
15.0
10.0
5.0
0.0
0.0
0.5
1.0
1.5
2.0
2.5
3.0
IOH – Typical High-Level Output Current – mA
IOH – Typical High-Level Output Current – mA
−5.0
−10.0
−25.0
0.0
TA = 85°C
TA = 25°C
0.5
1.0
1.5
2.0
2.5
3.0
3.5
VOH – High-Level Output Voltage – V
Figure 5-4. Typical High-Level Output Current vs High-Level
Output Voltage
22
4.0
3.0
2.0
1.0
0.5
1.0
1.5
2.0
0.0
VCC = 3.0 V
Px.y
−20.0
5.0
VOL – Low-Level Output Voltage – V
Figure 5-3. Typical Low-Level Output Current vs Low-Level
Output Voltage
0.0
−15.0
TA = 85°C
6.0
0.0
0.0
3.5
VOL – Low-Level Output Voltage – V
Figure 5-2. Typical Low-Level Output Current vs Low-Level
Output Voltage
7.0
TA = 25°C
VCC = 1.8 V
Px.y
Specifications
−1.0
VCC = 1.8 V
Px.y
−2.0
−3.0
−4.0
−5.0
−6.0
TA = 85°C
TA = 25°C
−7.0
−8.0
0.0
0.5
1.0
1.5
2.0
VOH – High-Level Output Voltage – V
Figure 5-5. Typical High-Level Output Current vs High-Level
Output Voltage
Copyright © 2010–2020, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5310 MSP430F5309 MSP430F5308 MSP430F5304
MSP430F5310, MSP430F5309, MSP430F5308, MSP430F5304
www.ti.com
SLAS677G – SEPTEMBER 2010 – REVISED MAY 2020
5.14 Crystal Oscillator, XT1, Low-Frequency Mode (1)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
VCC
MIN
fOSC = 32768 Hz, XTS = 0,
XT1BYPASS = 0, XT1DRIVEx = 1,
TA = 25°C
ΔIDVCC.LF
Differential XT1 oscillator crystal
current consumption from lowest
drive setting, LF mode
fOSC = 32768 Hz, XTS = 0,
XT1BYPASS = 0, XT1DRIVEx = 2,
TA = 25°C
0.170
32768
XTS = 0, XT1BYPASS = 0
fXT1,LF,SW
XT1 oscillator logic-level squarewave input frequency, LF mode
XTS = 0, XT1BYPASS = 1
OALF
3V
0.290
XT1 oscillator crystal frequency,
LF mode
(2) (3)
10
CL,eff
Duty cycle, LF mode
fFault,LF
tSTART,LF
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
Oscillator fault frequency, LF mode
(7)
Start-up time, LF mode
32.768
XTS = 0,
XT1BYPASS = 0, XT1DRIVEx = 0,
fXT1,LF = 32768 Hz, CL,eff = 6 pF
210
XTS = 0,
XT1BYPASS = 0, XT1DRIVEx = 1,
fXT1,LF = 32768 Hz, CL,eff = 12 pF
300
5.5
XTS = 0, XCAPx = 2
8.5
XTS = 0, XCAPx = 3
12.0
XTS = 0, Measured at ACLK,
fXT1,LF = 32768 Hz
(8)
fOSC = 32768 Hz, XTS = 0,
XT1BYPASS = 0, XT1DRIVEx = 0,
TA = 25°C, CL,eff = 6 pF
fOSC = 32768 Hz, XTS = 0,
XT1BYPASS = 0, XT1DRIVEx = 3,
TA = 25°C, CL,eff = 12 pF
µA
Hz
50
kHz
1
XTS = 0, XCAPx = 1
XTS = 0
UNIT
kΩ
XTS = 0, XCAPx = 0 (6)
Integrated effective load
capacitance, LF mode (5)
MAX
0.075
fOSC = 32768 Hz, XTS = 0,
XT1BYPASS = 0, XT1DRIVEx = 3,
TA = 25°C
fXT1,LF0
Oscillation allowance for
LF crystals (4)
TYP
pF
30%
70%
10
10000
Hz
1000
3V
ms
500
To improve EMI on the XT1 oscillator, the following guidelines should be observed.
• Keep the trace between the device and the crystal as short as possible.
• Design a good ground plane around the oscillator pins.
• Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.
• Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.
• Use assembly materials and processes that avoid any parasitic load on the oscillator XIN and XOUT pins.
• If conformal coating is used, make sure that it does not induce capacitive or resistive leakage between the oscillator pins.
When XT1BYPASS is set, XT1 circuits are automatically powered down. Input signal is a digital square wave with parametrics defined in
the Schmitt-trigger Inputs section of this data sheet.
Maximum frequency of operation of the entire device cannot be exceeded.
Oscillation allowance is based on a safety factor of 5 for recommended crystals. The oscillation allowance is a function of the
XT1DRIVEx settings and the effective load. In general, comparable oscillator allowance can be achieved based on the following
guidelines, but should be evaluated based on the actual crystal selected for the application:
• For XT1DRIVEx = 0, CL,eff ≤ 6 pF.
• For XT1DRIVEx = 1, 6 pF ≤ CL,eff ≤ 9 pF.
• For XT1DRIVEx = 2, 6 pF ≤ CL,eff ≤ 10 pF.
• For XT1DRIVEx = 3, CL,eff ≥ 6 pF.
Includes parasitic bond and package capacitance (approximately 2 pF per pin).
Because the PCB adds additional capacitance, verify the correct load by measuring the ACLK frequency. For a correct setup, the
effective load capacitance should always match the specification of the used crystal.
Requires external capacitors at both terminals. Values are specified by crystal manufacturers.
Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag.
Frequencies between the MIN and MAX specifications might set the flag.
Measured with logic-level input frequency but also applies to operation with crystals.
Copyright © 2010–2020, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5310 MSP430F5309 MSP430F5308 MSP430F5304
Specifications
23
MSP430F5310, MSP430F5309, MSP430F5308, MSP430F5304
SLAS677G – SEPTEMBER 2010 – REVISED MAY 2020
www.ti.com
5.15 Crystal Oscillator, XT2
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
VCC
MIN
fOSC = 4 MHz, XT2OFF = 0,
XT2BYPASS = 0, XT2DRIVEx = 0, TA = 25°C
IDVCC.XT2
XT2 oscillator crystal current
consumption
fOSC = 12 MHz, XT2OFF = 0,
XT2BYPASS = 0, XT2DRIVEx = 1, TA = 25°C
fOSC = 20 MHz, XT2OFF = 0,
XT2BYPASS = 0, XT2DRIVEx = 2, TA = 25°C
(1) (2)
TYP
MAX
UNIT
200
260
3V
µA
325
fOSC = 32 MHz, XT2OFF = 0,
XT2BYPASS = 0, XT2DRIVEx = 3, TA = 25°C
450
fXT2,HF0
XT2 oscillator crystal
frequency, mode 0
XT2DRIVEx = 0, XT2BYPASS = 0
(3)
4
8
MHz
fXT2,HF1
XT2 oscillator crystal
frequency, mode 1
XT2DRIVEx = 1, XT2BYPASS = 0
(3)
8
16
MHz
fXT2,HF2
XT2 oscillator crystal
frequency, mode 2
XT2DRIVEx = 2, XT2BYPASS = 0
(3)
16
24
MHz
fXT2,HF3
XT2 oscillator crystal
frequency, mode 3
XT2DRIVEx = 3, XT2BYPASS = 0
(3)
24
32
MHz
fXT2,HF,SW
XT2 oscillator logic-level
square-wave input frequency,
bypass mode
XT2BYPASS = 1
0.7
32
MHz
Oscillation allowance for
HF crystals (5)
OAHF
tSTART,HF
CL,eff
Start-up time
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
24
XT2DRIVEx = 0, XT2BYPASS = 0,
fXT2,HF0 = 6 MHz, CL,eff = 15 pF
450
XT2DRIVEx = 1, XT2BYPASS = 0,
fXT2,HF1 = 12 MHz, CL,eff = 15 pF
320
XT2DRIVEx = 2, XT2BYPASS = 0,
fXT2,HF2 = 20 MHz, CL,eff = 15 pF
200
XT2DRIVEx = 3, XT2BYPASS = 0,
fXT2,HF3 = 32 MHz, CL,eff = 15 pF
200
fOSC = 6 MHz,
XT2BYPASS = 0, XT2DRIVEx = 0,
TA = 25°C, CL,eff = 15 pF
0.5
fOSC = 20 MHz
XT2BYPASS = 0, XT2DRIVEx = 2,
TA = 25°C, CL,eff = 15 pF
Integrated effective load
capacitance, HF mode (6)
3V
ms
0.3
1
Measured at ACLK, fXT2,HF2 = 20 MHz
Oscillator fault frequency
Ω
(1)
Duty cycle
fFault,HF
(4) (3)
(7)
XT2BYPASS = 1
(8)
40%
30
50%
pF
60%
300
kHz
Requires external capacitors at both terminals. Values are specified by crystal manufacturers.
To improve EMI on the XT2 oscillator the following guidelines should be observed.
• Keep the traces between the device and the crystal as short as possible.
• Design a good ground plane around the oscillator pins.
• Prevent crosstalk from other clock or data lines into oscillator pins XT2IN and XT2OUT.
• Avoid running PCB traces underneath or adjacent to the XT2IN and XT2OUT pins.
• Use assembly materials and processes that avoid any parasitic load on the oscillator XT2IN and XT2OUT pins.
• If conformal coating is used, make sure that it does not induce capacitive or resistive leakage between the oscillator pins.
This represents the maximum frequency that can be input to the device externally. Maximum frequency achievable on the device
operation is based on the frequencies present on ACLK, MCLK, and SMCLK cannot be exceed for a given range of operation.
When XT2BYPASS is set, the XT2 circuit is automatically powered down. Input signal is a digital square wave with parametrics defined
in the Schmitt-Trigger Inputs section of this data sheet.
Oscillation allowance is based on a safety factor of 5 for recommended crystals.
Includes parasitic bond and package capacitance (approximately 2 pF per pin).
Because the PCB adds additional capacitance, verify the correct load by measuring the ACLK frequency. For a correct setup, the
effective load capacitance should always match the specification of the used crystal.
Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag.
Frequencies between the MIN and MAX specifications might set the flag.
Measured with logic-level input frequency but also applies to operation with crystals.
Specifications
Copyright © 2010–2020, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5310 MSP430F5309 MSP430F5308 MSP430F5304
MSP430F5310, MSP430F5309, MSP430F5308, MSP430F5304
www.ti.com
SLAS677G – SEPTEMBER 2010 – REVISED MAY 2020
5.16 Internal Very-Low-Power Low-Frequency Oscillator (VLO)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
VCC
fVLO
VLO frequency
Measured at ACLK
1.8 V to 3.6 V
dfVLO/dT
VLO frequency temperature drift
Measured at ACLK (1)
1.8 V to 3.6 V
Measured at ACLK (2)
1.8 V to 3.6 V
Measured at ACLK
1.8 V to 3.6 V
dfVLO/dVCC VLO frequency supply voltage drift
Duty cycle
(1)
(2)
MIN
TYP
MAX
6
9.4
14
0.5
50%
kHz
%/°C
4
40%
UNIT
%/V
60%
Calculated using the box method: (MAX(–40°C to 85°C) – MIN(–40°C to 85°C)) / MIN(–40°C to 85°C) / (85°C – (–40°C))
Calculated using the box method: (MAX(1.8 V to 3.6 V) – MIN(1.8 V to 3.6 V)) / MIN(1.8 V to 3.6 V) / (3.6 V – 1.8 V)
5.17 Internal Reference, Low-Frequency Oscillator (REFO)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
IREFO
fREFO
TEST CONDITIONS
VCC
MIN
TYP
TA = 25°C
1.8 V to 3.6 V
3
REFO frequency calibrated
Measured at ACLK
1.8 V to 3.6 V
32768
Full temperature range
1.8 V to 3.6 V
±3.5%
3V
±1.5%
REFO absolute tolerance calibrated
TA = 25°C
(1)
dfREFO/dT
REFO frequency temperature drift
Measured at ACLK
1.8 V to 3.6 V
0.01
dfREFO/dVCC
REFO frequency supply voltage drift
Measured at ACLK (2)
1.8 V to 3.6 V
1.0
Duty cycle
Measured at ACLK
1.8 V to 3.6 V
REFO startup time
40%/60% duty cycle
1.8 V to 3.6 V
tSTART
(1)
(2)
MAX
REFO oscillator current consumption
40%
50%
UNIT
µA
Hz
%/°C
%/V
60%
25
µs
Calculated using the box method: (MAX(–40°C to 85°C) – MIN(–40°C to 85°C)) / MIN(–40°C to 85°C) / (85°C – (–40°C))
Calculated using the box method: (MAX(1.8 V to 3.6 V) – MIN(1.8 V to 3.6 V)) / MIN(1.8 V to 3.6 V) / (3.6 V – 1.8 V)
Copyright © 2010–2020, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5310 MSP430F5309 MSP430F5308 MSP430F5304
Specifications
25
MSP430F5310, MSP430F5309, MSP430F5308, MSP430F5304
SLAS677G – SEPTEMBER 2010 – REVISED MAY 2020
www.ti.com
5.18 DCO Frequency
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
(1)
MIN
TYP
MAX
UNIT
fDCO(0,0)
DCO frequency (0, 0)
DCORSELx = 0, DCOx = 0, MODx = 0
0.07
0.20
MHz
fDCO(0,31)
DCO frequency (0, 31) (1)
DCORSELx = 0, DCOx = 31, MODx = 0
0.70
1.70
MHz
fDCO(1,0)
DCO frequency (1, 0) (1)
DCORSELx = 1, DCOx = 0, MODx = 0
0.15
0.36
MHz
fDCO(1,31)
DCO frequency (1, 31) (1)
DCORSELx = 1, DCOx = 31, MODx = 0
1.47
3.45
MHz
(1)
fDCO(2,0)
DCO frequency (2, 0)
DCORSELx = 2, DCOx = 0, MODx = 0
0.32
0.75
MHz
fDCO(2,31)
DCO frequency (2, 31) (1)
DCORSELx = 2, DCOx = 31, MODx = 0
3.17
7.38
MHz
fDCO(3,0)
DCO frequency (3, 0) (1)
DCORSELx = 3, DCOx = 0, MODx = 0
0.64
1.51
MHz
(1)
fDCO(3,31)
DCO frequency (3, 31)
DCORSELx = 3, DCOx = 31, MODx = 0
6.07
14.0
MHz
fDCO(4,0)
DCO frequency (4, 0) (1)
DCORSELx = 4, DCOx = 0, MODx = 0
1.3
3.2
MHz
fDCO(4,31)
DCO frequency (4, 31) (1)
DCORSELx = 4, DCOx = 31, MODx = 0
12.3
28.2
MHz
(1)
fDCO(5,0)
DCO frequency (5, 0)
DCORSELx = 5, DCOx = 0, MODx = 0
2.5
6.0
MHz
fDCO(5,31)
DCO frequency (5, 31) (1)
DCORSELx = 5, DCOx = 31, MODx = 0
23.7
54.1
MHz
fDCO(6,0)
DCO frequency (6, 0) (1)
DCORSELx = 6, DCOx = 0, MODx = 0
4.6
10.7
MHz
fDCO(6,31)
DCO frequency (6, 31) (1)
DCORSELx = 6, DCOx = 31, MODx = 0
39.0
88.0
MHz
(1)
fDCO(7,0)
DCO frequency (7, 0)
DCORSELx = 7, DCOx = 0, MODx = 0
8.5
19.6
MHz
fDCO(7,31)
DCO frequency (7, 31) (1)
DCORSELx = 7, DCOx = 31, MODx = 0
60
135
MHz
SDCORSEL
Frequency step between range
DCORSEL and DCORSEL + 1
SRSEL = fDCO(DCORSEL+1,DCO)/fDCO(DCORSEL,DCO)
1.2
2.3
ratio
SDCO
Frequency step between tap DCO
and DCO + 1
SDCO = fDCO(DCORSEL,DCO+1)/fDCO(DCORSEL,DCO)
1.02
1.12
ratio
Duty cycle
Measured at SMCLK
40%
dfDCO/dT
DCO frequency temperature drift
dfDCO/dVCC
DCO frequency voltage drift (3)
(1)
(2)
(3)
(2)
50%
60%
fDCO = 1 MHz,
0.1
%/°C
fDCO = 1 MHz
1.9
%/V
When selecting the proper DCO frequency range (DCORSELx), the target DCO frequency, fDCO, should be set to reside within the
range of fDCO(n, 0),MAX ≤ fDCO ≤ fDCO(n, 31),MIN, where fDCO(n, 0),MAX represents the maximum frequency specified for the DCO frequency,
range n, tap 0 (DCOx = 0) and fDCO(n,31),MIN represents the minimum frequency specified for the DCO frequency, range n, tap 31
(DCOx = 31). This ensures that the target DCO frequency resides within the range selected. It should also be noted that if the actual
fDCO frequency for the selected range causes the FLL or the application to select tap 0 or 31, the DCO fault flag is set to report that the
selected range is at its minimum or maximum tap setting.
Calculated using the box method: (MAX(–40°C to 85°C) – MIN(–40°C to 85°C)) / MIN(–40°C to 85°C) / (85°C – (–40°C))
Calculated using the box method: (MAX(1.8 V to 3.6 V) – MIN(1.8 V to 3.6 V)) / MIN(1.8 V to 3.6 V) / (3.6 V – 1.8 V)
100
VCC = 3.0 V
TA = 25°C
fDCO – MHz
10
DCOx = 31
1
0.1
DCOx = 0
0
1
2
3
4
5
6
7
DCORSEL
Figure 5-6. Typical DCO Frequency
26
Specifications
Copyright © 2010–2020, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5310 MSP430F5309 MSP430F5308 MSP430F5304
MSP430F5310, MSP430F5309, MSP430F5308, MSP430F5304
www.ti.com
SLAS677G – SEPTEMBER 2010 – REVISED MAY 2020
5.19 PMM, Brownout Reset (BOR)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
V(DVCC_BOR_IT
–)
V(DVCC_BOR_IT
+)
V(DVCC_BOR_h
ys)
tRESET
TEST CONDITIONS
BORH on voltage, DVCC falling level
| dDVCC/dt | < 3 V/s
BORH off voltage, DVCC rising level
| dDVCC/dt | < 3 V/s
MIN
0.80
BORH hysteresis
TYP
1.30
50
Pulse duration required at RST/NMI pin to accept a reset
MAX
UNIT
1.45
V
1.50
V
250
mV
2
µs
5.20 PMM, Core Voltage
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNIT
VCORE3(AM)
Core voltage, active mode, PMMCOREV = 3
2.4 V ≤ DVCC ≤ 3.6 V
1.90
V
VCORE2(AM)
Core voltage, active mode, PMMCOREV = 2
2.2 V ≤ DVCC ≤ 3.6 V
1.80
V
VCORE1(AM)
Core voltage, active mode, PMMCOREV = 1
2.0 V ≤ DVCC ≤ 3.6 V
1.60
V
VCORE0(AM)
Core voltage, active mode, PMMCOREV = 0
1.8 V ≤ DVCC ≤ 3.6 V
1.40
V
VCORE3(LPM)
Core voltage, low-current mode, PMMCOREV = 3
2.4 V ≤ DVCC ≤ 3.6 V
1.94
V
VCORE2(LPM)
Core voltage, low-current mode, PMMCOREV = 2
2.2 V ≤ DVCC ≤ 3.6 V
1.84
V
VCORE1(LPM)
Core voltage, low-current mode, PMMCOREV = 1
2.0 V ≤ DVCC ≤ 3.6 V
1.64
V
VCORE0(LPM)
Core voltage, low-current mode, PMMCOREV = 0
1.8 V ≤ DVCC ≤ 3.6 V
1.44
V
5.21 PMM, SVS High Side
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
SVSHE = 0, DVCC = 3.6 V
I(SVSH)
SVS current consumption
V(SVSH_IT+)
tpd(SVSH)
SVSH on voltage level (1)
SVSH off voltage level (1)
SVSH propagation delay
t(SVSH)
SVSH on or off delay time
dVDVCC/dt
DVCC rise time
(1)
MAX
0
SVSHE = 1, DVCC = 3.6 V, SVSHFP = 0
1.5
µA
SVSHE = 1, SVSHRVL = 0
1.57
1.68
1.78
SVSHE = 1, SVSHRVL = 1
1.79
1.88
1.98
SVSHE = 1, SVSHRVL = 2
1.98
2.08
2.21
SVSHE = 1, SVSHRVL = 3
2.10
2.18
2.31
SVSHE = 1, SVSMHRRL = 0
1.62
1.74
1.85
SVSHE = 1, SVSMHRRL = 1
1.88
1.94
2.07
SVSHE = 1, SVSMHRRL = 2
2.07
2.14
2.28
SVSHE = 1, SVSMHRRL = 3
2.20
2.30
2.42
SVSHE = 1, SVSMHRRL = 4
2.32
2.40
2.55
SVSHE = 1, SVSMHRRL = 5
2.52
2.70
2.88
SVSHE = 1, SVSMHRRL = 6
2.90
3.10
3.23
SVSHE = 1, SVSMHRRL = 7
2.90
3.10
3.23
SVSHE = 1, dVDVCC/dt = 10 mV/µs,
SVSHFP = 1
2.5
SVSHE = 1, dVDVCC/dt = 1 mV/µs,
SVSHFP = 0
20
UNIT
nA
200
SVSHE = 1, DVCC = 3.6 V, SVSHFP = 1
V(SVSH_IT–)
TYP
V
V
µs
SVSHE = 0 → 1, SVSHFP = 1
12.5
SVSHE = 0 → 1, SVSHFP = 0
100
0
µs
1000
V/s
The SVSH settings that are available depend on the VCORE (PMMCOREVx) setting. See the Power-Management Module and Supply
Voltage Supervisor chapter in the MSP430F5xx and MSP430F6xx Family User's Guide for recommended settings and use.
Copyright © 2010–2020, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5310 MSP430F5309 MSP430F5308 MSP430F5304
Specifications
27
MSP430F5310, MSP430F5309, MSP430F5308, MSP430F5304
SLAS677G – SEPTEMBER 2010 – REVISED MAY 2020
www.ti.com
5.22 PMM, SVM High Side
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
TYP
SVMHE = 0, DVCC = 3.6 V
I(SVMH)
SVMH current consumption
0
SVMHE= 1, DVCC = 3.6 V, SVMHFP = 0
V(SVMH)
SVMH on or off voltage level
1.5
tpd(SVMH)
t(SVMH)
(1)
SVMH propagation delay
SVMH on or off delay time
µA
SVMHE = 1, SVSMHRRL = 0
1.62
1.74
1.85
SVMHE = 1, SVSMHRRL = 1
1.88
1.94
2.07
SVMHE = 1, SVSMHRRL = 2
2.07
2.14
2.28
SVMHE = 1, SVSMHRRL = 3
2.20
2.30
2.42
SVMHE = 1, SVSMHRRL = 4
2.32
2.40
2.55
SVMHE = 1, SVSMHRRL = 5
2.52
2.70
2.88
SVMHE = 1, SVSMHRRL = 6
2.90
3.10
3.23
SVMHE = 1, SVSMHRRL = 7
2.90
3.10
3.23
SVMHE = 1, SVMHOVPE = 1
UNIT
nA
200
SVMHE = 1, DVCC = 3.6 V, SVMHFP = 1
(1)
MAX
V
3.75
SVMHE = 1, dVDVCC/dt = 10 mV/µs,
SVMHFP = 1
2.5
SVMHE = 1, dVDVCC/dt = 1 mV/µs,
SVMHFP = 0
20
µs
SVMHE = 0 → 1, SVMHFP = 1
12.5
SVMHE = 0 → 1, SVMHFP = 0
100
µs
The SVMH settings available depend on the VCORE (PMMCOREVx) setting. See the Power-Management Module and Supply Voltage
Supervisor chapter in the MSP430F5xx and MSP430F6xx Family User's Guide on recommended settings and use.
5.23 PMM, SVS Low Side
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
SVSLE = 0, PMMCOREV = 2
I(SVSL)
SVSL current consumption
tpd(SVSL)
SVSL propagation delay
t(SVSL)
SVSL on or off delay time
TYP
MAX
0
SVSLE = 1, PMMCOREV = 2, SVSLFP = 0
200
SVSLE = 1, PMMCOREV = 2, SVSLFP = 1
2.0
SVSLE = 1, dVCORE/dt = 10 mV/µs, SVSLFP = 1
2.5
SVSLE = 1, dVCORE/dt = 1 mV/µs, SVSLFP = 0
20
SVSLE = 0 → 1, SVSLFP = 1
12.5
SVSLE = 0 → 1, SVSLFP = 0
100
UNIT
nA
µA
µs
µs
5.24 PMM, SVM Low Side
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
SVMLE = 0, PMMCOREV = 2
I(SVML)
SVML current consumption
tpd(SVML)
SVML propagation delay
t(SVML)
SVML on or off delay time
28
Specifications
TYP
0
SVMLE= 1, PMMCOREV = 2, SVMLFP = 0
200
SVMLE= 1, PMMCOREV = 2, SVMLFP = 1
1.5
SVMLE = 1, dVCORE/dt = 10 mV/µs, SVMLFP = 1
2.5
SVMLE = 1, dVCORE/dt = 1 mV/µs, SVMLFP = 0
20
SVMLE = 0 → 1, SVMLFP = 1
12.5
SVMLE = 0 → 1, SVMLFP = 0
100
MAX
UNIT
nA
µA
µs
µs
Copyright © 2010–2020, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5310 MSP430F5309 MSP430F5308 MSP430F5304
MSP430F5310, MSP430F5309, MSP430F5308, MSP430F5304
www.ti.com
SLAS677G – SEPTEMBER 2010 – REVISED MAY 2020
5.25 Wake-up Times From Low-Power Modes and Reset
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
tWAKE-UP-FAST
Wake-up time from LPM2,
LPM3, or LPM4 to active
mode (1)
PMMCOREV = SVSMLRRL = n
(where n = 0, 1, 2, or 3),
SVSLFP = 1
tWAKE-UP-SLOW
Wake-up time from LPM2,
LPM3, or LPM4 to active
mode (2) (3)
PMMCOREV = SVSMLRRL = n
(where n = 0, 1, 2, or 3),
SVSLFP = 0
tWAKE-UP-LPM5
tWAKE-UP-RESET
(1)
(2)
(3)
(4)
MIN
TYP
MAX
fMCLK ≥ 4.0 MHz
5
fMCLK < 4.0 MHz
6
UNIT
µs
150
165
µs
Wake-up time from LPM4.5 to
active mode (4)
2
3
ms
Wake-up time from RST or
BOR event to active mode (4)
2
3
ms
This value represents the time from the wake-up event to the first active edge of MCLK. The wake-up time depends on the performance
mode of the low-side supervisor (SVSL) and low-side monitor (SVML). tWAKE-UP-FAST is possible with SVSL and SVML in full performance
mode or disabled. For specific register settings, see the Low-Side SVS and SVM Control and Performance Mode Selection section in
the Power Management Module and Supply Voltage Supervisor chapter of the MSP430F5xx and MSP430F6xx Family User's Guide.
This value represents the time from the wake-up event to the first active edge of MCLK. The wake-up time depends on the performance
mode of the low-side supervisor (SVSL) and low-side monitor (SVML). tWAKE-UP-SLOW is set with SVSL and SVML in normal mode (low
current mode). For specific register settings, see the Low-Side SVS and SVM Control and Performance Mode Selection section in the
Power Management Module and Supply Voltage Supervisor chapter of the MSP430F5xx and MSP430F6xx Family User's Guide.
The wake-up times from LPM0 and LPM1 to AM are not specified. They are proportional to MCLK cycle time but are not affected by the
performance mode settings as for LPM2, LPM3, and LPM4.
This value represents the time from the wake-up event to the reset vector execution.
5.26 Timer_A
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
fTA
Timer_A input clock frequency
Internal: SMCLK or ACLK,
External: TACLK,
Duty cycle = 50% ±10%
tTA,cap
Timer_A capture timing
All capture inputs,
Minimum pulse duration required for capture
VCC
1.8 V, 3 V
1.8 V, 3 V
MIN
MAX
UNIT
25
MHz
20
ns
5.27 Timer_B
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
fTB
Timer_B input clock frequency
Internal: SMCLK or ACLK,
External: TBCLK,
Duty cycle = 50% ±10%
tTB,cap
Timer_B capture timing
All capture inputs, minimum pulse duration required
for capture
VCC
1.8 V, 3 V
1.8 V, 3 V
Copyright © 2010–2020, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5310 MSP430F5309 MSP430F5308 MSP430F5304
MIN
MAX
UNIT
25
MHz
20
Specifications
ns
29
MSP430F5310, MSP430F5309, MSP430F5308, MSP430F5304
SLAS677G – SEPTEMBER 2010 – REVISED MAY 2020
www.ti.com
5.28 USCI (UART Mode) Clock Frequency
PARAMETER
fUSCI
USCI input clock frequency
fBITCLK
BITCLK clock frequency
(equals baud rate in MBaud)
CONDITIONS
VCC
MIN
Internal: SMCLK or ACLK,
External: UCLK,
Duty cycle = 50% ±10%
MAX
UNIT
fSYSTEM
MHz
1
MHz
UNIT
5.29 USCI (UART Mode)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
tτ
(1)
UART receive deglitch time
(1)
VCC
MIN
MAX
2.2 V
50
600
3V
50
600
ns
Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. To ensure that pulses are
correctly recognized, their duration should exceed the maximum specification of the deglitch time.
5.30 USCI (SPI Master Mode) Clock Frequency
PARAMETER
fUSCI
CONDITIONS
MIN
Internal: SMCLK or ACLK,
Duty cycle = 50% ±10%
USCI input clock frequency
MAX
UNIT
fSYSTEM
MHz
5.31 USCI (SPI Master Mode)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1)
(see Figure 5-7 and Figure 5-8)
PARAMETER
fUSCI
TEST CONDITIONS
USCI input clock frequency
PMMCOREV = 0
tSU,MI
SOMI input data setup time
PMMCOREV = 3
PMMCOREV = 0
tHD,MI
SOMI input data hold time
PMMCOREV = 3
tVALID,MO
SIMO output data valid time
SIMO output data hold time
(2)
(2)
(3)
30
1.8 V
55
3V
38
2.4 V
30
3V
25
1.8 V
0
3V
0
2.4 V
0
3V
0
MAX
UNIT
fSYSTEM
MHz
ns
ns
UCLK edge to SIMO valid,
CL = 20 pF, PMMCOREV = 0
20
3V
18
UCLK edge to SIMO valid,
CL = 20 pF, PMMCOREV = 3
2.4 V
16
3V
15
(3)
CL = 20 pF, PMMCOREV = 3
(1)
MIN
1.8 V
CL = 20 pF, PMMCOREV = 0
tHD,MO
VCC
SMCLK or ACLK,
Duty cycle = 50% ±10%
1.8 V
ns
–10
3V
–8
2.4 V
–10
3V
–8
ns
fUCxCLK = 1/2tLO/HI with tLO/HI ≥ max(tVALID,MO(USCI) + tSU,SI(Slave), tSU,MI(USCI) + tVALID,SO(Slave))
For the slave parameters tSU,SI(Slave) and tVALID,SO(Slave), see the SPI parameters of the attached slave.
Specifies the time to drive the next valid data to the SIMO output after the output changing UCLK clock edge. See the timing diagrams
in Figure 5-7 and Figure 5-8.
Specifies how long data on the SIMO output is valid after the output changing UCLK clock edge. Negative values indicate that the data
on the SIMO output can become invalid before the output changing clock edge observed on UCLK. See the timing diagrams in Figure 57 and Figure 5-8.
Specifications
Copyright © 2010–2020, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5310 MSP430F5309 MSP430F5308 MSP430F5304
MSP430F5310, MSP430F5309, MSP430F5308, MSP430F5304
www.ti.com
SLAS677G – SEPTEMBER 2010 – REVISED MAY 2020
1/fUCxCLK
CKPL = 0
UCLK
CKPL = 1
tLO/HI
tLO/HI
tSU,MI
tHD,MI
SOMI
tHD,MO
tVALID,MO
SIMO
Figure 5-7. SPI Master Mode, CKPH = 0
1/fUCxCLK
CKPL = 0
UCLK
CKPL = 1
tLO/HI
tLO/HI
tSU,MI
tHD,MI
SOMI
tHD,MO
tVALID,MO
SIMO
Figure 5-8. SPI Master Mode, CKPH = 1
Copyright © 2010–2020, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5310 MSP430F5309 MSP430F5308 MSP430F5304
Specifications
31
MSP430F5310, MSP430F5309, MSP430F5308, MSP430F5304
SLAS677G – SEPTEMBER 2010 – REVISED MAY 2020
www.ti.com
5.32 USCI (SPI Slave Mode)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1)
(see Figure 5-9 and Figure 5-10)
PARAMETER
TEST CONDITIONS
PMMCOREV = 0
tSTE,LEAD
STE lead time, STE low to clock
PMMCOREV = 3
PMMCOREV = 0
tSTE,LAG
STE lag time, Last clock to STE high
PMMCOREV = 3
PMMCOREV = 0
tSTE,ACC
STE access time, STE low to SOMI data out
PMMCOREV = 3
PMMCOREV = 0
STE disable time, STE high to SOMI high
impedance
tSTE,DIS
PMMCOREV = 3
SIMO input data setup time
PMMCOREV = 3
PMMCOREV = 0
tHD,SI
SIMO input data hold time
PMMCOREV = 3
tVALID,SO
SOMI output data valid time
(2)
SOMI output data hold time
(2)
(3)
32
3V
8
2.4 V
7
3V
6
1.8 V
3
3V
3
2.4 V
3
3V
3
MAX
ns
1.8 V
66
3V
50
2.4 V
36
3V
30
1.8 V
30
3V
23
2.4 V
16
ns
ns
13
1.8 V
5
3V
5
2.4 V
2
3V
2
1.8 V
5
3V
5
2.4 V
5
3V
5
ns
ns
76
3V
60
UCLK edge to SOMI valid,
CL = 20 pF, PMMCOREV = 3
2.4 V
44
3V
40
(3)
UNIT
ns
UCLK edge to SOMI valid,
CL = 20 pF, PMMCOREV = 0
CL = 20 pF, PMMCOREV = 3
(1)
11
1.8 V
CL = 20 pF, PMMCOREV = 0
tHD,SO
MIN
3V
PMMCOREV = 0
tSU,SI
VCC
1.8 V
1.8 V
18
3V
12
2.4 V
10
3V
8
ns
ns
fUCxCLK = 1/2tLO/HI with tLO/HI ≥ max(tVALID,MO(Master) + tSU,SI(USCI), tSU,MI(Master) + tVALID,SO(USCI))
For the master parameters tSU,MI(Master) and tVALID,MO(Master), see the SPI parameters of the attached master.
Specifies the time to drive the next valid data to the SOMI output after the output changing UCLK clock edge. See the timing diagrams
in Figure 5-9 and Figure 5-10.
Specifies how long data on the SOMI output is valid after the output changing UCLK clock edge. See the timing diagrams in Figure 5-9
and Figure 5-10.
Specifications
Copyright © 2010–2020, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5310 MSP430F5309 MSP430F5308 MSP430F5304
MSP430F5310, MSP430F5309, MSP430F5308, MSP430F5304
www.ti.com
SLAS677G – SEPTEMBER 2010 – REVISED MAY 2020
tSTE,LEAD
tSTE,LAG
STE
1/fUCxCLK
CKPL = 0
UCLK
CKPL = 1
tLO/HI
tSU,SI
tLO/HI
tHD,SI
SIMO
tHD,SO
tVALID,SO
tSTE,ACC
tSTE,DIS
SOMI
Figure 5-9. SPI Slave Mode, CKPH = 0
tSTE,LAG
tSTE,LEAD
STE
1/fUCxCLK
CKPL = 0
UCLK
CKPL = 1
tLO/HI
tLO/HI
tHD,SI
tSU,SI
SIMO
tSTE,ACC
tHD,MO
tVALID,SO
tSTE,DIS
SOMI
Figure 5-10. SPI Slave Mode, CKPH = 1
Copyright © 2010–2020, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5310 MSP430F5309 MSP430F5308 MSP430F5304
Specifications
33
MSP430F5310, MSP430F5309, MSP430F5308, MSP430F5304
SLAS677G – SEPTEMBER 2010 – REVISED MAY 2020
www.ti.com
5.33 USCI (I2C Mode)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5-11)
PARAMETER
TEST CONDITIONS
VCC
MIN
Internal: SMCLK or ACLK,
External: UCLK,
Duty cycle = 50% ±10%
MAX
UNIT
fSYSTEM
MHz
400
kHz
fUSCI
USCI input clock frequency
fSCL
SCL clock frequency
tHD,STA
Hold time (repeated) START
tSU,STA
Setup time for a repeated START
tHD,DAT
Data hold time
2.2 V, 3 V
0
ns
tSU,DAT
Data setup time
2.2 V, 3 V
250
ns
2.2 V, 3 V
fSCL ≤ 100 kHz
fSCL ≤ 100 kHz
fSCL ≤ 100 kHz
tSP
Pulse duration of spikes suppressed by input filter
tSU,STA
tHD,STA
4.7
µs
0.6
4.0
2.2 V, 3 V
fSCL > 100 kHz
µs
0.6
2.2 V, 3 V
fSCL > 100 kHz
Setup time for STOP
4.0
2.2 V, 3 V
fSCL > 100 kHz
tSU,STO
0
µs
0.6
2.2 V
50
600
3V
50
600
tHD,STA
ns
tBUF
SDA
tLOW
tHIGH
tSP
SCL
tSU,DAT
tSU,STO
tHD,DAT
Figure 5-11. I2C Mode Timing
34
Specifications
Copyright © 2010–2020, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5310 MSP430F5309 MSP430F5308 MSP430F5304
MSP430F5310, MSP430F5309, MSP430F5308, MSP430F5304
www.ti.com
SLAS677G – SEPTEMBER 2010 – REVISED MAY 2020
5.34 10-Bit ADC, Power Supply and Input Range Conditions
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1)
PARAMETER
AVCC
Analog supply voltage
V(Ax)
Analog input voltage range
TEST CONDITIONS
VCC
MIN
AVCC and DVCC are connected together,
AVSS and DVSS are connected together,
V(AVSS) = V(DVSS) = 0 V
(2)
All ADC10_A pins: P6.0 to P6.7, P5.0, and P5.1
terminals
Operating supply current into
AVCC terminal. REF module
on, reference buffer on.
UNIT
1.8
3.6
V
0
AVCC
V
60
100
3V
75
110
fADC10CLK = 5 MHz, ADC10ON = 1, REFON = 1,
SHT0 = 0, SHT1 = 0, ADC10DIV = 0,
ADC10SREF = 01
3V
113
150
Operating supply current into
AVCC terminal. REF module
off, reference buffer on.
fADC10CLK = 5 MHz, ADC10ON = 1, REFON = 0,
SHT0 = 0, SHT1 = 0, ADC10DIV = 0,
ADC10SREF = 10, VEREF = 2.5 V
3V
105
140
Operating supply current into
AVCC terminal. REF module
off, reference buffer off.
fADC10CLK = 5 MHz, ADC10ON = 1, REFON = 0,
SHT0 = 0, SHT1 = 0, ADC10DIV = 0,
ADC10SREF = 11, VEREF = 2.5 V
3V
70
110
CI
Input capacitance
Only one terminal Ax can be selected at one time
from the pad to the ADC10_A capacitor array
including wiring and pad.
2.2 V
3.5
RI
Input MUX ON resistance
(1)
(2)
fADC10CLK = 5 MHz, ADC10ON = 1, REFON = 0,
SHT0 = 0, SHT1 = 0, ADC10DIV = 0,
ADC10SREF = 00
MAX
2.2 V
IADC10_A
Operating supply current into
AVCC terminal. REF module
and reference buffer off.
TYP
µA
pF
AVCC > 2.0 V, 0 V ≤ VAx ≤ AVCC
36
1.8 V < AVCC < 2.0 V, 0 V ≤ VAx ≤ AVCC
96
kΩ
The leakage current is defined in the leakage current table with P6.x/Ax parameter.
The analog input voltage range must be within the selected reference voltage range VR+ to VR– for valid conversion results. The external
reference voltage requires decoupling capacitors. Two decoupling capacitors, 10 µF and 100 nF, should be connected to VeREF to
decouple the dynamic current required for an external reference source if it is used for the ADC10_A. See also the MSP430F5xx and
MSP430F6xx Family User's Guide.
5.35 10-Bit ADC, Timing Parameters
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
VCC
MIN
TYP
MAX
UNIT
For specified performance of ADC10_A
linearity parameters
TEST CONDITIONS
2.2 V, 3 V
0.45
5
5.5
MHz
Internal ADC10_A
oscillator (1)
ADC10DIV = 0, fADC10CLK = fADC10OSC
2.2 V, 3 V
4.2
4.8
5.4
MHz
2.2 V, 3 V
2.4
Conversion time
REFON = 0, Internal oscillator,
12 ADC10CLK cycles, 10-bit mode,
fADC10OSC = 4 MHz to 5 MHz
fADC10CLK
fADC10OSC
tCONVERT
µs
External fADC10CLK from ACLK, MCLK or
SMCLK, ADC10SSEL ≠ 0
tADC10ON
Turnon settling time of
the ADC
tSample
Sampling time
(1)
(2)
(3)
See
3.0
12 ×
1 / fADC10CLK
(2)
100
ns
RS = 1000 Ω, RI = 96 kΩ, CI = 3.5 pF (3)
1.8 V
3
µs
RS = 1000 Ω, RI = 36 kΩ, CI = 3.5 pF (3)
3V
1
µs
The ADC10OSC is sourced directly from MODOSC inside the UCS.
The condition is that the error in a conversion started after tADC10ON is less than ±0.5 LSB. The reference and input signal are already
settled.
Approximately 8 Tau (τ) are required for an error of less than ±0.5 LSB
Copyright © 2010–2020, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5310 MSP430F5309 MSP430F5308 MSP430F5304
Specifications
35
MSP430F5310, MSP430F5309, MSP430F5308, MSP430F5304
SLAS677G – SEPTEMBER 2010 – REVISED MAY 2020
www.ti.com
5.36 10-Bit ADC, Linearity Parameters
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
1.4 V ≤ (VeREF+ – VeREF–) ≤ 1.6 V, CVeREF+ = 20 pF
VCC
MIN
TYP
MAX
±1.0
EI
Integral linearity error
ED
Differential
linearity error
1.4 V ≤ (VeREF+ – VeREF–), CVeREF+ = 20 pF
2.2 V, 3 V
±1.0
LSB
EO
Offset error
1.4 V ≤ (VeREF+ – VeREF–), CVeREF+ = 20 pF,
Internal impedance of source RS < 100 Ω
2.2 V, 3 V
±1.0
LSB
EG
Gain error
1.4 V ≤ (VeREF+ – VeREF–), CVeREF+ = 20 pF,
ADC10SREFx = 11b
2.2 V, 3 V
±1.0
LSB
ET
Total unadjusted error
1.4 V ≤ (VeREF+ – VeREF–), CVeREF+ = 20 pF,
ADC10SREFx = 11b
2.2 V, 3 V
±2.0
LSB
MAX
UNIT
1.4
AVCC
V
0
1.2
V
1.4
AVCC
V
1.6 V < (VeREF+ – VeREF–) ≤ VAVCC, CVeREF+ = 20 pF
2.2 V, 3 V
UNIT
±1.0
±1.0
LSB
5.37 REF, External Reference
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1)
PARAMETER
TEST CONDITIONS
VeREF+
Positive external reference
voltage input
VeREF+ > VeREF–
VeREF–
Negative external reference
voltage input
VeREF+ > VeREF–
(VeREF+ –
VeREF–)
Differential external reference
VeREF+ > VeREF– (4)
voltage input
IVeREF+
IVeREF–
Static input current
CVREF+/(1)
(2)
(3)
(4)
(5)
36
Capacitance at VeREF+ or
VeREF- terminal
(3)
1.4 V ≤ VeREF+ ≤ VAVCC, VeREF– = 0 V,
fADC10CLK = 5 MHz, ADC10SHTx = 0x0001,
Conversion rate 200 ksps
1.4 V ≤ VeREF+ ≤ VAVCC, VeREF– = 0 V,
fADC10CLK = 5 MHz, ADC10SHTX = 0x1000,
Conversion rate 20 ksps
(5)
VCC
(2)
MIN
TYP
±8.5
±26
2.2 V, 3 V
µA
±1
10
µF
The external reference is used during ADC conversion to charge and discharge the capacitance array. The input capacitance, CI, is also
the dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the
recommendations on analog-source impedance to allow the charge to settle for 10-bit accuracy.
The accuracy limits the minimum positive external reference voltage. Lower reference voltage levels may be applied with reduced
accuracy requirements.
The accuracy limits the maximum negative external reference voltage. Higher reference voltage levels may be applied with reduced
accuracy requirements.
The accuracy limits minimum external differential reference voltage. Lower differential reference voltage levels may be applied with
reduced accuracy requirements.
Two decoupling capacitors, 10 µF and 100 nF, should be connected to VeREF to decouple the dynamic current required for an external
reference source if it is used for the ADC10_A. See also the MSP430F5xx and MSP430F6xx Family User's Guide.
Specifications
Copyright © 2010–2020, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5310 MSP430F5309 MSP430F5308 MSP430F5304
MSP430F5310, MSP430F5309, MSP430F5308, MSP430F5304
www.ti.com
SLAS677G – SEPTEMBER 2010 – REVISED MAY 2020
5.38 REF, Built-In Reference
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1)
PARAMETER
VREF+
AVCC(min)
IREF+
Positive built-in reference
voltage
TEST CONDITIONS
VCC
TYP
MAX
REFVSEL = {2} for 2.5 V, REFON = 1
3V
2.51 ±1.5%
REFVSEL = {1} for 2.0 V, REFON = 1
3V
1.99 ±1.5%
REFVSEL = {0} for 1.5 V, REFON = 1
2.2 V, 3 V
1.5 ±1.5%
REFVSEL = {0} for 1.5 V
AVCC minimum voltage,
REFVSEL = {1} for 2.0 V
Positive built-in reference active
REFVSEL = {2} for 2.5 V
Operating supply current into
AVCC terminal (2)
MIN
UNIT
V
1.8
2.2
V
2.7
fADC10CLK = 5.0 MHz,
REFON = 1, REFBURST = 0,
REFVSEL = {2} for 2.5 V
3V
18
24
fADC10CLK = 5.0 MHz,
REFON = 1, REFBURST = 0,
REFVSEL = {1} for 2.0 V
3V
15.5
21
fADC10CLK = 5.0 MHz,
REFON = 1, REFBURST = 0,
REFVSEL = {0} for 1.5V
3V
13.5
21
30
50
µA
TCREF+
Temperature coefficient of builtin reference (3)
IVREF+ = 0 A,
REFVSEL = {0, 1, 2}, REFON = 1
ISENSOR
Operating supply current into
AVCC terminal (4)
REFON = 0, INCH = 0Ah,
ADC10ON = NA, TA = 30°C
2.2 V
20
22
3V
20
22
VSENSOR
See
ADC10ON = 1, INCH = 0Ah,
TA = 30°C
2.2 V
770
3V
770
VMID
AVCC divider at channel 11
ADC10ON = 1, INCH = 0Bh,
VMID ≈ 0.5 × VAVCC
2.2 V
1.06
1.1
1.14
3V
1.46
1.5
1.54
tSENSOR(sample)
Sample time required if
channel 10 is selected (6)
ADC10ON = 1, INCH = 0Ah,
Error of conversion result ≤ 1 LSB
30
µs
tVMID(sample)
Sample time required if
channel 11 is selected (7)
ADC10ON = 1, INCH = 0Bh,
Error of conversion result ≤ 1 LSB
1
µs
PSRR_DC
Power supply rejection ratio
(DC)
AVCC = AVCC(min) to AVCC(max),
TA = 25°C,
REFVSEL = {0, 1, 2}, REFON = 1
120
µV/V
PSRR_AC
Power supply rejection ratio
(AC)
AVCC = AVCC(min) to AVCC(max),
TA = 25°C, f = 1 kHz, ΔVpp = 100 mV,
REFVSEL = {0, 1, 2}, REFON = 1
6.4
mV/V
tSETTLE
Settling time of reference
voltage (8)
AVCC = AVCC(min) to AVCC(max),
REFVSEL = {0, 1, 2}, REFON = 0 → 1
75
µs
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(5)
ppm/
°C
µA
mV
V
The leakage current is defined in the leakage current table with P6.x/Ax parameter.
The internal reference current is supplied through the AVCC terminal. Consumption is independent of the ADC10ON control bit, unless a
conversion is active. The REFON bit enables to settle the built-in reference before starting an A/D conversion.
Calculated using the box method: (MAX(–40°C to 85°C) – MIN(–40°C to 85°C)) / MIN(–40°C to 85°C) / (85°C – (–40°C)).
The sensor current ISENSOR is consumed if (ADC10ON = 1 and REFON = 1) or (ADC10ON = 1 and INCH = 0Ah and sample signal is
high). When REFON = 1, ISENSOR is already included in IREF+.
The temperature sensor offset can be significant. TI recommends a single-point calibration to minimize the offset error of the built-in
temperature sensor.
The typical equivalent impedance of the sensor is 51 kΩ. The sample time required includes the sensor-on time tSENSOR(on).
The on-time tVMID(on) is included in the sampling time tVMID(sample); no additional on time is needed.
The condition is that the error in a conversion started after tREFON is less than ±0.5 LSB.
Copyright © 2010–2020, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5310 MSP430F5309 MSP430F5308 MSP430F5304
Specifications
37
MSP430F5310, MSP430F5309, MSP430F5308, MSP430F5304
SLAS677G – SEPTEMBER 2010 – REVISED MAY 2020
www.ti.com
5.39 Comparator_B
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
VCC
TEST CONDITIONS
VCC
Supply voltage
MIN
TYP
1.8
3.6
1.8 V
CBPWRMD = 00, CBON = 1,
CBRSx = 00
IAVCC_COMP
IAVCC_REF
VIC
Comparator operating supply
current into AVCC, Excludes
reference resistor ladder
Quiescent current of resistor
ladder into AVCC, Including REF
module current
Input offset voltage
CIN
Input capacitance
RSIN
Series input resistance
tPD
Propagation delay, response time
tPD,filter
Propagation delay with filter active
tEN_CMP
tEN_REF
Comparator enable time
Resistor reference enable time
VCB_REF
38
30
50
3V
40
65
CBPWRMD = 01, CBON = 1,
CBRSx = 00
2.2 V,
3V
10
17
CBPWRMD = 10, CBON = 1,
CBRSx = 00
2.2 V,
3V
0.1
0.5
CBREFACC = 1, CBREFLx = 01,
CBRSx = 10, REFON = 0, CBON = 0
2.2 V,
3V
10
17
CBREFACC = 0, CBREFLx = 01,
CBRSx = 10, REFON = 0, CBON = 0
2.2 V,
3V
Reference voltage for a given tap
Specifications
µA
22
0
VCC – 1
±20
CBPWRMD = 01, 10
±10
5
On (switch closed)
3
V
mV
pF
4
50
kΩ
MΩ
CBPWRMD = 00, CBF = 0
450
CBPWRMD = 01, CBF = 0
600
CBPWRMD = 10, CBF = 0
50
CBPWRMD = 00, CBON = 1,
CBF = 1, CBFDLY = 00
0.35
0.6
1.0
CBPWRMD = 00, CBON = 1,
CBF = 1, CBFDLY = 01
0.6
1.0
1.8
CBPWRMD = 00, CBON = 1,
CBF = 1, CBFDLY = 10
1.0
1.8
3.4
CBPWRMD = 00, CBON = 1,
CBF = 1, CBFDLY = 11
1.8
3.4
6.5
1
2
ns
µs
µs
CBON = 0 to CBON = 1,
CBPWRMD = 00, 01
µs
CBON = 0 to CBON = 1,
CBPWRMD = 10
100
CBON = 0 to CBON = 1
VIN = reference into resistor ladder,
n = 0 to 31
V
µA
CBPWRMD = 00
Off (switch open)
UNIT
40
2.2 V
Common mode input range
VOFFSET
MAX
1
1.5
µs
VIN ×
VIN ×
(n +
(n + 1)
0.5)
/ 32
/ 32
VIN ×
(n +
1.5)
/ 32
V
Copyright © 2010–2020, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5310 MSP430F5309 MSP430F5308 MSP430F5304
MSP430F5310, MSP430F5309, MSP430F5308, MSP430F5304
www.ti.com
SLAS677G – SEPTEMBER 2010 – REVISED MAY 2020
5.40 Ports PU.0 and PU.1
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
VOH
High-level output voltage
VLDOO = 3.3 V ±10%, IOH = –25 mA,
See Figure 5-13 for typical characteristics
VOL
Low-level output voltage
VLDOO = 3.3 V ±10%, IOL = 25 mA,
See Figure 5-12 for typical characteristics
VIH
High-level input voltage
VLDOO = 3.3 V ±10%,
See Figure 5-14 for typical characteristics
VIL
Low-level input voltage
VLDOO = 3.3 V ±10%,
See Figure 5-14 for typical characteristics
MAX
2.4
UNIT
V
0.4
2.0
V
V
0.8
V
IOL - Typical Low-Level Output Current - mA
90
VCC = 3.0 V
TA = 85ºC
VCC = 3.0 V
TA = 25ºC
80
VCC = 1.8 V
TA = 25ºC
70
60
50
VCC = 1.8 V
TA = 85ºC
40
30
20
10
0
0
0.1
0.2
0.3 0.4 0.5 0.6 0.7 0.8 0.9
VOL - Low-Level Output Voltage - V
1
1.1
1.2
IOH - Typical High-Level Output Current - mA
Figure 5-12. Ports PU.0, PU.1 Typical Low-Level Output Characteristics
0
-10
-20
-30
-40
VCC = 1.8 V
TA = 85 ºC
-50
VCC = 3.0 V
TA = 85 ºC
-60
-70
VCC = 1.8 V
TA = 25 ºC
VCC = 3.0 V
TA = 25 ºC
-80
-90
0.5
1
1.5
2
VOH - High-Level Output Voltage - V
2.5
3
Figure 5-13. Ports PU.0, PU.1 Typical High-Level Output Characteristics
2.0
1.8
TA = 25°C, 85°C
1.6
VIT+, postive-going input threshold
Input Threshold - V
1.4
1.2
VIT–, negative-going input threshold
1.0
0.8
0.6
0.4
0.2
0.0
1.8
2.2
2.6
3
LDOO Supply Voltage, VLDOO - V
3.4
Figure 5-14. Ports PU.0, PU.1 Typical Input Threshold Characteristics
Copyright © 2010–2020, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5310 MSP430F5309 MSP430F5308 MSP430F5304
Specifications
39
MSP430F5310, MSP430F5309, MSP430F5308, MSP430F5304
SLAS677G – SEPTEMBER 2010 – REVISED MAY 2020
www.ti.com
5.41 LDO-PWR (LDO Power System)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
VLAUNCH
LDO input detection threshold
VLDOI
LDO input voltage
VLDO
LDO output voltage
TEST CONDITIONS
ILDOO
Maximum external current from LDOO terminal
LDO is on
IDET
LDO current overload detection
CLDOI
LDOI terminal recommended capacitance
CLDOO
LDOO terminal recommended capacitance
(1)
40
MAX
UNIT
3.75
V
5.5
V
±9%
V
1.8
3.6
V
20
mA
60
100
mA
3.3
LDO disabled
Settling time VLDO
TYP
3.76
VLDO_EXT LDOO terminal input voltage with LDO disabled
tENABLE
MIN
(1)
Within 2%, recommended
capacitances
4.7
µF
220
nF
2
ms
A current overload will be detected when the total current supplied from the LDO exceeds this value.
Specifications
Copyright © 2010–2020, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5310 MSP430F5309 MSP430F5308 MSP430F5304
MSP430F5310, MSP430F5309, MSP430F5308, MSP430F5304
www.ti.com
SLAS677G – SEPTEMBER 2010 – REVISED MAY 2020
5.42 Flash Memory
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TJ
DVCC(PGM/ERASE)
Program or erase supply voltage
tREADMARGIN
Read access time during margin mode
IPGM
Supply current from DVCC during program
IERASE
Supply current from DVCC during erase
IMERASE, IBANK
Supply current from DVCC during mass erase or bank erase
tCPT
Cumulative program time (1)
MIN
TYP
1.8
MAX
3.6
V
200
ns
3
5
mA
2
6.5
mA
2
6.5
mA
16
104
Program and erase endurance
105
ms
cycles
tRetention
Data retention duration
tWord
Word or byte program time (2)
64
85
µs
tBlock,
0
Block program time for first byte or word (2)
49
65
µs
tBlock,
1–(N–1)
Block program time for each additional byte or word, except for last byte
or word (2)
37
49
µs
55
73
µs
23
32
ms
tBlock,
N
tErase
(1)
(2)
Block program time for last byte or word
25°C
UNIT
(2)
Erase time for segment, mass erase, and bank erase when available (2)
100
years
The cumulative program time must not be exceeded when writing to a 128-byte flash block. This parameter applies to all programming
methods: individual word or byte write and block write modes.
These values are hardwired into the state machine of the flash controller.
5.43 JTAG and Spy-Bi-Wire Interface
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
VCC
MIN
TYP
MAX
UNIT
fSBW
Spy-Bi-Wire input frequency
2.2 V, 3 V
0
20
MHz
tSBW,Low
Spy-Bi-Wire low clock pulse duration
2.2 V, 3 V
0.025
15
µs
tSBW, En
Spy-Bi-Wire enable time (TEST high to acceptance of first clock edge) (1)
2.2 V, 3 V
1
µs
tSBW,Rst
Spy-Bi-Wire return to normal operation time
100
µs
fTCK
TCK input frequency, 4-wire JTAG (2)
Rinternal
Internal pulldown resistance on TEST
(1)
(2)
15
2.2 V
0
5
MHz
3V
0
10
MHz
2.2 V, 3 V
45
80
kΩ
60
Tools that access the Spy-Bi-Wire and BSL interfaces must wait for the tSBW,En time after the first transition of the TEST/SBWTCK pin
(low to high), before the second transition of the pin (high to low) during the entry sequence.
fTCK may be restricted to meet the timing requirements of the module selected.
Copyright © 2010–2020, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5310 MSP430F5309 MSP430F5308 MSP430F5304
Specifications
41
MSP430F5310, MSP430F5309, MSP430F5308, MSP430F5304
SLAS677G – SEPTEMBER 2010 – REVISED MAY 2020
www.ti.com
6 Detailed Description
6.1
CPU (Link to User's Guide)
The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All
operations, other than program-flow instructions, are performed as register operations in conjunction with
seven addressing modes for source operand and four addressing modes for destination operand.
The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-toregister operation execution time is one cycle of the CPU clock. Four of the registers, R0 to R3, are
dedicated as program counter, stack pointer, status register, and constant generator, respectively. The
remaining registers are general-purpose registers (see Figure 6-1).
Peripherals are connected to the CPU using data, address, and control buses. Peripherals can be
managed with all instructions.
The instruction set consists of the original 51 instructions with three formats and seven address modes
and additional instructions for the expanded address range. Each instruction can operate on word and
byte data.
Program Counter
PC/R0
Stack Pointer
SP/R1
Status Register
Constant Generator
SR/CG1/R2
CG2/R3
General-Purpose Register
R4
General-Purpose Register
R5
General-Purpose Register
R6
General-Purpose Register
R7
General-Purpose Register
R8
General-Purpose Register
R9
General-Purpose Register
R10
General-Purpose Register
R11
General-Purpose Register
R12
General-Purpose Register
R13
General-Purpose Register
R14
General-Purpose Register
R15
Figure 6-1. Integrated CPU Registers
42
Detailed Description
Copyright © 2010–2020, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5310 MSP430F5309 MSP430F5308 MSP430F5304
MSP430F5310, MSP430F5309, MSP430F5308, MSP430F5304
www.ti.com
6.2
SLAS677G – SEPTEMBER 2010 – REVISED MAY 2020
Operating Modes
These microcontrollers have one active mode and six software-selectable low-power modes of operation.
An interrupt event can wake up the device from any of the low-power modes, service the request, and
restore back to the low-power mode on return from the interrupt program.
Software can configure the following operating modes:
• Active mode (AM)
– All clocks are active
• Low-power mode 0 (LPM0)
– CPU is disabled
– ACLK and SMCLK remain active, MCLK is disabled
– FLL loop control remains active
• Low-power mode 1 (LPM1)
– CPU is disabled
– FLL loop control is disabled
– ACLK and SMCLK remain active, MCLK is disabled
• Low-power mode 2 (LPM2)
– CPU is disabled
– MCLK, FLL loop control, and DCOCLK are disabled
– DC generator of the DCO remains enabled
– ACLK remains active
• Low-power mode 3 (LPM3)
– CPU is disabled
– MCLK, FLL loop control, and DCOCLK are disabled
– DC generator of the DCO is disabled
– ACLK remains active
• Low-power mode 4 (LPM4)
– CPU is disabled
– ACLK is disabled
– MCLK, FLL loop control, and DCOCLK are disabled
– DC generator of the DCO is disabled
– Crystal oscillator is stopped
– Complete data retention
• Low-power mode 4.5 (LPM4.5)
– Internal regulator disabled
– No data retention
– Wake-up input from RST/NMI, P1, and P2
Detailed Description
Submit Documentation Feedback
Product Folder Links: MSP430F5310 MSP430F5309 MSP430F5308 MSP430F5304
Copyright © 2010–2020, Texas Instruments Incorporated
43
MSP430F5310, MSP430F5309, MSP430F5308, MSP430F5304
SLAS677G – SEPTEMBER 2010 – REVISED MAY 2020
6.3
www.ti.com
Interrupt Vector Addresses
The interrupt vectors and the power-up start address are in the address range 0FFFFh to 0FF80h (see
Table 6-1). The vector contains the 16-bit address of the appropriate interrupt-handler instruction
sequence.
Table 6-1. Interrupt Sources, Flags, and Vectors
INTERRUPT SOURCE
System Reset
Power up
External reset
Watchdog time-out, password
violation
Flash memory password violation
System NMI
PMM
Vacant memory access
JTAG mailbox
User NMI
NMI
Oscillator fault
Flash memory access violation
Comp_B
INTERRUPT FLAG
WDTIFG, KEYV (SYSRSTIV)
(1) (2)
SVMLIFG, SVMHIFG, DLYLIFG, DLYHIFG,
VLRLIFG, VLRHIFG, VMAIFG, JMBNIFG,
JMBOUTIFG (SYSSNIV) (1)
NMIIFG, OFIFG, ACCVIFG, BUSIFG (SYSUNIV)
(1) (2)
Comparator B interrupt flags (CBIV)
TB0
TB0CCR0 CCIFG0
(1) (3)
(3)
SYSTEM
INTERRUPT
WORD
ADDRESS
PRIORITY
Reset
0FFFEh
63, highest
(Non)maskable
0FFFCh
62
(Non)maskable
0FFFAh
61
Maskable
0FFF8h
60
Maskable
0FFF6h
59
TB0
TB0CCR1 CCIFG1 to TB0CCR6 CCIFG6,
TB0IFG (TB0IV) (1) (3)
Maskable
0FFF4h
58
Watchdog Timer_A interval timer
mode
WDTIFG
Maskable
0FFF2h
57
Maskable
0FFF0h
56
Maskable
0FFEEh
55
Maskable
0FFECh
54
USCI_A0 receive or transmit
UCA0RXIFG, UCA0TXIFG (UCA0IV)
USCI_B0 receive or transmit
UCB0RXIFG, UCB0TXIFG (UCAB0IV)
ADC10_A
ADC10IFG0
TA0
(3)
Maskable
0FFEAh
53
TA0
Maskable
0FFE8h
52
LDO-PWR
LDOOFFIG, LDOONIFG, LDOOVLIFG
Maskable
0FFE6h
51
Maskable
0FFE4h
50
Maskable
0FFE2h
49
Maskable
0FFE0h
48
DMA0IFG, DMA1IFG, DMA2IFG (DMAIV)
TA1CCR0 CCIFG0
(1) (3)
(3)
TA1CCR1 CCIFG1 to TA1CCR2 CCIFG2,
TA1IFG (TA1IV) (1) (3)
TA1
(1) (3)
I/O port P1
P1IFG.0 to P1IFG.7 (P1IV)
Maskable
0FFDEh
47
USCI_A1 receive or transmit
UCA1RXIFG, UCA1TXIFG (UCA1IV)
(1) (3)
Maskable
0FFDCh
46
USCI_B1 receive or transmit
UCB1RXIFG, UCB1TXIFG (UCB1IV)
(1) (3)
Maskable
0FFDAh
45
Maskable
0FFD8h
44
Maskable
0FFD6h
43
Maskable
0FFD4h
42
Maskable
0FFD2h
41
TA2
TA2CCR0 CCIFG0
(3)
TA2CCR1 CCIFG1 to TA2CCR2 CCIFG2,
TA2IFG (TA2IV) (1) (3)
TA2
I/O port P2
P2IFG.0 to P2IFG.7 (P2IV)
(1) (3)
RTCRDYIFG, RTCTEVIFG, RTCAIFG,
RT0PSIFG, RT1PSIFG (RTCIV) (1) (3)
RTC_A
44
(1) (3) (4)
TA0CCR0 CCIFG0
TA1
(3)
(4)
(1) (3)
TA0CCR1 CCIFG1 to TA0CCR4 CCIFG4,
TA0IFG (TA0IV) (1) (3)
DMA
(1)
(2)
(1) (3)
Multiple source flags
A reset is generated if the CPU tries to fetch instructions from within peripheral space or vacant memory space.
(Non)maskable: the individual interrupt enable bit can disable an interrupt event, but the general interrupt enable bit cannot disable it.
Interrupt flags are in the module.
Only on devices with ADC, otherwise reserved.
Detailed Description
Copyright © 2010–2020, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5310 MSP430F5309 MSP430F5308 MSP430F5304
MSP430F5310, MSP430F5309, MSP430F5308, MSP430F5304
www.ti.com
SLAS677G – SEPTEMBER 2010 – REVISED MAY 2020
Table 6-1. Interrupt Sources, Flags, and Vectors (continued)
INTERRUPT SOURCE
INTERRUPT FLAG
Reserved
(5)
Reserved
SYSTEM
INTERRUPT
WORD
ADDRESS
PRIORITY
0FFD0h
40
(5)
⋮
⋮
0FF80h
0, lowest
Reserved interrupt vectors at addresses are not used in this device and can be used for regular program code if necessary. To maintain
compatibility with other devices, TI recommends reserving these locations.
6.4
Memory Organization
Table 6-2 summarizes the memory map for all device variants.
Table 6-2. Memory Organization (1)
Memory (flash)
Main: interrupt vector
Main: code memory
RAM
Information memory
(flash)
Bootloader (BSL)
memory (flash)
Peripherals
(1)
MSP430F5304
MSP430F5308
MSP430F5309
MSP430F5310
Total Size
8KB
00FFFFh to 00FF80h
00FFFFh to 00E000h
16KB
00FFFFh to 00FF80h
00FFFFh to 00C000h
24KB
00FFFFh to 00FF80h
00FFFFh to 00A000h
32KB
00FFFFh to 00FF80h
00FFFFh to 008000h
Sector 1
2KB
0033FFh to 002C00h
2KB
0033FFh to 002C00h
2KB
0033FFh to 002C00h
2KB
0033FFh to 002C00h
Sector 0
2KB
002BFFh to 002400h
2KB
002BFFh to 002400h
2KB
002BFFh to 002400h
2KB
002BFFh to 002400h
Sector 7
2KB
0023FFh to 001C00h
2KB
0023FFh to 001C00h
2KB
0023FFh to 001C00h
2KB
0023FFh to 001C00h
Info A
128 B
0019FFh to 001980h
128 B
0019FFh to 001980h
128 B
0019FFh to 001980h
128 B
0019FFh to 001980h
Info B
128 B
00197Fh to 001900h
128 B
00197Fh to 001900h
128 B
00197Fh to 001900h
128 B
00197Fh to 001900h
Info C
128 B
0018FFh to 001880h
128 B
0018FFh to 001880h
128 B
0018FFh to 001880h
128 B
0018FFh to 001880h
Info D
128 B
00187Fh to 001800h
128 B
00187Fh to 001800h
128 B
00187Fh to 001800h
128 B
00187Fh to 001800h
BSL 3
512 B
0017FFh to 001600h
512 B
0017FFh to 001600h
512 B
0017FFh to 001600h
512 B
0017FFh to 001600h
BSL 2
512 B
0015FFh to 001400h
512 B
0015FFh to 001400h
512 B
0015FFh to 001400h
512 B
0015FFh to 001400h
BSL 1
512 B
0013FFh to 001200h
512 B
0013FFh to 001200h
512 B
0013FFh to 001200h
512 B
0013FFh to 001200h
BSL 0
512 B
0011FFh to 001000h
512 B
0011FFh to 001000h
512 B
0011FFh to 001000h
512 B
0011FFh to 001000h
4KB
000FFFh to 0h
4KB
000FFFh to 0h
4KB
000FFFh to 0h
4KB
000FFFh to 0h
Size
N/A = Not available
Detailed Description
Submit Documentation Feedback
Product Folder Links: MSP430F5310 MSP430F5309 MSP430F5308 MSP430F5304
Copyright © 2010–2020, Texas Instruments Incorporated
45
MSP430F5310, MSP430F5309, MSP430F5308, MSP430F5304
SLAS677G – SEPTEMBER 2010 – REVISED MAY 2020
6.5
www.ti.com
Bootloader (BSL)
The BSL enables users to program the flash memory or RAM using a UART serial interface. Access to the
device memory through the BSL is protected by user-defined password. Use of the UART BSL requires
external access to six pins (see Table 6-3). For complete description of the features of the BSL and its
implementation, see MSP430 Flash Device Bootloader (BSL) User's Guide. Table 6-3 lists the BSL pin
requirements.
Table 6-3. BSL Pin Functions
6.6
6.6.1
DEVICE SIGNAL
BSL FUNCTION
RST/NMI/SBWTDIO
Entry sequence signal
TEST/SBWTCK
Entry sequence signal
P1.1
Data transmit
P1.2
Data receive
VCC
Power supply
VSS
Ground supply
JTAG Operation
JTAG Standard Interface
The MSP430 family supports the standard JTAG interface, which requires four signals for sending and
receiving data. The JTAG signals are shared with general-purpose I/O. The TEST/SBWTCK pin is used to
enable the JTAG signals. In addition to these signals, the RST/NMI/SBWTDIO is required to interface with
MSP430 development tools and device programmers. Table 6-4 lists the JTAG pin requirements. For
further details on interfacing to development tools and device programmers, see the MSP430 Hardware
Tools User's Guide. For a complete description of the features of the JTAG interface and its
implementation, see MSP430 Programming With the JTAG Interface.
Table 6-4. JTAG Pin Requirements and Functions
6.6.2
DEVICE SIGNAL
DIRECTION
FUNCTION
PJ.3/TCK
IN
JTAG clock input
PJ.2/TMS
IN
JTAG state control
PJ.1/TDI/TCLK
IN
JTAG data input, TCLK input
PJ.0/TDO
OUT
JTAG data output
TEST/SBWTCK
IN
Enable JTAG pins
RST/NMI/SBWTDIO
IN
External reset
VCC
Power supply
VSS
Ground supply
Spy-Bi-Wire Interface
In addition to the standard JTAG interface, the MSP430 family supports the two wire Spy-Bi-Wire
interface. Spy-Bi-Wire can be used to interface with MSP430 development tools and device programmers.
Table 6-5 lists the Spy-Bi-Wire interface pin requirements. For further details on interfacing to
development tools and device programmers, see the MSP430 Hardware Tools User's Guide. For a
complete description of the features of the JTAG interface and its implementation, see MSP430
Programming With the JTAG Interface.
46
Detailed Description
Copyright © 2010–2020, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5310 MSP430F5309 MSP430F5308 MSP430F5304
MSP430F5310, MSP430F5309, MSP430F5308, MSP430F5304
www.ti.com
SLAS677G – SEPTEMBER 2010 – REVISED MAY 2020
Table 6-5. Spy-Bi-Wire Pin Requirements and Functions
6.7
DEVICE SIGNAL
DIRECTION
FUNCTION
TEST/SBWTCK
IN
Spy-Bi-Wire clock input
RST/NMI/SBWTDIO
IN, OUT
Spy-Bi-Wire data input and output
VCC
Power supply
VSS
Ground supply
Flash Memory (Link to User's Guide)
The flash memory can be programmed through the JTAG port, Spy-Bi-Wire (SBW), the BSL, or in-system
by the CPU. The CPU can perform single-byte, single-word, and long-word writes to the flash memory.
Features of the flash memory include:
• Flash memory has n segments of main memory and four segments of information memory (A to D) of
128 bytes each. Each segment in main memory is 512 bytes in size.
• Segments 0 to n may be erased in one step, or each segment may be individually erased.
• Segments A to D can be erased individually, or as a group with segments 0 to n. Segments A to D are
also called information memory.
• Segment A can be locked separately.
6.8
RAM (Link to User's Guide)
The RAM is made up of n sectors. Each sector can be completely powered down to save leakage;
however, all data are lost. Features of the RAM include:
• RAM has n sectors. See Section 6.4 for the size of a sector.
• Each sector 0 to n can be completely disabled; however, data retention is lost.
• Each sector 0 to n automatically enters low power retention mode when possible.
6.9
Peripherals
Peripherals are connected to the CPU through data, address, and control buses. Peripherals can be
handled using all instructions. For complete module descriptions, see the MSP430F5xx and MSP430F6xx
Family User's Guide.
6.9.1
Digital I/O (Link to User's Guide)
Up to six 8-bit I/O ports are implemented: For 64-pin options, P1, P2, P4, and P6 are complete, P5 is
reduced to 6-bit I/O, and P3 is reduced to 5-bit I/O. For 48-pin options, P6 is reduced to 4-bit I/O, P2 is
reduced to 1-bit I/O, and P3 is completely removed. Port PJ contains four individual I/O ports, common to
all devices.
• All individual I/O bits are independently programmable.
• Any combination of input, output, and interrupt conditions is possible.
• Pullup or pulldown on all ports is programmable.
• Drive strength on all ports is programmable.
• Edge-selectable interrupt and LPM4.5 wakeup input capability is available for all bits of ports P1 and
P2.
• Read and write access to port-control registers is supported by all instructions.
• Ports can be accessed byte-wise (P1 through P6) or word-wise in pairs (PA through PC).
Detailed Description
Submit Documentation Feedback
Product Folder Links: MSP430F5310 MSP430F5309 MSP430F5308 MSP430F5304
Copyright © 2010–2020, Texas Instruments Incorporated
47
MSP430F5310, MSP430F5309, MSP430F5308, MSP430F5304
SLAS677G – SEPTEMBER 2010 – REVISED MAY 2020
6.9.2
www.ti.com
Port Mapping Controller (Link to User's Guide)
The port mapping controller allows the flexible and reconfigurable mapping of digital functions to port P4
(see Table 6-6). Table 6-7 lists the default settings for all pins that support port mapping.
Table 6-6. Port Mapping Mnemonics and Functions
VALUE
PxMAPy MNEMONIC
INPUT PIN FUNCTION
0
PM_NONE
None
DVSS
PM_CBOUT0
–
Comparator_B output
1
2
PM_TB0CLK
TB0 clock input
–
PM_ADC10CLK
–
ADC10CLK
PM_DMAE0
DMAE0 input
–
SVM output
PM_SVMOUT
–
PM_TB0OUTH
TB0 high impedance input TB0OUTH
–
4
PM_TB0CCR0A
TB0 CCR0 capture input CCI0A
TB0 CCR0 compare output Out0
5
PM_TB0CCR1A
TB0 CCR1 capture input CCI1A
TB0 CCR1 compare output Out1
6
PM_TB0CCR2A
TB0 CCR2 capture input CCI2A
TB0 CCR2 compare output Out2
7
PM_TB0CCR3A
TB0 CCR3 capture input CCI3A
TB0 CCR3 compare output Out3
8
PM_TB0CCR4A
TB0 CCR4 capture input CCI4A
TB0 CCR4 compare output Out4
9
PM_TB0CCR5A
TB0 CCR5 capture input CCI5A
TB0 CCR5 compare output Out5
10
PM_TB0CCR6A
TB0 CCR6 capture input CCI6A
TB0 CCR6 compare output Out6
3
11
12
13
14
15
16
PM_UCA1RXD
USCI_A1 UART RXD (Direction controlled by USCI – input)
PM_UCA1SOMI
USCI_A1 SPI slave out master in (direction controlled by USCI)
PM_UCA1TXD
USCI_A1 UART TXD (Direction controlled by USCI – output)
PM_UCA1SIMO
USCI_A1 SPI slave in master out (direction controlled by USCI)
PM_UCA1CLK
USCI_A1 clock input/output (direction controlled by USCI)
PM_UCB1STE
USCI_B1 SPI slave transmit enable (direction controlled by USCI)
PM_UCB1SOMI
USCI_B1 SPI slave out master in (direction controlled by USCI)
PM_UCB1SCL
USCI_B1 I2C clock (open drain and direction controlled by USCI)
PM_UCB1SIMO
USCI_B1 SPI slave in master out (direction controlled by USCI)
PM_UCB1SDA
USCI_B1 I2C data (open drain and direction controlled by USCI)
PM_UCB1CLK
USCI_B1 clock input/output (direction controlled by USCI)
PM_UCA1STE
USCI_A1 SPI slave transmit enable (direction controlled by USCI)
17
PM_CBOUT1
None
18
PM_MCLK
None
MCLK
19
PM_RTCCLK
None
RTCCLK output
20
21
22
23
24
25
26-30
48
OUTPUT PIN FUNCTION
PM_UCA0RXD
USCI_A0 UART RXD (Direction controlled by USCI – input)
PM_UCA0SOMI
USCI_A0 SPI slave out master in (direction controlled by USCI)
PM_UCA0TXD
USCI_A0 UART TXD (Direction controlled by USCI – output)
PM_UCA0SIMO
USCI_A0 SPI slave in master out (direction controlled by USCI)
PM_UCA0CLK
USCI_A0 clock input/output (direction controlled by USCI)
PM_UCB0STE
USCI_B0 SPI slave transmit enable (direction controlled by USCI)
PM_UCB0SOMI
USCI_B0 SPI slave out master in (direction controlled by USCI)
PM_UCB0SCL
USCI_B0 I2C clock (open drain and direction controlled by USCI)
PM_UCB0SIMO
USCI_B0 SPI slave in master out (direction controlled by USCI)
PM_UCB0SDA
USCI_B0 I2C data (open drain and direction controlled by USCI)
PM_UCB0CLK
USCI_B0 clock input/output (direction controlled by USCI)
PM_UCA0STE
USCI_A0 SPI slave transmit enable (direction controlled by USCI)
Reserved
Detailed Description
Comparator_B output
None
DVSS
Copyright © 2010–2020, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5310 MSP430F5309 MSP430F5308 MSP430F5304
MSP430F5310, MSP430F5309, MSP430F5308, MSP430F5304
www.ti.com
SLAS677G – SEPTEMBER 2010 – REVISED MAY 2020
Table 6-6. Port Mapping Mnemonics and Functions (continued)
VALUE
31 (0FFh) (1)
(1)
PxMAPy MNEMONIC
INPUT PIN FUNCTION
OUTPUT PIN FUNCTION
Disables the output driver as well as the input Schmitt-trigger to prevent
parasitic cross currents when applying analog signals.
PM_ANALOG
The value of the PM_ANALOG mnemonic is set to 0FFh. The port mapping registers are 5 bits wide, and the upper bits are ignored,
which results in a read value of 31.
Table 6-7. Default Mapping
PIN
6.9.3
PxMAPy MNEMONIC
INPUT PIN FUNCTION
OUTPUT PIN FUNCTION
P4.0/P4MAP0
PM_UCB1STE/PM_UCA1CLK
USCI_B1 SPI slave transmit enable (direction controlled by USCI)
USCI_A1 clock input/output (direction controlled by USCI)
P4.1/P4MAP1
PM_UCB1SIMO/PM_UCB1SDA
USCI_B1 SPI slave in master out (direction controlled by USCI)
USCI_B1 I2C data (open drain and direction controlled by USCI)
P4.2/P4MAP2
PM_UCB1SOMI/PM_UCB1SCL
USCI_B1 SPI slave out master in (direction controlled by USCI)
USCI_B1 I2C clock (open drain and direction controlled by USCI)
P4.3/P4MAP3
PM_UCB1CLK/PM_UCA1STE
USCI_A1 SPI slave transmit enable (direction controlled by USCI)
USCI_B1 clock input/output (direction controlled by USCI)
P4.4/P4MAP4
PM_UCA1TXD/PM_UCA1SIMO
USCI_A1 UART TXD (Direction controlled by USCI – output)
USCI_A1 SPI slave in master out (direction controlled by USCI)
P4.5/P4MAP5
PM_UCA1RXD/PM_UCA1SOMI
USCI_A1 UART RXD (Direction controlled by USCI – input)
USCI_A1 SPI slave out master in (direction controlled by USCI)
P4.6/P4MAP6
PM_NONE
None
DVSS
P4.7/P4MAP7
PM_NONE
None
DVSS
Oscillator and System Clock (Link to User's Guide)
The clock system is supported by the Unified Clock System (UCS) module that includes support for a 32kHz watch crystal oscillator (XT1 LF mode; XT1 HF mode not supported), an internal very low-power lowfrequency oscillator (VLO), an internal trimmed low-frequency oscillator (REFO), an integrated internal
digitally controlled oscillator (DCO), and a high-frequency crystal oscillator (XT2). The UCS module is
designed to meet the requirements of both low system cost and low power consumption. The UCS module
features digital frequency locked loop (FLL) hardware that, in conjunction with a digital modulator,
stabilizes the DCO frequency to a programmable multiple of the selected FLL reference frequency. The
internal DCO provides a fast turnon clock source and stabilizes in less than 5 µs. The UCS module
provides the following clock signals:
• Auxiliary clock (ACLK), sourced from a 32 kHz watch crystal (XT1), a high-frequency crystal (XT2), the
internal low-frequency oscillator (VLO), the trimmed low-frequency oscillator (REFO), or the internal
digitally controlled oscillator (DCO).
• Main clock (MCLK), the system clock used by the CPU. MCLK can be sourced by same sources made
available to ACLK.
• Sub-Main clock (SMCLK), the subsystem clock used by the peripheral modules. SMCLK can be
sourced by same sources made available to ACLK.
• ACLK/n, the buffered output of ACLK, ACLK/2, ACLK/4, ACLK/8, ACLK/16, ACLK/32.
Detailed Description
Submit Documentation Feedback
Product Folder Links: MSP430F5310 MSP430F5309 MSP430F5308 MSP430F5304
Copyright © 2010–2020, Texas Instruments Incorporated
49
MSP430F5310, MSP430F5309, MSP430F5308, MSP430F5304
SLAS677G – SEPTEMBER 2010 – REVISED MAY 2020
6.9.4
www.ti.com
Power-Management Module (PMM) (Link to User's Guide)
The PMM includes an integrated voltage regulator that supplies the core voltage to the device and
contains programmable output levels to provide for power optimization. The PMM also includes supply
voltage supervisor (SVS) and supply voltage monitoring (SVM) circuitry, and brownout protection. The
brownout circuit provides the proper internal reset signal to the device during power on and power off. The
SVS and SVM circuitry detects if the supply voltage drops below a user-selectable level and supports both
supply voltage supervision (the device is automatically reset) and supply voltage monitoring (the device is
not automatically reset). SVS and SVM circuitry is available on the primary supply and core supply.
6.9.5
Hardware Multiplier (Link to User's Guide)
The multiplication operation is supported by a dedicated peripheral module. The module performs
operations with 32-, 24-, 16-, and 8-bit operands. The module supports signed and unsigned multiplication
as well as signed and unsigned multiply-and-accumulate operations.
6.9.6
Real-Time Clock (RTC_A) (Link to User's Guide)
The RTC_A module can be used as a general-purpose 32-bit counter (counter mode) or as an integrated
real-time clock (RTC) (calendar mode). In counter mode, the RTC_A also includes two independent 8-bit
timers that can be cascaded to form a 16-bit timer/counter. Both timers can be read and written by
software. Calendar mode integrates an internal calendar which compensates for months with less than
31 days and includes leap year correction. The RTC_A also supports flexible alarm functions and offsetcalibration hardware.
6.9.7
Watchdog Timer (WDT_A) (Link to User's Guide)
The primary function of the WDT_A module is to perform a controlled system restart after a software
problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog function
is not needed in an application, the module can be configured as an interval timer and can generate
interrupts at selected time intervals.
50
Detailed Description
Copyright © 2010–2020, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5310 MSP430F5309 MSP430F5308 MSP430F5304
MSP430F5310, MSP430F5309, MSP430F5308, MSP430F5304
www.ti.com
6.9.8
SLAS677G – SEPTEMBER 2010 – REVISED MAY 2020
System Module (SYS) (Link to User's Guide)
The SYS module handles many of the system functions within the device. These include power-on reset
and power-up clear handling, NMI source selection and management, reset interrupt vector generators
(see Table 6-8), bootloader entry mechanisms, and configuration management (device descriptors). The
SYS module also includes a data exchange mechanism through JTAG called a JTAG mailbox that can be
used in the application.
Table 6-8. System Module Interrupt Vector Registers
INTERRUPT VECTOR REGISTER
SYSRSTIV, System Reset
SYSSNIV, System NMI
SYSUNIV, User NMI
ADDRESS
019Eh
019Ch
019Ah
INTERRUPT EVENT
VALUE
No interrupt pending
00h
Brownout (BOR)
02h
RST/NMI (POR)
04h
PMMSWBOR (BOR)
06h
Wake up from LPMx.5
08h
Security violation (BOR)
0Ah
SVSL (POR)
0Ch
SVSH (POR)
0Eh
SVML_OVP (POR)
10h
SVMH_OVP (POR)
12h
PMMSWPOR (POR)
14h
WDT time-out (PUC)
16h
WDT password violation (PUC)
18h
KEYV flash password violation (PUC)
1Ah
Reserved
1Ch
Peripheral area fetch (PUC)
1Eh
PMM password violation (PUC)
20h
Reserved
22h to 3Eh
No interrupt pending
00h
SVMLIFG
02h
SVMHIFG
04h
SVSMLDLYIFG
06h
SVSMHDLYIFG
08h
VMAIFG
0Ah
JMBINIFG
0Ch
JMBOUTIFG
0Eh
SVMLVLRIFG
10h
SVMHVLRIFG
12h
Reserved
14h to 1Eh
No interrupt pending
00h
NMIIFG
02h
OFIFG
04h
ACCVIFG
06h
Reserved
08h
Reserved
0Ah to 1Eh
PRIORITY
Highest
Lowest
Highest
Lowest
Highest
Lowest
Detailed Description
Submit Documentation Feedback
Product Folder Links: MSP430F5310 MSP430F5309 MSP430F5308 MSP430F5304
Copyright © 2010–2020, Texas Instruments Incorporated
51
MSP430F5310, MSP430F5309, MSP430F5308, MSP430F5304
SLAS677G – SEPTEMBER 2010 – REVISED MAY 2020
6.9.9
www.ti.com
DMA Controller (Link to User's Guide)
The DMA controller allows movement of data from one memory address to another without CPU
intervention. For example, the DMA controller can be used to move data from the ADC10_A conversion
register to RAM. Using the DMA controller can increase the throughput of peripheral modules. The DMA
controller reduces system power consumption by allowing the CPU to remain in sleep mode, without
having to awaken to move data to or from a peripheral. Table 6-9 lists the triggers for DMA transfers.
Table 6-9. DMA Trigger Assignments
TRIGGER
(1)
(2)
52
(1)
CHANNEL
0
1
2
0
DMAREQ
DMAREQ
DMAREQ
1
TA0CCR0 CCIFG
TA0CCR0 CCIFG
TA0CCR0 CCIFG
2
TA0CCR2 CCIFG
TA0CCR2 CCIFG
TA0CCR2 CCIFG
3
TA1CCR0 CCIFG
TA1CCR0 CCIFG
TA1CCR0 CCIFG
4
TA1CCR2 CCIFG
TA1CCR2 CCIFG
TA1CCR2 CCIFG
5
TA2CCR0 CCIFG
TA2CCR0 CCIFG
TA2CCR0 CCIFG
6
TA2CCR2 CCIFG
TA2CCR2 CCIFG
TA2CCR2 CCIFG
7
TB0CCR0 CCIFG
TB0CCR0 CCIFG
TB0CCR0 CCIFG
8
TB0CCR2 CCIFG
TB0CCR2 CCIFG
TB0CCR2 CCIFG
9
Reserved
Reserved
Reserved
10
Reserved
Reserved
Reserved
11
Reserved
Reserved
Reserved
12
Reserved
Reserved
Reserved
13
Reserved
Reserved
Reserved
14
Reserved
Reserved
Reserved
15
Reserved
Reserved
Reserved
16
UCA0RXIFG
UCA0RXIFG
UCA0RXIFG
17
UCA0TXIFG
UCA0TXIFG
UCA0TXIFG
18
UCB0RXIFG
UCB0RXIFG
UCB0RXIFG
19
UCB0TXIFG
UCB0TXIFG
UCB0TXIFG
20
UCA1RXIFG
UCA1RXIFG
UCA1RXIFG
21
UCA1TXIFG
UCA1TXIFG
UCA1TXIFG
22
UCB1RXIFG
UCB1RXIFG
UCB1RXIFG
23
UCB1TXIFG
UCB1TXIFG
UCB1TXIFG
(2)
ADC10IFG0
(2)
24
ADC10IFG0
ADC10IFG0
25
Reserved
Reserved
Reserved
26
Reserved
Reserved
Reserved
27
reserved
reserved
reserved
(2)
28
reserved
reserved
reserved
29
MPY ready
MPY ready
MPY ready
30
DMA2IFG
DMA0IFG
DMA1IFG
31
DMAE0
DMAE0
DMAE0
If a reserved trigger source is selected, no trigger is generated.
Only on devices with ADC. Reserved on devices without ADC.
Detailed Description
Copyright © 2010–2020, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5310 MSP430F5309 MSP430F5308 MSP430F5304
MSP430F5310, MSP430F5309, MSP430F5308, MSP430F5304
www.ti.com
SLAS677G – SEPTEMBER 2010 – REVISED MAY 2020
6.9.10 Universal Serial Communication Interface (USCI) (Links to User's Guide: UART
Mode, SPI Mode, I2C Mode)
The USCI modules are used for serial data communication. The USCI module supports synchronous
communication protocols such as SPI (3- or 4-pin) and I2C, and asynchronous communication protocols
such as UART, enhanced UART with automatic baud-rate detection, and IrDA. Each USCI module
contains two portions, A and B.
The USCI_An module provides support for SPI (3- or 4-pin), UART, enhanced UART, or IrDA.
The USCI_Bn module provides support for SPI (3- or 4-pin) or I2C.
The MSP430F53xx series includes one or two complete USCI modules.
6.9.11 TA0 (Link to User's Guide)
TA0 is a 16-bit timer/counter (Timer_A type) with five capture/compare registers. TA0 can support multiple
capture/compares, PWM outputs, and interval timing (see Table 6-10). TA0 also has extensive interrupt
capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the
capture/compare registers.
Table 6-10. TA0 Signal Connections
INPUT PIN NUMBER
RGC, ZXH,
ZQE
RGZ, PT
DEVICE
INPUT
SIGNAL
MODULE
INPUT
SIGNAL
18, H2-P1.0
14-P1.0
TA0CLK
TACLK
ACLK
(internal)
ACLK
SMCLK
(internal)
SMCLK
18, H2-P1.0
14-P1.0
TA0CLK
TACLK
19, H3-P1.1
15-P1.1
TA0.0
CCI0A
DVSS
CCI0B
DVSS
GND
20, J3-P1.2
21, G4-P1.3
22, H4-P1.4
23, J4-P1.5
(1)
16-P1.2
17-P1.3
18-P1.4
19-P1.5
DVCC
VCC
TA0.1
CCI1A
MODULE
BLOCK
MODULE
OUTPUT
SIGNAL
DEVICE
OUTPUT
SIGNAL
Timer
NA
NA
CCR0
TA0
OUTPUT PIN NUMBER
RGC, ZXH, ZQE
RGZ, PT
19, H3-P1.1
15-P1.1
TA0.0
20, J3-P1.2
16-P1.2
ADC10 (internal)
ADC10 (internal)
ADC10SHSx =
{1}
ADC10SHSx =
{1}
21, G4-P1.3
17-P1.3
22, H4-P1.4
18-P1.4
23, J4-P1.5
19-P1.5
(1)
CBOUT
(internal)
CCI1B
DVSS
GND
DVCC
VCC
TA0.2
CCI2A
ACLK
(internal)
CCI2B
DVSS
GND
DVCC
VCC
TA0.3
CCI3A
DVSS
CCI3B
DVSS
GND
DVCC
VCC
TA0.4
CCI4A
DVSS
CCI4B
DVSS
GND
DVCC
VCC
CCR1
CCR2
CCR3
CCR4
TA1
TA2
TA3
TA4
TA0.1
(1)
TA0.2
TA0.3
TA0.4
Only on devices with ADC.
Detailed Description
Submit Documentation Feedback
Product Folder Links: MSP430F5310 MSP430F5309 MSP430F5308 MSP430F5304
Copyright © 2010–2020, Texas Instruments Incorporated
53
MSP430F5310, MSP430F5309, MSP430F5308, MSP430F5304
SLAS677G – SEPTEMBER 2010 – REVISED MAY 2020
www.ti.com
6.9.12 TA1 (Link to User's Guide)
TA1 is a 16-bit timer/counter (Timer_A type) with three capture/compare registers. TA1 can support
multiple capture/compares, PWM outputs, and interval timing (see Table 6-11). TA1 also has extensive
interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each
of the capture/compare registers.
Table 6-11. TA1 Signal Connections
INPUT PIN NUMBER
RGC, ZXH,
ZQE
24, G5-P1.6
RGZ, PT
DEVICE
INPUT
SIGNAL
MODULE
INPUT
SIGNAL
20-P1.6
TA1CLK
TACLK
ACLK
(internal)
ACLK
SMCLK
(internal)
SMCLK
24, G5-P1.6
20-P1.6
TA1CLK
TACLK
25, H5-P1.7
21-P1.7
TA1.0
CCI0A
DVSS
CCI0B
DVSS
GND
DVCC
VCC
26, J5-P2.0
22-P2.0
27, G6-P2.1
54
Detailed Description
TA1.1
CCI1A
CBOUT
(internal)
CCI1B
DVSS
GND
DVCC
VCC
TA1.2
CCI2A
ACLK
(internal)
CCI2B
DVSS
GND
DVCC
VCC
MODULE
BLOCK
MODULE
OUTPUT
SIGNAL
DEVICE
OUTPUT
SIGNAL
Timer
NA
NA
CCR0
CCR1
TA0
TA1
OUTPUT PIN NUMBER
RGC, ZXH,
ZQE
RGZ, PT
25, H5-P1.7
21-P1.7
26, J5-P2.0
22-P2.0
TA1.0
TA1.1
27, G6-P2.1
CCR2
TA2
TA1.2
Copyright © 2010–2020, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5310 MSP430F5309 MSP430F5308 MSP430F5304
MSP430F5310, MSP430F5309, MSP430F5308, MSP430F5304
www.ti.com
SLAS677G – SEPTEMBER 2010 – REVISED MAY 2020
6.9.13 TA2 (Link to User's Guide)
TA2 is a 16-bit timer/counter (Timer_A type) with three capture/compare registers. TA2 can support
multiple capture/compares, PWM outputs, and interval timing (see Table 6-12). TA2 also has extensive
interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each
of the capture/compare registers.
Table 6-12. TA2 Signal Connections
INPUT PIN NUMBER
DEVICE
INPUT
SIGNAL
MODULE
INPUT
SIGNAL
TA2CLK
TACLK
ACLK
(internal)
ACLK
SMCLK
(internal)
SMCLK
28, J6-P2.2
TA2CLK
TACLK
29, H6-P2.3
TA2.0
CCI0A
DVSS
CCI0B
DVSS
GND
DVCC
VCC
RGC, ZXH,
ZQE
28, J6-P2.2
30, J7-P2.4
31, J8-P2.5
RGZ, PT
TA2.1
CCI1A
CBOUT
(internal)
CCI1B
DVSS
GND
DVCC
VCC
TA2.2
CCI2A
ACLK
(internal)
CCI2B
DVSS
GND
DVCC
VCC
MODULE
BLOCK
MODULE
OUTPUT
SIGNAL
DEVICE
OUTPUT
SIGNAL
Timer
NA
NA
OUTPUT PIN NUMBER
RGC, ZXH,
ZQE
RGZ, PT
29, H6-P2.3
CCR0
TA0
TA2.0
30, J7-P2.4
CCR1
TA1
TA2.1
31, J8-P2.5
CCR2
TA2
TA2.2
Detailed Description
Submit Documentation Feedback
Product Folder Links: MSP430F5310 MSP430F5309 MSP430F5308 MSP430F5304
Copyright © 2010–2020, Texas Instruments Incorporated
55
MSP430F5310, MSP430F5309, MSP430F5308, MSP430F5304
SLAS677G – SEPTEMBER 2010 – REVISED MAY 2020
www.ti.com
6.9.14 TB0 (Link to User's Guide)
TB0 is a 16-bit timer/counter (Timer_B type) with seven capture/compare registers. TB0 can support
multiple capture/compares, PWM outputs, and interval timing (see Table 6-13). TB0 also has extensive
interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each
of the capture/compare registers.
Table 6-13. TB0 Signal Connections
INPUT PIN NUMBER
RGC, ZXH,
ZQE (1)
(1)
(2)
56
RGZ, PT
(1)
DEVICE
INPUT
SIGNAL
MODULE
INPUT
SIGNAL
TB0CLK
TBCLK
ACLK
(internal)
ACLK
SMCLK
(internal)
SMCLK
TB0CLK
TBCLK
TB0.0
CCI0A
TB0.0
CCI0B
DVSS
GND
DVCC
VCC
TB0.1
CCI1A
CBOUT
(internal)
CCI1B
DVSS
GND
DVCC
VCC
TB0.2
CCI2A
TB0.2
CCI2B
DVSS
GND
DVCC
VCC
TB0.3
CCI3A
TB0.3
CCI3B
DVSS
GND
DVCC
VCC
TB0.4
CCI4A
TB0.4
CCI4B
DVSS
GND
DVCC
VCC
TB0.5
CCI5A
TB0.5
CCI5B
DVSS
GND
DVCC
VCC
TB0.6
CCI6A
ACLK
(internal)
CCI6B
DVSS
GND
DVCC
VCC
MODULE
BLOCK
MODULE
OUTPUT
SIGNAL
DEVICE
OUTPUT
SIGNAL
Timer
NA
NA
CCR0
TB0
TB0.0
CCR1
TB1
TB0.1
CCR2
TB2
TB0.2
CCR3
TB3
TB0.3
CCR4
TB4
TB0.4
CCR5
TB5
TB0.5
CCR6
TB6
TB0.6
OUTPUT PIN NUMBER
RGC, ZXH,
ZQE (1)
RGZ, PT (1)
ADC10
(internal) (2)
ADC10SHSx =
{2}
ADC10
(internal) (2)
ADC10SHSx =
{2}
ADC10 (internal)
ADC10SHSx =
{3}
ADC10 (internal)
ADC10SHSx =
{3}
Timer functions selectable by the port mapping controller.
Only on devices with ADC.
Detailed Description
Copyright © 2010–2020, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5310 MSP430F5309 MSP430F5308 MSP430F5304
MSP430F5310, MSP430F5309, MSP430F5308, MSP430F5304
www.ti.com
SLAS677G – SEPTEMBER 2010 – REVISED MAY 2020
6.9.15 Comparator_B (Link to User's Guide)
The primary function of the Comparator_B module is to support precision slope analog-to-digital
conversions, battery voltage supervision, and monitoring of external analog signals.
6.9.16 ADC10_A (Link to User's Guide)
The ADC10_A module supports fast 10-bit analog-to-digital conversions. The module implements a 10-bit
SAR core, sample select control, reference generator, and a conversion result buffer. A window
comparator with lower and upper limits allows CPU-independent result monitoring with three window
comparator interrupt flags.
6.9.17 CRC16 (Link to User's Guide)
The CRC16 module produces a signature based on a sequence of entered data values and can be used
for data checking purposes. The CRC16 module signature is based on the CRC-CCITT standard.
6.9.18 Reference (REF) Module Voltage Reference (Link to User's Guide)
The REF generates all critical reference voltages that can be used by the various analog peripherals in the
device.
6.9.19 LDO and Port U
The integrated 3.3-V power system incorporates an integrated 3.3-V LDO regulator that allows the entire
microcontroller to be powered from nominal 5-V LDOI when it is made available for the system.
Alternatively, the power system can supply power only to other components within the system, or it can be
unused altogether. The Port U Pins (PU.0 and PU.1) function as general-purpose high-current I/O pins.
These pins must be configured together as either both inputs or both outputs. Port U is supplied by the
LDOO rail. If the 3.3-V LDO is not being used in the system (disabled), the LDOO pin can be supplied
externally.
6.9.20 Embedded Emulation Module (EEM) (S Version) (Link to User's Guide)
The EEM supports real-time in-system debugging. The S version of the EEM has the following features:
• Three hardware triggers or breakpoints on memory access
• One hardware trigger or breakpoint on CPU register write access
• Up to four hardware triggers can be combined to form complex triggers or breakpoints
• One cycle counter
• Clock control on module level
Detailed Description
Submit Documentation Feedback
Product Folder Links: MSP430F5310 MSP430F5309 MSP430F5308 MSP430F5304
Copyright © 2010–2020, Texas Instruments Incorporated
57
MSP430F5310, MSP430F5309, MSP430F5308, MSP430F5304
SLAS677G – SEPTEMBER 2010 – REVISED MAY 2020
www.ti.com
6.10 Peripheral File Map
Table 6-14 lists the register base address for all supported peripherals.
Table 6-14. Peripherals
58
MODULE NAME
BASE ADDRESS
OFFSET ADDRESS
RANGE
Special Functions (see Table 6-15)
0100h
000h to 01Fh
PMM (see Table 6-16)
0120h
000h to 01Fh
Flash Control (see Table 6-17)
0140h
000h to 00Fh
CRC16 (see Table 6-18)
0150h
000h to 007h
RAM Control (see Table 6-19)
0158h
000h to 001h
Watchdog (see Table 6-20)
015Ch
000h to 001h
UCS (see Table 6-21)
0160h
000h to 01Fh
SYS (see Table 6-22)
0180h
000h to 01Fh
Shared Reference (see Table 6-23)
01B0h
000h to 001h
Port Mapping Control (see Table 6-24)
01C0h
000h to 002h
Port Mapping Port P4 (see Table 6-24)
01E0h
000h to 007h
Port P1, P2 (see Table 6-25)
0200h
000h to 01Fh
Port P3, P4 (see Table 6-26)
0220h
000h to 00Bh
Port P5, P6 (see Table 6-27)
0240h
000h to 00Bh
Port PJ (see Table 6-28)
0320h
000h to 01Fh
TA0 (see Table 6-29)
0340h
000h to 02Eh
TA1 (see Table 6-30)
0380h
000h to 02Eh
TB0 (see Table 6-31)
03C0h
000h to 02Eh
TA2 (see Table 6-32)
0400h
000h to 02Eh
Real-Time Clock (RTC_A) (see Table 6-33)
04A0h
000h to 01Bh
32-Bit Hardware Multiplier (see Table 6-34)
04C0h
000h to 02Fh
DMA General Control (see Table 6-35)
0500h
000h to 00Fh
DMA Channel 0 (see Table 6-35)
0510h
000h to 00Ah
DMA Channel 1 (see Table 6-35)
0520h
000h to 00Ah
DMA Channel 2 (see Table 6-35)
0530h
000h to 00Ah
USCI_A0 (see Table 6-36)
05C0h
000h to 01Fh
USCI_B0 (see Table 6-37)
05E0h
000h to 01Fh
USCI_A1 (see Table 6-38)
0600h
000h to 01Fh
USCI_B1 (see Table 6-39)
0620h
000h to 01Fh
ADC10_A (see Table 6-40)
0740h
000h to 01Fh
Comparator_B (see Table 6-41)
08C0h
000h to 00Fh
LDO-PWR and Port U Configuration
(see Table 6-42)
0900h
000h to 014h
Detailed Description
Copyright © 2010–2020, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5310 MSP430F5309 MSP430F5308 MSP430F5304
MSP430F5310, MSP430F5309, MSP430F5308, MSP430F5304
www.ti.com
SLAS677G – SEPTEMBER 2010 – REVISED MAY 2020
Table 6-15. Special Function Registers (Base Address: 0100h)
REGISTER DESCRIPTION
REGISTER
OFFSET
SFR interrupt enable
SFRIE1
00h
SFR interrupt flag
SFRIFG1
02h
SFR reset pin control
SFRRPCR
04h
Table 6-16. PMM Registers (Base Address: 0120h)
REGISTER DESCRIPTION
REGISTER
OFFSET
PMM control 0
PMMCTL0
00h
PMM control 1
PMMCTL1
02h
SVS high-side control
SVSMHCTL
04h
SVS low-side control
SVSMLCTL
06h
PMM interrupt flags
PMMIFG
0Ch
PMM interrupt enable
PMMIE
0Eh
PMM power mode 5 control
PM5CTL0
10h
Table 6-17. Flash Control Registers (Base Address: 0140h)
REGISTER DESCRIPTION
REGISTER
OFFSET
Flash control 1
FCTL1
00h
Flash control 3
FCTL3
04h
Flash control 4
FCTL4
06h
Table 6-18. CRC16 Registers (Base Address: 0150h)
REGISTER DESCRIPTION
REGISTER
OFFSET
CRC data input
CRC16DI
00h
CRC data input reverse byte
CRCDIRB
02h
CRC initialization and result
CRCINIRES
04h
CRC result reverse byte
CRCRESR
06h
Table 6-19. RAM Control Registers (Base Address: 0158h)
REGISTER DESCRIPTION
RAM control 0
REGISTER
RCCTL0
OFFSET
00h
Table 6-20. Watchdog Registers (Base Address: 015Ch)
REGISTER DESCRIPTION
Watchdog timer control
REGISTER
WDTCTL
OFFSET
00h
Table 6-21. UCS Registers (Base Address: 0160h)
REGISTER DESCRIPTION
REGISTER
OFFSET
UCS control 0
UCSCTL0
00h
UCS control 1
UCSCTL1
02h
UCS control 2
UCSCTL2
04h
UCS control 3
UCSCTL3
06h
UCS control 4
UCSCTL4
08h
UCS control 5
UCSCTL5
0Ah
UCS control 6
UCSCTL6
0Ch
UCS control 7
UCSCTL7
0Eh
Detailed Description
Submit Documentation Feedback
Product Folder Links: MSP430F5310 MSP430F5309 MSP430F5308 MSP430F5304
Copyright © 2010–2020, Texas Instruments Incorporated
59
MSP430F5310, MSP430F5309, MSP430F5308, MSP430F5304
SLAS677G – SEPTEMBER 2010 – REVISED MAY 2020
www.ti.com
Table 6-21. UCS Registers (Base Address: 0160h) (continued)
REGISTER DESCRIPTION
UCS control 8
REGISTER
UCSCTL8
OFFSET
10h
Table 6-22. SYS Registers (Base Address: 0180h)
REGISTER DESCRIPTION
REGISTER
OFFSET
System control
SYSCTL
00h
Bootloader configuration area
SYSBSLC
02h
JTAG mailbox control
SYSJMBC
06h
JTAG mailbox input 0
SYSJMBI0
08h
JTAG mailbox input 1
SYSJMBI1
0Ah
JTAG mailbox output 0
SYSJMBO0
0Ch
JTAG mailbox output 1
SYSJMBO1
0Eh
Bus error vector generator
SYSBERRIV
18h
User NMI vector generator
SYSUNIV
1Ah
System NMI vector generator
SYSSNIV
1Ch
Reset vector generator
SYSRSTIV
1Eh
Table 6-23. Shared Reference Registers (Base Address: 01B0h)
REGISTER DESCRIPTION
Shared reference control
REGISTER
REFCTL
OFFSET
00h
Table 6-24. Port Mapping Registers
(Base Address of Port Mapping Control: 01C0h, Port P4: 01E0h)
REGISTER DESCRIPTION
REGISTER
OFFSET
Port mapping password
PMAPPWD
00h
Port mapping control
PMAPCTL
02h
Port P4.0 mapping
P4MAP0
00h
Port P4.1 mapping
P4MAP1
01h
Port P4.2 mapping
P4MAP2
02h
Port P4.3 mapping
P4MAP3
03h
Port P4.4 mapping
P4MAP4
04h
Port P4.5 mapping
P4MAP5
05h
Port P4.6 mapping
P4MAP6
06h
Port P4.7 mapping
P4MAP7
07h
60
Detailed Description
Copyright © 2010–2020, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5310 MSP430F5309 MSP430F5308 MSP430F5304
MSP430F5310, MSP430F5309, MSP430F5308, MSP430F5304
www.ti.com
SLAS677G – SEPTEMBER 2010 – REVISED MAY 2020
Table 6-25. Port P1, P2 Registers (Base Address: 0200h)
REGISTER DESCRIPTION
REGISTER
OFFSET
Port P1 input
P1IN
00h
Port P1 output
P1OUT
02h
Port P1 direction
P1DIR
04h
Port P1 resistor enable
P1REN
06h
Port P1 drive strength
P1DS
08h
Port P1 selection
P1SEL
0Ah
Port P1 interrupt vector word
P1IV
0Eh
Port P1 interrupt edge select
P1IES
18h
Port P1 interrupt enable
P1IE
1Ah
Port P1 interrupt flag
P1IFG
1Ch
Port P2 input
P2IN
01h
Port P2 output
P2OUT
03h
Port P2 direction
P2DIR
05h
Port P2 resistor enable
P2REN
07h
Port P2 drive strength
P2DS
09h
Port P2 selection
P2SEL
0Bh
Port P2 interrupt vector word
P2IV
1Eh
Port P2 interrupt edge select
P2IES
19h
Port P2 interrupt enable
P2IE
1Bh
Port P2 interrupt flag
P2IFG
1Dh
Table 6-26. Port P3, P4 Registers (Base Address: 0220h)
REGISTER DESCRIPTION
REGISTER
OFFSET
Port P3 input
P3IN
00h
Port P3 output
P3OUT
02h
Port P3 direction
P3DIR
04h
Port P3 resistor enable
P3REN
06h
Port P3 drive strength
P3DS
08h
Port P3 selection
P3SEL
0Ah
Port P4 input
P4IN
01h
Port P4 output
P4OUT
03h
Port P4 direction
P4DIR
05h
Port P4 resistor enable
P4REN
07h
Port P4 drive strength
P4DS
09h
Port P4 selection
P4SEL
0Bh
Detailed Description
Submit Documentation Feedback
Product Folder Links: MSP430F5310 MSP430F5309 MSP430F5308 MSP430F5304
Copyright © 2010–2020, Texas Instruments Incorporated
61
MSP430F5310, MSP430F5309, MSP430F5308, MSP430F5304
SLAS677G – SEPTEMBER 2010 – REVISED MAY 2020
www.ti.com
Table 6-27. Port P5, P6 Registers (Base Address: 0240h)
REGISTER DESCRIPTION
REGISTER
OFFSET
Port P5 input
P5IN
00h
Port P5 output
P5OUT
02h
Port P5 direction
P5DIR
04h
Port P5 resistor enable
P5REN
06h
Port P5 drive strength
P5DS
08h
Port P5 selection
P5SEL
0Ah
Port P6 input
P6IN
01h
Port P6 output
P6OUT
03h
Port P6 direction
P6DIR
05h
Port P6 resistor enable
P6REN
07h
Port P6 drive strength
P6DS
09h
Port P6 selection
P6SEL
0Bh
Table 6-28. Port J Registers (Base Address: 0320h)
REGISTER DESCRIPTION
REGISTER
OFFSET
Port PJ input
PJIN
00h
Port PJ output
PJOUT
02h
Port PJ direction
PJDIR
04h
Port PJ resistor enable
PJREN
06h
Port PJ drive strength
PJDS
08h
Table 6-29. TA0 Registers (Base Address: 0340h)
REGISTER DESCRIPTION
REGISTER
OFFSET
TA0 control
TA0CTL
00h
Capture/compare control 0
TA0CCTL0
02h
Capture/compare control 1
TA0CCTL1
04h
Capture/compare control 2
TA0CCTL2
06h
Capture/compare control 3
TA0CCTL3
08h
Capture/compare control 4
TA0CCTL4
0Ah
TA0 counter
TA0R
10h
Capture/compare 0
TA0CCR0
12h
Capture/compare 1
TA0CCR1
14h
Capture/compare 2
TA0CCR2
16h
Capture/compare 3
TA0CCR3
18h
Capture/compare 4
TA0CCR4
1Ah
TA0 expansion 0
TA0EX0
20h
TA0 interrupt vector
TA0IV
2Eh
62
Detailed Description
Copyright © 2010–2020, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5310 MSP430F5309 MSP430F5308 MSP430F5304
MSP430F5310, MSP430F5309, MSP430F5308, MSP430F5304
www.ti.com
SLAS677G – SEPTEMBER 2010 – REVISED MAY 2020
Table 6-30. TA1 Registers (Base Address: 0380h)
REGISTER DESCRIPTION
REGISTER
OFFSET
TA1 control
TA1CTL
00h
Capture/compare control 0
TA1CCTL0
02h
Capture/compare control 1
TA1CCTL1
04h
Capture/compare control 2
TA1CCTL2
06h
TA1 counter
TA1R
10h
Capture/compare 0
TA1CCR0
12h
Capture/compare 1
TA1CCR1
14h
Capture/compare 2
TA1CCR2
16h
TA1 expansion 0
TA1EX0
20h
TA1 interrupt vector
TA1IV
2Eh
Table 6-31. TB0 Registers (Base Address: 03C0h)
REGISTER DESCRIPTION
REGISTER
OFFSET
TB0 control
TB0CTL
00h
Capture/compare control 0
TB0CCTL0
02h
Capture/compare control 1
TB0CCTL1
04h
Capture/compare control 2
TB0CCTL2
06h
Capture/compare control 3
TB0CCTL3
08h
Capture/compare control 4
TB0CCTL4
0Ah
Capture/compare control 5
TB0CCTL5
0Ch
Capture/compare control 6
TB0CCTL6
0Eh
TB0 counter
TB0R
10h
Capture/compare 0
TB0CCR0
12h
Capture/compare 1
TB0CCR1
14h
Capture/compare 2
TB0CCR2
16h
Capture/compare 3
TB0CCR3
18h
Capture/compare 4
TB0CCR4
1Ah
Capture/compare 5
TB0CCR5
1Ch
Capture/compare 6
TB0CCR6
1Eh
TB0 expansion 0
TB0EX0
20h
TB0 interrupt vector
TB0IV
2Eh
Table 6-32. TA2 Registers (Base Address: 0400h)
REGISTER DESCRIPTION
REGISTER
OFFSET
TA2 control
TA2CTL
00h
Capture/compare control 0
TA2CCTL0
02h
Capture/compare control 1
TA2CCTL1
04h
Capture/compare control 2
TA2CCTL2
06h
TA2 counter
TA2R
10h
Capture/compare 0
TA2CCR0
12h
Capture/compare 1
TA2CCR1
14h
Capture/compare 2
TA2CCR2
16h
TA2 expansion 0
TA2EX0
20h
TA2 interrupt vector
TA2IV
2Eh
Detailed Description
Submit Documentation Feedback
Product Folder Links: MSP430F5310 MSP430F5309 MSP430F5308 MSP430F5304
Copyright © 2010–2020, Texas Instruments Incorporated
63
MSP430F5310, MSP430F5309, MSP430F5308, MSP430F5304
SLAS677G – SEPTEMBER 2010 – REVISED MAY 2020
www.ti.com
Table 6-33. Real-Time Clock Registers (Base Address: 04A0h)
REGISTER DESCRIPTION
REGISTER
OFFSET
RTC control 0
RTCCTL0
00h
RTC control 1
RTCCTL1
01h
RTC control 2
RTCCTL2
02h
RTC control 3
RTCCTL3
03h
RTC prescaler 0 control
RTCPS0CTL
08h
RTC prescaler 1 control
RTCPS1CTL
0Ah
RTC prescaler 0
RTCPS0
0Ch
RTC prescaler 1
RTCPS1
0Dh
RTC interrupt vector word
RTCIV
0Eh
RTC seconds/counter 1
RTCSEC/RTCNT1
10h
RTC minutes/counter 2
RTCMIN/RTCNT2
11h
RTC hours/counter 3
RTCHOUR/RTCNT3
12h
RTC day of week/counter 4
RTCDOW/RTCNT4
13h
RTC days
RTCDAY
14h
RTC month
RTCMON
15h
RTC year low
RTCYEARL
16h
RTC year high
RTCYEARH
17h
RTC alarm minutes
RTCAMIN
18h
RTC alarm hours
RTCAHOUR
19h
RTC alarm day of week
RTCADOW
1Ah
RTC alarm days
RTCADAY
1Bh
64
Detailed Description
Copyright © 2010–2020, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5310 MSP430F5309 MSP430F5308 MSP430F5304
MSP430F5310, MSP430F5309, MSP430F5308, MSP430F5304
www.ti.com
SLAS677G – SEPTEMBER 2010 – REVISED MAY 2020
Table 6-34. 32-Bit Hardware Multiplier Registers (Base Address: 04C0h)
REGISTER DESCRIPTION
REGISTER
OFFSET
16-bit operand 1 – multiply
MPY
00h
16-bit operand 1 – signed multiply
MPYS
02h
16-bit operand 1 – multiply accumulate
MAC
04h
16-bit operand 1 – signed multiply accumulate
MACS
06h
16-bit operand 2
OP2
08h
16 × 16 result low word
RESLO
0Ah
16 × 16 result high word
RESHI
0Ch
16 × 16 sum extension
SUMEXT
0Eh
32-bit operand 1 – multiply low word
MPY32L
10h
32-bit operand 1 – multiply high word
MPY32H
12h
32-bit operand 1 – signed multiply low word
MPYS32L
14h
32-bit operand 1 – signed multiply high word
MPYS32H
16h
32-bit operand 1 – multiply accumulate low word
MAC32L
18h
32-bit operand 1 – multiply accumulate high word
MAC32H
1Ah
32-bit operand 1 – signed multiply accumulate low word
MACS32L
1Ch
32-bit operand 1 – signed multiply accumulate high word
MACS32H
1Eh
32-bit operand 2 – low word
OP2L
20h
32-bit operand 2 – high word
OP2H
22h
32 × 32 result 0 – least significant word
RES0
24h
32 × 32 result 1
RES1
26h
32 × 32 result 2
RES2
28h
32 × 32 result 3 – most significant word
RES3
2Ah
MPY32 control 0
MPY32CTL0
2Ch
Detailed Description
Submit Documentation Feedback
Product Folder Links: MSP430F5310 MSP430F5309 MSP430F5308 MSP430F5304
Copyright © 2010–2020, Texas Instruments Incorporated
65
MSP430F5310, MSP430F5309, MSP430F5308, MSP430F5304
SLAS677G – SEPTEMBER 2010 – REVISED MAY 2020
www.ti.com
Table 6-35. DMA Registers (Base Address DMA General Control: 0500h,
DMA Channel 0: 0510h, DMA Channel 1: 0520h, DMA Channel 2: 0530h)
REGISTER DESCRIPTION
REGISTER
OFFSET
DMA channel 0 control
DMA0CTL
00h
DMA channel 0 source address low
DMA0SAL
02h
DMA channel 0 source address high
DMA0SAH
04h
DMA channel 0 destination address low
DMA0DAL
06h
DMA channel 0 destination address high
DMA0DAH
08h
DMA channel 0 transfer size
DMA0SZ
0Ah
DMA channel 1 control
DMA1CTL
00h
DMA channel 1 source address low
DMA1SAL
02h
DMA channel 1 source address high
DMA1SAH
04h
DMA channel 1 destination address low
DMA1DAL
06h
DMA channel 1 destination address high
DMA1DAH
08h
DMA channel 1 transfer size
DMA1SZ
0Ah
DMA channel 2 control
DMA2CTL
00h
DMA channel 2 source address low
DMA2SAL
02h
DMA channel 2 source address high
DMA2SAH
04h
DMA channel 2 destination address low
DMA2DAL
06h
DMA channel 2 destination address high
DMA2DAH
08h
DMA channel 2 transfer size
DMA2SZ
0Ah
DMA module control 0
DMACTL0
00h
DMA module control 1
DMACTL1
02h
DMA module control 2
DMACTL2
04h
DMA module control 3
DMACTL3
06h
DMA module control 4
DMACTL4
08h
DMA interrupt vector
DMAIV
0Ah
Table 6-36. USCI_A0 Registers (Base Address: 05C0h)
REGISTER DESCRIPTION
REGISTER
OFFSET
USCI control 1
UCA0CTL1
00h
USCI control 0
UCA0CTL0
01h
USCI baud rate 0
UCA0BR0
06h
USCI baud rate 1
UCA0BR1
07h
USCI modulation control
UCA0MCTL
08h
USCI status
UCA0STAT
0Ah
USCI receive buffer
UCA0RXBUF
0Ch
USCI transmit buffer
UCA0TXBUF
0Eh
USCI LIN control
UCA0ABCTL
10h
USCI IrDA transmit control
UCA0IRTCTL
12h
USCI IrDA receive control
UCA0IRRCTL
13h
USCI interrupt enable
UCA0IE
1Ch
USCI interrupt flags
UCA0IFG
1Dh
USCI interrupt vector word
UCA0IV
1Eh
66
Detailed Description
Copyright © 2010–2020, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5310 MSP430F5309 MSP430F5308 MSP430F5304
MSP430F5310, MSP430F5309, MSP430F5308, MSP430F5304
www.ti.com
SLAS677G – SEPTEMBER 2010 – REVISED MAY 2020
Table 6-37. USCI_B0 Registers (Base Address: 05E0h)
REGISTER DESCRIPTION
REGISTER
OFFSET
USCI synchronous control 1
UCB0CTL1
00h
USCI synchronous control 0
UCB0CTL0
01h
USCI synchronous bit rate 0
UCB0BR0
06h
USCI synchronous bit rate 1
UCB0BR1
07h
USCI synchronous status
UCB0STAT
0Ah
USCI synchronous receive buffer
UCB0RXBUF
0Ch
USCI synchronous transmit buffer
UCB0TXBUF
0Eh
USCI I2C own address
UCB0I2COA
10h
USCI I2C slave address
UCB0I2CSA
12h
USCI interrupt enable
UCB0IE
1Ch
USCI interrupt flags
UCB0IFG
1Dh
USCI interrupt vector word
UCB0IV
1Eh
Table 6-38. USCI_A1 Registers (Base Address: 0600h)
REGISTER DESCRIPTION
REGISTER
OFFSET
USCI control 1
UCA1CTL1
00h
USCI control 0
UCA1CTL0
01h
USCI baud rate 0
UCA1BR0
06h
USCI baud rate 1
UCA1BR1
07h
USCI modulation control
UCA1MCTL
08h
USCI status
UCA1STAT
0Ah
USCI receive buffer
UCA1RXBUF
0Ch
USCI transmit buffer
UCA1TXBUF
0Eh
USCI LIN control
UCA1ABCTL
10h
USCI IrDA transmit control
UCA1IRTCTL
12h
USCI IrDA receive control
UCA1IRRCTL
13h
USCI interrupt enable
UCA1IE
1Ch
USCI interrupt flags
UCA1IFG
1Dh
USCI interrupt vector word
UCA1IV
1Eh
Table 6-39. USCI_B1 Registers (Base Address: 0620h)
REGISTER DESCRIPTION
REGISTER
OFFSET
USCI synchronous control 1
UCB1CTL1
00h
USCI synchronous control 0
UCB1CTL0
01h
USCI synchronous bit rate 0
UCB1BR0
06h
USCI synchronous bit rate 1
UCB1BR1
07h
USCI synchronous status
UCB1STAT
0Ah
USCI synchronous receive buffer
UCB1RXBUF
0Ch
USCI synchronous transmit buffer
UCB1TXBUF
0Eh
USCI I2C own address
UCB1I2COA
10h
USCI I2C slave address
UCB1I2CSA
12h
USCI interrupt enable
UCB1IE
1Ch
USCI interrupt flags
UCB1IFG
1Dh
USCI interrupt vector word
UCB1IV
1Eh
Detailed Description
Submit Documentation Feedback
Product Folder Links: MSP430F5310 MSP430F5309 MSP430F5308 MSP430F5304
Copyright © 2010–2020, Texas Instruments Incorporated
67
MSP430F5310, MSP430F5309, MSP430F5308, MSP430F5304
SLAS677G – SEPTEMBER 2010 – REVISED MAY 2020
www.ti.com
Table 6-40. ADC10_A Registers (Base Address: 0740h)
REGISTER DESCRIPTION
REGISTER
OFFSET
ADC10_A control 0
ADC10CTL0
00h
ADC10_A control 1
ADC10CTL1
02h
ADC10_A control 2
ADC10CTL2
04h
ADC10_A window comparator low threshold
ADC10LO
06h
ADC10_A window comparator high threshold
ADC10HI
08h
ADC10_A memory control 0
ADC10MCTL0
0Ah
ADC10_A conversion memory
ADC10MEM0
12h
ADC10_A interrupt enable
ADC10IE
1Ah
ADC10_A interrupt flags
ADC10IGH
1Ch
ADC10_A interrupt vector word
ADC10IV
1Eh
Table 6-41. Comparator_B Registers (Base Address: 08C0h)
REGISTER DESCRIPTION
REGISTER
OFFSET
Comp_B control 0
CBCTL0
00h
Comp_B control 1
CBCTL1
02h
Comp_B control 2
CBCTL2
04h
Comp_B control 3
CBCTL3
06h
Comp_B interrupt
CBINT
0Ch
Comp_B interrupt vector word
CBIV
0Eh
Table 6-42. LDO and Port U Configuration Registers (Base Address: 0900h)
REGISTER DESCRIPTION
REGISTER
OFFSET
LDO key/ID
LDOKEYPID
00h
PU port control
PUCTL
04h
LDO power control
LDOPWRCTL
08h
68
Detailed Description
Copyright © 2010–2020, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5310 MSP430F5309 MSP430F5308 MSP430F5304
MSP430F5310, MSP430F5309, MSP430F5308, MSP430F5304
www.ti.com
SLAS677G – SEPTEMBER 2010 – REVISED MAY 2020
6.11 Input/Output Diagrams
6.11.1 Port P1 (P1.0 to P1.7) Input/Output With Schmitt Trigger
Figure 6-2 shows the port diagram. Table 6-43 summarizes the selection of the pin functions.
Pad Logic
P1REN.x
P1DIR.x
0
From module
1
P1OUT.x
0
From module
1
DVSS
0
DVCC
1
Direction
0: Input
1: Output
P1DS.x
0: Low drive
1: High drive
P1SEL.x
P1IN.x
EN
To module
1
P1.0/TA0CLK/ACLK
P1.1/TA0.0
P1.2/TA0.1
P1.3/TA0.2
P1.4/TA0.3
P1.5/TA0.4
P1.6/TA1CLK/CBOUT
P1.7/TA1.0
D
P1IE.x
EN
P1IRQ.x
Q
P1IFG.x
P1SEL.x
P1IES.x
Set
Interrupt
Edge
Select
Figure 6-2. Port P1 (P1.0 to P1.7) Diagram
Detailed Description
Submit Documentation Feedback
Product Folder Links: MSP430F5310 MSP430F5309 MSP430F5308 MSP430F5304
Copyright © 2010–2020, Texas Instruments Incorporated
69
MSP430F5310, MSP430F5309, MSP430F5308, MSP430F5304
SLAS677G – SEPTEMBER 2010 – REVISED MAY 2020
www.ti.com
Table 6-43. Port P1 (P1.0 to P1.7) Pin Functions
PIN NAME (P1.x)
x
P1.0/TA0CLK/ACLK
0
FUNCTION
P1DIR.x
P1SEL.x
P1.0 (I/O)
I: 0; O: 1
0
TA0CLK
0
1
ACLK
P1.1 (I/O)
P1.1/TA0.0
1
TA0.CCI0A
TA0.0
P1.2 (I/O)
P1.2/TA0.1
2
TA0.CCI1A
TA0.1
3
4
5
P1.6/TA1CLK/CBOUT
6
70
7
Detailed Description
1
1
1
I: 0; O: 1
0
0
1
0
TA0.CCI2A
0
1
TA0.2
1
1
I: 0; O: 1
0
TA0.CCI3A
0
1
TA0.3
1
1
I: 0; O: 1
0
TA0.CCI4A
0
1
TA0.4
1
1
P1.6 (I/O)
I: 0; O: 1
0
TA1CLK
0
1
CBOUT comparator B
1
1
I: 0; O: 1
0
TA1.CCI0A
0
1
TA1.0
1
1
P1.7 (I/O)
P1.7/TA1.0
0
0
1
P1.5 (I/O)
P1.5/TA0.4
1
1
P1.4 (I/O)
P1.4/TA0.3
1
I: 0; O: 1
I: 0; O: 1
P1.3 (I/O)
P1.3/TA0.2
CONTROL BITS OR SIGNALS
Copyright © 2010–2020, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5310 MSP430F5309 MSP430F5308 MSP430F5304
MSP430F5310, MSP430F5309, MSP430F5308, MSP430F5304
www.ti.com
SLAS677G – SEPTEMBER 2010 – REVISED MAY 2020
6.11.2 Port P2 (P2.0 to P2.7) Input/Output With Schmitt Trigger
Figure 6-3 shows the port diagram. Table 6-44 summarizes the selection of the pin functions.
Pad Logic
P2REN.x
P2DIR.x
0
From module
1
P2OUT.x
0
From module
1
DVSS
0
DVCC
1
Direction
0: Input
1: Output
P2DS.x
0: Low drive
1: High drive
P2SEL.x
P2IN.x
EN
To module
1
P2.0/TA1.1
P2.1/TA1.2
P2.2/TA2CLK/SMCLK
P2.3/TA2.0
P2.4/TA2.1
P2.5/TA2.2
P2.6/RTCCLK/DMAE0
P2.7/UB0STE/UCA0CLK
D
P2IE.x
EN
To module
Q
P2IFG.x
P2SEL.x
P2IES.x
Set
Interrupt
Edge
Select
Figure 6-3. Port P2 (P2.0 to P2.7) Diagram
Detailed Description
Submit Documentation Feedback
Product Folder Links: MSP430F5310 MSP430F5309 MSP430F5308 MSP430F5304
Copyright © 2010–2020, Texas Instruments Incorporated
71
MSP430F5310, MSP430F5309, MSP430F5308, MSP430F5304
SLAS677G – SEPTEMBER 2010 – REVISED MAY 2020
www.ti.com
Table 6-44. Port P2 (P2.0 to P2.7) Pin Functions
PIN NAME (P2.x)
x
FUNCTION
P2.0 (I/O)
P2.0/TA1.1
0
TA1.CCI1A
TA1.1
P2.1 (I/O)
P2.1/TA1.2
1
TA1.CCI2A
TA1.2
P2.2/TA2CLK/SMCLK
2
4
5
6
P2.7/UCB0STE/UCA0CLK
(1)
(2)
(3)
72
7
1
1
I: 0; O: 1
0
0
1
0
TA2CLK
0
1
1
1
I: 0; O: 1
0
TA2.CCI0A
0
1
TA2.0
1
1
I: 0; O: 1
0
TA2.CCI1A
0
1
TA2.1
1
1
I: 0; O: 1
0
TA2.CCI2A
0
1
TA2.2
1
1
P2.6 (I/O)
P2.6/RTCCLK/DMAE0
1
1
P2.5 (I/O)
P2.5/TA2.2
0
0
1
P2.4 (I/O)
P2.4/TA2.1
P2SEL.x
I: 0; O: 1
P2.3 (I/O)
3
P2DIR.x
I: 0; O: 1
P2.2 (I/O)
SMCLK
P2.3/TA2.0
CONTROL BITS OR SIGNALS (1)
I: 0; O: 1
0
DMAE0
0
1
RTCCLK
1
1
P2.7 (I/O)
I: 0; O: 1
0
X
1
UCB0STE/UCA0CLK
(2) (3)
X = Don't care
The pin direction is controlled by the USCI module.
UCA0CLK function takes precedence over UCB0STE function. If the pin is required as UCA0CLK input or output, USCI_B0 is forced to
3-wire SPI mode if 4-wire SPI mode is selected.
Detailed Description
Copyright © 2010–2020, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5310 MSP430F5309 MSP430F5308 MSP430F5304
MSP430F5310, MSP430F5309, MSP430F5308, MSP430F5304
www.ti.com
SLAS677G – SEPTEMBER 2010 – REVISED MAY 2020
6.11.3 Port P3 (P3.0 to P3.4) Input/Output With Schmitt Trigger
Figure 6-4 shows the port diagram. Table 6-45 summarizes the selection of the pin functions.
Pad Logic
P3REN.x
P3DIR.x
0
From module
1
P3OUT.x
0
From module
1
DVSS
0
DVCC
1
1
Direction
0: Input
1: Output
P3DS.x
0: Low drive
1: High drive
P3SEL.x
P3IN.x
P3.0/UCB0SIMO/UCB0SDA
P3.1/UCB0SOMI/UCB0SCL
P3.2/UCB0CLK/UCA0STE
P3.3/UCA0TXD/UCA0SIMO
P3.4/UCA0RXD/UCA0SOMI
EN
D
To module
Figure 6-4. Port P3 (P3.0 to P3.7) Diagram
Table 6-45. Port P3 (P3.0 to P3.7) Pin Functions
PIN NAME (P3.x)
x
P3.0/UCB0SIMO/UCB0SDA
P3.1/UCB0SOMI/UCB0SCL
P3.2/UCB0CLK/UCA0STE
0
1
2
P3.3/UCA0TXD/UCA0SIMO
3
P3.4/UCA0RXD/UCA0SOMI
4
(1)
(2)
(3)
(4)
FUNCTION
P3.0 (I/O)
UCB0SIMO/UCB0SDA
(2) (3)
P3.1 (I/O)
UCB0SOMI/UCB0SCL (2)
(3)
P3.2 (I/O)
UCB0CLK/UCA0STE
(2) (4)
P3.3 (I/O)
UCA0TXD/UCA0SIMO (2)
P3.4 (I/O)
UCA0RXD/UCA0SOMI (2)
CONTROL BITS OR SIGNALS (1)
P3DIR.x
P3SEL.x
I: 0; O: 1
0
X
1
I: 0; O: 1
0
X
1
I: 0; O: 1
0
X
1
I: 0; O: 1
0
X
1
I: 0; O: 1
0
X
1
X = Don't care
The pin direction is controlled by the USCI module.
If the I2C functionality is selected, the output drives only the logical 0 to VSS level.
UCB0CLK function takes precedence over UCA0STE function. If the pin is required as UCB0CLK input or output, USCI_A0 is forced to
3-wire SPI mode if 4-wire SPI mode is selected.
Detailed Description
Submit Documentation Feedback
Product Folder Links: MSP430F5310 MSP430F5309 MSP430F5308 MSP430F5304
Copyright © 2010–2020, Texas Instruments Incorporated
73
MSP430F5310, MSP430F5309, MSP430F5308, MSP430F5304
SLAS677G – SEPTEMBER 2010 – REVISED MAY 2020
www.ti.com
6.11.4 Port P4 (P4.0 to P4.7) Input/Output With Schmitt Trigger
Figure 6-5 shows the port diagram. Table 6-46 summarizes the selection of the pin functions.
Pad Logic
P4REN.x
P4DIR.x
0
From Port Mapping Control
1
P4OUT.x
0
From Port Mapping Control
1
DVSS
0
DVCC
1
1
Direction
0: Input
1: Output
P4.0/P4MAP0
P4.1/P4MAP1
P4.2/P4MAP2
P4.3/P4MAP3
P4.4/P4MAP4
P4.5/P4MAP5
P4.6/P4MAP6
P4.7/P4MAP7
P4DS.x
0: Low drive
1: High drive
P4SEL.x
P4IN.x
EN
D
To Port Mapping Control
Figure 6-5. Port P4 (P4.0 to P4.7) Diagram
Table 6-46. Port P4 (P4.0 to P4.7) Pin Functions
PIN NAME (P4.x)
x
P4.0/P4MAP0
0
P4.1/P4MAP1
1
P4.2/P4MAP2
2
P4.3/P4MAP3
3
P4.4/P4MAP4
4
P4.5/P4MAP5
5
P4.6/P4MAP6
6
P4.7/P4MAP7
(1)
74
7
FUNCTION
P4.0 (I/O)
Mapped secondary digital function
P4.1 (I/O)
Mapped secondary digital function
P4.2 (I/O)
Mapped secondary digital function
P4.3 (I/O)
Mapped secondary digital function
P4.4 (I/O)
Mapped secondary digital function
P4.5 (I/O)
Mapped secondary digital function
P4.6 (I/O)
Mapped secondary digital function
P4.7 (I/O)
Mapped secondary digital function
CONTROL BITS OR SIGNALS
P4DIR.x (1)
P4SEL.x
I: 0; O: 1
0
X
X
1
≤ 30
I: 0; O: 1
0
X
≤ 30
P4MAPx
X
1
I: 0; O: 1
0
X
X
1
≤ 30
I: 0; O: 1
0
X
X
1
≤ 30
I: 0; O: 1
0
X
X
1
≤ 30
I: 0; O: 1
0
X
X
1
≤ 30
I: 0; O: 1
0
X
≤ 30
X
1
I: 0; O: 1
0
X
X
1
≤ 30
The direction of some mapped secondary functions are controlled directly by the module. See Table 6-6 for specific direction control
information of mapped secondary functions.
Detailed Description
Copyright © 2010–2020, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5310 MSP430F5309 MSP430F5308 MSP430F5304
MSP430F5310, MSP430F5309, MSP430F5308, MSP430F5304
www.ti.com
SLAS677G – SEPTEMBER 2010 – REVISED MAY 2020
6.11.5 Port P5 (P5.0 and P5.1) Input/Output With Schmitt Trigger
Figure 6-6 shows the port diagram. Table 6-47 summarizes the selection of the pin functions.
Pad Logic
To or from
Reference
to ADC10
INCHx = x
P5REN.x
P5DIR.x
DVSS
0
DVCC
1
1
0
1
P5OUT.x
0
From module
1
P5.0/(A8/VeREF+)
P5.1/(A9/VeREF–)
P5DS.x
0: Low drive
1: High drive
P5SEL.x
P5IN.x
Bus
Keeper
EN
To module
D
Figure 6-6. Port P5 (P5.0 and P5.1) Diagram
Table 6-47. Port P5 (P5.0 and P5.1) Pin Functions
PIN NAME (P5.x)
P5.0/A8/VeREF+ (2)
P5.1/A9/VeREF– (5)
(1)
(2)
(3)
(4)
(5)
(6)
x
0
1
FUNCTION
P5.0 (I/O) (3)
A8/VeREF+ (4)
P5.1 (I/O)
(3)
A9/VeREF– (6)
CONTROL BITS OR SIGNALS (1)
P5DIR.x
P5SEL.x
I: 0; O: 1
0
X
1
I: 0; O: 1
0
X
1
X = Don't care
VeREF+ available on devices with ADC10_A.
Default condition
Setting the P5SEL.0 bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog
signals. An external voltage can be applied to VeREF+ and used as the reference for the ADC10_A when available.
VeREF- available on devices with ADC10_A.
Setting the P5SEL.1 bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog
signals. An external voltage can be applied to VeREF- and used as the reference for the ADC10_A when available.
Detailed Description
Submit Documentation Feedback
Product Folder Links: MSP430F5310 MSP430F5309 MSP430F5308 MSP430F5304
Copyright © 2010–2020, Texas Instruments Incorporated
75
MSP430F5310, MSP430F5309, MSP430F5308, MSP430F5304
SLAS677G – SEPTEMBER 2010 – REVISED MAY 2020
www.ti.com
6.11.6 Port P5 (P5.2) Input/Output With Schmitt Trigger
Figure 6-7 shows the port diagram. Table 6-48 summarizes the selection of the pin functions.
Pad Logic
To XT2
P5REN.2
P5DIR.2
DVSS
0
DVCC
1
1
0
1
P5OUT.2
0
Module X OUT
1
P5DS.2
0: Low drive
1: High drive
P5SEL.2
P5.2/XT2IN
P5IN.2
EN
Module X IN
Bus
Keeper
D
Figure 6-7. Port P5 (P5.2) Diagram
76
Detailed Description
Copyright © 2010–2020, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5310 MSP430F5309 MSP430F5308 MSP430F5304
MSP430F5310, MSP430F5309, MSP430F5308, MSP430F5304
www.ti.com
SLAS677G – SEPTEMBER 2010 – REVISED MAY 2020
6.11.7 Port P5 (P5.3) Input/Output With Schmitt Trigger
Figure 6-8 shows the port diagram. Table 6-48 summarizes the selection of the pin functions.
Pad Logic
To XT2
P5REN.3
P5DIR.3
DVSS
0
DVCC
1
1
0
1
P5OUT.3
0
Module X OUT
1
P5.3/XT2OUT
P5DS.3
0: Low drive
1: High drive
P5SEL.2
XT2BYPASS
P5SEL.3
P5IN.3
Bus
Keeper
EN
Module X IN
D
Figure 6-8. Port P5 (P5.3) Diagram
Table 6-48. Port P5 (P5.2 and P5.3) Pin Functions
PIN NAME (P5.x)
x
FUNCTION
P5.2 (I/O)
P5.2/XT2IN
2
XT2IN crystal mode
(2)
XT2IN bypass mode (2)
P5.3 (I/O)
P5.3/XT2OUT
3
XT2OUT crystal mode (3)
P5.3 (I/O)
(1)
(2)
(3)
(3)
CONTROL BITS OR SIGNALS (1)
P5DIR.x
P5SEL.2
P5SEL.3
XT2BYPASS
I: 0; O: 1
0
X
X
X
1
X
0
X
1
X
1
I: 0; O: 1
0
0
X
X
1
X
0
X
1
0
1
X = Don't care
Setting P5SEL.2 causes the general-purpose I/O to be disabled. Pending the setting of XT2BYPASS, P5.2 is configured for crystal
mode or bypass mode.
Setting P5SEL.2 causes the general-purpose I/O to be disabled in crystal mode. When using bypass mode, P5.3 can be used as
general-purpose I/O.
Detailed Description
Submit Documentation Feedback
Product Folder Links: MSP430F5310 MSP430F5309 MSP430F5308 MSP430F5304
Copyright © 2010–2020, Texas Instruments Incorporated
77
MSP430F5310, MSP430F5309, MSP430F5308, MSP430F5304
SLAS677G – SEPTEMBER 2010 – REVISED MAY 2020
www.ti.com
6.11.8 Port P5 (P5.4 and P5.5) Input/Output With Schmitt Trigger
Figure 6-9 and Figure 6-10 show the port diagrams. Table 6-49 summarizes the selection of the pin
functions.
Pad Logic
to XT1
P5REN.4
P5DIR.4
DVSS
0
DVCC
1
1
0
1
P5OUT.4
0
Module X OUT
1
P5DS.4
0: Low drive
1: High drive
P5SEL.4
P5.4/XIN
P5IN.4
EN
Module X IN
Bus
Keeper
D
Figure 6-9. Port P5 (P5.4) Diagram
78
Detailed Description
Copyright © 2010–2020, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5310 MSP430F5309 MSP430F5308 MSP430F5304
MSP430F5310, MSP430F5309, MSP430F5308, MSP430F5304
www.ti.com
SLAS677G – SEPTEMBER 2010 – REVISED MAY 2020
Pad Logic
to XT1
P5REN.5
P5DIR.5
0
DVSS
0
DVCC
1
1
1
P5OUT.5
0
Module X OUT
1
P5.5/XOUT
P5DS.5
0: Low drive
1: High drive
P5SEL.4
XT1BYPASS
P5SEL.5
P5IN.5
Bus
Keeper
EN
Module X IN
D
Figure 6-10. Port P5 (P5.5) Diagram
Table 6-49. Port P5 (P5.4 and P5.5) Pin Functions
PIN NAME (P7.x)
x
FUNCTION
P5DIR.x
P5SEL.4
P5SEL.5
XT1BYPASS
I: 0; O: 1
0
X
X
X
1
X
0
X
1
X
1
I: 0; O: 1
0
0
X
XOUT crystal mode (3)
X
1
X
0
(3)
X
1
0
1
P5.4 (I/O)
P5.4/XIN
4
XIN crystal mode
(2)
XIN bypass mode (2)
P5.5 (I/O)
P5.5/XOUT
5
P5.5 (I/O)
(1)
(2)
(3)
CONTROL BITS OR SIGNALS (1)
X = Don't care
Setting P5SEL.4 causes the general-purpose I/O to be disabled. Pending the setting of XT1BYPASS, P5.4 is configured for crystal
mode or bypass mode.
Setting P5SEL.4 causes the general-purpose I/O to be disabled in crystal mode. When using bypass mode, P5.5 can be used as
general-purpose I/O.
Detailed Description
Submit Documentation Feedback
Product Folder Links: MSP430F5310 MSP430F5309 MSP430F5308 MSP430F5304
Copyright © 2010–2020, Texas Instruments Incorporated
79
MSP430F5310, MSP430F5309, MSP430F5308, MSP430F5304
SLAS677G – SEPTEMBER 2010 – REVISED MAY 2020
www.ti.com
6.11.9 Port P6 (P6.0 to P6.7) Input/Output With Schmitt Trigger
Figure 6-11 shows the port diagram. Table 6-50 summarizes the selection of the pin functions.
Pad Logic
to ADC10
INCHx = x
to Comparator_B
from Comparator_B
CBPD.x
P6REN.x
P6DIR.x
0
0
From module
1
0
DVCC
1
1
Direction
0: Input
1: Output
1
P6OUT.x
DVSS
P6DS.x
0: Low drive
1: High drive
P6SEL.x
P6IN.x
EN
Bus
Keeper
P6.0/CB0/(A0)
P6.1/CB1/(A1)
P6.2/CB2/(A2)
P6.3/CB3/(A3)
P6.4/CB4/(A4)
P6.5/CB5/(A5)
P6.6/CB6/(A6)
P6.7/CB7/(A7)
D
To module
Figure 6-11. Port P6 (P6.0 to P6.7) Diagram
80
Detailed Description
Copyright © 2010–2020, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5310 MSP430F5309 MSP430F5308 MSP430F5304
MSP430F5310, MSP430F5309, MSP430F5308, MSP430F5304
www.ti.com
SLAS677G – SEPTEMBER 2010 – REVISED MAY 2020
Table 6-50. Port P6 (P6.0 to P6.7) Pin Functions
PIN NAME (P6.x)
x
FUNCTION
P6.0 (I/O)
P6.0/CB0/(A0)
0
A0 (only on devices with ADC)
CB0 (1)
P6.1 (I/O)
P6.1/CB1/(A1)
1
A1 (only on devices with ADC)
CB1 (1)
P6.2 (I/O)
P6.2/CB2/(A2)
2
A2 (only on devices with ADC)
CB2 (1)
3
4
5
6
(1)
X
1
X
X
I: 0; O: 1
0
0
X
1
X
1
X
X
I: 0; O: 1
0
0
X
1
X
1
0
X
1
X
CB3 (1)
X
X
1
I: 0; O: 1
0
0
A4 (only on devices with ADC)
X
1
X
CB4 (1)
X
X
1
I: 0; O: 1
0
0
A5 (only on devices with ADC)
X
1
X
CB5 (1)
X
X
1
I: 0; O: 1
0
0
X
1
X
X
X
1
I: 0; O: 1
0
0
A6 (only on devices with ADC)
P6.7 (I/O)
7
1
A3 (only on devices with ADC)
CB6 (1)
P6.7/CB7/(A7)
0
X
0
P6.6 (I/O)
P6.6/CB6/(A6)
CBPD
X
P6.5 (I/O)
P6.5/CB5/(A5)
0
X
P6.4 (I/O)
P6.4/CB4/(A4)
P6SEL.x
I: 0; O: 1
I: 0; O: 1
P6.3 (I/O)
P6.3/CB3/(A3)
CONTROL BITS OR SIGNALS
P6DIR.x
A7 (only on devices with ADC)
X
1
X
CB7 (1)
X
X
1
Setting the CBPD.x bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog
signals. Selecting the CBx input pin to the comparator multiplexer with the CBx bits automatically disables output driver and input buffer
for that pin, regardless of the state of the associated CBPD.x bit.
Detailed Description
Submit Documentation Feedback
Product Folder Links: MSP430F5310 MSP430F5309 MSP430F5308 MSP430F5304
Copyright © 2010–2020, Texas Instruments Incorporated
81
MSP430F5310, MSP430F5309, MSP430F5308, MSP430F5304
SLAS677G – SEPTEMBER 2010 – REVISED MAY 2020
www.ti.com
6.11.10 Port U (PU.0 and PU.1) Input/Output
Figure 6-12 shows the port diagram. Table 6-51 summarizes the selection of the pin functions.
LDOO
VSSU
Pad Logic
PUOPE
PU.0
PUOUT0
PUIN0
PUIPE
PUIN1
PU.1
PUOUT1
Figure 6-12. Port U (PU.0 and PU.1) Diagram
Table 6-51. Port U (PU.0 and PU.1) Pin Functions (1)
(1)
82
PUIPE
PUOPE
PUOUT1
PUOUT0
PU.1
PU.0
PORT U FUNCTION
0
1
0
0
0
1
0
1
Output low
Output low
Outputs enabled
Output low
Output high
0
1
1
Outputs enabled
0
Output high
Output low
0
1
Outputs enabled
1
1
Output high
Output high
Outputs enabled
1
0
0
X
X
Input enabled
Input enabled
Inputs enabled
0
X
X
Hi-Z
Hi-Z
Outputs and inputs disabled
PU.1 and PU.0 inputs and outputs are supplied from LDOO. LDOO can be generated by the device using the integrated 3.3-V LDO
when enabled. LDOO can also be supplied externally when the 3.3-V LDO is not being used and is disabled.
Detailed Description
Copyright © 2010–2020, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5310 MSP430F5309 MSP430F5308 MSP430F5304
MSP430F5310, MSP430F5309, MSP430F5308, MSP430F5304
www.ti.com
SLAS677G – SEPTEMBER 2010 – REVISED MAY 2020
6.11.11 Port J (PJ.0) JTAG Pin TDO, Input/Output With Schmitt Trigger or Output
Figure 6-13 shows the port diagram. Table 6-52 summarizes the selection of the pin functions.
Pad Logic
PJREN.0
PJDIR.0
0
DVCC
1
PJOUT.0
0
From JTAG
1
DVSS
0
DVCC
1
PJDS.0
0: Low drive
1: High drive
From JTAG
1
PJ.0/TDO
PJIN.0
EN
D
Figure 6-13. Port PJ (PJ.0) Diagram
Detailed Description
Submit Documentation Feedback
Product Folder Links: MSP430F5310 MSP430F5309 MSP430F5308 MSP430F5304
Copyright © 2010–2020, Texas Instruments Incorporated
83
MSP430F5310, MSP430F5309, MSP430F5308, MSP430F5304
SLAS677G – SEPTEMBER 2010 – REVISED MAY 2020
www.ti.com
6.11.12 Port J (PJ.1 to PJ.3) JTAG Pins TMS, TCK, TDI/TCLK, Input/Output With Schmitt
Trigger or Output
Figure 6-14 shows the port diagram. Table 6-52 summarizes the selection of the pin functions.
Pad Logic
PJREN.x
PJDIR.x
0
DVSS
1
PJOUT.x
0
From JTAG
1
DVSS
0
DVCC
1
1
PJDS.x
0: Low drive
1: High drive
From JTAG
PJ.1/TDI/TCLK
PJ.2/TMS
PJ.3/TCK
PJIN.x
EN
D
To JTAG
Figure 6-14. Port PJ (PJ.1 to PJ.3) Diagram
Table 6-52. Port PJ (PJ.0 to PJ.3) Pin Functions
PIN NAME (PJ.x)
x
CONTROL BITS OR
SIGNALS (1)
FUNCTION
PJDIR.x
PJ.0/TDO
0
PJ.1/TDI/TCLK
1
PJ.2/TMS
2
PJ.3/TCK
(1)
(2)
(3)
(4)
84
3
PJ.0 (I/O) (2)
I: 0; O: 1
TDO (3)
X
PJ.1 (I/O)
(2)
TDI/TCLK (3)
I: 0; O: 1
(4)
X
PJ.2 (I/O) (2)
TMS (3)
I: 0; O: 1
(4)
X
PJ.3 (I/O) (2)
TCK (3)
I: 0; O: 1
(4)
X
X = Don't care
Default condition
The pin direction is controlled by the JTAG module.
In JTAG mode, pullups are activated automatically on TMS, TCK, and TDI/TCLK. PJREN.x are don't care.
Detailed Description
Copyright © 2010–2020, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5310 MSP430F5309 MSP430F5308 MSP430F5304
MSP430F5310, MSP430F5309, MSP430F5308, MSP430F5304
www.ti.com
SLAS677G – SEPTEMBER 2010 – REVISED MAY 2020
6.12 Device Descriptors
Table 6-53 lists the complete contents of the device descriptor tag-length-value (TLV) structure for each
device type.
Table 6-53. Device Descriptors (1)
VALUE
DESCRIPTION
Info Block
Die Record
ADC10
Calibration
REF
Calibration
(1)
ADDRESS
SIZE
(bytes)
F5304
F5308
RGC,
ZXH, ZQE
F5308
RGZ, PT
F5309
RGC,
ZXH, ZQE
F5309
RGZ, PT
F5310
RGC,
ZXH, ZQE
F5310
RGZ, PT
06h
Info length
01A00h
1
06h
06h
06h
06h
06h
06h
CRC length
01A01h
1
06h
06h
06h
06h
06h
06h
06h
CRC value
01A02h
2
Per unit
Per unit
Per unit
Per unit
Per unit
Per unit
Per unit
Device ID
01A04h
1
12h
13h
13h
14h
14h
15h
15h
Device ID
01A05h
1
81h
81h
81h
81h
81h
81h
81h
Hardware revision
01A06h
1
Per unit
Per unit
Per unit
Per unit
Per unit
Per unit
Per unit
Firmware revision
01A07h
1
Per unit
Per unit
Per unit
Per unit
Per unit
Per unit
Per unit
Die record tag
01A08h
1
08h
08h
08h
08h
08h
08h
08h
Die record length
01A09h
1
0Ah
0Ah
0Ah
0Ah
0Ah
0Ah
0Ah
Lot/wafer ID
01A0Ah
4
Per unit
Per unit
Per unit
Per unit
Per unit
Per unit
Per unit
Die X position
01A0Eh
2
Per unit
Per unit
Per unit
Per unit
Per unit
Per unit
Per unit
Die Y position
01A10h
2
Per unit
Per unit
Per unit
Per unit
Per unit
Per unit
Per unit
Test results
01A12h
2
Per unit
Per unit
Per unit
Per unit
Per unit
Per unit
Per unit
ADC10 Calibration Tag
01A14h
1
13h
13h
13h
13h
13h
13h
13h
ADC10 Calibration Length
01A15h
1
10h
10h
10h
10h
10h
10h
10h
ADC Gain Factor
01A16h
2
Per unit
Per unit
Per unit
Per unit
Per unit
Per unit
Per unit
ADC Offset
01A18h
2
Per unit
Per unit
Per unit
Per unit
Per unit
Per unit
Per unit
ADC 1.5-V Reference
Temperature sensor 30°C
01A1Ah
2
Per unit
Per unit
Per unit
Per unit
Per unit
Per unit
Per unit
ADC 1.5-V Reference
Temperature sensor 85°C
01A1Ch
2
Per unit
Per unit
Per unit
Per unit
Per unit
Per unit
Per unit
ADC 2.0-V Reference
Temperature sensor 30°C
01A1Eh
2
Per unit
Per unit
Per unit
Per unit
Per unit
Per unit
Per unit
ADC 2.0-V Reference
Temperature sensor 85°C
01A20h
2
Per unit
Per unit
Per unit
Per unit
Per unit
Per unit
Per unit
ADC 2.5-V Reference
Temperature sensor 30°C
01A22h
2
Per unit
Per unit
Per unit
Per unit
Per unit
Per unit
Per unit
ADC 2.5-V Reference
Temperature sensor 85°C
01A24h
2
Per unit
Per unit
Per unit
Per unit
Per unit
Per unit
Per unit
12h
REF calibration tag
01A26h
1
12h
12h
12h
12h
12h
12h
REF calibration length
01A27h
1
06h
06h
06h
06h
06h
06h
06h
REF 1.5-V reference factor
01A28h
2
Per unit
Per unit
Per unit
Per unit
Per unit
Per unit
Per unit
REF 2.0-V reference factor
01A2Ah
2
Per unit
Per unit
Per unit
Per unit
Per unit
Per unit
Per unit
REF 2.5-V reference factor
01A2Ch
2
Per unit
Per unit
Per unit
Per unit
Per unit
Per unit
Per unit
N/A = Not applicable
Detailed Description
Submit Documentation Feedback
Product Folder Links: MSP430F5310 MSP430F5309 MSP430F5308 MSP430F5304
Copyright © 2010–2020, Texas Instruments Incorporated
85
MSP430F5310, MSP430F5309, MSP430F5308, MSP430F5304
SLAS677G – SEPTEMBER 2010 – REVISED MAY 2020
www.ti.com
Table 6-53. Device Descriptors(1) (continued)
VALUE
ADDRESS
SIZE
(bytes)
Peripheral descriptor tag
01A2Eh
Peripheral descriptor length
01A2Fh
F5304
F5308
RGC,
ZXH, ZQE
F5308
RGZ, PT
F5309
RGC,
ZXH, ZQE
F5309
RGZ, PT
F5310
RGC,
ZXH, ZQE
F5310
RGZ, PT
1
02h
02h
02h
02h
02h
02h
02h
1
5Ch
60h
60h
61h
61h
60h
60h
Memory 1
2
08h
8Ah
08h
8Ah
08h
8Ah
08h
8Ah
08h
8Ah
08h
8Ah
08h
8Ah
Memory 2
2
0Ch
86h
0Ch
86h
0Ch
86h
0Ch
86h
0Ch
86h
0Ch
86h
0Ch
86h
Memory 3
2
0Eh
2Dh
0Eh
2Dh
0Eh
2Dh
0Eh
2Dh
0Eh
2Dh
0Eh
2Dh
0Eh
2Dh
Memory 4
2
2Ah
70h
2Ah
60h
2Ah
60h
2Ah
50h
2Ah
50h
2Ah
40h
2Ah
40h
Memory 5
2/1
8Eh
90h
90h
91h
8Eh
91h
8Eh
92h
92h
Delimiter
1
00h
00h
00h
00h
00h
00h
00h
Peripheral count
1
1Eh
20h
20h
20h
20h
20h
20h
MSP430CPUXV2
2
00h
23h
00h
23h
00h
23h
00h
23h
00h
23h
00h
23h
00h
23h
JTAG
2
00h
09h
00h
09h
00h
09h
00h
09h
00h
09h
00h
09h
00h
09h
SBW
2
00h
0Fh
00h
0Fh
00h
0Fh
00h
0Fh
00h
0Fh
00h
0Fh
00h
0Fh
EEM-S
2
00h
03h
00h
03h
00h
03h
00h
03h
00h
03h
00h
03h
00h
03h
TI BSL
2
00h
FCh
00h
FCh
00h
FCh
00h
FCh
00h
FCh
00h
FCh
00h
FCh
SFR
2
10h
41h
10h
41h
10h
41h
10h
41h
10h
41h
10h
41h
10h
41h
PMM
2
02h
30h
02h
30h
02h
30h
02h
30h
02h
30h
02h
30h
02h
30h
FCTL
2
02h
38h
02h
38h
02h
38h
02h
38h
02h
38h
02h
38h
02h
38h
CRC16
2
01h
3Ch
01h
3Ch
01h
3Ch
01h
3Ch
01h
3Ch
01h
3Ch
01h
3Ch
CRC16_RB
2
00h
3Dh
00h
3Dh
00h
3Dh
00h
3Dh
00h
3Dh
00h
3Dh
00h
3Dh
RAMCTL
2
00h
44h
00h
44h
00h
44h
00h
44h
00h
44h
00h
44h
00h
44h
WDT_A
2
00h
40h
00h
40h
00h
40h
00h
40h
00h
40h
00h
40h
00h
40h
UCS
2
01h
48h
01h
48h
01h
48h
01h
48h
01h
48h
01h
48h
01h
48h
SYS
2
02h
42h
02h
42h
02h
42h
02h
42h
02h
42h
02h
42h
02h
42h
REF
2
03h
A0h
03h
A0h
03h
A0h
03h
A0h
03h
A0h
03h
A0h
03h
A0h
Port Mapping
2
01h
10h
01h
10h
01h
10h
01h
10h
01h
10h
01h
10h
01h
10h
Port 1 and 2
2
04h
51h
04h
51h
04h
51h
04h
51h
04h
51h
04h
51h
04h
51h
Port 3 and 4
2
02h
52h
02h
52h
02h
52h
02h
52h
02h
52h
02h
52h
02h
52h
Port 5 and 6
2
02h
53h
02h
53h
02h
53h
02h
53h
02h
53h
02h
53h
02h
53h
DESCRIPTION
Peripheral
Descriptor
86
Detailed Description
Copyright © 2010–2020, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5310 MSP430F5309 MSP430F5308 MSP430F5304
MSP430F5310, MSP430F5309, MSP430F5308, MSP430F5304
www.ti.com
SLAS677G – SEPTEMBER 2010 – REVISED MAY 2020
Table 6-53. Device Descriptors(1) (continued)
VALUE
DESCRIPTION
Peripheral
Descriptor
(continued)
Interrupts
ADDRESS
SIZE
(bytes)
F5304
F5308
RGC,
ZXH, ZQE
F5308
RGZ, PT
F5309
RGC,
ZXH, ZQE
F5309
RGZ, PT
F5310
RGC,
ZXH, ZQE
F5310
RGZ, PT
JTAG
2
0Eh
5Fh
0Eh
5Fh
0Eh
5Fh
0Eh
5Fh
0Eh
5Fh
0Eh
5Fh
0Eh
5Fh
TA0
2
02h
62h
02h
62h
02h
62h
02h
62h
02h
62h
02h
62h
02h
62h
TA1
2
04h
61h
04h
61h
04h
61h
04h
61h
04h
61h
04h
61h
04h
61h
TB0
2
04h
67h
04h
67h
04h
67h
04h
67h
04h
67h
04h
67h
04h
67h
TA2
2
04h
61h
04h
61h
04h
61h
04h
61h
04h
61h
04h
61h
04h
61h
RTC
2
0Ah
68h
0Ah
68h
0Ah
68h
0Ah
68h
0Ah
68h
0Ah
68h
0Ah
68h
MPY32
2
02h
85h
02h
85h
02h
85h
02h
85h
02h
85h
02h
85h
02h
85h
DMA-3
2
04h
47h
04h
47h
04h
47h
04h
47h
04h
47h
04h
47h
04h
47h
USCI_A, USCI_B
2
10h
90h
0Ch
90h
0Ch
90h
0Ch
90h
0Ch
90h
0Ch
90h
0Ch
90h
USCI_A, USCI_B
2
N/A
04h
90h
04h
90h
04h
90h
04h
90h
04h
90h
04h
90h
ADC10_A
2
14h
D3h
14h
D3h
14h
D3h
14h
D3h
14h
D3h
14h
D3h
14h
D3h
COMP_B
2
N/A
18h
A8h
18h
A8h
18h
A8h
18h
A8h
18h
A8h
18h
A8h
LDO
2
1Ch
5Ch
04h
5Ch
04h
5Ch
04h
5Ch
04h
5Ch
04h
5Ch
04h
5Ch
COMP_B
1
01h
A8h
A8h
A8h
A8h
A8h
A8h
TB0.CCIFG0
1
64h
64h
64h
64h
64h
64h
64h
TB0.CCIFG1..6
1
65h
65h
65h
65h
65h
65h
65h
WDTIFG
1
40h
40h
40h
40h
40h
40h
40h
USCI_A0
1
01h
90h
90h
90h
90h
90h
90h
USCI_B0
1
01h
91h
91h
91h
91h
91h
91h
ADC10_A
1
D0h
D0h
D0h
D0h
D0h
D0h
D0h
60h
TA0.CCIFG0
1
60h
60h
60h
60h
60h
60h
TA0.CCIFG1..4
1
61h
61h
61h
61h
61h
61h
61h
LDO-PWR
1
5Ch
5Ch
5Ch
5Ch
5Ch
5Ch
5Ch
DMA
1
46h
46h
46h
46h
46h
46h
46h
TA1.CCIFG0
1
62h
62h
62h
62h
62h
62h
62h
TA1.CCIFG1..2
1
63h
63h
63h
63h
63h
63h
63h
P1
1
50h
50h
50h
50h
50h
50h
50h
USCI_A1
1
92h
92h
92h
92h
92h
92h
92h
USCI_B1
1
93h
93h
93h
93h
93h
93h
93h
TA1.CCIFG0
1
66h
66h
66h
66h
66h
66h
66h
TA1.CCIFG1..2
1
67h
67h
67h
67h
67h
67h
67h
P2
1
51h
51h
51h
51h
51h
51h
51h
RTC_A
1
68h
68h
68h
68h
68h
68h
68h
Delimiter
1
00h
00h
00h
00h
00h
00h
00h
Detailed Description
Submit Documentation Feedback
Product Folder Links: MSP430F5310 MSP430F5309 MSP430F5308 MSP430F5304
Copyright © 2010–2020, Texas Instruments Incorporated
87
MSP430F5310, MSP430F5309, MSP430F5308, MSP430F5304
SLAS677G – SEPTEMBER 2010 – REVISED MAY 2020
www.ti.com
7 Device and Documentation Support
7.1
Getting Started and Next Steps
For more information on the MSP430 family of devices and the tools and libraries that are available to
help with your development, visit the MSP430 ultra-low-power sensing and measurement MCUs overview.
7.2
Device Nomenclature
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all
MSP MCU devices. Each MSP MCU commercial family member has one of two prefixes: MSP or XMS.
These prefixes represent evolutionary stages of product development from engineering prototypes (XMS)
through fully qualified production devices (MSP).
XMS – Experimental device that is not necessarily representative of the final device's electrical
specifications
MSP – Fully qualified production device
XMS devices are shipped against the following disclaimer:
"Developmental product is intended for internal evaluation purposes."
MSP devices have been characterized fully, and the quality and reliability of the device have been
demonstrated fully. TI's standard warranty applies.
Predictions show that prototype devices (XMS) have a greater failure rate than the standard production
devices. TI recommends that these devices not be used in any production system because their expected
end-use failure rate still is undefined. Only qualified production devices are to be used.
TI device nomenclature also includes a suffix with the device family name. This suffix indicates the
temperature range, package type, and distribution format. Figure 7-1 provides a legend for reading the
complete device name.
88
Device and Documentation Support
Copyright © 2010–2020, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5310 MSP430F5309 MSP430F5308 MSP430F5304
MSP430F5310, MSP430F5309, MSP430F5308, MSP430F5304
www.ti.com
SLAS677G – SEPTEMBER 2010 – REVISED MAY 2020
MSP 430 F 5 438 A I PM T -EP
Processor Family
Optional: Additional Features
MCU Platform
Optional: Tape and Reel
Device Type
Packaging
Series
Feature Set
Processor Family
Optional: Temperature Range
Optional: Revision
CC = Embedded RF Radio
MSP = Mixed-Signal Processor
XMS = Experimental Silicon
PMS = Prototype Device
430 = MSP430 low-power microcontroller platform
MCU Platform
Device Type
Memory Type
C = ROM
F = Flash
FR = FRAM
G = Flash
L = No nonvolatile memory
Specialized Application
AFE = Analog front end
BQ = Contactless power
CG = ROM medical
FE = Flash energy meter
FG = Flash medical
FW = Flash electronic flow meter
Series
1 = Up to 8 MHz
2 = Up to 16 MHz
3 = Legacy
4 = Up to 16 MHz with LCD driver
5 = Up to 25 MHz
6 = Up to 25 MHz with LCD driver
0 = Low-voltage series
Feature Set
Various levels of integration within a series
Optional: Revision
Updated version of the base part number
Optional: Temperature Range S = 0°C to 50°C
C = 0°C to 70°C
I = –40°C to 85°C
T = –40°C to 105°C
Packaging
http://www.ti.com/packaging
Optional: Tape and Reel
T = Small reel
R = Large reel
No markings = Tube or tray
Optional: Additional Features -EP = Enhanced product (–40°C to 105°C)
-HT = Extreme temperature parts (–55°C to 150°C)
-Q1 = Automotive Q100 qualified
Figure 7-1. Device Nomenclature
Device and Documentation Support
Submit Documentation Feedback
Product Folder Links: MSP430F5310 MSP430F5309 MSP430F5308 MSP430F5304
Copyright © 2010–2020, Texas Instruments Incorporated
89
MSP430F5310, MSP430F5309, MSP430F5308, MSP430F5304
SLAS677G – SEPTEMBER 2010 – REVISED MAY 2020
7.3
www.ti.com
Tools and Software
All MSP microcontrollers are supported by a wide variety of software and hardware development tools.
Tools are available from TI and various third parties. See them all at MSP430 Ultra-Low-Power MCUs –
Tools & software.
Table 7-1 lists the debug features of the MSP430F530x and MSP430F5310 MCUs. See the Code
Composer Studio for MSP430 User's Guide for details on the available features.
Table 7-1. Hardware Debug Features
MSP430
ARCHITECTURE
4-WIRE
JTAG
2-WIRE
JTAG
BREAKPOINTS
(N)
RANGE
BREAKPOINTS
CLOCK
CONTROL
STATE
SEQUENCER
TRACE
BUFFER
LPMx.5
DEBUGGING
SUPPORT
MSP430Xv2
Yes
Yes
3
Yes
Yes
No
No
No
Design Kits and Evaluation Modules
64-Pin Target Development Board for MSP430F5x MCUs The MSP-TS430PN64B is a stand-alone 64pin ZIF socket target board used to program and debug the MSP430 MCU in-system through
the JTAG interface or the Spy Bi-Wire (2-wire JTAG) protocol.
64-Pin Target Development Board and MSP-FET Programmer Bundle for MSP430F5x MCUs
The
MSP-FET is a powerful flash emulation tool to quickly begin application development on the
MSP430 MCU. It includes USB debugging interface used to program and debug the
MSP430 in-system through the JTAG interface or the pin saving Spy Bi-Wire (2-wire JTAG)
protocol. The flash memory can be erased and programmed in seconds with only a few
keystrokes, and because the MSP430 flash is ultra-low power, no external power supply is
required.
Software
MSP430Ware™ Software MSP430Ware software is a collection of code examples, data sheets, and
other design resources for all MSP430 devices delivered in a convenient package. In
addition to providing a complete collection of existing MSP430 MCU design resources,
MSP430Ware software also includes a high-level API called MSP Driver Library. This library
makes it easy to program MSP430 hardware. MSP430Ware software is available as a
component of CCS or as a stand-alone package.
MSP430F530x, MSP430F5310 Code Examples C code examples that configure each of the integrated
peripherals for various application needs.
MSP Driver Library Driver Library's abstracted API keeps you above the bits and bytes of the MSP430
hardware by providing easy-to-use function calls. Thorough documentation is delivered
through a helpful API Guide, which includes details on each function call and the recognized
parameters. Developers can use Driver Library functions to write complete projects with
minimal overhead.
MSP EnergyTrace™ Technology EnergyTrace technology for MSP430 microcontrollers is an energybased code analysis tool that measures and displays the application's energy profile and
helps to optimize it for ultra-low-power consumption.
ULP (Ultra-Low Power) Advisor ULP Advisor™ software is a tool for guiding developers to write more
efficient code to fully utilize the unique ultra-low power features of MSP and MSP432
microcontrollers. Aimed at both experienced and new microcontroller developers, ULP
Advisor checks your code against a thorough ULP checklist to squeeze every last nano amp
out of your application. At build time, ULP Advisor will provide notifications and remarks to
highlight areas of your code that can be further optimized for lower power.
IEC60730 Software Package The IEC60730 MSP430 software package was developed to be useful in
assisting customers in complying with IEC 60730-1:2010 (Automatic Electrical Controls for
Household and Similar Use – Part 1: General Requirements) for up to Class B products,
which includes home appliances, arc detectors, power converters, power tools, e-bikes, and
many others. The IEC60730 MSP430 software package can be embedded in customer
applications running on MSP430s to help simplify the customer’s certification efforts of
functional safety-compliant consumer devices to IEC 60730-1:2010 Class B.
90
Device and Documentation Support
Copyright © 2010–2020, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5310 MSP430F5309 MSP430F5308 MSP430F5304
MSP430F5310, MSP430F5309, MSP430F5308, MSP430F5304
www.ti.com
SLAS677G – SEPTEMBER 2010 – REVISED MAY 2020
Fixed Point Math Library for MSP The MSP IQmath and Qmath Libraries are a collection of highly
optimized and high-precision mathematical functions for C programmers to seamlessly port a
floating-point algorithm into fixed-point code on MSP430 and MSP432 devices. These
routines are typically used in computationally intensive real-time applications where optimal
execution speed, high accuracy, and ultra-low energy are critical. By using the IQmath and
Qmath libraries, it is possible to achieve execution speeds considerably faster and energy
consumption considerably lower than equivalent code written using floating-point math.
Floating Point Math Library for MSP430 Continuing to innovate in the low power and low cost
microcontroller space, TI brings you MSPMATHLIB. Leveraging the intelligent peripherals of
our devices, this floating point math library of scalar functions brings you up to 26x better
performance. Mathlib is easy to integrate into your designs. This library is free and is
integrated in both Code Composer Studio and IAR IDEs. Read the user’s guide for an in
depth look at the math library and relevant benchmarks.
Development Tools
Code Composer Studio™ Integrated Development Environment for MSP Microcontrollers
Code
Composer Studio is an integrated development environment (IDE) that supports all MSP
microcontroller devices. Code Composer Studio comprises a suite of embedded software
utilities used to develop and debug embedded applications. It includes an optimizing C/C++
compiler, source code editor, project build environment, debugger, profiler, and many other
features. The intuitive IDE provides a single user interface taking you through each step of
the application development flow. Familiar utilities and interfaces allow users to get started
faster than ever before. Code Composer Studio combines the advantages of the Eclipse
software framework with advanced embedded debug capabilities from TI resulting in a
compelling feature-rich development environment for embedded developers. When using
CCS with an MSP MCU, a unique and powerful set of plugins and embedded software
utilities are made available to fully leverage the MSP microcontroller.
Command-Line Programmer MSP Flasher is an open-source shell-based interface for programming
MSP microcontrollers through a FET programmer or eZ430 using JTAG or Spy-Bi-Wire
(SBW) communication. MSP Flasher can download binary files (.txt or .hex) files directly to
the MSP microcontroller without an IDE.
MSP MCU Programmer and Debugger The MSP-FET is a powerful emulation development tool – often
called a debug probe – which allows users to quickly begin application development on MSP
low-power microcontrollers (MCU). Creating MCU software usually requires downloading the
resulting binary program to the MSP device for validation and debugging. The MSP-FET
provides a debug communication pathway between a host computer and the target MSP.
Furthermore, the MSP-FET also provides a Backchannel UART connection between the
computer's USB interface and the MSP UART. This affords the MSP programmer a
convenient method for communicating serially between the MSP and a terminal running on
the computer. It also supports loading programs (often called firmware) to the MSP target
using the BSL (bootloader) through the UART and I2C communication protocols.
MSP-GANG Production Programmer The MSP Gang Programmer is an MSP430 or MSP432 device
programmer that can program up to eight identical MSP430 or MSP432 Flash or FRAM
devices at the same time. The MSP Gang Programmer connects to a host PC using a
standard RS-232 or USB connection and provides flexible programming options that allow
the user to fully customize the process. The MSP Gang Programmer is provided with an
expansion board, called the Gang Splitter, that implements the interconnections between the
MSP Gang Programmer and multiple target devices. Eight cables are provided that connect
the expansion board to eight target devices (through JTAG or Spy-Bi-Wire connectors). The
programming can be done with a PC or as a stand-alone device. A PC-side graphical user
interface is also available and is DLL-based.
Device and Documentation Support
Submit Documentation Feedback
Product Folder Links: MSP430F5310 MSP430F5309 MSP430F5308 MSP430F5304
Copyright © 2010–2020, Texas Instruments Incorporated
91
MSP430F5310, MSP430F5309, MSP430F5308, MSP430F5304
SLAS677G – SEPTEMBER 2010 – REVISED MAY 2020
7.4
www.ti.com
Documentation Support
The following documents describe the MSP430F5310 and MSP430F530x devices. Copies of these
documents are available on the Internet at www.ti.com.
Receiving Notification of Document Updates
To receive notification of documentation updates—including silicon errata—go to the product folder for
your device on ti.com (for links to the product folders, see Table 7-2). In the upper right corner, click the
"Alert me" button. This registers you to receive a weekly digest of product information that has changed (if
any). For change details, check the revision history of any revised document.
Errata
MSP430F5310 Device Erratasheet Describes the known exceptions to the functional specifications for
the MSP430F5310 device.
MSP430F5309 Device Erratasheet Describes the known exceptions to the functional specifications for
the MSP430F5309 device.
MSP430F5308 Device Erratasheet Describes the known exceptions to the functional specifications for
the MSP430F5308 device.
MSP430F5304 Device Erratasheet Describes the known exceptions to the functional specifications for
the MSP430F5304 device.
User's Guides
MSP430F5xx and MSP430F6xx Family User's Guide
peripherals available in this device family.
Detailed information on the modules and
MSP430 Flash Device Bootloader (BSL) User's Guide The MSP430 bootloader (BSL) lets users
communicate with embedded memory in the MSP430 microcontroller during the prototyping
phase, final production, and in service. Both the programmable memory (flash memory) and
the data memory (RAM) can be modified as required. Do not confuse the bootloader with the
bootstrap loader programs found in some digital signal processors (DSPs) that automatically
load program code (and data) from external memory to the internal memory of the DSP.
MSP430 Programming With the JTAG Interface This document describes the functions that are
required to erase, program, and verify the memory module of the MSP430 flash-based and
FRAM-based microcontroller families using the JTAG communication port. In addition, it
describes how to program the JTAG access security fuse that is available on all MSP430
devices. This document describes device access using both the standard 4-wire JTAG
interface and the 2-wire JTAG interface, which is also referred to as Spy-Bi-Wire (SBW).
MSP430 Hardware Tools User's Guide This manual describes the hardware of the TI MSP-FET430
Flash Emulation Tool (FET). The FET is the program development tool for the MSP430 ultralow-power microcontroller. Both available interface types, the parallel port interface and the
USB interface, are described.
Application Reports
MSP430 32-kHz Crystal Oscillators Selection of the right crystal, correct load circuit, and proper board
layout are important for a stable crystal oscillator. This application report summarizes crystal
oscillator function and explains the parameters to select the correct crystal for MSP430 ultralow-power operation. In addition, hints and examples for correct board layout are given. The
document also contains detailed information on the possible oscillator tests to ensure stable
oscillator operation in mass production.
MSP430 System-Level ESD Considerations System-level ESD has become increasingly demanding as
silicon technology scales to lower voltages and the need for designing cost-effective and
ultra-low-power components. This application report addresses three ESD topics to help
board designers and OEMs understand and design robust system-level designs: (1)
Component-level ESD testing and system-level ESD testing; (2) General design guidelines
for system-level ESD protection; (3) Introduction to System Efficient ESD Design (SEED), a
co-design methodology of on-board and on-chip ESD protection. A few real-world systemlevel ESD protection design examples and their results are discussed.
92
Device and Documentation Support
Copyright © 2010–2020, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5310 MSP430F5309 MSP430F5308 MSP430F5304
MSP430F5310, MSP430F5309, MSP430F5308, MSP430F5304
www.ti.com
7.5
SLAS677G – SEPTEMBER 2010 – REVISED MAY 2020
Related Links
Table 7-2 lists quick access links. Categories include technical documents, support and community
resources, tools and software, and quick access to sample or buy.
Table 7-2. Related Links
7.6
PARTS
PRODUCT FOLDER
ORDER NOW
TECHNICAL
DOCUMENTS
TOOLS &
SOFTWARE
SUPPORT &
COMMUNITY
MSP430F5310
Click here
Click here
Click here
Click here
Click here
MSP430F5309
Click here
Click here
Click here
Click here
Click here
MSP430F5308
Click here
Click here
Click here
Click here
Click here
MSP430F5304
Click here
Click here
Click here
Click here
Click here
Community Resources
The following links connect to TI community resources. Linked contents are provided "AS IS" by the
respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views;
see TI's Terms of Use.
TI E2E™ Community
TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At
e2e.ti.com, you can ask questions, share knowledge, explore ideas, and help solve problems with fellow
engineers.
TI Embedded Processors Wiki
Texas Instruments Embedded Processors Wiki. Established to help developers get started with embedded
processors from Texas Instruments and to foster innovation and growth of general knowledge about the
hardware and software surrounding these devices.
7.7
Trademarks
MicroStar Junior, MSP430Ware, EnergyTrace, ULP Advisor, Code Composer Studio, E2E are trademarks
of Texas Instruments.
All other trademarks are the property of their respective owners.
7.8
Electrostatic Discharge Caution
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.
7.9
Glossary
TI Glossary This glossary lists and explains terms, acronyms, and definitions.
Device and Documentation Support
Submit Documentation Feedback
Product Folder Links: MSP430F5310 MSP430F5309 MSP430F5308 MSP430F5304
Copyright © 2010–2020, Texas Instruments Incorporated
93
MSP430F5310, MSP430F5309, MSP430F5308, MSP430F5304
SLAS677G – SEPTEMBER 2010 – REVISED MAY 2020
www.ti.com
8 Mechanical, Packaging, and Orderable Information
The following pages include mechanical, packaging, and orderable information. This information is the
most current data available for the designated devices. This data is subject to change without notice and
revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.
94
Mechanical, Packaging, and Orderable Information
Copyright © 2010–2020, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP430F5310 MSP430F5309 MSP430F5308 MSP430F5304
PACKAGE OPTION ADDENDUM
www.ti.com
28-Sep-2021
PACKAGING INFORMATION
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
(2)
Lead finish/
Ball material
MSL Peak Temp
Op Temp (°C)
Device Marking
(3)
(4/5)
(6)
MSP430F5304IPT
ACTIVE
LQFP
PT
48
250
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 85
M430F5304
MSP430F5304IPTR
ACTIVE
LQFP
PT
48
1000
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 85
M430F5304
MSP430F5304IRGZR
ACTIVE
VQFN
RGZ
48
2500
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 85
M430
F5304
MSP430F5304IRGZT
ACTIVE
VQFN
RGZ
48
250
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 85
M430
F5304
MSP430F5308IPT
ACTIVE
LQFP
PT
48
250
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 85
M430F5308
MSP430F5308IPTR
ACTIVE
LQFP
PT
48
1000
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 85
M430F5308
MSP430F5308IRGCR
ACTIVE
VQFN
RGC
64
2000
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 85
M430F5308
MSP430F5308IRGCT
ACTIVE
VQFN
RGC
64
250
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 85
M430F5308
MSP430F5308IRGZR
ACTIVE
VQFN
RGZ
48
2500
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 85
M430
F5308
MSP430F5308IRGZT
ACTIVE
VQFN
RGZ
48
250
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 85
M430
F5308
MSP430F5308IZXH
ACTIVE
NFBGA
ZXH
80
576
RoHS & Green
SNAGCU
Level-3-260C-168 HR
-40 to 85
F5308
MSP430F5308IZXHR
ACTIVE
NFBGA
ZXH
80
2500
RoHS & Green
SNAGCU
Level-3-260C-168 HR
-40 to 85
F5308
MSP430F5309IPT
ACTIVE
LQFP
PT
48
250
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 85
M430F5309
MSP430F5309IRGCR
ACTIVE
VQFN
RGC
64
2000
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 85
M430F5309
MSP430F5309IRGCT
ACTIVE
VQFN
RGC
64
250
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 85
M430F5309
MSP430F5309IRGZR
ACTIVE
VQFN
RGZ
48
2500
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 85
M430
F5309
MSP430F5309IRGZT
ACTIVE
VQFN
RGZ
48
250
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 85
M430
F5309
MSP430F5309IZXH
ACTIVE
NFBGA
ZXH
80
576
RoHS & Green
SNAGCU
Level-3-260C-168 HR
-40 to 85
F5309
MSP430F5309IZXHR
ACTIVE
NFBGA
ZXH
80
2500
RoHS & Green
SNAGCU
Level-3-260C-168 HR
-40 to 85
F5309
Addendum-Page 1
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
Orderable Device
28-Sep-2021
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
(2)
Lead finish/
Ball material
MSL Peak Temp
Op Temp (°C)
Device Marking
(3)
(4/5)
(6)
MSP430F5310IPT
ACTIVE
LQFP
PT
48
250
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 85
M430F5310
MSP430F5310IPTR
ACTIVE
LQFP
PT
48
1000
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 85
M430F5310
MSP430F5310IRGCR
ACTIVE
VQFN
RGC
64
2000
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 85
M430F5310
MSP430F5310IRGCT
ACTIVE
VQFN
RGC
64
250
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 85
M430F5310
MSP430F5310IRGZR
ACTIVE
VQFN
RGZ
48
2500
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 85
M430
F5310
MSP430F5310IRGZT
ACTIVE
VQFN
RGZ
48
250
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 85
M430
F5310
MSP430F5310IZXH
ACTIVE
NFBGA
ZXH
80
576
RoHS & Green
SNAGCU
Level-3-260C-168 HR
-40 to 85
F5310
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may
reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of