MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F6659,
MSP430F5659, MSP430F6658,
MSP430F5658, MSP430F6459,
MSP430F5359, MSP430F6458
MSP430F5358
MSP430F5659,SLAS700E
MSP430F5658,
MSP430F5359,
MSP430F5358
– OCTOBER
2012 – REVISED SEPTEMBER
2020
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
MSP430F665x, MSP430F645x, MSP430F565x, MSP430F535x Mixed-Signal
Microcontrollers
1 Features
•
•
•
•
•
•
•
•
Low supply voltage range:
3.6 V down to 1.8 V
Ultra-low power consumption
– Active mode (AM):
All system clocks active:
295 µA/MHz at 8 MHz, 3.0 V, flash program
execution (typical)
– Standby mode (LPM3):
Watchdog with crystal, and supply supervisor
operational, full RAM retention, fast wakeup:
2.0 µA at 2.2 V, 2.2 µA at 3.0 V (typical)
– Shutdown, real-time clock (RTC) mode
(LPM3.5):
Shutdown mode, active RTC with crystal:
1.1 µA at 3.0 V (typical)
– Shutdown mode (LPM4.5):
0.45 µA at 3.0 V (typical)
Wake up from standby mode in 3 µs (typical)
16-bit RISC architecture, extended memory, up to
20-MHz system clock
Flexible power-management system
– Fully integrated LDO with programmable
regulated core supply voltage
– Supply voltage supervision, monitoring, and
brownout
Unified clock system
– FLL control loop for frequency stabilization
– Low-power low-frequency internal clock source
(VLO)
– Low-frequency trimmed internal reference
source (REFO)
– 32-kHz crystals (XT1)
– High-frequency crystals up to 32 MHz (XT2)
Four 16-bit timers with 3, 5, or 7 capture/compare
registers
Three universal serial communication interfaces
(USCIs)
•
•
•
•
•
•
•
•
•
•
– USCI_A0, USCI_A1, and USCI_A2 each
support:
• Enhanced UART with automatic baud-rate
detection
• IrDA encoder and decoder
• Synchronous SPI
– USCI_B0, USCI_B1, and USCI_B2 each
support:
• I2C
• Synchronous SPI
Full-speed universal serial bus (USB)
– Integrated USB-PHY
– Integrated 3.3-V and 1.8-V USB power system
– Integrated USB-PLL
– Eight input and eight output endpoints
12-bit analog-to-digital converter (ADC) with
internal shared reference, sample-and-hold, and
autoscan feature
Two 12-bit digital-to-analog converters (DACs) with
synchronization
Voltage comparator
Integrated LCD driver with contrast control for up
to 160 segments
Hardware multiplier supports 32-bit operations
Serial onboard programming, no external
programming voltage needed
6-channel internal DMA
RTC module with supply voltage backup switch
Device Comparison summarizes the available
family members
2 Applications
•
•
•
•
•
•
Analog and digital sensor systems
Digital motor controls
Remote controls
Thermostats
Digital timers
Hand-held meters
3 Description
The TI MSP family of ultra-low-power microcontrollers consists of several devices that feature different sets of
peripherals targeted for various applications. The architecture, combined with five low-power modes, is
optimized to achieve extended battery life in portable measurement applications. The device features a powerful
16-bit RISC CPU, 16-bit registers, and constant generators that contribute to maximum code efficiency. The
digitally controlled oscillator (DCO) allows the device to wake up from low-power modes to active mode in 3 µs
(typical).
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,
Submit Document Feedback
Copyright
© 2020 Texas
Instruments
Incorporated
intellectual
property
matters
and other important disclaimers. PRODUCTION DATA.
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
1
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
The MSP430F665x and MSP430F565x series are microcontroller configurations with four 16-bit timers, a highperformance 12-bit ADC, three USCIs, a hardware multiplier, DMA, an RTC module with alarm capabilities, a
comparator, USB 2.0, and up to 74 I/O pins.
The MSP430F645x and MSP430F535x series are microcontroller configurations with an integrated 3.3-V LDO,
four 16-bit timers, a high-performance 12-bit ADC, three USCIs, a hardware multiplier, DMA, an RTC module
with alarm capabilities, a comparator, and up to 74 I/O pins.
For complete module descriptions, see the MSP430F5xx and MSP430F6xx Family User's Guide.
Device Information
PART NUMBER(1)
PACKAGE
BODY SIZE(2)
MSP430F6659IPZ
LQFP (100)
14 mm × 14 mm
MSP430F6659IZCA
nFBGA (113)
7 mm × 7 mm
Junior™
7 mm × 7 mm
MSP430F6659IZQW(3)
(1)
(2)
(3)
2
MicroStar
BGA (113)
For the most current device, package, and ordering information, see the Package Option Addendum in Section 11, or see the TI
website at www.ti.com.
The sizes shown here are approximations. For the package dimensions with tolerances, see the Mechanical Data in Section 11.
All orderable part numbers in the ZQW (MicroStar Junior BGA) package have been changed to a status of Last Time Buy. Visit the
Product life cycle page for details on this status.
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
4 Functional Block Diagrams
Figure 4-1 shows the functional block diagram for the MSP430F6659 and MSP430F6658 MCUs.
XIN XOUT
DVCC
DVSS
AVCC
AVSS
RST/NMI
P1.x
XT2IN
XT2OUT
Unified
Clock
System
MCLK
ACLK
SMCLK
512KB
384KB
MID
Memory
Integrity
Detection
Flash
64KB
32KB
RAM
+2KB RAM
USB Buffer
+8B Backup
RAM
Power
Management
SYS
Watchdog
LDO,
SVM, SVS,
Brownout
P2 Port
Mapping
Controller
PA
P2.x
P3.x
PB
P4.x
P5.x
PC
P6.x
I/O Ports
P1, P2
2×8 I/Os
Interrupt
Capability
I/O Ports
P3, P4
2×8 I/Os
Interrupt
Capability
I/O Ports
P5, P6
2×8 I/Os
PA
1×16 I/Os
PB
1×16 I/Os
PC
1×16 I/Os
P7.x
PD
P8.x
I/O Ports
P7, P8
1×6 I/Os
1×8 I/Os
PD
1×14 I/Os
P9.x
I/O Ports
P9
1×8 I/Os
PE
1×8 I/Os
USCI0,
USCI1,
USCI2
Ax: UART,
IrDA, SPI
USB
Full-speed
Bx: SPI, I2C
CPUXV2
and
Working
Registers
EEM
(L: 8+2)
DMA
ADC12_A
JTAG,
SBW
Interface
PJ.x
TA0
MPY32
Timer_A
5 CC
Registers
Port PJ
TA1, TA2
2 Timer_A
each with
3 CC
Registers
TB0
Timer_B
7 CC
Registers
RTC_B
CRC16
Battery
Backup
System
Comp_B
12 bit
200 ksps
16 channels
(12 ext, 4 int)
Autoscan
6 Channel
DAC12_A
REF
LCD_B
12 bit
2 channels
voltage out
Reference
1.5 V, 2.0 V,
2.5 V
160
Segments
Functional Block Diagram – MSP430F6659, MSP430F6658
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
3
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
Figure 4-1 shows the functional block diagram for the MSP430F6459 and MSP430F6458 MCUs
XIN XOUT
DVCC
DVSS
AVCC
AVSS
RST/NMI
P1.x
XT2IN
XT2OUT
Unified
Clock
System
ACLK
SMCLK
512KB
384KB
Flash
MCLK
MID
Memory
Integrity
Detection
64KB
32KB
RAM
+2KB RAM
+8B Backup
RAM
Power
Management
SYS
Watchdog
LDO,
SVM, SVS,
Brownout
P2 Port
Mapping
Controller
PA
P2.x
P3.x
PB
P4.x
P5.x
PC
P6.x
I/O Ports
P1, P2
2×8 I/Os
Interrupt
Capability
I/O Ports
P3, P4
2×8 I/Os
Interrupt
Capability
I/O Ports
P5, P6
2×8 I/Os
PA
1×16 I/Os
PB
1×16 I/Os
PC
1×16 I/Os
P7.x
PD
P8.x
I/O Ports
P7, P8
1×6 I/Os
1×8 I/Os
PD
1×14 I/Os
PU.0
LDOO LDOI
PU.1
P9.x
I/O Ports
P9
1×8 I/Os
PE
1×8 I/Os
USCI0,
USCI1,
USCI2
Ax: UART,
IrDA, SPI
PU Port
LDO
Bx: SPI, I2C
CPUXV2
and
Working
Registers
EEM
(L: 8+2)
DMA
ADC12_A
TA0
JTAG,
SBW
Interface
MPY32
Port PJ
Timer_A
5 CC
Registers
TA1, TA2
2 Timer_A
each with
3 CC
Registers
TB0
Timer_B
7 CC
Registers
PJ.x
RTC_B
CRC16
12 bit
200 ksps
Comp_B
Battery
Backup
System
16 channels
(12 ext, 4 int)
Autoscan
6 Channel
DAC12_A
REF
LCD_B
12 bit
2 channels
voltage out
Reference
1.5 V, 2.0 V,
2.5 V
160
Segments
Figure 4-1. Functional Block Diagram – MSP430F6459, MSP430F6458
Figure 4-2 shows the functional block diagram for the MSP430F5659 and MSP430F5658 MCUs.
XIN XOUT
DVCC
DVSS
AVCC
AVSS
RST/NMI
P1.x
XT2IN
XT2OUT
Unified
Clock
System
MCLK
ACLK
SMCLK
512KB
384KB
Flash
MID
Memory
Integrity
Detection
64KB
32KB
RAM
+2KB RAM
USB Buffer
+8B Backup
RAM
Power
Management
SYS
Watchdog
LDO,
SVM, SVS,
Brownout
P2 Port
Mapping
Controller
PA
P2.x
P3.x
PB
P4.x
P5.x
PC
P6.x
I/O Ports
P1, P2
2×8 I/Os
Interrupt
Capability
I/O Ports
P3, P4
2×8 I/Os
Interrupt
Capability
I/O Ports
P5, P6
2×8 I/Os
PA
1×16 I/Os
PB
1×16 I/Os
PC
1×16 I/Os
P7.x
PD
P8.x
I/O Ports
P7, P8
1×6 I/Os
1×8 I/Os
PD
1×14 I/Os
P9.x
I/O Ports
P9
1×8 I/Os
PE
1×8 I/Os
USCI0,
USCI1,
USCI2
Ax: UART,
IrDA, SPI
USB
Full-speed
Bx: SPI, I2C
CPUXV2
and
Working
Registers
EEM
(L: 8+2)
DMA
ADC12_A
JTAG,
SBW
Interface
TA0
MPY32
Port PJ
PJ.x
Timer_A
5 CC
Registers
TA1, TA2
2 Timer_A
each with
3 CC
Registers
TB0
Timer_B
7 CC
Registers
RTC_B
CRC16
Battery
Backup
System
Comp_B
12 bit
200 ksps
16 channels
(12 ext, 4 int)
Autoscan
DAC12_A
REF
12 bit
2 channels
voltage out
Reference
1.5 V, 2.0 V,
2.5 V
6 Channel
Figure 4-2. Functional Block Diagram – MSP430F5659, MSP430F5658
4
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
Figure 4-3 shows the functional block diagram for the MSP430F5359 and MSP430F5358 MCUs.
XIN XOUT
DVCC
DVSS
AVCC
AVSS
RST/NMI
P1.x
XT2IN
XT2OUT
Unified
Clock
System
MCLK
ACLK
SMCLK
512KB
384KB
Flash
MID
Memory
Integrity
Detection
64KB
32KB
RAM
+2KB RAM
+8B Backup
RAM
Power
Management
SYS
Watchdog
LDO,
SVM, SVS,
Brownout
P2 Port
Mapping
Controller
PA
P2.x
P3.x
PB
P4.x
P5.x
PC
P6.x
I/O Ports
P1, P2
2×8 I/Os
Interrupt
Capability
I/O Ports
P3, P4
2×8 I/Os
Interrupt
Capability
I/O Ports
P5, P6
2×8 I/Os
PA
1×16 I/Os
PB
1×16 I/Os
PC
1×16 I/Os
P7.x
PD
P8.x
I/O Ports
P7, P8
1×6 I/Os
1×8 I/Os
PD
1×14 I/Os
PU.0
LDOO LDOI
PU.1
P9.x
I/O Ports
P9
1×8 I/Os
PE
1×8 I/Os
USCI0,
USCI1,
USCI2
Ax: UART,
IrDA, SPI
PU Port
LDO
Bx: SPI, I2C
CPUXV2
and
Working
Registers
EEM
(L: 8+2)
DMA
ADC12_A
TA0
JTAG,
SBW
Interface
PJ.x
MPY32
Timer_A
5 CC
Registers
Port PJ
TA1, TA2
2 Timer_A
each with
3 CC
Registers
TB0
Timer_B
7 CC
Registers
RTC_B
CRC16
Battery
Backup
System
Comp_B
12 bit
200 ksps
16 channels
(12 ext, 4 int)
Autoscan
DAC12_A
REF
12 bit
2 channels
voltage out
Reference
1.5 V, 2.0 V,
2.5 V
6 Channel
Figure 4-3. Functional Block Diagram – MSP430F5359, MSP430F5358
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
5
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
Table of Contents
1 Features............................................................................1
2 Applications..................................................................... 1
3 Description.......................................................................1
4 Functional Block Diagrams............................................ 3
5 Revision History.............................................................. 7
6 Device Comparison......................................................... 9
6.1 Related Products...................................................... 10
7 Terminal Configuration and Functions........................ 11
7.1 Pin Diagrams.............................................................11
7.2 Signal Descriptions................................................... 16
8 Specifications................................................................ 24
8.1 Absolute Maximum Ratings...................................... 24
8.2 ESD Ratings............................................................. 24
8.3 Recommended Operating Conditions.......................24
8.4 Active Mode Supply Current Into VCC Excluding
External Current.......................................................... 26
8.5 Low-Power Mode Supply Currents (Into VCC)
Excluding External Current..........................................26
8.6 Low-Power Mode With LCD Supply Currents
(Into VCC) Excluding External Current......................... 28
8.7 Thermal Resistance Characteristics......................... 28
8.8 Schmitt-Trigger Inputs – General-Purpose I/O..........29
8.9 Inputs – Ports P1, P2, P3, and P4............................ 29
8.10 Leakage Current – General-Purpose I/O................ 29
8.11 Outputs – General-Purpose I/O (Full Drive
Strength)......................................................................29
8.12 Outputs – General-Purpose I/O (Reduced
Drive Strength)............................................................ 30
8.13 Output Frequency – Ports P1, P2, and P3..............30
8.14 Typical Characteristics – Outputs, Reduced
Drive Strength (PxDS.y = 0)........................................ 31
8.15 Typical Characteristics – Outputs, Full Drive
Strength (PxDS.y = 1)................................................. 32
8.16 Crystal Oscillator, XT1, Low-Frequency Mode........33
8.17 Crystal Oscillator, XT2............................................ 34
8.18 Internal Very-Low-Power Low-Frequency
Oscillator (VLO)...........................................................35
8.19 Internal Reference, Low-Frequency Oscillator
(REFO)........................................................................ 35
8.20 DCO Frequency...................................................... 36
8.21 PMM, Brownout Reset (BOR).................................37
8.22 PMM, Core Voltage.................................................37
8.23 PMM, SVS High Side..............................................38
8.24 PMM, SVM High Side............................................. 38
8.25 PMM, SVS Low Side...............................................39
8.26 PMM, SVM Low Side.............................................. 39
8.27 Wake-up Times From Low-Power Modes...............39
8.28 Timer_A – Timers TA0, TA1, and TA2.....................40
8.29 Timer_B – Timer TB0..............................................40
8.30 Battery Backup........................................................40
8.31 USCI (UART Mode)................................................ 41
8.32 USCI (SPI Master Mode)........................................ 41
8.33 USCI (SPI Slave Mode).......................................... 43
8.34 USCI (I2C Mode)..................................................... 45
8.35 LCD_B Operating Characteristics...........................46
8.36 LCD_B Electrical Characteristics............................ 47
6
Submit Document Feedback
8.37 12-Bit ADC, Power Supply and Input Range
Conditions................................................................... 47
8.38 12-Bit ADC, Timing Parameters..............................48
8.39 12-Bit ADC, Linearity Parameters Using an
External Reference Voltage.........................................48
8.40 12-Bit ADC, Linearity Parameters Using AVCC
as Reference Voltage.................................................. 49
8.41 12-Bit ADC, Linearity Parameters Using the
Internal Reference Voltage..........................................49
8.42 12-Bit ADC, Temperature Sensor and Built-In
VMID ............................................................................ 49
8.43 REF, External Reference........................................ 50
8.44 REF, Built-In Reference.......................................... 51
8.45 12-Bit DAC, Supply Specifications..........................52
8.46 12-Bit DAC, Linearity Specifications....................... 53
8.47 12-Bit DAC, Output Specifications.......................... 54
8.48 12-Bit DAC, Reference Input Specifications........... 55
8.49 12-Bit DAC, Dynamic Specifications.......................55
8.50 12-Bit DAC, Dynamic Specifications (Continued)... 56
8.51 Comparator_B.........................................................57
8.52 Ports PU.0 and PU.1...............................................58
8.53 USB Output Ports DP and DM................................58
8.54 USB Input Ports DP and DM...................................58
8.55 USB-PWR (USB Power System)............................ 59
8.56 USB-PLL (USB Phase Locked Loop)..................... 59
8.57 Flash Memory......................................................... 60
8.58 JTAG and Spy-Bi-Wire Interface.............................60
9 Detailed Description......................................................61
9.1 CPU ......................................................................... 61
9.2 Instruction Set........................................................... 62
9.3 Operating Modes...................................................... 63
9.4 Interrupt Vector Addresses....................................... 64
9.5 Memory Organization................................................66
9.6 Bootloader (BSL)...................................................... 67
9.7 JTAG Operation........................................................ 68
9.8 Flash Memory .......................................................... 68
9.9 Memory Integrity Detection (MID) ............................ 69
9.10 RAM ....................................................................... 69
9.11 Backup RAM .......................................................... 69
9.12 Peripherals..............................................................70
9.13 Input/Output Diagrams............................................95
9.14 Device Descriptors................................................121
10 Device and Documentation Support........................122
10.1 Getting Started and Next Steps............................ 122
10.2 Device Nomenclature............................................122
10.3 Tools and Software............................................... 124
10.4 Documentation Support........................................ 126
10.5 Related Links........................................................ 128
10.6 Community Resources..........................................128
10.7 Trademarks........................................................... 128
10.8 Electrostatic Discharge Caution............................128
10.9 Export Control Notice............................................128
10.10 Glossary..............................................................128
11 Mechanical, Packaging, and Orderable
Information.................................................................. 129
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
5 Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.
Changed from revision D to revision E
Changes from September 27, 2018 to September 11, 2020
Page
• Updated the numbering for sections, tables, figures, and cross-references throughout the document..............1
• Added nFBGA package (ZCA) information throughout document......................................................................1
• Added note about status change for all orderable part numbers in the ZQW package in Device Information .. 1
• Removed package options that are no longer available (MSP430F6658 and MSP430F6458 in the ZQW
package) in Table 6-1, Device Comparison ....................................................................................................... 9
• Removed packge options that are no longer available (MSP430F6658IZQW and MSP430F6458IZQW) from
the caption of Figure 7-5, 113-Pin ZQW Package (Top View) – MSP430F6659IZQW, MSP430F6459IZQW,
MSP430F5659IZQW, MSP430F5658IZQW, MSP430F5359IZQW, MSP430F5358IZQW .............................. 11
• Changed the MAX value of the IERASE and IMERASE, IBANK parameters in Section 8.57, Flash Memory ......... 60
• Corrected the connection of the P7SEL.x signal in Figure 9-11, Port P7 (P7.4 to P7.7) Diagram .................110
Changes from revision C to revision D
Changes from October 22, 2013 to September 26, 2018
Page
• Format and organization changes throughout document, including addition of section numbering................... 1
• Added Device Information table..........................................................................................................................1
• Added Section 4 and moved all functional block diagrams to it..........................................................................3
• Added Section 6.1, Related Products ..............................................................................................................10
• Added "Port U is supplied the LDOO rail" to the description of PU.0 and PU.1 in Section 7.2, Signal
Descriptions ..................................................................................................................................................... 16
• Added Section 8 and moved all electrical specifications to it........................................................................... 24
• Added typical conditions statements at the beginning of Section 8, Specifications .........................................24
• Added Section 8.2, ESD Ratings .....................................................................................................................24
• Moved Section 8.7, Thermal Resistance Characteristics ................................................................................ 28
• Changed the TYP value of the CL,eff parameter with Test Conditions of "XTS = 0, XCAPx = 0" from 2 pF to
1 pF in Section 8.16, Crystal Oscillator, XT1, Low-Frequency Mode .............................................................. 33
• Changed the MIN value of the V(DVCC_BOR_hys) parameter from 60 mV to 50 mV in Section 8.21, PMM,
Brownout Reset (BOR) .................................................................................................................................... 37
• Updated notes (1) and (2) and added note (3) in Section 8.27, Wake-up Times From Low-Power Modes and
Reset ............................................................................................................................................................... 39
• Corrected typo in the description of the VBAT3 parameter: changed "VBAT3 ≠ VBAT/3" to "VBAT3 ≈ VBAT/3" in
Section 8.30, Battery Backup .......................................................................................................................... 40
• Removed ADC12DIV from the formula for the TYP value in the second row of the tCONVERT parameter in
Section 8.38, 12-Bit ADC, Timing Parameters, because ADC12CLK is after division..................................... 48
• Added the TCSENSOR parameter in Section 8.42, 12-Bit ADC, Temperature Sensor and Built-In VMID ...........49
• Changed the note that starts "The temperature sensor offset ..." from "...offset can be as much as ±20°C" to
"...offset can be significant"...............................................................................................................................49
• Changed DAC12xDAT to DAC12_xDAT in IL(DAC12) Test Conditions in Section 8.47, 12-Bit DAC, Output
Specifications ...................................................................................................................................................54
• Removed note from "Ri(VREF+), Ri(VeREF+)" parameter in Section 8.48, 12-Bit DAC, Reference Input
Specifications ...................................................................................................................................................55
• Changed from fDAC12_0OUT to fDAC12_1OUT in the first row of the Test Conditions for the "Channel-to-channel
crosstalk" parameter in Section 8.50, 12-Bit DAC, Dynamic Specifications (Continued) ................................ 56
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
7
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Changed the value of DAC12_xDAT from 7F7h to F7Fh and changed the x-axis label from fToggle to 1/fToggle in
Figure 8-22, Crosstalk Test Conditions ............................................................................................................56
Section 8.51, Comparator_B: Added second row for the tEN_CMP parameter with Test Conditions of
"CBPWRMD = 10" and MAX value of 100 µs; Removed "CBPWRMD = 10" option in first row of Test
Conditions.........................................................................................................................................................57
Added note on RPUR in Section 8.55, USB-PWR (USB Power System) ......................................................... 59
Removed RTC_B from LPM4.5 wake-up options in Section 9.3, Operating Modes ....................................... 63
Throughout document, changed "bootstrap loader" to "bootloader".................................................................67
Added the paragraph that begins "Using the MSP430 RTC_B Module With Battery Backup Supply describes
how to..." .......................................................................................................................................................... 72
Corrected spelling of NMIIFG in Table 9-12, System Module Interrupt Vector Registers ................................ 72
Corrected register names (added "USB" prefix as required) in Table 9-53, USB Control Registers ............... 80
Added P7SEL.2 and XT2BYPASS inputs with AND and OR gates in Figure 9-10, Port P7 (P7.3) Diagram 109
Changed P7SEL.3 column from X to 0 for "P7.3 (I/O)" rows in Table 9-63, Port P7 (P7.2 and P7.3) Pin
Functions ....................................................................................................................................................... 109
Updated Table 9-67, Port PU.0, PU.1 Functions ............................................................................................116
Added Section 9.13.14, Port PU.0, PU.1 Ports (F645x, F535x) .................................................................... 118
Added Section 10, Device and Documentation Support, and moved Development Tools Support, Device and
Development Tool Nomenclature, Trademarks, and Electrostatic Discharge Caution sections to it.............. 122
Replaced former section Development Tools Support with Section 10.3, Tools and Software ..................... 124
Added Section 11, Mechanical, Packaging, and Orderable Information ........................................................129
The following table lists changes to this data sheet from the original release to revision C.
REVISION
COMMENTS
Added Section 2
Removed Ordering Information table—refer to the Package Option Addendum
Table 9-12, Corrected Interrupt Event names for PMMSWBOR (BOR) and PMMSWPOR (POR)
SLAS700C
October 2013
Table 9-20, Added PM5CTL0 register
Section 8.3, Added note to CVCORE
Section 8.8, Added note to RPull
Section 8.54, Corrected VIL and VIH limits
Ordering Information, Corrected package type for PZ package (LQFP)
Changed functional block diagrams
SLAS700B
June 2013
Table 7-1, Added note to the RST/NMI/SBWTDIO pin
Added Development Tools Support and Device and Development Tool Nomenclature
Section 8.3, Fixed typo in fSYSTEM conditions
Section 8.20, Added note (1)
8
SLAS700A
December 2012
PRODUCTION DATA release
SLAS700
October 2012
PRODUCT PREVIEW release
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
6 Device Comparison
Table 6-1 summarizes the available family members.
Table 6-1. Device Comparison
FLASH
(KB)(2)
SRAM
(KB)(5)
Timer_A(3)
Timer_B(4)
USCI_:
UART, IrDA,
SPI
USCI_:B:
SPI, I2C
ADC12_A
(channels)
DAC12_A
(channels)
Comp_B
(channels)
I/O
USB
LCD
PACKAGE
MSP430F6659
512
64 + 2
5, 3, 3
7
3
3
12 ext, 4 int
2
12
74
Yes
Yes
100 PZ,
113 ZCA,
113 ZQW
MSP430F6658
384
32 + 2
5, 3, 3
7
3
3
12 ext, 4 int
2
12
74
Yes
Yes
100 PZ
DEVICE(1)
MSP430F6459
512
66
5, 3, 3
7
3
3
12 ext, 4 int
2
12
74
No
Yes
100 PZ,
113 ZCA,
113 ZQW
MSP430F6458
384
34
5, 3, 3
7
3
3
12 ext, 4 int
2
12
74
No
Yes
100 PZ
MSP430F5659
512
64 + 2
5, 3, 3
7
3
3
12 ext, 4 int
2
12
74
Yes
No
100 PZ,
113 ZCA,
113 ZQW
MSP430F5658
384
32 + 2
5, 3, 3
7
3
3
12 ext, 4 int
2
12
74
Yes
No
100 PZ,
113 ZCA,
113 ZQW
MSP430F5359
512
66
5, 3, 3
7
3
3
12 ext, 4 int
2
12
74
No
No
100 PZ,
113 ZCA,
113 ZQW
MSP430F5358
384
34
5, 3, 3
7
3
3
12 ext, 4 int
2
12
74
No
No
100 PZ,
113 ZCA,
113 ZQW
(1)
(2)
(3)
(4)
(5)
For the most current device, package, and ordering information, see the Package Option Addendum in Section 11, or see the TI website at www.ti.com.
Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/packaging.
Each number in the sequence represents an instantiation of Timer_A with its associated number of capture compare registers and PWM output generators available. For example, a
number sequence of 3, 5 would represent two instantiations of Timer_A, the first instantiation having 3 and the second instantiation having 5 capture compare registers and PWM output
generators, respectively.
Each number in the sequence represents an instantiation of Timer_B with its associated number of capture compare registers and PWM output generators available. For example, a
number sequence of 3, 5 would represent two instantiations of Timer_B, the first instantiation having 3 and the second instantiation having 5 capture compare registers and PWM output
generators, respectively.
The additional 2KB of USB SRAM that is listed can be used as general-purpose SRAM when USB is not in use.
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659 MSP430F5658 MSP430F5359 MSP430F5358
9
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
6.1 Related Products
For information about other devices in this family of products or related products, see the following links.
16-bit and 32-bit microcontrollers
High-performance, low-power solutions to enable the autonomous future
Products for MSP430 ultra-low-power sensing & measurement MCUs
One platform. One ecosystem. Endless possibilities.
Companion products for MSP430F6659
Review products that are frequently purchased or used with this product.
TI reference designs
Find reference designs leveraging the best in TI technology to solve your system-level challenges
10
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
7 Terminal Configuration and Functions
7.1 Pin Diagrams
77
76
78
80
79
82
81
83
84
86
85
87
91
90
89
88
92
94
93
95
98
97
96
3
4
73
72
71
5
6
7
70
69
68
8
9
10
67
66
65
11
12
13
64
MSP430F6659
MSP430F6658
14
63
62
DVSS1
VCORE
P9.7/S0
P9.6/UCB2SOMI/UCB2SCL/S1
P9.5/UCB2SIMO/UCB2SDA/S2
P9.4/UCB2CLK/UCA2STE/S3
P9.3/UCA2RXD/UCA2SOMI/S4
P9.2/UCA2TXD/UCA2SIMO/S5
P9.1/UCB2STE/UCA2CLK/S6
P9.0/S7
P8.7/S8
P8.6/UCB1SOMI/UCB1SCL/S9
P8.5/UCB1SIMO/UCB1SDA/S10
DVCC2
DVSS2
P8.4/UCB1CLK/UCA1STE/S11
P8.3/UCA1RXD/UCA1SOMI/S12
P8.2/UCA1TXD/UCA1SIMO/S13
P8.1/UCB1STE/UCA1CLK/S14
P8.0/TB0CLK/S15
P4.7/TB0OUTH/SVMOUT/S16
P4.6/TB0.6/S17
P4.5/TB0.5/S18
P4.4/TB0.4/S19
P4.3/TB0.3/S20
P4.2/TB0.2/S21
P4.1/TB0.1/S22
50
48
49
47
45
46
44
52
51
42
43
53
24
25
41
23
38
55
54
39
40
56
21
22
36
37
20
35
58
57
33
34
59
18
19
32
17
30
31
61
60
28
29
15
16
26
XOUT
AVSS2
P5.6/ADC12CLK/DMAE0
P2.0/P2MAP0
P2.1/P2MAP1
P2.2/P2MAP2
P2.3/P2MAP3
P2.4/P2MAP4
P2.5/P2MAP5
P2.6/P2MAP6/R03
P2.7/P2MAP7/LCDREF/R13
DVCC1
75
74
2
P5.2/R23
LCDCAP/R33
COM0
P5.3/COM1/S42
P5.4/COM2/S41
P5.5/COM3/S40
P1.0/TA0CLK/ACLK/S39
P1.1/TA0.0/S38
P1.2/TA0.1/S37
P1.3/TA0.2/S36
P1.4/TA0.3/S35
P1.5/TA0.4/S34
P1.6/TA0.1/S33
P1.7/TA0.2/S32
P3.0/TA1CLK/CBOUT/S31
P3.1/TA1.0/S30
P3.2/TA1.1/S29
P3.3/TA1.2/S28
P3.4/TA2CLK/SMCLK/S27
P3.5/TA2.0/S26
P3.6/TA2.1/S25
P3.7/TA2.2/S24
P4.0/TB0.0/S23
XIN
1
27
P6.4/CB4/A4
P6.5/CB5/A5
P6.6/CB6/A6/DAC0
P6.7/CB7/A7/DAC1
P7.4/CB8/A12
P7.5/CB9/A13
P7.6/CB10/A14/DAC0
P7.7/CB11/A15/DAC1
P5.0/VREF+/VeREF+
P5.1/VREF−/VeREF−
AVCC1
AVSS1
100
99
P6.3/CB3/A3
P6.2/CB2/A2
P6.1/CB1/A1
P6.0/CB0/A0
RST/NMI/SBWTDIO
PJ.3/TCK
PJ.2/TMS
PJ.1/TDI/TCLK
PJ.0/TDO
TEST/SBWTCK
DVSS3
DVCC3
P5.7/RTCCLK
VBAT
VBAK
P7.3/XT2OUT
P7.2/XT2IN
AVSS3
V18
VUSB
VBUS
PU.1/DM
PUR
PU.0/DP
VSSU
Figure 7-1 shows the pinout of the 100-pin PZ package for the MSP430F6659 and MSP430F6658 devices.
Figure 7-1. 100-Pin PZ Package (Top View) – MSP430F6659IPZ, MSP430F6658IPZ
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
11
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
77
76
78
80
79
82
81
83
84
86
85
87
91
90
89
88
92
94
93
95
98
97
96
1
75
74
2
3
4
73
72
71
5
6
7
70
69
68
8
9
10
67
66
65
11
12
13
64
MSP430F6459
MSP430F6458
14
63
62
50
48
49
47
45
46
44
P9.7/S0
P9.6/UCB2SOMI/UCB2SCL/S1
P9.5/UCB2SIMO/UCB2SDA/S2
P9.4/UCB2CLK/UCA2STE/S3
P9.3/UCA2RXD/UCA2SOMI/S4
P9.2/UCA2TXD/UCA2SIMO/S5
P9.1/UCB2STE/UCA2CLK/S6
P9.0/S7
P8.7/S8
P8.6/UCB1SOMI/UCB1SCL/S9
P8.5/UCB1SIMO/UCB1SDA/S10
DVCC2
DVSS2
P8.4/UCB1CLK/UCA1STE/S11
P8.3/UCA1RXD/UCA1SOMI/S12
P8.2/UCA1TXD/UCA1SIMO/S13
P8.1/UCB1STE/UCA1CLK/S14
P8.0/TB0CLK/S15
P4.7/TB0OUTH/SVMOUT/S16
P4.6/TB0.6/S17
P4.5/TB0.5/S18
P4.4/TB0.4/S19
P4.3/TB0.3/S20
P4.2/TB0.2/S21
P4.1/TB0.1/S22
P5.2/R23
LCDCAP/R33
COM0
P5.3/COM1/S42
P5.4/COM2/S41
P5.5/COM3/S40
P1.0/TA0CLK/ACLK/S39
P1.1/TA0.0/S38
P1.2/TA0.1/S37
P1.3/TA0.2/S36
P1.4/TA0.3/S35
P1.5/TA0.4/S34
P1.6/TA0.1/S33
P1.7/TA0.2/S32
P3.0/TA1CLK/CBOUT/S31
P3.1/TA1.0/S30
P3.2/TA1.1/S29
P3.3/TA1.2/S28
P3.4/TA2CLK/SMCLK/S27
P3.5/TA2.0/S26
P3.6/TA2.1/S25
P3.7/TA2.2/S24
P4.0/TB0.0/S23
DVSS1
VCORE
42
43
52
51
41
53
24
25
38
23
39
40
55
54
36
37
56
21
22
35
20
33
34
58
57
32
59
18
19
30
31
17
28
29
61
60
26
15
16
27
P6.4/CB4/A4
P6.5/CB5/A5
P6.6/CB6/A6/DAC0
P6.7/CB7/A7/DAC1
P7.4/CB8/A12
P7.5/CB9/A13
P7.6/CB10/A14/DAC0
P7.7/CB11/A15/DAC1
P5.0/VREF+/VeREF+
P5.1/VREF−/VeREF−
AVCC1
AVSS1
XIN
XOUT
AVSS2
P5.6/ADC12CLK/DMAE0
P2.0/P2MAP0
P2.1/P2MAP1
P2.2/P2MAP2
P2.3/P2MAP3
P2.4/P2MAP4
P2.5/P2MAP5
P2.6/P2MAP6/R03
P2.7/P2MAP7/LCDREF/R13
DVCC1
100
99
P6.3/CB3/A3
P6.2/CB2/A2
P6.1/CB1/A1
P6.0/CB0/A0
RST/NMI/SBWTDIO
PJ.3/TCK
PJ.2/TMS
PJ.1/TDI/TCLK
PJ.0/TDO
TEST/SBWTCK
DVSS3
DVCC3
P5.7/RTCCLK
VBAT
VBAK
P7.3/XT2OUT
P7.2/XT2IN
AVSS3
NC
LDOO
LDOI
PU.1
NC
PU.0
VSSU
Figure 7-1 shows the pinout of the 100-pin PZ package for the MSP430F6459 and MSP430F6458 devices.
Figure 7-2. 100-Pin PZ Package (Top View) – MSP430F6459IPZ, MSP430F6458IPZ
12
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
77
76
78
80
79
82
81
83
84
86
85
87
91
90
89
88
92
94
93
95
98
97
96
1
75
74
2
3
4
73
72
71
5
6
7
70
69
68
8
9
10
67
66
65
11
12
13
64
MSP430F5659
MSP430F5658
14
63
62
50
48
49
47
45
46
44
P9.7
P9.6/UCB2SOMI/UCB2SCL
P9.5/UCB2SIMO/UCB2SDA
P9.4/UCB2CLK/UCA2STE
P9.3/UCA2RXD/UCA2SOMI
P9.2/UCA2TXD/UCA2SIMO
P9.1/UCB2STE/UCA2CLK
P9.0
P8.7
P8.6/UCB1SOMI/UCB1SCL
P8.5/UCB1SIMO/UCB1SDA
DVCC2
DVSS2
P8.4/UCB1CLK/UCA1STE
P8.3/UCA1RXD/UCA1SOMI
P8.2/UCA1TXD/UCA1SIMO
P8.1/UCB1STE/UCA1CLK
P8.0/TB0CLK
P4.7/TB0OUTH/SVMOUT
P4.6/TB0.6
P4.5/TB0.5
P4.4/TB0.4
P4.3/TB0.3
P4.2/TB0.2
P4.1/TB0.1
P5.2
DVSS
DNC
P5.3
P5.4
P5.5
P1.0/TA0CLK/ACLK
P1.1/TA0.0
P1.2/TA0.1
P1.3/TA0.2
P1.4/TA0.3
P1.5/TA0.4
P1.6/TA0.1
P1.7/TA0.2
P3.0/TA1CLK/CBOUT
P3.1/TA1.0
P3.2/TA1.1
P3.3/TA1.2
P3.4/TA2CLK/SMCLK
P3.5/TA2.0
P3.6/TA2.1
P3.7/TA2.2
P4.0/TB0.0
DVSS1
VCORE
42
43
52
51
41
53
24
25
38
23
39
40
55
54
36
37
56
21
22
35
20
33
34
58
57
32
59
18
19
30
31
17
28
29
61
60
26
15
16
27
P6.4/CB4/A4
P6.5/CB5/A5
P6.6/CB6/A6/DAC0
P6.7/CB7/A7/DAC1
P7.4/CB8/A12
P7.5/CB9/A13
P7.6/CB10/A14/DAC0
P7.7/CB11/A15/DAC1
P5.0/VREF+/VeREF+
P5.1/VREF−/VeREF−
AVCC1
AVSS1
XIN
XOUT
AVSS2
P5.6/ADC12CLK/DMAE0
P2.0/P2MAP0
P2.1/P2MAP1
P2.2/P2MAP2
P2.3/P2MAP3
P2.4/P2MAP4
P2.5/P2MAP5
P2.6/P2MAP6
P2.7/P2MAP7
DVCC1
100
99
P6.3/CB3/A3
P6.2/CB2/A2
P6.1/CB1/A1
P6.0/CB0/A0
RST/NMI/SBWTDIO
PJ.3/TCK
PJ.2/TMS
PJ.1/TDI/TCLK
PJ.0/TDO
TEST/SBWTCK
DVSS3
DVCC3
P5.7/RTCCLK
VBAT
VBAK
P7.3/XT2OUT
P7.2/XT2IN
AVSS3
V18
VUSB
VBUS
PU.1/DM
PUR
PU.0/DP
VSSU
Figure 7-3 shows the pinout of the 100-pin PZ package for the MSP430F5659 and MSP430F5658 devices.
Figure 7-3. 100-Pin PZ Package (Top View) – MSP430F5659IPZ, MSP430F5658IPZ
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
13
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
77
76
78
80
79
82
81
83
84
86
85
87
91
90
89
88
92
94
93
95
98
97
96
1
75
74
2
3
4
73
72
71
5
6
7
70
69
68
8
9
10
67
66
65
11
12
13
64
MSP430F5359
MSP430F5358
14
63
62
50
48
49
47
45
46
44
P9.7
P9.6/UCB2SOMI/UCB2SCL
P9.5/UCB2SIMO/UCB2SDA
P9.4/UCB2CLK/UCA2STE
P9.3/UCA2RXD/UCA2SOMI
P9.2/UCA2TXD/UCA2SIMO
P9.1/UCB2STE/UCA2CLK
P9.0
P8.7
P8.6/UCB1SOMI/UCB1SCL
P8.5/UCB1SIMO/UCB1SDA
DVCC2
DVSS2
P8.4/UCB1CLK/UCA1STE
P8.3/UCA1RXD/UCA1SOMI
P8.2/UCA1TXD/UCA1SIMO
P8.1/UCB1STE/UCA1CLK
P8.0/TB0CLK
P4.7/TB0OUTH/SVMOUT
P4.6/TB0.6
P4.5/TB0.5
P4.4/TB0.4
P4.3/TB0.3
P4.2/TB0.2
P4.1/TB0.1
P5.2
DVSS
DNC
P5.3
P5.4
P5.5
P1.0/TA0CLK/ACLK
P1.1/TA0.0
P1.2/TA0.1
P1.3/TA0.2
P1.4/TA0.3
P1.5/TA0.4
P1.6/TA0.1
P1.7/TA0.2
P3.0/TA1CLK/CBOUT
P3.1/TA1.0
P3.2/TA1.1
P3.3/TA1.2
P3.4/TA2CLK/SMCLK
P3.5/TA2.0
P3.6/TA2.1
P3.7/TA2.2
P4.0/TB0.0
DVSS1
VCORE
42
43
52
51
41
53
24
25
38
23
39
40
55
54
36
37
56
21
22
35
20
33
34
58
57
32
59
18
19
30
31
17
28
29
61
60
26
15
16
27
P6.4/CB4/A4
P6.5/CB5/A5
P6.6/CB6/A6/DAC0
P6.7/CB7/A7/DAC1
P7.4/CB8/A12
P7.5/CB9/A13
P7.6/CB10/A14/DAC0
P7.7/CB11/A15/DAC1
P5.0/VREF+/VeREF+
P5.1/VREF−/VeREF−
AVCC1
AVSS1
XIN
XOUT
AVSS2
P5.6/ADC12CLK/DMAE0
P2.0/P2MAP0
P2.1/P2MAP1
P2.2/P2MAP2
P2.3/P2MAP3
P2.4/P2MAP4
P2.5/P2MAP5
P2.6/P2MAP6
P2.7/P2MAP7
DVCC1
100
99
P6.3/CB3/A3
P6.2/CB2/A2
P6.1/CB1/A1
P6.0/CB0/A0
RST/NMI/SBWTDIO
PJ.3/TCK
PJ.2/TMS
PJ.1/TDI/TCLK
PJ.0/TDO
TEST/SBWTCK
DVSS3
DVCC3
P5.7/RTCCLK
VBAT
VBAK
P7.3/XT2OUT
P7.2/XT2IN
AVSS3
NC
LDOO
LDOI
PU.1
NC
PU.0
VSSU
Figure 7-4 shows the pinout of the 100-pin PZ package for the MSP430F5359 and MSP430F5358 devices.
Figure 7-4. 100-Pin PZ Package (Top View) – MSP430F5359IPZ, MSP430F5358IPZ
14
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
Figure 7-4 shows the pinout of the 113-pin ZCA or ZQW package. See Section 7.2 for the pin assignments.
A1
A2
A3
A4
A5
A6
A7
A8
A9
A10
A11
A12
B1
B2
B3
B4
B5
B6
B7
B8
B9
B10
B11
B12
C1
C2
C3
C11
C12
D1
D2
D4
D5
D6
D7
D8
D9
D11
D12
E1
E2
E4
E5
E6
E7
E8
E9
E11
E12
F1
F2
F4
F5
F8
F9
F11
F12
G1
G2
G4
G5
G8
G9
G11
G12
H1
H2
H4
H5
H6
H7
H8
H9
H11
H12
J1
J2
J4
J5
J6
J7
J8
J9
J11
J12
K1
K2
K11
K12
L1
L2
L3
L4
L5
L6
L7
L8
L9
L10
L11
L12
M1
M2
M3
M4
M5
M6
M7
M8
M9
M10
M11
M12
Figure 7-5. 113-Pin ZCA or ZQW Package (Top View) – MSP430F6659IZCA, MSP430F6459IZCA,
MSP430F5659IZCA, MSP430F5658IZCA, MSP430F5359IZCA, MSP430F5358IZCA, MSP430F6659IZQW,
MSP430F6459IZQW, MSP430F5659IZQW, MSP430F5658IZQW, MSP430F5359IZQW, MSP430F5358IZQW
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
15
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
7.2 Signal Descriptions
Table 7-1 describes the signals for all device variants and package options.
Table 7-1. Signal Descriptions
TERMINAL
NO.
NAME
PZ
I/O(1)
DESCRIPTION
ZCA,
ZQW
General-purpose digital I/O
P6.4/CB4/A4
1
A1
I/O
Comparator_B input CB4
Analog input A4 for ADC
General-purpose digital I/O
P6.5/CB5/A5
2
B2
I/O
Comparator_B input CB5
Analog input A5 for ADC
General-purpose digital I/O
P6.6/CB6/A6/DAC0
3
B1
I/O
Comparator_B input CB6
Analog input A6 for ADC
DAC12.0 output
General-purpose digital I/O
P6.7/CB7/A7/DAC1
4
C2
I/O
Comparator_B input CB7
Analog input A7 for ADC
DAC12.1 output
General-purpose digital I/O
P7.4/CB8/A12
5
C1
I/O
Comparator_B input CB8
Analog input A12 for ADC
General-purpose digital I/O
P7.5/CB9/A13
6
C3
I/O
Comparator_B input CB9
Analog input A13 for ADC
General-purpose digital I/O
P7.6/CB10/A14/DAC0
7
D2
I/O
Comparator_B input CB10
Analog input A14 for ADC
DAC12.0 output
General-purpose digital I/O
P7.7/CB11/A15/DAC1
8
D1
I/O
Comparator_B input CB11
Analog input A15 for ADC
DAC12.1 output
General-purpose digital I/O
P5.0/VREF+/VeREF+
9
D4
I/O
Output of reference voltage to the ADC
Input for an external reference voltage to the ADC
General-purpose digital I/O
P5.1/VREF-/VeREF-
10
E4
AVCC1
11
E1,
E2
Analog power supply
AVSS1
12
F2
Analog ground supply
XIN
13
F1
16
Submit Document Feedback
I/O
I
Negative terminal for the ADC's reference voltage for both sources, the internal
reference voltage, or an external applied reference voltage
Input terminal for crystal oscillator XT1
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
Table 7-1. Signal Descriptions (continued)
TERMINAL
NO.
NAME
I/O(1)
PZ
ZCA,
ZQW
XOUT
14
G1
AVSS2
15
G2
O
DESCRIPTION
Output terminal of crystal oscillator XT1
Analog ground supply
General-purpose digital I/O
P5.6/ADC12CLK/DMAE0
16
H1
I/O
Conversion clock output ADC
DMA external trigger input
P2.0/P2MAP0
17
G4
I/O
P2.1/P2MAP1
18
H2
I/O
P2.2/P2MAP2
19
J1
I/O
P2.3/P2MAP3
20
H4
I/O
P2.4/P2MAP4
21
J2
I/O
P2.5/P2MAP5
22
K1
I/O
General-purpose digital I/O with port interrupt and mappable secondary function
Default mapping: USCI_B0 SPI slave transmit enable; USCI_A0 clock input/output
General-purpose digital I/O with port interrupt and mappable secondary function
Default mapping: USCI_B0 SPI slave in, master out; USCI_B0 I2C data
General-purpose digital I/O with port interrupt and mappable secondary function
Default mapping: USCI_B0 SPI slave out, master in; USCI_B0 I2C clock
General-purpose digital I/O with port interrupt and mappable secondary function
Default mapping: USCI_B0 clock input/output; USCI_A0 SPI slave transmit enable
General-purpose digital I/O with port interrupt and mappable secondary function
Default mapping: USCI_A0 UART transmit data; USCI_A0 SPI slave in, master out
General-purpose digital I/O with port interrupt and mappable secondary function
Default mapping: USCI_A0 UART receive data; USCI_A0 slave out, master in
General-purpose digital I/O with port interrupt and mappable secondary function
P2.6/P2MAP6/R03
23
K2
I/O
Default mapping: no secondary function
Input/output port of lowest analog LCD voltage (V5) (not available on F5659,
F5658, F5359, F5358 devices)
General-purpose digital I/O with port interrupt and mappable secondary function
Default mapping: no secondary function
P2.7/P2MAP7/LCDREF/R13
24
L2
I/O
External reference voltage input for regulated LCD voltage (not available on F5659,
F5658, F5359, F5358 devices)
Input/output port of third most positive analog LCD voltage (V3 or V4) (not
available on F5659, F5658, F5359, F5358 devices)
DVCC1
25
L1
Digital power supply
DVSS1
26
M1
Digital ground supply
VCORE(2)
27
M2
Regulated core power supply (internal use only, no external current loading)
P5.2/R23
28
L3
I/O
LCDCAP/R33
29
M3
I/O
DVSS
29
M3
COM0
30
J4
DNC
30
J4
General-purpose digital I/O
Input/output port of second most positive analog LCD voltage (V2) (not available
on F5659, F5658, F5359, F5358 devices)
LCD capacitor connection (not available on F5659, F5658, F5359, F5358 devices)
Copyright © 2020 Texas Instruments Incorporated
Input/output port of most positive analog LCD voltage (V1) (not available on F5659,
F5658, F5359, F5358 devices)
Digital ground supply (not available on F6659, F6658, F6459, and F6458 devices)
O
LCD common output COM0 for LCD backplane (not available on F5659, F5658,
F5359, F5358 devices)
Do not connect. TI strongly recommends leaving this terminal open (not available
on F6659, F6658, F6459, and F6458 devices)
Submit Document Feedback
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
17
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
Table 7-1. Signal Descriptions (continued)
TERMINAL
NO.
NAME
PZ
I/O(1)
DESCRIPTION
ZCA,
ZQW
General-purpose digital I/O
P5.3/COM1/S42
31
L4
I/O
LCD common output COM1 for LCD backplane (not available on F5659, F5658,
F5359, F5358 devices)
LCD segment output S42 (not available on F5659, F5658, F5359, F5358 devices)
General-purpose digital I/O
P5.4/COM2/S41
32
M4
I/O
LCD common output COM2 for LCD backplane (not available on F5659, F5658,
F5359, F5358 devices)
LCD segment output S41 (not available on F5659, F5658, F5359, F5358 devices)
General-purpose digital I/O
P5.5/COM3/S40
33
J5
I/O
LCD common output COM3 for LCD backplane (not available on F5659, F5658,
F5359, F5358 devices)
LCD segment output S40 (not available on F5659, F5658, F5359, F5358 devices)
General-purpose digital I/O with port interrupt
P1.0/TA0CLK/ACLK/S39
34
L5
I/O
Timer TA0 clock signal TACLK input
ACLK output (divided by 1, 2, 4, 8, 16, or 32)
LCD segment output S39 (not available on F5659, F5658, F5359, F5358 devices)
General-purpose digital I/O with port interrupt
P1.1/TA0.0/S38
35
M5
I/O
Timer TA0 CCR0 capture: CCI0A input, compare: Out0 output
BSL transmit output
LCD segment output S38 (not available on F5659, F5658, F5359, F5358 devices)
General-purpose digital I/O with port interrupt
P1.2/TA0.1/S37
36
J6
I/O
Timer TA0 CCR1 capture: CCI1A input, compare: Out1 output
BSL receive input
LCD segment output S37 (not available on F5659, F5658, F5359, F5358 devices)
General-purpose digital I/O with port interrupt
P1.3/TA0.2/S36
37
H6
I/O
Timer TA0 CCR2 capture: CCI2A input, compare: Out2 output
LCD segment output S36 (not available on F5659, F5658, F5359, F5358 devices)
General-purpose digital I/O with port interrupt
P1.4/TA0.3/S35
38
M6
I/O
Timer TA0 CCR3 capture: CCI3A input compare: Out3 output
LCD segment output S35 (not available on F5659, F5658, F5359, F5358 devices)
General-purpose digital I/O with port interrupt
P1.5/TA0.4/S34
39
L6
I/O
Timer TA0 CCR4 capture: CCI4A input, compare: Out4 output
LCD segment output S34 (not available on F5659, F5658, F5359, F5358 devices)
General-purpose digital I/O with port interrupt
P1.6/TA0.1/S33
40
J7
I/O
Timer TA0 CCR1 capture: CCI1B input, compare: Out1 output
LCD segment output S33 (not available on F5659, F5658, F5359, F5358 devices)
General-purpose digital I/O with port interrupt
P1.7/TA0.2/S32
41
M7
I/O
Timer TA0 CCR2 capture: CCI2B input, compare: Out2 output
LCD segment output S32 (not available on F5659, F5658, F5359, F5358 devices)
18
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
Table 7-1. Signal Descriptions (continued)
TERMINAL
NO.
NAME
PZ
I/O(1)
DESCRIPTION
ZCA,
ZQW
General-purpose digital I/O with port interrupt
P3.0/TA1CLK/CBOUT/S31
42
L7
I/O
Timer TA1 clock input
Comparator_B output
LCD segment output S31 (not available on F5659, F5658, F5359, F5358 devices)
General-purpose digital I/O with port interrupt
P3.1/TA1.0/S30
43
H7
I/O
Timer TA1 capture CCR0: CCI0A/CCI0B input, compare: Out0 output
LCD segment output S30 (not available on F5659, F5658, F5359, F5358 devices)
General-purpose digital I/O with port interrupt
P3.2/TA1.1/S29
44
M8
I/O
Timer TA1 capture CCR1: CCI1A/CCI1B input, compare: Out1 output
LCD segment output S29 (not available on F5659, F5658, F5359, F5358 devices)
General-purpose digital I/O with port interrupt
P3.3/TA1.2/S28
45
L8
I/O
Timer TA1 capture CCR2: CCI2A/CCI2B input, compare: Out2 output
LCD segment output S28 (not available on F5659, F5658, F5359, F5358 devices)
General-purpose digital I/O with port interrupt
P3.4/TA2CLK/SMCLK/S27
46
J8
I/O
Timer TA2 clock input
SMCLK output
LCD segment output S27 (not available on F5659, F5658, F5359, F5358 devices)
General-purpose digital I/O with port interrupt
P3.5/TA2.0/S26
47
M9
I/O
Timer TA2 capture CCR0: CCI0A/CCI0B input, compare: Out0 output
LCD segment output S26 (not available on F5659, F5658, F5359, F5358 devices)
General-purpose digital I/O with port interrupt
P3.6/TA2.1/S25
48
L9
I/O
Timer TA2 capture CCR1: CCI1A/CCI1B input, compare: Out1 output
LCD segment output S25 (not available on F5659, F5658, F5359, F5358 devices)
General-purpose digital I/O with port interrupt
P3.7/TA2.2/S24
49
M10
I/O
Timer TA2 capture CCR2: CCI2A/CCI2B input, compare: Out2 output
LCD segment output S24 (not available on F5659, F5658, F5359, F5358 devices)
General-purpose digital I/O with port interrupt
P4.0/TB0.0/S23
50
J9
I/O
Timer TB0 capture CCR0: CCI0A/CCI0B input, compare: Out0 output
LCD segment output S23 (not available on F5659, F5658, F5359, F5358 devices)
General-purpose digital I/O with port interrupt
P4.1/TB0.1/S22
51
M11
I/O
Timer TB0 capture CCR1: CCI1A/CCI1B input, compare: Out1 output
LCD segment output S22 (not available on F5659, F5658, F5359, F5358 devices)
General-purpose digital I/O with port interrupt
P4.2/TB0.2/S21
52
L10
I/O
Timer TB0 capture CCR2: CCI2A/CCI2B input, compare: Out2 output
LCD segment output S21 (not available on F5659, F5658, F5359, F5358 devices)
General-purpose digital I/O with port interrupt
P4.3/TB0.3/S20
53
M12
I/O
Timer TB0 capture CCR3: CCI3A/CCI3B input, compare: Out3 output
LCD segment output S20 (not available on F5659, F5658, F5359, F5358 devices)
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
19
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
Table 7-1. Signal Descriptions (continued)
TERMINAL
NO.
NAME
PZ
I/O(1)
DESCRIPTION
ZCA,
ZQW
General-purpose digital I/O with port interrupt
P4.4/TB0.4/S19
54
L12
I/O
Timer TB0 capture CCR4: CCI4A/CCI4B input, compare: Out4 output
LCD segment output S19 (not available on F5659, F5658, F5359, F5358 devices)
General-purpose digital I/O with port interrupt
P4.5/TB0.5/S18
55
L11
I/O
Timer TB0 capture CCR5: CCI5A/CCI5B input, compare: Out5 output
LCD segment output S18 (not available on F5659, F5658, F5359, F5358 devices)
General-purpose digital I/O with port interrupt
P4.6/TB0.6/S17
56
K11
I/O
Timer TB0 capture CCR6: CCI6A/CCI6B input, compare: Out6 output
LCD segment output S17 (not available on F5659, F5658, F5359, F5358 devices)
General-purpose digital I/O with port interrupt
P4.7/TB0OUTH/SVMOUT/S16
57
K12
I/O
Timer TB0: Switch all PWM outputs high impedance
SVM output
LCD segment output S16 (not available on F5659, F5658, F5359, F5358 devices)
General-purpose digital I/O
P8.0/TB0CLK/S15
58
J11
I/O
Timer TB0 clock input
LCD segment output S15 (not available on F5659, F5658, F5359, F5358 devices)
General-purpose digital I/O
P8.1/UCB1STE/UCA1CLK/S14
59
J12
I/O
USCI_B1 SPI slave transmit enable
USCI_A1 clock input/output
LCD segment output S14 (not available on F5659, F5658, F5359, F5358 devices)
General-purpose digital I/O
P8.2/UCA1TXD/UCA1SIMO/S13
60
H11
I/O
USCI_A1 UART transmit data
USCI_A1 SPI slave in, master out
LCD segment output S13 (not available on F5659, F5658, F5359, F5358 devices)
General-purpose digital I/O
P8.3/UCA1RXD/UCA1SOMI/S12
61
H12
I/O
USCI_A1 UART receive data
USCI_A1 SPI slave out, master in
LCD segment output S12 (not available on F5659, F5658, F5359, F5358 devices)
General-purpose digital I/O
P8.4/UCB1CLK/UCA1STE/S11
62
G11
I/O
USCI_B1 clock input/output
USCI_A1 SPI slave transmit enable
LCD segment output S11 (not available on F5659, F5658, F5359, F5358 devices)
DVSS2
63
G12
Digital ground supply
DVCC2
64
F12
Digital power supply
General-purpose digital I/O
P8.5/UCB1SIMO/UCB1SDA/S10
65
F11
I/O
USCI_B1 SPI slave in, master out
USCI_B1 I2C data
LCD segment output S10 (not available on F5659, F5658, F5359, F5358 devices)
20
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
Table 7-1. Signal Descriptions (continued)
TERMINAL
NO.
NAME
PZ
I/O(1)
DESCRIPTION
ZCA,
ZQW
General-purpose digital I/O
P8.6/UCB1SOMI/UCB1SCL/S9
66
G9
I/O
USCI_B1 SPI slave out, master in
USCI_B1 I2C clock
LCD segment output S9 (not available on F5659, F5658, F5359, F5358 devices)
P8.7/S8
67
E12
I/O
P9.0/S7
68
E11
I/O
General-purpose digital I/O
LCD segment output S8 (not available on F5659, F5658, F5359, F5358 devices)
General-purpose digital I/O
LCD segment output S7 (not available on F5659, F5658, F5359, F5358 devices)
General-purpose digital I/O
P9.1/UCB2STE/UCA2CLK/S6
69
F9
I/O
USCI_B2 SPI slave transmit enable
USCI_A2 clock input/output
LCD segment output S6 (not available on F5659, F5658, F5359, F5358 devices)
General-purpose digital I/O
P9.2/UCA2TXD/UCA2SIMO/S5
70
D12
I/O
USCI_A2 UART transmit data
USCI_A2 SPI slave in, master out
LCD segment output S5 (not available on F5659, F5658, F5359, F5358 devices)
General-purpose digital I/O
P9.3/UCA2RXD/UCA2SOMI/S4
71
D11
I/O
USCI_A2 UART receive data
USCI_A2 SPI slave out, master in
LCD segment output S4 (not available on F5659, F5658, F5359, F5358 devices)
General-purpose digital I/O
P9.4/UCB2CLK/UCA2STE/S3
72
E9
I/O
USCI_B2 clock input/output
USCI_A2 SPI slave transmit enable
LCD segment output S3 (not available on F5659, F5658, F5359, F5358 devices)
General-purpose digital I/O
P9.5/UCB2SIMO/UCB2SDA/S2
73
C12
I/O
USCI_B2 SPI slave in, master out
USCI_B2 I2C data
LCD segment output S2 (not available on F5659, F5658, F5359, F5358 devices)
General-purpose digital I/O
P9.6/UCB2SOMI/UCB2SCL/S1
74
C11
I/O
USCI_B2 SPI slave out, master in
USCI_B2 I2C clock
LCD segment output S1 (not available on F5659, F5658, F5359, F5358 devices)
P9.7/S0
75
D9
VSSU
76
B11,
B12
PU.0/DP
77
A12
I/O
General-purpose digital I/O
LCD segment output S0 (not available on F5659, F5658, F5359, F5358 devices)
USB PHY or PU ground supply
I/O
General-purpose digital I/O – controlled by USB or PU control register (Port U is
supplied the LDOO rail)
USB data terminal DP (not available on F6459, F6458, F5359, F5358 devices)
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
21
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
Table 7-1. Signal Descriptions (continued)
TERMINAL
NO.
NAME
PZ
ZCA,
ZQW
PUR
78
B10
NC
78
B10
PU.1/DM
79
A11
I/O(1)
DESCRIPTION
I/O
USB pullup resistor pin (open drain) (not available on F6459, F6458, F5359, F5358
devices)
Not connected (not available on F6659, F6658, F5659, F5658 devices)
I/O
General-purpose digital I/O – controlled by USB or PU control register (Port U is
supplied the LDOO rail)
USB data terminal DM (not available on F6459, F6458, F5359, F5358 devices)
VBUS
80
A10
USB LDO input (connect to USB power source) (not available on F6459, F6458,
F5359, F5358 devices)
LDOI
80
A10
LDO input (not available on F6659, F6658, F5659, F5658 devices)
VUSB
81
A9
USB LDO output (not available on F6459, F6458, F5359, F5358 devices)
LDOO
81
A9
LDO output (not available on F6659, F6658, F5659, F5658 devices)
V18
82
B9
USB regulated power (internal use only, no external current loading) (not available
on F6459, F6458, F5359, F5358 devices)
NC
82
B9
Not connected (not available on F6659, F6658, F5659, F5658 devices)
AVSS3
83
A8
Analog ground supply
P7.2/XT2IN
84
B8
I/O
P7.3/XT2OUT
85
B7
I/O
VBAK
86
A7
Capacitor for backup subsystem. Do not load this pin externally. For capacitor
values, see CBAK in Section 8.3.
VBAT
87
D8
Backup supply voltage. If backup voltage is not supplied, connect to DVCC
externally.
P5.7/RTCCLK
88
D7
DVCC3
89
A6
Digital power supply
DVSS3
90
A5
Digital ground supply
TEST/SBWTCK
91
B6
I
PJ.0/TDO
92
B5
I/O
PJ.1/TDI/TCLK
93
A4
I/O
PJ.2/TMS
94
E7
I/O
PJ.3/TCK
95
D6
I/O
I/O
General-purpose digital I/O
Input terminal for crystal oscillator XT2
General-purpose digital I/O
Output terminal of crystal oscillator XT2
General-purpose digital I/O
RTCCLK output
Test mode pin – select digital I/O on JTAG pins
Spy-Bi-Wire input clock
General-purpose digital I/O
Test data output port
General-purpose digital I/O
Test data input or test clock input
General-purpose digital I/O
Test mode select
General-purpose digital I/O
Test clock
Reset input active low(3)
RST/NMI/SBWTDIO
96
A3
I/O
Nonmaskable interrupt input
Spy-Bi-Wire data input/output
22
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
Table 7-1. Signal Descriptions (continued)
TERMINAL
NO.
NAME
PZ
I/O(1)
DESCRIPTION
ZCA,
ZQW
General-purpose digital I/O
P6.0/CB0/A0
97
B4
I/O
Comparator_B input CB0
Analog input A0 for ADC
General-purpose digital I/O
P6.1/CB1/A1
98
B3
I/O
Comparator_B input CB1
Analog input A1 for ADC
General-purpose digital I/O
P6.2/CB2/A2
99
A2
I/O
Comparator_B input CB2
Analog input A2 for ADC
General-purpose digital I/O
P6.3/CB3/A3
100
D5
I/O
Comparator_B input CB3
Analog input A3 for ADC
Reserved
(1)
(2)
(3)
N/A
E5,
E6,
E8,
F4,
F5,
F8,
G5,
G8,
H5,
H8,
H9
Reserved BGA package balls. TI recommends connecting to ground (DVSS,
AVSS).
I = input, O = output, N/A = not available on this package offering
VCORE is for internal use only. No external current loading is possible. VCORE should only be connected to the recommended
capacitor value, CVCORE.
When this pin is configured as reset, the internal pullup resistor is enabled by default.
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
23
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
8 Specifications
All graphs in this section are for typical conditions, unless otherwise noted.
Typical (TYP) values are specified at VCC = 3.3 V and TA = 25°C, unless otherwise noted.
8.1 Absolute Maximum Ratings
over operating free-air temperature range (unless otherwise noted)(1)
MIN
MAX
UNIT
Voltage applied at VCC to VSS
–0.3
4.1
V
Voltage applied to any pin (excluding VCORE, VBUS, V18)(2)
–0.3
VCC + 0.3
V
±2
mA
–55
150
°C
95
°C
Diode current at any device pin
Storage temperature, Tstg (3)
Maximum junction temperature, TJ
(1)
(2)
(3)
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
All voltages referenced to VSS. VCORE is for internal device use only. No external DC loading or voltage should be applied.
Higher temperature may be applied during board soldering according to the current JEDEC J-STD-020 specification with peak reflow
temperatures not higher than classified on the device label on the shipping boxes or reels.
8.2 ESD Ratings
VALUE
V(ESD)
(1)
(2)
Electrostatic discharge
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)
±1000
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)
±250
UNIT
V
JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Pins listed as
±1000 V may actually have higher performance.
JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Pins listed as
±250 V may actually have higher performance.
8.3 Recommended Operating Conditions
MIN
PMMCOREVx = 0
Supply voltage during program execution and flash
programming (AVCC1 = DVCC1 = DVCC2 = DVCC3 =
DVCC = VCC)(1) (2)
VCC
Supply voltage during USB operation, USB PLL disabled,
USB_EN = 1, UPLLEN = 0
VCC,USB
Supply voltage during USB operation, USB PLL
enabled(6), USB_EN = 1, UPLLEN = 1
NOM
1.8
MAX
PMMCOREVx = 0, 1
2.0
3.6
PMMCOREVx = 0, 1, 2
2.2
3.6
PMMCOREVx = 0, 1, 2, 3
2.4
3.6
PMMCOREVx = 0
1.8
3.6
PMMCOREVx = 0, 1
2.0
3.6
PMMCOREVx = 0, 1, 2
2.2
3.6
PMMCOREVx = 0, 1, 2, 3
2.4
3.6
PMMCOREVx = 2
2.2
3.6
PMMCOREVx = 2, 3
2.4
VSS
Supply voltage (AVSS1 = AVSS2 = AVSS3 = DVSS1 = DVSS2 = DVSS3 = VSS)
VBAT,RTC
Backup-supply voltage with RTC operational
UNIT
3.6
V
V
3.6
0
V
TA = 0°C to 85°C
1.55
3.6
TA = –40°C to 85°C
1.70
3.6
V
VBAT,MEM
Backup-supply voltage with backup memory retained.
TA = –40°C to 85°C
1.20
3.6
V
TA
Operating free-air temperature
I version
–40
85
°C
TJ
Operating junction temperature
I version
–40
CBAK
Capacitance at pin VBAK
CVCORE
Capacitor at VCORE(3)
24
Submit Document Feedback
1
4.7
470
85
°C
10
nF
nF
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
MIN
CDVCC/
CVCORE
fSYSTEM
Capacitor ratio of DVCC to VCORE
Processor frequency (maximum MCLK frequency)(4) (5)
(see Figure 8-1)
fSYSTEM_USB
Minimum processor frequency for USB operation
Wait state cycles during USB operation
(2)
(3)
(4)
(5)
(6)
MAX
UNIT
10
USB_wait
(1)
NOM
PMMCOREVx = 0,
1.8 V ≤ VCC ≤ 3.6 V
(default condition)
0
8.0
PMMCOREVx = 1,
2 V ≤ VCC ≤ 3.6 V
0
12.0
PMMCOREVx = 2,
2.2 V ≤ VCC ≤ 3.6 V
0
16.0
PMMCOREVx = 3,
2.4 V ≤ VCC ≤ 3.6 V
0
20.0
1.5
MHz
MHz
16
cycles
TI recommends powering AVCC and DVCC from the same source. A maximum difference of 0.3 V between AVCC and DVCC can be
tolerated during power up and operation.
The minimum supply voltage is defined by the supervisor SVS levels when it is enabled. See the Section 8.23 threshold parameters for
the exact values and further details.
A capacitor tolerance of ±20% or better is required.
The MSP430 CPU is clocked directly with MCLK. Both the high and low phase of MCLK must not exceed the pulse duration of the
specified maximum frequency.
Modules may have a different maximum input clock specification. See the specification of the respective module in this data sheet.
USB operation with USB PLL enabled requires PMMCOREVx ≥ 2 for proper operation.
25
System Frequency - MHz
20
3
16
2
2, 3
1
1, 2
1, 2, 3
0, 1
0, 1, 2
0, 1, 2, 3
12
8
0
0
1.8
2.0
2.2
2.4
3.6
Supply Voltage - V
NOTE: The numbers within the fields denote the supported PMMCOREVx settings.
Figure 8-1. Frequency vs Supply Voltage
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
25
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
8.4 Active Mode Supply Current Into VCC Excluding External Current
over recommended operating free-air temperature (unless otherwise noted)(1) (2) (3)
PARAMETER
IAM, Flash
IAM, RAM
(1)
(2)
(3)
EXECUTION
MEMORY
Flash
RAM
FREQUENCY (fDCO = fMCLK = fSMCLK)
VCC
3V
3V
PMMCOREVx
1 MHz
8 MHz
12 MHz
TYP
MAX
TYP
MAX
0
0.36
0.45
2.4
2.7
1
0.41
2
20 MHz
TYP
MAX
2.7
4.0
4.4
0.46
2.9
4.3
3
0.51
3.1
4.5
0
0.18
1
0.20
1.2
1.7
2
0.22
1.3
2.0
3
0.23
1.4
2.2
0.23
1.0
TYP
UNIT
MAX
mA
7.4
1.3
1.9
mA
3.6
All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.
The currents are characterized with a Micro Crystal MS1V-T1K crystal with a load capacitance of 12.5 pF. The internal and external
load capacitance are chosen to closely match the required 12.5 pF.
Characterized with program executing typical data processing. USB disabled (VUSBEN = 0, SLDOEN = 0).
fACLK = 32786 Hz, fDCO = fMCLK = fSMCLK at specified frequency.
XTS = CPUOFF = SCG0 = SCG1 = OSCOFF = SMCLKOFF = 0.
8.5 Low-Power Mode Supply Currents (Into VCC) Excluding External Current
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1) (2)
PARAMETER
ILPM0,1MHz
Low-power mode 0(3) (9)
ILPM2
Low-power mode 2(4) (9)
VCC
PMMCOREVx
2.2 V
0
3V
TYP
69
73
95
3
79
83
2.2 V
0
6.1
3V
3
0
3V
ILPM3,VLO,
WDT
Low-power mode 4(7) (9)
ILPM4
ILPM3.5,RTC,
VCC
26
Low-power mode 3,
VLO mode, Watchdog
enabled(6) (9)
Low-power mode 3.5
(LPM3.5) current with
active RTC into primary
supply pin DVCC (10)
Submit Document Feedback
3V
3V
3V
MAX
60°C
MAX
Low-power mode 3,
crystal mode(5) (9)
TYP
25°C
TYP
2.2 V
ILPM3,XT1LF
–40°C
85°C
MAX
TYP
MAX
79
85
125
120
87
96
155
6.7
9.0
8.0
13
32
6.5
7.1
9.5
8.5
14
34
1.5
2.0
3.3
3.3
8.2
27
1
1.7
2.2
3.6
8.7
2
1.9
2.4
3.8
8.9
0
1.8
2.2
3.6
8.6
1
1.9
2.4
3.8
9.0
2
2.1
2.6
4.0
9.1
3
2.1
2.6
4.2
4.0
9.1
29
2.7
26
3.5
28
0
1.0
1.3
2.7
7.4
1
1.1
1.5
2.8
7.7
2
1.1
1.6
2.9
7.8
3
1.1
1.6
3.2
2.9
7.8
30
2.5
26
0
0.9
1.3
2.5
6.8
1.0
1.3
2.6
7.0
2
1.0
1.4
2.7
7.2
3
1.0
1.4
2.7
7.2
27
0.75
1.8
0.5
µA
µA
µA
µA
1
3.1
UNIT
µA
µA
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1) (2)
PARAMETER
Low-power mode 3.5
ILPM3.5,RTC, (LPM3.5) current with
active RTC into backup
VBAT
supply pin VBAT(11)
ILPM3.5,RTC,
TOT
ILPM4.5
VCC
PMMCOREVx
–40°C
TYP
3V
MAX
25°C
TYP
60°C
MAX
TYP
3V
1.0
1.1
Low-power mode 4.5(8)
3V
0.4
0.45
0.6
UNIT
TYP
MAX
0.75
1.0
µA
1.2
1.5
2.8
µA
0.5
0.76
1.8
µA
0.6
Total low-power mode 3.5
(LPM3.5) current with
active RTC(12)
85°C
MAX
(1)
(2)
All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current.
The currents are characterized with a Micro Crystal CC4V-T1A SMD crystal with a load capacitance of 9 pF. The internal and external
load capacitance are chosen to closely match the required 9 pF.
(3) Current for watchdog timer clocked by SMCLK included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0).
CPUOFF = 1, SCG0 = 0, SCG1 = 0, OSCOFF = 0 (LPM0), fACLK = 32768 Hz, fMCLK = 0 MHz, fSMCLK = fDCO = 1 MHz
USB disabled (VUSBEN = 0, SLDOEN = 0).
(4) Current for watchdog timer clocked by ACLK and RTC clocked by LFXT1 (32768 Hz) included. ACLK = low-frequency crystal operation
(XTS = 0, XT1DRIVEx = 0).
CPUOFF = 1, SCG0 = 0, SCG1 = 1, OSCOFF = 0 (LPM2), fACLK = 32768 Hz, fMCLK = 0 MHz, fSMCLK = fDCO = 0 MHz, DCO
setting = 1-MHz operation, DCO bias generator enabled.
USB disabled (VUSBEN = 0, SLDOEN = 0)
(5) Current for watchdog timer clocked by ACLK and RTC clocked by LFXT1 (32768 Hz) included. ACLK = low-frequency crystal operation
(XTS = 0, XT1DRIVEx = 0).
CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3), fACLK = 32768 Hz, fMCLK = fSMCLK = fDCO = 0 MHz
USB disabled (VUSBEN = 0, SLDOEN = 0)
(6) Current for watchdog timer clocked by VLO included.
CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3), fACLK = fMCLK = fSMCLK = fDCO = 0 MHz
USB disabled (VUSBEN = 0, SLDOEN = 0)
(7) CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1 (LPM4), fDCO = fACLK = fMCLK = fSMCLK = 0 MHz
USB disabled (VUSBEN = 0, SLDOEN = 0)
(8) Internal regulator disabled. No data retention.
CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1, PMMREGOFF = 1 (LPM4.5), fDCO = fACLK = fMCLK = fSMCLK = 0 MHz
(9) Current for brownout included. Low-side supervisor and monitors disabled (SVSL, SVML). High-side supervisor and monitor disabled
(SVSH, SVMH). RAM retention enabled.
(10) VVBAT = VCC - 0.2 V, fDCO = fMCLK = fSMCLK = 0 MHz, fACLK = 32768 Hz, PMMREGOFF = 1, RTC in backup domain active
(11) VVBAT = VCC - 0.2 V, fDCO = fMCLK = fSMCLK = 0 MHz, fACLK = 32768 Hz, PMMREGOFF = 1, RTC in backup domain active, no
current drawn on VBAK
(12) fDCO = fMCLK = fSMCLK = 0 MHz, fACLK = 32768 Hz, PMMREGOFF = 1, RTC in backup domain active, no current drawn on VBAK
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
27
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
8.6 Low-Power Mode With LCD Supply Currents (Into VCC) Excluding External Current
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1) (2)
TEMPERATURE (TA)
PARAMETER
VCC
PMMCOREVx
–40°C
TYP
ILPM3 LCD,
int. bias
ILPM3
LCD,CP
(1)
(2)
(3)
Low-power mode 3
(LPM3) current, LCD 4mux mode, internal
biasing, charge pump
disabled(1) (2)
Low-power mode 3
(LPM3) current, LCD 4mux mode, internal
biasing, charge pump
enabled(1) (3)
3V
2.2 V
3V
MAX
25°C
60°C
85°C
TYP
MAX
TYP
0
2.7
3.3
4.8
4.7
1
2.9
3.5
5.0
9.9
2
3.0
3.7
5.2
10.2
3
3.1
3.7
5.2
10.2
0
3.6
1
3.7
2
4.0
0
3.5
1
3.7
2
3.8
3
3.9
5.3
MAX
UNIT
TYP
MAX
9.5
28
µA
30
µA
Current for watchdog timer clocked by ACLK and RTC clocked by LFXT1 (32768 Hz) included. ACLK = low-frequency crystal operation
(XTS = 0, XT1DRIVEx = 0).
CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3), fACLK = 32768 Hz, fMCLK = fSMCLK = fDCO = 0 MHz
Current for brownout included. Low-side supervisor (SVSL) and low-side monitor (SVML) disabled. High-side supervisor (SVSH) and
high-side monitor (SVMH) disabled. RAM retention enabled.
LCDMx = 11 (4-mux mode), LCDREXT = 0, LCDEXTBIAS = 0 (internal biasing), LCD2B = 0 (1/3 bias), LCDCPEN = 0 (charge pump
disabled), LCDSSEL = 0, LCDPREx = 101, LCDDIVx = 00011 (fLCD = 32768 Hz / 32 / 4 = 256 Hz)
Even segments S0, S2,... = 0, odd segments S1, S3,... = 1. No LCD panel load.
LCDMx = 11 (4-mux mode), LCDREXT = 0, LCDEXTBIAS = 0 (internal biasing), LCD2B = 0 (1/3 bias), LCDCPEN = 1 (charge pump
enabled), VLCDx = 1000 (VLCD = 3 V, typical), LCDSSEL = 0, LCDPREx = 101, LCDDIVx = 00011 (fLCD = 32768 Hz / 32 / 4 = 256 Hz)
Even segments S0, S2,... = 0, odd segments S1, S3,... = 1. No LCD panel load.
8.7 Thermal Resistance Characteristics
THERMAL METRIC
θJA
Junction-to-ambient thermal resistance, still air(1)
θJC(TOP)
Junction-to-case (top) thermal resistance(2)
θJB
Junction-to-board thermal resistance(3)
(1)
(2)
(3)
28
PACKAGE
VALUE
QFP (PZ)
122
BGA (ZQW)
108
QFP (PZ)
83
BGA (ZQW)
72
QFP (PZ)
98
BGA (ZQW)
76
UNIT
°C/W
°C/W
°C/W
The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, High-K board,
as specified in JESD51-7, in an environment described in JESD51-2a.
The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific JEDECstandard test exists, but a close description can be found in the ANSI SEMI standard G30-88.
The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB
temperature, as described in JESD51-8.
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
8.8 Schmitt-Trigger Inputs – General-Purpose I/O
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER(1)
TEST CONDITIONS
VIT+
Positive-going input threshold voltage
VIT–
Negative-going input threshold voltage
Vhys
Input voltage hysteresis (VIT+ – VIT–)
RPull
Pullup or pulldown resistor(2)
For pullup: VIN = VSS
For pulldown: VIN = VCC
CI
Input capacitance
VIN = VSS or VCC
(1)
(2)
VCC
MIN
TYP
1.8 V
0.80
1.40
3V
1.50
2.10
1.8 V
0.45
1.00
3V
0.75
1.65
1.8 V
0.3
0.8
3V
0.4
1.0
20
35
MAX
50
5
UNIT
V
V
V
kΩ
pF
The same parametrics apply to the clock input pin when the crystal bypass mode is used on XT1 (XIN) or XT2 (XT2IN).
Also applies to RST pin when pullup or pulldown resistor is enabled.
8.9 Inputs – Ports P1, P2, P3, and P4
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER(1)
External interrupt timing(2)
t(int)
(1)
(2)
TEST CONDITIONS
VCC
Port P1, P2, P3, P4: P1.x to P4.x,
External trigger pulse duration to set interrupt flag
MIN
2.2 V, 3 V
MAX
20
UNIT
ns
Some devices may contain additional ports with interrupts. See the block diagram and terminal function descriptions.
An external signal sets the interrupt flag every time the minimum interrupt pulse duration t(int) is met. It may be set by trigger signals
shorter than t(int).
8.10 Leakage Current – General-Purpose I/O
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
Ilkg(Px.y)
(1)
(2)
TEST CONDITIONS
High-impedance leakage current
See
VCC
(1) (2)
MIN
1.8 V, 3 V
MAX
UNIT
±50
nA
The leakage current is measured with VSS or VCC applied to the corresponding pins, unless otherwise noted.
The leakage of the digital port pins is measured individually. The port pin is selected for input, and the pullup or pulldown resistor is
disabled.
8.11 Outputs – General-Purpose I/O (Full Drive Strength)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
I(OHmax) = –3
VOH
High-level output voltage
mA(1)
I(OHmax) = –10 mA(2)
I(OHmax) = –5
mA(1)
I(OHmax) = –15 mA(2)
I(OLmax) = 3
VOL
Low-level output voltage
mA(1)
I(OLmax) = 10 mA(2)
I(OLmax) = 5 mA(1)
I(OLmax) = 15 mA(2)
(1)
(2)
VCC
1.8 V
3V
1.8 V
3V
MIN
MAX
VCC – 0.25
VCC
VCC – 0.60
VCC
VCC – 0.25
VCC
VCC – 0.60
VCC
VSS
VSS + 0.25
VSS
VSS + 0.60
VSS
VSS + 0.25
VSS
VSS + 0.60
UNIT
V
V
The maximum total current, I(OHmax) and I(OLmax), for all outputs combined should not exceed ±48 mA to hold the maximum voltage
drop specified.
The maximum total current, I(OHmax) and I(OLmax), for all outputs combined should not exceed ±100 mA to hold the maximum voltage
drop specified.
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
29
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
8.12 Outputs – General-Purpose I/O (Reduced Drive Strength)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(3)
PARAMETER
TEST CONDITIONS
I(OHmax) = –1
VOH
High-level output voltage
mA(1)
1.8 V
I(OHmax) = –3 mA(2)
I(OHmax) = –2
mA(1)
3V
I(OHmax) = –6 mA(2)
I(OLmax) = 1
VOL
Low-level output voltage
mA(1)
(2)
(3)
MIN
MAX
VCC – 0.25
VCC
VCC – 0.60
VCC
VCC – 0.25
VCC
VCC – 0.60
VCC
1.8 V
I(OLmax) = 3 mA(2)
I(OLmax) = 2 mA(1)
3V
I(OLmax) = 6 mA(2)
(1)
VCC
VSS
VSS + 0.25
VSS
VSS + 0.60
VSS
VSS + 0.25
VSS
VSS + 0.60
UNIT
V
V
The maximum total current, I(OHmax) and I(OLmax), for all outputs combined, should not exceed ±48 mA to hold the maximum voltage
drop specified.
The maximum total current, I(OHmax) and I(OLmax), for all outputs combined, should not exceed ±100 mA to hold the maximum voltage
drop specified.
Selecting reduced drive strength may reduce EMI.
8.13 Output Frequency – Ports P1, P2, and P3
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
fPx.y
fPort_CLK
(1)
(2)
(3)
30
TEST CONDITIONS
Port output frequency
(with load)
P3.4/TA2CLK/SMCLK/S27,
CL = 20 pF, RL = 1 kΩ (1) or 3.2 kΩ(2) (3)
Clock output frequency
P1.0/TA0CLK/ACLK/S39,
P3.4/TA2CLK/SMCLK/S27,
P2.0/P2MAP0 (P2MAP0 = PM_MCLK),
CL = 20 pF(3)
MIN
MAX
VCC = 1.8 V,
PMMCOREVx = 0
8
VCC = 3 V,
PMMCOREVx = 3
20
VCC = 1.8 V,
PMMCOREVx = 0
8
VCC = 3 V,
PMMCOREVx = 3
20
UNIT
MHz
MHz
Full drive strength of port: A resistive divider with two 0.5-kΩ resistors between VCC and VSS is used as load. The output is connected
to the center tap of the divider.
Reduced drive strength of port: A resistive divider with two 1.6-kΩ resistors between VCC and VSS is used as load. The output is
connected to the center tap of the divider.
The output voltage reaches at least 10% and 90% VCC at the specified toggle frequency.
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
8.14 Typical Characteristics – Outputs, Reduced Drive Strength (PxDS.y = 0)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
8.0
VCC = 3.0 V
P3.2
IOL – Typical Low-Level Output Current – mA
IOL – Typical Low-Level Output Current – mA
25.0
TA = 25°C
20.0
TA = 85°C
15.0
10.0
5.0
0.0
0.0
0.5
1.0
1.5
2.0
2.5
3.0
7.0
4.0
3.0
2.0
1.0
1.5
2.0
0.0
VCC = 3.0 V
P3.2
IOH – Typical High-Level Output Current – mA
IOH – Typical High-Level Output Current – mA
1.0
Figure 8-3. Typical Low-Level Output Current vs
Low-Level Output Voltage
0.0
−5.0
−10.0
−25.0
0.0
0.5
VOL – Low-Level Output Voltage – V
Figure 8-2. Typical Low-Level Output Current vs
Low-Level Output Voltage
−20.0
TA = 85°C
5.0
VOL – Low-Level Output Voltage – V
−15.0
TA = 25°C
6.0
0.0
0.0
3.5
VCC = 1.8 V
P3.2
TA = 85°C
TA = 25°C
0.5
1.0
1.5
2.0
2.5
3.0
3.5
VOH – High-Level Output Voltage – V
Figure 8-4. Typical High-Level Output Current vs
High-Level Output Voltage
Copyright © 2020 Texas Instruments Incorporated
−1.0
VCC = 1.8 V
P3.2
−2.0
−3.0
−4.0
−5.0
TA = 85°C
−6.0
TA = 25°C
−7.0
−8.0
0.0
0.5
1.0
1.5
VOH – High-Level Output Voltage – V
2.0
Figure 8-5. Typical High-Level Output Current vs
High-Level Output Voltage
Submit Document Feedback
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
31
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
8.15 Typical Characteristics – Outputs, Full Drive Strength (PxDS.y = 1)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
55.0
24
VCC = 3.0 V
P3.2
TA = 25°C
IOL – Typical Low-Level Output Current – mA
IOL – Typical Low-Level Output Current – mA
60.0
50.0
TA = 85°C
45.0
40.0
35.0
30.0
25.0
20.0
15.0
10.0
5.0
0.0
0.0
0.5
1.0
1.5
2.0
2.5
3.0
16
8
4
IOH – Typical High-Level Output Current – mA
IOH – Typical High-Level Output Current – mA
1.5
2.0
0
VCC = 3.0 V
P3.2
−10.0
−15.0
−20.0
−25.0
−30.0
−35.0
−40.0
−45.0
TA = 85°C
−55.0
VCC = 1.8 V
P3.2
−4
−8
−12
TA = 85°C
−16
TA = 25°C
TA = 25°C
0.5
1.0
1.5
2.0
2.5
3.0
3.5
VOH – High-Level Output Voltage – V
Figure 8-8. Typical High-Level Output Current vs
High-Level Output Voltage
32
1.0
Figure 8-7. Typical Low-Level Output Current vs
Low-Level Output Voltage
0.0
−60.0
0.0
0.5
VOL – Low-Level Output Voltage – V
Figure 8-6. Typical Low-Level Output Current vs
Low-Level Output Voltage
−50.0
TA = 85°C
12
VOL – Low-Level Output Voltage – V
−5.0
TA = 25°C
20
0
0.0
3.5
VCC = 1.8 V
P3.2
Submit Document Feedback
−20
0.0
0.5
1.0
1.5
2.0
VOH – High-Level Output Voltage – V
Figure 8-9. Typical High-Level Output Current vs
High-Level Output Voltage
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
8.16 Crystal Oscillator, XT1, Low-Frequency Mode
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER(5)
ΔIDVCC,LF
TEST CONDITIONS
fOSC = 32768 Hz, XTS = 0,
XT1BYPASS = 0, XT1DRIVEx = 1, TA = 25°C
Differential XT1 oscillator
crystal current consumption fOSC = 32768 Hz, XTS = 0,
from lowest drive setting, LF XT1BYPASS = 0, XT1DRIVEx = 2, TA = 25°C
mode
fOSC = 32768 Hz, XTS = 0,
XT1BYPASS = 0, XT1DRIVEx = 3, TA = 25°C
fXT1,LF0
XT1 oscillator crystal
frequency, LF mode
XTS = 0, XT1BYPASS = 0
fXT1,LF,SW
XT1 oscillator logic-level
square-wave input
frequency, LF mode
XTS = 0, XT1BYPASS = 1(6) (7)
OALF
Oscillation allowance for
LF crystals(8)
XTS = 0, XT1BYPASS = 0, XT1DRIVEx = 0,
fXT1,LF = 32768 Hz, CL,eff = 6 pF, TA = 25°C
XTS = 0, XT1BYPASS = 0, XT1DRIVEx = 1,
fXT1,LF = 32768 Hz, CL,eff = 12 pF, TA = 25°C
VCC
MIN
TYP
0.075
3V
Integrated effective load
capacitance, LF mode(1)
0.290
32768
10
32.768
fFault,LF
kΩ
tSTART,LF
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
Start-up time, LF mode
1
8.5
XTS = 0, XCAPx = 3
12.0
XTS = 0(3)
fOSC = 32768 Hz, XTS = 0,
XT1BYPASS = 0, XT1DRIVEx = 0,
TA = 25°C, CL,eff = 6 pF
fOSC = 32768 Hz, XTS = 0,
XT1BYPASS = 0, XT1DRIVEx = 3,
TA = 25°C, CL,eff = 12 pF
kHz
300
5.5
Oscillator fault frequency,
LF mode(4)
50
210
XTS = 0, XCAPx = 2
Duty cycle, LF mode
Hz
3V
XTS = 0, XCAPx = 1
XTS = 0, Measured at ACLK,
fXT1,LF = 32768 Hz
µA
0.170
XTS = 0, XCAPx = 0(2)
CL,eff
MAX UNIT
pF
30%
70%
10
10000
Hz
1000
3V
ms
500
Includes parasitic bond and package capacitance (approximately 2 pF per pin).
Because the PCB adds additional capacitance, verify the correct load by measuring the ACLK frequency. For a correct setup, the
effective load capacitance should always match the specification of the used crystal.
Requires external capacitors at both terminals. Values are specified by crystal manufacturers.
Measured with logic-level input frequency but also applies to operation with crystals.
Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag.
Frequencies between the MIN and MAX specifications might set the flag.
To improve EMI on the XT1 oscillator, the following guidelines should be observed.
• Keep the trace between the device and the crystal as short as possible.
• Design a good ground plane around the oscillator pins.
• Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.
• Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.
• Use assembly materials and processes that avoid any parasitic load on the oscillator XIN and XOUT pins.
• If conformal coating is used, make sure that it does not induce capacitive or resistive leakage between the oscillator pins.
When XT1BYPASS is set, XT1 circuit is automatically powered down. Input signal is a digital square wave with parametrics defined in
the Schmitt-trigger Inputs section of this data sheet.
Maximum frequency of operation of the entire device cannot be exceeded.
Oscillation allowance is based on a safety factor of 5 for recommended crystals. The oscillation allowance is a function of the
XT1DRIVEx settings and the effective load. In general, comparable oscillator allowance can be achieved based on the following
guidelines, but should be evaluated based on the actual crystal selected for the application:
• For XT1DRIVEx = 0, CL,eff ≤ 6 pF
• For XT1DRIVEx = 1, 6 pF ≤ CL,eff ≤ 9 pF
• For XT1DRIVEx = 2, 6 pF ≤ CL,eff ≤ 10 pF
• For XT1DRIVEx = 3, CL,eff ≥ 6 pF
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
33
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
8.17 Crystal Oscillator, XT2
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(2) (5)
PARAMETER
TEST CONDITIONS
VCC
MIN
fOSC = 4 MHz, XT2OFF = 0,
XT2BYPASS = 0, XT2DRIVEx = 0, TA = 25°C
IDVCC,XT2
fOSC = 12 MHz, XT2OFF = 0,
XT2 oscillator crystal current XT2BYPASS = 0, XT2DRIVEx = 1, TA = 25°C
consumption
fOSC = 20 MHz, XT2OFF = 0,
XT2BYPASS = 0, XT2DRIVEx = 2, TA = 25°C
TYP
MAX
UNIT
200
260
3V
µA
325
fOSC = 32 MHz, XT2OFF = 0,
XT2BYPASS = 0, XT2DRIVEx = 3, TA = 25°C
450
fXT2,HF0
XT2 oscillator crystal
frequency, mode 0
XT2DRIVEx = 0, XT2BYPASS = 0(7)
4
8
MHz
fXT2,HF1
XT2 oscillator crystal
frequency, mode 1
XT2DRIVEx = 1, XT2BYPASS = 0(7)
8
16
MHz
fXT2,HF2
XT2 oscillator crystal
frequency, mode 2
XT2DRIVEx = 2, XT2BYPASS = 0(7)
16
24
MHz
fXT2,HF3
XT2 oscillator crystal
frequency, mode 3
XT2DRIVEx = 3, XT2BYPASS = 0(7)
24
32
MHz
fXT2,HF,SW
XT2 oscillator logic-level
square-wave input
frequency
XT2BYPASS = 1(6) (7)
0.7
32
MHz
XT2DRIVEx = 0, XT2BYPASS = 0,
fXT2,HF0 = 6 MHz, CL,eff = 15 pF, TA = 25°C
Oscillation allowance for
HF crystals(8)
OAHF
XT2DRIVEx = 1, XT2BYPASS = 0,
fXT2,HF1 = 12 MHz, CL,eff = 15 pF, TA = 25°C
XT2DRIVEx = 2, XT2BYPASS = 0,
fXT2,HF2 = 20 MHz, CL,eff = 15 pF, TA = 25°C
450
320
3V
Ω
200
XT2DRIVEx = 3, XT2BYPASS = 0,
fXT2,HF3 = 32 MHz, CL,eff = 15 pF, TA = 25°C
tSTART,HF
fOSC = 6 MHz, XT2BYPASS = 0, XT2DRIVEx = 0,
TA = 25°C, CL,eff = 15 pF
Start-up time
fOSC = 20 MHz, XT2BYPASS = 0, XT2DRIVEx = 3,
TA = 25°C, CL,eff = 15 pF
Duty cycle
fFault,HF
(2)
(3)
(4)
(5)
(6)
(7)
(8)
34
0.5
3V
ms
0.3
Integrated effective load
capacitance, HF mode(1) (2)
CL,eff
(1)
200
Oscillator fault
1
Measured at ACLK, fXT2,HF2 = 20 MHz
frequency(4)
XT2BYPASS =
1(3)
40%
50%
30
pF
60%
300
kHz
Includes parasitic bond and package capacitance (approximately 2 pF per pin).
Because the PCB adds additional capacitance, verify the correct load by measuring the ACLK frequency. For a correct setup, the
effective load capacitance should always match the specification of the used crystal.
Requires external capacitors at both terminals. Values are specified by crystal manufacturers.
Measured with logic-level input frequency but also applies to operation with crystals.
Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag.
Frequencies between the MIN and MAX specifications might set the flag.
To improve EMI on the XT2 oscillator the following guidelines should be observed.
• Keep the traces between the device and the crystal as short as possible.
• Design a good ground plane around the oscillator pins.
• Prevent crosstalk from other clock or data lines into oscillator pins XT2IN and XT2OUT.
• Avoid running PCB traces underneath or adjacent to the XT2IN and XT2OUT pins.
• Use assembly materials and processes that avoid any parasitic load on the oscillator XT2IN and XT2OUT pins.
• If conformal coating is used, make sure that it does not induce capacitive or resistive leakage between the oscillator pins.
When XT2BYPASS is set, the XT2 circuit is automatically powered down.
Maximum frequency of operation of the entire device cannot be exceeded.
Oscillation allowance is based on a safety factor of 5 for recommended crystals.
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
8.18 Internal Very-Low-Power Low-Frequency Oscillator (VLO)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
VCC
fVLO
VLO frequency
Measured at ACLK
1.8 V to 3.6 V
dfVLO/dT
VLO frequency temperature drift
Measured at ACLK(1)
1.8 V to 3.6 V
dfVLO/dVCC VLO frequency supply voltage drift
Duty cycle
(1)
(2)
Measured at ACLK(2)
1.8 V to 3.6 V
Measured at ACLK
1.8 V to 3.6 V
MIN
6
TYP
MAX
9.4
14
0.5
kHz
%/°C
4
40%
UNIT
%/V
50%
60%
Calculated using the box method: (MAX(–40°C to 85°C) – MIN(–40°C to 85°C)) / MIN(–40°C to 85°C) / (85°C – (–40°C))
Calculated using the box method: (MAX(1.8 V to 3.6 V) – MIN(1.8 V to 3.6 V)) / MIN(1.8 V to 3.6 V) / (3.6 V – 1.8 V)
8.19 Internal Reference, Low-Frequency Oscillator (REFO)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
IREFO
TEST CONDITIONS
REFO oscillator current
consumption
TA = 25°C
VCC
MIN
TYP
1.8 V to 3.6 V
3
32768
MAX
UNIT
µA
REFO frequency calibrated
Measured at ACLK
1.8 V to 3.6 V
fREFO
REFO absolute tolerance
calibrated
Full temperature range
1.8 V to 3.6 V
dfREFO/dT
REFO frequency temperature drift Measured at ACLK(1)
1.8 V to 3.6 V
0.01
%/°C
dfREFO/dVCC
REFO frequency supply voltage
drift
1.8 V to 3.6 V
1.0
%/V
Duty cycle
Measured at ACLK
1.8 V to 3.6 V
tSTART
REFO start-up time
40%/60% duty cycle
1.8 V to 3.6 V
(1)
(2)
TA = 25°C
Measured at ACLK(2)
Hz
±3.5%
3V
±1.5%
40%
50%
25
60%
µs
Calculated using the box method: (MAX(–40°C to 85°C) – MIN(–40°C to 85°C)) / MIN(–40°C to 85°C) / (85°C – (–40°C))
Calculated using the box method: (MAX(1.8 V to 3.6 V) – MIN(1.8 V to 3.6 V)) / MIN(1.8 V to 3.6 V) / (3.6 V – 1.8 V)
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
35
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
8.20 DCO Frequency
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
0)(1)
MIN
TYP
MAX
UNIT
fDCO(0,0)
DCO frequency (0,
DCORSELx = 0, DCOx = 0, MODx = 0
0.07
0.20
MHz
fDCO(0,31)
DCO frequency (0, 31)(1)
DCORSELx = 0, DCOx = 31, MODx = 0
0.70
1.70
MHz
fDCO(1,0)
DCO frequency (1, 0)(1)
DCORSELx = 1, DCOx = 0, MODx = 0
0.15
0.36
MHz
fDCO(1,31)
DCO frequency (1, 31)(1)
DCORSELx = 1, DCOx = 31, MODx = 0
1.47
3.45
MHz
fDCO(2,0)
DCO frequency (2, 0)(1)
DCORSELx = 2, DCOx = 0, MODx = 0
0.32
0.75
MHz
fDCO(2,31)
DCO frequency (2, 31)(1)
DCORSELx = 2, DCOx = 31, MODx = 0
3.17
7.38
MHz
fDCO(3,0)
DCO frequency (3, 0)(1)
DCORSELx = 3, DCOx = 0, MODx = 0
0.64
1.51
MHz
fDCO(3,31)
DCO frequency (3, 31)(1)
DCORSELx = 3, DCOx = 31, MODx = 0
6.07
14.0
MHz
fDCO(4,0)
DCO frequency (4, 0)(1)
DCORSELx = 4, DCOx = 0, MODx = 0
1.3
3.2
MHz
fDCO(4,31)
DCO frequency (4, 31)(1)
DCORSELx = 4, DCOx = 31, MODx = 0
12.3
28.2
MHz
fDCO(5,0)
DCO frequency (5, 0)(1)
DCORSELx = 5, DCOx = 0, MODx = 0
2.5
6.0
MHz
DCORSELx = 5, DCOx = 31, MODx = 0
23.7
54.1
MHz
DCORSELx = 6, DCOx = 0, MODx = 0
4.6
10.7
MHz
DCORSELx = 6, DCOx = 31, MODx = 0
39.0
88.0
MHz
DCORSELx = 7, DCOx = 0, MODx = 0
8.5
19.6
MHz
31)(1)
fDCO(5,31)
DCO frequency (5,
fDCO(6,0)
DCO frequency (6, 0)(1)
31)(1)
fDCO(6,31)
DCO frequency (6,
fDCO(7,0)
DCO frequency (7, 0)(1)
31)(1)
fDCO(7,31)
DCO frequency (7,
DCORSELx = 7, DCOx = 31, MODx = 0
60
135
MHz
SDCORSEL
Frequency step between range
DCORSEL and DCORSEL + 1
SRSEL = fDCO(DCORSEL+1,DCO)/fDCO(DCORSEL,DCO)
1.2
2.3
ratio
SDCO
Frequency step between tap DCO
and DCO + 1
SDCO = fDCO(DCORSEL,DCO+1)/fDCO(DCORSEL,DCO)
1.02
1.12
ratio
Duty cycle
Measured at SMCLK
40%
dfDCO/dT
DCO frequency temperature drift
fDCO = 1 MHz
0.1
%/°C
dfDCO/dVCC
DCO frequency voltage drift
fDCO = 1 MHz
1.9
%/V
(1)
50%
60%
When selecting the proper DCO frequency range (DCORSELx), the target DCO frequency, fDCO, should be set to reside within the
range of fDCO(n, 0),MAX ≤ fDCO ≤ fDCO(n, 31),MIN, where fDCO(n, 0),MAX represents the maximum frequency specified for the DCO frequency,
range n, tap 0 (DCOx = 0) and fDCO(n,31),MIN represents the minimum frequency specified for the DCO frequency, range n, tap 31
(DCOx = 31). This ensures that the target DCO frequency resides within the range selected. If the actual fDCO frequency for the
selected range causes the FLL or the application to select tap 0 or 31, the DCO fault flag is set to report that the selected range is at its
minimum or maximum tap setting.
100
VCC = 3.0 V
TA = 25°C
fDCO – MHz
10
DCOx = 31
1
0.1
DCOx = 0
0
1
2
3
4
5
6
7
DCORSEL
Figure 8-10. Typical DCO Frequency
36
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
8.21 PMM, Brownout Reset (BOR)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
V(DVCC_BOR_IT–)
BORH on voltage, DVCC falling level
| dDVCC/dt | < 3 V/s
V(DVCC_BOR_IT+)
BORH off voltage, DVCC rising level
| dDVCC/dt | < 3 V/s
V(DVCC_BOR_hys)
BORH hysteresis
tRESET
Pulse duration required at RST/NMI pin to accept a reset
MIN
TYP
0.80
1.30
50
MAX
UNIT
1.45
V
1.50
V
250
mV
2
µs
8.22 PMM, Core Voltage
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNIT
VCORE3(AM)
Core voltage, active mode,
PMMCOREV = 3
2.4 V ≤ DVCC ≤ 3.6 V, 0 mA ≤ I(VCORE) ≤ 21 mA
1.90
V
VCORE2(AM)
Core voltage, active mode,
PMMCOREV = 2
2.2 V ≤ DVCC ≤ 3.6 V, 0 mA ≤ I(VCORE) ≤ 21 mA
1.80
V
VCORE1(AM)
Core voltage, active mode,
PMMCOREV = 1
2 V ≤ DVCC ≤ 3.6 V, 0 mA ≤ I(VCORE) ≤ 17 mA
1.60
V
VCORE0(AM)
Core voltage, active mode,
PMMCOREV = 0
1.8 V ≤ DVCC ≤ 3.6 V, 0 mA ≤ I(VCORE) ≤ 13 mA
1.40
V
VCORE3(LPM)
Core voltage, low-current mode,
PMMCOREV = 3
2.4 V ≤ DVCC ≤ 3.6 V, 0 µA ≤ I(VCORE) ≤ 30 µA
1.94
V
VCORE2(LPM)
Core voltage, low-current mode,
PMMCOREV = 2
2.2 V ≤ DVCC ≤ 3.6 V, 0 µA ≤ I(VCORE) ≤ 30 µA
1.84
V
VCORE1(LPM)
Core voltage, low-current mode,
PMMCOREV = 1
2 V ≤ DVCC ≤ 3.6 V, 0 µA ≤ I(VCORE) ≤ 30 µA
1.64
V
VCORE0(LPM)
Core voltage, low-current mode,
PMMCOREV = 0
1.8 V ≤ DVCC ≤ 3.6 V, 0 µA ≤ I(VCORE) ≤ 30 µA
1.44
V
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
37
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
8.23 PMM, SVS High Side
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
TYP
SVSHE = 0, DVCC = 3.6 V
I(SVSH)
SVS current consumption
0
SVSHE = 1, DVCC = 3.6 V, SVSHFP = 0
V(SVSH_IT+)
SVSH on voltage level(1)
SVSH off voltage level(1)
tpd(SVSH)
SVSH propagation delay
t(SVSH)
SVSH on or off delay time
dVDVCC/dt
DVCC rise time
(1)
2.0
µA
SVSHE = 1, SVSHRVL = 0
1.59
1.64
1.69
SVSHE = 1, SVSHRVL = 1
1.79
1.84
1.91
SVSHE = 1, SVSHRVL = 2
1.98
2.04
2.11
SVSHE = 1, SVSHRVL = 3
2.10
2.16
2.23
SVSHE = 1, SVSMHRRL = 0
1.62
1.74
1.81
SVSHE = 1, SVSMHRRL = 1
1.88
1.94
2.01
SVSHE = 1, SVSMHRRL = 2
2.07
2.14
2.21
SVSHE = 1, SVSMHRRL = 3
2.20
2.26
2.33
SVSHE = 1, SVSMHRRL = 4
2.32
2.40
2.48
SVSHE = 1, SVSMHRRL = 5
2.56
2.70
2.84
SVSHE = 1, SVSMHRRL = 6
2.85
3.00
3.15
SVSHE = 1, SVSMHRRL = 7
2.85
3.00
3.15
SVSHE = 1, dVDVCC/dt = 10 mV/µs, SVSHFP = 1
2.5
SVSHE = 1, dVDVCC/dt = 1 mV/µs, SVSHFP = 0
20
SVSHE = 0→1, SVSHFP = 1
12.5
SVSHE = 0→1, SVSHFP = 0
100
0
UNIT
nA
200
SVSHE = 1, DVCC = 3.6 V, SVSHFP = 1
V(SVSH_IT–)
MAX
V
V
µs
µs
1000
V/s
The SVSH settings available depend on the VCORE (PMMCOREVx) setting. See the Power Management Module and Supply Voltage
Supervisor chapter in the MSP430F5xx and MSP430F6xx Family User's Guide on recommended settings and usage.
8.24 PMM, SVM High Side
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
TYP
SVMHE = 0, DVCC = 3.6 V
I(SVMH)
V(SVMH)
SVMH current consumption
SVMH on or off voltage
level(1)
SVMHE = 1, DVCC = 3.6 V, SVMHFP = 0
200
SVMHE = 1, DVCC = 3.6 V, SVMHFP = 1
2.0
t(SVMH)
(1)
38
SVMH on or off delay time
UNIT
nA
µA
SVMHE = 1, SVSMHRRL = 0
1.65
1.74
1.86
SVMHE = 1, SVSMHRRL = 1
1.85
1.94
2.02
SVMHE = 1, SVSMHRRL = 2
2.02
2.14
2.22
SVMHE = 1, SVSMHRRL = 3
2.18
2.26
2.35
SVMHE = 1, SVSMHRRL = 4
2.32
2.40
2.48
SVMHE = 1, SVSMHRRL = 5
2.56
2.70
2.84
SVMHE = 1, SVSMHRRL = 6
2.85
3.00
3.15
SVMHE = 1, SVSMHRRL = 7
2.85
3.00
3.15
SVMHE = 1, SVMHOVPE = 1
tpd(SVMH) SVMH propagation delay
MAX
0
V
3.75
SVMHE = 1, dVDVCC/dt = 10 mV/µs, SVMHFP = 1
2.5
SVMHE = 1, dVDVCC/dt = 1 mV/µs, SVMHFP = 0
20
SVMHE = 0→1, SVMHFP = 1
12.5
SVMHE = 0→1, SVMHFP = 0
100
µs
µs
The SVMH settings available depend on the VCORE (PMMCOREVx) setting. See the Power Management Module and Supply Voltage
Supervisor chapter in the MSP430F5xx and MSP430F6xx Family User's Guide on recommended settings and usage.
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
8.25 PMM, SVS Low Side
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
TYP
SVSLE = 0, PMMCOREV = 2
I(SVSL)
SVSL current consumption
tpd(SVSL)
SVSL propagation delay
t(SVSL)
SVSL on or off delay time
MAX
0
SVSLE = 1, PMMCOREV = 2, SVSLFP = 0
200
SVSLE = 1, PMMCOREV = 2, SVSLFP = 1
2.0
SVSLE = 1, dVCORE/dt = 10 mV/µs, SVSLFP = 1
2.5
SVSLE = 1, dVCORE/dt = 1 mV/µs, SVSLFP = 0
20
SVSLE = 0→1, SVSLFP = 1
12.5
SVSLE = 0→1, SVSLFP = 0
100
UNIT
nA
µA
µs
µs
8.26 PMM, SVM Low Side
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
TYP
SVMLE = 0, PMMCOREV = 2
I(SVML)
SVML current consumption
tpd(SVML)
SVML propagation delay
t(SVML)
SVML on or off delay time
MAX
0
SVMLE = 1, PMMCOREV = 2, SVMLFP = 0
200
SVMLE = 1, PMMCOREV = 2, SVMLFP = 1
2.0
SVMLE = 1, dVCORE/dt = 10 mV/µs, SVMLFP = 1
2.5
SVMLE = 1, dVCORE/dt = 1 mV/µs, SVMLFP = 0
20
SVMLE = 0→1, SVMLFP = 1
12.5
SVMLE = 0→1, SVMLFP = 0
100
UNIT
nA
µA
µs
µs
8.27 Wake-up Times From Low-Power Modes
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
tWAKE-UP-FAST
Wake-up time from LPM2, LPM3, or
LPM4 to active mode(1)
TYP
MAX
PMMCOREV = SVSMLRRL = n
(where n = 0, 1, 2, or 3),
SVSLFP = 1, fMCLK ≥ 4.0 MHz
TEST CONDITIONS
3
6.5
PMMCOREV = SVSMLRRL = n
(where n = 0, 1, 2, or 3),
SVSLFP = 1, 1 MHz < fMCLK < 4.0 MHz
4
8.0
150
165
PMMCOREV = SVSMLRRL = n
(where n = 0, 1, 2, or 3),
SVSLFP = 0
MIN
UNIT
µs
tWAKE-UP-SLOW
Wake-up time from LPM2, LPM3, or
LPM4 to active mode(2) (3)
tWAKE-UP LPM5
Wake-up time from LPM3.5 or LPM4.5
to active mode(4)
2
3
ms
tWAKE-UP-RESET
Wake-up time from RST or BOR event
to active mode(4)
2
3
ms
(1)
(2)
(3)
(4)
This value represents the time from the wake-up event to the first active edge of MCLK. The wake-up time depends on the
performance mode of the low-side supervisor (SVSL) and low-side monitor (SVML). tWAKE-UP-FAST is possible with SVSL and SVML in
full performance mode or disabled. For specific register settings, see the Low-Side SVS and SVM Control and Performance Mode
Selection section in the Power Management Module and Supply Voltage Supervisor chapter of the MSP430F5xx and MSP430F6xx
Family User's Guide.
This value represents the time from the wake-up event to the first active edge of MCLK. The wake-up time depends on the
performance mode of the low-side supervisor (SVSL) and low-side monitor (SVML). tWAKE-UP-SLOW is set with SVSL and SVML in
normal mode (low current mode). For specific register settings, see the Low-Side SVS and SVM Control and Performance Mode
Selection section in the Power Management Module and Supply Voltage Supervisor chapter of the MSP430F5xx and MSP430F6xx
Family User's Guide.
The wake-up times from LPM0 and LPM1 to AM are not specified. They are proportional to MCLK cycle time but are not affected by
the performance mode settings as for LPM2, LPM3, and LPM4.
This value represents the time from the wake-up event to the reset vector execution.
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
39
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
8.28 Timer_A – Timers TA0, TA1, and TA2
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
VCC
fTA
Timer_A input clock frequency
Internal: SMCLK or ACLK,
External: TACLK,
Duty cycle = 50% ±10%
1.8 V, 3 V
tTA,cap
Timer_A capture timing
All capture inputs, Minimum pulse duration
required for capture
1.8 V, 3 V
MIN
MAX
UNIT
20
MHz
20
ns
8.29 Timer_B – Timer TB0
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
fTB
Timer_B input clock frequency
Internal: SMCLK or ACLK,
External: TBCLK,
Duty cycle = 50% ±10%
tTB,cap
Timer_B capture timing
All capture inputs, Minimum pulse duration
required for capture
VCC
1.8 V, 3 V
1.8 V, 3 V
MIN
MAX
UNIT
20
MHz
20
ns
8.30 Battery Backup
over operating free-air temperature range (unless otherwise noted)
PARAMETER
TEST CONDITIONS
VBAT = 1.7 V,
DVCC not connected,
RTC running
Current into VBAT terminal if no
primary battery is connected
IVBAT
VBAT = 2.2 V,
DVCC not connected,
RTC running
VBAT = 3 V,
DVCC not connected,
RTC running
VCC
MIN
TA = –40°C
0.43
TA = 25°C
0.52
TA = 60°C
0.58
TA = 85°C
0.66
TA = –40°C
0.50
TA = 25°C
0.59
TA = 60°C
0.64
TA = 85°C
0.72
TA = –40°C
0.68
TA = 25°C
0.75
TA = 60°C
0.79
TA = 85°C
Switch-over level (VCC to VBAT)
CVCC = 4.7 µF
RON_VBAT
On-resistance of switch between
VBAT = 1.8 V
VBAT and VBAK
VBAT3
VBAT to ADC input channel 12:
VBAT divided, VBAT3 ≈ VBAT/3
tSample,
µA
SVSHRL = 0
1.59
1.69
SVSHRL = 1
1.79
1.91
SVSHRL = 2
1.98
2.11
SVSHRL = 3
2.10
2.23
0V
0.35
1
1.8 V
0.6
±5%
3V
1.0
±5%
3.6 V
1.2
±5%
VBAT3
ADC12ON = 1,
Error of conversion result ≤ 2 LSB
1000
VCHVx
Charger end voltage
CHVx = 2
2.65
RCHARGE
Charge limiting resistor
Submit Document Feedback
UNIT
VSVSH_IT-
VBAT to ADC: Sampling time
required if VBAT3 selected
40
MAX
0.87
General
VSWITCH
TYP
V
kΩ
V
ns
2.7
2.9
CHCx = 1
5.2
CHCx = 2
10.2
CHCx = 3
20
V
kΩ
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
8.31 USCI (UART Mode)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
fUSCI
USCI input clock frequency
fBITCLK
BITCLK clock frequency
(equals baud rate in MBaud)
tτ
UART receive deglitch time(1)
(1)
VCC
MIN
Internal: SMCLK or ACLK,
External: UCLK
Duty cycle = 50% ±10%
MAX UNIT
fSYSTEM
MHz
1
MHz
2.2 V
50
600
3V
50
600
ns
Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. To make sure that pulses are
correctly recognized, their duration should exceed the maximum specification of the deglitch time.
8.32 USCI (SPI Master Mode)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)
(see Figure 8-11 and )
PARAMETERFigure 8-12
fUSCI
USCI input clock frequency
TEST CONDITIONS
SOMI input data setup time
PMMCOREV = 3
PMMCOREV = 0
tHD,MI
SOMI input data hold time
PMMCOREV = 3
tVALID,MO
SIMO output data valid time(2)
SIMO output data hold
(2)
(3)
fSYSTEM
1.8 V
55
3V
38
2.4 V
30
3V
25
1.8 V
0
3V
0
2.4 V
0
3V
0
ns
20
3V
18
UCLK edge to SIMO valid,
CL = 20 pF, PMMCOREV = 3
2.4 V
16
time(3)
3V
MHz
ns
UCLK edge to SIMO valid,
CL = 20 pF, PMMCOREV = 0
CL = 20 pF, PMMCOREV = 3
(1)
MAX UNIT
1.8 V
CL = 20 pF, PMMCOREV = 0
tHD,MO
MIN
SMCLK or ACLK,
Duty cycle = 50% ±10%
PMMCOREV = 0
tSU,MI
VCC
ns
15
1.8 V
–10
3V
–8
2.4 V
–10
3V
–8
ns
fUCxCLK = 1/2tLO/HI with tLO/HI ≥ max(tVALID,MO(USCI) + tSU,SI(Slave), tSU,MI(USCI) + tVALID,SO(Slave))
For the slave parameters tSU,SI(Slave) and tVALID,SO(Slave), see the SPI parameters of the attached slave.
Specifies the time to drive the next valid data to the SIMO output after the output changing UCLK clock edge. See the timing diagrams
in Figure 8-11 and Figure 8-12.
Specifies how long data on the SIMO output is valid after the output changing UCLK clock edge. Negative values indicate that the data
on the SIMO output can become invalid before the output changing clock edge observed on UCLK. See the timing diagrams in Figure
8-11 and Figure 8-12.
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
41
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
1/fUCxCLK
CKPL = 0
UCLK
CKPL = 1
tLO/HI
tLO/HI
tSU,MI
tHD,MI
SOMI
tHD,MO
tVALID,MO
SIMO
Figure 8-11. SPI Master Mode, CKPH = 0
1/fUCxCLK
CKPL = 0
UCLK
CKPL = 1
tLO/HI
tLO/HI
tSU,MI
tHD,MI
SOMI
tHD,MO
tVALID,MO
SIMO
Figure 8-12. SPI Master Mode, CKPH = 1
42
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
8.33 USCI (SPI Slave Mode)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)
(see Figure 8-13 and Figure 8-14)
PARAMETER
TEST CONDITIONS
PMMCOREV = 0
tSTE,LEAD
STE lead time, STE low to clock
PMMCOREV = 3
PMMCOREV = 0
tSTE,LAG
STE lag time, last clock to STE high
PMMCOREV = 3
PMMCOREV = 0
tSTE,ACC
STE access time, STE low to SOMI data out
PMMCOREV = 3
PMMCOREV = 0
tSTE,DIS
STE disable time, STE high to SOMI high
impedance
PMMCOREV = 3
PMMCOREV = 0
tSU,SI
SIMO input data setup time
PMMCOREV = 3
PMMCOREV = 0
tHD,SI
SIMO input data hold time
PMMCOREV = 3
tVALID,SO
SOMI output data valid time(2)
(2)
(3)
1.8 V
11
3V
8
2.4 V
7
3V
6
1.8 V
1
3V
1
2.4 V
1
3V
1
MAX
ns
1.8 V
66
3V
50
2.4 V
36
3V
30
1.8 V
30
3V
30
2.4 V
30
3V
ns
ns
30
1.8 V
5
3V
5
2.4 V
2
3V
2
1.8 V
5
3V
5
2.4 V
5
3V
5
ns
ns
76
3V
60
UCLK edge to SOMI valid,
CL = 20 pF, PMMCOREV = 3
2.4 V
44
SOMI output data hold time(3)
UNIT
ns
UCLK edge to SOMI valid,
CL = 20 pF, PMMCOREV = 0
CL = 20 pF, PMMCOREV = 3
(1)
MIN
1.8 V
CL = 20 pF, PMMCOREV = 0
tHD,SO
VCC
3V
ns
40
1.8 V
12
3V
12
2.4 V
12
3V
12
ns
fUCxCLK = 1/2tLO/HI with tLO/HI ≥ max(tVALID,MO(Master) + tSU,SI(USCI), tSU,MI(Master) + tVALID,SO(USCI))
For the master parameters tSU,MI(Master) and tVALID,MO(Master), see the SPI parameters of the attached master.
Specifies the time to drive the next valid data to the SOMI output after the output changing UCLK clock edge. See the timing diagrams
in Figure 8-13 and Figure 8-14.
Specifies how long data on the SOMI output is valid after the output changing UCLK clock edge. See the timing diagrams in Figure
8-13 and Figure 8-14.
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
43
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
tSTE,LEAD
tSTE,LAG
STE
1/fUCxCLK
CKPL = 0
UCLK
CKPL = 1
tLO/HI
tSU,SI
tLO/HI
tHD,SI
SIMO
tHD,SO
tVALID,SO
tSTE,ACC
tSTE,DIS
SOMI
Figure 8-13. SPI Slave Mode, CKPH = 0
tSTE,LAG
tSTE,LEAD
STE
1/fUCxCLK
CKPL = 0
UCLK
CKPL = 1
tLO/HI
tLO/HI
tHD,SI
tSU,SI
SIMO
tSTE,ACC
tHD,MO
tVALID,SO
tSTE,DIS
SOMI
Figure 8-14. SPI Slave Mode, CKPH = 1
44
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
8.34 USCI (I2C Mode)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see
Figure 8-15)
PARAMETER
fUSCI
USCI input clock frequency
fSCL
SCL clock frequency
TEST CONDITIONS
VCC
MIN
Internal: SMCLK or ACLK,
External: UCLK
Duty cycle = 50% ±10%
2.2 V, 3 V
tHD,STA
Hold time (repeated) START
tSU,STA
Setup time for a repeated START
tHD,DAT
Data hold time
tSU,DAT
Data setup time
fSCL ≤ 100 kHz
fSCL ≤ 100 kHz
fSCL ≤ 100 kHz
Setup time for STOP
tSP
Pulse duration of spikes suppressed by input filter
tSU,STA
tHD,STA
MHz
400
kHz
µs
4.7
µs
0.6
2.2 V, 3 V
0
ns
2.2 V, 3 V
250
ns
4.0
2.2 V, 3 V
fSCL > 100 kHz
fSYSTEM
0.6
2.2 V, 3 V
fSCL > 100 kHz
UNIT
4.0
2.2 V, 3 V
fSCL > 100 kHz
tSU,STO
0
MAX
µs
0.6
2.2 V
50
600
3V
50
600
tHD,STA
ns
tBUF
SDA
tLOW
tHIGH
tSP
SCL
tSU,DAT
tSU,STO
tHD,DAT
Figure 8-15. I2C Mode Timing
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
45
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
8.35 LCD_B Operating Characteristics
over operating free-air temperature range (unless otherwise noted)
PARAMETER
CONDITIONS
MIN
TYP
MAX
UNIT
VCC,LCD_B,CP en,3.6
Supply voltage range, charge
pump enabled, VLCD ≤ 3.6 V
LCDCPEN = 1, 0000 < VLCDx ≤ 1111
(charge pump enabled, VLCD ≤ 3.6 V)
2.2
3.6
V
VCC,LCD_B,CP en,3.3
Supply voltage range, charge
pump enabled, VLCD ≤ 3.3 V
LCDCPEN = 1, 0000 < VLCDx ≤ 1100
(charge pump enabled, VLCD ≤ 3.3 V)
2.0
3.6
V
VCC,LCD_B,int. bias
Supply voltage range, internal
LCDCPEN = 0, VLCDEXT = 0
biasing, charge pump disabled
2.4
3.6
V
VCC,LCD_B,ext. bias
Supply voltage range, external
LCDCPEN = 0, VLCDEXT = 0
biasing, charge pump disabled
2.4
3.6
V
VCC,LCD_B,VLCDEXT
Supply voltage range, external
LCD voltage, internal or
LCDCPEN = 0, VLCDEXT = 1
external biasing, charge pump
disabled
2.0
3.6
V
VLCDCAP/R33
External LCD voltage at
LCDCAP/R33, internal or
LCDCPEN = 0, VLCDEXT = 1
external biasing, charge pump
disabled
2.4
3.6
V
CLCDCAP
Capacitor on LCDCAP when
charge pump enabled
LCDCPEN = 1, VLCDx > 0000 (charge
pump enabled)
10
µF
fFrame
LCD frame frequency range
fLCD = 2 × mux × fFRAME with mux = 1
(static), 2, 3, 4
100
Hz
fACLK,in
ACLK input frequency range
40
kHz
CPanel
Panel capacitance
100-Hz frame frequency
10000
pF
VCC +
0.2
V
4.7
0
30
32
VR33
Analog input voltage at R33
LCDCPEN = 0, VLCDEXT = 1
VR23,1/3bias
Analog input voltage at R23
LCDREXT = 1, LCDEXTBIAS = 1,
LCD2B = 0
VR13
VR03 + 2/3
× (VR33 –
VR03)
VR33
V
VR13,1/3bias
Analog input voltage at R13
with 1/3 biasing
LCDREXT = 1, LCDEXTBIAS = 1,
LCD2B = 0
VR03
VR03 + 1/3
× (VR33 –
VR03)
VR23
V
VR13,1/2bias
Analog input voltage at R13
with 1/2 biasing
LCDREXT = 1, LCDEXTBIAS = 1,
LCD2B = 1
VR03
VR03 + 1/2
× (VR33 –
VR03)
VR33
V
VR03
Analog input voltage at R03
R0EXT = 1
VSS
VLCD-VR03
Voltage difference between
VLCD and R03
LCDCPEN = 0, R0EXT = 1
2.4
VLCDREF/R13
External LCD reference
voltage applied at
LCDREF/R13
VLCDREFx = 01
0.8
46
Submit Document Feedback
2.4
V
1.2
VCC +
0.2
V
1.5
V
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
8.36 LCD_B Electrical Characteristics
over operating free-air temperature range (unless otherwise noted)
PARAMETER
VLCD
LCD voltage
TEST CONDITIONS
VCC
MIN
TYP
VLCDx = 0000, VLCDEXT = 0
2.4 V to 3.6 V
VCC
LCDCPEN = 1, VLCDx = 0001
2 V to 3.6 V
2.59
LCDCPEN = 1, VLCDx = 0010
2 V to 3.6 V
2.66
LCDCPEN = 1, VLCDx = 0011
2 V to 3.6 V
2.72
LCDCPEN = 1, VLCDx = 0100
2 V to 3.6 V
2.79
LCDCPEN = 1, VLCDx = 0101
2 V to 3.6 V
2.85
LCDCPEN = 1, VLCDx = 0110
2 V to 3.6 V
2.92
LCDCPEN = 1, VLCDx = 0111
2 V to 3.6 V
2.98
LCDCPEN = 1, VLCDx = 1000
2 V to 3.6 V
3.05
LCDCPEN = 1, VLCDx = 1001
2 V to 3.6 V
3.10
LCDCPEN = 1, VLCDx = 1010
2 V to 3.6 V
3.17
LCDCPEN = 1, VLCDx = 1011
2 V to 3.6 V
3.24
LCDCPEN = 1, VLCDx = 1100
2 V to 3.6 V
3.30
LCDCPEN = 1, VLCDx = 1101
2.2 V to 3.6 V
3.36
LCDCPEN = 1, VLCDx = 1110
2.2 V to 3.6 V
3.42
MAX
UNIT
V
LCDCPEN = 1, VLCDx = 1111
2.2 V to 3.6 V
3.48
ICC,Peak,CP
Peak supply currents due to
charge pump activities
3.6
LCDCPEN = 1, VLCDx = 1111
2.2 V
400
tLCD,CP,on
Time to charge CLCD when
discharged
CLCD = 4.7 µF, LCDCPEN = 0→1,
VLCDx = 1111
2.2 V
100
ICP,Load
Maximum charge pump load
current
LCDCPEN = 1, VLCDx = 1111
2.2 V
RLCD,Seg
LCD driver output impedance,
segment lines
LCDCPEN = 1, VLCDx = 1000,
ILOAD = ±10 µA
2.2 V
10
kΩ
RLCD,COM
LCD driver output impedance,
common lines
LCDCPEN = 1, VLCDx = 1000,
ILOAD = ±10 µA
2.2 V
10
kΩ
µA
500
50
ms
µA
8.37 12-Bit ADC, Power Supply and Input Range Conditions
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(2)
PARAMETER
TEST CONDITIONS
AVCC
Analog supply voltage
AVCC and DVCC are connected together,
AVSS and DVSS are connected together,
V(AVSS) = V(DVSS) = 0 V
V(Ax)
Analog input voltage range(3)
All ADC12 analog input pins Ax
IADC12_A
Operating supply current into
AVCC terminal(4)
fADC12CLK = 5.0 MHz(1)
CI
Input capacitance
Only one terminal Ax can be selected at one
time
RI
Input MUX ON resistance
0 V ≤ VIN ≤ V(AVCC)
(1)
(2)
(3)
(4)
VCC
MIN
TYP
MAX
UNIT
2.2
3.6
V
0
AVCC
V
2.2 V
150
200
3V
150
250
2.2 V
20
25
pF
200
1900
Ω
10
µA
ADC12ON = 1, REFON = 0, SHT0 = 0, SHT1 = 0, ADC12DIV = 0
The leakage current is specified by the digital I/O input leakage.
The analog input voltage range must be within the selected reference voltage range VR+ to VR– for valid conversion results. If the
reference voltage is supplied by an external source or if the internal voltage is used and REFOUT = 1, then decoupling capacitors are
required. See Section 8.43 and Section 8.44.
The internal reference supply current is not included in current consumption parameter IADC12.
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
47
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
8.38 12-Bit ADC, Timing Parameters
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
VCC
For specified performance of ADC12 linearity
parameters using an external reference
voltage or AVCC as reference(1)
fADC12CLK
ADC conversion clock
For specified performance of ADC12 linearity
parameters using the internal reference(2)
2.2 V, 3 V
For specified performance of ADC12 linearity
parameters using the internal reference(3)
fADC12OSC
tCONVERT
tSample
(1)
(2)
(3)
(4)
(5)
Internal ADC12
oscillator(5)
Conversion time
Sampling time
MIN
TYP
MAX
0.45
4.8
5.0
0.45
2.4
4.0
0.45
2.4
2.7
4.8
5.4
ADC12DIV = 0, fADC12CLK = fADC12OSC
2.2 V, 3 V
4.2
REFON = 0, Internal oscillator,
ADC12OSC used for ADC conversion clock
2.2 V, 3 V
2.4
External fADC12CLK from ACLK, MCLK or
SMCLK, ADC12SSEL ≠ 0
RS = 400 Ω, RI = 200 Ω, CI = 20 pF,
τ = [RS + RI] × CI (4)
UNIT
MHz
MHz
3.1
µs
13 ×
1 / fADC12CLK
2.2 V, 3 V
1000
ns
REFOUT = 0, external reference voltage: SREF2 = 0, SREF1 = 1, SREF0 = 0. AVCC as reference voltage: SREF2 = 0, SREF1 = 0,
SREF0 = 0. The specified performance of the ADC12 linearity is ensured when using the ADC12OSC. For other clock sources, the
specified performance of the ADC12 linearity is ensured with fADC12CLK maximum of 5.0 MHz.
SREF2 = 0, SREF1 = 1, SREF0 = 0, ADC12SR = 0, REFOUT = 1
SREF2 = 0, SREF1 = 1, SREF0 = 0, ADC12SR = 0, REFOUT = 0. The specified performance of the ADC12 linearity is ensured when
using the ADC12OSC divided by 2.
Approximately 10 Tau (τ) are needed to get an error of less than ±0.5 LSB:
tSample = ln(2n+1) x (RS + RI) × CI + 800 ns, where n = ADC resolution = 12, RS = external source resistance
The ADC12OSC is sourced directly from MODOSC inside the UCS.
8.39 12-Bit ADC, Linearity Parameters Using an External Reference Voltage
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
EI
Integral linearity error(2)
ED
Differential linearity error(2)
EO
Offset error(3)
EG
Gain error(3)
ET
(1)
(2)
(3)
48
Total unadjusted error
TEST CONDITIONS
1.4 V ≤ dVREF ≤ 1.6 V(1)
1.6 V < dVREF (1)
See (1)
VCC
MIN
TYP
MAX
2.2 V, 3 V
±1.7
2.2 V, 3 V
±1
V(1)
2.2 V, 3 V
±3
±5.6
dVREF > 2.2 V(1)
2.2 V, 3 V
±1.5
±3.5
See (1)
2.2 V, 3 V
±1
±2.5
dVREF ≤ 2.2 V(1)
2.2 V, 3 V
±3.5
±7.1
dVREF > 2.2 V(1)
2.2 V, 3 V
±2
±5
dVREF ≤ 2.2
UNIT
±2
LSB
LSB
LSB
LSB
LSB
The external reference voltage is selected by: SREF2 = 0 or 1, SREF1 = 1, SREF0 = 0. dVREF = VR+ – VR–. VR+ < AVCC. VR– >
AVSS. Unless otherwise mentioned dVREF > 1.5 V. Impedance of the external reference voltage R < 100 Ω and two decoupling
capacitors, 10 µF and 100 nF, should be connected to VREF to decouple the dynamic current. Also see the MSP430F5xx and
MSP430F6xx Family User's Guide.
Parameters are derived using the histogram method.
Parameters are derived using a best fit curve.
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
8.40 12-Bit ADC, Linearity Parameters Using AVCC as Reference Voltage
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
EI
Integral linearity
ED
Differential linearity error(2)
Offset
EG
Gain error(3)
(1)
(2)
(3)
MAX
UNIT
2.2 V, 3 V
±2.0
LSB
2.2 V, 3 V
±1
LSB
±1
±2
LSB
±2
±4
LSB
±2
±5
LSB
See (1)
(1)
2.2 V, 3 V
See (1)
2.2 V, 3 V
(1)
2.2 V, 3 V
See
Total unadjusted error
VCC
(1)
See
error(3)
EO
ET
TEST CONDITIONS
error(2)
See
MIN
TYP
AVCC as reference voltage is selected by: SREF2 = 0, SREF1 = 0, SREF0 = 0.
Parameters are derived using the histogram method.
Parameters are derived using a best fit curve.
8.41 12-Bit ADC, Linearity Parameters Using the Internal Reference Voltage
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
TEST CONDITIONS(1)
PARAMETER
EI
Integral
linearity error(2)
ED
Differential
linearity error(2)
EO
Offset error(3)
EG
Gain error(3)
ET
(1)
(2)
(3)
(4)
Total unadjusted error
ADC12SR = 0, REFOUT = 1
fADC12CLK ≤ 4.0 MHz
ADC12SR = 0, REFOUT = 0
fADC12CLK ≤ 2.7 MHz
ADC12SR = 0, REFOUT = 1
fADC12CLK ≤ 4.0 MHz
ADC12SR = 0, REFOUT = 1
fADC12CLK ≤ 2.7 MHz
ADC12SR = 0, REFOUT = 0
fADC12CLK ≤ 2.7 MHz
ADC12SR = 0, REFOUT = 1
fADC12CLK ≤ 4.0 MHz
ADC12SR = 0, REFOUT = 0
fADC12CLK ≤ 2.7 MHz
ADC12SR = 0, REFOUT = 1
fADC12CLK ≤ 4.0 MHz
ADC12SR = 0, REFOUT = 0
fADC12CLK ≤ 2.7 MHz
ADC12SR = 0, REFOUT = 1
fADC12CLK ≤ 4.0 MHz
ADC12SR = 0, REFOUT = 0
fADC12CLK ≤ 2.7 MHz
VCC
MIN
TYP
MAX
±2.0
2.2 V, 3 V
±2.5
–1
+1.5
–1
+2.5
2.2 V, 3 V
±1
2.2 V, 3 V
2.2 V, 3 V
±2
±4
±2
±4
±1
±2.5
±1%(4)
±2
2.2 V, 3 V
±5
±1%(4)
UNIT
LSB
LSB
LSB
LSB
VREF
LSB
VREF
The external reference voltage is selected by: SREF2 = 0, SREF1 = 0, SREF0 = 1. dVREF = VR+ – VR–.
Parameters are derived using the histogram method.
Parameters are derived using a best fit curve.
The gain error and the total unadjusted error are dominated by the accuracy of the integrated reference module absolute accuracy. In
this mode, the reference voltage used by the ADC12_A is not available on a pin.
8.42 12-Bit ADC, Temperature Sensor and Built-In VMID
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER(1)
TEST CONDITIONS
VSENSOR
Temperature sensor voltage(2)
(see Figure 8-16)
ADC12ON = 1, INCH = 0Ah, TA = 0°C
TCSENSOR
Temperature coefficient of sensor
ADC12ON = 1, INCH = 0Ah
VCC
MIN
TYP
2.2 V
680
3V
680
MAX
mV
2.25(2)
2.2 V, 3V
tSENSOR(sample)
Sample time required if
channel 10 is selected(3)
ADC12ON = 1, INCH = 0Ah,
Error of conversion result ≤ 1 LSB
VMID
AVCC divider at channel 11
ADC12ON = 1, INCH = 0Bh,
VMID ≈ 0.5 × VAVCC
2.2 V
1.06
1.1
1.14
3V
1.46
1.5
1.54
tVMID(sample)
Sample time required if
channel 11 is selected(4)
ADC12ON = 1, INCH = 0Bh,
Error of conversion result ≤ 1 LSB
2.2 V, 3 V
1000
(2)
3V
30
mV/°C
2.2 V
(1)
30
UNIT
µs
V
ns
The temperature sensor is provided by the REF module. See the REF module parametric, IREF+, regarding the current consumption of
the temperature sensor.
The temperature sensor offset can be significant. TI recommends a single-point calibration to minimize the offset error of the built-in
temperature sensor. The TLV structure contains calibration values for 30°C ±3°C and 85°C ±3°C for each of the available reference
voltage levels. The sensor voltage can be computed as VSENSE = TCSENSOR × (Temperature,°C) + VSENSOR, where TCSENSOR and
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
49
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
(3)
(4)
VSENSOR can be computed from the calibration values for higher accuracy. Also see the MSP430F5xx and MSP430F6xx Family User's
Guide.
The typical equivalent impedance of the sensor is 51 kΩ. The sample time required includes the sensor-on time tSENSOR(on).
The on-time tVMID(on) is included in the sampling time tVMID(sample); no additional on time is needed.
Typical Temperature Sensor Voltage (mV)
1000
950
900
850
800
750
700
650
600
550
500
-40 -30 -20 -10 0 10 20 30 40 50 60 70 80
Ambient Temperature (°C)
Figure 8-16. Typical Temperature Sensor Voltage
8.43 REF, External Reference
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)
PARAMETER
MIN
MAX
UNIT
VeREF+ > VREF–/VeREF– (2)
1.4
AVCC
V
VeREF+ > VREF–/VeREF– (3)
0
1.2
V
Differential external reference
VeREF+ > VREF–/VeREF– (4)
voltage input
1.4
AVCC
V
–26
26
VeREF+
Positive external reference
voltage input
VREF–/VeREF–
Negative external reference
voltage input
(VeREF+ –
VREF–/VeREF–)
IVeREF+, IVREF–/
VeREF–
CVREF+/(1)
(2)
(3)
(4)
(5)
50
Static input current
Capacitance at VREF+ or
VREF- terminal(5)
TEST CONDITIONS
VCC
1.4 V ≤ VeREF+ ≤ VAVCC, VeREF– = 0 V,
fADC12CLK = 5 MHz, ADC12SHTx = 1h,
Conversion rate 200 ksps
2.2 V, 3 V
1.4 V ≤ VeREF+ ≤ VAVCC , VeREF– = 0 V,
fADC12CLK = 5 MHz, ADC12SHTx = 8h,
Conversion rate 20 ksps
2.2 V, 3 V
µA
–1.2
10
+1.2
µF
The external reference is used during ADC conversion to charge and discharge the capacitance array. The input capacitance, Ci, is
also the dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the
recommendations on analog-source impedance to allow the charge to settle for 12-bit accuracy.
The accuracy limits the minimum positive external reference voltage. Lower reference voltage levels may be applied with reduced
accuracy requirements.
The accuracy limits the maximum negative external reference voltage. Higher reference voltage levels may be applied with reduced
accuracy requirements.
The accuracy limits minimum external differential reference voltage. Lower differential reference voltage levels may be applied with
reduced accuracy requirements.
Two decoupling capacitors, 10 µF and 100 nF, should be connected to VREF to decouple the dynamic current required for an external
reference source if it is used for the ADC12_A. Also see the MSP430F5xx and MSP430F6xx Family User's Guide.
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
8.44 REF, Built-In Reference
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)
PARAMETER
VREF+
AVCC(min)
Positive built-in
reference voltage
output
AVCC minimum
voltage, Positive
built-in reference
active
TEST CONDITIONS
VCC
REFVSEL = {2} for 2.5 V,
REFON = REFOUT = 1, IVREF+ = 0 A
MIN
TYP
MAX
3V
2.5
±1%
REFVSEL = {1} for 2 V,
REFON = REFOUT = 1, IVREF+ = 0 A
3V
2.0
±1%
REFVSEL = {0} for 1.5 V,
REFON = REFOUT = 1, IVREF+ = 0 A
2.2 V, 3 V
1.5
±1%
REFVSEL = {0} for 1.5 V
2.2
REFVSEL = {1} for 2 V
2.3
REFVSEL = {2} for 2.5 V
2.8
ADC12SR = 1(8),
REFON = 1, REFOUT = 0, REFBURST = 0
Operating supply
current into AVCC
terminal (2) (7)
IREF+
UNIT
V
V
70
100
µA
0.45
0.75
mA
210
310
µA
ADC12SR = 0(8),
REFON = 1, REFOUT = 1, REFBURST = 0
0.95
1.7
mA
1500
2500
µV/mA
100
pF
ADC12SR = 1(8),
REFON = 1, REFOUT = 1, REFBURST = 0
ADC12SR = 0(8),
REFON = 1, REFOUT = 0, REFBURST = 0
3V
IL(VREF+)
Load-current
regulation, VREF+
terminal(3)
REFVSEL = {0, 1, 2},
IVREF+ = +10 µA or –1000 µA,
AVCC = AVCC(min) for each reference level,
REFVSEL = {0, 1, 2}, REFON = REFOUT = 1
CVREF+
Capacitance at
VREF+ terminal
REFON = REFOUT = 1(6),
0 mA ≤ IVREF+ ≤ IVREF+(max)
TCREF+
Temperature
coefficient of built-in
reference(4)
IVREF+ is a constant in the range of
0 mA ≤ IVREF+ ≤ –1 mA
REFOUT = 0
2.2 V, 3 V
20
ppm/ °C
TCREF+
Temperature
coefficient of built-in
reference(4)
IVREF+ is a constant in the range of
0 mA ≤ IVREF+ ≤ –1 mA
REFOUT = 1
2.2 V, 3 V
20
50 ppm/ °C
PSRR_DC
Power supply
rejection ratio (DC)
AVCC = AVCC(min) to AVCC(max), TA = 25°C,
REFVSEL = {0, 1, 2}, REFON = 1,
REFOUT = 0 or 1
120
PSRR_AC
Power supply
rejection ratio (AC)
AVCC = AVCC(min) to AVCC(max), TA = 25°C,
REFVSEL = {0, 1, 2}, REFON = 1,
REFOUT = 0 or 1
1
tSETTLE
(1)
(2)
(3)
(4)
(5)
Settling time of
reference voltage(5)
2.2 V, 3 V
20
AVCC = AVCC(min) to AVCC(max),
REFVSEL = {0, 1, 2}, REFOUT = 0,
REFON = 0 → 1
75
AVCC = AVCC(min) to AVCC(max),
CVREF = CVREF(max), REFVSEL = {0, 1, 2},
REFOUT = 1, REFON = 0 → 1
75
300
µV/V
mV/V
µs
The reference is supplied to the ADC by the REF module and is buffered locally inside the ADC. The ADC uses two internal buffers,
one smaller and one larger for driving the VREF+ terminal. When REFOUT = 1, the reference is available at the VREF+ terminal and is
used as the reference for the conversion and uses the larger buffer. When REFOUT = 0, the reference is only used as the reference
for the conversion and uses the smaller buffer.
The internal reference current is supplied from the AVCC terminal. Consumption is independent of the ADC12ON control bit, unless a
conversion is active. REFOUT = 0 represents the current contribution of the smaller buffer. REFOUT = 1 represents the current
contribution of the larger buffer without external load.
Contribution only due to the reference and buffer including package. This does not include resistance due to PCB trace or other
causes.
Calculated using the box method: (MAX(–40°C to 85°C) – MIN(–40°C to 85°C)) / MIN(–40°C to 85°C)/(85°C – (–40°C)).
The condition is that the error in a conversion started after tREFON is less than ±0.5 LSB. The settling time depends on the external
capacitive load when REFOUT = 1.
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
51
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
(6)
(7)
(8)
Two decoupling capacitors, 10 µF and 100 nF, should be connected to VREF to decouple the dynamic current required for an external
reference source if it is used for the ADC12_A. Also see the MSP430F5xx and MSP430F6xx Family User's Guide.
The temperature sensor is provided by the REF module. Its current is supplied from the AVCC terminal and is equivalent to IREF+ with
REFON = 1 and REFOUT = 0.
For devices without the ADC12, the parametric with ADC12SR = 0 are applicable.
8.45 12-Bit DAC, Supply Specifications
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
AVCC
Analog supply voltage
TEST CONDITIONS
DAC12AMPx = 2, DAC12IR = 0, DAC12IOG = 1
DAC12_xDAT = 0800h
VeREF+ = VREF+ = 1.5 V
Supply current, single
DAC channel(1) (2)
IDD
VCC
AVCC = DVCC, AVSS = DVSS = 0 V
3V
DAC12AMPx = 2, DAC12IR = 1,
DAC12_xDAT = 0800h,
VeREF+ = VREF+ = AVCC
DAC12AMPx = 5, DAC12IR = 1,
DAC12_xDAT = 0800h,
VeREF+ = VREF+ = AVCC
PSRR
(1)
(2)
(3)
(4)
52
DAC12_xDAT = 800h, VeREF+ = 1.5 V,
ΔAVCC = 100 mV
DAC12_xDAT = 800h, VeREF+ = 1.5 V or 2.5 V,
ΔAVCC = 100 mV
TYP
MAX
UNIT
3.60
V
65
110
65
110
µA
2.2 V, 3 V
DAC12AMPx = 7, DAC12IR = 1,
DAC12_xDAT = 0800h,
VeREF+ = VREF+ = AVCC
Power supply rejection
ratio(3) (4)
MIN
2.20
250
300
750
1000
2.2 V
70
3V
70
dB
No load at the output pin, DAC12_0 or DAC12_1, assuming that the control bits for the shared pins are set properly.
Current into reference terminals not included. If DAC12IR = 1 current flows through the input divider; see Reference Input
specifications.
PSRR = 20 log (ΔAVCC / ΔVDAC12_xOUT)
The internal reference is not used.
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
8.46 12-Bit DAC, Linearity Specifications
See Figure 8-17, over recommended ranges of supply voltage and operating free-air temperature (unless
otherwise noted)
PARAMETER
Resolution
TEST CONDITIONS
MIN
12-bit monotonic
INL
Integral nonlinearity(1)
DNL
Differential nonlinearity(1)
EG
Gain error
dE(G)/dT
Gain temperature
coefficient(1)
tOffset_Cal
Time for offset
calibration(3)
12
±4
VeREF+ = 2.5 V, DAC12AMPx = 7, DAC12IR = 1
3V
±2
±4
VeREF+ = 1.5 V, DAC12AMPx = 7, DAC12IR = 1
2.2 V
±0.4
±1
VeREF+ = 2.5 V, DAC12AMPx = 7, DAC12IR = 1
3V
±0.4
±1
VeREF+ = 1.5 V,
DAC12AMPx = 7,
DAC12IR = 1
2.2 V
±21
VeREF+ = 2.5 V,
DAC12AMPx = 7,
DAC12IR = 1
3V
±21
VeREF+ = 1.5 V,
DAC12AMPx = 7,
DAC12IR = 1
2.2 V
±1.5
VeREF+ = 2.5 V,
DAC12AMPx = 7,
DAC12IR = 1
3V
±1.5
With calibration
2.2 V, 3 V
±10
VeREF+ = 1.5 V
2.2 V
±2.5
VeREF+ = 2.5 V
3V
±2.5
2.2 V, 3 V
LSB
µV/°C
%FSR
ppm of
FSR/°C
10
165
DAC12AMPx = 3, 5
66
2.2 V, 3 V
DAC12AMPx = 4, 6, 7
(2)
(3)
LSB
mV
DAC12AMPx = 2
(1)
UNIT
bits
±2
With calibration(1) (2)
Offset error temperature
coefficient(1)
MAX
2.2 V
Offset voltage
dE(O)/dT
TYP
VeREF+ = 1.5 V, DAC12AMPx = 7, DAC12IR = 1
Without calibration(1) (2)
EO
VCC
ms
16.5
Parameters calculated from the best-fit curve from 0x0F to 0xFFF. The best-fit curve method is used to deliver coefficients "a" and "b"
of the first-order equation: y = a + bx. VDAC12_xOUT = EO + (1 + EG) × (VeREF+/4095) × DAC12_xDAT, DAC12IR = 1.
The offset calibration works on the output operational amplifier. Offset Calibration is triggered setting bit DAC12CALON
The offset calibration can be done if DAC12AMPx = {2, 3, 4, 5, 6, 7}. The output operational amplifier is switched off with DAC12AMPx
= {0, 1}. TI recommends configuring the DAC12 module before initiating calibration. Port activity during calibration may affect accuracy
and is not recommended.
DAC VOUT
DAC Output
VR+
RLoad = ¥
Ideal transfer
function
AVCC
2
CLoad = 100 pF
Offset Error
Positive
Negative
Gain Error
DAC Code
Figure 8-17. Linearity Test Load Conditions and Gain/Offset Definition
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
53
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
8.47 12-Bit DAC, Output Specifications
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
VCC
No load, VeREF+ = AVCC, DAC12_xDAT = 0h,
DAC12IR = 1, DAC12AMPx = 7
No load, VeREF+ = AVCC,
DAC12_xDAT = 0FFFh, DAC12IR = 1,
DAC12AMPx = 7
Output voltage
range(1) (see Figure RLoad = 3 kΩ, VeREF+ = AVCC,
8-18)
DAC12_xDAT = 0h, DAC12IR = 1,
DAC12AMPx = 7
VO
Maximum DAC12
load capacitance
IL(DAC12)
Maximum DAC12
load current
MAX
0
0.005
AVCC –
0.05
AVCC
0
0.1
AVCC –
0.13
AVCC
DAC12AMPx = 2, DAC12_xDAT = 0FFFh,
VO/P(DAC12) > AVCC – 0.3
100
mA
1
RLoad = 3 kΩ, VO/P(DAC12) > AVCC – 0.3 V,
DAC12_xDAT = 0FFFh
2.2 V, 3 V
150
250
150
250
RLoad = 3 kΩ,
0.3 V ≤ VO/P(DAC12) ≤ AVCC – 0.3 V
(1)
pF
–1
2.2 V, 3 V
DAC12AMPx = 2, DAC12_xDAT = 0h,
VO/P(DAC12) < 0.3 V
Output resistance
(see Figure 8-18)
UNIT
V
2.2 V, 3 V
RLoad = 3 kΩ, VO/P(DAC12) < 0.3 V,
DAC12AMPx = 2, DAC12_xDAT = 0h
RO/P(DAC12)
TYP
2.2 V, 3 V
RLoad = 3 kΩ, VeREF+ = AVCC,
DAC12_xDAT = 0FFFh, DAC12IR = 1,
DAC12AMPx = 7
CL(DAC12)
MIN
Ω
6
Data is valid after the offset calibration of the output amplifier.
RO/P(DAC12_x)
ILoad
Max
RLoad
AVCC
DAC12
2
O/P(DAC12_x)
CLoad = 100 pF
Min
0.3
AVCC – 0.3 V
VOUT
AVCC
Figure 8-18. DAC12_x Output Resistance Tests
54
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
8.48 12-Bit DAC, Reference Input Specifications
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
VCC
MIN
DAC12IR = 0(1) (2)
VeREF+
Reference input voltage range
MAX
AVCC/3
AVCC +
0.2
AVCC
AVCC +
0.2
2.2 V, 3 V
DAC12IR = 1(3) (4)
DAC12_0 IR = DAC12_1 IR = 0
Ri(VREF+),
Ri(VeREF+)
TYP
20
DAC12_0 IR = 0, DAC12_1 IR = 1
52
2.2 V, 3 V
52
DAC12_0 IR = DAC12_1 IR = 1,
DAC12_0 SREFx = DAC12_1 SREFx(5)
(1)
(2)
(3)
(4)
(5)
V
MΩ
DAC12_0 IR = 1, DAC12_1 IR = 0
Reference input resistance
UNIT
kΩ
26
For a full-scale output, the reference input voltage can be as high as 1/3 of the maximum output voltage swing (AVCC).
The maximum voltage applied at reference input voltage terminal VeREF+ = [AVCC – VE(O)] / [3 × (1 + EG)].
For a full-scale output, the reference input voltage can be as high as the maximum output voltage swing (AVCC).
The maximum voltage applied at reference input voltage terminal VeREF+ = [AVCC – VE(O)] / (1 + EG).
When DAC12IR = 1 and DAC12SREFx = 0 or 1 for both channels, the reference input resistive dividers for each DAC are in parallel
reducing the reference input resistance.
8.49 12-Bit DAC, Dynamic Specifications
VREF = VCC, DAC12IR = 1 (see Figure 8-19 and Figure 8-20), over recommended ranges of supply voltage and
operating free-air temperature (unless otherwise noted)
PARAMETER
tON
DAC12 on time
TEST CONDITIONS
DAC12_xDAT = 800h,
ErrorV(O) < ±0.5 LSB(1)
(see Figure 8-19)
VCC
MIN
TYP
DAC12AMPx = 0 → {2, 3, 4}
DAC12AMPx = 0 → {5, 6}
2.2 V, 3 V
DAC12AMPx = 0 → 7
DAC12AMPx = 2
tS(FS)
Settling time, full scale
DAC12_xDAT =
80h → F7Fh → 80h
DAC12AMPx = 3, 5
2.2 V, 3 V
DAC12AMPx = 4, 6, 7
tS(C-C)
Settling time, code to
code
DAC12_xDAT =
3F8h → 408h → 3F8h,
BF8h → C08h → BF8h
DAC12AMPx = 2
DAC12AMPx = 3, 5
DAC12_xDAT =
80h → F7Fh → 80h(2)
Slew rate
(1)
(2)
DAC12_xDAT =
800h → 7FFh → 800h
DAC12AMPx = 7
30
6
12
100
200
40
80
15
30
µs
µs
µs
1
2.2 V, 3 V
DAC12AMPx = 4, 6, 7
Glitch energy
120
2
DAC12AMPx = 4, 6, 7
DAC12AMPx = 3, 5
60
15
5
2.2 V, 3 V
DAC12AMPx = 2
SR
MAX UNIT
0.05
0.35
0.35
1.10
1.50
5.20
2.2 V, 3 V
35
V/µs
nV-s
RLoad and CLoad connected to AVSS (not AVCC/2) in Figure 8-19.
Slew rate applies to output voltage steps ≥200 mV.
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
55
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
Conversion 1
VOUT
DAC Output
ILoad
Conversion 2
±1/2 LSB
Glitch
Energy
RLoad = 3 kW
Conversion 3
AVCC
2
±1/2 LSB
CLoad = 100 pF
RO/P(DAC12.x)
tsettleLH
tsettleHL
Figure 8-19. Settling Time and Glitch Energy Testing
Conversion 1
Conversion 2
Conversion 3
VOUT
90%
90%
10%
10%
tSRLH
tSRHL
Figure 8-20. Slew Rate Testing
8.50 12-Bit DAC, Dynamic Specifications (Continued)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
BW–3dB
TEST CONDITIONS
VCC
MIN
DAC12AMPx = {2, 3, 4}, DAC12SREFx = 2,
DAC12IR = 1, DAC12_xDAT = 800h
TA = 25°C
3-dB bandwidth,
VDC = 1.5 V,
VAC = 0.1 VPP
(see Figure 8-21)
DAC12AMPx = {5, 6}, DAC12SREFx = 2,
DAC12IR = 1, DAC12_xDAT = 800h
TA = 25°C
(1)
MAX
UNIT
40
2.2 V, 3 V
DAC12AMPx = 7, DAC12SREFx = 2,
DAC12IR = 1, DAC12_xDAT = 800h
TA = 25°C
180
kHz
550
DAC12_0DAT = 800h, No load,
DAC12_1DAT = 80h ↔ F7Fh, RLoad = 3 kΩ,
fDAC12_1OUT = 10 kHz at 50/50 duty cycle,
TA = 25°C
Channel-to-channel
crosstalk(1)
(see Figure 8-22)
TYP
DAC12_0DAT = 80h ↔ F7Fh, RLoad = 3 kΩ,
DAC12_1DAT = 800h, No load,
fDAC12_0OUT = 10 kHz at 50/50 duty cycle,
TA = 25°C
–80
2.2 V, 3 V
dB
–80
RLoad = 3 kΩ, CLoad = 100 pF
RLoad = 3 kW
ILoad
VeREF+
AVCC
DAC12_x
AC
2
DACx
CLoad = 100 pF
DC
Figure 8-21. Test Conditions for 3-dB Bandwidth Specification
56
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
RLoad
ILoad
AVCC
DAC12_0
DAC12_xDAT 080h
2
DAC0
080h
F7Fh
080h
F7Fh
VOUT
CLoad = 100 pF
VREF+
VDAC12_yOUT
RLoad
ILoad
AVCC
DAC12_1
VDAC12_xOUT
2
DAC1
1/fToggle
CLoad = 100 pF
Figure 8-22. Crosstalk Test Conditions
8.51 Comparator_B
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
VCC
TEST CONDITIONS
VCC
Supply voltage
MIN
TYP
1.8
3.6
1.8 V
IAVCC_COMP
Comparator operating supply
current into AVCC terminal,
Excludes reference resistor ladder
IAVCC_REF
Quiescent current of local
reference voltage amplifier into
AVCC terminal
VIC
Common mode input range
VOFFSET
Input offset voltage
CIN
Input capacitance
RSIN
Series input resistance
tPD
Propagation delay, response time
tPD,filter
tEN_CMP
Propagation delay with filter active
Comparator enable time
2.2 V
30
50
3V
40
65
CBPWRMD = 01
2.2 V, 3 V
10
30
CBPWRMD = 10
2.2 V, 3 V
0.1
0.5
CBREFACC = 1, CBREFLx = 01
0
VCC – 1
V
CBPWRMD = 01 or 10
±10
5
On (switch closed)
3
4
50
450
600
CBPWRMD = 10, CBF = 0
50
CBPWRMD = 00, CBON = 1,
CBF = 1, CBFDLY = 00
0.35
0.6
1.0
CBPWRMD = 00, CBON = 1,
CBF = 1, CBFDLY = 01
0.6
1.0
1.8
CBPWRMD = 00, CBON = 1,
CBF = 1, CBFDLY = 10
1.0
1.8
3.4
CBPWRMD = 00, CBON = 1,
CBF = 1, CBFDLY = 11
1.8
3.4
6.5
1
2
Reference voltage for a given tap
VIN = reference into resistor
ladder (n = 0 to 31)
ns
µs
µs
µs
CBON = 0 to CBON = 1
CBPWRMD = 10
VCB_REF
kΩ
MΩ
CBPWRMD = 00, CBF = 0
CBON = 0 to CBON = 1
mV
pF
CBPWRMD = 01, CBF = 0
Resistor reference enable time
µA
µA
±20
CBON = 0 to CBON = 1
CBPWRMD = 00 or 01
V
22
CBPWRMD = 00
Off (switch open)
UNIT
40
CBPWRMD = 00
tEN_REF
Copyright © 2020 Texas Instruments Incorporated
MAX
100
0.3
1.5
µs
VIN ×
VIN ×
VIN ×
(n + 0.5) / (n + 1) / 3 (n + 1.5) /
32
2
32
V
Submit Document Feedback
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
57
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
8.52 Ports PU.0 and PU.1
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
VOH
High-level output voltage
VUSB = 3.3 V ±10%, IOH = –25 mA
VOL
Low-level output voltage
VUSB = 3.3 V ±10%, IOL = 25 mA
VIH
High-level input voltage
VUSB = 3.3 V ±10%
VIL
Low-level input voltage
VUSB = 3.3 V ±10%
MIN
MAX
2.4
UNIT
V
0.4
2.0
V
V
0.8
V
8.53 USB Output Ports DP and DM
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
MAX
UNIT
VOH
D+, D- single ended
USB 2.0 load conditions
2.8
3.6
V
VOL
D+, D- single ended
USB 2.0 load conditions
0
0.3
V
Z(DRV)
D+, D- impedance
Including external series resistor of 27 Ω
28
44
Ω
tRISE
Rise time
Full speed, differential, CL = 50 pF,
10%/90%, Rpu on D+
4
20
ns
tFALL
Fall time
Full speed, differential, CL = 50 pF,
10%/90%, Rpu on D+
4
20
ns
8.54 USB Input Ports DP and DM
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
MIN
MAX
V(CM)
Differential input common mode range
PARAMETER
TEST CONDITIONS
0.8
2.5
Z(IN)
Input impedance
300
VCRS
Crossover voltage
1.3
VIL
Static SE input logic low level
VIH
Static SE input logic high level
VDI
Differential input voltage
58
Submit Document Feedback
UNIT
V
kΩ
2.0
0.8
2.0
V
V
V
0.2
V
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
8.55 USB-PWR (USB Power System)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNIT
3.75
V
5.5
V
VLAUNCH
VBUS detection threshold
VBUS
USB bus voltage
VUSB
USB LDO output voltage
3.3
V18
Internal USB voltage(1)
1.8
IUSB_EXT
Maximum external current from VUSB terminal(2)
IDET
USB LDO current overload detection(3)
ISUSPEND
Operating supply current into VBUS terminal.(4)
CBUS
VBUS terminal recommended capacitance
4.7
µF
CUSB
VUSB terminal recommended capacitance
220
nF
C18
V18 terminal recommended capacitance
220
nF
tENABLE
Settling time VUSB and V18
RPUR
Pullup resistance of PUR terminal(5)
(1)
(2)
(3)
(4)
(5)
Normal operation
3.76
USB LDO is on
60
USB LDO is on,
USB PLL disabled
Within 2%,
recommended capacitances
70
110
±9%
V
V
12
mA
100
mA
250
µA
2
ms
150
Ω
This voltage is for internal use only. No external DC loading should be applied.
This represents additional current that can be supplied to the application from the VUSB terminal beyond the needs of the USB
operation.
A current overload will be detected when the total current supplied from the USB LDO, including IUSB_EXT, exceeds this value.
Does not include current contribution of Rpu and Rpd as outlined in the USB specification.
This value, in series with an external resistor between PUR and D+, produces the Rpu as outlined in the USB specification.
8.56 USB-PLL (USB Phase Locked Loop)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
IPLL
Operating supply current
fPLL
PLL frequency
fUPD
PLL reference frequency
tLOCK
PLL lock time
tJitter
PLL jitter
MIN
TYP
7
48
1.5
1000
Copyright © 2020 Texas Instruments Incorporated
MAX
UNIT
mA
MHz
3
MHz
2
ms
ps
Submit Document Feedback
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
59
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
8.57 Flash Memory
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TJ
DVCC(PGM/ERASE) Program and erase supply voltage
IPGM
MIN
TYP
1.8
MAX
3.6
Average supply current from DVCC during program
3
5
UNIT
V
mA
IERASE
Average supply current from DVCC during erase
6
19
mA
IMERASE, IBANK
Average supply current from DVCC during mass erase or bank erase
6
19
mA
tCPT
Cumulative program time(1)
16
104
Program and erase endurance
tRetention
Data retention duration
tWord
Word or byte program time(2)
25°C
word(2)
105
ms
cycles
100
years
64
85
µs
tBlock, 0
Block program time for first byte or
49
65
µs
tBlock, 1–(N–1)
Block program time for each additional byte or word, except for last byte
or word(2)
37
49
µs
tBlock, N
Block program time for last byte or word(2)
55
73
µs
tSeg Erase
Erase time for segment, mass erase, and bank erase when available(2)
23
32
ms
fMCLK,MGR
MCLK frequency in marginal read mode
(FCTL4.MGR0 = 1 or FCTL4.MGR1 = 1)
0
1
MHz
(1)
(2)
The cumulative program time must not be exceeded when writing to a 128-byte flash block. This parameter applies to all programming
methods: individual word write, individual byte write, and block write modes.
These values are hardwired into the state machine of the flash controller.
8.58 JTAG and Spy-Bi-Wire Interface
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
TEST
CONDITIONS
PARAMETER
MIN
TYP
MAX
UNIT
fSBW
Spy-Bi-Wire input frequency
2.2 V, 3 V
0
20
MHz
tSBW,Low
Spy-Bi-Wire low clock pulse duration
2.2 V, 3 V
0.025
15
µs
1
µs
15
100
µs
tSBW, En
Spy-Bi-Wire enable time (TEST high to acceptance of first clock
tSBW,Rst
Spy-Bi-Wire return to normal operation time
fTCK
TCK input frequency for 4-wire JTAG(2)
Rinternal
Internal pulldown resistance on TEST
(1)
(2)
60
edge)(1)
2.2 V, 3 V
2.2 V
0
5
3V
0
10
2.2 V, 3 V
45
60
80
MHz
kΩ
Tools that access the Spy-Bi-Wire interface must wait for the tSBW,En time after pulling the TEST/SBWTCK pin high before applying the
first SBWTCK clock edge.
fTCK may be restricted to meet the timing requirements of the module selected.
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
9 Detailed Description
9.1 CPU
The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All operations,
other than program-flow instructions, are performed as register operations in conjunction with seven addressing
modes for source operand and four addressing modes for destination operand.
The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to-register
operation execution time is one cycle of the CPU clock. Four of the registers, R0 to R3, are dedicated as
program counter, stack pointer, status register, and constant generator, respectively. The remaining registers are
general-purpose registers (see Figure 9-1).
Peripherals are connected to the CPU using data, address, and control buses. The peripherals can be managed
with all instructions.
Program Counter
PC/R0
Stack Pointer
SP/R1
Status Register
Constant Generator
SR/CG1/R2
CG2/R3
General-Purpose Register
R4
General-Purpose Register
R5
General-Purpose Register
R6
General-Purpose Register
R7
General-Purpose Register
R8
General-Purpose Register
R9
General-Purpose Register
R10
General-Purpose Register
R11
General-Purpose Register
R12
General-Purpose Register
R13
General-Purpose Register
R14
General-Purpose Register
R15
Figure 9-1. Integrated CPU Registers
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
61
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
9.2 Instruction Set
The instruction set consists of the original 51 instructions with three formats and seven address modes and
additional instructions for the expanded address range. Each instruction can operate on word and byte data.
Table 9-1 lists examples of the three types of instruction formats. Table 9-2 lists the address modes.
Table 9-1. Instruction Word Formats
INSTRUCTION WORD FORMAT
Dual operands, source-destination
EXAMPLE
ADD
Single operands, destination only
R4 + R5 → R5
R8
PC → (TOS), R8 → PC
CALL
Relative jump, unconditional or conditional
OPERATION
R4,R5
JNE
Jump-on-equal bit = 0
Table 9-2. Address Mode Descriptions
(1)
62
ADDRESS MODE
S(1)
D(1)
Register
+
+
MOV Rs,Rd
MOV R10,R11
R10 → R11
Indexed
+
+
MOV X(Rn),Y(Rm)
MOV 2(R5),6(R6)
M(2+R5) → M(6+R6)
SYNTAX
EXAMPLE
OPERATION
Symbolic (PC relative)
+
+
MOV EDE,TONI
M(EDE) → M(TONI)
Absolute
+
+
MOV &MEM, &TCDAT
M(MEM) → M(TCDAT)
Indirect
+
MOV @Rn,Y(Rm)
MOV @R10,Tab(R6)
M(R10) → M(Tab+R6)
Indirect auto-increment
+
MOV @Rn+,Rm
MOV @R10+,R11
M(R10) → R11
R10 + 2 → R10
Immediate
+
MOV #X,TONI
MOV #45,TONI
#45 → M(TONI)
S = source, D = destination
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
9.3 Operating Modes
The MCUs have one active mode and seven software-selectable low-power modes of operation. An interrupt
event can wake up the device from any of the low-power modes, service the request, and restore back to the
low-power mode on return from the interrupt program.
Software can configure the following operating modes:
•
•
•
•
•
•
•
•
Active mode (AM)
– All clocks are active
Low-power mode 0 (LPM0)
– CPU is disabled
– ACLK and SMCLK remain active, MCLK is disabled
– FLL loop control remains active
Low-power mode 1 (LPM1)
– CPU is disabled
– FLL loop control is disabled
– ACLK and SMCLK remain active, MCLK is disabled
Low-power mode 2 (LPM2)
– CPU is disabled
– MCLK, FLL loop control, and DCOCLK are disabled
– DC generator of the DCO remains enabled
– ACLK remains active
Low-power mode 3 (LPM3)
– CPU is disabled
– MCLK, FLL loop control, and DCOCLK are disabled
– DC generator of the DCO is disabled
– ACLK remains active
Low-power mode 4 (LPM4)
– CPU is disabled
– ACLK is disabled
– MCLK, FLL loop control, and DCOCLK are disabled
– DC generator of the DCO is disabled
– Crystal oscillator is stopped
– Complete data retention
Low-power mode 3.5 (LPM3.5)
– Internal regulator disabled
– No data retention
– RTC enabled and clocked by low-frequency oscillator
– Wake-up input from RST/NMI, RTC_B, P1, P2, P3, and P4
Low-power mode 4.5 (LPM4.5)
– Internal regulator disabled
– No data retention
– Wake-up input from RST/NMI, P1, P2, P3, and P4
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
63
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
9.4 Interrupt Vector Addresses
The interrupt vectors and the power-up start address are in the address range 0FFFFh to 0FF80h (see Table
9-3). The vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence.
Table 9-3. Interrupt Sources, Flags, and Vectors
INTERRUPT SOURCE
INTERRUPT FLAG
SYSTEM
INTERRUPT
WORD
ADDRESS
PRIORITY
System Reset
Power up, External Reset
Watchdog time-out, key violation
Flash memory key violation
WDTIFG, KEYV (SYSRSTIV)(1) (3)
Reset
0FFFEh
63, highest
System NMI
PMM
Vacant memory access
JTAG mailbox
SVMLIFG, SVMHIFG, DLYLIFG, DLYHIFG,
SVMLVLRIFG, SVMHVLRIFG, VMAIFG,
JMBINIFG, JMBOUTIFG (SYSSNIV)(1)
(Non)maskable
0FFFCh
62
(Non)maskable
0FFFAh
61
User NMI
NMI
Oscillator fault
Flash memory access violation
(1) (3)
Comp_B
Comparator B interrupt flags (CBIV)(1) (2)
Maskable
0FFF8h
60
Timer TB0
TB0CCR0 CCIFG0 (2)
Maskable
0FFF6h
59
Timer TB0
TB0CCR1 CCIFG1 to TB0CCR6 CCIFG6,
TB0IFG (TB0IV)(1) (2)
Maskable
0FFF4h
58
Watchdog interval timer mode
WDTIFG
Maskable
0FFF2h
57
USCI_A0 receive or transmit
UCA0RXIFG, UCA0TXIFG
(UCA0IV)(1) (2)
Maskable
0FFF0h
56
USCI_B0 receive or transmit
UCB0RXIFG, UCB0TXIFG (UCB0IV)(1) (2)
Maskable
0FFEEh
55
ADC12_A
Maskable
0FFECh
54
TA0CCR0 CCIFG0(2)
Maskable
0FFEAh
53
Timer TA0
TA0CCR1 CCIFG1 to TA0CCR4 CCIFG4,
TA0IFG (TA0IV)(1) (2)
Maskable
0FFE8h
52
USB_UBM(5)
USB interrupts (USBIV)(1) (2)
LDO-PWR (7)
LDOOFFIFG, LDOONIFG, LDOOVLIFG
Maskable
0FFE6h
51
DMA
DMA0IFG, DMA1IFG, DMA2IFG, DMA3IFG,
DMA4IFG, DMA5IFG (DMAIV)(1) (2)
Maskable
0FFE4h
50
Timer TA1
TA1CCR0 CCIFG0(2)
Maskable
0FFE2h
49
Timer TA1
TA1CCR1 CCIFG1 to TA1CCR2 CCIFG2,
TA1IFG (TA1IV)(1) (2)
Maskable
0FFE0h
48
I/O Port P1
P1IFG.0 to P1IFG.7 (P1IV)(1) (2)
Maskable
0FFDEh
47
USCI_A1 receive or transmit
UCA1RXIFG, UCA1TXIFG (UCA1IV)(1) (2)
Maskable
0FFDCh
46
USCI_B1 receive or transmit
(UCB1IV)(1) (2)
LCD_B(6)
ADC12IFG0 to ADC12IFG15
(ADC12IV)(1) (2)
Timer TA0
I/O port P2
UCB1RXIFG, UCB1TXIFG
P2IFG.0 to P2IFG.7 (P2IV)(1) (2)
LCD_B Interrupt Flags
(LCDBIV)(1)
Maskable
0FFDAh
45
Maskable
0FFD8h
44
Maskable
0FFD6h
43
RTC_B
RTCRDYIFG, RTCTEVIFG, RTCAIFG,
RT0PSIFG, RT1PSIFG, RTCOFIFG (RTCIV)(1) (2)
Maskable
0FFD4h
42
DAC12_A
DAC12_0IFG, DAC12_1IFG(1) (2)
Maskable
0FFD2h
41
Timer TA2
64
NMIIFG, OFIFG, ACCVIFG, BUSIFG (SYSUNIV)
TA2CCR0
CCIFG0(2)
Maskable
0FFD0h
40
Timer TA2
TA2CCR1 CCIFG1 to TA2CCR2 CCIFG2,
TA2IFG (TA2IV)(1) (2)
Maskable
0FFCEh
39
I/O port P3
P3IFG.0 to P3IFG.7 (P3IV)(1) (2)
Maskable
0FFCCh
38
I/O Port P4
(P4IV)(1) (2)
Maskable
0FFCAh
37
USCI_A2 receive or transmit
UCA2RXIFG, UCA2TXIFG (UCA2IV)(1) (2)
0FFC8h
36
USCI_B2 receive or transmit
(UCB2IV)(1) (2)
0FFC6h
35
Submit Document Feedback
P4IFG.0 to P4IFG.7
UCB2RXIFG, UCB2TXIFG
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
Table 9-3. Interrupt Sources, Flags, and Vectors (continued)
(1)
(2)
(3)
(4)
(5)
(6)
(7)
INTERRUPT SOURCE
INTERRUPT FLAG
Reserved
Reserved(4)
SYSTEM
INTERRUPT
WORD
ADDRESS
PRIORITY
0FFC4h
34
⋮
⋮
0FF80h
0, lowest
Multiple source flags
Interrupt flags are in the module.
A reset is generated if the CPU tries to fetch instructions from within peripheral space or vacant memory space.
(Non)maskable: the individual interrupt enable bit can disable an interrupt event, but the general interrupt enable bit cannot disable it.
Reserved interrupt vectors at addresses are not used in this device and can be used for regular program code if necessary. To
maintain compatibility with other devices, TI recommends reserving these locations.
Only on devices with peripheral module USB (MSP430F665x and MSP430F565x)
Only on devices with peripheral module LCD_B (MSP430F665x and MSP430F645x), otherwise reserved (MSP430F535x and
MSP430F565x)
Only on devices with peripheral module LDO-PWR (MSP430F535x and MSP430F645x)
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
65
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
9.5 Memory Organization
Table 9-4 summarizes the memory map of all device variants.
Table 9-4. Memory Organization
MSP430F6458
MSP430F5358
(1)
Memory (flash)
Total Size
MSP430F6659
MSP430F5659
384KB
512KB
384KB
512KB
00FFFFh to 00FF80h
00FFFFh to 00FF80h
00FFFFh to 00FF80h
Bank 3
N/A
128KB
087FFFh to 068000h
N/A
128KB
087FFFh to 068000h
Bank 2
128KB
067FFFh to 048000h
128KB
067FFFh-48000h
128KB
067FFFh to 048000h
128KB
067FFFh-48000h
Bank 1
128KB
047FFFh to 028000h
128KB
047FFFh to 028000h
128KB
047FFFh to 028000h
128KB
047FFFh to 028000h
Bank 0
128KB
027FFFh to 008000h
128KB
027FFFh to 008000h
128KB
027FFFh to 008000h
128KB
027FFFh to 008000h
Total Size
1KB
006FFFh to 006C00h
1KB
006FFFh to 006C00h
1KB
006FFFh to 006C00h
1KB
006FFFh to 006C00h
Sector 3
16KB
0FBFFFh to 0F8000h
16KB
0FBFFFh to 0F8000h
16KB
0FBFFFh to 0F8000h
16KB
0FBFFFh to 0F8000h
Sector 2
N/A
16KB
0F7FFFh to 0F4000h
N/A
16KB
0F7FFFh to 0F4000h
Sector 1
N/A
16KB
0F3FFFh to 0F0000h
N/A
16KB
0F3FFFh to 0F0000h
Main: code memory
RAM
MSP430F6658
MSP430F5658
00FFFFh to 00FF80h
Main: interrupt vector
MID support
software (ROM)
MSP430F6459
MSP430F5359
16KB
16KB
16KB
16KB
0063FFh to 002400h
0063FFh to 002400h
0063FFh to 002400h
0063FFh to 002400h
Sector 0 (mirrored at address
(mirrored at address
(mirrored at address range (mirrored at address range
range
range
0FFFFFh to 0FC000h)
0FFFFFh to 0FC000h)
0FFFFFh to 0FC000h) 0FFFFFh to 0FC000h)
RAM(3)
Sector 7
2KB
0023FFh to 001C00h
2KB
0023FFh to 001C00h
N/A
N/A
USB RAM(2)
Sector 7
N/A
N/A
2KB
0023FFh to 001C00h
2KB
0023FFh to 001C00h
Info A
128 bytes
0019FFh to 001980h
128 bytes
0019FFh to 001980h
128 bytes
0019FFh to 001980h
128 bytes
0019FFh to 001980h
Info B
128 bytes
00197Fh to 001900h
128 bytes
00197Fh to 001900h
128 bytes
00197Fh to 001900h
128 bytes
00197Fh to 001900h
Info C
128 bytes
0018FFh to 001880h
128 bytes
0018FFh to 001880h
128 bytes
0018FFh to 001880h
128 bytes
0018FFh to 001880h
Info D
128 bytes
00187Fh to 001800h
128 bytes
00187Fh to 001800h
128 bytes
00187Fh to 001800h
128 bytes
00187Fh to 001800h
BSL 3
512 bytes
0017FFh to 001600h
512 bytes
0017FFh to 001600h
512 bytes
0017FFh to 001600h
512 bytes
0017FFh to 001600h
BSL 2
512 bytes
0015FFh to 001400h
512 bytes
0015FFh to 001400h
512 bytes
0015FFh to 001400h
512 bytes
0015FFh to 001400h
BSL 1
512 bytes
0013FFh to 001200h
512 bytes
0013FFh to 001200h
512 bytes
0013FFh to 001200h
512 bytes
0013FFh to 001200h
BSL 0
512 bytes
0011FFh to 001000h
512 bytes
0011FFh to 001000h
512 bytes
0011FFh to 001000h
512 bytes
0011FFh to 001000h
Size
4KB
000FFFh to 000000h
4KB
000FFFh to 000000h
4KB
000FFFh to 000000h
4KB
000FFFh to 000000h
Information memory
(flash)
Bootloader (BSL)
memory (flash)
Peripherals
(1)
(2)
(3)
66
N/A = Not available
Only available on F6659, F6658, F5659, F5658 devices. USB RAM can be used as general-purpose RAM when not used for USB
operation.
Only available on F6459, F6458, F5359, F5358 devices.
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
9.6 Bootloader (BSL)
The BSL enables users to program the flash memory or RAM using various serial interfaces. Access to the
device memory by the BSL is protected by an user-defined password. For complete description of the features of
the BSL and its implementation, see the MSP430 Flash Device Bootloader (BSL) User's Guide.
9.6.1 USB BSL
The devices MSP430F565x and MSP430F665x come preprogrammed with the USB BSL. Use of the USB BSL
requires external access to six pins (see Table 9-5). In addition to these pins, the application must support
external components necessary for normal USB operation; for example, the proper crystal on XT2IN and
XT2OUT or proper decoupling.
Table 9-5. USB BSL Pin Requirements and
Functions
DEVICE SIGNAL
BSL FUNCTION
RST/NMI/SBWTDIO
Entry sequence signal
PU.0/DP
USB data terminal DP
PU.1/DM
USB data terminal DM
PUR
USB pullup resistor terminal
VBUS
USB bus power supply
VSSU
USB ground supply
Note
The default USB BSL evaluates the logic level of the PUR pin after a BOR reset. If it is pulled high
externally, then the BSL is invoked. Therefore, unless the application is invoking the BSL, it is
important to keep PUR pulled low after a BOR reset, even if BSL or USB is never used. TI
recommends applying a 1-MΩ resistor to ground.
9.6.2 UART BSL
All devices without a USB module (MSP430F535x and MSP430F645x) come preprogrammed with the UART
BSL. A UART BSL is also available for devices with USB module that can be programmed by the user into the
BSL memory by replacing the preprogrammed, factory supplied, USB BSL. Use of the UART BSL requires
external access to six pins (see Table 9-6).
Table 9-6. UART BSL Pin Requirements and
Functions
DEVICE SIGNAL
BSL FUNCTION
RST/NMI/SBWTDIO
Entry sequence signal
TEST/SBWTCK
Entry sequence signal
P1.1
Data transmit
P1.2
Data receive
Copyright © 2020 Texas Instruments Incorporated
VCC
Power supply
VSS
Ground supply
Submit Document Feedback
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
67
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
9.7 JTAG Operation
9.7.1 JTAG Standard Interface
The MSP430 family supports the standard JTAG interface which requires four signals for sending and receiving
data. The JTAG signals are shared with general-purpose I/O. The TEST/SBWTCK pin is used to enable the
JTAG signals. In addition to these signals, the RST/NMI/SBWTDIO is required to interface with MSP430
development tools and device programmers. Table 9-7 lists the JTAG pin requirements. For further details on
interfacing to development tools and device programmers, see the MSP430 Hardware Tools User's Guide. For a
complete description of the features of the BSL and its implementation, see MSP430 Programming With the
JTAG Interface.
Table 9-7. JTAG Pin Requirements and Functions
DEVICE SIGNAL
DIRECTION
FUNCTION
PJ.3/TCK
IN
JTAG clock input
PJ.2/TMS
IN
JTAG state control
PJ.1/TDI/TCLK
IN
JTAG data input, TCLK input
PJ.0/TDO
OUT
JTAG data output
TEST/SBWTCK
IN
Enable JTAG pins
RST/NMI/SBWTDIO
IN
External reset
VCC
Power supply
VSS
Ground supply
9.7.2 Spy-Bi-Wire Interface
In addition to the standard JTAG interface, the MSP430 family supports the two wire Spy-Bi-Wire interface. SpyBi-Wire can be used to interface with MSP430 development tools and device programmers. Table 9-8 lists the
Spy-Bi-Wire interface pin requirements. For further details on interfacing to development tools and device
programmers, see the MSP430 Hardware Tools User's Guide. For a complete description of the features of the
JTAG interface and its implementation, see MSP430 Programming With the JTAG Interface.
Table 9-8. Spy-Bi-Wire Pin Requirements and Functions
DEVICE SIGNAL
DIRECTION
FUNCTION
TEST/SBWTCK
IN
Spy-Bi-Wire clock input
RST/NMI/SBWTDIO
IN, OUT
Spy-Bi-Wire data input and output
VCC
Power supply
VSS
Ground supply
9.8 Flash Memory
The flash memory can be programmed through the JTAG port, Spy-Bi-Wire (SBW), the BSL, or in-system by the
CPU. The CPU can perform single-byte, single-word, and long-word writes to the flash memory. Features of the
flash memory include:
•
•
•
•
68
Flash memory has n segments of main memory and four segments of information memory (A to D) of
128 bytes each. Each segment in main memory is 512 bytes in size.
Segments 0 to n may be erased in one step, or each segment may be individually erased.
Segments A to D can be erased individually, or as a group with segments 0 to n. Segments A to D are also
called information memory.
Segment A can be locked separately.
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
9.9 Memory Integrity Detection (MID)
The MID is an add-on to the flash memory controller. MID provides additional functionality over the regular flash
operation methods. The main purpose of the MID function is to gain higher reliability of flash content and overall
system integrity in harsh environments and in application areas that require such features. The on-chip MID
ROM contains the factory-programmed MID support software. This software package provides several software
functions that allow an application to use all of the features of the MID.
The MID functionality can be enabled for different flash memory ranges. These memory ranges are selectable by
the cw0 parameter of the MID function MidEnable() (see Table 9-9).
Table 9-9. Address Range Coverage of cw0 Parameter of MidEnable() Function
MSP430F6659
MSP430F6459
MSP430F5659
MSP430F5359
MSP430F6658
MSP430F6458
MSP430F5658
MSP430F5358
cw0.15
087FFFh to 080000h
N/A
cw0.14
07FFFFh to 078000h
N/A
cw0.13
077FFFh to 070000h
N/A
cw0.12
06FFFFh to 068000h
N/A
BITS OF cw0 PARAMETER
cw0.11
067FFFh to 060000h
067FFFh to 060000h
cw0.10
05FFFFh to 058000h
05FFFFh to 058000h
cw0.9
057FFFh to 050000h
057FFFh to 050000h
cw0.8
04FFFFh to 048000h
04FFFFh to 048000h
cw0.7
047FFFh to 040000h
047FFFh to 040000h
cw0.6
03FFFFh to 038000h
03FFFFh to 038000h
cw0.5
037FFFh to 030000h
037FFFh to 030000h
cw0.4
02FFFFh to 028000h
02FFFFh to 028000h
cw0.3
027FFFh to 020000h
027FFFh to 020000h
cw0.2
01FFFFh to 018000h
01FFFFh to 018000h
cw0.1
017FFFh to 010000h
017FFFh to 010000h
cw0.0
00FFFFh to 008000h
00FFFFh to 008000h
9.10 RAM
The RAM is made up of n sectors. Each sector can be completely powered down to save leakage; however, all
data are lost. Features of the RAM include:
•
•
•
•
RAM has n sectors. The size of a sector can be found in Section 9.5.
Each sector 0 to n can be complete disabled; however, data retention is lost.
Each sector 0 to n automatically enters low-power retention mode when possible.
For devices that contain USB memory, the USB memory can be used as normal RAM if USB is not required.
9.11 Backup RAM
The backup RAM provides a limited number of bytes of RAM that are retained during LPMx.5 and during
operation from a backup supply if the battery backup system module is implemented.
There are 8 bytes of backup RAM available. It can be word-wise accessed by the control registers BAKMEM0,
BAKMEM1, BAKMEM2, and BAKMEM3.
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
69
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
9.12 Peripherals
Peripherals are connected to the CPU through data, address, and control buses. Peripherals can be managed
using all instructions. For complete module descriptions, see the MSP430F5xx and MSP430F6xx Family User's
Guide.
9.12.1 Digital I/O
Nine 8-bit I/O ports are implemented: P1 through P9 are complete, and port PJ contains four individual I/O ports.
•
•
•
•
•
•
•
All individual I/O bits are independently programmable.
Any combination of input, output, and interrupt conditions is possible.
Programmable pullup or pulldown on all ports.
Programmable drive strength on all ports.
Edge-selectable interrupt input capability for all the eight bits of ports P1, P2, P3, and P4.
Read and write access to port-control registers is supported by all instructions.
Ports can be accessed byte-wise (P1 through P9) or word-wise in pairs (PA through PD).
9.12.2 Port Mapping Controller
The port mapping controller allows the flexible and reconfigurable mapping of digital functions to port P2. Table
9-10 lists the available mappings, and Table 9-11 lists the default settings.
Table 9-10. Port Mapping Mnemonics and Functions
VALUE
0
1
2
INPUT PIN FUNCTION
OUTPUT PIN FUNCTION
PM_NONE
None
DVSS
PM_CBOUT
–
Comparator_B output
PM_TB0CLK
Timer TB0 clock input
–
PM_ADC12CLK
–
ADC12CLK
PM_DMAE0
DMAE0 Input
–
PM_SVMOUT
–
SVM output
PM_TB0OUTH
Timer TB0 high impedance input
TB0OUTH
–
4
PM_TB0CCR0B
Timer TB0 CCR0 capture input CCI0B
Timer TB0: TB0.0 compare output Out0
5
PM_TB0CCR1B
Timer TB0 CCR1 capture input CCI1B
Timer TB0: TB0.1 compare output Out1
6
PM_TB0CCR2B
Timer TB0 CCR2 capture input CCI2B
Timer TB0: TB0.2 compare output Out2
7
PM_TB0CCR3B
Timer TB0 CCR3 capture input CCI3B
Timer TB0: TB0.3 compare output Out3
8
PM_TB0CCR4B
Timer TB0 CCR4 capture input CCI4B
Timer TB0: TB0.4 compare output Out4
9
PM_TB0CCR5B
Timer TB0 CCR5 capture input CCI5B
Timer TB0: TB0.5 compare output Out5
10
PM_TB0CCR6B
Timer TB0 CCR6 capture input CCI6B
Timer TB0: TB0.6 compare output Out6
3
11
12
13
14
15
16
17
70
PxMAPy MNEMONIC
PM_UCA0RXD
USCI_A0 UART RXD (Direction controlled by USCI – input)
PM_UCA0SOMI
USCI_A0 SPI slave out master in (direction controlled by USCI)
PM_UCA0TXD
USCI_A0 UART TXD (Direction controlled by USCI – output)
PM_UCA0SIMO
USCI_A0 SPI slave in master out (direction controlled by USCI)
PM_UCA0CLK
USCI_A0 clock input/output (direction controlled by USCI)
PM_UCB0STE
USCI_B0 SPI slave transmit enable (direction controlled by USCI – input)
PM_UCB0SOMI
USCI_B0 SPI slave out master in (direction controlled by USCI)
PM_UCB0SCL
USCI_B0 I2C clock (open drain and direction controlled by USCI)
PM_UCB0SIMO
USCI_B0 SPI slave in master out (direction controlled by USCI)
PM_UCB0SDA
USCI_B0 I2C data (open drain and direction controlled by USCI)
PM_UCB0CLK
USCI_B0 clock input/output (direction controlled by USCI)
PM_UCA0STE
USCI_A0 SPI slave transmit enable (direction controlled by USCI – input)
PM_MCLK
Submit Document Feedback
–
MCLK
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
Table 9-10. Port Mapping Mnemonics and Functions (continued)
VALUE
PxMAPy MNEMONIC
18
Reserved
OUTPUT PIN FUNCTION
Reserved for test purposes. Do not use this setting.
19
Reserved
20-30
Reserved
31 (0FFh)(1)
PM_ANALOG
(1)
INPUT PIN FUNCTION
Reserved for test purposes. Do not use this setting.
None
DVSS
Disables the output driver and the input Schmitt-trigger to prevent parasitic cross currents
when applying analog signals
The value of the PM_ANALOG mnemonic is set to 0FFh. The port mapping registers are only 5 bits wide, and the upper bits are
ignored, which results in a read value of 31.
Table 9-11. Default Mapping
PIN
PxMAPy MNEMONIC
INPUT PIN FUNCTION
OUTPUT PIN FUNCTION
P2.0/P2MAP0
PM_UCB0STE,
PM_UCA0CLK
P2.1/P2MAP1
PM_UCB0SIMO,
PM_UCB0SDA
P2.2/P2MAP2
PM_UCB0SOMI,
PM_UCB0SCL
USCI_B0 I2C clock (open drain and direction controlled by USCI)
P2.3/P2MAP3
PM_UCB0CLK,
PM_UCA0STE
USCI_A0 SPI slave transmit enable (direction controlled by USCI – input)
P2.4/P2MAP4
PM_UCA0TXD,
PM_UCA0SIMO
USCI_A0 SPI slave in master out (direction controlled by USCI)
P2.5/P2MAP5
PM_UCA0RXD,
PM_UCA0SOMI
USCI_A0 SPI slave out master in (direction controlled by USCI)
P2.6/P2MAP6/ R03
PM_NONE
–
DVSS
P2.7/P2MAP7/LCDREF/R13
PM_NONE
–
DVSS
USCI_B0 SPI slave transmit enable (direction controlled by USCI – input),
USCI_A0 clock input/output (direction controlled by USCI)
USCI_B0 SPI slave in master out (direction controlled by USCI),
USCI_B0 I2C data (open drain and direction controlled by USCI)
USCI_B0 SPI slave out master in (direction controlled by USCI),
USCI_B0 clock input/output (direction controlled by USCI),
USCI_A0 UART TXD (direction controlled by USCI – output),
USCI_A0 UART RXD (direction controlled by USCI – input),
9.12.3 Oscillator and System Clock
The clock system is supported by the Unified Clock System (UCS) module that includes support for a 32-kHz
watch crystal oscillator (in XT1 LF mode; XT1 HF mode is not supported), an internal very-low-power lowfrequency oscillator (VLO), an internal trimmed low-frequency oscillator (REFO), an integrated internal digitally
controlled oscillator (DCO), and a high-frequency crystal oscillator (XT2). The UCS module is designed to meet
the requirements of both low system cost and low power consumption. The UCS module features digital
frequency locked loop (FLL) hardware that, in conjunction with a digital modulator, stabilizes the DCO frequency
to a programmable multiple of the watch crystal frequency. The internal DCO provides a fast turnon clock source
and stabilizes in 3 µs (typical). The UCS module provides the following clock signals:
•
•
•
•
Auxiliary clock (ACLK), sourced from a 32-kHz watch crystal (XT1), a high-frequency crystal (XT2), the
internal low-frequency oscillator (VLO), the trimmed low-frequency oscillator (REFO), or the internal digitallycontrolled oscillator DCO.
Main clock (MCLK), the system clock used by the CPU. MCLK can be sourced by same sources available to
ACLK.
Sub-Main clock (SMCLK), the subsystem clock used by the peripheral modules. SMCLK can be sourced by
same sources available to ACLK.
ACLK/n, the buffered output of ACLK, ACLK/2, ACLK/4, ACLK/8, ACLK/16, ACLK/32.
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
71
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
9.12.4 Power-Management Module (PMM)
The PMM includes an integrated voltage regulator that supplies the core voltage to the device and contains
programmable output levels to provide for power optimization. The PMM also includes supply voltage supervisor
(SVS) and supply voltage monitoring (SVM) circuitry, as well as brownout protection. The brownout circuit is
implemented to provide the proper internal reset signal to the device during power-on and power-off. The SVS
and SVM circuitry detects if the supply voltage drops below a user-selectable level and supports both supply
voltage supervision (the device is automatically reset) and supply voltage monitoring (the device is not
automatically reset). SVS and SVM circuitry is available on the primary supply and core supply.
9.12.5 Hardware Multiplier (MPY)
The multiplication operation is supported by a dedicated peripheral module. The module performs operations
with 32-, 24-, 16-, and 8-bit operands. The module supports signed and unsigned multiplication as well as signed
and unsigned multiply-and-accumulate operations.
9.12.6 Real-Time Clock (RTC_B)
The RTC_B module can be configured for real-time clock (RTC) or calendar mode providing seconds, minutes,
hours, day of week, day of month, month, and year. Calendar mode integrates an internal calendar which
compensates for months with less than 31 days and includes leap year correction. The RTC_B also supports
flexible alarm functions and offset-calibration hardware. The implementation on this device supports operation in
LPM3.5 mode and operation from a backup supply.
Using the MSP430 RTC_B Module With Battery Backup Supply describes how to use the RTC_B with battery
backup supply functionality to retain the time and keep the RTC counting through loss of main power supply, as
well as how to handle correct reinitialization when the main power supply is restored.
9.12.7 Watchdog Timer (WDT_A)
The primary function of the WDT_A module is to perform a controlled system restart after a software problem
occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed
in an application, the module can be configured as an interval timer and can generate interrupts at selected time
intervals.
9.12.8 System Module (SYS)
The SYS module handles many of the system functions within the device. These include power-on reset and
power-up clear handling, NMI source selection and management, reset interrupt vector generators, bootloader
entry mechanisms, and configuration management (device descriptors). SYS also includes a data exchange
mechanism using JTAG called a JTAG mailbox that can be used in the application. Table 9-12 lists the SYS
module interrupt vector registers.
72
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
Table 9-12. System Module Interrupt Vector Registers
INTERRUPT VECTOR REGISTER
SYSRSTIV, System Reset
INTERRUPT EVENT
WORD ADDRESS
00h
Brownout (BOR)
02h
RST/NMI (BOR)
04h
PMMSWBOR (BOR)
06h
LPM3.5 or LPM4.5 wakeup (BOR)
08h
Security violation (BOR)
0Ah
SVSL (POR)
0Ch
SVSH (POR)
0Eh
SVML_OVP (POR)
SVMH_OVP (POR)
019Eh
SYSUNIV, User NMI
14h
16h
WDT key violation (PUC)
18h
KEYV flash key violation (PUC)
1Ah
Reserved
1Ch
Peripheral area fetch (PUC)
1Eh
PMM key violation (PUC)
20h
Reserved
22h to 3Eh
No interrupt pending
00h
SVMLIFG
02h
SVMHIFG
04h
DLYLIFG
06h
0Ch
0Eh
SVMLVLRIFG
10h
SVMHVLRIFG
12h
Reserved
14h to 1Eh
No interrupt pending
00h
NMIIFG
02h
OFIFG
04h
019Ah
08h
Reserved
0Ah to 1Eh
No interrupt pending
00h
Copyright © 2020 Texas Instruments Incorporated
02h
0198h
Lowest
Highest
06h
BUSIFG
Reserved
Highest
0Ah
JMBINIFG
USB wait state time-out
SYSBERRIV, Bus Error
Lowest
08h
019Ch
JMBOUTIFG
ACCVIFG
Highest
12h
PMMSWPOR (POR)
VMAIFG
PRIORITY
10h
WDT time-out (PUC)
DLYHIFG
SYSSNIV, System NMI
OFFSET
No interrupt pending
Lowest
Highest
04h
MID error
06h
Reserved
08h to 1Eh
Lowest
Submit Document Feedback
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
73
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
9.12.9 DMA Controller
The DMA controller allows movement of data from one memory address to another without CPU intervention.
For example, the DMA controller can be used to move data from the ADC12_A conversion memory to RAM.
Using the DMA controller can increase the throughput of peripheral modules. The DMA controller reduces
system power consumption by allowing the CPU to remain in sleep mode, without having to awaken to move
data to or from a peripheral.
The USB timestamp generator also uses the channel 0, 1, and 2 DMA trigger assignments described in Table
9-13. The USB timestamp generator is available only on devices with the USB module (MSP430F565x and
MSP430F665x).
Table 9-13. DMA Trigger Assignments
CHANNEL
TRIGGE
R(1)
0
1
0
DMAREQ
TA0CCR0 CCIFG
2
TA0CCR2 CCIFG
3
TA1CCR0 CCIFG
4
TA1CCR2 CCIFG
5
TA2CCR0 CCIFG
6
TA2CCR2 CCIFG
7
TBCCR0 CCIFG
8
TBCCR2 CCIFG
9
Reserved
10
Reserved
11
Reserved
12
UCA2RXIFG
13
UCA2TXIFG
14
UCB2RXIFG
15
UCB2TXIFG
16
UCA0RXIFG
17
UCA0TXIFG
18
UCB0RXIFG
19
UCB0TXIFG
20
UCA1RXIFG
21
UCA1TXIFG
22
UCB1RXIFG
23
UCB1TXIFG
24
ADC12IFGx
25
DAC12_0IFG
26
DAC12_1IFG
27
USB FNRXD (2)
28
USB ready (2)
29
74
4
5
DMA3IFG
DMA4IFG
MPY ready
DMA5IFG
31
(2)
3
1
30
(1)
2
DMA0IFG
DMA1IFG
DMA2IFG
DMAE0
Reserved DMA triggers may be used by other devices in the family. Reserved DMA triggers do not
cause any DMA trigger event when selected.
Only on devices with peripheral module USB (MSP430F565x and MSP430F665x), otherwise
reserved (MSP430F535x and MSP430F645x).
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
9.12.10 Universal Serial Communication Interface (USCI)
The USCI modules are used for serial data communication. The USCI module supports synchronous
communication protocols such as SPI (3- or 4-pin) and I2C, and asynchronous communication protocols such as
UART, enhanced UART with automatic baudrate detection, and IrDA. Each USCI module contains two portions,
A and B.
The USCI_An module provides support for SPI (3- or 4-pin), UART, enhanced UART, or IrDA.
The USCI_Bn module provides support for SPI (3- or 4-pin) or I2C.
These MCUs include three complete USCI modules (n = 0 to 2).
9.12.11 Timer TA0
Timer TA0 is a 16-bit timer/counter (Timer_A type) with five capture/compare registers. TA0 supports multiple
capture/compares, PWM outputs, and interval timing (see Table 9-14). TA0 also has extensive interrupt
capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/
compare registers.
Table 9-14. Timer TA0 Signal Connections
INPUT PIN NUMBER
PZ
ZCA, ZQW
DEVICE
INPUT
SIGNAL
34-P1.0
L5-P1.0
TA0CLK
MODULE
INPUT
SIGNAL
TACLK
ACLK
ACLK
SMCLK
SMCLK
34-P1.0
L5-P1.0
TA0CLK
TACLK
35-P1.1
M5-P1.1
TA0.0
CCI0A
DVSS
CCI0B
DVSS
GND
DVCC
VCC
36-P1.2
J6-P1.2
TA0.1
CCI1A
40-P1.6
J7-P1.6
TA0.1
CCI1B
DVSS
GND
DVCC
VCC
37-P1.3
H6-P1.3
TA0.2
CCI2A
41-P1.7
M7-P1.7
TA0.2
CCI2B
DVSS
GND
38-P1.4
39-P1.5
M6-P1.4
L6-P1.5
DVCC
VCC
TA0.3
CCI3A
DVSS
CCI3B
DVSS
GND
DVCC
VCC
TA0.4
CCI4A
DVSS
CCI4B
DVSS
GND
DVCC
VCC
Copyright © 2020 Texas Instruments Incorporated
MODULE
BLOCK
MODULE
OUTPUT
SIGNAL
DEVICE
OUTPUT
SIGNAL
Timer
NA
NA
CCR0
CCR1
CCR2
CCR3
CCR4
TA0
TA1
TA2
TA3
TA4
OUTPUT PIN NUMBER
PZ
ZCA, ZQW
35-P1.1
M5-P1.1
36-P1.2
J6-P1.2
40-P1.6
J7-P1.6
TA0.0
TA0.1
TA0.2
ADC12_A (internal)
ADC12SHSx = {1}
37-P1.3
H6-P1.3
41-P1.7
M7-P1.7
38-P1.4
M6-P1.4
39-P1.5
L6-P1.5
TA0.3
TA0.4
Submit Document Feedback
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
75
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
9.12.12 Timer TA1
Timer TA1 is a 16-bit timer/counter (Timer_A type) with three capture/compare registers. TA1 supports multiple
capture/compares, PWM outputs, and interval timing (see Table 9-15). TA1 also has extensive interrupt
capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/
compare registers.
Table 9-15. Timer TA1 Signal Connections
INPUT PIN NUMBER
PZ
ZCA, ZQW
DEVICE
INPUT
SIGNAL
42-P3.0
L7-P3.0
TA1CLK
TACLK
ACLK
ACLK
SMCLK
SMCLK
42-P3.0
L7-P3.0
TA1CLK
TACLK
43-P3.1
H7-P3.1
TA1.0
CCI0A
DVSS
CCI0B
DVSS
GND
DVCC
VCC
TA1.1
CCI1A
44-P3.2
45-P3.3
76
MODULE
INPUT
SIGNAL
M8-P3.2
CBOUT
(internal)
CCI1B
DVSS
GND
DVCC
VCC
TA1.2
CCI2A
ACLK
(internal)
CCI2B
DVSS
GND
DVCC
VCC
L8-P3.3
Submit Document Feedback
MODULE
BLOCK
MODULE
OUTPUT
SIGNAL
DEVICE
OUTPUT
SIGNAL
Timer
NA
NA
CCR0
CCR1
TA0
TA1
OUTPUT PIN NUMBER
PZ
ZCA, ZQW
43-P3.1
H7-P3.1
44-P3.2
M8-P3.2
TA1.0
TA1.1
DAC12_A
DAC12_0, DAC12_1
(internal)
45-P3.3
CCR2
TA2
L8-P3.3
TA1.2
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
9.12.13 Timer TA2
Timer TA2 is a 16-bit timer/counter (Timer_A type) with three capture/compare registers. TA2 supports multiple
capture/compares, PWM outputs, and interval timing (see Table 9-16). TA2 also has extensive interrupt
capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/
compare registers.
Table 9-16. Timer TA2 Signal Connections
INPUT PIN NUMBER
PZ
ZCA, ZQW
DEVICE
INPUT
SIGNAL
MODULE
INPUT
SIGNAL
46-P3.4
J8-P3.4
TA2CLK
TACLK
ACLK
ACLK
SMCLK
SMCLK
46-P3.4
J8-P3.4
TA2CLK
TACLK
47-P3.5
M9-P3.5
TA2.0
CCI0A
DVSS
CCI0B
DVSS
GND
DVCC
VCC
48-P3.6
49-P3.7
L9-P3.6
M10-P3.7
TA2.1
CCI1A
CBOUT
(internal)
CCI1B
DVSS
GND
DVCC
VCC
TA2.2
CCI2A
ACLK
(internal)
CCI2B
DVSS
GND
DVCC
VCC
Copyright © 2020 Texas Instruments Incorporated
MODULE
BLOCK
MODULE
OUTPUT
SIGNAL
DEVICE
OUTPUT
SIGNAL
Timer
NA
NA
CCR0
CCR1
CCR2
TA0
TA1
TA2
OUTPUT PIN NUMBER
PZ
ZCA, ZQW
47-P3.5
M9-P3.5
48-P3.6
L9-P3.6
49-P3.7
M10-P3.7
TA2.0
TA2.1
TA2.2
Submit Document Feedback
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
77
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
9.12.14 Timer TB0
Timer TB0 is a 16-bit timer/counter (Timer_B type) with seven capture/compare registers. TB0 supports multiple
capture/compares, PWM outputs, and interval timing (see Table 9-17). TB0 also has extensive interrupt
capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/
compare registers.
Table 9-17. Timer TB0 Signal Connections
INPUT PIN NUMBER
PZ
ZCA, ZQW
58-P8.0
P2MAPx(1)
J11-P8.0
P2MAPx(1)
MODULE
INPUT
SIGNAL
TB0CLK
TB0CLK
ACLK
ACLK
SMCLK
SMCLK
MODULE
BLOCK
MODULE
OUTPUT
SIGNAL
DEVICE
OUTPUT
SIGNAL
Timer
NA
NA
OUTPUT PIN NUMBER
PZ
ZCA, ZQW
58-P8.0
P2MAPx(1)
J11-P8.0
P2MAPx(1)
TB0CLK
TB0CLK
50-P4.0
J9-P4.0
TB0.0
CCI0A
50-P4.0
J9-P4.0
P2MAPx(1)
P2MAPx(1)
TB0.0
CCI0B
P2MAPx(1)
P2MAPx(1)
DVSS
GND
DVCC
VCC
CCR0
TB0
TB0.0
ADC12 (internal)
ADC12SHSx = {2}
51-P4.1
M11-P4.1
TB0.1
CCI1A
51-P4.1
M11-P4.1
P2MAPx(1)
P2MAPx(1)
TB0.1
CCI1B
P2MAPx(1)
P2MAPx(1)
DVSS
GND
52-P4.2
L10-P4.2
P2MAPx(1)
P2MAPx(1)
CCR1
TB1
TB0.1
ADC12 (internal)
ADC12SHSx = {3}
DVCC
VCC
TB0.2
CCI2A
52-P4.2
L10-P4.2
TB0.2
CCI2B
P2MAPx(1)
P2MAPx(1)
DVSS
GND
DVCC
VCC
CCR2
TB2
TB0.2
DAC12_A
DAC12_0, DAC12_1
(internal)
53-P4.3
M12-P4.3
TB0.3
CCI3A
53-P4.3
M12-P4.3
P2MAPx(1)
P2MAPx(1)
TB0.3
CCI3B
P2MAPx(1)
P2MAPx(1)
DVSS
GND
DVCC
VCC
CCR3
TB3
TB0.3
54-P4.4
L12-P4.4
TB0.4
CCI4A
54-P4.4
L12-P4.4
P2MAPx(1)
P2MAPx(1)
TB0.4
CCI4B
P2MAPx(1)
P2MAPx(1)
DVSS
GND
DVCC
VCC
CCR4
TB4
TB0.4
55-P4.5
L11-P4.5
TB0.5
CCI5A
55-P4.5
L11-P4.5
P2MAPx(1)
P2MAPx(1)
TB0.5
CCI5B
P2MAPx(1)
P2MAPx(1)
DVSS
GND
DVCC
VCC
CCR5
TB5
TB0.5
56-P4.6
K11-P4.6
TB0.6
CCI6A
56-P4.6
K11-P4.6
P2MAPx(1)
P2MAPx(1)
TB0.6
CCI6B
P2MAPx(1)
P2MAPx(1)
DVSS
GND
DVCC
VCC
(1)
78
DEVICE
INPUT
SIGNAL
CCR6
TB6
TB0.6
Timer functions are selectable through the port mapping controller.
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
9.12.15 Comparator_B
The primary function of the Comparator_B module is to support precision slope analog-to-digital conversions,
battery voltage supervision, and monitoring of external analog signals.
9.12.16 ADC12_A
The ADC12_A module supports fast 12-bit analog-to-digital conversions. The module implements a 12-bit SAR
core, sample select control, reference generator, and a 16 word conversion-and-control buffer. The conversionand-control buffer allows up to 16 independent ADC samples to be converted and stored without any CPU
intervention.
9.12.17 DAC12_A
The DAC12_A module is a 12-bit R-ladder voltage-output DAC. The DAC12_A may be used in 8-bit or 12-bit
mode, and may be used in conjunction with the DMA controller. When multiple DAC12_A modules are present,
they may be grouped together for synchronous operation.
9.12.18 CRC16
The CRC16 module produces a signature based on a sequence of entered data values and can be used for data
checking purposes. The CRC16 module signature is based on the CRC-CCITT standard.
9.12.19 Voltage Reference (REF) Module
The REF module generates all critical reference voltages that can be used by the various analog peripherals in
the device.
9.12.20 LCD_B
The LCD_B driver generates the segment and common signals that are required to drive a liquid crystal display
(LCD). The LCD_B controller has dedicated data memories to hold segment drive information. Common and
segment signals are generated as defined by the mode. Static, 2-mux, 3-mux, and 4-mux LCDs are supported.
The module can provide a LCD voltage independent of the supply voltage with its integrated charge pump. It is
possible to control the level of the LCD voltage, and thus contrast, by software. The module also provides an
automatic blinking capability for individual segments.
The LCD_B module is available only on the MSP430F665x and MSP430F645x devices.
9.12.21 USB Universal Serial Bus
The USB module is a fully integrated USB interface that is compliant with the USB 2.0 specification. The module
supports full-speed operation of control, interrupt, and bulk transfers. The module includes an integrated LDO,
PHY, and PLL. The PLL is highly flexible and supports a wide range of input clock frequencies. When USB RAM
is not used for USB communication, it can be used by the system.
The USB module is available only on the MSP430F665x and MSP430F565x devices.
9.12.22 LDO and PU Port
The integrated 3.3-V power system incorporates an integrated 3.3-V LDO regulator that allows the entire
MSP430 microcontroller to be powered from nominal 5-V LDOI when it is made available for the system.
Alternatively, the power system can supply power only to other components within the system, or it can be
unused altogether.
The Port U Pins (PU.0 and PU.1) function as general-purpose high-current I/O pins. These pins can only be
configured together as either both inputs or both outputs. Port U is supplied by the LDOO rail. If the 3.3-V LDO is
not being used in the system (disabled), the LDOO pin can be supplied externally.
The LDO-PWR module (LDO and PU Port) is available on only the MSP430F645x and MSP430F535x devices.
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
79
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
9.12.23 Embedded Emulation Module (EEM) (L Version)
The EEM supports real-time in-system debugging. The L version of the EEM has the following features:
•
•
•
•
•
•
•
Eight hardware triggers or breakpoints on memory access
Two hardware triggers or breakpoints on CPU register write access
Up to 10 hardware triggers can be combined to form complex triggers or breakpoints
Two cycle counters
Sequencer
State storage
Clock control on module level
9.12.24 Peripheral File Map
Table 9-18 lists the base register address for each available peripheral.
Table 9-18. Peripherals
BASE ADDRESS
OFFSET ADDRESS RANGE(1)
Special Functions (see Table 9-19)
0100h
000h to 01Fh
PMM (see Table 9-20)
0120h
000h to 010h
Flash Control (see Table 9-21)
0140h
000h to 00Fh
CRC16 (see Table 9-22)
0150h
000h to 007h
RAM Control (see Table 9-23)
0158h
000h to 001h
Watchdog (see Table 9-24)
015Ch
000h to 001h
UCS (see Table 9-25)
0160h
000h to 01Fh
SYS (see Table 9-26)
0180h
000h to 01Fh
Shared Reference (see Table 9-27)
01B0h
000h to 001h
MODULE NAME
80
Port Mapping Control (see Table 9-28)
01C0h
000h to 003h
Port Mapping Port P2 (see Table 9-28)
01D0h
000h to 007h
Port P1, P2 (see Table 9-29)
0200h
000h to 01Fh
Port P3, P4 (see Table 9-30)
0220h
000h to 01Fh
Port P5, P6 (see Table 9-31)
0240h
000h to 00Bh
Port P7, P8 (see Table 9-32)
0260h
000h to 00Bh
Port P9 (see Table 9-33)
0280h
000h to 00Bh
Port PJ (see Table 9-34)
0320h
000h to 01Fh
Timer TA0 (see Table 9-35)
0340h
000h to 02Eh
Timer TA1 (see Table 9-36)
0380h
000h to 02Eh
Timer TB0 (see Table 9-37)
03C0h
000h to 02Eh
Timer TA2 (see Table 9-38)
0400h
000h to 02Eh
Battery Backup (see Table 9-39)
0480h
000h to 01Fh
RTC_B (see Table 9-40)
04A0h
000h to 01Fh
32-Bit Hardware Multiplier (see Table 9-41)
04C0h
000h to 02Fh
DMA General Control (see Table 9-42)
0500h
000h to 00Fh
DMA Channel 0 (see Table 9-42)
0510h
000h to 00Ah
DMA Channel 1 (see Table 9-42)
0520h
000h to 00Ah
DMA Channel 2 (see Table 9-42)
0530h
000h to 00Ah
DMA Channel 3 (see Table 9-42)
0540h
000h to 00Ah
DMA Channel 4 (see Table 9-42)
0550h
000h to 00Ah
DMA Channel 5 (see Table 9-42)
0560h
000h to 00Ah
USCI_A0 (see Table 9-43)
05C0h
000h to 01Fh
USCI_B0 (see Table 9-44)
05E0h
000h to 01Fh
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
Table 9-18. Peripherals (continued)
MODULE NAME
BASE ADDRESS
OFFSET ADDRESS RANGE(1)
USCI_A1 (see Table 9-45)
0600h
000h to 01Fh
USCI_B1 (see Table 9-46)
0620h
000h to 01Fh
USCI_A2 (see Table 9-47)
0640h
000h to 01Fh
USCI_B2 (see Table 9-48)
0660h
000h to 01Fh
ADC12_A (see Table 9-49)
0700h
000h to 03Fh
DAC12_A (see Table 9-50)
0780h
000h to 01Fh
Comparator_B (see Table 9-51)
08C0h
000h to 00Fh
USB configuration (see Table 9-52) (2)
0900h
000h to 014h
0920h
000h to 01Fh
0900h
000h to 014h
0A00h
000h to 05Fh
USB control (see Table 9-53)
(2)
LDO-PWR; LDO and Port U configuration (see Table 9-54) (3)
LCD_B control (see Table 9-55)
(1)
(2)
(3)
(4)
(4)
For a detailed description of the individual control register offset addresses, see the MSP430F5xx and MSP430F6xx Family User's
Guide.
Only on devices with peripheral module USB.
Only on devices with peripheral module LDO-PWR.
Only on devices with peripheral module LCD_B.
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
81
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
Table 9-19. Special Function Registers (Base Address: 0100h)
REGISTER DESCRIPTION
SFR interrupt enable
SFR interrupt flag
SFR reset pin control
REGISTER
OFFSET
SFRIE1
00h
SFRIFG1
02h
SFRRPCR
04h
Table 9-20. PMM Registers (Base Address: 0120h)
REGISTER DESCRIPTION
PMM control 0
PMM control 1
REGISTER
OFFSET
PMMCTL0
00h
PMMCTL1
02h
SVS high-side control
SVSMHCTL
04h
SVS low-side control
SVSMLCTL
06h
PMM interrupt flags
PMMIFG
0Ch
PMMIE
0Eh
PM5CTL0
10h
PMM interrupt enable
PMM power mode 5 control
Table 9-21. Flash Control Registers (Base Address: 0140h)
REGISTER DESCRIPTION
REGISTER
OFFSET
Flash control 1
FCTL1
00h
Flash control 3
FCTL3
04h
Flash control 4
FCTL4
06h
Table 9-22. CRC16 Registers (Base Address: 0150h)
REGISTER DESCRIPTION
CRC data input
CRC result
REGISTER
OFFSET
CRC16DI
00h
CRC16INIRES
04h
Table 9-23. RAM Control Registers (Base Address: 0158h)
REGISTER DESCRIPTION
RAM control 0
REGISTER
OFFSET
RCCTL0
00h
Table 9-24. Watchdog Registers (Base Address: 015Ch)
REGISTER DESCRIPTION
Watchdog timer control
REGISTER
OFFSET
WDTCTL
00h
Table 9-25. UCS Registers (Base Address: 0160h)
REGISTER
OFFSET
UCS control 0
REGISTER DESCRIPTION
UCSCTL0
00h
UCS control 1
UCSCTL1
02h
UCS control 2
UCSCTL2
04h
UCS control 3
UCSCTL3
06h
UCS control 4
UCSCTL4
08h
UCS control 5
UCSCTL5
0Ah
UCS control 6
UCSCTL6
0Ch
UCS control 7
UCSCTL7
0Eh
UCS control 8
UCSCTL8
10h
Table 9-26. SYS Registers (Base Address: 0180h)
REGISTER DESCRIPTION
System control
Bootloader configuration area
82
Submit Document Feedback
REGISTER
OFFSET
SYSCTL
00h
SYSBSLC
02h
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
Table 9-26. SYS Registers (Base Address: 0180h) (continued)
REGISTER
OFFSET
JTAG mailbox control
REGISTER DESCRIPTION
SYSJMBC
06h
JTAG mailbox input 0
SYSJMBI0
08h
JTAG mailbox input 1
SYSJMBI1
0Ah
JTAG mailbox output 0
SYSJMBO0
0Ch
JTAG mailbox output 1
SYSJMBO1
0Eh
Bus error vector generator
SYSBERRIV
18h
User NMI vector generator
SYSUNIV
1Ah
System NMI vector generator
SYSSNIV
1Ch
SYSRSTIV
1Eh
Reset vector generator
Table 9-27. Shared Reference Registers (Base Address: 01B0h)
REGISTER DESCRIPTION
Shared reference control
REGISTER
OFFSET
REFCTL
00h
Table 9-28. Port Mapping Registers
(Base Address of Port Mapping Control: 01C0h, Port P4: 01D0h)
REGISTER DESCRIPTION
REGISTER
OFFSET
Port mapping password
PMAPPWD
00h
Port mapping control
PMAPCTL
02h
Port P2.0 mapping
P2MAP0
00h
Port P2.1 mapping
P2MAP1
01h
Port P2.2 mapping
P2MAP2
02h
Port P2.3 mapping
P2MAP3
03h
Port P2.4 mapping
P2MAP4
04h
Port P2.5 mapping
P2MAP5
05h
Port P2.6 mapping
P2MAP6
06h
Port P2.7 mapping
P2MAP7
07h
Table 9-29. Port P1, P2 Registers (Base Address: 0200h)
REGISTER DESCRIPTION
REGISTER
OFFSET
P1IN
00h
Port P1 output
P1OUT
02h
Port P1 direction
P1DIR
04h
Port P1 resistor enable
P1REN
06h
Port P1 drive strength
P1DS
08h
Port P1 selection
Port P1 input
P1SEL
0Ah
Port P1 interrupt vector word
P1IV
0Eh
Port P1 interrupt edge select
P1IES
18h
P1IE
1Ah
P1IFG
1Ch
P2IN
01h
Port P2 output
P2OUT
03h
Port P2 direction
P2DIR
05h
Port P2 resistor enable
P2REN
07h
Port P1 interrupt enable
Port P1 interrupt flag
Port P2 input
Port P2 drive strength
P2DS
09h
Port P2 selection
P2SEL
0Bh
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
83
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
Table 9-29. Port P1, P2 Registers (Base Address: 0200h) (continued)
REGISTER
OFFSET
Port P2 interrupt vector word
REGISTER DESCRIPTION
P2IV
1Eh
Port P2 interrupt edge select
P2IES
19h
P2IE
1Bh
P2IFG
1Dh
Port P2 interrupt enable
Port P2 interrupt flag
Table 9-30. Port P3, P4 Registers (Base Address: 0220h)
REGISTER DESCRIPTION
Port P3 input
REGISTER
OFFSET
P3IN
00h
P3OUT
02h
Port P3 direction
P3DIR
04h
Port P3 resistor enable
P3REN
06h
Port P3 output
Port P3 drive strength
P3DS
08h
Port P3 selection
P3SEL
0Ah
Port P3 interrupt vector word
P3IV
0Eh
Port P3 interrupt edge select
P3IES
18h
Port P3 interrupt enable
Port P3 interrupt flag
Port P4 input
P3IE
1Ah
P3IFG
1Ch
P4IN
01h
P4OUT
03h
Port P4 direction
P4DIR
05h
Port P4 resistor enable
P4REN
07h
Port P4 output
Port P4 drive strength
P4DS
09h
Port P4 selection
P4SEL
0Bh
Port P4 interrupt vector word
P4IV
1Eh
Port P4 interrupt edge select
P4IES
19h
Port P4 interrupt enable
Port P4 interrupt flag
P4IE
1Bh
P4IFG
1Dh
Table 9-31. Port P5, P6 Registers (Base Address: 0240h)
REGISTER DESCRIPTION
REGISTER
OFFSET
P5IN
00h
Port P5 output
P5OUT
02h
Port P5 direction
P5DIR
04h
Port P5 resistor enable
P5REN
06h
Port P5 drive strength
P5DS
08h
Port P5 selection
P5SEL
0Ah
P6IN
01h
Port P6 output
P6OUT
03h
Port P6 direction
P6DIR
05h
Port P6 resistor enable
P6REN
07h
Port P6 drive strength
P6DS
09h
Port P6 selection
P6SEL
0Bh
Port P5 input
Port P6 input
Table 9-32. Port P7, P8 Registers (Base Address: 0260h)
REGISTER DESCRIPTION
Port P7 input
Port P7 output
84
Submit Document Feedback
REGISTER
OFFSET
P7IN
00h
P7OUT
02h
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
Table 9-32. Port P7, P8 Registers (Base Address: 0260h) (continued)
REGISTER
OFFSET
Port P7 direction
REGISTER DESCRIPTION
P7DIR
04h
Port P7 resistor enable
P7REN
06h
Port P7 drive strength
P7DS
08h
Port P7 selection
P7SEL
0Ah
P8IN
01h
Port P8 output
P8OUT
03h
Port P8 direction
P8DIR
05h
Port P8 resistor enable
P8REN
07h
Port P8 input
Port P8 drive strength
P8DS
09h
Port P8 selection
P8SEL
0Bh
Table 9-33. Port P9 Register (Base Address: 0280h)
REGISTER DESCRIPTION
Port P9 input
REGISTER
OFFSET
P9IN
00h
P9OUT
02h
Port P9 direction
P9DIR
04h
Port P9 resistor enable
P9REN
06h
Port P9 output
Port P9 drive strength
P9DS
08h
Port P9 selection
P9SEL
0Ah
Table 9-34. Port J Registers (Base Address: 0320h)
REGISTER DESCRIPTION
REGISTER
OFFSET
PJIN
00h
Port PJ output
PJOUT
02h
Port PJ direction
PJDIR
04h
Port PJ resistor enable
PJREN
06h
Port PJ drive strength
PJDS
08h
Port PJ input
Table 9-35. TA0 Registers (Base Address: 0340h)
REGISTER DESCRIPTION
TA0 control
REGISTER
OFFSET
TA0CTL
00h
Capture/compare control 0
TA0CCTL0
02h
Capture/compare control 1
TA0CCTL1
04h
Capture/compare control 2
TA0CCTL2
06h
Capture/compare control 3
TA0CCTL3
08h
Capture/compare control 4
TA0CCTL4
0Ah
TA0 counter
TA0R
10h
Capture/compare 0
TA0CCR0
12h
Capture/compare 1
TA0CCR1
14h
Capture/compare 2
TA0CCR2
16h
Capture/compare 3
TA0CCR3
18h
Capture/compare 4
TA0CCR4
1Ah
TA0EX0
20h
TA0IV
2Eh
TA0 expansion 0
TA0 interrupt vector
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
85
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
Table 9-36. TA1 Registers (Base Address: 0380h)
REGISTER DESCRIPTION
REGISTER
OFFSET
TA1CTL
00h
Capture/compare control 0
TA1CCTL0
02h
Capture/compare control 1
TA1CCTL1
04h
Capture/compare control 2
TA1CCTL2
06h
TA1R
10h
TA1 control
TA1 counter
Capture/compare 0
TA1CCR0
12h
Capture/compare 1
TA1CCR1
14h
Capture/compare 2
TA1CCR2
16h
TA1 expansion 0
TA1 interrupt vector
TA1EX0
20h
TA1IV
2Eh
Table 9-37. TB0 Registers (Base Address: 03C0h)
REGISTER DESCRIPTION
TB0 control
REGISTER
OFFSET
TB0CTL
00h
Capture/compare control 0
TB0CCTL0
02h
Capture/compare control 1
TB0CCTL1
04h
Capture/compare control 2
TB0CCTL2
06h
Capture/compare control 3
TB0CCTL3
08h
Capture/compare control 4
TB0CCTL4
0Ah
Capture/compare control 5
TB0CCTL5
0Ch
Capture/compare control 6
TB0CCTL6
0Eh
TB0 counter
TB0R
10h
Capture/compare 0
TB0CCR0
12h
Capture/compare 1
TB0CCR1
14h
Capture/compare 2
TB0CCR2
16h
Capture/compare 3
TB0CCR3
18h
Capture/compare 4
TB0CCR4
1Ah
Capture/compare 5
TB0CCR5
1Ch
Capture/compare 6
TB0CCR6
1Eh
TB0 expansion 0
TB0 interrupt vector
TB0EX0
20h
TB0IV
2Eh
Table 9-38. TA2 Registers (Base Address: 0400h)
REGISTER DESCRIPTION
REGISTER
OFFSET
TA2CTL
00h
Capture/compare control 0
TA2CCTL0
02h
Capture/compare control 1
TA2CCTL1
04h
Capture/compare control 2
TA2CCTL2
06h
TA2R
10h
TA2 control
TA2 counter
Capture/compare 0
TA2CCR0
12h
Capture/compare 1
TA2CCR1
14h
Capture/compare 2
TA2CCR2
16h
TA2EX0
20h
TA2IV
2Eh
TA2 expansion 0
TA2 interrupt vector
86
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
Table 9-39. Battery Backup Registers (Base Address: 0480h)
REGISTER
OFFSET
Battery backup memory 0
REGISTER DESCRIPTION
BAKMEM0
00h
Battery backup memory 1
BAKMEM1
02h
Battery backup memory 2
BAKMEM2
04h
Battery backup memory 3
BAKMEM3
06h
Battery backup control
BAKCTL
1Ch
Battery charger control
BAKCHCTL
1Eh
Table 9-40. Real-Time Clock Registers (Base Address: 04A0h)
REGISTER DESCRIPTION
REGISTER
OFFSET
RTC control 0
RTCCTL0
00h
RTC control 1
RTCCTL1
01h
RTC control 2
RTCCTL2
02h
RTC control 3
RTCCTL3
03h
RTC prescaler 0 control
RTCPS0CTL
08h
RTC prescaler 1 control
RTCPS1CTL
0Ah
RTC prescaler 0
RTCPS0
0Ch
RTC prescaler 1
RTCPS1
0Dh
RTCIV
0Eh
RTCSEC
10h
RTC interrupt vector word
RTC seconds
RTC minutes
RTCMIN
11h
RTC hours
RTCHOUR
12h
RTC day of week
RTCDOW
13h
RTC days
RTCDAY
14h
RTC month
RTCMON
15h
RTC year low
RTCYEARL
16h
RTC year high
RTCYEARH
17h
RTCAMIN
18h
RTC alarm minutes
RTC alarm hours
RTCAHOUR
19h
RTC alarm day of week
RTCADOW
1Ah
RTC alarm days
RTCADAY
1Bh
Binary-to-BCD conversion
BIN2BCD
1Ch
BCD-to-binary conversion
BCD2BIN
1Eh
Table 9-41. 32-Bit Hardware Multiplier Registers (Base Address: 04C0h)
REGISTER DESCRIPTION
16-bit operand 1 – multiply
16-bit operand 1 – signed multiply
16-bit operand 1 – multiply accumulate
16-bit operand 1 – signed multiply accumulate
16-bit operand 2
16 × 16 result low word
16 × 16 result high word
16 × 16 sum extension
REGISTER
OFFSET
MPY
00h
MPYS
02h
MAC
04h
MACS
06h
OP2
08h
RESLO
0Ah
RESHI
0Ch
SUMEXT
0Eh
32-bit operand 1 – multiply low word
MPY32L
10h
32-bit operand 1 – multiply high word
MPY32H
12h
32-bit operand 1 – signed multiply low word
MPYS32L
14h
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
87
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
Table 9-41. 32-Bit Hardware Multiplier Registers (Base Address: 04C0h) (continued)
REGISTER DESCRIPTION
32-bit operand 1 – signed multiply high word
REGISTER
OFFSET
MPYS32H
16h
32-bit operand 1 – multiply accumulate low word
MAC32L
18h
32-bit operand 1 – multiply accumulate high word
MAC32H
1Ah
32-bit operand 1 – signed multiply accumulate low word
MACS32L
1Ch
32-bit operand 1 – signed multiply accumulate high word
MACS32H
1Eh
32-bit operand 2 – low word
OP2L
20h
32-bit operand 2 – high word
OP2H
22h
32 × 32 result 0 – least significant word
RES0
24h
32 × 32 result 1
RES1
26h
32 × 32 result 2
RES2
28h
32 × 32 result 3 – most significant word
MPY32 control 0
RES3
2Ah
MPY32CTL0
2Ch
Table 9-42. DMA Registers (Base Address DMA General Control: 0500h,
DMA Channel 0: 0510h, DMA Channel 1: 0520h, DMA Channel 2: 0530h, DMA Channel 3: 0540h, DMA
Channel 4: 0550h, DMA Channel 5: 0560h)
REGISTER DESCRIPTION
REGISTER
OFFSET
DMA general control: DMA module control 0
DMACTL0
00h
DMA general control: DMA module control 1
DMACTL1
02h
DMA general control: DMA module control 2
DMACTL2
04h
DMA general control: DMA module control 3
DMACTL3
06h
DMA general control: DMA module control 4
DMACTL4
08h
DMAIV
0Ah
DMA channel 0 control
DMA0CTL
00h
DMA channel 0 source address low
DMA0SAL
02h
DMA channel 0 source address high
DMA0SAH
04h
DMA channel 0 destination address low
DMA0DAL
06h
DMA channel 0 destination address high
DMA0DAH
08h
DMA0SZ
0Ah
DMA general control: DMA interrupt vector
DMA channel 0 transfer size
DMA channel 1 control
DMA1CTL
00h
DMA channel 1 source address low
DMA1SAL
02h
DMA channel 1 source address high
DMA1SAH
04h
DMA channel 1 destination address low
DMA1DAL
06h
DMA channel 1 destination address high
DMA1DAH
08h
DMA channel 1 transfer size
DMA1SZ
0Ah
DMA2CTL
00h
DMA channel 2 source address low
DMA2SAL
02h
DMA channel 2 source address high
DMA2SAH
04h
DMA channel 2 control
DMA channel 2 destination address low
DMA2DAL
06h
DMA channel 2 destination address high
DMA2DAH
08h
DMA channel 2 transfer size
DMA2SZ
0Ah
DMA3CTL
00h
DMA channel 3 source address low
DMA3SAL
02h
DMA channel 3 source address high
DMA3SAH
04h
DMA channel 3 control
DMA channel 3 destination address low
DMA3DAL
06h
DMA channel 3 destination address high
DMA3DAH
08h
88
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
Table 9-42. DMA Registers (Base Address DMA General Control: 0500h,
DMA Channel 0: 0510h, DMA Channel 1: 0520h, DMA Channel 2: 0530h, DMA Channel 3: 0540h, DMA
Channel 4: 0550h, DMA Channel 5: 0560h) (continued)
REGISTER DESCRIPTION
DMA channel 3 transfer size
REGISTER
OFFSET
DMA3SZ
0Ah
DMA channel 4 control
DMA4CTL
00h
DMA channel 4 source address low
DMA4SAL
02h
DMA channel 4 source address high
DMA4SAH
04h
DMA channel 4 destination address low
DMA4DAL
06h
DMA channel 4 destination address high
DMA4DAH
08h
DMA4SZ
0Ah
DMA5CTL
00h
DMA channel 5 source address low
DMA5SAL
02h
DMA channel 5 source address high
DMA5SAH
04h
DMA channel 5 destination address low
DMA5DAL
06h
DMA channel 5 destination address high
DMA5DAH
08h
DMA5SZ
0Ah
DMA channel 4 transfer size
DMA channel 5 control
DMA channel 5 transfer size
Table 9-43. USCI_A0 Registers (Base Address: 05C0h)
REGISTER DESCRIPTION
REGISTER
OFFSET
USCI control 0
UCA0CTL0
00h
USCI control 1
UCA0CTL1
01h
USCI baud rate 0
UCA0BR0
06h
UCA0BR1
07h
UCA0MCTL
08h
USCI baud rate 1
USCI modulation control
USCI status
UCA0STAT
0Ah
USCI receive buffer
UCA0RXBUF
0Ch
USCI transmit buffer
UCA0TXBUF
0Eh
USCI LIN control
UCA0ABCTL
10h
USCI IrDA transmit control
UCA0IRTCTL
12h
USCI IrDA receive control
UCA0IRRCTL
13h
USCI interrupt enable
USCI interrupt flags
USCI interrupt vector word
UCA0IE
1Ch
UCA0IFG
1Dh
UCA0IV
1Eh
Table 9-44. USCI_B0 Registers (Base Address: 05E0h)
REGISTER DESCRIPTION
REGISTER
OFFSET
USCI synchronous control 0
UCB0CTL0
00h
USCI synchronous control 1
UCB0CTL1
01h
USCI synchronous bit rate 0
UCB0BR0
06h
USCI synchronous bit rate 1
UCB0BR1
07h
UCB0STAT
0Ah
USCI synchronous receive buffer
USCI synchronous status
UCB0RXBUF
0Ch
USCI synchronous transmit buffer
UCB0TXBUF
0Eh
USCI I2C own address
UCB0I2COA
10h
USCI I2C slave address
UCB0I2CSA
12h
UCB0IE
1Ch
UCB0IFG
1Dh
USCI interrupt enable
USCI interrupt flags
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
89
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
Table 9-44. USCI_B0 Registers (Base Address: 05E0h) (continued)
REGISTER DESCRIPTION
USCI interrupt vector word
REGISTER
OFFSET
UCB0IV
1Eh
Table 9-45. USCI_A1 Registers (Base Address: 0600h)
REGISTER DESCRIPTION
REGISTER
OFFSET
USCI control 0
UCA1CTL0
00h
USCI control 1
UCA1CTL1
01h
USCI baud rate 0
UCA1BR0
06h
USCI baud rate 1
USCI modulation control
USCI status
UCA1BR1
07h
UCA1MCTL
08h
UCA1STAT
0Ah
USCI receive buffer
UCA1RXBUF
0Ch
USCI transmit buffer
UCA1TXBUF
0Eh
USCI LIN control
UCA1ABCTL
10h
USCI IrDA transmit control
UCA1IRTCTL
12h
USCI IrDA receive control
UCA1IRRCTL
13h
USCI interrupt enable
USCI interrupt flags
USCI interrupt vector word
UCA1IE
1Ch
UCA1IFG
1Dh
UCA1IV
1Eh
Table 9-46. USCI_B1 Registers (Base Address: 0620h)
REGISTER DESCRIPTION
REGISTER
OFFSET
USCI synchronous control 0
UCB1CTL0
00h
USCI synchronous control 1
UCB1CTL1
01h
USCI synchronous bit rate 0
UCB1BR0
06h
USCI synchronous bit rate 1
UCB1BR1
07h
UCB1STAT
0Ah
USCI synchronous receive buffer
USCI synchronous status
UCB1RXBUF
0Ch
USCI synchronous transmit buffer
UCB1TXBUF
0Eh
USCI I2C own address
UCB1I2COA
10h
USCI I2C slave address
UCB1I2CSA
12h
UCB1IE
1Ch
UCB1IFG
1Dh
UCB1IV
1Eh
USCI interrupt enable
USCI interrupt flags
USCI interrupt vector word
Table 9-47. USCI_A2 Registers (Base Address: 0640h)
REGISTER DESCRIPTION
REGISTER
OFFSET
USCI control 0
UCA2CTL0
00h
USCI control 1
UCA2CTL1
01h
USCI baud rate 0
UCA2BR0
06h
USCI baud rate 1
UCA2BR1
07h
USCI modulation control
UCA2MCTL
08h
USCI status
UCA2STAT
0Ah
USCI receive buffer
UCA2RXBUF
0Ch
USCI transmit buffer
UCA2TXBUF
0Eh
USCI LIN control
UCA2ABCTL
10h
USCI IrDA transmit control
UCA2IRTCTL
12h
USCI IrDA receive control
UCA2IRRCTL
13h
90
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
Table 9-47. USCI_A2 Registers (Base Address: 0640h) (continued)
REGISTER DESCRIPTION
USCI interrupt enable
USCI interrupt flags
USCI interrupt vector word
REGISTER
OFFSET
UCA2IE
1Ch
UCA2IFG
1Dh
UCA2IV
1Eh
Table 9-48. USCI_B2 Registers (Base Address: 0660h)
REGISTER DESCRIPTION
REGISTER
OFFSET
USCI synchronous control 0
UCB2CTL0
00h
USCI synchronous control 1
UCB2CTL1
01h
USCI synchronous bit rate 0
UCB2BR0
06h
USCI synchronous bit rate 1
UCB2BR1
07h
USCI synchronous status
UCB2STAT
0Ah
USCI synchronous receive buffer
UCB2RXBUF
0Ch
USCI synchronous transmit buffer
UCB2TXBUF
0Eh
USCI I2C own address
UCB2I2COA
10h
USCI I2C slave address
UCB2I2CSA
12h
USCI interrupt enable
USCI interrupt flags
USCI interrupt vector word
UCB2IE
1Ch
UCB2IFG
1Dh
UCB2IV
1Eh
Table 9-49. ADC12_A Registers (Base Address: 0700h)
REGISTER DESCRIPTION
REGISTER
OFFSET
ADC12 control 0
ADC12CTL0
00h
ADC12 control 1
ADC12CTL1
02h
ADC12 control 2
ADC12CTL2
04h
ADC12IFG
0Ah
Interrupt enable
ADC12IE
0Ch
Interrupt vector word
ADC12IV
0Eh
ADC memory control 0
ADC12MCTL0
10h
ADC memory control 1
ADC12MCTL1
11h
ADC memory control 2
ADC12MCTL2
12h
ADC memory control 3
ADC12MCTL3
13h
ADC memory control 4
ADC12MCTL4
14h
ADC memory control 5
ADC12MCTL5
15h
ADC memory control 6
ADC12MCTL6
16h
ADC memory control 7
ADC12MCTL7
17h
ADC memory control 8
ADC12MCTL8
18h
ADC memory control 9
ADC12MCTL9
19h
ADC memory control 10
ADC12MCTL10
1Ah
ADC memory control 11
ADC12MCTL11
1Bh
ADC memory control 12
ADC12MCTL12
1Ch
ADC memory control 13
ADC12MCTL13
1Dh
ADC memory control 14
ADC12MCTL14
1Eh
ADC memory control 15
ADC12MCTL15
1Fh
Conversion memory 0
ADC12MEM0
20h
Conversion memory 1
ADC12MEM1
22h
Conversion memory 2
ADC12MEM2
24h
Interrupt flag
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
91
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
Table 9-49. ADC12_A Registers (Base Address: 0700h) (continued)
REGISTER
OFFSET
Conversion memory 3
REGISTER DESCRIPTION
ADC12MEM3
26h
Conversion memory 4
ADC12MEM4
28h
Conversion memory 5
ADC12MEM5
2Ah
Conversion memory 6
ADC12MEM6
2Ch
Conversion memory 7
ADC12MEM7
2Eh
Conversion memory 8
ADC12MEM8
30h
Conversion memory 9
ADC12MEM9
32h
Conversion memory 10
ADC12MEM10
34h
Conversion memory 11
ADC12MEM11
36h
Conversion memory 12
ADC12MEM12
38h
Conversion memory 13
ADC12MEM13
3Ah
Conversion memory 14
ADC12MEM14
3Ch
Conversion memory 15
ADC12MEM15
3Eh
Table 9-50. DAC12_A Registers (Base Address: 0780h)
REGISTER DESCRIPTION
REGISTER
OFFSET
DAC12_A channel 0 control 0
DAC12_0CTL0
00h
DAC12_A channel 0 control 1
DAC12_0CTL1
02h
DAC12_A channel 0 data
DAC12_0DAT
04h
DAC12_A channel 0 calibration control
DAC12_0CALCTL
06h
DAC12_A channel 0 calibration data
DAC12_0CALDAT
08h
DAC12_A channel 1 control 0
DAC12_1CTL0
10h
DAC12_A channel 1 control 1
DAC12_1CTL1
12h
DAC12_A channel 1 data
DAC12_1DAT
14h
DAC12_A channel 1 calibration control
DAC12_1CALCTL
16h
DAC12_A channel 1 calibration data
DAC12_1CALDAT
18h
DAC12IV
1Eh
DAC12_A interrupt vector word
Table 9-51. Comparator_B Registers (Base Address: 08C0h)
REGISTER DESCRIPTION
REGISTER
OFFSET
Comp_B control 0
CBCTL0
00h
Comp_B control 1
CBCTL1
02h
Comp_B control 2
CBCTL2
04h
Comp_B control 3
CBCTL3
06h
Comp_B interrupt
CBINT
0Ch
CBIV
0Eh
Comp_B interrupt vector word
Table 9-52. USB Configuration Registers (Base Address: 0900h)
REGISTER DESCRIPTION
USB key/ID
USB module configuration
REGISTER
OFFSET
USBKEYID
00h
USBCNF
02h
USB PHY control
USBPHYCTL
04h
USB power control
USBPWRCTL
08h
USB power voltage setting
USBPWRVSR
0Ah
USB PLL control
USBPLLCTL
10h
USB PLL divider
USBPLLDIV
12h
92
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
Table 9-52. USB Configuration Registers (Base Address: 0900h) (continued)
REGISTER DESCRIPTION
USB PLL interrupts
Copyright © 2020 Texas Instruments Incorporated
REGISTER
OFFSET
USBPLLIR
14h
Submit Document Feedback
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
93
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
Table 9-53. USB Control Registers (Base Address: 0920h)
REGISTER DESCRIPTION
Input endpoint_0 configuration
Input endpoint_0 byte count
Output endpoint_0 configuration
Output endpoint _0 byte count
REGISTER
OFFSET
USBIEPCNF_0
00h
USBIEPCNT_0
01h
USBOEPCNFG_0
02h
USBOEPCNT_0
03h
USBIEPIE
0Eh
Output endpoint interrupt enables
USBOEPIE
0Fh
Input endpoint interrupt flags
USBIEPIFG
10h
Output endpoint interrupt flags
USBOEPIFG
11h
Input endpoint interrupt enables
USB interrupt vector
USBIV
12h
USB maintenance
USBMAINT
16h
Timestamp
USBTSREG
18h
USB frame number
USBFN
1Ah
USB control
USBCTL
1Ch
USBIE
1Dh
USBIFG
1Eh
USBFUNADR
1Fh
USB interrupt enables
USB interrupt flags
Function address
Table 9-54. LDO and Port U Configuration Registers (Base Address: 0900h)
REGISTER DESCRIPTION
LDO key/ID
PU port control
LDO power control
REGISTER
OFFSET
LDOKEYID
00h
PUCTL
04h
LDOPWRCTL
08h
Table 9-55. LCD_B Registers (Base Address: 0A00h)
REGISTER DESCRIPTION
REGISTER
OFFSET
LCD_B control 0
LCDBCTL0
000h
LCD_B control 1
LCDBCTL1
002h
LCD_B blinking control
LCDBBLKCTL
004h
LCD_B memory control
LCDBMEMCTL
006h
LCD_B voltage control
LCDBVCTL
008h
LCD_B port control 0
LCDBPCTL0
00Ah
LCD_B port control 1
LCDBPCTL1
00Ch
LCD_B port control 2
LCDBPCTL2
00Eh
LCD_B charge pump control
LCDBCTL0
012h
LCD_B interrupt vector word
LCDBIV
01Eh
LCD_B memory 1
LCDM1
020h
LCD_B memory 2
LCDM2
021h
⋮
⋮
LCD_B memory 22
⋮
LCDM22
035h
LCD_B blinking memory 1
LCDBM1
040h
LCD_B blinking memory 2
LCDBM2
041h
⋮
LCD_B blinking memory 22
94
Submit Document Feedback
⋮
⋮
LCDBM22
055h
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
9.13 Input/Output Diagrams
9.13.1 Port P1 (P1.0 to P1.7) Input/Output With Schmitt Trigger
Figure 9-2 shows the port diagram. Table 9-56 summarizes selection of the pin functions.
Pad Logic
S32...S39
LCDS32...LCDS39
P1REN.x
P1DIR.x
0
0
Module X OUT
1
0
DVCC
1
P1DS.x
0: Low drive
1: High drive
P1SEL.x
P1IN.x
Bus
Keeper
EN
Module X IN
1
Direction
0: Input
1: Output
1
P1OUT.x
DVSS
P1.0/TA0CLK/ACLK/S39
P1.1/TA0.0/S38
P1.2/TA0.1/S37
P1.3/TA0.2/S36
P1.4/TA0.3/S35
P1.5/TA0.4/S34
P1.6/TA0.1/S33
P1.7/TA0.2/S32
D
P1IE.x
EN
P1IRQ.x
Q
P1IFG.x
Set
P1SEL.x
Interrupt
Edge
Select
P1IES.x
Figure 9-2. Port P1 (P1.0 to P1.7) Diagram
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
95
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
Table 9-56. Port P1 (P1.0 to P1.7) Pin Functions
CONTROL BITS OR SIGNALS(1)
PIN NAME (P1.x)
x
FUNCTION
P1.0 (I/O)
P1.0/TA0CLK/ACLK/
S39
0
Timer TA0.TA0CLK
1
2
3
4
5
6
0
1
I: 0; O: 1
0
0
0
1
0
Timer TA0.CCI0A capture input
Timer TA0.0 output
1
1
0
S38
X
X
1
I: 0; O: 1
0
0
0
1
0
Timer TA0.CCI1A capture input
Timer TA0.1 output
1
1
0
S37
X
X
1
I: 0; O: 1
0
0
0
1
0
Timer TA0.CCI2A capture input
Timer TA0.2 output
1
1
0
S36
X
X
1
I: 0; O: 1
0
0
0
1
0
Timer TA0.CCI3A capture input
Timer TA0.3 output
1
1
0
S35
X
X
1
I: 0; O: 1
0
0
0
1
0
Timer TA0.CCI4A capture input
Timer TA0.4 output
1
1
0
S34
X
X
1
I: 0; O: 1
0
0
0
1
0
Timer TA0.CCI1B capture input
Timer TA0.1 output
1
1
0
S33
X
X
1
I: 0; O: 1
0
0
0
1
0
P1.7 (I/O)
P1.7/TA0.2/S32
(1)
96
7
0
1
P1.6 (I/O)
P1.6/TA0.1/S33
0
1
X
P1.5 (I/O)
P1.5/TA0.4/S34
0
0
1
P1.4 (I/O)
P1.4/TA0.3/S35
I: 0; O: 1
X
P1.3 (I/O)
P1.3/TA0.2/S36
LCDS32...
LCDS39
S39
P1.2 (I/O)
P1.2/TA0.1/S37
P1SEL.x
ACLK
P1.1 (I/O)
P1.1/TA0.0/S38
P1DIR.x
Timer TA0.CCI2B capture input
Timer TA0.2 output
1
1
0
S32
X
X
1
X = Don't care
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
9.13.2 Port P2 (P2.0 to P2.7) Input/Output With Schmitt Trigger
Figure 9-3 shows the port diagram. Table 9-57 summarizes selection of the pin functions.
Pad Logic
To LCD_B
From LCD_B
P2REN.x
P2DIR.x
0
From Port Mapping
1
P2OUT.x
0
From Port Mapping
1
DVSS
0
DVCC
1
1
Direction
0: Input
1: Output
P2DS.x
0: Low drive
1: High drive
P2SEL.x
P2IN.x
From Port Mapping
P2.0/P2MAP0
P2.1/P2MAP1
P2.2/P2MAP2
P2.3/P2MAP3
P2.4/P2MAP4
P2.5/P2MAP5
P2.6/P2MAP6/R03
P2.7/P2MAP7/LCDREF/R13
EN
To Port Mapping
D
P2IE.x
EN
P2IRQ.x
Q
P2IFG.x
Set
P2SEL.x
Interrupt
Edge
Select
P2IES.x
Figure 9-3. Port P2 (P2.0 to P2.7) Diagram
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
97
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
Table 9-57. Port P2 (P2.0 to P2.7) Pin Functions
PIN NAME (P2.x)
x
P2.0/P2MAP0
0
P2.1/P2MAP1
1
P2.2/P2MAP2
2
P2.3/P2MAP3
P2.4/P2MAP4
P2.5/P2MAP5
3
4
5
FUNCTION
P2.0 (I/O)
Mapped secondary digital function
P2.1 (I/O)
Mapped secondary digital function
P2.2 (I/O)
Mapped secondary digital function
P2.3 (I/O)
Mapped secondary digital function
P2.4 (I/O)
Mapped secondary digital function
P2.5 (I/O
Mapped secondary digital function
P2.6 (I/O)
P2.6/P2MAP6/R03
6 Mapped secondary digital function
R03
P2.7 (I/O)
P2.7/P2MAP7/
LCDREF/R13
7 Mapped secondary digital function
LCDREF/R13
(1)
98
CONTROL BITS OR SIGNALS(1)
P2DIR.x
P2SEL.x
I: 0; O: 1
0
X
1
I: 0; O: 1
0
X
1
I: 0; O: 1
0
X
1
I: 0; O: 1
0
X
1
I: 0; O: 1
0
X
1
I: 0; O: 1
0
P2MAPx
≤ 19
≤ 19
≤ 19
≤ 19
≤ 19
X
1
I: 0; O: 1
0
≤ 19
X
1
≤ 19
X
1
= 31
I: 0; O: 1
0
X
1
≤ 19
X
1
= 31
X = Don't care
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
9.13.3 Port P3 (P3.0 to P3.7) Input/Output With Schmitt Trigger
Figure 9-4 shows the port diagram. Table 9-58 summarizes selection of the pin functions.
Pad Logic
S24...S31
LCDS24...LCDS31
P3REN.x
P3DIR.x
0
0
Module X OUT
1
0
DVCC
1
P3DS.x
0: Low drive
1: High drive
P3SEL.x
P3IN.x
Bus
Keeper
EN
Module X IN
1
Direction
0: Input
1: Output
1
P3OUT.x
DVSS
P3.0/TA1CLK/CBOUT/S31
P3.1/TA1.0/S30
P3.2/TA1.1/S29
P3.3/TA1.2/S28
P3.4/TA2CLK/SMCLK/S27
P3.5/TA2.0/S26
P3.6/TA2.1/S25
P3.7/TA2.2/S24
D
P3IE.x
EN
P3IRQ.x
Q
P3IFG.x
Set
P3SEL.x
Interrupt
Edge
Select
P3IES.x
Figure 9-4. Port P3 (P3.0 to P3.7) Diagram
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
99
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
Table 9-58. Port P3 (P3.0 to P3.7) Pin Functions
CONTROL BITS OR SIGNALS(1)
PIN NAME (P3.x)
x
FUNCTION
P3.0 (I/O)
P3.0/TA1CLK/
CBOUT/S31
0
Timer TA1.TA1CLK
1
2
3
4
5
6
0
1
I: 0; O: 1
0
0
0
1
0
Timer TA1.CCI0A capture input
Timer TA1.0 output
1
1
0
S30
X
X
1
I: 0; O: 1
0
0
0
1
0
Timer TA1.CCI1A capture input
Timer TA1.1 output
1
1
0
S29
X
X
1
I: 0; O: 1
0
0
0
1
0
Timer TA1.CCI2A capture input
Timer TA1.2 output
1
1
0
S28
X
X
1
I: 0; O: 1
0
0
0
1
0
Timer TA2.TA2CLK
SMCLK
1
1
0
S27
X
X
1
I: 0; O: 1
0
0
0
1
0
Timer TA2.CCI0A capture input
Timer TA2.0 output
1
1
0
S26
X
X
1
I: 0; O: 1
0
0
0
1
0
Timer TA2.CCI1A capture input
Timer TA2.1 output
1
1
1
S25
X
X
1
I: 0; O: 1
0
0
0
1
0
P3.7 (I/O)
P3.7/TA2.2/S24
(1)
100
7
0
1
P3.6 (I/O)
P3.6/TA2.1/S25
0
1
X
P3.5 (I/O)
P3.5/TA2.0/S26
0
0
1
P3.4 (I/O)
P3.4/TA2CLK/
SMCLK/S27
I: 0; O: 1
X
P3.3 (I/O)
P3.3/TA1.2/S28
LCDS24...
LCDS31
CBOUT
P3.2 (I/O)
P3.2/TA1.1/S29
P3SEL.x
S31
P3.1 (I/O)
P3.1/TA1.0/S30
P3DIR.x
Timer TA2.CCI2A capture input
Timer TA2.2 output
1
1
0
S24
X
X
1
X = Don't care
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
9.13.4 Port P4 (P4.0 to P4.7) Input/Output With Schmitt Trigger
Figure 9-5 shows the port diagram. Table 9-59 summarizes selection of the pin functions.
Pad Logic
S16...S23
LCDS16...LCDS23
P4REN.x
P4DIR.x
0
0
Module X OUT
1
0
DVCC
1
P4DS.x
0: Low drive
1: High drive
P4SEL.x
P4IN.x
Bus
Keeper
EN
Module X IN
1
Direction
0: Input
1: Output
1
P4OUT.x
DVSS
P4.0/TB0.0/S23
P4.1/TB0.1/S22
P4.2/TB0.2/S21
P4.3/TB0.3/S20
P4.4/TB0.4/S19
P4.5/TB0.5/S18
P4.6/TB0.6/S17
P4.7/TB0OUTH/SVMOUT/S16
D
P4IE.x
EN
P4IRQ.x
Q
P4IFG.x
Set
P4SEL.x
Interrupt
Edge
Select
P4IES.x
Figure 9-5. Port P4 (P4.0 to P4.7) Diagram
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
101
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
Table 9-59. Port P4 (P4.0 to P4.7) Pin Functions
CONTROL BITS OR SIGNALS(1)
PIN NAME (P4.x)
x
FUNCTION
P4.0 (I/O)
P4.0/TB0.0/S23
0
Timer TB0.CCI0A capture input
Timer TB0.0
output(2)
S23
P4.1 (I/O)
P4.1/TB0.1/S22
1
Timer TB0.CCI1A capture input
Timer TB0.1
output(2)
S22
P4.2 (I/O)
P4.2/TB0.2/S21
2
Timer TB0.CCI2A capture input
Timer TB0.2
output(2)
S21
P4.3 (I/O)
P4.3/TB0.3/S20
3
Timer TB0.CCI3A capture input
Timer TB0.3
output(2)
S20
P4.4 (I/O)
P4.4/TB0.4/S19
4
Timer TB0.CCI4A capture input
Timer TB0.4
output(2)
S19
P4.5 (I/O)
P4.5/TB0.5/S18
5
Timer TB0.CCI5A capture input
Timer TB0.5
output(2)
S18
P4.6 (I/O)
P4.6/TB0.6/S17
6
Timer TB0.CCI6A capture input
Timer TB0.6
output(2)
S17
P4.7 (I/O)
P4.7/TB0OUTH/
SVMOUT/S16
(1)
(2)
102
7
Timer TB0.TB0OUTH
P4DIR.x
P4SEL.x
LCDS16...
LCDS23
I: 0; O: 1
0
0
0
1
0
1
1
0
X
X
1
I: 0; O: 1
0
0
0
1
0
1
1
0
X
X
1
I: 0; O: 1
0
0
0
1
0
1
1
0
X
X
1
I: 0; O: 1
0
0
0
1
0
1
1
0
X
X
1
I: 0; O: 1
0
0
0
1
0
1
1
0
X
X
1
I: 0; O: 1
0
0
0
1
0
1
1
0
X
X
1
I: 0; O: 1
0
0
0
1
0
1
1
0
X
X
1
I: 0; O: 1
0
0
0
1
0
SVMOUT
1
1
0
S16
X
X
1
X = Don't care
Setting TB0OUTH causes all Timer_B configured outputs to be set to high impedance.
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
9.13.5 Port P5 (P5.0 and P5.1) Input/Output With Schmitt Trigger
Figure 9-6 shows the port diagram. Table 9-60 summarizes selection of the pin functions.
Pad Logic
To/From
Reference
P5REN.x
P5DIR.x
DVSS
0
DVCC
1
1
0
1
P5OUT.x
0
Module X OUT
1
P5.0/VREF+/VeREF+
P5.1/VREF–/VeREF–
P5DS.x
0: Low drive
1: High drive
P5SEL.x
P5IN.x
Bus
Keeper
EN
Module X IN
D
Figure 9-6. Port P5 (P5.0 and P5.1) Diagram
Table 9-60. Port P5 (P5.0 and P5.1) Pin Functions
PIN NAME (P5.x)
x
FUNCTION
P5.0
P5.0/VREF+/VeREF+
(I/O)(2)
0 VeREF+(3)
VREF+(4)
P5.1 (I/O)(2)
P5.1/VREF–/VeREF–
1 VeREF–(5)
VREF–(6)
(1)
(2)
(3)
(4)
(5)
(6)
CONTROL BITS OR SIGNALS(1)
P5DIR.x
P5SEL.x
REFOUT
I: 0; O: 1
0
X
X
1
0
X
1
1
I: 0; O: 1
0
X
X
1
0
X
1
1
X = Don't care
Default condition
Setting the P5SEL.0 bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying
analog signals. An external voltage can be applied to VeREF+ and used as the reference for the ADC12_A, Comparator_B, or
DAC12_A.
Setting the P5SEL.0 bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying
analog signals. The ADC12_A, VREF+ reference is available at the pin.
Setting the P5SEL.1 bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying
analog signals. An external voltage can be applied to VeREF- and used as the reference for the ADC12_A, Comparator_B, or
DAC12_A.
Setting the P5SEL.1 bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying
analog signals. The ADC12_A, VREF– reference is available at the pin.
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
103
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
9.13.6 Port P5 (P5.2 to P5.7) Input/Output With Schmitt Trigger
Figure 9-7 shows the port diagram. Table 9-61 summarizes selection of the pin functions.
Pad Logic
S40...S42
LCDS40...LCDS42
P5REN.x
P5DIR.x
0
0
Module X OUT
1
0
DVCC
1
1
Direction
0: Input
1: Output
1
P5OUT.x
DVSS
P5.2/R23
P5.3/COM1/S42
P5.4/COM2/S41
P5.5/COM3/S40
P5.6/ADC12CLK/DMAE0
P5.7/RTCCLK
P5DS.x
0: Low drive
1: High drive
P5SEL.x
P5IN.x
Bus
Keeper
EN
D
Module X IN
Figure 9-7. Port P5 (P5.2 to P5.7) Diagram
Table 9-61. Port P5 (P5.2 to P5.7) Pin Functions
CONTROL BITS OR SIGNALS(1)
PIN NAME (P5.x)
P5.2/R23
x
2
FUNCTION
P5.2 (I/O)
R23
P5.3 (I/O)
P5.3/COM1/S42
LCDS40...
LCDS42
I: 0; O: 1
0
N/A
X
1
N/A
I: 0; O: 1
0
0
X
1
X
S42
X
0
1
I: 0; O: 1
0
0
X
1
X
P5.4 (I/O)
S41
X
0
1
I: 0; O: 1
0
0
5 COM3
X
1
X
S40
X
0
1
I: 0; O: 1
0
N/A
1
1
N/A
P5.5 (I/O)
P5.5/COM3/S40
P5SEL.x
3 COM1
4 COM2
P5.4/COM2/S41
P5DIR.x
P5.6 (I/O)
P5.6/ADC12CLK/DMAE0
6 ADC12CLK
DMAE0
0
1
N/A
P5.7/RTCCLK
7 P5.7 (I/O)
I: 0; O: 1
0
N/A
104
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
Table 9-61. Port P5 (P5.2 to P5.7) Pin Functions (continued)
CONTROL BITS OR SIGNALS(1)
PIN NAME (P5.x)
x
FUNCTION
RTCCLK
(1)
P5DIR.x
P5SEL.x
LCDS40...
LCDS42
1
1
N/A
X = Don't care
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
105
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
9.13.7 Port P6 (P6.0 to P6.7) Input/Output With Schmitt Trigger
Figure 9-8 shows the port diagram. Table 9-62 summarizes selection of the pin functions.
Pad Logic
To ADC12
INCHx = y
0
Dvss
1
From DAC12_A
2
0 if DAC12AMPx=0
1 if DAC12AMPx=1
2 if DAC12AMPx>1
To Comparator_B
From Comparator_B
CBPD.x
DAC12AMPx>0
DAC12OPS
P6REN.x
DVSS
0
DVCC
1
1
P6DIR.x
P6OUT.x
P6DS.x
0: Low drive
1: High drive
P6SEL.x
P6IN.x
Bus
Keeper
P6.0/CB0/A0
P6.1/CB1/A1
P6.2/CB2/A2
P6.3/CB3/A3
P6.4/CB4/A4
P6.5/CB5/A5
P6.6/CB6/A6/DAC0
P6.7/CB7/A7/DAC1
Figure 9-8. Port P6 (P6.0 to P6.7) Diagram
106
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
Table 9-62. Port P6 (P6.0 to P6.7) Pin Functions
PIN NAME (P6.x)
x
FUNCTION
P6.0 (I/O)
P6.0/CB0/A0
0
CB0
A0(2) (3)
1
2
3
5
(1)
(2)
(3)
N/A
N/A
N/A
N/A
CB1
X
X
1
N/A
N/A
A1(2) (3)
X
1
X
N/A
N/A
I: 0; O: 1
0
0
N/A
N/A
CB2
X
X
1
N/A
N/A
A2(2) (3)
X
1
X
N/A
N/A
I: 0; O: 1
0
0
N/A
N/A
X
X
1
N/A
N/A
CB3
X
1
X
N/A
N/A
I: 0; O: 1
0
0
N/A
N/A
CB4
X
X
1
N/A
N/A
A4(2) (3)
X
1
X
N/A
N/A
I: 0; O: 1
0
0
N/A
N/A
X
X
1
N/A
N/A
CB5
X
1
X
N/A
N/A
I: 0; O: 1
0
0
X
0
CB6
X
X
1
X
0
A6(2) (3)
X
1
X
X
0
DAC0
7
N/A
1
N/A
X
X
X
0
>1
I: 0; O: 1
0
0
X
0
CB7
X
X
1
X
0
A7(2) (3)
X
1
X
X
0
DAC1
X
X
X
0
>1
P6.7 (I/O)
P6.7/CB7/A7/DAC1
0
X
N/A
P6.6 (I/O)
6
0
X
N/A
A5(2) (3)
P6.6/CB6/A6/DAC0
I: 0; O: 1
0
P6.5 (I/O)
P6.5/CB5/A5
DAC12AMPx
X
P6.4 (I/O)
4
DAC12OPS
0
A3(2) (3)
P6.4/CB4/A4
CBPD.x
1
P6.3 (I/O)
P6.3/CB3/A3
P6SEL.x
X
P6.2 (I/O)
P6.2/CB2/A2
P6DIR.x
I: 0; O: 1
P6.1 (I/O)
P6.1/CB1/A1
CONTROL BITS OR SIGNALS(1)
X = Don't care
Setting the P6SEL.x bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying
analog signals.
The ADC12_A channel Ax is connected internally to AVSS if not selected by the respective INCHx bits.
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
107
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
9.13.8 Port P7 (P7.2) Input/Output With Schmitt Trigger
Figure 9-9 shows the port diagram. Table 9-63 summarizes selection of the pin functions.
Pad Logic
To XT2
P7REN.2
P7DIR.2
DVSS
0
DVCC
1
1
0
1
P7OUT.2
P7DS.2
0: Low drive
1: High drive
P7SEL.2
P7.2/XT2IN
P7IN.2
Bus
Keeper
Figure 9-9. Port P7 (P7.2) Diagram
108
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
9.13.9 Port P7 (P7.3) Input/Output With Schmitt Trigger
Figure 9-10 shows the port diagram. Table 9-63 summarizes selection of the pin functions.
Pad Logic
To XT2
P7REN.3
P7DIR.3
DVSS
0
DVCC
1
1
0
1
P7OUT.3
P7SEL.2
P7.3/XT2OUT
P7DS.3
0: Low drive
1: High drive
XT2BYPASS
P7SEL.3
P7IN.3
Bus
Keeper
Figure 9-10. Port P7 (P7.3) Diagram
Table 9-63. Port P7 (P7.2 and P7.3) Pin Functions
PIN NAME (P7.x)
x
FUNCTION
P7DIR.x
P7SEL.2
P7SEL.3
XT2BYPASS
I: 0; O: 1
0
X
X
mode(2)
X
1
X
0
XT2IN bypass mode(2)
X
1
X
1
I: 0; O: 1
0
0
X
X
1
X
0
X
1
0
1
P7.2 (I/O)
P7.2/XT2IN
2 XT2IN crystal
P7.3 (I/O)
P7.3/XT2OUT
3 XT2OUT crystal mode(3)
P7.3
(1)
(2)
(3)
CONTROL BITS OR SIGNALS(1)
(I/O)(3)
X = Don't care
Setting P7SEL.2 causes the general-purpose I/O to be disabled. Pending the setting of XT2BYPASS, P7.2 is configured for crystal
mode or bypass mode.
Setting P7SEL.2 causes the general-purpose I/O to be disabled in crystal mode. When using bypass mode, P7.3 can be used as
general-purpose I/O.
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
109
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
9.13.10 Port P7 (P7.4 to P7.7) Input/Output With Schmitt Trigger
Figure 9-11 shows the port diagram. Table 9-64 summarizes selection of the pin functions.
0
DVSS
1
From DAC12_A
2
Pad Logic
0 if DAC12AMPx = 0
1 if DAC12AMPx = 1
2 if DAC12AMPx > 1
To ADC12
INCHx = y
To Comparator_B
From Comparator_B
CBPD.x
DAC12AMPx>0
DAC12OPS
P7REN.x
P7SEL.x
DVSS
0
DVCC
1
1
P7DIR.x
P7OUT.x
P7DS.x
0: Low drive
1: High drive
P7.4/CB8/A12
P7.5/CB9/A13
P7.6/CB10/A14/DAC0
P7.7/CB11/A15/DAC1
P7IN.x
Bus
Keeper
Figure 9-11. Port P7 (P7.4 to P7.7) Diagram
110
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
Table 9-64. Port P7 (P7.4 to P7.7) Pin Functions
PIN NAME (P7.x)
x
FUNCTION
P7.4 (I/O)
P7.4/CB8/A12
4
P7.5/CB9/A13
5
P7.6/CB10/A14/DAC0
6
(1)
(2)
(3)
7
P7DIR.x
P7SEL.x
CBPD.x
DAC12OPS
DAC12AMPx
I: 0; O: 1
0
0
N/A
N/A
X
X
1
N/A
N/A
A12(2) (3)
X
1
X
N/A
N/A
P7.5 (I/O)
I: 0; O: 1
0
0
N/A
N/A
Comparator_B input CB8
Comparator_B input CB9
X
X
1
N/A
N/A
A13(2) (3)
X
1
X
N/A
N/A
P7.6 (I/O)
I: 0; O: 1
0
0
X
0
Comparator_B input CB10
X
X
1
X
0
A14(2) (3)
X
1
X
X
0
DAC12_A output DAC0
P7.7/CB11/A15/DAC1
CONTROL BITS OR SIGNALS(1)
X
X
X
1
>1
P7.7 (I/O)
I: 0; O: 1
0
0
X
0
A15(2) (3)
X
1
X
X
0
DAC12_A output DAC1
X
X
X
1
>1
X = Don't care
Setting the P7SEL.x bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying
analog signals.
The ADC12_A channel Ax is connected internally to AVSS if not selected by the respective INCHx bits.
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
111
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
9.13.11 Port P8 (P8.0 to P8.7) Input/Output With Schmitt Trigger
Figure 9-12 shows the port diagram. Table 9-65 summarizes selection of the pin functions.
Pad Logic
S8...S15
LCDS8...LCDS15
P8REN.x
P8DIR.x
0
From module
1
P8OUT.x
0
Module X OUT
1
DVSS
0
DVCC
1
Direction
0: Input
1: Output
P8DS.x
0: Low drive
1: High drive
P8SEL.x
P8IN.x
EN
Module X IN
1
Bus
Keeper
P8.0/TB0CLK/S15
P8.1/UCB1STE/UCA1CLK/S14
P8.2/UCA1TXD/UCA1SIMO/S13
P8.3/UCA1RXD/UCA1SOMI/S12
P8.4/UCB1CLK/UCA1STE/S11
P8.5/UCB1SIMO//UCB1SDA/S10
P8.6/UCB1SOMI/UCB1SCL/S9
P8.7/S8
D
Figure 9-12. Port P8 (P8.0 to P8.7) Diagram
112
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
Table 9-65. Port P8 (P8.0 to P8.7) Pin Functions
CONTROL BITS OR SIGNALS(1)
PIN NAME (P9.x)
x
FUNCTION
P8.0 (I/O)
P8.0/TB0CLK/S15
0 Timer TB0.TB0CLK clock input
S15
P8.1 (I/O)
P8.1/UCB1STE/UCA1CLK/S14
1 UCB1STE/UCA1CLK
S14
P8.2 (I/O)
P8.2/UCA1TXD/UCA1SIMO/S13
2 UCA1TXD/UCA1SIMO
S13
P8.3 (I/O)
P8.3/UCA1RXD/UCA1SOMI/S12
3 UCA1RXD/UCA1SOMI
S12
P8.4 (I/O)
P8.4/UCB1CLK/UCA1STE/S11
4 UCB1CLK/UCA1STE
S11
P8.5 (I/O)
P8.5/UCB1SIMO/UCB1SDA/S10
5 UCB1SIMO/UCB1SDA
S10
P8.6 (I/O)
P8.6/UCB1SOMI/UCB1SCL/S9
6 UCB1SOMI/UCB1SCL
S9
P8.7/S8
(1)
7
P8.7 (I/O)
S8
P8DIR.x
P8SEL.x
LCDS8...
LCDS15
I: 0; O: 1
0
0
0
1
0
X
X
1
I: 0; O: 1
0
0
X
1
0
X
X
1
I: 0; O: 1
0
0
X
1
0
X
X
1
I: 0; O: 1
0
0
X
1
0
X
X
1
I: 0; O: 1
0
0
X
1
0
X
X
1
I: 0; O: 1
0
0
X
1
0
X
X
1
I: 0; O: 1
0
0
X
1
0
X
X
1
I: 0; O: 1
0
0
X
X
1
X = Don't care
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
113
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
9.13.12 Port P9 (P9.0 to P9.7) Input/Output With Schmitt Trigger
Figure 9-13 shows the port diagram. Table 9-66 summarizes selection of the pin functions.
Pad Logic
S0...S7
LCDS0...LCDS7
P9REN.x
P9DIR.x
0
From module
1
P9OUT.x
0
Module X OUT
1
DVSS
0
DVCC
1
Direction
0: Input
1: Output
P9DS.x
0: Low drive
1: High drive
P9SEL.x
P9IN.x
EN
Module X IN
1
Bus
Keeper
P9.0/S7
P9.1/UCB2STE/UCA2CLK/S6
P9.2/UCA2TXD/UCA2SIMO/S5
P9.3/UCA2RXD/UCA2SOMI/S4
P9.4/UCB2CLK/UCA2STE/S3
P9.5/UCB2SIMO//UCB2SDA/S2
P9.6/UCB2SOMI/UCB2SCL/S1
P9.7/S0
D
Figure 9-13. Port P9 (P9.0 to P9.7) Diagram
114
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
Table 9-66. Port P9 (P9.0 to P9.7) Pin Functions
CONTROL BITS OR SIGNALS(1)
PIN NAME (P9.x)
x
FUNCTION
P9.0 (I/O)
P9.0/S7
0
P9.1/UCB2STE/UCA2CLK/S6
1 UCB2STE/UCA2CLK
S7
P9.1 (I/O)
S6
P9.2 (I/O)
P9.2/UCA2TXD/UCA2SIMO/S5
2 UCA2TXD/UCA2SIMO
S5
P9.3 (I/O)
P9.3/UCA2RXD/UCA2SOMI/S4
3 UCA2RXD/UCA2SOMI
S4
P9.4 (I/O)
P9.4/UCB2CLK/UCA2STE/S3
4 UCB2CLK/UCA2STE
S3
P9.5 (I/O)
P9.5/UCB2SIMO/UCB2SDA/S2
5 UCB2SIMO/UCB2SDA
S2
P9.6 (I/O)
P9.6/UCB2SOMI/UCB2SCLK/S1
6 UCB2SOMI/UCB2SCLK
S1
P9.7/S0
(1)
7
P9.7 (I/O)
S0
P9SEL.x
LCDS0...
LCDS7
I: 0; O: 1
0
0
X
X
1
I: 0; O: 1
0
0
X
1
0
X
X
1
I: 0; O: 1
0
0
P9DIR.x
X
1
0
X
X
1
I: 0; O: 1
0
0
X
1
0
X
X
1
I: 0; O: 1
0
0
X
1
0
X
X
1
I: 0; O: 1
0
0
X
1
0
X
X
1
I: 0; O: 1
0
0
X
1
0
X
X
1
I: 0; O: 1
0
0
X
X
1
X = Don't care
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
115
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
9.13.13 Port PU (PU.0/DP, PU.1/DM, PUR) USB Ports (F665x, F565x)
Figure 9-14 shows the port diagram. Table 9-67 and Table 9-68 summarize selection of the pin functions.
PUSEL
PUOPE
0
USB output enable
1
PUOUT0
0
USB DP output
1
VUSB
VSSU
Pad Logic
PU.0/DP
PUIN0
USB DP input
PUIPE
PUIN1
USB DM input
PUOUT1
0
USB DM output
1
PU.1/DM
VUSB
VSSU
Pad Logic
PUREN
“1 ”
PUR
PUSEL
PURIN
Figure 9-14. Port PU (PU.0 and PU.1) Diagram (F665x, F565x)
116
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
Table 9-67. Port PU (PU.0, PU.1) Functions (F665x, F565x)
PUSEL
PUIPE
PUOPE
PUOUT1
PUOUT0
PU.1/DM
PU.0/DP
PORT U FUNCTION
0
0
1
0
0
Output low
Output low
Outputs enabled
0
0
1
0
1
Output low
Output high
Outputs enabled
0
0
1
1
0
Output high
Output low
Outputs enabled
0
0
1
1
1
Output high
Output high
Outputs enabled
0
1
0
X
X
Input enabled
Input enabled
Inputs enabled
0
0
0
X
X
Hi-Z
Hi-Z
Outputs and inputs disabled
1
X
X
X
X
DM
DP
Direction set by USB module
Table 9-68. Port PU (PUR) Input Functions (F665x,
F565x)
CONTROL BITS
FUNCTION
PUSEL
PUREN
0
0
Input disabled
Pullup disabled
0
1
Input disabled
Pullup enabled
1
0
Input enabled
Pullup disabled
1
1
Input enabled
Pullup enabled
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
117
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
9.13.14 Port PU (PU.0 and PU.1) Ports (F645x, F535x)
Figure 9-15 shows the port diagram. Table 9-69 summarizes selection of the pin functions.
LDOO
VSSU
Pad Logic
PUOPE
PU.0
PUOUT0
PUIN0
PUIPE
PUIN1
PU.1
PUOUT1
Figure 9-15. Port PU (PU.0 and PU.1) Diagram (F645x, F535x)
Table 9-69. Port PU (PU.0 and PU.1) Functions (F645x, F535x)
(1)
118
PUIPE(1)
PUOPE
PUOUT1
PUOUT0
PU.1
0
1
0
0
0
1
0
1
0
1
1
0
0
1
1
1
1
0
X
X
0
0
X
X
Hi-Z
PU.0
PORT U FUNCTION
Output low
Output low
Outputs enabled
Output low
Output high
Outputs enabled
Output high
Output low
Outputs enabled
Output high
Output high
Outputs enabled
Input enabled
Input enabled
Inputs enabled
Hi-Z
Outputs and inputs disabled
PU.1 and PU.0 inputs and outputs are supplied from LDOO. LDOO can be generated by the device using the integrated 3.3-V LDO
when enabled. LDOO can also be supplied externally when the 3.3-V LDO is not being used and is disabled.
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
9.13.15 Port PJ (PJ.0) JTAG Pin TDO, Input/Output With Schmitt Trigger or Output
Figure 9-16 shows the port diagram. Table 9-70 summarizes selection of the pin functions.
Pad Logic
PJREN.0
PJDIR.0
0
DVCC
1
PJOUT.0
0
From JTAG
1
DVSS
0
DVCC
1
1
PJ.0/TDO
PJDS.0
0: Low drive
1: High drive
From JTAG
PJIN.0
EN
D
Figure 9-16. Port PJ (PJ.0) Diagram
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
119
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
9.13.16 Port PJ (PJ.1 to PJ.3) JTAG Pins TMS, TCK, TDI/TCLK, Input/Output With Schmitt Trigger or
Output
Figure 9-17 shows the port diagram. Table 9-70 summarizes selection of the pin functions.
Pad Logic
PJREN.x
PJDIR.x
0
DVSS
1
PJOUT.x
0
From JTAG
1
DVSS
0
DVCC
1
1
PJDS.x
0: Low drive
1: High drive
From JTAG
PJ.1/TDI/TCLK
PJ.2/TMS
PJ.3/TCK
PJIN.x
EN
D
To JTAG
Figure 9-17. Port PJ (PJ.1 to PJ.3) Diagram
Table 9-70. Port PJ (PJ.0 to PJ.3) Pin Functions
PIN NAME (PJ.x)
x
CONTROL BITS
OR SIGNALS(1)
FUNCTION
PJDIR.x
PJ.0/TDO
PJ.1/TDI/TCLK
PJ.2/TMS
PJ.3/TCK
(1)
(2)
(3)
(4)
120
0
1
2
3
PJ.0
(I/O)(2)
I: 0; O: 1
TDO(3)
PJ.1
X
(I/O)(2)
I: 0; O: 1
TDI/TCLK(3) (4)
PJ.2
X
(I/O)(2)
I: 0; O: 1
TMS(3) (4)
PJ.3
X
(I/O)(2)
I: 0; O: 1
TCK(3) (4)
X
X = Don't care
Default condition
The pin direction is controlled by the JTAG module.
In JTAG mode, pullups are activated automatically on TMS, TCK, and TDI/TCLK. PJREN.x are do not care.
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
9.14 Device Descriptors
Table 9-71 lists the contents of the device descriptor tag-length-value (TLV) structure for each device type.
Table 9-71. Device Descriptor Table
Info Block
Die Record
ADC12
Calibration
REF
Calibration
(1)
VALUE
ADDRESS
SIZE
(bytes)
F6659
F6658
F6459
F6458
F5659
F5658
F5359
F5358
Info length
01A00h
1
06h
06h
06h
06h
06h
06h
06h
06h
CRC length
01A01h
1
06h
06h
06h
06h
06h
06h
06h
06h
CRC value
01A02h
2
Per unit
Per unit
Per unit
Per unit
Per unit
Per unit
Per unit
Per unit
Device ID
01A04h
2
812Bh
812Ch
812Dh
812Eh
8130h
8131h
8132h
8133h
Hardware revision
01A06h
1
10h
10h
10h
10h
10h
10h
10h
10h
Firmware revision
01A07h
1
10h
10h
10h
10h
10h
10h
10h
10h
Die record tag
01A08h
1
08h
08h
08h
08h
08h
08h
08h
08h
Die record length
01A09h
1
0Ah
0Ah
0Ah
0Ah
0Ah
0Ah
0Ah
0Ah
DESCRIPTION(1)
Lot/wafer ID
01A0Ah
4
Per unit
Per unit
Per unit
Per unit
Per unit
Per unit
Per unit
Per unit
Die X position
01A0Eh
2
Per unit
Per unit
Per unit
Per unit
Per unit
Per unit
Per unit
Per unit
Die Y position
01A10h
2
Per unit
Per unit
Per unit
Per unit
Per unit
Per unit
Per unit
Per unit
Test results
01A12h
2
Per unit
Per unit
Per unit
Per unit
Per unit
Per unit
Per unit
Per unit
ADC12 calibration tag
01A14h
1
11h
11h
11h
11h
11h
11h
11h
11h
ADC12 calibration length
01A15h
1
10h
10h
10h
10h
10h
10h
10h
10h
ADC gain factor
01A16h
2
Per unit
Per unit
Per unit
Per unit
Per unit
Per unit
Per unit
Per unit
ADC offset
01A18h
2
Per unit
Per unit
Per unit
Per unit
Per unit
Per unit
Per unit
Per unit
ADC 1.5-V reference
temperature sensor 30°C
01A1Ah
2
Per unit
Per unit
Per unit
Per unit
Per unit
Per unit
Per unit
Per unit
ADC 1.5-V reference
temperature sensor 85°C
01A1Ch
2
Per unit
Per unit
Per unit
Per unit
Per unit
Per unit
Per unit
Per unit
ADC 2.0-V reference
temperature sensor 30°C
01A1Eh
2
Per unit
Per unit
Per unit
Per unit
Per unit
Per unit
Per unit
Per unit
ADC 2.0-V reference
temperature sensor 85°C
01A20h
2
Per unit
Per unit
Per unit
Per unit
Per unit
Per unit
Per unit
Per unit
ADC 2.5-V reference
temperature sensor 30°C
01A22h
2
Per unit
Per unit
Per unit
Per unit
Per unit
Per unit
Per unit
Per unit
ADC 2.5-V reference
temperature sensor 85°C
01A24h
2
Per unit
Per unit
Per unit
Per unit
Per unit
Per unit
Per unit
Per unit
12h
REF calibration tag
01A26h
1
12h
12h
12h
12h
12h
12h
12h
REF calibration length
01A27h
1
06h
06h
06h
06h
06h
06h
06h
06h
REF 1.5-V reference factor
01A28h
2
Per unit
Per unit
Per unit
Per unit
Per unit
Per unit
Per unit
Per unit
REF 2.0-V reference factor
01A2Ah
2
Per unit
Per unit
Per unit
Per unit
Per unit
Per unit
Per unit
Per unit
REF 2.5-V reference factor
01A2Ch
2
Per unit
Per unit
Per unit
Per unit
Per unit
Per unit
Per unit
Per unit
N/A = Not applicable
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
121
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
10 Device and Documentation Support
10.1 Getting Started and Next Steps
For more information on the MSP430™ family of devices and the tools and libraries that are available to help with
your development, visit the MSP430 ultra-low-power sensing and measurement MCUs overview.
10.2 Device Nomenclature
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all MSP
MCU devices. Each MSP MCU commercial family member has one of two prefixes: MSP or XMS. These
prefixes represent evolutionary stages of product development from engineering prototypes (XMS) through fully
qualified production devices (MSP).
XMS – Experimental device that is not necessarily representative of the final device's electrical specifications
MSP – Fully qualified production device
XMS devices are shipped against the following disclaimer:
"Developmental product is intended for internal evaluation purposes."
MSP devices have been characterized fully, and the quality and reliability of the device have been demonstrated
fully. TI's standard warranty applies.
Predictions show that prototype devices (XMS) have a greater failure rate than the standard production devices.
TI recommends that these devices not be used in any production system because their expected end-use failure
rate still is undefined. Only qualified production devices are to be used.
TI device nomenclature also includes a suffix with the device family name. This suffix indicates the temperature
range, package type, and distribution format. Figure 10-1 provides a legend for reading the complete device
name.
122
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
MSP 430 F 5 438 A I PM T -EP
Processor Family
Optional: Additional Features
MCU Platform
Optional: Tape and Reel
Device Type
Packaging
Series
Feature Set
Processor Family
MCU Platform
Optional: Temperature Range
Optional: Revision
CC = Embedded RF Radio
MSP = Mixed-Signal Processor
XMS = Experimental Silicon
PMS = Prototype Device
430 = MSP430 low-power microcontroller platform
Device Type
Memory Type
C = ROM
F = Flash
FR = FRAM
G = Flash
L = No nonvolatile memory
Specialized Application
AFE = Analog front end
BQ = Contactless power
CG = ROM medical
FE = Flash energy meter
FG = Flash medical
FW = Flash electronic flow meter
Series
1 = Up to 8 MHz
2 = Up to 16 MHz
3 = Legacy
4 = Up to 16 MHz with LCD driver
5 = Up to 25 MHz
6 = Up to 25 MHz with LCD driver
0 = Low-voltage series
Feature Set
Various levels of integration within a series
Optional: Revision
Updated version of the base part number
Optional: Temperature Range S = 0°C to 50°C
C = 0°C to 70°C
I = –40°C to 85°C
T = –40°C to 105°C
Packaging
http://www.ti.com/packaging
Optional: Tape and Reel
T = Small reel
R = Large reel
No markings = Tube or tray
Optional: Additional Features -EP = Enhanced product (–40°C to 105°C)
-HT = Extreme temperature parts (–55°C to 150°C)
-Q1 = Automotive Q100 qualified
Figure 10-1. Device Nomenclature
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
123
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
10.3 Tools and Software
All MSP microcontrollers are supported by a wide variety of software and hardware development tools. Tools are
available from TI and various third parties. See them all at MSP430 ultra-low-power MCUs – Design &
development.
Table 10-1 lists the debug features of the MSP430F665x, MSP430F645x, MSP430F565x, and MSP430F535x
MCUs. See the Code Composer Studio IDE for MSP430 MCUs User's Guide for details on the available
features.
Table 10-1. Hardware Debug Features
MSP430
ARCHITECTURE
4-WIRE
JTAG
2-WIRE
JTAG
BREAKPOINTS
(N)
RANGE
BREAKPOINTS
CLOCK
CONTROL
STATE
SEQUENCER
TRACE
BUFFER
LPMx.5
DEBUGGING
SUPPORT
MSP430Xv2
Yes
Yes
8
Yes
Yes
Yes
Yes
Yes
Design Kits and Evaluation Modules
MSP-TS430PZ100USB - 100-pin Target Development Board for MSP430F5x and MSP430F6x MCUs
The MSP-TS430PZ100USB is a stand-alone 100-pin ZIF socket target board used to program and debug the
MSP430 MCU in-system through the JTAG interface or the Spy Bi-Wire (2-wire JTAG) protocol.
100-pin Target Development Board and MSP-FET Programmer Bundle for MSP430F5x and MSP430F6x MCUs
The MSP-TS430PZ100USB is a stand-alone 100-pin ZIF socket target board used to program and debug the
MSP430 MCU in-system through the JTAG interface or the Spy Bi-Wire (2-wire JTAG) protocol. The MSP-FET is
a powerful flash emulation tool to quickly begin application development on the MSP430 MCU. It includes USB
debugging interface used to program and debug the MSP430 in-system through the JTAG interface or the pin
saving Spy Bi-Wire (2-wire JTAG) protocol.
MSP430F5529 USB LaunchPad Evaluation Kit
Develop low power, PC-connected applications with integrated Full-speed USB 2.0 (HID/MSC/CDC). The MSPEXP430F5529LP LaunchPad is an inexpensive, simple microcontroller development kit for the MSP430F5529
USB microcontroller. It’s an easy way to start developing on the MSP430 MCU, with an on-board emulation for
programming and debugging, as well as buttons and LEDs for simple user interface.
Software
MSP430Ware™ Software
MSP430Ware software is a collection of code examples, data sheets, and other design resources for all
MSP430 devices delivered in a convenient package. In addition to providing a complete collection of existing
MSP430 MCU design resources, MSP430Ware software also includes a high-level API called MSP Driver
Library. This library makes it easy to program MSP430 hardware. MSP430Ware software is available as a
component of CCS or as a stand-alone package.
MSP430F665x, MSP430F565x Code Examples
C code examples that configure each of the integrated peripherals for various application needs.
MSP Driver Library
Driver Library's abstracted API keeps you above the bits and bytes of the MSP430 hardware by providing easyto-use function calls. Thorough documentation is delivered through a helpful API Guide, which includes details
on each function call and the recognized parameters. Developers can use Driver Library functions to write
complete projects with minimal overhead.
124
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
MSP EnergyTrace™ Technology
EnergyTrace technology for MSP430 microcontrollers is an energy-based code analysis tool that measures and
displays the application's energy profile and helps to optimize it for ultra-low-power consumption.
ULP (Ultra-Low Power) Advisor
ULP Advisor™ software is a tool for guiding developers to write more efficient code to fully utilize the unique
ultra-low power features of MSP and MSP432 microcontrollers. Aimed at both experienced and new
microcontroller developers, ULP Advisor checks your code against a thorough ULP checklist to squeeze every
last nano amp out of your application. At build time, ULP Advisor will provide notifications and remarks to
highlight areas of your code that can be further optimized for lower power.
IEC 60730 Software Package
The IEC 60730 MSP430 software package was developed to be useful in assisting customers in complying with
IEC 60730-1:2010 (Automatic Electrical Controls for Household and Similar Use – Part 1: General
Requirements) for up to Class B products, which includes home appliances, arc detectors, power converters,
power tools, e-bikes, and many others. The IEC 60730 MSP430 software package can be embedded in
customer applications running on MSP430s to help simplify the customer’s certification efforts of functional
safety-compliant consumer devices to IEC 60730-1:2010 Class B.
Fixed Point Math Library for MSP
The MSP IQmath and Qmath Libraries are a collection of highly optimized and high-precision mathematical
functions for C programmers to seamlessly port a floating-point algorithm into fixed-point code on MSP430 and
MSP432 devices. These routines are typically used in computationally intensive real-time applications where
optimal execution speed, high accuracy, and ultra-low energy are critical. By using the IQmath and Qmath
libraries, it is possible to achieve execution speeds considerably faster and energy consumption considerably
lower than equivalent code written using floating-point math.
Floating Point Math Library for MSP430
Continuing to innovate in the low power and low cost microcontroller space, TI brings you MSPMATHLIB.
Leveraging the intelligent peripherals of our devices, this floating point math library of scalar functions brings you
up to 26x better performance. Mathlib is easy to integrate into your designs. This library is free and is integrated
in both Code Composer Studio and IAR IDEs. Read the user’s guide for an in depth look at the math library and
relevant benchmarks.
Development Tools
Code Composer Studio™ Integrated Development Environment for MSP Microcontrollers
Code Composer Studio is an integrated development environment (IDE) that supports all MSP microcontroller
devices. Code Composer Studio comprises a suite of embedded software utilities used to develop and debug
embedded applications. It includes an optimizing C/C++ compiler, source code editor, project build environment,
debugger, profiler, and many other features. The intuitive IDE provides a single user interface taking you through
each step of the application development flow. Familiar utilities and interfaces allow users to get started faster
than ever before. Code Composer Studio combines the advantages of the Eclipse software framework with
advanced embedded debug capabilities from TI resulting in a compelling feature-rich development environment
for embedded developers. When using CCS with an MSP MCU, a unique and powerful set of plugins and
embedded software utilities are made available to fully leverage the MSP microcontroller.
Command-Line Programmer
MSP Flasher is an open-source shell-based interface for programming MSP microcontrollers through a FET
programmer or eZ430 using JTAG or Spy-Bi-Wire (SBW) communication. MSP Flasher can download binary
files (.txt or .hex) files directly to the MSP microcontroller without an IDE.
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
125
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
MSP MCU Programmer and Debugger
The MSP-FET is a powerful emulation development tool – often called a debug probe – which allows users to
quickly begin application development on MSP low-power microcontrollers (MCU). Creating MCU software
usually requires downloading the resulting binary program to the MSP device for validation and debugging. The
MSP-FET provides a debug communication pathway between a host computer and the target MSP.
Furthermore, the MSP-FET also provides a Backchannel UART connection between the computer's USB
interface and the MSP UART. This affords the MSP programmer a convenient method for communicating serially
between the MSP and a terminal running on the computer. It also supports loading programs (often called
firmware) to the MSP target using the BSL (bootloader) through the UART and I2C communication protocols.
MSP-GANG Production Programmer
The MSP Gang Programmer is an MSP430 or MSP432 device programmer that can program up to eight
identical MSP430 or MSP432 Flash or FRAM devices at the same time. The MSP Gang Programmer connects
to a host PC using a standard RS-232 or USB connection and provides flexible programming options that allow
the user to fully customize the process. The MSP Gang Programmer is provided with an expansion board, called
the Gang Splitter, that implements the interconnections between the MSP Gang Programmer and multiple target
devices. Eight cables are provided that connect the expansion board to eight target devices (through JTAG or
Spy-Bi-Wire connectors). The programming can be done with a PC or as a stand-alone device. A PC-side
graphical user interface is also available and is DLL-based.
10.4 Documentation Support
The following documents describe the MSP430F665x, MSP430F645x, MSP430F565x, and MSP430F535x
MCUs. Copies of these documents are available on the Internet at www.ti.com.
Receiving Notification of Document Updates
To receive notification of documentation updates—including silicon errata—go to the product folder for your
device on ti.com (for links to the product folders, see Section 10.5). In the upper right corner, click the "Alert me"
button. This registers you to receive a weekly digest of product information that has changed (if any). For change
details, check the revision history of any revised document.
Errata
MSP430F6659 Device Erratasheet
Describes the known exceptions to the functional specifications for all silicon revisions of this device.
MSP430F6658 Device Erratasheet
Describes the known exceptions to the functional specifications for all silicon revisions of this device.
MSP430F6459 Device Erratasheet
Describes the known exceptions to the functional specifications for all silicon revisions of this device.
MSP430F6458 Device Erratasheet
Describes the known exceptions to the functional specifications for all silicon revisions of this device.
MSP430F5659 Device Erratasheet
Describes the known exceptions to the functional specifications for all silicon revisions of this device.
MSP430F5658 Device Erratasheet
Describes the known exceptions to the functional specifications for all silicon revisions of this device.
MSP430F5359 Device Erratasheet
Describes the known exceptions to the functional specifications for all silicon revisions of this device.
MSP430F5358 Device Erratasheet
Describes the known exceptions to the functional specifications for all silicon revisions of this device.
126
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
User's Guides
MSP430F5xx and MSP430F6xx Family User's Guide
Detailed information on the modules and peripherals available in this device family.
MSP430 Flash Devices Bootloader (BSL) User's Guide
The MSP430 bootloader (BSL) lets users communicate with embedded memory in the MSP430 microcontroller
during the prototyping phase, final production, and in service. Both the programmable memory (flash memory)
and the data memory (RAM) can be modified as required. Do not confuse the bootloader with the bootstrap
loader programs found in some digital signal processors (DSPs) that automatically load program code (and data)
from external memory to the internal memory of the DSP.
MSP430 Programming With the JTAG Interface
This document describes the functions that are required to erase, program, and verify the memory module of the
MSP430 flash-based and FRAM-based microcontroller families using the JTAG communication port. In addition,
it describes how to program the JTAG access security fuse that is available on all MSP430 devices. This
document describes device access using both the standard 4-wire JTAG interface and the 2-wire JTAG
interface, which is also referred to as Spy-Bi-Wire (SBW).
MSP430 Hardware Tools User's Guide
This manual describes the hardware of the TI MSP-FET430 Flash Emulation Tool (FET). The FET is the
program development tool for the MSP430 ultra-low-power microcontroller. Both available interface types, the
parallel port interface and the USB interface, are described.
Application Reports
MSP430 32-kHz Crystal Oscillators
Selection of the right crystal, correct load circuit, and proper board layout are important for a stable crystal
oscillator. This application report summarizes crystal oscillator function and explains the parameters to select the
correct crystal for ultra-low-power operation. In addition, hints and examples for correct board layout are given.
The document also contains detailed information on the possible oscillator tests to ensure stable oscillator
operation in mass production.
MSP430 System-Level ESD Considerations
System-level ESD has become increasingly demanding as silicon technology scales to lower voltages and the
need for designing cost-effective and ultra-low-power components. This application report addresses ESD topics
to help board designers and OEMs understand and design robust system-level designs. A few real-world
system-level ESD protection design examples and their results are discussed.
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
127
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
10.5 Related Links
Table 10-2 lists quick access links. Categories include technical documents, support and community resources,
tools and software, and quick access to sample or buy.
Table 10-2. Related Links
PARTS
PRODUCT FOLDER
ORDER NOW
TECHNICAL
DOCUMENTS
TOOLS &
SOFTWARE
SUPPORT &
COMMUNITY
MSP430F6659
Click here
Click here
Click here
Click here
Click here
MSP430F6658
Click here
Click here
Click here
Click here
Click here
MSP430F6459
Click here
Click here
Click here
Click here
Click here
MSP430F6458
Click here
Click here
Click here
Click here
Click here
MSP430F5659
Click here
Click here
Click here
Click here
Click here
MSP430F5658
Click here
Click here
Click here
Click here
Click here
MSP430F5359
Click here
Click here
Click here
Click here
Click here
MSP430F5358
Click here
Click here
Click here
Click here
Click here
10.6 Community Resources
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of
Use.
TI E2E™ Community
TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com,
you can ask questions, share knowledge, explore ideas, and help solve problems with fellow engineers.
TI Embedded Processors Wiki
Texas Instruments Embedded Processors Wiki. Established to help developers get started with embedded
processors from Texas Instruments and to foster innovation and growth of general knowledge about the
hardware and software surrounding these devices.
10.7 Trademarks
MicroStar Junior™, MSP430™, MSP430Ware™, EnergyTrace™, ULP Advisor™, Code Composer Studio™, and
E2E™ are trademarks of Texas Instruments.
All other trademarks are the property of their respective owners.
10.8 Electrostatic Discharge Caution
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may
be more susceptible to damage because very small parametric changes could cause the device not to meet its published
specifications.
10.9 Export Control Notice
Recipient agrees to not knowingly export or re-export, directly or indirectly, any product or technical data (as
defined by the U.S., EU, and other Export Administration Regulations) including software, or any controlled
product restricted by other applicable national regulations, received from disclosing party under nondisclosure
obligations (if any), or any direct product of such technology, to any destination to which such export or re-export
is restricted or prohibited by U.S. or other applicable laws, without obtaining prior authorization from U.S.
Department of Commerce and other competent Government authorities to the extent required by those laws.
10.10 Glossary
TI Glossary
128
This glossary lists and explains terms, acronyms, and definitions.
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
MSP430F6659, MSP430F6658, MSP430F6459, MSP430F6458
MSP430F5659, MSP430F5658, MSP430F5359, MSP430F5358
www.ti.com
SLAS700E – OCTOBER 2012 – REVISED SEPTEMBER 2020
11 Mechanical, Packaging, and Orderable Information
The following pages include mechanical, packaging, and orderable information. This information is the most
current data available for the designated devices. This data is subject to change without notice and revision of
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: MSP430F6659 MSP430F6658 MSP430F6459 MSP430F6458 MSP430F5659
MSP430F5658 MSP430F5359 MSP430F5358
129
PACKAGE OPTION ADDENDUM
www.ti.com
23-Jun-2023
PACKAGING INFORMATION
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
(2)
Lead finish/
Ball material
MSL Peak Temp
Op Temp (°C)
Device Marking
(3)
Samples
(4/5)
(6)
MSP430F5358IPZ
ACTIVE
LQFP
PZ
100
90
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 85
F5358
Samples
MSP430F5358IPZR
ACTIVE
LQFP
PZ
100
1000
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 85
F5358
Samples
MSP430F5358IZCAR
ACTIVE
NFBGA
ZCA
113
2500
RoHS & Green
SNAGCU
Level-3-260C-168 HR
-40 to 85
F5358
Samples
MSP430F5358IZCAT
ACTIVE
NFBGA
ZCA
113
250
RoHS & Green
SNAGCU
Level-3-260C-168 HR
-40 to 85
F5358
Samples
MSP430F5359IPZ
ACTIVE
LQFP
PZ
100
90
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 85
F5359
Samples
MSP430F5359IPZR
ACTIVE
LQFP
PZ
100
1000
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 85
F5359
Samples
MSP430F5359IZCAR
ACTIVE
NFBGA
ZCA
113
2500
RoHS & Green
SNAGCU
Level-3-260C-168 HR
-40 to 85
F5359
Samples
MSP430F5359IZCAT
ACTIVE
NFBGA
ZCA
113
250
RoHS & Green
SNAGCU
Level-3-260C-168 HR
-40 to 85
F5359
Samples
MSP430F5658IPZ
ACTIVE
LQFP
PZ
100
90
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 85
F5658
Samples
MSP430F5658IPZR
ACTIVE
LQFP
PZ
100
1000
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 85
F5658
Samples
MSP430F5659IPZ
ACTIVE
LQFP
PZ
100
90
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 85
F5659
Samples
MSP430F5659IPZR
ACTIVE
LQFP
PZ
100
1000
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 85
F5659
Samples
MSP430F5659IZCAR
ACTIVE
NFBGA
ZCA
113
2500
RoHS & Green
SNAGCU
Level-3-260C-168 HR
-40 to 85
F5659
Samples
MSP430F5659IZCAT
ACTIVE
NFBGA
ZCA
113
250
RoHS & Green
SNAGCU
Level-3-260C-168 HR
-40 to 85
F5659
Samples
MSP430F6458IPZ
ACTIVE
LQFP
PZ
100
90
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 85
F6458
Samples
MSP430F6459IPZ
ACTIVE
LQFP
PZ
100
90
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 85
F6459
Samples
MSP430F6459IPZR
ACTIVE
LQFP
PZ
100
1000
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 85
F6459
Samples
MSP430F6658IPZ
ACTIVE
LQFP
PZ
100
90
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 85
F6658
Samples
MSP430F6659IPZ
ACTIVE
LQFP
PZ
100
90
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 85
F6659
Samples
MSP430F6659IPZR
ACTIVE
LQFP
PZ
100
1000
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 85
F6659
Samples
Addendum-Page 1
PACKAGE OPTION ADDENDUM
www.ti.com
Orderable Device
23-Jun-2023
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
(2)
Lead finish/
Ball material
MSL Peak Temp
Op Temp (°C)
Device Marking
(3)
Samples
(4/5)
(6)
MSP430F6659IZCAR
ACTIVE
NFBGA
ZCA
113
2500
RoHS & Green
SNAGCU
Level-3-260C-168 HR
-40 to 85
F6659
Samples
MSP430F6659IZCAT
ACTIVE
NFBGA
ZCA
113
250
RoHS & Green
SNAGCU
Level-3-260C-168 HR
-40 to 85
F6659
Samples
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may
reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of