0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MSP430F6736AIPZ

MSP430F6736AIPZ

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    LQFP100

  • 描述:

    ICMCU16BIT128KBFLASH100LQFP

  • 数据手册
  • 价格&库存
MSP430F6736AIPZ 数据手册
Product Folder Order Now Technical Documents Tools & Software Support & Community MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 MSP430F673xA, MSP430F672xA Mixed-Signal Microcontrollers 1 Device Overview 1.1 Features 1 • Low Supply-Voltage Range: 3.6 V Down to 1.8 V • Ultra-Low Power Consumption – Active Mode (AM): All System Clocks Active 265 µA/MHz at 8 MHz, 3.0 V, Flash Program Execution (Typical) 140 µA/MHz at 8 MHz, 3.0 V, RAM Program Execution (Typical) – Standby Mode (LPM3): Real-Time Clock (RTC) With Crystal, Watchdog, and Supply Supervisor Operational, Full RAM Retention, Fast Wake up: 1.7 µA at 2.2 V, 2.5 µA at 3.0 V (Typical) – Off Mode (LPM4): Full RAM Retention, Supply Supervisor Operational, Fast Wake up: 1.6 µA at 3.0 V (Typical) – Shutdown RTC Mode (LPM3.5): Shutdown Mode, Active RTC With Crystal: 1.24 µA at 3.0 V (Typical) – Shutdown Mode (LPM4.5): 0.78 µA at 3.0 V (Typical) • Wake up From Standby Mode in 3 µs (Typical) • 16-Bit RISC Architecture, Extended Memory, up to 25-MHz System Clock • Flexible Power-Management System – Fully Integrated LDO With Programmable Regulated Core Supply Voltage – Supply Voltage Supervision, Monitoring, and Brownout – System Operation From up to Two Auxiliary Power Supplies • Unified Clock System – FLL Control Loop for Frequency Stabilization – Low-Power Low-Frequency Internal Clock Source (VLO) – Low-Frequency Trimmed Internal Reference Source (REFO) – 32-kHz Crystals (XT1) • One 16-Bit Timer With Three Capture/Compare Registers • Three 16-Bit Timers With Two Capture/Compare Registers Each • Enhanced Universal Serial Communication Interfaces (eUSCIs) – eUSCI_A0, eUSCI_A1, and eUSCI_A2 – Enhanced UART Supports Automatic BaudRate Detection – IrDA Encoder and Decoder – Synchronous SPI – eUSCI_B0 – I2C With Multiple Slave Addressing – Synchronous SPI • Password-Protected RTC With Crystal Offset Calibration and Temperature Compensation • Separate Voltage Supply for Backup Subsystem – 32-kHz Low-Frequency Oscillator (XT1) – Real-Time Clock – Backup Memory (4 × 16 Bits) • Three 24-Bit Sigma-Delta Analog-to-Digital Converters (ADCs) With Differential PGA Inputs • Integrated LCD Driver With Contrast Control for up to 320 Segments in 8-Mux Mode • Hardware Multiplier Supports 32-Bit Operations • 10-Bit 200-ksps ADC – Internal Reference – Sample-and-Hold, Autoscan Feature – Up to Six External Channels and Two Internal Channels, Including Temperature Sensor • Three-Channel Internal DMA • Serial Onboard Programming, No External Programming Voltage Needed • Device Comparison Summarizes the Available Family Members • Available in 100-Pin and 80-Pin LQFP Packages • Single-Phase Electronic Watt-Hour Meter Development Tool (Also See Tools and Software) – EVM430-F6736 - MSP430F6736 EVM for Metering – Energy Measurement Design Center for MSP430™ MCUs 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA. MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 1.2 • • www.ti.com Applications Single-Phase Electronic Watt-Hour Meters Energy Monitoring 1.3 • Utility Metering Description The TI MSP family of ultra-low-power microcontrollers consists of several devices featuring different sets of peripherals targeted for various applications. The architecture, combined with extensive low-power modes, is optimized to achieve extended battery life in portable measurement applications. The device features a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that contribute to maximum code efficiency. The DCO allows the device to wake up from low-power modes to active mode in 3 µs (typical). The MSP430F673xA and MSP430F672xA devices are microcontrollers with high-performance 24-bit sigma-delta ADCs (three ADCs in MSP430F673xA and two ADCs in MSP430F672xA), a 10-bit ADC, four eUSCIs (three eUSCI_A modules and one eUSCI_B module), four 16-bit timers, a hardware multiplier, a DMA module, an RTC module with alarm capabilities, an LCD driver with integrated contrast control, an auxiliary supply system, and up to 72 I/O pins in the 100‑pin devices and 52 I/O pins in the 80‑pin devices. For complete module descriptions, see the MSP430F5xx and MSP430F6xx Family User's Guide. Device Information (1) PACKAGE BODY SIZE (2) MSP430F6736AIPZ LQFP (100) 14 mm × 14 mm MSP430F6736AIPN LQFP (80) 12 mm × 12 mm PART NUMBER (1) (2) 2 For the most current part, package, and ordering information, see the Package Option Addendum in Section 9, or see the TI website at www.ti.com. The sizes shown here are approximations. For the package dimensions with tolerances, see the Mechanical Data in Section 9. Device Overview Copyright © 2015–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A www.ti.com 1.4 SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 Functional Block Diagrams Figure 1-1 shows the functional block diagram for all device variants in the PZ package. XIN DVCC DVSS XOUT AVCC AVSS AUX1 AUX2 AUX3 PA P1.x P2.x RST/NMI PB P3.x P4.x PC P5.x P6.x P7.x PD P8.x PE P9.x (32 kHz) ACLK Unified Clock System SMCLK SYS 128KB 96KB 64KB 32KB 16KB 8KB 4KB 2KB 1KB Flash RAM MCLK Watchdog MPY32 CRC16 Port Mapping Controller I/O Ports P1, P2 2×8 I/Os Interrupt, Wakeup I/O Ports P3, P4 2×8 I/Os I/O Ports P5, P6 2×8 I/Os I/O Ports P7, P8 2×8 I/Os I/O Ports P9 1×4 I/O PA 1×16 I/Os PB 1×16 I/Os PC 1×16 I/Os PD 1×16 I/Os PE 1×4 I/O CPUXV2 and Working Registers (25 MHz) EEM (S: 3+1) PMM Auxiliary Supplies JTAG, SBW Interface LDO SVM, SVS BOR Port PJ SD24_B 3 Channel 2 Channel ADC10_A LCD_C 10 Bit 200 ksps 8-mux Up to 320 Segments REF TA0 RTC_C Reference 1.5 V, 2.0 V, 2.5 V Timer_A 3 CC Registers PJ.x TA1 TA2 TA3 eUSCI_A0 eUSCI_A1 eUSCI_A2 Timer_A 2 CC Registers (UART, IrDA,SPI) eUSCI_B0 2 (SPI, I C) DMA 3 Channel Copyright © 2016, Texas Instruments Incorporated Figure 1-1. Functional Block Diagram - MSP430F673xAIPZ and MSP430F672xAIPZ Figure 1-2 shows the functional block diagram for all device variants in the PN package. XIN XOUT DVCC DVSS AVCC AVSS AUX1 AUX2 AUX3 PA P1.x P2.x RST/NMI PB P3.x P4.x PC P5.x P6.x (32 kHz) ACLK Unified Clock System SMCLK MCLK 128KB 96KB 64KB 32KB 16KB 8KB 4KB 2KB 1KB Flash RAM SYS DMA Watchdog 3 Channel Port Mapping Controller CRC16 MPY32 I/O Ports P1, P2 2×8 I/Os Interrupt, Wakeup I/O Ports P3, P4 2×8 I/Os I/O Ports P5, P6 2×8 I/Os PA 1×16 I/Os PB 1×16 I/Os PC 1×16 I/Os TA0 TA1 TA2 TA3 eUSCI_A0 eUSCI_A1 eUSCI_A2 Timer_A 3 CC Registers Timer_A 2 CC Registers (UART, IrDA, SPI) CPUXV2 and Working Registers (25 MHz) EEM (S: 3+1) JTAG, SBW Interface Port PJ PMM Auxiliary Supplies LDO SVM, SVS BOR SD24_B ADC10_A 3 Channel 2 Channel 10 Bit 200 ksps LCD_C 8 mux Up to 320 Segments REF Reference 1.5 V, 2.0 V, 2.5 V RTC_C eUSCI_B0 (SPI, I2C) PJ.x Copyright © 2016, Texas Instruments Incorporated Figure 1-2. Functional Block Diagram - MSP430F673xAIPN and MSP430F672xAIPN Device Overview Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A Copyright © 2015–2018, Texas Instruments Incorporated 3 MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 www.ti.com Table of Contents 1 2 3 Device Overview ......................................... 1 6.2 CPU 1.1 Features .............................................. 1 6.3 Instruction Set ....................................... 76 1.2 Applications ........................................... 2 6.4 Operating Modes .................................... 77 1.3 Description ............................................ 2 6.5 Interrupt Vector Addresses.......................... 78 1.4 Functional Block Diagrams ........................... 3 6.6 Bootloader (BSL) .................................... 79 Revision History ......................................... 5 Device Comparison ..................................... 6 6.7 JTAG Operation ..................................... 79 6.8 Flash Memory ....................................... 80 Related Products ..................................... 7 6.9 RAM ................................................. 80 6.10 Backup RAM ........................................ 80 3.1 4 5 Terminal Configuration and Functions .............. 8 4.1 Pin Diagrams ......................................... 8 4.2 Pin Attributes ........................................ 12 4.3 Signal Descriptions .................................. 22 4.4 Pin Multiplexing 4.5 Buffer Type .......................................... 33 4.6 Connection of Unused Pins ......................... 33 Absolute Maximum Ratings 34 5.2 ESD Ratings 34 5.3 5.4 34 Active Mode Supply Current Into VCC Excluding External Current ..................................... 36 Low-Power Mode Supply Currents (Into VCC) Excluding External Current.......................... 37 Low-Power Mode With LCD Supply Currents (Into VCC) Excluding External Current .................... 38 5.6 5.7 Thermal Resistance Characteristics ................ 39 5.8 Timing and Switching Characteristics ............... 40 Detailed Description ................................... 75 6.1 4 ........................ ........................................ Recommended Operating Conditions ............... 5.1 Overview ............................................ Table of Contents 75 7 8 9 75 .......................................... 81 6.12 Input/Output Diagrams .............................. 91 6.13 Device Descriptors (TLV) .......................... 123 6.14 Memory ............................................ 125 6.15 Identification........................................ 140 Applications, Implementation, and Layout ...... 141 Device and Documentation Support .............. 142 8.1 Getting Started and Next Steps ................... 142 8.2 Device Nomenclature .............................. 142 8.3 Tools and Software ................................ 144 8.4 Documentation Support ............................ 146 8.5 Related Links ...................................... 148 8.6 Community Resources............................. 148 8.7 Trademarks ........................................ 148 8.8 Electrostatic Discharge Caution ................... 149 8.9 Export Control Notice .............................. 149 8.10 Glossary............................................ 149 6.11 33 Specifications ........................................... 34 5.5 6 ..................................... ................................................. Peripherals Mechanical, Packaging, and Orderable Information ............................................. 149 Copyright © 2015–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A www.ti.com SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 2 Revision History Changes from February 25, 2015 to October 3, 2018 • • • • • • • • • • • • • • • • • • Page Added links to development tool and design center in , Features ............................................................. 1 Added Section 3.1, Related Products ............................................................................................. 7 Added Section 4.5, Buffer Type ................................................................................................... 33 Added typical conditions statements at the beginning of Section 5, Specifications ........................................ 34 Added SD24_B input pins and AUXVCCx pins to exception list on "Voltage applied to pins" parameter, and added SD24_B input pin limits in "Diode current at pins" parameter in Section 5.1, Absolute Maximum Ratings ..... 34 Added Section 5.7, Thermal Resistance Characteristics ...................................................................... 39 Corrected nonvolatile memory type (changed "FRAM" to "flash") in Section 5.8.1, Power Supply Sequencing ....... 40 Updated notes (1) and (2) and added note (3) in Table 5-1, Wake-up Times From Low-Power Modes and Reset .. 40 Changed the MIN value of the V(DVCC_BOR_hys) parameter from 60 mV to 50 mV in Table 5-12, PMM, Brownout Reset (BOR) ......................................................................................................................... 50 Replaced fFrame parameter with fLCD, fFRAME,4mux, and fFRAME,8mux parameters in Table 5-33, LCD_C Operating Conditions ............................................................................................................................ 62 Removed ADC10DIV from the formula for the TYP value in the second row for tCONVERT in Table 5-44, 10-Bit ADC, Timing Parameters, because fADC10CLK is after division ................................................................. 71 Updated Test Conditions for all parameters in Table 5-45, 10-Bit ADC, Linearity Parameters: changed from "(VeREF+ – VeREF–)min ≤ (VeREF+ – VeREF–)" to "1.4 V ≤ (VeREF+ – VeREF–)" in all cases ....................................... 72 Added "CVeREF+ = 20 pF" to EI Test Conditions.................................................................................. 72 Changed all instances of "bootloader" to "bootloader" ......................................................................... 79 Corrected spelling of NMIIFG in Table 6-9, System Module Interrupt Vector Registers ................................... 85 Corrected port number in title of Table 6-21, Port P2 (P2.0 and P2.1) Pin Functions (MSP430F67xxAIPZ Only) .... 96 Replaced former section Development Tools Support with Section 8.3, Tools and Software .......................... 144 Changed the format in and added content to Section 8.4, Documentation Support ...................................... 146 Revision History Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A Copyright © 2015–2018, Texas Instruments Incorporated 5 MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 www.ti.com 3 Device Comparison Table 3-1 summarizes the available family members. Table 3-1. Device Comparison (1) (2) DEVICE FLASH (KB) SRAM (KB) SD24_B CONVERTERS ADC10_A CHANNELS Timer_A (3) eUSCI_A: UART, IrDA, SPI eUSCI_B: SPI, I2C I/Os PACKAGE MSP430F6736AIPZ 128 8 3 6 ext, 2 int 3, 2, 2, 2 3 1 72 100 PZ MSP430F6735AIPZ 128 4 3 6 ext, 2 int 3, 2, 2, 2 3 1 72 100 PZ MSP430F6734AIPZ 96 4 3 6 ext, 2 int 3, 2, 2, 2 3 1 72 100 PZ MSP430F6733AIPZ 64 4 3 6 ext, 2 int 3, 2, 2, 2 3 1 72 100 PZ MSP430F6731AIPZ 32 2 3 6 ext, 2 int 3, 2, 2, 2 3 1 72 100 PZ MSP430F6730AIPZ 16 1 3 6 ext, 2 int 3, 2, 2, 2 3 1 72 100 PZ MSP430F6726AIPZ 128 8 2 6 ext, 2 int 3, 2, 2, 2 3 1 72 100 PZ MSP430F6725AIPZ 128 4 2 6 ext, 2 int 3, 2, 2, 2 3 1 72 100 PZ MSP430F6724AIPZ 96 4 2 6 ext, 2 int 3, 2, 2, 2 3 1 72 100 PZ MSP430F6723AIPZ 64 4 2 6 ext, 2 int 3, 2, 2, 2 3 1 72 100 PZ MSP430F6721AIPZ 32 2 2 6 ext, 2 int 3, 2, 2, 2 3 1 72 100 PZ MSP430F6720AIPZ 16 1 2 6 ext, 2 int 3, 2, 2, 2 3 1 72 100 PZ MSP430F6736AIPN 128 8 3 3 ext, 2 int 3, 2, 2, 2 3 1 52 80 PN MSP430F6735AIPN 128 4 3 3 ext, 2 int 3, 2, 2, 2 3 1 52 80 PN MSP430F6734AIPN 96 4 3 3 ext, 2 int 3, 2, 2, 2 3 1 52 80 PN MSP430F6733AIPN 64 4 3 3 ext, 2 int 3, 2, 2, 2 3 1 52 80 PN MSP430F6731AIPN 32 2 3 3 ext, 2 int 3, 2, 2, 2 3 1 52 80 PN MSP430F6730AIPN 16 1 3 3 ext, 2 int 3, 2, 2, 2 3 1 52 80 PN MSP430F6726AIPN 128 8 2 3 ext, 2 int 3, 2, 2, 2 3 1 52 80 PN MSP430F6725AIPN 128 4 2 3 ext, 2 int 3, 2, 2, 2 3 1 52 80 PN MSP430F6724AIPN 96 4 2 3 ext, 2 int 3, 2, 2, 2 3 1 52 80 PN MSP430F6723AIPN 64 4 2 3 ext, 2 int 3, 2, 2, 2 3 1 52 80 PN MSP430F6721AIPN 32 2 2 3 ext, 2 int 3, 2, 2, 2 3 1 52 80 PN MSP430F6720AIPN 16 1 2 3 ext, 2 int 3, 2, 2, 2 3 1 52 80 PN (1) (2) (3) 6 For the most current package and ordering information, see the Package Option Addendum in Section 9, or see the TI website at www.ti.com. Package drawings, thermal data, and symbolization are available at www.ti.com/packaging. Each number in the sequence represents an instantiation of Timer_A with its associated number of capture compare registers and PWM output generators available. For example, a number sequence of 3, 5 would represent two instantiations of Timer_A, the first instantiation having 3 and the second instantiation having 5 capture compare registers and PWM output generators, respectively. Device Comparison Copyright © 2015–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A www.ti.com 3.1 SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 Related Products For information about other devices in this family of products or related products, see the following links. Products for TI Microcontrollers TI's low-power and high-performance MCUs, with wired and wireless connectivity options, are optimized for a broad range of applications. Products for MSP430 Ultra-Low-Power Microcontrollers One platform. One ecosystem. Endless possibilities. Enabling the connected world with innovations in ultra-low-power microcontrollers with advanced peripherals for precise sensing and measurement. Companion Products for MSP430F6736A Review products that are frequently purchased or used with this product. Reference Designs for MSP430F6736A The TI Designs Reference Design Library is a robust reference design library that spans analog, embedded processor, and connectivity. Created by TI experts to help you jump start your system design, all TI Designs include schematic or block diagrams, BOMs, and design files to speed your time to market. Device Comparison Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A Copyright © 2015–2018, Texas Instruments Incorporated 7 MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 www.ti.com 4 Terminal Configuration and Functions 4.1 Pin Diagrams P6.1/S18 P6.2/S17 P6.3/S16 P6.4/S15 P6.5/S14 P6.6/S13 P6.7/S12 P7.0/S11 P7.1/S10 P7.2/S9 P7.3/S8 P7.4/S7 P7.5/S6 P7.6/S5 P7.7/S4 P8.0/S3 P8.1/S2 P8.2/S1 P8.3/S0 TEST/SBWTCK PJ.0/SMCLK/TDO PJ.1/MCLK/TDI/TCLK PJ.2/ADC10CLK/TMS PJ.3/ACLK/TCK RST/NMI/SBWTDIO Figure 4-1 shows the pinout for the 100-pin PZ package. See Table 4-1 for differences between the MSP430F673xA and MSP430F672xA devices in this package. SD0P0 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 1 75 DVSS SD0N0 2 74 DVSYS SD1P0 3 73 P6.0/S19 SD1N0 4 72 P5.7/S20 SD2P0 5 71 P5.6/S21 SD2N0 6 70 P5.5/S22 VREF 7 69 P5.4/S23 AVSS 8 68 P5.3/S24 AVCC 9 67 P5.2/S25 VASYS 10 66 P5.1/S26 P9.1/A5 11 65 P5.0/S27 P9.2/A4 12 64 P4.7/S28 P9.3/A3 13 63 P4.6/S29 P1.0/PM_TA0.0/VeREF-/A2 14 62 P4.5/S30 P1.1/PM_TA0.1/VeREF+/A1 15 61 P4.4/S31 P1.2/PM_UCA0RXD/PM_UCA0SOMI/A0 16 60 P4.3/S32 P1.3/PM_UCA0TXD/PM_UCA0SIMO/R03 17 59 P4.2/S33 AUXVCC2 18 58 P4.1/S34 AUXVCC1 19 57 P4.0/S35 VDSYS 20 56 P3.7/PM_SD2DIO/S36 DVCC 21 55 P3.6/PM_SD1DIO/S37 DVSS 22 54 P3.5/PM_SD0DIO/S38 VCORE 23 53 P3.4/PM_SDCLK/S39 XIN 24 52 P3.3/PM_TA0.2 P3.2/PM_TACLK/PM_RTCCLK P3.1/PM_TA2.1/BSL_RX P3.0/PM_TA2.0/BSL_TX P2.7/PM_TA1.1 P2.6/PM_TA1.0 P2.5/PM_UCA2CLK P2.4/PM_UCA1CLK P2.3/PM_UCA2TXD/PM_UCA2SIMO P2.2/PM_UCA2RXD/PM_UCA2SOMI P9.0/TACLK/RTCCLK P8.7/TA2.1 P8.6/TA2.0 P2.1/PM_UCB0SIMO/PM_UCB0SDA/COM7 P2.0/PM_UCB0SOMI/PM_UCB0SCL/COM6 P1.7/PM_UCB0CLK/COM5 P1.6/PM_UCA0CLK/COM4 COM3 COM2 COM1 COM0 P8.5/TA1.1 P8.4/TA1.0 LCDCAP/R33 P1.5/PM_UCA1TXD/PM_UCA1SIMO/R23 AUXVCC3 25 51 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 P1.4/PM_UCA1RXD/PM_UCA1SOMI/LCDREF/R13 XOUT NOTE: The secondary digital functions on Ports P1, P2, and P3 are fully mappable. This pinout shows the default mapping. See Section 6.11.6 for details. NOTE: The pins VDSYS and DVSYS must be connected externally on board for proper device operation. CAUTION: The LCDCAP/R33 pin must be connected to DVSS if not used. Figure 4-1. 100-Pin PZ Package (Top View) 8 Terminal Configuration and Functions Copyright © 2015–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A www.ti.com SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 Table 4-1. Pinout Differences Between MSP430F673xAIPZ and MSP430F672xAIPZ (1) PIN NUMBER (1) PIN NAME MSP430F673xAIPZ MSP430F672xAIPZ 1 SD0P0 SD0P0 2 SD0N0 SD0N0 3 SD1P0 SD1P0 4 SD1N0 SD1N0 5 SD2P0 NC 6 SD2N0 NC 7 VREF VREF 53 P3.4/PM_SDCLK/S39 P3.4/PM_SDCLK/S39 54 P3.5/PM_SD0DIO/S38 P3.5/PM_SD0DIO/S38 55 P3.6/PM_SD1DIO/S37 P3.6/PM_SD1DIO/S37 56 P3.7/PM_SD2DIO/S36 P3.7/PM_NONE/S36 Signal names that differ between devices are indicated by italic typeface. Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A Copyright © 2015–2018, Texas Instruments Incorporated 9 MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 www.ti.com P5.2/S13 P5.3/S12 P5.4/S11 P5.5/S10 P5.6/S9 P5.7/S8 P6.0/S7 P6.1/S6 P6.2/S5 P6.3/S4 P6.4/S3 P6.5/S2 P6.6/S1 P6.7/S0 TEST/SBWTCK PJ.0/SMCLK/TDO PJ.1/MCLK/TDI/TCLK PJ.2/ADC10CLK/TMS PJ.3/ACLK/TCK RST/NMI/SBWTDIO Figure 4-2 shows the pinout for the 80-pin PN package. See Table 4-2 for differences between the MSP430F673xA and MSP430F672xA devices in this package. 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 54 P4.5/S18 AVSS 8 53 P4.4/S19 AVCC 9 52 P4.3/S20 VASYS 10 51 P4.2/S21 P1.0/PM_TA0.0/VeREF-/A2 11 50 P4.1/S22 P1.1/PM_TA0.1/VeREF+/A1 12 49 P4.0/S23 P1.2/PM_UCA0RXD/PM_UCA0SOMI/A0 13 48 P3.7/PM_SD2DIO/S24 P1.3/PM_UCA0TXD/PM_UCA0SIMO/R03 14 47 P3.6/PM_SD1DIO/S25 AUXVCC2 15 46 P3.5/PM_SD0DIO/S26 AUXVCC1 16 45 P3.4/PM_SDCLK/S27 VDSYS 17 44 P3.3/PM_TA0.2/S28 DVCC 18 43 P3.2/PM_TACLK/PM_RTCCLK/S29 DVSS 19 42 P3.1/PM_TA2.1/S30/BSL_RX 20 41 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 P3.0/PM_TA2.0/S31/BSL_TX XIN VCORE P2.7/PM_TA1.1/S32 7 P2.6/PM_TA1.0/S33 P4.6/S17 VREF P2.5/PM_UCA2CLK/S34 55 P2.4/PM_UCA1CLK/S35 6 P2.3/PM_UCA2TXD/PM_UCA2SIMO/S36 P4.7/S16 SD2N0 P2.2/PM_UCA2RXD/PM_UCA2SOMI/S37 56 P2.1/PM_UCB0SIMO/PM_UCB0SDA/COM7/S38 5 P2.0/PM_UCB0SOMI/PM_UCB0SCL/COM6/S39 P5.0/S15 SD2P0 P1.7/PM_UCB0CLK/COM5 57 P1.6/PM_UCA0CLK/COM4 4 COM3 P5.1/S14 SD1N0 COM2 58 COM1 3 COM0 DVSYS SD1P0 LCDCAP/R33 59 P1.5/PM_UCA1TXD/PM_UCA1SIMO/R23 DVSS 2 P1.4/PM_UCA1RXD/PM_UCA1SOMI/LCDREF/R13 60 SD0N0 AUXVCC3 1 XOUT SD0P0 NOTE: The secondary digital functions on Ports P1, P2, and P3 are fully mappable. This pinout shows the default mapping. See Section 6.11.6 for details. NOTE: The pins VDSYS and DVSYS must be connected externally on board for proper device operation. CAUTION: The LCDCAP/R33 pin must be connected to DVSS if not used. Figure 4-2. 80-Pin PN Package (Top View) 10 Terminal Configuration and Functions Copyright © 2015–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A www.ti.com SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 Table 4-2. Pinout Differences Between MSP430F673xAIPN and MSP430F672xAIPN (1) PIN NUMBER (1) PIN NAME MSP430F673xAIPN MSP430F672xAIPN 1 SD0P0 SD0P0 2 SD0N0 SD0N0 3 SD1P0 SD1P0 4 SD1N0 SD1N0 5 SD2P0 NC 6 SD2N0 NC 7 VREF VREF 45 P3.4/PM_SDCLK/S27 P3.4/PM_SDCLK/S27 46 P3.5/PM_SD0DIO/S26 P3.5/PM_SD0DIO/S26 47 P3.6/PM_SD1DIO/S25 P3.6/PM_SD1DIO/S25 48 P3.7/PM_SD2DIO/S24 P3.7/PM_NONE/S24 Signal names that differ between devices are indicated by italic typeface. Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A Copyright © 2015–2018, Texas Instruments Incorporated 11 MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 4.2 www.ti.com Pin Attributes Table 4-3 lists the pin attributes for all device variants in the PZ package. For the PN package, see Table 4-4. Table 4-3. Pin Attributes, PZ Package PIN NO. SIGNAL NAME (1) (2) SIGNAL TYPE (4) POWER SOURCE RESET STATE AFTER BOR (5) SD0P0 I Analog AVCC OFF 2 SD0N0 I Analog AVCC OFF 3 SD1P0 I Analog AVCC OFF 4 SD1N0 I Analog AVCC OFF 5 SD2P0 I Analog AVCC OFF 6 SD2N0 I Analog AVCC OFF 7 VREF I Analog – OFF 8 AVSS P Power – N/A 9 AVCC P Power – N/A 10 VASYS P Power – N/A I/O LVCMOS DVCC OFF 12 13 14 15 P9.1 A5 I Analog AVCC – I/O LVCMOS DVCC OFF I Analog AVCC – I/O LVCMOS DVCC OFF I Analog AVCC – P1.0 I/O LVCMOS DVCC OFF PM_TA0.0 I/O LVCMOS DVCC – N/A P9.2 A4 P9.3 A3 VeREF- I Power – A2 I Analog AVCC – P1.1 I/O LVCMOS DVCC OFF PM_TA0.1 I/O LVCMOS DVCC – VeREF+ I Power – N/A A1 I Analog AVCC – P1.2 16 I/O LVCMOS DVCC OFF PM_UCA0RXD I LVCMOS DVCC – PM_UCA0SOMI I/O LVCMOS DVCC – I Analog AVCC – P1.3 I/O LVCMOS DVCC OFF PM_UCA0TXD O LVCMOS DVCC – PM_UCA0SIMO I/O LVCMOS DVCC – R03 A0 17 12 BUFFER TYPE 1 11 (1) (2) (3) (4) (5) (3) I/O Analog AVCC – 18 AUXVCC2 P Power – N/A 19 AUXVCC1 P Power – N/A 20 VDSYS P Power – N/A 21 DVCC P Power – N/A 22 DVSS P Power – N/A For each multiplexed pin, the signal that is listed first in this table is the default after reset. To determine the pin mux encodings for each pin, refer to Section 6.12, Input/Output Diagrams. Signal Types: I = Input, O = Output, I/O = Input or Output. Buffer Types: LVCMOS, Analog, or Power (see Table 4-7, Buffer Type) Reset States: OFF = High-impedance input with pullup or pulldown disabled (if available) N/A = Not applicable Terminal Configuration and Functions Copyright © 2015–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A www.ti.com SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 Table 4-3. Pin Attributes, PZ Package (continued) PIN NO. SIGNAL NAME (1) (2) SIGNAL TYPE (3) BUFFER TYPE (4) POWER SOURCE RESET STATE AFTER BOR (5) 23 VCORE P Power – N/A 24 XIN I LVCMOS DVCC OFF 25 XOUT O LVCMOS DVCC OFF 26 AUXVCC3 P Power – N/A I/O LVCMOS DVCC OFF PM_UCA1RXD I LVCMOS DVCC – PM_UCA1SOMI I/O LVCMOS DVCC – – P1.4 27 LCDREF I Analog AVCC R13 I/O Analog AVCC – P1.5 I/O LVCMOS DVCC OFF PM_UCA1TXD O LVCMOS DVCC – PM_UCA1SIMO I/O LVCMOS DVCC – R23 I/O Analog AVCC – LCDCAP I/O Analog AVCC OFF R33 I/O Analog AVCC – P8.4 I/O LVCMOS DVCC OFF TA1.0 I/O LVCMOS DVCC – P8.5 I/O LVCMOS DVCC OFF TA1.1 I/O LVCMOS DVCC – 32 COM0 O LVCMOS DVCC OFF 33 COM1 O LVCMOS DVCC OFF 34 COM2 O LVCMOS DVCC OFF 35 COM3 O LVCMOS DVCC OFF P1.6 I/O LVCMOS DVCC OFF PM_UCA0CLK I/O LVCMOS DVCC – COM4 O LVCMOS DVCC – P1.7 I/O LVCMOS DVCC OFF PM_UCB0CLK I/O LVCMOS DVCC – COM5 O LVCMOS DVCC – P2.0 I/O LVCMOS DVCC OFF PM_UCB0SOMI I/O LVCMOS DVCC – PM_UCB0SCL I/O LVCMOS DVCC – COM6 O LVCMOS DVCC – P2.1 I/O LVCMOS DVCC OFF PM_UCB0SIMO I/O LVCMOS DVCC – PM_UCB0SDA I/O LVCMOS DVCC – COM7 O LVCMOS DVCC – P8.6 I/O LVCMOS DVCC OFF TA2.0 I/O LVCMOS DVCC – P8.7 I/O LVCMOS DVCC OFF TA2.1 I/O LVCMOS DVCC – P9.0 I/O LVCMOS DVCC OFF I LVCMOS DVCC – RTCCLK O LVCMOS DVCC – P2.2 I/O LVCMOS DVCC OFF PM_UCA2RXD I LVCMOS DVCC – PM_UCA2SOMI I/O LVCMOS DVCC – 28 29 30 31 36 37 38 39 40 41 42 43 TACLK Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A Copyright © 2015–2018, Texas Instruments Incorporated 13 MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 www.ti.com Table 4-3. Pin Attributes, PZ Package (continued) PIN NO. 44 45 46 47 48 49 50 SIGNAL NAME (1) (2) SIGNAL TYPE 53 54 55 56 57 58 59 60 61 62 14 (4) POWER SOURCE RESET STATE AFTER BOR (5) I/O LVCMOS DVCC OFF PM_UCA2TXD O LVCMOS DVCC – PM_UCA2SIMO I/O LVCMOS DVCC – P2.4 I/O LVCMOS DVCC OFF PM_UCA1CLK I/O LVCMOS DVCC – P2.5 I/O LVCMOS DVCC OFF PM_UCA2CLK I/O LVCMOS DVCC – P2.6 I/O LVCMOS DVCC OFF PM_TA1.0 I/O LVCMOS DVCC – P2.7 I/O LVCMOS DVCC OFF PM_TA1.1 I/O LVCMOS DVCC – P3.0 I/O LVCMOS DVCC OFF PM_TA2.0 I/O LVCMOS DVCC – BSL_TX O LVCMOS DVCC – P3.1 I/O LVCMOS DVCC OFF PM_TA2.1 I/O LVCMOS DVCC – I LVCMOS DVCC – P3.2 52 BUFFER TYPE P2.3 BSL_RX 51 (3) I/O LVCMOS DVCC OFF PM_TACLK I LVCMOS DVCC – PM_RTCCLK O LVCMOS DVCC – P3.3 I/O LVCMOS DVCC OFF PM_TA0.2 I/O LVCMOS DVCC – P3.4 I/O LVCMOS DVCC OFF PM_SDCLK I/O LVCMOS DVCC – S39 O LVCMOS DVCC – P3.5 I/O LVCMOS DVCC OFF PM_SD0DIO I/O Analog AVCC – S38 O LVCMOS DVCC – P3.6 I/O LVCMOS DVCC OFF PM_SD1DIO I/O Analog AVCC – S37 O LVCMOS DVCC – P3.7 I/O LVCMOS DVCC OFF PM_SD2DIO I/O LVCMOS DVCC – S36 O LVCMOS DVCC – P4.0 I/O LVCMOS DVCC OFF S35 O LVCMOS DVCC – P4.1 I/O LVCMOS DVCC OFF S34 O LVCMOS DVCC – P4.2 I/O LVCMOS DVCC OFF S33 O LVCMOS DVCC – P4.3 I/O LVCMOS DVCC OFF S32 O LVCMOS DVCC – P4.4 I/O LVCMOS DVCC OFF S31 O LVCMOS DVCC – P4.5 I/O LVCMOS DVCC OFF S30 O LVCMOS DVCC – Terminal Configuration and Functions Copyright © 2015–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A www.ti.com SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 Table 4-3. Pin Attributes, PZ Package (continued) PIN NO. SIGNAL NAME (1) (2) SIGNAL TYPE (3) BUFFER TYPE (4) POWER SOURCE RESET STATE AFTER BOR (5) OFF P4.6 I/O LVCMOS DVCC S29 O LVCMOS DVCC – P4.7 I/O LVCMOS DVCC OFF S28 O LVCMOS DVCC – P5.0 I/O LVCMOS DVCC OFF S27 O LVCMOS DVCC – P5.1 I/O LVCMOS DVCC OFF S26 O LVCMOS DVCC – P5.2 I/O LVCMOS DVCC OFF S25 O LVCMOS DVCC – P5.3 I/O LVCMOS DVCC OFF S24 O LVCMOS DVCC – P5.4 I/O LVCMOS DVCC OFF S23 O LVCMOS DVCC – P5.5 I/O LVCMOS DVCC OFF S22 O LVCMOS DVCC – P5.6 I/O LVCMOS DVCC OFF S21 O LVCMOS DVCC – P5.7 I/O LVCMOS DVCC OFF S20 O LVCMOS DVCC – P6.0 I/O LVCMOS DVCC OFF S19 O LVCMOS DVCC – 74 DVSYS P Power – N/A 75 DVSS 63 64 65 66 67 68 69 70 71 72 73 76 77 78 79 80 81 82 83 84 85 86 P Power – N/A I/O LVCMOS DVCC OFF S18 O LVCMOS DVCC – P6.2 I/O LVCMOS DVCC OFF S17 O LVCMOS DVCC – P6.3 I/O LVCMOS DVCC OFF S16 O LVCMOS DVCC – P6.4 I/O LVCMOS DVCC OFF S15 O LVCMOS DVCC – P6.5 I/O LVCMOS DVCC OFF S14 O LVCMOS DVCC – P6.6 I/O LVCMOS DVCC OFF S13 O LVCMOS DVCC – P6.7 I/O LVCMOS DVCC OFF S12 O LVCMOS DVCC – P7.0 I/O LVCMOS DVCC OFF S11 O LVCMOS DVCC – P7.1 I/O LVCMOS DVCC OFF S10 O LVCMOS DVCC – P7.2 I/O LVCMOS DVCC OFF S9 O LVCMOS DVCC – P7.3 I/O LVCMOS DVCC OFF S8 O LVCMOS DVCC – P6.1 Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A Copyright © 2015–2018, Texas Instruments Incorporated 15 MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 www.ti.com Table 4-3. Pin Attributes, PZ Package (continued) PIN NO. 87 88 89 90 91 92 93 94 95 SIGNAL NAME (1) (2) SIGNAL TYPE 97 98 99 100 (4) POWER SOURCE RESET STATE AFTER BOR (5) OFF I/O LVCMOS DVCC S7 O LVCMOS DVCC – P7.5 I/O LVCMOS DVCC OFF S6 O LVCMOS DVCC – P7.6 I/O LVCMOS DVCC OFF S5 O LVCMOS DVCC – P7.7 I/O LVCMOS DVCC OFF S4 O LVCMOS DVCC – P8.0 I/O LVCMOS DVCC OFF S3 O LVCMOS DVCC – P8.1 I/O LVCMOS DVCC OFF S2 O LVCMOS DVCC – P8.2 I/O LVCMOS DVCC OFF S1 O LVCMOS DVCC – P8.3 I/O LVCMOS DVCC OFF S0 O LVCMOS DVCC – TEST I LVCMOS DVCC OFF I LVCMOS DVCC – PJ.0 I/O LVCMOS DVCC OFF SMCLK O LVCMOS DVCC – TDO O LVCMOS DVCC – PJ.1 I/O LVCMOS DVCC OFF MCLK O LVCMOS DVCC – TDI I LVCMOS DVCC – TCLK I LVCMOS DVCC – PJ.2 I/O LVCMOS DVCC OFF ADC10CLK O LVCMOS DVCC – TMS I LVCMOS DVCC – PJ.3 I/O LVCMOS DVCC OFF ACLK O LVCMOS DVCC – TCK I LVCMOS DVCC – RST I LVCMOS DVCC PU NMI I LVCMOS DVCC – I/O LVCMOS DVCC – SBWTDIO 16 BUFFER TYPE P7.4 SBWTCK 96 (3) Terminal Configuration and Functions Copyright © 2015–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A www.ti.com SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 Table 4-4 lists the pin attributes for all device variants in the PN package. For the PZ package, see Table 4-3. Table 4-4. Pin Attributes, PN Package PIN NO. SIGNAL NAME (2) SIGNAL TYPE (3) BUFFER TYPE (4) POWER SOURCE RESET STATE AFTER BOR (5) 1 SD0P0 I Analog AVCC OFF 2 SD0N0 I Analog AVCC OFF 3 SD1P0 I Analog AVCC OFF 4 SD1N0 I Analog AVCC OFF 5 SD2P0 I Analog AVCC OFF 6 SD2N0 I Analog AVCC OFF 7 VREF I Power – N/A 8 AVSS P Power – N/A 9 AVCC P Power – N/A 10 VASYS 11 12 P Power – N/A P1.0 I/O LVCMOS DVCC OFF PM_TA0.0 I/O LVCMOS DVCC – – VeREF- I Power – A2 I Analog AVCC – P1.1 I/O LVCMOS DVCC OFF PM_TA0.1 I/O LVCMOS DVCC – VeREF+ I Power – – A1 I Analog AVCC – I/O LVCMOS DVCC OFF PM_UCA0RXD I LVCMOS DVCC – PM_UCA0SOMI I/O LVCMOS DVCC – I Analog AVCC – P1.3 I/O LVCMOS DVCC OFF PM_UCA0TXD O LVCMOS DVCC – PM_UCA0SIMO I/O LVCMOS DVCC – R03 P1.2 13 A0 14 (1) (2) (3) (4) (5) (1) I/O Analog AVCC – 15 AUXVCC2 P Power – N/A 16 AUXVCC1 P Power – N/A 17 VDSYS P Power – N/A 18 DVCC P Power – N/A 19 DVSS P Power – N/A 20 VCORE P Power – N/A 21 XIN I LVCMOS DVCC OFF 22 XOUT O LVCMOS DVCC OFF 23 AUXVCC3 P Power – N/A For each multiplexed pin, the signal that is listed first in this table is the default after reset. To determine the pin mux encodings for each pin, refer to Section 6.12, Input/Output Diagrams. Signal Types: I = Input, O = Output, I/O = Input or Output. Buffer Types: LVCMOS, Analog, or Power (see Table 4-7, Buffer Type) Reset States: OFF = High-impedance input with pullup or pulldown disabled (if available) N/A = Not applicable Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A Copyright © 2015–2018, Texas Instruments Incorporated 17 MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 www.ti.com Table 4-4. Pin Attributes, PN Package (continued) PIN NO. SIGNAL NAME (2) P1.4 24 26 (3) BUFFER TYPE (4) POWER SOURCE RESET STATE AFTER BOR (5) I/O LVCMOS DVCC OFF I LVCMOS DVCC – PM_UCA1SOMI I/O LVCMOS DVCC – – I Analog AVCC R13 I/O Analog AVCC – P1.5 I/O LVCMOS DVCC OFF PM_UCA1TXD O LVCMOS DVCC – PM_UCA1SIMO I/O LVCMOS DVCC – R23 I/O Analog AVCC – LCDCAP I/O Analog AVCC OFF R33 I/O Analog AVCC OFF 27 COM0 O LVCMOS DVCC OFF 28 COM1 O LVCMOS DVCC OFF 29 COM2 O LVCMOS DVCC OFF 30 COM3 O LVCMOS DVCC OFF P1.6 I/O LVCMOS DVCC OFF PM_UCA0CLK I/O LVCMOS DVCC – COM4 O LVCMOS DVCC – P1.7 I/O LVCMOS DVCC OFF PM_UCB0CLK I/O LVCMOS DVCC – COM5 O LVCMOS DVCC – P2.0 I/O LVCMOS DVCC OFF PM_UCB0SOMI I/O LVCMOS DVCC – PM_UCB0SCL I/O LVCMOS DVCC – COM6 O LVCMOS DVCC – S39 O LVCMOS DVCC – P2.1 I/O LVCMOS DVCC OFF PM_UCB0SIMO I/O LVCMOS DVCC – PM_UCB0SDA I/O LVCMOS DVCC – COM7 O LVCMOS DVCC – S38 O LVCMOS DVCC – P2.2 I/O LVCMOS DVCC OFF PM_UCA2RXD I LVCMOS DVCC – PM_UCA2SOMI I/O LVCMOS DVCC – S37 O LVCMOS DVCC – P2.3 I/O LVCMOS DVCC OFF PM_UCA2TXD O LVCMOS DVCC – PM_UCA2SIMO I/O LVCMOS DVCC – S36 O LVCMOS DVCC – P2.4 I/O LVCMOS DVCC OFF PM_UCA1CLK I/O LVCMOS DVCC – S35 O LVCMOS DVCC – P2.5 I/O LVCMOS DVCC OFF PM_UCA2CLK I/O LVCMOS DVCC – S34 O LVCMOS DVCC – 31 32 33 34 35 36 37 38 18 SIGNAL TYPE PM_UCA1RXD LCDREF 25 (1) Terminal Configuration and Functions Copyright © 2015–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A www.ti.com SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 Table 4-4. Pin Attributes, PN Package (continued) PIN NO. 39 40 41 42 SIGNAL NAME (2) 45 46 47 48 49 50 51 52 53 54 55 (3) BUFFER TYPE (4) POWER SOURCE RESET STATE AFTER BOR (5) I/O LVCMOS DVCC OFF PM_TA1.0 I/O LVCMOS DVCC – S33 O LVCMOS DVCC – P2.7 I/O LVCMOS DVCC OFF PM_TA1.1 I/O LVCMOS DVCC – S32 O LVCMOS DVCC – P3.0 I/O LVCMOS DVCC OFF PM_TA2.0 I/O LVCMOS DVCC – S31 O LVCMOS DVCC – BSL_TX O LVCMOS DVCC – P3.1 I/O LVCMOS DVCC OFF PM_TA2.1 I/O LVCMOS DVCC – S30 O LVCMOS DVCC – I LVCMOS DVCC – I/O LVCMOS DVCC OFF PM_TACLK I LVCMOS DVCC – PM_RTCCLK O LVCMOS DVCC – S29 O LVCMOS DVCC – P3.3 I/O LVCMOS DVCC OFF PM_TA0.2 I/O LVCMOS DVCC – S28 O LVCMOS DVCC – P3.4 I/O LVCMOS DVCC OFF PM_SDCLK I/O LVCMOS DVCC – S27 O LVCMOS DVCC – P3.5 I/O LVCMOS DVCC OFF PM_SD0DIO I/O LVCMOS DVCC – S26 O LVCMOS DVCC – P3.6 I/O LVCMOS DVCC OFF PM_SD1DIO I/O LVCMOS DVCC – S25 O LVCMOS DVCC – P3.7 I/O LVCMOS DVCC OFF PM_SD2DIO I/O LVCMOS DVCC – S24 O LVCMOS DVCC – P4.0 I/O LVCMOS DVCC OFF S23 O LVCMOS DVCC – P4.1 I/O LVCMOS DVCC OFF S22 O LVCMOS DVCC – P4.2 I/O LVCMOS DVCC OFF S21 O LVCMOS DVCC – P4.3 I/O LVCMOS DVCC OFF S20 O LVCMOS DVCC – P4.4 I/O LVCMOS DVCC OFF S19 O LVCMOS DVCC – P4.5 I/O LVCMOS DVCC OFF S18 O LVCMOS DVCC – P4.6 I/O LVCMOS DVCC OFF S17 O LVCMOS DVCC – P3.2 44 SIGNAL TYPE P2.6 BSL_RX 43 (1) Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A Copyright © 2015–2018, Texas Instruments Incorporated 19 MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 www.ti.com Table 4-4. Pin Attributes, PN Package (continued) PIN NO. 56 57 58 (2) SIGNAL TYPE (3) BUFFER TYPE (4) POWER SOURCE RESET STATE AFTER BOR (5) OFF P4.7 I/O LVCMOS DVCC S16 O LVCMOS DVCC – P5.0 I/O LVCMOS DVCC OFF S15 O LVCMOS DVCC – P5.1 I/O LVCMOS DVCC OFF S14 O LVCMOS DVCC – 59 DVSYS P Power – N/A 60 DVSS 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 20 SIGNAL NAME (1) P Power – N/A P5.2 I/O LVCMOS DVCC OFF S13 O LVCMOS DVCC – P5.3 I/O LVCMOS DVCC OFF S12 O LVCMOS DVCC – P5.4 I/O LVCMOS DVCC OFF S11 O LVCMOS DVCC – P5.5 I/O LVCMOS DVCC OFF S10 O LVCMOS DVCC – P5.6 I/O LVCMOS DVCC OFF S9 O LVCMOS DVCC – P5.7 I/O LVCMOS DVCC OFF S8 O LVCMOS DVCC – P6.0 I/O LVCMOS DVCC OFF S7 O LVCMOS DVCC – P6.1 I/O LVCMOS DVCC OFF S6 O LVCMOS DVCC – P6.2 I/O LVCMOS DVCC OFF S5 O LVCMOS DVCC – P6.3 I/O LVCMOS DVCC OFF S4 O LVCMOS DVCC – P6.4 I/O LVCMOS DVCC OFF S3 O LVCMOS DVCC – P6.5 I/O LVCMOS DVCC OFF S2 O LVCMOS DVCC – P6.6 I/O LVCMOS DVCC OFF S1 O LVCMOS DVCC – P6.7 I/O LVCMOS DVCC OFF S0 O LVCMOS DVCC – TEST I LVCMOS DVCC OFF SBWTCK I LVCMOS DVCC – PJ.0 I/O LVCMOS DVCC OFF SMCLK O LVCMOS DVCC – TDO O LVCMOS DVCC – PJ.1 I/O LVCMOS DVCC OFF MCLK O LVCMOS DVCC – TDI I LVCMOS DVCC – TCLK I LVCMOS DVCC – Terminal Configuration and Functions Copyright © 2015–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A www.ti.com SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 Table 4-4. Pin Attributes, PN Package (continued) PIN NO. 78 79 80 SIGNAL NAME (2) (1) SIGNAL TYPE (3) BUFFER TYPE (4) POWER SOURCE RESET STATE AFTER BOR (5) PJ.2 I/O LVCMOS DVCC OFF ADC10CLK O LVCMOS DVCC – TMS I LVCMOS DVCC – PJ.3 I/O LVCMOS DVCC OFF ACLK O LVCMOS DVCC – TCK I LVCMOS DVCC – RST I/O LVCMOS DVCC PU I LVCMOS DVCC – I/O LVCMOS DVCC – NMI SBWTDIO Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A Copyright © 2015–2018, Texas Instruments Incorporated 21 MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 4.3 www.ti.com Signal Descriptions Table 4-5 describes the signals for all device variants in the PZ package. See Table 4-6 for signal descriptions in the PN package. Table 4-5. Signal Descriptions, PZ Package FUNCTION ADC10 BSL Clock Debug PIN NO. SIGNAL TYPE A0 16 I Analog input A0 for 10-bit ADC A1 15 I Analog input A1 for 10-bit ADC A2 14 I Analog input A2 for 10-bit ADC A3 13 I Analog input A3 for 10-bit ADC A4 12 I Analog input A4 for 10-bit ADC A5 11 I Analog input A5 for 10-bit ADC ADC10CLK 98 O ADC10_A clock output VeREF+ 15 I Positive terminal for the ADC reference voltage for an external applied reference voltage VeREF- 14 I Negative terminal for the ADC reference voltage for an external applied reference voltage BSL_RX 50 I Bootloader data receive BSL_TX 49 O Bootloader data transmit ACLK 99 O ACLK clock output MCLK 97 O MCLK clock output PM_RTCCLK 51 O Default mapping: RTCCLK clock output RTCCLK 42 O RTCCLK clock output SMCLK 96 O SMCLK clock output XIN 24 I Input terminal for crystal oscillator XOUT 25 O Output terminal for crystal oscillator Spy-Bi-Wire input clock SIGNAL NAME SBWTCK 95 I SBWTDIO 100 I/O TCK 99 I Test clock TCLK 97 I Test clock input TDI 97 I Test data input TDO 96 O Test data output TEST 95 I Test mode pin – select digital I/O on JTAG pins TMS 98 I Test mode select P1.0 14 I/O General-purpose digital I/O with port interrupt and mappable secondary function P1.1 15 I/O General-purpose digital I/O with port interrupt and mappable secondary function P1.2 16 I/O General-purpose digital I/O with port interrupt and mappable secondary function P1.3 17 I/O General-purpose digital I/O with port interrupt and mappable secondary function P1.4 27 I/O General-purpose digital I/O with port interrupt and mappable secondary function P1.5 28 I/O General-purpose digital I/O with port interrupt and mappable secondary function P1.6 36 I/O General-purpose digital I/O with port interrupt and mappable secondary function P1.7 37 I/O General-purpose digital I/O with port interrupt and mappable secondary function GPIO 22 DESCRIPTION Terminal Configuration and Functions Spy-Bi-Wire data input/output Copyright © 2015–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A www.ti.com SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 Table 4-5. Signal Descriptions, PZ Package (continued) FUNCTION GPIO PIN NO. SIGNAL TYPE P2.0 38 I/O General-purpose digital I/O with port interrupt and mappable secondary function P2.1 39 I/O General-purpose digital I/O with port interrupt and mappable secondary function P2.2 43 I/O General-purpose digital I/O with port interrupt and mappable secondary function P2.3 44 I/O General-purpose digital I/O with port interrupt and mappable secondary function P2.4 45 I/O General-purpose digital I/O with port interrupt and mappable secondary function P2.5 46 I/O General-purpose digital I/O with port interrupt and mappable secondary function P2.6 47 I/O General-purpose digital I/O with port interrupt and mappable secondary function P2.7 48 I/O General-purpose digital I/O with port interrupt and mappable secondary function P3.0 49 I/O General-purpose digital I/O with mappable secondary function P3.1 50 I/O General-purpose digital I/O with mappable secondary function P3.2 51 I/O General-purpose digital I/O with mappable secondary function P3.3 52 I/O General-purpose digital I/O with mappable secondary function P3.4 53 I/O General-purpose digital I/O with mappable secondary function P3.5 54 I/O General-purpose digital I/O with mappable secondary function P3.6 55 I/O General-purpose digital I/O with mappable secondary function P3.7 56 I/O General-purpose digital I/O with mappable secondary function P4.0 57 I/O General-purpose digital I/O P4.1 58 I/O General-purpose digital I/O P4.2 59 I/O General-purpose digital I/O P4.3 60 I/O General-purpose digital I/O P4.4 61 I/O General-purpose digital I/O P4.5 62 I/O General-purpose digital I/O P4.6 63 I/O General-purpose digital I/O P4.7 64 I/O General-purpose digital I/O P5.0 65 I/O General-purpose digital I/O P5.1 66 I/O General-purpose digital I/O P5.2 67 I/O General-purpose digital I/O P5.3 68 I/O General-purpose digital I/O P5.4 69 I/O General-purpose digital I/O P5.5 70 I/O General-purpose digital I/O P5.6 71 I/O General-purpose digital I/O P5.7 72 I/O General-purpose digital I/O P6.0 73 I/O General-purpose digital I/O P6.1 76 I/O General-purpose digital I/O P6.2 77 I/O General-purpose digital I/O P6.3 78 I/O General-purpose digital I/O P6.4 79 I/O General-purpose digital I/O P6.5 80 I/O General-purpose digital I/O P6.6 81 I/O General-purpose digital I/O P6.7 82 I/O General-purpose digital I/O SIGNAL NAME DESCRIPTION Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A Copyright © 2015–2018, Texas Instruments Incorporated 23 MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 www.ti.com Table 4-5. Signal Descriptions, PZ Package (continued) FUNCTION GPIO I2C LCD 24 PIN NO. SIGNAL TYPE P7.0 83 I/O General-purpose digital I/O P7.1 84 I/O General-purpose digital I/O P7.2 85 I/O General-purpose digital I/O P7.3 86 I/O General-purpose digital I/O P7.4 87 I/O General-purpose digital I/O P7.5 88 I/O General-purpose digital I/O P7.6 89 I/O General-purpose digital I/O P7.7 90 I/O General-purpose digital I/O P8.0 91 I/O General-purpose digital I/O P8.1 92 I/O General-purpose digital I/O P8.2 93 I/O General-purpose digital I/O P8.3 94 I/O General-purpose digital I/O P8.4 30 I/O General-purpose digital I/O P8.5 31 I/O General-purpose digital I/O P8.6 40 I/O General-purpose digital I/O P8.7 41 I/O General-purpose digital I/O P9.0 42 I/O General-purpose digital I/O P9.1 11 I/O General-purpose digital I/O P9.2 12 I/O General-purpose digital I/O P9.3 13 I/O General-purpose digital I/O PJ.0 96 I/O General-purpose digital I/O PJ.1 97 I/O General-purpose digital I/O PJ.2 98 I/O General-purpose digital I/O PJ.3 99 I/O General-purpose digital I/O PM_UCB0SCL 38 I/O Default mapping: eUSCI_B0 I2C clock PM_UCB0SDA 39 I/O Default mapping: eUSCI_B0 I2C data COM0 32 O LCD common output COM0 for LCD backplane COM1 33 O LCD common output COM1 for LCD backplane COM2 34 O LCD common output COM2 for LCD backplane COM3 35 O LCD common output COM3 for LCD backplane COM4 36 O LCD common output COM4 for LCD backplane COM5 37 O LCD common output COM5 for LCD backplane COM6 38 O LCD common output COM6 for LCD backplane COM7 39 O LCD common output COM7 for LCD backplane LCDCAP 29 I/O LCD capacitor connection CAUTION: This pin must be connected to DVSS if not used. LCDREF 27 I R03 17 I/O Input/output port of lowest analog LCD voltage (V5) R13 27 I/O Input/output port of third most positive analog LCD voltage (V3 or V4) R23 28 I/O Input/output port of second most positive analog LCD voltage (V2) R33 29 I/O Input/output port of most positive analog LCD voltage (V1) CAUTION: This pin must be connected to DVSS if not used. SIGNAL NAME Terminal Configuration and Functions DESCRIPTION External reference voltage input for regulated LCD voltage Copyright © 2015–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A www.ti.com SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 Table 4-5. Signal Descriptions, PZ Package (continued) FUNCTION LCD PIN NO. SIGNAL TYPE S0 94 O LCD segment output S0 S1 93 O LCD segment output S1 S2 92 O LCD segment output S2 S3 91 O LCD segment output S3 S4 90 O LCD segment output S4 S5 89 O LCD segment output S5 S6 88 O LCD segment output S6 S7 87 O LCD segment output S7 S8 86 O LCD segment output S8 S9 85 O LCD segment output S9 S10 84 O LCD segment output S10 S11 83 O LCD segment output S11 S12 82 O LCD segment output S12 S13 81 O LCD segment output S13 S14 80 O LCD segment output S14 S15 79 O LCD segment output S15 S16 78 O LCD segment output S16 S17 77 O LCD segment output S17 S18 76 O LCD segment output S18 S19 73 O LCD segment output S19 S20 72 O LCD segment output S20 S21 71 O LCD segment output S21 S22 70 O LCD segment output S22 S23 69 O LCD segment output S23 S24 68 O LCD segment output S24 S25 67 O LCD segment output S25 S26 66 O LCD segment output S26 S27 65 O LCD segment output S27 S28 64 O LCD segment output S28 S29 63 O LCD segment output S29 S30 62 O LCD segment output S30 S31 61 O LCD segment output S31 S32 60 O LCD segment output S32 S33 59 O LCD segment output S33 S34 58 O LCD segment output S34 S35 57 O LCD segment output S35 S36 56 O LCD segment output S36 S37 55 O LCD segment output S37 S38 54 O LCD segment output S38 S39 53 O LCD segment output S39 SIGNAL NAME DESCRIPTION Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A Copyright © 2015–2018, Texas Instruments Incorporated 25 MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 www.ti.com Table 4-5. Signal Descriptions, PZ Package (continued) FUNCTION Power PIN NO. SIGNAL TYPE AUXVCC1 19 P Auxiliary power supply AUXVCC1 AUXVCC2 18 P Auxiliary power supply AUXVCC2 AUXVCC3 26 P Auxiliary power supply AUXVCC3 for back up subsystem AVCC 9 P Analog power supply AVSS 8 P Analog ground supply DVCC 21 P Digital power supply DVSS 22 75 P Digital ground supply 74 P Digital power supply for I/Os VASYS 10 P Analog power supply selected among AVCC, AUXVCC1, AUXVCC2. Connect recommended capacitor value of CVSYS (see Table 5-18). VCORE (2) 23 P Regulated core power supply (internal use only, no external current loading) VDSYS (1) 20 P Digital power supply selected between DVCC, AUXVCC1, AUXVCC2. Connect recommended capacitor value of CVSYS (see Table 5-18). PM_SD0DIO 54 I/O Default mapping: SD24_B converter 0 bit stream data input/output PM_SD1DIO 55 I/O Default mapping: SD24_B converter 1 bit stream data input/output PM_SD2DIO 56 I/O Default mapping: SD24_B converter 2 bit stream data input/output (not available on F672xA devices) PM_SDCLK 53 I/O Default mapping: SD24_B bit stream clock input/output SD0N0 2 I SD24_B negative analog input for converter 0 (3) SD0P0 1 I SD24_B positive analog input for converter 0 (3) SD1N0 4 I SD24_B negative analog input for converter 1 (3) SD1P0 3 I SD24_B positive analog input for converter 1 (3) SD2N0 6 I SD24_B negative analog input for converter 2 (3) (not available on F672xA devices) SD2P0 5 I SD24_B positive analog input for converter 2 (3) (not available on F672xA devices) SIGNAL NAME DVSYS SD24 SPI System (1) (2) (3) (4) 26 (1) DESCRIPTION VREF 7 O SD24_B external reference voltage PM_UCA0CLK 36 I/O Default mapping: eUSCI_A0 clock input/output PM_UCA0SIMO 17 I/O Default mapping: eUSCI_A0 SPI slave in/master out PM_UCA0SOMI 16 I/O Default mapping: eUSCI_A0 SPI slave out/master in PM_UCA1CLK 45 I/O Default mapping: eUSCI_A1 clock input/output PM_UCA1SIMO 28 I/O Default mapping: eUSCI_A1 SPI slave in/master out PM_UCA1SOMI 27 I/O Default mapping: eUSCI_A1 SPI slave out/master in PM_UCA2CLK 46 I/O Default mapping: eUSCI_A2 clock input/output PM_UCA2SIMO 44 I/O Default mapping: eUSCI_A2 SPI slave in/master out PM_UCA2SOMI 43 I/O Default mapping: eUSCI_A2 SPI slave out/master in PM_UCB0CLK 37 I/O Default mapping: eUSCI_B0 clock input/output PM_UCB0SIMO 39 I/O Default mapping: eUSCI_B0 SPI slave in/master out PM_UCB0SOMI 38 I/O Default mapping: eUSCI_B0 SPI slave out/master in NMI 100 I Nonmaskable interrupt input RST 100 I Reset input active low (4) The pins VDSYS and DVSYS must be connected externally on board for proper device operation. VCORE is for internal use only. No external current loading is possible. VCORE should only be connected to the recommended capacitor value, CVCORE. TI recommends shorting unused analog input pairs and connect them to analog ground. When this pin is configured as reset, the internal pullup resistor is enabled by default. Terminal Configuration and Functions Copyright © 2015–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A www.ti.com SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 Table 4-5. Signal Descriptions, PZ Package (continued) FUNCTION Timer_A UART PIN NO. SIGNAL TYPE PM_TA0.0 14 I/O Default mapping: Timer TA0 CCR0 capture: CCI0A input, compare: Out0 output PM_TA0.1 15 I/O Default mapping: Timer TA0 CCR1 capture: CCI1A input, compare: Out1 output PM_TA0.2 52 I/O Default mapping: Timer TA0 capture CCR2: CCI2A input, compare: Out2 output PM_TA1.0 47 I/O Default mapping: Timer TA1 capture CCR0: CCI0A input, compare: Out0 output PM_TA1.1 48 I/O Default mapping: Timer TA1 capture CCR1: CCI1A input, compare: Out1 output PM_TA2.0 49 I/O Default mapping: Timer TA2 capture CCR0: CCI0A input, compare: Out0 output PM_TA2.1 50 I/O Default mapping: Timer TA2 capture CCR1: CCI1A input, compare: Out1 output PM_TACLK 51 I TA1.0 30 I/O Timer TA1 CCR0 capture: CCI0A input, compare: Out0 output TA1.1 31 I/O Timer TA1 CCR1 capture: CCI1A input, compare: Out1 output TA2.0 40 I/O Timer TA2 CCR0 capture: CCI0A input, compare: Out0 output TA2.1 41 I/O Timer TA2 CCR1 capture: CCI1A input, compare: Out1 output TACLK 42 I Timer clock input TACLK for TA0, TA1, TA2, TA3 PM_UCA0RXD 16 I Default mapping: eUSCI_A0 UART receive data PM_UCA0TXD 17 O Default mapping: eUSCI_A0 UART transmit data PM_UCA1RXD 27 I Default mapping: eUSCI_A1 UART receive data PM_UCA1TXD 28 O Default mapping: eUSCI_A1 UART transmit data PM_UCA2RXD 43 I Default mapping: eUSCI_A2 UART receive data PM_UCA2TXD 44 O Default mapping: eUSCI_A2 UART transmit data SIGNAL NAME DESCRIPTION Default mapping: Timer clock input TACLK for TA0, TA1, TA2, TA3 Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A Copyright © 2015–2018, Texas Instruments Incorporated 27 MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 www.ti.com Table 4-6 describes the signals for all device variants in the PN package. See Table 4-5 for signal descriptions in the PZ package. Table 4-6. Signal Descriptions, PN Package FUNCTION ADC10 BSL Clock Debug PIN NO. SIGNAL TYPE (1) A0 13 I Analog input A0 for 10-bit ADC A1 12 I Analog input A1 for 10-bit ADC A2 11 I Analog input A2 for 10-bit ADC ADC10CLK 78 O ADC10_A clock output VeREF+ 12 I Positive terminal for the ADC reference voltage for an external applied reference voltage VeREF- 11 I Negative terminal for the ADC reference voltage for an external applied reference voltage BSL_RX 42 I Bootloader data receive BSL_TX 41 O Bootloader data transmit ACLK 79 O ACLK clock output MCLK 77 O MCLK clock output PM_RTCCLK 43 O Default mapping: RTCCLK clock output SMCLK 76 O SMCLK clock output XIN 21 I Input terminal for crystal oscillator XOUT 22 O Output terminal for crystal oscillator SBWTCK 75 I Spy-Bi-Wire input clock SBWTDIO 80 I/O TCK 79 I Test clock TCLK 77 I Test clock input TDI 77 I Test data input TDO 76 O Test data output TEST 75 I Test mode pin – select digital I/O on JTAG pins TMS 78 I Test mode select P1.0 11 I/O General-purpose digital I/O with port interrupt and mappable secondary function P1.1 12 I/O General-purpose digital I/O with port interrupt and mappable secondary function P1.2 13 I/O General-purpose digital I/O with port interrupt and mappable secondary function P1.3 14 I/O General-purpose digital I/O with port interrupt and mappable secondary function P1.4 24 I/O General-purpose digital I/O with port interrupt and mappable secondary function P1.5 25 I/O General-purpose digital I/O with port interrupt and mappable secondary function P1.6 31 I/O General-purpose digital I/O with port interrupt and mappable secondary function P1.7 32 I/O General-purpose digital I/O with port interrupt and mappable secondary function P2.0 33 I/O General-purpose digital I/O with port interrupt and mappable secondary function P2.1 34 I/O General-purpose digital I/O with port interrupt and mappable secondary function P2.2 35 I/O General-purpose digital I/O with port interrupt and mappable secondary function P2.3 36 I/O General-purpose digital I/O with port interrupt and mappable secondary function SIGNAL NAME GPIO (1) 28 DESCRIPTION Spy-Bi-Wire data input/output I = input, O = output Terminal Configuration and Functions Copyright © 2015–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A www.ti.com SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 Table 4-6. Signal Descriptions, PN Package (continued) FUNCTION GPIO I2C PIN NO. SIGNAL TYPE (1) P2.4 37 I/O General-purpose digital I/O with port interrupt and mappable secondary function P2.5 38 I/O General-purpose digital I/O with port interrupt and mappable secondary function P2.6 39 I/O General-purpose digital I/O with port interrupt and mappable secondary function P2.7 40 I/O General-purpose digital I/O with port interrupt and mappable secondary function P3.0 41 I/O General-purpose digital I/O with mappable secondary function P3.1 42 I/O General-purpose digital I/O with mappable secondary function P3.2 43 I/O General-purpose digital I/O with mappable secondary function P3.3 44 I/O General-purpose digital I/O with mappable secondary function P3.4 45 I/O General-purpose digital I/O with mappable secondary function P3.5 46 I/O General-purpose digital I/O with mappable secondary function P3.6 47 I/O General-purpose digital I/O with mappable secondary function P3.7 48 I/O General-purpose digital I/O with mappable secondary function P4.0 49 I/O General-purpose digital I/O P4.1 50 I/O General-purpose digital I/O P4.2 51 I/O General-purpose digital I/O P4.3 52 I/O General-purpose digital I/O P4.4 53 I/O General-purpose digital I/O P4.5 54 I/O General-purpose digital I/O P4.6 55 I/O General-purpose digital I/O P4.7 56 I/O General-purpose digital I/O P5.0 57 I/O General-purpose digital I/O P5.1 58 I/O General-purpose digital I/O P5.2 61 I/O General-purpose digital I/O P5.3 62 I/O General-purpose digital I/O P5.4 63 I/O General-purpose digital I/O P5.5 64 I/O General-purpose digital I/O P5.6 65 I/O General-purpose digital I/O P5.7 66 I/O General-purpose digital I/O P6.0 67 I/O General-purpose digital I/O P6.1 68 I/O General-purpose digital I/O P6.2 69 I/O General-purpose digital I/O P6.3 70 I/O General-purpose digital I/O P6.4 71 I/O General-purpose digital I/O P6.5 72 I/O General-purpose digital I/O P6.6 73 I/O General-purpose digital I/O P6.7 74 I/O General-purpose digital I/O PJ.0 76 I/O General-purpose digital I/O PJ.1 77 I/O General-purpose digital I/O PJ.2 78 I/O General-purpose digital I/O PJ.3 79 I/O General-purpose digital I/O PM_UCB0SCL 33 I/O Default mapping: eUSCI_B0 I2C clock PM_UCB0SDA 34 I/O Default mapping: eUSCI_B0 I2C data SIGNAL NAME DESCRIPTION Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A Copyright © 2015–2018, Texas Instruments Incorporated 29 MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 www.ti.com Table 4-6. Signal Descriptions, PN Package (continued) FUNCTION LCD 30 PIN NO. SIGNAL TYPE (1) COM0 27 O LCD common output COM0 for LCD backplane COM1 28 O LCD common output COM1 for LCD backplane COM2 29 O LCD common output COM2 for LCD backplane COM3 30 O LCD common output COM3 for LCD backplane COM4 31 O LCD common output COM4 for LCD backplane COM5 32 O LCD common output COM5 for LCD backplane COM6 33 O LCD common output COM6 for LCD backplane COM7 34 O LCD common output COM7 for LCD backplane LCDCAP 26 I/O LCD capacitor connection CAUTION: This pin must be connected to DVSS if not used. LCDREF 24 I R03 14 I/O Input/output port of lowest analog LCD voltage (V5) R13 24 I/O Input/output port of third most positive analog LCD voltage (V3 or V4) R23 25 I/O Input/output port of second most positive analog LCD voltage (V2) R33 26 I/O Input/output port of most positive analog LCD voltage (V1) CAUTION: This pin must be connected to DVSS if not used. S0 74 O LCD segment output S0 S1 73 O LCD segment output S1 S2 72 O LCD segment output S2 S3 71 O LCD segment output S3 S4 70 O LCD segment output S4 S5 69 O LCD segment output S5 S6 68 O LCD segment output S6 S7 67 O LCD segment output S7 S8 66 O LCD segment output S8 S9 65 O LCD segment output S9 S10 64 O LCD segment output S10 S11 63 O LCD segment output S11 S12 62 O LCD segment output S12 S13 61 O LCD segment output S13 S14 58 O LCD segment output S14 S15 57 O LCD segment output S15 S16 56 O LCD segment output S16 S17 55 O LCD segment output S17 S18 54 O LCD segment output S18 S19 53 O LCD segment output S19 S20 52 O LCD segment output S20 S21 51 O LCD segment output S21 S22 50 O LCD segment output S22 S23 49 O LCD segment output S23 S24 48 O LCD segment output S24 S25 47 O LCD segment output S25 S26 46 O LCD segment output S26 SIGNAL NAME Terminal Configuration and Functions DESCRIPTION External reference voltage input for regulated LCD voltage Copyright © 2015–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A www.ti.com SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 Table 4-6. Signal Descriptions, PN Package (continued) FUNCTION LCD Power SD24 (2) (3) (4) PIN NO. SIGNAL TYPE (1) S27 45 O LCD segment output S27 S28 44 O LCD segment output S28 S29 43 O LCD segment output S29 S30 42 O LCD segment output S30 S31 41 O LCD segment output S31 S32 40 O LCD segment output S32 S33 39 O LCD segment output S33 S34 38 O LCD segment output S34 S35 37 O LCD segment output S35 S36 36 O LCD segment output S36 S37 35 O LCD segment output S37 S38 34 O LCD segment output S38 S39 33 O LCD segment output S39 AUXVCC1 16 P Auxiliary power supply AUXVCC1 AUXVCC2 15 P Auxiliary power supply AUXVCC2 AUXVCC3 23 P Auxiliary power supply AUXVCC3 for backup subsystem AVCC 9 P Analog power supply AVSS 8 P Analog ground supply DVCC 18 P Digital power supply DVSS 19 P Digital ground supply DVSS 60 P Digital ground supply DVSYS (2) 59 P Digital power supply for I/Os VASYS 10 P Analog power supply selected between AVCC, AUXVCC1, AUXVCC2. Connect recommended capacitor value of CVSYS (see Table 5-18). VCORE (3) 20 P Regulated core power supply (internal use only, no external current loading) VDSYS (2) 17 P Digital power supply selected between DVCC, AUXVCC1, AUXVCC2. Connect recommended capacitor value of CVSYS (see Table 5-18). PM_SD0DIO 46 I/O Default mapping: SD24_B converter 0 bit stream data input/output PM_SD1DIO 47 I/O Default mapping: SD24_B converter 1 bit stream data input/output PM_SD2DIO 48 I/O Default mapping: SD24_B converter 2 bit stream data input/output (not available on F672xA devices) PM_SDCLK 45 I/O Default mapping: SD24_B bit stream clock input/output SD0N0 2 I SD24_B negative analog input for converter 0 (4) SD0P0 1 I SD24_B positive analog input for converter 0 (4) SD1N0 4 I SD24_B negative analog input for converter 1 (4) SD1P0 3 I SD24_B positive analog input for converter 1 (4) SD2N0 6 I SD24_B negative analog input for converter 2 (4) (not available on F672xA devices) SD2P0 5 I SD24_B positive analog input for converter 2 (4) (not available on F672xA devices) VREF 7 I SD24_B external reference voltage SIGNAL NAME DESCRIPTION The pins VDSYS and DVSYS must be connected externally on board for proper device operation. VCORE is for internal use only. No external current loading is possible. VCORE should only be connected to the recommended capacitor value, CVCORE. TI recommends shorting unused analog input pairs and connect them to analog ground. Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A Copyright © 2015–2018, Texas Instruments Incorporated 31 MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 www.ti.com Table 4-6. Signal Descriptions, PN Package (continued) FUNCTION SPI System Timer_A UART (5) 32 PIN NO. SIGNAL TYPE (1) PM_UCA0CLK 31 I/O Default mapping: eUSCI_A0 clock input/output PM_UCA0SIMO 14 I/O Default mapping: eUSCI_A0 SPI slave in/master out PM_UCA0SOMI 13 I/O Default mapping: eUSCI_A0 SPI slave out/master in PM_UCA1CLK 37 I/O Default mapping: eUSCI_A1 clock input/output PM_UCA1SIMO 25 I/O Default mapping: eUSCI_A1 SPI slave in/master out PM_UCA1SOMI 24 I/O Default mapping: eUSCI_A1 SPI slave out/master in PM_UCA2CLK 38 I/O Default mapping: eUSCI_A2 clock input/output PM_UCA2SIMO 36 I/O Default mapping: eUSCI_A2 SPI slave in/master out PM_UCA2SOMI 35 I/O Default mapping: eUSCI_A2 SPI slave out/master in PM_UCB0CLK 32 I/O Default mapping: eUSCI_B0 clock input/output PM_UCB0SIMO 34 I/O Default mapping: eUSCI_B0 SPI slave in/master out PM_UCB0SOMI 33 I/O Default mapping: eUSCI_B0 SPI slave out/master in NMI 80 I RST 80 I/O Reset input active low (5) PM_TA0.0 11 I/O Default mapping: Timer TA0 CCR0 capture: CCI0A input, compare: Out0 output PM_TA0.1 12 I/O Default mapping: Timer TA0 CCR1 capture: CCI1A input, compare: Out1 output PM_TA0.2 44 I/O Default mapping: Timer TA0 capture CCR2: CCI2A input, compare: Out2 output PM_TA1.0 39 I/O Default mapping: Timer TA1 capture CCR0: CCI0A input, compare: Out0 output PM_TA1.1 40 I/O Default mapping: Timer TA1 capture CCR1: CCI1A input, compare: Out1 output PM_TA2.0 41 I/O Default mapping: Timer TA2 capture CCR0: CCI0A input, compare: Out0 output PM_TA2.1 42 I/O Default mapping: Timer TA2 capture CCR1: CCI1A input, compare: Out1 output PM_TACLK 43 I Default mapping: Timer clock input TACLK for TA0, TA1, TA2, TA3 PM_UCA0RXD 13 I Default mapping: eUSCI_A0 UART receive data PM_UCA0TXD 14 O Default mapping: eUSCI_A0 UART transmit data PM_UCA1RXD 24 I Default mapping: eUSCI_A1 UART receive data PM_UCA1TXD 25 O Default mapping: eUSCI_A1 UART transmit data PM_UCA2RXD 35 I Default mapping: eUSCI_A2 UART receive data PM_UCA2TXD 36 O Default mapping: eUSCI_A2 UART transmit data SIGNAL NAME DESCRIPTION Nonmaskable interrupt input When this pin is configured as reset, the internal pullup resistor is enabled by default. Terminal Configuration and Functions Copyright © 2015–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A www.ti.com 4.4 SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 Pin Multiplexing Pin multiplexing for these devices is controlled by both register settings and operating modes (for example, if the device is in test mode). For details of the settings for each pin and schematics of the multiplexed ports, see Section 6.12. 4.5 Buffer Type Table 4-7 describes the buffer types that are referenced in Table 4-3 and Table 4-4. Table 4-7. Buffer Type NOMINAL VOLTAGE HYSTERESIS PU OR PD NOMINAL PU OR PD STRENGTH (µA) OUTPUT DRIVE STRENGTH (mA) LVCMOS 3.0 V Y Programmable See Section 5.8.4 Digital I/O Ports See Section 5.8.4 Digital I/O Ports Analog 3.0 V N N/A N/A N/A Power 3.0 V Y with SVS on N/A N/A N/A BUFFER TYPE (STANDARD) 4.6 OTHER CHARACTERISTICS See analog modules in Section 5, Specifications, for details. Connection of Unused Pins Table 4-8 lists the correct termination of unused pins. Table 4-8. Connection of Unused Pins (1) PIN POTENTIAL COMMENT AVCC DVCC AVSS DVSS Px.y Open Switched to port function, output direction (PxDIR.n = 1). Px.y represents port x and bit y of port x (for example, P1.0, P1.1, P2.2, PJ.0, PJ.1) XIN DVSS For dedicated XIN pins only. XIN pins with shared GPIO functions should be programmed to GPIO and follow Px.y recommendations. XOUT Open For dedicated XOUT pins only. XOUT pins with shared GPIO functions should be programmed to GPIO and follow Px.y recommendations. LCDCAP DVSS RST/NMI DVCC or VCC 47-kΩ pullup or internal pullup selected with 10-nF (2.2-nF) pulldown (2) PJ.0/TDO PJ.1/TDI PJ.2/TMS PJ.3/TCK Open The JTAG pins are shared with general-purpose I/O function (PJ.x). If not being used, these should be switched to port function, output direction (PJDIR.n = 1). When used as JTAG pins, these pins should remain open. TEST Open This pin always has an internal pulldown enabled. (1) (2) Any unused pin with a secondary function that is shared with a general-purpose I/O must follow the Px.y unused pin connection guidelines. The pulldown capacitor should not exceed 2.2 nF when using devices with Spy-Bi-Wire interface in Spy-Bi-Wire mode or in 4-wire JTAG mode with TI tools such as FET interfaces or GANG programmers. Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A Copyright © 2015–2018, Texas Instruments Incorporated 33 MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 www.ti.com 5 Specifications All graphs in this section are for typical conditions, unless otherwise noted. Typical (TYP) values are specified at VCC = 3.3 V and TA = 25°C, unless otherwise noted. 5.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted) (1) Voltage applied at DVCC to DVSS Voltage applied to pins (2) Diode current at pins (3) All pins except VCORE , SD24_B input pins (SDxN0, SDxP0) AUXVCC1, AUXVCC2, and AUXVCC3 (5) MIN MAX –0.3 4.1 V –0.3 VCC + 0.3 V (4) , All pins except SD24_B input pins (SDxN0, SDxP0) ±2 SD0N0, SD0P0, SD1N0, SD1P0, SD2N0, SD2P0 (6) 2 Maximum junction temperature, TJ Storage temperature, Tstg (7) (1) (2) (3) (4) (5) (6) (7) UNIT –55 mA 95 °C 105 °C Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltages referenced to VSS = VDVSS = VAVSS. VCORE is for internal device use only. No external DC loading or voltage should be applied. See Table 5-35 for SD24_B specifications. See Table 5-18 for AUX specifications. A protection diode is connected to VCC for the SD24_B input pins. No protection diode is connected to VSS. Higher temperature may be applied during board soldering according to the current JEDEC J-STD-020 specification with peak reflow temperatures not higher than classified on the device label on the shipping boxes or reels. 5.2 ESD Ratings VALUE V(ESD) (1) (2) 5.3 Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1) ±1000 Charged-device model (CDM), per JEDEC specification JESD22-C101 (2) ±250 Recommended Operating Conditions Supply voltage during program execution and flash programming. V(AVCC) = V(DVCC) = VCC (1) (2) VCC VSS Supply voltage V(AVSS) = V(DVSS) = VSS TA Operating free-air temperature TJ Operating junction temperature CVCORE Recommended capacitor at VCORE CDVCC / CVCORE Capacitor ratio of DVCC to VCORE (2) (3) 34 V JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Pins listed as ±1000 V may actually have higher performance. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Pins listed as ±250 V may actually have higher performance. MIN (1) UNIT NOM MAX UNIT PMMCOREVx = 0 1.8 3.6 PMMCOREVx = 0, 1 2.0 3.6 PMMCOREVx = 0, 1, 2 2.2 3.6 PMMCOREVx = 0, 1, 2, 3 2.4 3.6 I version –40 85 °C I version –40 85 °C 0 (3) 470 V V nF 10 TI recommends powering AVCC and DVCC from the same source. A maximum difference of 0.3 V between V(AVCC) and V(DVCC) can be tolerated during power up and operation. The minimum supply voltage is defined by the supervisor SVS levels when it is enabled. See the Table 5-14 threshold parameters for the exact values and further details. A capacitor tolerance of ±20% or better is required. Specifications Copyright © 2015–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A www.ti.com SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 Recommended Operating Conditions (continued) MIN fSYSTEM Processor frequency (maximum MCLK frequency) (4) (see Figure 5-1) (5) NOM MAX PMMCOREVx = 0, 1.8 V ≤ VCC ≤ 3.6 V (default condition) 0 8.0 PMMCOREVx = 1, 2.0 V ≤ VCC ≤ 3.6 V 0 12.0 PMMCOREVx = 2, 2.2 V ≤ VCC ≤ 3.6 V 0 20.0 PMMCOREVx = 3, 2.4 V ≤ VCC ≤ 3.6 V 0 25.0 UNIT MHz ILOAD, DVCCD Maximum load current that can be drawn from DVCC for core and IO (ILOAD = ICORE + IIO) 20 mA ILOAD, AUX1D Maximum load current that can be drawn from AUXVCC1 for core and IO (ILOAD = ICORE + IIO) 20 mA ILOAD, AUX2D Maximum load current that can be drawn from AUXVCC2 for core and IO (ILOAD = ICORE + IIO) 20 mA ILOAD, AVCCA Maximum load current that can be drawn from AVCC for analog modules (ILOAD = IModules) 10 mA ILOAD, AUX1A Maximum load current that can be drawn from AUXVCC1 for analog modules (ILOAD = IModules) 5 mA ILOAD, AUX2A Maximum load current that can be drawn from AUXVCC2 for analog modules (ILOAD = IModules) 5 mA (4) (5) The MSP430 CPU is clocked directly with MCLK. Both the high and low phase of MCLK must not exceed the pulse width of the specified maximum frequency. Modules may have a different maximum input clock specification. Refer to the specification of the respective module in this data sheet. 25 System Frequency - MHz 3 20 2 2, 3 1 1, 2 1, 2, 3 0, 1 0, 1, 2 0, 1, 2, 3 12 8 0 0 1.8 2.0 2.2 2.4 3.6 Supply Voltage - V The numbers within the fields denote the supported PMMCOREVx settings. Figure 5-1. Maximum System Frequency Specifications Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A Copyright © 2015–2018, Texas Instruments Incorporated 35 MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 5.4 www.ti.com Active Mode Supply Current Into VCC Excluding External Current over recommended operating free-air temperature (unless otherwise noted) (1) (2) (3) FREQUENCY (fDCO = fMCLK = fSMCLK) PARAMETER IAM, IAM, (1) (2) (3) (4) (5) 36 Flash RAM (4) (5) EXECUTION MEMORY Flash RAM VCC 3.0 V 3.0 V PMMCOREVx 1 MHz 8 MHz 12 MHz 20 MHz TYP MAX TYP MAX TYP MAX 0 0.32 0.36 2.10 2.30 1 0.36 2.39 2 0.39 3.54 3.90 2.65 3 0.42 0 0.20 1 0.22 1.30 1.90 2 0.24 1.45 2.15 3.55 3 0.26 1.55 2.30 3.80 2.82 0.22 1.10 25 MHz TYP MAX 3.94 6.54 7.23 4.20 6.96 TYP UNIT MAX mA 8.65 9.54 1.22 2.10 mA 4.0 4.70 5.30 All inputs are tied to 0 or to VCC. Outputs do not source or sink any current. The currents are characterized with a Micro Crystal MS1V-T1K crystal with a load capacitance of 12.5 pF. The internal and external load capacitance are chosen to closely match the required 12.5 pF. Characterized with program executing typical data processing. fACLK = 32786 Hz, fDCO = fMCLK = fSMCLK at specified frequency. XTS = CPUOFF = SCG0 = SCG1 = OSCOFF = SMCLKOFF = 0. Active mode supply current when program executes in flash at a nominal supply voltage of 3 V. Active mode supply current when program executes in RAM at a nominal supply voltage of 3 V. Specifications Copyright © 2015–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A www.ti.com 5.5 SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 Low-Power Mode Supply Currents (Into VCC) Excluding External Current over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1) (2) TEMPERATURE (TA) PARAMETER VCC PMMCOREVx –40°C TYP ILPM0,1MHz Low-power mode 0 (3) (4) ILPM2 Low-power mode 2 (5) (4) ILPM3,XT1LF Low-power mode 3, crystal mode (6) (4) ILPM3,XT1LF ILPM3,VLO ILPM4 Low-power mode 3, crystal mode (6) (4) Low-power mode 3, VLO mode (7) (4) (4) ILPM4.5 Low-power mode 3.5, RTC active on AUXVCC3 (9) Low-power mode 4.5 (10) 60°C TYP MAX TYP 85°C MAX TYP UNIT MAX 0 75 78 87 81 84 96 3.0 V 3 85 89 99 93 98 110 2.2 V 0 5.9 6.2 9 6.9 9.4 17 3.0 V 3 6.9 7.4 10 8.4 11 19 0 1.4 1.7 2.5 4.9 1 1.5 1.9 2.7 5.2 2 1.7 2.0 2.9 5.5 0 2.2 2.5 3.3 5.5 1 2.3 2.7 3.5 5.8 2 2.5 2.9 3.7 6.1 3 2.5 2.9 3.5 3.7 6.1 14.0 0 1.4 1.7 2.2 2.4 4.5 11.5 1 1.5 1.8 2.5 4.7 2 1.6 1.9 2.7 4.9 3 1.6 1.9 2.4 2.7 5.0 12.7 0 1.3 1.6 2.0 2.3 4.4 11.1 1 1.4 1.6 2.4 4.5 2 1.4 1.7 2.5 4.8 2.2 V 3.0 V 3.0 V 3 ILPM3.5 MAX 2.2 V 3.0 V Low-power mode 4 (8) 25°C 1.4 1.7 2.2 V 0.65 0.80 3.0 V 1.16 1.24 3.0 V 0.70 0.78 3.1 2.2 µA µA µA 12.7 µA µA µA 2.5 4.8 0.90 1.30 12.2 2.05 1.43 1.87 2.71 1.05 0.90 1.20 1.85 µA µA (1) (2) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current. The currents are characterized with a Micro Crystal MS1V-T1K crystal with a load capacitance of 12.5 pF. The internal and external load capacitance are chosen to closely match the required 12.5 pF. (3) Current for watchdog timer clocked by SMCLK included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0). CPUOFF = 1, SCG0 = 0, SCG1 = 0, OSCOFF = 0 (LPM0), fACLK = 32768 Hz, fMCLK = 0 MHz, fSMCLK = fDCO = 1 MHz (4) Current for brownout, high-side supervisor (SVSH) normal mode included. Low-side supervisor (SVSL) and low-side monitor (SVML) disabled. High-side monitor (SVMH) disabled. RAM retention enabled. (5) Current for watchdog timer clocked by ACLK and RTC clocked by XT1 included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0). CPUOFF = 1, SCG0 = 0, SCG1 = 1, OSCOFF = 0 (LPM2), fACLK = 32768 Hz, fMCLK = 0 MHz, fSMCLK = fDCO = 0 MHz, DCO setting = 1-MHz operation, DCO bias generator enabled. (6) Current for watchdog timer clocked by ACLK and RTC clocked by XT1 included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0). CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3), fACLK = 32768 Hz, fMCLK = fSMCLK = fDCO = 0 MHz (7) Current for watchdog timer clocked by ACLK included. RTC is disabled (RTCHOLD=1). ACLK = VLO. CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3), fACLK = fVLO, fMCLK = fSMCLK = fDCO = 0 MHz (8) CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1 (LPM4), fDCO = fACLK = fMCLK = fSMCLK = 0 MHz (9) fDCO = fMCLK = fSMCLK = 0 MHz, fACLK = 32768 Hz, PMMREGOFF = 1, RTC active on AUXVCC3 supply (10) fDCO = fMCLK = fSMCLK = 0 MHz, fACLK = 0 Hz, PMMREGOFF = 1 Specifications Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A Copyright © 2015–2018, Texas Instruments Incorporated 37 MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 5.6 www.ti.com Low-Power Mode With LCD Supply Currents (Into VCC) Excluding External Current over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1) (2) TEMPERATURE (TA) PARAMETER VCC PMMCOREVx –40°C TYP ILPM3 LCD, int. bias Low-power mode 3 (LPM3) current, LCD 4mux mode, internal biasing, charge pump disabled (3) (4) ILPM3 LCD, int. bias Low-power mode 3 (LPM3) current, LCD 4mux mode, internal biasing, charge pump disabled (3) (4) 2.2 V 3.0 V 2.2 V ILPM3 LCD,CP (1) (2) (3) (4) (5) 38 Low-power mode 3 (LPM3) current, LCD 4mux mode, internal biasing, charge pump enabled (3) (5) 3.0 V MAX 25°C 60°C TYP MAX TYP 3.6 85°C MAX UNIT TYP MAX 3.8 5.8 12.2 4.0 6.0 0 2.4 2.9 1 2.5 3.1 2 2.6 3.3 3.9 4.2 6.3 13.4 0 2.8 3.2 3.9 4.1 6.4 13.3 1 2.9 3.4 4.3 6.7 2 3.1 3.6 4.5 7.0 3 3.1 3.6 4.5 7.0 0 3.8 1 3.9 2 4.0 0 4.0 1 4.1 2 4.2 3 4.2 4.5 µA µA 14.7 µA All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current. The currents are characterized with a Micro Crystal MS1V-T1K crystal with a load capacitance of 12.5 pF. The internal and external load capacitance are chosen to closely match the required 12.5 pF. Current for watchdog timer clocked by ACLK and RTC clocked by XT1 included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0). CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3), fACLK = 32768 Hz, fMCLK = fSMCLK = fDCO = 0 MHz Current for brownout and high-side supervisor (SVSH) normal mode included. Low-side supervisor (SVSL) and low-side monitor (SVML) disabled. High-side monitor (SVMH) disabled. RAM retention enabled. LCDMx = 11 (4-mux mode), LCDREXT = 0, LCDEXTBIAS = 0 (internal biasing), LCD2B = 0 (1/3 bias), LCDCPEN = 0 (charge pump disabled), LCDSSEL = 0, LCDPREx = 101, LCDDIVx = 00011 (fLCD = 32768 Hz / 32 / 4 = 256 Hz) Even segments S0, S2, ... = 0 and odd segments S1, S3, ... = 1. No LCD panel load. LCDMx = 11 (4-mux mode), LCDREXT = 0, LCDEXTBIAS = 0 (internal biasing), LCD2B = 0 (1/3 bias), LCDCPEN = 1 (charge pump enabled), VLCDx = 1000 (VLCD = 3 V, typical), LCDSSEL = 0, LCDPREx = 101, LCDDIVx = 00011 (fLCD = 32768 Hz / 32 / 4 = 256 Hz) Even segments S0, S2, ... = 0 and odd segments S1, S3, ... = 1. No LCD panel load. Specifications Copyright © 2015–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A www.ti.com 5.7 SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 Thermal Resistance Characteristics THERMAL METRIC (1) (2) RθJA Junction-to-ambient thermal resistance, still air RθJC(TOP) Junction-to-case (top) thermal resistance RθJC(BOTTOM) Junction-to-case (bottom) thermal resistance RθJB Junction-to-board thermal resistance ΨJT Junction-to-package-top thermal characterization parameter ΨJB Junction-to-board thermal characterization parameter (1) (2) (3) VALUE LQFP 80 (PN) 46.3 LQFP 100 (PZ) 45.6 LQFP 80 (PN) 11.5 LQFP 100 (PZ) 11.0 LQFP 80 (PN) N/A (3) LQFP 100 (PZ) N/A LQFP 80 (PN) 21.9 LQFP 100 (PZ) 23.4 LQFP 80 (PN) 0.5 LQFP 100 (PZ) 0.4 LQFP 80 (PN) 21.6 LQFP 100 (PZ) 23.0 UNIT °C/W °C/W °C/W °C/W °C/W °C/W For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics. These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RθJC] value, which is based on a JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these EIA/JEDEC standards: • JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air) • JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages • JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages • JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements N/A = not applicable Specifications Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A Copyright © 2015–2018, Texas Instruments Incorporated 39 MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 5.8 www.ti.com Timing and Switching Characteristics 5.8.1 Power Supply Sequencing TI recommends powering AVCC and DVCC pins from the same source. At a minimum, during power up, power down, and device operation, the voltage difference between AVCC and DVCC must not exceed the limits specified in Absolute Maximum Ratings. Exceeding the specified limits may cause malfunction of the device including erroneous writes to RAM and flash. 5.8.2 Reset Timing Table 5-1 lists the device wake-up times. Table 5-1. Wake-up Times From Low-Power Modes and Reset over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT fMCLK ≥ 4 MHz 3 5 1 MHz < fMCLK < 4 MHz 4 6 150 160 µs tWAKE-UP-FAST Wake-up time from LPM2, LPM3, or LPM4 to active mode (1) PMMCOREV = SVSMLRRL = n (where n = 0, 1, 2, or 3), SVSLFP = 1 tWAKE-UP-SLOW Wake-up time from LPM2, LPM3, or LPM4 to active mode (2) (3) PMMCOREV = SVSMLRRL = n (where n = 0, 1, 2, or 3), SVSLFP = 0 tWAKE-UP-LPM4.5 Wake-up time from LPM4.5 to active mode (4) 2 3 ms tWAKE-UP-RESET Wake-up time from RST or BOR event to active mode (4) 2 3 ms (1) (2) (3) (4) 40 µs This value represents the time from the wake-up event to the first active edge of MCLK. The wake-up time depends on the performance mode of the low-side supervisor (SVSL) and low-side monitor (SVML). tWAKE-UP-FAST is possible with SVSL and SVML in full performance mode or disabled. For specific register settings, see the Low-Side SVS and SVM Control and Performance Mode Selection section in the Power Management Module and Supply Voltage Supervisor chapter of the MSP430x5xx and MSP430x6xx Family User's Guide. This value represents the time from the wake-up event to the first active edge of MCLK. The wake-up time depends on the performance mode of the low-side supervisor (SVSL) and low-side monitor (SVML). tWAKE-UP-SLOW is set with SVSL and SVML in normal mode (low current mode). For specific register settings, see the Low-Side SVS and SVM Control and Performance Mode Selection section in the Power Management Module and Supply Voltage Supervisor chapter of the MSP430x5xx and MSP430x6xx Family User's Guide. The wake-up times from LPM0 and LPM1 to AM are not specified. They are proportional to MCLK cycle time but are not affected by the performance mode settings as for LPM2, LPM3, and LPM4. This value represents the time from the wake-up event to the reset vector execution. Specifications Copyright © 2015–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A www.ti.com 5.8.3 SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 Clock Specifications Table 5-2 lists the characteristics of the crystal oscillator in low-frequency mode. Table 5-2. Crystal Oscillator, XT1, Low-Frequency Mode (1) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER ΔIDVCC.LF Differential XT1 oscillator crystal current consumption from lowest drive setting, LF mode TEST CONDITIONS VCC MIN fOSC = 32768 Hz, XTS = 0, XT1BYPASS = 0, XT1DRIVEx = 1, TA = 25°C fOSC = 32768 Hz, XTS = 0, XT1BYPASS = 0, XT1DRIVEx = 2, TA = 25°C 3.0 V 0.170 0.290 XTS = 0, XT1BYPASS = 0 32768 XT1 oscillator crystal frequency, LF mode fXT1,LF,SW XT1 oscillator logic-level square-wave input frequency, XTS = 0, XT1BYPASS = 1 (2) LF mode OALF Oscillation allowance for LF crystals (4) (3) 10 fFault,LF tSTART,LF 210 XTS = 0, XT1BYPASS = 0, XT1DRIVEx = 1, fXT1,LF = 32768 Hz, CL,eff = 12 pF 300 (1) (2) (3) (4) (5) (6) (7) (8) XTS = 0, XCAPx = 2 8.5 XTS = 0, XCAPx = 3 12.0 Oscillator fault frequency, LF mode (7) XTS = 0 (8) fOSC = 32768 Hz, XTS = 0, XT1BYPASS = 0, XT1DRIVEx = 0, TA = 25°C, CL,eff = 6 pF fOSC = 32768 Hz, XTS = 0, XT1BYPASS = 0, XT1DRIVEx = 3, TA = 25°C, CL,eff = 12 pF µA Hz 50 kHz 1 5.5 Duty cycle, LF mode UNIT kΩ XTS = 0, XCAPx = 1 XTS = 0, Measured at ACLK, fXT1,LF = 32768 Hz Start-up time, LF mode 32.768 XTS = 0, XT1BYPASS = 0, XT1DRIVEx = 0, fXT1,LF = 32768 Hz, CL,eff = 6 pF XTS = 0, XCAPx = 0 (6) CL,eff MAX 0.075 fOSC = 32768 Hz, XTS = 0, XT1BYPASS = 0, XT1DRIVEx = 3, TA = 25°C fXT1,LF0 Integrated effective load capacitance, LF mode (5) TYP pF 30% 70% 10 10000 Hz 1000 3.0 V ms 500 To improve EMI on the XT1 oscillator, the following guidelines should be observed. • Keep the trace between the device and the crystal as short as possible. • Design a good ground plane around the oscillator pins. • Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT. • Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins. • Use assembly materials and processes that avoid any parasitic load on the oscillator XIN and XOUT pins. • If conformal coating is used, ensure that it does not induce capacitive or resistive leakage between the oscillator pins. When XT1BYPASS is set, XT1 circuits are automatically powered down. Input signal is a digital square wave with parametrics defined in the Schmitt-Trigger Inputs section of this data sheet. Maximum frequency of operation of the entire device cannot be exceeded. Oscillation allowance is based on a safety factor of 5 for recommended crystals. The oscillation allowance is a function of the XT1DRIVEx settings and the effective load. In general, comparable oscillator allowance can be achieved based on the following guidelines, but should be evaluated based on the actual crystal selected for the application: • For XT1DRIVEx = 0, CL,eff ≤ 6 pF • For XT1DRIVEx = 1, 6 pF ≤ CL,eff ≤ 9 pF • For XT1DRIVEx = 2, 6 pF ≤ CL,eff ≤ 10 pF • For XT1DRIVEx = 3, CL,eff ≥ 6 pF Includes parasitic bond and package capacitance (approximately 2 pF per pin). Because the PCB adds additional capacitance, TI recommends verifying the correct load by measuring the ACLK frequency. For a correct setup, the effective load capacitance should always match the specification of the used crystal. Requires external capacitors at both terminals. Values are specified by crystal manufacturers. Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag. Frequencies in between might set the flag. Measured with logic-level input frequency but also applies to operation with crystals. Specifications Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A Copyright © 2015–2018, Texas Instruments Incorporated 41 MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 www.ti.com Table 5-3 lists the characteristics of the VLO. Table 5-3. Internal Very-Low-Power Low-Frequency Oscillator (VLO) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER fVLO VLO frequency dfVLO/dT VLO frequency temperature drift dfVLO/dVCC VLO frequency supply voltage drift Duty cycle (1) (2) TEST CONDITIONS Measured at ACLK VCC MIN TYP MAX 6 9.4 15 1.8 V to 3.6 V (1) 1.8 V to 3.6 V 0.5 Measured at ACLK (2) 1.8 V to 3.6 V 4 Measured at ACLK 1.8 V to 3.6 V Measured at ACLK 30% UNIT kHz %/°C %/V 70% Calculated using the box method: (MAX(–40°C to 85°C) – MIN(–40°C to 85°C)) / MIN(85°C – (–40°C)) Calculated using the box method: (MAX(1.8 V to 3.6 V) – MIN(1.8 V to 3.6 V)) / MIN(1.8 V to 3.6 V) / (3.6 V – 1.8 V) Table 5-4 lists the characteristics of the REFO. Table 5-4. Internal Reference, Low-Frequency Oscillator (REFO) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER IREFO fREFO TEST CONDITIONS VCC MIN TYP TA = 25°C 1.8 V to 3.6 V 3 REFO frequency calibrated Measured at ACLK 1.8 V to 3.6 V 32768 Full temperature range 1.8 V to 3.6 V ±3.5% 3V ±1.5% REFO absolute tolerance calibrated TA = 25°C dfREFO/dT REFO frequency temperature drift (1) 1.8 V to 3.6 V 0.01 dfREFO/dVCC REFO frequency supply voltage drift Measured at ACLK (2) 1.8 V to 3.6 V 1.0 Duty cycle Measured at ACLK 1.8 V to 3.6 V REFO start-up time 40%/60% duty cycle 1.8 V to 3.6 V tSTART (1) (2) 42 MAX REFO oscillator current consumption Measured at ACLK 40% 50% 25 UNIT µA Hz %/°C %/V 60% µs Calculated using the box method: (MAX(–40°C to 85°C) – MIN(–40°C to 85°C)) / MIN(85°C – (–40°C)) Calculated using the box method: (MAX(1.8 V to 3.6 V) – MIN(1.8 V to 3.6 V)) / MIN(1.8 V to 3.6 V) / (3.6 V – 1.8 V) Specifications Copyright © 2015–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A www.ti.com SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 Table 5-5 lists the DCO frequencies. Table 5-5. DCO Frequency over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5-2) PARAMETER fDCO(0,0) TEST CONDITIONS DCO frequency (0, 0) (1) (1) MAX UNIT DCORSELx = 0, DCOx = 0, MODx = 0 0.07 MIN TYP 0.20 MHz fDCO(0,31) DCO frequency (0, 31) DCORSELx = 0, DCOx = 31, MODx = 0 0.70 1.70 MHz fDCO(1,0) DCO frequency (1, 0) (1) DCORSELx = 1, DCOx = 0, MODx = 0 0.15 0.36 MHz fDCO(1,31) DCO frequency (1, 31) (1) DCORSELx = 1, DCOx = 31, MODx = 0 1.47 3.45 MHz fDCO(2,0) DCO frequency (2, 0) (1) DCORSELx = 2, DCOx = 0, MODx = 0 0.32 0.75 MHz (1) fDCO(2,31) DCO frequency (2, 31) DCORSELx = 2, DCOx = 31, MODx = 0 3.17 7.38 MHz fDCO(3,0) DCO frequency (3, 0) (1) DCORSELx = 3, DCOx = 0, MODx = 0 0.64 1.51 MHz fDCO(3,31) DCO frequency (3, 31) (1) DCORSELx = 3, DCOx = 31, MODx = 0 6.07 14.0 MHz (1) fDCO(4,0) DCO frequency (4, 0) DCORSELx = 4, DCOx = 0, MODx = 0 1.3 3.2 MHz fDCO(4,31) DCO frequency (4, 31) (1) DCORSELx = 4, DCOx = 31, MODx = 0 12.3 28.2 MHz fDCO(5,0) DCO frequency (5, 0) (1) DCORSELx = 5, DCOx = 0, MODx = 0 2.5 6.0 MHz (1) fDCO(5,31) DCO frequency (5, 31) DCORSELx = 5, DCOx = 31, MODx = 0 23.7 54.1 MHz fDCO(6,0) DCO frequency (6, 0) (1) DCORSELx = 6, DCOx = 0, MODx = 0 4.6 10.7 MHz fDCO(6,31) DCO frequency (6, 31) (1) DCORSELx = 6, DCOx = 31, MODx = 0 39.0 88.0 MHz fDCO(7,0) DCO frequency (7, 0) (1) DCORSELx = 7, DCOx = 0, MODx = 0 8.5 19.6 MHz (1) fDCO(7,31) DCO frequency (7, 31) DCORSELx = 7, DCOx = 31, MODx = 0 60 135 MHz SDCORSEL Frequency step between range DCORSEL and DCORSEL + 1 SRSEL = fDCO(DCORSEL+1,DCO)/fDCO(DCORSEL,DCO) 1.2 2.3 ratio SDCO Frequency step between tap DCO and DCO + 1 SDCO = fDCO(DCORSEL,DCO+1)/fDCO(DCORSEL,DCO) 1.02 1.12 ratio 40% Duty cycle Measured at SMCLK dfDCO/dT DCO frequency temperature drift fDCO = 1 MHz 0.1 %/°C dfDCO/dVCORE DCO frequency voltage drift fDCO = 1 MHz 1.9 %/V (1) 50% 60% When selecting the proper DCO frequency range (DCORSELx), the target DCO frequency, fDCO, should be set to reside within the range of fDCO(n, 0),MAX ≤ fDCO ≤ fDCO(n, 31),MIN, where fDCO(n, 0),MAX represents the maximum frequency specified for the DCO frequency, range n, tap 0 (DCOx = 0) and fDCO(n,31),MIN represents the minimum frequency specified for the DCO frequency, range n, tap 31 (DCOx = 31). This ensures that the target DCO frequency resides within the range selected. It should also be noted that if the actual fDCOfrequency for the selected range causes the FLL or the application to select tap 0 or 31, the DCO fault flag is set to report that the selected range is at its minimum or maximum tap setting. 100 VCC = 3.0 V TA = 25°C fDCO – MHz 10 DCOx = 31 1 0.1 DCOx = 0 0 1 2 3 4 5 6 7 DCORSEL Figure 5-2. Typical DCO Frequency Specifications Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A Copyright © 2015–2018, Texas Instruments Incorporated 43 MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 5.8.4 www.ti.com Digital I/O Ports Table 5-6 lists the characteristics of the GPIOs. Table 5-6. Schmitt-Trigger Inputs, General-Purpose I/O over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VIT+ Positive-going input threshold voltage VIT– Negative-going input threshold voltage Vhys Input voltage hysteresis (VIT+ – VIT–) RPull Pullup or pulldown resistor (1) For pullup: VIN = VSS For pulldown: VIN = VCC CI Input capacitance VIN = VSS or VCC (1) VCC MIN 1.8 V 0.80 1.40 3V 1.50 2.10 1.8 V 0.45 1.00 3V 0.75 1.65 1.8 V 0.3 0.85 3V 0.4 1.0 20 TYP 35 MAX UNIT V V V 50 kΩ 5 pF Also applies to RST pin when pullup or pulldown resistor is enabled. Table 5-7 lists the characteristics of the P1 and P2 inputs. Table 5-7. Inputs, Ports P1 and P2 (1) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) t(int) (1) (2) PARAMETER TEST CONDITIONS VCC External interrupt timing (2) Port P1, P2: P1.x to P2.x, External trigger pulse duration to set interrupt flag 2.2 V, 3 V MIN MAX UNIT 20 ns Some devices may contain additional ports with interrupts. See the block diagram and terminal function descriptions. An external signal sets the interrupt flag every time the minimum interrupt pulse duration t(int) is met. It might be set by trigger signals shorter than t(int). Table 5-8 lists the leakage currents of the GPIOs. Table 5-8. Leakage Current, General-Purpose I/O over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER Ilkg(Px.y) (1) (2) 44 High-impedance leakage current TEST CONDITIONS See (1) (2) VCC MIN 1.8 V, 3 V MAX UNIT ±50 nA The leakage current is measured with VSSor VCC applied to the corresponding pins, unless otherwise noted. The leakage of the digital port pins is measured individually. The port pin is selected for input and the pullup or pulldown resistor is disabled. Specifications Copyright © 2015–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A www.ti.com SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 Table 5-9 lists the output characteristics of the GPIOs in full drive strength mode. Also see Figure 5-3 through Figure 5-6. Table 5-9. Outputs, General-Purpose I/O (Full Drive Strength) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS I(OHmax) = –3 mA (1) VOH High-level output voltage I(OHmax) = –10 mA (1) I(OHmax) = –5 mA (1) I(OHmax) = –15 mA (1) I(OLmax) = 3 mA (2) VOL Low-level output voltage I(OLmax) = 10 mA (3) I(OLmax) = 5 mA (2) I(OLmax) = 15 mA (3) (1) (2) (3) VCC 1.8 V 3V 1.8 V 3V MIN MAX VCC – 0.25 VCC VCC – 0.60 VCC VCC – 0.25 VCC VCC – 0.60 VCC VSS VSS + 0.25 VSS VSS + 0.60 VSS VSS + 0.25 VSS VSS + 0.60 UNIT V V The maximum total current, I(OHmax), for all outputs combined should not exceed ±20 mA to hold the maximum voltage drop specified. See Section 5.3 for more details. The maximum total current, I(OLmax), for all outputs combined should not exceed ±48 mA to hold the maximum voltage drop specified. The maximum total current, I(OLmax), for all outputs combined should not exceed ±100 mA to hold the maximum voltage drop specified. Specifications Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A Copyright © 2015–2018, Texas Instruments Incorporated 45 MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 5.8.4.1 www.ti.com Typical Characteristics, General-Purpose I/O (Full Drive Strength) 0 -10 -5 IOH – High-Level Output Current – mA IOH – High-Level Output Current – mA 0 -10 -15 TA = 85°C -20 -20 -30 -40 TA = 85°C -50 TA = 25°C TA = 25°C -60 -25 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 0 1.8 0.5 VCC = 1.8 V Full Drive Strength Figure 5-3. High-Level Output Current vs High-Level Output Voltage 2 VCC = 3 V 2.5 3 Full Drive Strength 60 50 20 IOL – Low-Level Output Current – mA IOL – Low-Level Output Current – mA 1.5 Figure 5-4. High-Level Output Current vs High-Level Output Voltage 25 TA = 25°C TA = 85°C 15 10 5 TA = 25°C TA = 85°C 40 30 20 10 0 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 0 0.5 VCC = 1.8 V Full Drive Strength Figure 5-5. Low-Level Output Current vs Low-Level Output Voltage Specifications 1 1.5 2 2.5 3 VOL – Low-Level Output Voltage – V VOL – Low-Level Output Voltage – V 46 1 VOH – High-Level Output Voltage – V VOH – High-Level Output Voltage – V VCC = 3 V Full Drive Strength Figure 5-6. Low-Level Output Current vs Low-Level Output Voltage Copyright © 2015–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A www.ti.com SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 Table 5-10 lists the output characteristics of the GPIOs in reduced drive strength mode. Also see Figure 57 through Figure 5-10. Table 5-10. Outputs, General-Purpose I/O (Reduced Drive Strength) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1) PARAMETER TEST CONDITIONS I(OHmax) = –1 mA (2) VOH High-level output voltage I(OHmax) = –3 mA (2) I(OHmax) = –2 mA (2) I(OHmax) = –6 mA (2) I(OLmax) = 1 mA (3) VOL Low-level output voltage I(OLmax) = 3 mA (4) I(OLmax) = 2 mA (3) I(OLmax) = 6 mA (4) (1) (2) (3) (4) VCC 1.8 V 3.0 V 1.8 V 3.0 V MIN MAX VCC – 0.25 VCC VCC – 0.60 VCC VCC – 0.25 VCC VCC – 0.60 VCC VSS VSS + 0.25 VSS VSS + 0.60 VSS VSS + 0.25 VSS VSS + 0.60 UNIT V V Selecting reduced drive strength may reduce EMI. The maximum total current, I(OHmax), for all outputs combined should not exceed ±20 mA to hold the maximum voltage drop specified. See Section 5.3 for more details. The maximum total current, I(OLmax), for all outputs combined, should not exceed ±48 mA to hold the maximum voltage drop specified. The maximum total current, I(OLmax), for all outputs combined, should not exceed ±100 mA to hold the maximum voltage drop specified. Specifications Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A Copyright © 2015–2018, Texas Instruments Incorporated 47 MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 5.8.4.2 www.ti.com Typical Characteristics, General-Purpose I/O (Reduced Drive Strength) 0 0 IOH – High-Level Output Current – mA IOH – High-Level Output Current – mA -1 -2 -3 -4 -5 TA = 85°C -6 -5 -10 -15 TA = 85°C -20 TA = 25°C -7 TA = 25°C -8 -25 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 0 0.5 VOH – High-Level Output Voltage – V VCC = 1.8 V Reduced Drive Strength Figure 5-7. High-Level Output Current vs High-Level Output Voltage VCC = 3 V 2 2.5 3 Reduced Drive Strength 20 18 7 TA = 25°C TA = 25°C IOL – Low-Level Output Current – mA IOL – Low-Level Output Current – mA 1.5 Figure 5-8. High-Level Output Current vs High-Level Output Voltage 8 6 TA = 85°C 5 4 3 2 1 16 TA = 85°C 14 12 10 8 6 4 2 0 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 0 0.5 VCC = 1.8 V Reduced Drive Strength Figure 5-9. Low-Level Output Current vs Low-Level Output Voltage Specifications 1 1.5 2 2.5 3 VOL – Low-Level Output Voltage – V VOL – Low-Level Output Voltage – V 48 1 VOH – High-Level Output Voltage – V VCC = 3 V Reduced Drive Strength Figure 5-10. Low-Level Output Current vs Low-Level Output Voltage Copyright © 2015–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A www.ti.com SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 Table 5-11 lists the output frequencies of the GPIOs. Table 5-11. Output Frequency, General-Purpose I/O over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER fPx.y Port output frequency (with load) fPort_CLK (1) (2) Clock output frequency TEST CONDITIONS See (1) (2) ACLK, SMCLK, MCLK, CL = 20 pF (2) MIN MAX VCC = 1.8 V, PMMCOREVx = 0 16 VCC = 3 V, PMMCOREVx = 3 25 VCC = 1.8 V, PMMCOREVx = 0 16 VCC = 3 V, PMMCOREVx = 3 25 UNIT MHz MHz A resistive divider with 2 × R1 between VCC and VSS is used as load. The output is connected to the center tap of the divider. For full drive strength, R1 = 550 Ω. For reduced drive strength, R1 = 1.6 kΩ. CL = 20 pF is connected to the output to VSS. The output voltage reaches at least 10% and 90% VCC at the specified toggle frequency. Specifications Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A Copyright © 2015–2018, Texas Instruments Incorporated 49 MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 5.8.5 www.ti.com Power-Management Module (PMM) Table 5-12 lists the characteristics of the BOR. Table 5-12. PMM, Brownout Reset (BOR) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS V(DVCC_BOR_IT–) BORH on voltage, DVCC falling level | dDVCC/dt | < 3 V/s V(DVCC_BOR_IT+) BORH off voltage, DVCC rising level | dDVCC/dt | < 3 V/s V(DVCC_BOR_hys) BORH hysteresis tRESET (1) TYP 0.80 1.30 50 Pulse duration required at RST/NMI pin to accept a reset (1) MIN MAX UNIT 1.45 V 1.50 V 250 mV 2 µs Pulse shorter than 2 µs might trigger reset. Table 5-13 lists the characteristics of the PMM core voltage. Table 5-13. PMM, Core Voltage over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT VCORE3(AM) Core voltage, active mode, PMMCOREV = 3 2.4 V ≤ DVCC ≤ 3.6 V 1.93 V VCORE2(AM) Core voltage, active mode, PMMCOREV = 2 2.2 V ≤ DVCC ≤ 3.6 V 1.83 V VCORE1(AM) Core voltage, active mode, PMMCOREV = 1 2.0 V ≤ DVCC ≤ 3.6 V 1.62 V VCORE0(AM) Core voltage, active mode, PMMCOREV = 0 1.8 V ≤ DVCC ≤ 3.6 V 1.42 V VCORE3(LPM) Core voltage, low-current mode, PMMCOREV = 3 2.4 V ≤ DVCC ≤ 3.6 V 1.96 V VCORE2(LPM) Core voltage, low-current mode, PMMCOREV = 2 2.2 V ≤ DVCC ≤ 3.6 V 1.94 V VCORE1(LPM) Core voltage, low-current mode, PMMCOREV = 1 2.0 V ≤ DVCC ≤ 3.6 V 1.74 V VCORE0(LPM) Core voltage, low-current mode, PMMCOREV = 0 1.8 V ≤ DVCC ≤ 3.6 V 1.54 V 50 Specifications Copyright © 2015–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A www.ti.com SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 Table 5-14 lists the characteristics of the high-side SVS. Table 5-14. PMM, SVS High Side over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS MIN SVSHE = 0, DVCC = 3.6 V I(SVSH) SVS current consumption SVSHE = 1, DVCC = 3.6 V, SVSHFP = 0 V(SVSH_IT+) SVSH on voltage level (1) SVSH off voltage level (1) tpd(SVSH) SVSH propagation delay t(SVSH) SVSH on or off delay time dVDVCC/dt DVCC rise time (1) MAX UNIT 0 nA 200 SVSHE = 1, DVCC = 3.6 V, SVSHFP = 1 V(SVSH_IT–) TYP 1.5 µA SVSHE = 1, SVSHRVL = 0 1.60 1.65 1.70 SVSHE = 1, SVSHRVL = 1 1.77 1.84 1.90 SVSHE = 1, SVSHRVL = 2 1.97 2.04 2.10 SVSHE = 1, SVSHRVL = 3 2.09 2.16 2.23 SVSHE = 1, SVSMHRRL = 0 1.68 1.74 1.80 SVSHE = 1, SVSMHRRL = 1 1.89 1.95 2.01 SVSHE = 1, SVSMHRRL = 2 2.08 2.14 2.21 SVSHE = 1, SVSMHRRL = 3 2.21 2.27 2.34 SVSHE = 1, SVSMHRRL = 4 2.35 2.41 2.49 SVSHE = 1, SVSMHRRL = 5 2.65 2.72 2.80 SVSHE = 1, SVSMHRRL = 6 2.96 3.04 3.13 SVSHE = 1, SVSMHRRL = 7 2.96 3.04 3.13 SVSHE = 1, dVDVCC/dt = 10 mV/µs, SVSHFP = 1 2.5 SVSHE = 1, dVDVCC/dt = 1 mV/µs, SVSHFP = 0 20 SVSHE = 0 → 1, SVSHFP = 1 12.5 SVSHE = 0 → 1, SVSHFP = 0 100 0 V V µs µs 1000 V/s The SVSH settings available depend on the VCORE (PMMCOREVx) setting. Please refer to the Power Management Module and Supply Voltage Supervisor chapter in the MSP430x5xx and MSP430x6xx Family User's Guide on recommended settings and use. Table 5-15 lists the characteristics of the high-side SVM. Table 5-15. PMM, SVM High Side over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS MIN SVMHE = 0, DVCC = 3.6 V I(SVMH) SVMH current consumption SVMH on or off voltage level (1) SVMHE = 1, DVCC = 3.6 V, SVMHFP = 0 SVMH propagation delay t(SVMH) SVMH on or off delay time (1) UNIT nA 200 1.5 µA SVMHE = 1, SVSMHRRL = 0 1.68 1.74 1.80 SVMHE = 1, SVSMHRRL = 1 1.89 1.95 2.01 SVMHE = 1, SVSMHRRL = 2 2.08 2.14 2.21 SVMHE = 1, SVSMHRRL = 3 2.21 2.27 2.34 SVMHE = 1, SVSMHRRL = 4 2.35 2.41 2.49 SVMHE = 1, SVSMHRRL = 5 2.65 2.72 2.80 SVMHE = 1, SVSMHRRL = 6 2.96 3.04 3.13 SVMHE = 1, SVSMHRRL = 7 2.96 3.04 3.13 SVMHE = 1, SVMHOVPE = 1 tpd(SVMH) MAX 0 SVMHE = 1, DVCC = 3.6 V, SVMHFP = 1 V(SVMH) TYP V 3.79 SVMHE = 1, dVDVCC/dt = 10 mV/µs, SVMHFP = 1 2.5 SVMHE = 1, dVDVCC/dt = 1 mV/µs, SVMHFP = 0 20 SVMHE = 0 → 1, SVMHFP = 1 12.5 SVMHE = 0 → 1, SVMHFP = 0 100 µs µs The SVMH settings available depend on the VCORE (PMMCOREVx) setting. Refer to the Power Management Module and Supply Voltage Supervisor chapter in the MSP430x5xx and MSP430x6xx Family User's Guide on recommended settings and use. Specifications Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A Copyright © 2015–2018, Texas Instruments Incorporated 51 MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 www.ti.com Table 5-16 lists the characteristics of the low-side SVS. Table 5-16. PMM, SVS Low Side over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS MIN SVSLE = 0, PMMCOREV = 2 I(SVSL) SVSL current consumption tpd(SVSL) SVSL propagation delay t(SVSL) SVSL on or off delay time TYP MAX 0 SVSLE = 1, PMMCOREV = 2, SVSLFP = 0 200 SVSLE = 1, PMMCOREV = 2, SVSLFP = 1 1.5 SVSLE = 1, dVCORE/dt = 10 mV/µs, SVSLFP = 1 2.5 SVSLE = 1, dVCORE/dt = 1 mV/µs, SVSLFP = 0 20 SVSLE = 0 → 1, SVSLFP = 1 12.5 SVSLE = 0 → 1, SVSLFP = 0 100 UNIT nA µA µs µs Table 5-17 lists the characteristics of the low-side SVM. Table 5-17. PMM, SVM Low Side over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS MIN SVMLE = 0, PMMCOREV = 2 I(SVML) SVML current consumption tpd(SVML) SVML propagation delay t(SVML) SVML on or off delay time 52 Specifications TYP 0 SVMLE = 1, PMMCOREV = 2, SVMLFP = 0 200 SVMLE = 1, PMMCOREV = 2, SVMLFP = 1 1.5 SVMLE = 1, dVCORE/dt = 10 mV/µs, SVMLFP = 1 2.5 SVMLE = 1, dVCORE/dt = 1 mV/µs, SVMLFP = 0 20 SVMLE = 0 → 1, SVMLFP = 1 12.5 SVMLE = 0 → 1, SVMLFP = 0 100 MAX UNIT nA µA µs µs Copyright © 2015–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A www.ti.com 5.8.6 SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 Auxiliary Supplies Module Table 5-18 lists the recommended operating conditions of the auxiliary supplies. Table 5-18. Auxiliary Supplies, Recommended Operating Conditions over operating free-air temperature range (unless otherwise noted) MIN VCC Supply voltage for all supplies at pins DVCC, AVCC, AUX1, AUX2, AUX3 NOM MAX 1.8 3.6 PMMCOREVx = 0 1.8 3.6 PMMCOREVx = 1 2.0 3.6 PMMCOREVx = 2 2.2 3.6 2.4 3.6 UNIT V VDSYS Digital system supply voltage range, VDSYS = VCC – RON × ILOAD VASYS Analog system supply voltage range, VASYS = VCC - RON × ILOAD CVCC, CAUX1/2 Recommended capacitor at pins DVCC, AVCC, AUX1, AUX2 CVSYS Recommended capacitor at pins VDSYS and VASYS CVCORE Recommended capacitance at pin VCORE CAUX3 Recommended capacitor at pin AUX3 0.47 µF PMMCOREVx = 3 Refer to modules V V 4.7 µF 4.7 µF 0.47 µF Table 5-19 lists the current consumption of AUX3. Table 5-19. Auxiliary Supplies, AUX3 (Backup Subsystem) Currents over operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS VCC IAUX3,RTCon AUX3 current with RTC enabled RTC and 32-kHz oscillator in backup subsystem enabled 3V IAUX3,RTCoff AUX3 current with RTC disabled RTC and 32-kHz oscillator in backup subsystem disabled 3V TA MIN MAX 25°C 0.83 85°C 0.95 25°C 110 85°C 165 UNIT µA nA Table 5-20 lists the characteristics of the auxiliary supply monitor. Table 5-20. Auxiliary Supplies, Auxiliary Supply Monitor over operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS ICC,Monitor Average supply current for monitoring circuitry drawn from VDSYS (also see Figure 5-11) LOCKAUX = 0, AUXMRx = 0, AUX0MD = 0, AUX1MD = 0, AUX2MD = 1, VDSYS = DVCC, VASYS = AVCC, Current measured at VDSYS pin IMeas,Monitor Average current drawn from monitored supply during measurement cycle (also see Figure 5-12) LOCKAUX = 0, AUXMRx = 0, AUX0MD = 0, AUX1MD = 0, AUX2MD = 1, VDSYS = DVCC, VASYS = AVCC, AUXVCC1 = 3 V, Current measured at AUXVCC1 pin VMonitor Auxiliary supply threshold level VCC MIN TYP 3V MAX UNIT 0.70 µA 0.11 µA AUXLVLx = 0 1.67 1.74 1.80 AUXLVLx = 1 1.87 1.95 2.01 AUXLVLx = 2 2.06 2.14 2.21 AUXLVLx = 3 2.19 2.27 2.33 AUXLVLx = 4 2.33 2.41 2.48 AUXLVLx = 5 2.63 2.72 2.79 AUXLVLx = 6 2.91 3.02 3.10 AUXLVLx = 7 2.91 3.02 3.10 Specifications Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A Copyright © 2015–2018, Texas Instruments Incorporated V 53 MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 www.ti.com 0.7 0.6 ICC, monitor – µA 0.5 0.4 0.3 0.2 0.1 0 1.8 2 2.2 2.4 2.6 2.8 VDSYS Voltage – V 3 3.2 3.4 3.6 3.2 3.4 3.6 Figure 5-11. VDSYS Voltage vs ICC,Monitor 120 Imeas, monitor – nA 100 80 60 40 20 0 1.8 2.0 2.2 2.4 2.6 2.8 AUXVCC1 Voltage – V 3.0 Figure 5-12. AUXVCC1 Voltage vs IMeas,Monitor Table 5-21 lists the AUX switch ON resistance characteristics. Table 5-21. Auxiliary Supplies, Switch ON-Resistance over operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS MIN MAX UNIT RON,DVCC ON-resistance of switch between DVCC and VDSYS ILOAD = ICORE + IIO = 10 mA + 10 mA = 20 mA 5 Ω RON,DAUX1 ON-resistance of switch between AUX1 and VDSYS ILOAD = ICORE + IIO = 10 mA + 10 mA = 20 mA 5 Ω RON,DAUX2 ON-resistance of switch between AUX2 and VDSYS ILOAD = ICORE + IIO = 10 mA + 10 mA = 20 mA 5 Ω RON,AVCC ON-resistance of switch between AVCC and VASYS ILOAD = IModules = 10 mA 5 Ω RON,AAUX1 ON-resistance of switch between AUX1 and VASYS ILOAD = IModules = 5 mA 20 Ω RON,AAUX2 ON-resistance of switch between AUX2 and VASYS ILOAD = IModules = 5 mA 20 Ω 54 Specifications Copyright © 2015–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A www.ti.com SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 Table 5-22 lists the switching times of the auxiliary supplies. Table 5-22. Auxiliary Supplies, Switching Time over operating free-air temperature range (unless otherwise noted) PARAMETER MIN tSwitch Time from occurrence of trigger (SVM or software) to "new" supply connected to system supplies tRecover "Recovery time" after a switch over takes place; during this time, no further switching takes place MAX UNIT 100 ns 450 µs TYP MAX UNIT 50 100 nA 450 730 nA UNIT 200 Table 5-23 lists the leakage characteristics of the auxiliary supplies switch. Table 5-23. Auxiliary Supplies, Switch Leakage over operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS ISW,Lkg Current into DVCC, AVCC, AUX1 or AUX2 if not selected IVmax Current drawn from highest supply MIN Per supply (but not the highest supply) Table 5-24 lists the characteristics of the auxiliary supplies to the ADC. Table 5-24. Auxiliary Supplies, Auxiliary Supplies to ADC10_A over operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS Supply voltage divider V3 = VSupply / 3 V3 RV3 Load resistance tSample,V3 VCC MIN TYP MAX 1.8 V 0.58 0.60 0.62 3.0 V 0.98 1.00 1.02 3.6 V 1.18 1.20 1.22 AUXADCRx = 0 18 AUXADCRx = 1 1.5 AUXADCRx = 2 0.6 AUXADC = 1, ADC10ON = 1, Sampling time required if INCH = 0Ch, V3 selected Error of conversion result ≤ 1 LSB AUXADCRx = 0 1000 AUXADCRx = 1 1000 AUXADCRx = 2 1000 V kΩ ns Table 5-25 lists the characteristics of the charge-limiting resistor. Table 5-25. Auxiliary Supplies, Charge-Limiting Resistor over operating free-air temperature range (unless otherwise noted) PARAMETER RCHARGE Charge limiting resistor TEST CONDITIONS VCC MIN TYP MAX CHCx = 1 3V 5 CHCx = 2 3V 10 CHCx = 3 3V 20 Specifications Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A Copyright © 2015–2018, Texas Instruments Incorporated UNIT kΩ 55 MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 5.8.7 www.ti.com Timer_A Module Table 5-26 lists the characteristics of the Timer_A. Table 5-26. Timer_A over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VCC fTA Timer_A input clock frequency Internal: SMCLK, ACLK External: TACLK Duty cycle = 50% ± 10% 1.8 V, 3 V tTA,cap Timer_A capture timing All capture inputs, Minimum pulse duration required for capture 1.8 V, 3 V 5.8.8 MIN TYP MAX UNIT 25 MHz 20 ns eUSCI Module Table 5-27 lists the supported clock frequencies of the eUSCI in UART mode. Table 5-27. eUSCI (UART Mode) Clock Frequency PARAMETER TEST CONDITIONS MIN Internal: SMCLK or ACLK, External: UCLK, Duty cycle = 50% ±10% feUSCI eUSCI input clock frequency fBITCLK BITCLK clock frequency (equals baud rate in MBaud) MAX UNIT fSYSTEM MHz 5 MHz UNIT Table 5-28 lists the switching characteristics of the eUSCI in UART mode. Table 5-28. eUSCI (UART Mode) Switching Characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VCC UCGLITx = 0 tt UART receive deglitch time (1) UCGLITx = 1 UCGLITx = 2 UCGLITx = 3 (1) 56 2 V, 3 V MIN TYP MAX 10 15 25 30 50 85 50 80 150 70 120 200 ns Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. To ensure that pulses are correctly recognized their width should exceed the maximum specification of the deglitch time. Specifications Copyright © 2015–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A www.ti.com SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 Table 5-29 lists the supported clock frequencies of the eUSCI in SPI master mode. Table 5-29. eUSCI (SPI Master Mode) Clock Frequency PARAMETER feUSCI TEST CONDITIONS MIN Internal: SMCLK or ACLK, Duty cycle = 50% ±10% eUSCI input clock frequency MAX UNIT fSYSTEM MHz MAX UNIT Table 5-30 lists the switching characteristics of the eUSCI in SPI master mode. Table 5-30. eUSCI (SPI Master Mode) Switching Characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1) PARAMETER tSTE,LEAD STE lead time, STE active to clock tSTE,LAG STE lag time, Last clock to STE inactive TEST CONDITIONS VCC MIN UCSTEM = 0, UCMODEx = 01 or 10 2 V, 3 V 150 UCSTEM = 1, UCMODEx = 01 or 10 2 V, 3 V 150 UCSTEM = 0, UCMODEx = 01 or 10 2 V, 3 V 200 UCSTEM = 1, UCMODEx = 01 or 10 2 V, 3 V 200 UCSTEM = 0, UCMODEx = 01 or 10 tSTE,ACC STE access time, STE active to SIMO data out UCSTEM = 1, UCMODEx = 01 or 10 UCSTEM = 0, UCMODEx = 01 or 10 tSTE,DIS STE disable time, STE inactive to SIMO high impedance UCSTEM = 1, UCMODEx = 01 or 10 tSU,MI SOMI input data setup time tHD,MI SOMI input data hold time tVALID,MO SIMO output data valid time (2) UCLK edge to SIMO valid, CL = 20 pF tHD,MO SIMO output data hold time (3) CL = 20 pF (1) (2) (3) ns ns 2V 50 3V 30 2V 50 3V 30 2V 40 3V 25 2V 40 3V ns ns 25 2V 50 3V 30 2V 0 3V 0 ns ns 2V 9 3V 5 2V 0 3V 0 ns ns fUCxCLK = 1/2tLO/HI with tLO/HI = max(tVALID,MO(eUSCI) + tSU,SI(Slave), tSU,MI(eUSCI) + tVALID,SO(Slave)) For the slave parameters tSU,SI(Slave) and tVALID,SO(Slave), see the SPI parameters of the attached slave. Specifies the time to drive the next valid data to the SIMO output after the output changing UCLK clock edge. See the timing diagrams in Figure 5-13 and Figure 5-14. Specifies how long data on the SIMO output is valid after the output changing UCLK clock edge. Negative values indicate that the data on the SIMO output can become invalid before the output changing clock edge observed on UCLK. See the timing diagrams in Figure 513 and Figure 5-14. Specifications Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A Copyright © 2015–2018, Texas Instruments Incorporated 57 MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 www.ti.com UCMODEx = 01 tSTE,LEAD STE tSTE,LAG UCMODEx = 10 1/fUCxCLK CKPL = 0 UCLK CKPL = 1 tLOW/HIGH tLOW/HIGH tSU,MI tHD,MI SOMI tSTE,DIS tVALID,MO tSTE,ACC SIMO Figure 5-13. BadDriveBacuSPI Master Mode, CKPH = 0 UCMODEx = 01 tSTE,LEAD STE tSTE,LAG UCMODEx = 10 1/fUCxCLK CKPL = 0 UCLK CKPL = 1 tLOW/HIGH tLOW/HIGH tHD,MI tSU,MI SOMI tSTE,ACC tSTE,DIS tVALID,MO SIMO Figure 5-14. SPI Master Mode, CKPH = 1 58 Specifications Copyright © 2015–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A www.ti.com SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 Table 5-31 lists the switching characteristics of the eUSCI in SPI slave mode. Table 5-31. eUSCI (SPI Slave Mode) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1) PARAMETER TEST CONDITIONS tSTE,LEAD STE lead time, STE active to clock tSTE,LAG STE lag time, Last clock to STE inactive tSTE,ACC STE access time, STE active to SOMI data out tSTE,DIS STE disable time, STE inactive to SOMI high impedance tSU,SI SIMO input data setup time tHD,SI SIMO input data hold time tVALID,SO SOMI output data valid time (2) UCLK edge to SOMI valid, CL = 20 pF tHD,SO SOMI output data hold time (3) CL = 20 pF (1) (2) (3) VCC MIN 2.0 V 4 3.0 V 3 2.0 V 0 3.0 V 0 MAX ns ns 2.0 V 46 3.0 V 24 2.0 V 38 3.0 V 25 2.0 V 2 3.0 V 1 2.0 V 2 3.0 V 2 55 32 3.0 V 16 ns ns 3.0 V 24 ns ns 2.0 V 2.0 V UNIT ns ns fUCxCLK = 1/2tLO/HI with tLO/HI = max(tVALID,MO(Master) + tSU,SI(eUSCI), tSU,MI(Master) + tVALID,SO(eUSCI)) For the master parameters tSU,MI(Master) and tVALID,MO(Master), see the SPI parameters of the attached master. Specifies the time to drive the next valid data to the SOMI output after the output changing UCLK clock edge. Refer to the timing diagrams in Figure 5-13 and Figure 5-14. Specifies how long data on the SOMI output is valid after the output changing UCLK clock edge. Refer to the timing diagrams in Figure 5-15 and Figure 5-16. UCMODEx = 01 tSTE,LEAD STE tSTE,LAG UCMODEx = 10 1/fUCxCLK CKPL = 0 UCLK CKPL = 1 tLOW/HIGH tSU,SIMO tLOW/HIGH tHD,SIMO SIMO tACC tVALID,SOMI tDIS SOMI Figure 5-15. SPI Slave Mode, CKPH = 0 Specifications Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A Copyright © 2015–2018, Texas Instruments Incorporated 59 MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 www.ti.com UCMODEx = 01 tSTE,LEAD STE tSTE,LAG UCMODEx = 10 1/fUCxCLK CKPL = 0 UCLK CKPL = 1 tLOW/HIGH tLOW/HIGH tHD,SI tSU,SI SIMO tACC tDIS tVALID,SO SOMI Figure 5-16. SPI Slave Mode, CKPH = 1 60 Specifications Copyright © 2015–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A www.ti.com SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 Table 5-32 lists the characteristics of the eUSCI in I2C mode. Table 5-32. eUSCI (I2C Mode) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5-17) PARAMETER TEST CONDITIONS feUSCI eUSCI input clock frequency Internal: SMCLK, ACLK External: UCLK Duty cycle = 50% ±10% fSCL SCL clock frequency 2 V, 3 V tHD,STA Hold time (repeated) START tSU,STA Setup time for a repeated START tHD,DAT Data hold time tSU,DAT Data setup time tSU,STO Setup time for STOP tSP VCC fSCL = 100 kHz 2 V, 3 V fSCL > 100 kHz fSCL = 100 kHz 2 V, 3 V fSCL > 100 kHz 0 5.0 fSCL > 100 kHz 2 V, 3 V 1.3 400 kHz µs µs µs µs µs 1.7 UCGLITx = 0 75 220 UCGLITx = 1 35 120 30 60 2 V, 3 V UCGLITx = 2 20 2 V, 3 V 35 33 UCCLTOx = 3 tSU,STA ns 30 UCCLTOx = 2 tHD,STA MHz 5.2 UCCLTOx = 1 Clock low time-out fSYSTEM 1.4 0.4 UCGLITx = 3 tTIMEOUT UNIT 5.1 2 V, 3 V fSCL > 100 kHz MAX 1.5 2 V, 3 V 2 V, 3 V TYP 5.1 fSCL = 100 kHz fSCL = 100 kHz Pulse duration of spikes suppressed by input filter MIN ms 37 tHD,STA tBUF SDA tLOW tHIGH tSP SCL tSU,DAT tSU,STO tHD,DAT Figure 5-17. I2C Mode Timing Specifications Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A Copyright © 2015–2018, Texas Instruments Incorporated 61 MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 5.8.9 www.ti.com LCD Controller Table 5-33 lists the operating conditions of the LCD. Table 5-33. LCD_C Operating Conditions PARAMETER TEST CONDITIONS MIN NOM MAX UNIT VCC,LCD_C,CP en,3.6 Supply voltage range, charge pump enabled, VLCD ≤ 3.6 V LCDCPEN = 1, 0000 < VLCDx ≤ 1111 (charge pump enabled, VLCD ≤ 3.6 V) 2.2 3.6 V VCC,LCD_C,CP en,3.3 Supply voltage range, charge pump enabled, VLCD ≤ 3.3 V LCDCPEN = 1, 0000 < VLCDx ≤ 1100 (charge pump enabled, VLCD ≤ 3.3 V) 2.0 3.6 V VCC,LCD_C,int. bias Supply voltage range, internal biasing, charge pump disabled LCDCPEN = 0, VLCDEXT = 0 2.4 3.6 V VCC,LCD_C,ext. bias Supply voltage range, external biasing, charge pump disabled LCDCPEN = 0, VLCDEXT = 0 2.4 3.6 V VCC,LCD_C,VLCDEXT Supply voltage range, external LCD voltage, internal or external biasing, charge pump disabled LCDCPEN = 0, VLCDEXT = 1 2.0 3.6 V VLCDCAP/R33 External LCD voltage at LCDCAP/R33, internal or external biasing, charge pump disabled LCDCPEN = 0, VLCDEXT = 1 2.4 3.6 V CLCDCAP Capacitor on LCDCAP when charge pump enabled LCDCPEN = 1, VLCDx > 0000 (charge pump enabled) 10 µF fLCD LCD frequency range fFRAME = 1/(2 × mux) × fLCD with mux = 1 (static) to 8 1024 Hz fFRAME,4mux LCD frame frequency range fFRAME,4mux(MAX) = 1/(2 × 4) × fLCD(MAX) = 1/(2 × 4) × 1024 Hz 128 Hz fFRAME,8mux LCD frame frequency range fFRAME,8mux(MAX) = 1/(2 × 4) × fLCD(MAX) = 1/(2 × 8) × 1024 Hz 64 Hz fACLK,in ACLK input frequency range 40 kHz CPanel Panel capacitance 100-Hz frame frequency 10000 pF VCC + 0.2 V 4.7 0 30 32 VR33 Analog input voltage at R33 LCDCPEN = 0, VLCDEXT = 1 VR23,1/3bias Analog input voltage at R23 LCDREXT = 1, LCDEXTBIAS = 1, LCD2B = 0 VR13 VR03 + 2/3 × (VR33 – VR03) VR33 V VR13,1/3bias Analog input voltage at R13 with 1/3 biasing LCDREXT = 1, LCDEXTBIAS = 1, LCD2B = 0 VR03 VR03 + 1/3 × (VR33 – VR03) VR23 V VR13,1/2bias Analog input voltage at R13 with 1/2 biasing LCDREXT = 1, LCDEXTBIAS = 1, LCD2B = 1 VR03 VR03 + 1/2 × (VR33 – VR03) VR33 V VR03 Analog input voltage at R03 R0EXT = 1 VLCD-VR03 Voltage difference between VLCD and R03 LCDCPEN = 0, R0EXT = 1 2.4 VLCDREF/R13 External LCD reference voltage applied at LCDREF/R13 VLCDREFx = 01 0.8 62 Specifications 2.4 VSS V 1.2 VCC + 0.2 V 1.5 V Copyright © 2015–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A www.ti.com SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 Table 5-34 lists the characteristics of the LCD. Table 5-34. LCD_C Electrical Characteristics over operating free-air temperature range (unless otherwise noted) PARAMETER VLCD LCD voltage TEST CONDITIONS VCC MIN TYP VLCDx = 0000, VLCDEXT = 0 2.4 V to 3.6 V VCC LCDCPEN = 1, VLCDx = 0001 2 V to 3.6 V 2.58 LCDCPEN = 1, VLCDx = 0010 2 V to 3.6 V 2.64 LCDCPEN = 1, VLCDx = 0011 2 V to 3.6 V 2.71 LCDCPEN = 1, VLCDx = 0100 2 V to 3.6 V 2.78 LCDCPEN = 1, VLCDx = 0101 2 V to 3.6 V 2.83 LCDCPEN = 1, VLCDx = 0110 2 V to 3.6 V 2.90 LCDCPEN = 1, VLCDx = 0111 2 V to 3.6 V 2.96 LCDCPEN = 1, VLCDx = 1000 2 V to 3.6 V 3.02 LCDCPEN = 1, VLCDx = 1001 2 V to 3.6 V 3.07 LCDCPEN = 1, VLCDx = 1010 2 V to 3.6 V 3.14 LCDCPEN = 1, VLCDx = 1011 2 V to 3.6 V 3.21 LCDCPEN = 1, VLCDx = 1100 2 V to 3.6 V 3.27 LCDCPEN = 1, VLCDx = 1101 2.2 V to 3.6 V 3.32 LCDCPEN = 1, VLCDx = 1110 2.2 V to 3.6 V 3.38 LCDCPEN = 1, VLCDx = 1111 2.2 V to 3.6 V 3.44 ICC,Peak,CP Peak supply currents due to charge pump activities 2.2 V LCDCPEN = 1, VLCDx = 1111 tLCD,CP,on Time to charge CLCD when discharged CLCD = 4.7µF, LCDCPEN = 0→1, VLCDx = 1111 ICP,Load Maximum charge pump load current LCDCPEN = 1, VLCDx = 1111 RLCD,Seg LCD driver output impedance, segment lines LCDCPEN = 1, VLCDx = 1000, ILOAD = ±10 µA 2.2 V RLCD,COM LCD driver output impedance, common lines LCDCPEN = 1, VLCDx = 1000, ILOAD = ±10 µA 2.2 V 150 3.6 µA 500 50 ms µA 10 kΩ 10 kΩ Specifications Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A Copyright © 2015–2018, Texas Instruments Incorporated UNIT V 400 2.2 V 2.2 V MAX 63 MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 www.ti.com 5.8.10 SD24_B Module Table 5-35 lists the power supply and recommended operating conditions of the SD24_B. Table 5-35. SD24_B Power Supply and Recommended Operating Conditions MIN AVCC Analog supply voltage AVCC = DVCC, AVSS = DVSS = 0 V TYP MAX 2.4 UNIT 3.6 V MHz fSD Modulator clock frequency (1) 0.03 2.3 VI Absolute input voltage range AVSS – 1 AVCC V VIC Common-mode input voltage range AVSS – 1 AVCC V VID,FS Differential full-scale input voltage Differential input voltage for specified performance (2) VID CREF (1) (2) (3) VID = VI,A+ – VI,A– SD24REFS = 1 VREF load capacitance (3) –VREF/GAIN +VREF/GAIN SD24GAINx = 1 ±910 ±920 SD24GAINx = 2 ±455 ±460 SD24GAINx = 4 ±227 ±230 SD24GAINx = 8 ±113 ±115 SD24GAINx = 16 ±57 ±58 SD24GAINx = 32 ±28 ±29 SD24GAINx = 64 ±14 ±14.5 SD24GAINx = 128 ±7 ±7.2 SD24REFS = 1 mV 100 nF Modulator clock frequency: MIN = 32.768 kHz – 10% ≈ 30 kHz. MAX = 32.768 kHz × 64 + 10% ≈ 2.3 MHz The full-scale range (FSR) is defined by VFS+ = +VREF/GAIN and VFS– = –VREF/GAIN: FSR = VFS+ – VFS– = 2 × VREF / GAIN. If VREF is sourced externally, the analog input range should not exceed 80% of VFS+ or VFS–; that is, VID = 0.8 VFS– to 0.8 VFS+. If VREF is sourced internally, the given VID ranges apply. There is no capacitance required on VREF. However, a capacitance of 100 nF is recommended to reduce any reference voltage noise. Table 5-36 lists the analog input characteristics of the SD24_B. Table 5-36. SD24_B Analog Input PARAMETER CI Input capacitance TEST CONDITIONS (1) VCC MIN 5 SD24GAINx = 2 5 SD24GAINx = 4 5 SD24GAINx = 8 5 SD24GAINx = 16 5 SD24GAINx = 32, 64, 128 ZI ZID (1) 64 Input impedance (Pin A+ or A- to AVSS) Differential input impedance (Pin A+ to pin A-) TYP SD24GAINx = 1 fSD24 = 1 MHz fSD24 = 1 MHz MAX UNIT pF 5 SD24GAINx = 1 3V 200 SD24GAINx = 8 3V 200 SD24GAINx = 32 3V SD24GAINx = 1 3V SD24GAINx = 8 3V SD24GAINx = 32 3V kΩ 200 300 400 400 300 kΩ 400 All parameters pertain to each SD24_B converter. Specifications Copyright © 2015–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A www.ti.com SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 1600 Input Leakage Current – nA 1400 1200 1000 800 600 400 200 0 -200 -1 -0.5 0 0.5 1 Input Voltage – V 1.5 2 2.5 3 Figure 5-18. Input Leakage Current vs Input Voltage (Modulator OFF) Table 5-37 lists the supply current of the SD24_B. Table 5-37. SD24_B Supply Currents PARAMETER ISD,256 ISD,512 TEST CONDITIONS Analog plus digital supply current per converter (reference not included) fSD24 = 1 MHz, SD24OSR = 256 Analog plus digital supply current per converter (reference not included) fSD24 = 2 MHz, SD24OSR = 512 VCC MIN TYP MAX SD24GAIN: 1 3V 600 675 SD24GAIN: 2 3V 600 675 SD24GAIN: 4 3V 600 675 SD24GAIN: 8 3V 700 750 SD24GAIN: 16 3V 700 750 SD24GAIN: 32 3V 775 850 SD24GAIN: 64 3V 775 850 SD24GAIN: 128 3V 775 850 SD24GAIN: 1 3V 750 800 SD24GAIN: 8 3V 825 900 SD24GAIN: 32 3V 900 1000 TYP MAX UNIT µA µA Table 5-38 lists the performance characteristics of the SD24_B. Table 5-38. SD24_B Performance fSD24 = 1 MHz, SD24OSRx = 256, SD24REFS = 1 PARAMETER INL Gnom Integral nonlinearity, endpoint fit Nominal gain VCC MIN SD24GAIN: 1 TEST CONDITIONS 3V –0.01 0.01 SD24GAIN: 8 3V –0.01 0.01 SD24GAIN: 32 3V –0.01 0.01 SD24GAIN: 1 3V 1 SD24GAIN: 2 3V 2 SD24GAIN: 4 3V 4 SD24GAIN: 8 3V 8 SD24GAIN: 16 3V 16 SD24GAIN: 32 3V 31.7 SD24GAIN: 64 3V 63.4 SD24GAIN: 128 3V 126.8 Specifications Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A Copyright © 2015–2018, Texas Instruments Incorporated UNIT % of FSR 65 MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 www.ti.com Table 5-38. SD24_B Performance (continued) fSD24 = 1 MHz, SD24OSRx = 256, SD24REFS = 1 PARAMETER TEST CONDITIONS EG Gain error (1) ΔEG/ΔT Gain error temperature coefficient (2), internal reference ΔEG/ΔVCC Gain error vs VCC Offset error (4) EOS[V] EOS[FS] ΔEOS/ΔT ΔEOS/ΔVCC CMRR,DC (1) (2) (3) (4) (5) (6) (7) 66 (3) Offset error (4) Offset error temperature coefficient (5) Offset error vs VCC (6) Common-mode rejection at DC (7) VCC MIN SD24GAIN: 1, with external reference (1.2 V) 3V –1% TYP MAX +1% SD24GAIN: 8, with external reference (1.2 V) 3V –2% +2% SD24GAIN: 32, with external reference (1.2 V) 3V –2% +2% SD24GAIN: 1, 8, or 32 (with internal reference) 3V 50 SD24GAIN: 1 0.15 SD24GAIN: 8 0.15 SD24GAIN: 32 0.4 3V 2.3 SD24GAIN: 8 3V 0.73 SD24GAIN: 32 3V 0.18 SD24GAIN: 1 (with Vdiff = 0 V) 3V –0.2 0.2 SD24GAIN: 8 3V –0.5 0.5 SD24GAIN: 32 3V –0.5 0.5 SD24GAIN: 1 3V 1 SD24GAIN: 8 3V 0.15 SD24GAIN: 32 3V 0.1 600 SD24GAIN: 8 100 SD24GAIN: 32 50 SD24GAIN: 1 3V –110 SD24GAIN: 8 3V –110 SD24GAIN: 32 3V –110 ppm/ °C %/V SD24GAIN: 1 (with Vdiff = 0 V) SD24GAIN: 1 UNIT mV % FS µV/°C µV/V dB The gain error EG specifies the deviation of the actual gain Gact from the nominal gain Gnom: EG = (Gact – Gnom)/Gnom. It covers process, temperature and supply voltage variations. The gain error temperature coefficient ΔEG / ΔT specifies the variation of the gain error EG over temperature (EG(T) = (Gact(T) – Gnom)/Gnom) using the box method (that is, MIN and MAX values): ΔEG/ ΔT = (MAX(EG(T)) – MIN(EG(T) ) / (MAX(T) – MIN(T)) = (MAX(Gact(T)) – MIN(Gact(T)) / Gnom / (MAX(T) – MIN(T)) with T ranging from –40°C to +85°C. The gain error vs VCC coefficient ΔEG/ ΔVCC specifies the variation of the gain error EG over supply voltage (EG(VCC) = (Gact(VCC) – Gnom)/Gnom) using the box method (that is, MIN and MAX values): ΔEG/ ΔVCC = (MAX(EG(VCC)) – MIN(EG(VCC) ) / (MAX(VCC) – MIN(VCC)) = (MAX(Gact(VCC)) – MIN(Gact(VCC)) / Gnom / (MAX(VCC) – MIN(VCC)) with VCC ranging from 2.4 V to 3.6 V. The offset error EOS is measured with shorted inputs in 2s-complement mode with +100% FS = VREF / G and –100% FS = –VREF / G. Conversion between EOS [FS] and EOS [V] is as follows: EOS [FS] = EOS [V]×G/VREF; EOS [V] = EOS [FS]×VREF/G. The offset error temperature coefficient ΔEOS / ΔT specifies the variation of the offset error EOS over temperature using the box method (that is, MIN and MAX values): ΔEOS / ΔT = (MAX(EOS(T)) – MIN(EOS(T) ) / (MAX(T) – MIN(T)) with T ranging from –40°C to +85°C. The offset error vs VCC ΔEOS / ΔVCC specifies the variation of the offset error EOS over supply voltage using the box method (that is, MIN and MAX values): ΔEOS / ΔVCC = (MAX(EOS(VCC)) – MIN(EOS(VCC) ) / (MAX(VCC) – MIN(VCC)) with VCC ranging from 2.4 V to 3.6 V. The DC CMRR specifies the change in the measured differential input voltage value when the common-mode voltage varies: DC CMRR = –20log(ΔMAX/FSR) with ΔMAX being the difference between the minium value and the maximum value measured when sweeping the common-mode voltage (for example, calculating with 16-bit FSR = 65536, a maximum change by 1 LSB results in –20log(1/65536) ≈ –96 dB) . The DC CMRR is measured with both inputs connected to the common-mode voltage (that is, no differential input signal is applied), and the common-mode voltage is swept from –1 V to VCC. Specifications Copyright © 2015–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A www.ti.com SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 Table 5-38. SD24_B Performance (continued) fSD24 = 1 MHz, SD24OSRx = 256, SD24REFS = 1 PARAMETER CMRR,50Hz AC PSRR,ext AC PSRR,int XT Common-mode rejection at 50 Hz (8) AC power supply rejection ratio, external reference (9) AC power supply rejection ratio, internal reference (9) Crosstalk between converters (10) TEST CONDITIONS VCC MIN TYP SD24GAIN: 1, fCM = 50 Hz, VCM = 930 mV 3V –110 SD24GAIN: 8, fCM = 50 Hz, VCM = 120 mV 3V –110 SD24GAIN: 32, fCM = 50 Hz, VCM = 30 mV 3V –110 SD24GAIN: 1, VCC = 3 V + 50 mV × sin(2π × fVcc × t), fVcc = 50 Hz –61 SD24GAIN: 8, VCC = 3 V + 50 mV × sin(2π × fVcc × t), fVcc = 50 Hz –77 SD24GAIN: 32, VCC = 3 V + 50 mV × sin(2π × fVcc × t), fVcc = 50 Hz –79 SD24GAIN: 1, VCC = 3 V + 50 mV × sin(2π × fVcc × t), fVcc = 50 Hz –61 SD24GAIN: 8, VCC = 3 V + 50 mV × sin(2π × fVcc × t), fVcc = 50 Hz –77 SD24GAIN: 32, VCC = 3 V + 50 mV × sin(2π × fVcc × t), fVcc = 50 Hz –79 Crosstalk source: SD24GAIN: 1, Sine wave with maximum possible Vpp, fIN = 50 Hz or 100 Hz, Converter under test: SD24GAIN: 1 3V –120 Crosstalk source: SD24GAIN: 1, Sine wave with maximum possible Vpp, fIN = 50 Hz or 100 Hz, Converter under test: SD24GAIN: 8 3V –115 Crosstalk source: SD24GAIN: 1, Sine wave with maximum possible Vpp, fIN = 50 Hz or 100 Hz, Converter under test: SD24GAIN: 32 3V –100 MAX UNIT dB dB dB dB (8) The AC CMRR is the difference between a hypothetical signal with the amplitude and frequency of the applied common-mode ripple applied to the inputs of the ADC and the actual common-mode signal spur visible in the FFT spectrum: AC CMRR = Error Spur [dBFS] – 20log(VCM / 1.2 V / G) [dBFS] with a common-mode signal of VCM × sin(2π × fCM × t) applied to the analog inputs. The AC CMRR is measured with the both inputs connected to the common-mode signal (that is, no differential input signal is applied). With the specified typical values the error spur is within the noise floor (as specified by the SINAD values). (9) The AC PSRR is the difference between a hypothetical signal with the amplitude and frequency of the applied supply voltage ripple applied to the inputs of the ADC and the actual supply ripple spur visible in the FFT spectrum: AC PSRR = Error Spur [dBFS] – 20log(50 mV / 1.2 V / G) [dBFS] with a signal of 50 mV × sin(2π × fVcc × t) added to VCC. The AC PSRR is measured with the inputs grounded (that is, no analog input signal is applied). With the specified typical values the error spur is within the noise floor (as specified by the SINAD values). SD24GAIN: 1 → Hypothetical signal: 20log(50 mV / 1.2 V / 1) = –27.6 dBFS SD24GAIN: 8 → Hypothetical signal: 20log(50 mV / 1.2 V / 8) = –9.5 dBFS SD24GAIN: 32 → Hypothetical signal: 20log(50 mV / 1.2 V / 32) = 2.5 dBFS (10) The crosstalk (XT) is specified as the tone level of the signal applied to the crosstalk source seen in the spectrum of the converter under test. It is measured with the inputs of the converter under test being grounded. Specifications Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A Copyright © 2015–2018, Texas Instruments Incorporated 67 MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 www.ti.com Table 5-39 lists the AC performance characteristics of the SD24_B. Table 5-39. SD24_B AC Performance fSD24 = 1 MHz, SD24OSRx = 256, SD24REFS = 1 PARAMETER SINAD Signal-to-noise + distortion ratio VCC MIN TYP SD24GAIN: 1 TEST CONDITIONS 3V 85 87 SD24GAIN: 2 3V SD24GAIN: 4 3V SD24GAIN: 8 3V SD24GAIN: 16 fIN = 50 Hz (1) Total harmonic distortion 84 3V 3V 68 SD24GAIN: 128 3V 62 3V 100 3V 90 3V 80 fIN = 50 Hz (1) dB 80 SD24GAIN: 64 SD24GAIN: 32 (1) 85 82 SD24GAIN: 32 SD24GAIN: 8 UNIT 86 3V SD24GAIN: 1 THD MAX 73 74 dB The following voltages were applied to the SD24_B inputs: VI,A+(t) = 0 V + VPP / 2 × sin(2π × fIN × t) VI,A-(t) = 0 V – VPP / 2 × sin(2π × fIN × t) resulting in a differential voltage of VID = VI,A+(t) – VI,A–(t) = VPP × sin(2π × fIN × t) with VPP being selected as the maximum value allowed for a given range (according to SD24_B recommended operating conditions). Table 5-40 lists the AC performance characteristics of the SD24_B. Table 5-40. SD24_B AC Performance fSD24 = 2 MHz, SD24OSRx = 512, SD24REFS = 1 PARAMETER SINAD (1) 68 Signal-to-noise + distortion ratio TEST CONDITIONS VCC MIN TYP SD24GAIN: 1 3V 87 SD24GAIN: 2 3V 86 SD24GAIN: 4 3V 85 SD24GAIN: 8 3V 84 3V 81 SD24GAIN: 32 3V 76 SD24GAIN: 64 3V 71 SD24GAIN: 128 3V 65 SD24GAIN: 16 fIN = 50 Hz (1) MAX UNIT dB The following voltages were applied to the SD24_B inputs: VI,A+(t) = 0 V + VPP / 2 × sin(2π × fIN × t) VI,A-(t) = 0 V – VPP / 2 × sin(2π × fIN × t) resulting in a differential voltage of VID = VI,A+(t) – VI,A–(t) = VPP × sin(2π × fIN × t) with VPP being selected as the maximum value allowed for a given range (according to SD24_B recommended operating conditions). Specifications Copyright © 2015–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A www.ti.com SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 Table 5-41 lists the AC performance characteristics of the SD24_B. Table 5-41. SD24_B AC Performance fSD24 = 32 kHz, SD24OSRx = 512, SD24REFS = 1 PARAMETER SINAD (1) TEST CONDITIONS Signal-to-noise + distortion ratio VCC MIN TYP SD24GAIN: 1 3V 89 SD24GAIN: 2 3V 85 SD24GAIN: 4 3V 84 SD24GAIN: 8 3V 86 3V 80 SD24GAIN: 32 3V 76 SD24GAIN: 64 3V 67 SD24GAIN: 128 3V 61 SD24GAIN: 16 fIN = 12 Hz (1) MAX UNIT dB The following voltages were applied to the SD24_B inputs: VI,A+(t) = 0 V + VPP / 2 × sin(2π × fIN × t) VI,A-(t) = 0 V – VPP / 2 × sin(2π × fIN × t) resulting in a differential voltage of VID = VI,A+(t) – VI,A–(t) = VPP × sin(2π × fIN × t) with VPP being selected as the maximum value allowed for a given range (according to SD24_B recommended operating conditions). 95 90 SINAD – dB 85 80 75 70 65 60 55 32 64 128 256 512 1024 SD24OSRx Figure 5-19. SINAD vs OSR (fSD24 = 1 MHz, SD24REFS = 1, SD24GAIN = 1) Specifications Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A Copyright © 2015–2018, Texas Instruments Incorporated 69 MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 www.ti.com 90 85 SINAD – dB 80 75 70 65 60 0.1 0.2 0.3 0.4 0.5 0.6 Vpp/Vref/Gain 0.7 0.8 0.9 1 Figure 5-20. SINAD vs VPP Table 5-42 lists the external reference input requirements of the SD24_B. Table 5-42. SD24_B External Reference Input ensure correct input voltage range according to VREF PARAMETER TEST CONDITIONS VCC MIN TYP MAX 1.0 1.20 1.5 V 50 nA VREF(I) Input voltage SD24REFS = 0 3V IREF(I) Input current SD24REFS = 0 3V 70 Specifications UNIT Copyright © 2015–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A www.ti.com SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 5.8.11 ADC10_A Module Table 5-43 lists the input requirements of the ADC. Table 5-43. 10-Bit ADC, Power Supply and Input Range Conditions over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VCC AVCC Analog supply voltage AVCC and DVCC are connected together, AVSS and DVSS are connected together, V(AVSS) = V(DVSS) = 0 V V(Ax) Analog input voltage range (1) All ADC10_A pins Operating supply current into AVCC terminal, REF module and reference buffer off fADC10CLK = 5 MHz, ADC10ON =1, REFON = 0, SHT0 = 0, SHT1 = 0, ADC10DIV = 0, ADC10SREF = 00 Operating supply current into AVCC terminal, REF module on, reference buffer on fADC10CLK = 5 MHz, ADC10ON = 1, REFON = 1, SHT0 = 0, SHT1 = 0, ADC10DIV = 0, ADC10SREF = 01 Operating supply current into AVCC terminal, REF module off, reference buffer on MIN TYP MAX 1.8 3.6 V 0 AVCC V 2.2 V 70 105 3V 80 115 3V 130 185 fADC10CLK = 5 MHz, ADC10ON = 1, REFON = 0, SHT0 = 0, SHT1 = 0, ADC10DIV = 0, ADC10SREF = 10, VEREF = 2.5 V 3V 108 160 Operating supply current into AVCC terminal, REF module off, reference buffer off fADC10CLK = 5 MHz, ADC10ON = 1, REFON = 0, SHT0 = 0, SHT1 = 0, ADC10DIV = 0, ADC10SREF = 11, VEREF = 2.5 V 3V 74 105 CI Input capacitance Only one terminal Ax can be selected at one time from the pad to the ADC10_A capacitor array including wiring and pad. 2.2 V 3.5 RI Input MUX ON resistance IADC10_A (1) UNIT µA pF AVCC > 2 V, 0 V ≤ VAx ≤ AVCC 36 1.8 V < AVCC < 2 V, 0 V ≤ VAx ≤ AVCC 96 kΩ The analog input voltage range must be within the selected reference voltage range VR+ to VR– for valid conversion results. The external reference voltage requires decoupling capacitors. Two decoupling capacitors, 10 µF and 100 nF, should be connected to VREF to decouple the dynamic current required for an external reference source if it is used for the ADC10_A. Also see the MSP430x5xx and MSP430x6xx Family User's Guide. Table 5-44 lists the timing parameters of the ADC. Table 5-44. 10-Bit ADC, Timing Parameters over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER VCC MIN TYP MAX UNIT For specified performance of ADC10_A linearity parameters 2.2 V, 3 V 0.45 5 5.5 MHz Internal ADC10_A oscillator (1) ADC10DIV = 0, fADC10CLK = fADC10OSC 2.2 V, 3 V 4.4 5.0 5.6 MHz 2.2 V, 3 V 2.4 Conversion time REFON = 0, Internal oscillator, 12 ADC10CLK cycles, 10-bit mode fADC10OSC = 4 MHz to 5 MHz fADC10CLK fADC10OSC tCONVERT TEST CONDITIONS µs External fADC10CLK from ACLK, MCLK or SMCLK, ADC10SSEL ≠ 0 tADC10ON Turnon settling time of the ADC tSample Sampling time (1) (2) (3) See 3.0 12 × 1 / fADC10CLK (2) 100 RS = 1000 Ω, RI = 96 kΩ, CI = 3.5 pF (3) 1.8 V 3 RS = 1000 Ω, RI = 36 kΩ, CI = 3.5 pF (3) 3V 1 ns µs The ADC10OSC is sourced directly from MODOSC inside the UCS. The condition is that the error in a conversion started after tADC10ON is less than ±0.5 LSB. The reference and input signal are already settled. Approximately 8 Tau (t) are needed to get an error of less than ±0.5 LSB Specifications Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A Copyright © 2015–2018, Texas Instruments Incorporated 71 MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 www.ti.com Table 5-45 lists the linearity parameters of the ADC. Table 5-45. 10-Bit ADC, Linearity Parameters over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS 1.4 V ≤ (VeREF+ – VeREF–) ≤ 1.6 V, CVeREF+ = 20 pF VCC MIN TYP MAX ±1.0 UNIT EI Integral linearity error ED Differential linearity error 1.4 V ≤ (VeREF+ – VeREF–), CVeREF+ = 20 pF 2.2 V, 3 V ±1.0 LSB EO Offset error 1.4 V ≤ (VeREF+ – VeREF–), CVeREF+ = 20 pF Internal impedance of source RS < 100 Ω 2.2 V, 3 V ±1.0 LSB EG Gain error 1.4 V ≤ (VeREF+ – VeREF–), CVeREF+ = 20 pF, ADC10SREFx = 11b 2.2 V, 3 V ±1.0 LSB ET Total unadjusted error 1.4 V ≤ (VeREF+ – VeREF–), CVeREF+ = 20 pF, ADC10SREFx = 11b 2.2 V, 3 V ±2.0 LSB MAX UNIT 1.6 V < (VeREF+ – VeREF–) ≤ VAVCC, CVeREF+ = 20 pF 2.2 V, 3 V ±1.0 ±1.0 LSB Table 5-46 lists the characteristics of the external reference for the ADC. Table 5-46. 10-Bit ADC, External Reference over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1) PARAMETER TEST CONDITIONS VCC MIN TYP VeREF+ Positive external reference VeREF+ > VeREF– voltage input (2) 1.4 AVCC V VeREF– Negative external reference voltage input VeREF+ > VeREF– (3) 0 1.2 V (VeREF+ – VeREF–) Differential external reference voltage input VeREF+ > VeREF– (4) 1.4 AVCC V ±26 µA ±1 µA IVeREF+, IVeREF– CVeREF+/(1) (2) (3) (4) (5) 72 Static input current Capacitance at VeREF+ or VeREF- terminal 1.4 V ≤ VeREF+ ≤ VAVCC , VeREF– = 0 V, fADC10CLK = 5 MHz, ADC10SHTx = 0x0001, Conversion rate 200 ksps 2.2 V, 3 V 1.4 V ≤ VeREF+ ≤ VAVCC , VeREF– = 0 V, fADC10CLK = 5 MHz, ADC10SHTX = 0x1000, Conversion rate 20 ksps 2.2 V, 3 V See (5) ±8.5 10 µF The external reference is used during ADC conversion to charge and discharge the capacitance array. The input capacitance, CI, is also the dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the recommendations on analog-source impedance to allow the charge to settle for 10-bit accuracy. The accuracy limits the minimum positive external reference voltage. Lower reference voltage levels may be applied with reduced accuracy requirements. The accuracy limits the maximum negative external reference voltage. Higher reference voltage levels may be applied with reduced accuracy requirements. The accuracy limits the minimum external differential reference voltage. Lower differential reference voltage levels may be applied with reduced accuracy requirements. Two decoupling capacitors, 10 µF and 100 nF, should be connected to VeREF to decouple the dynamic current required for an external reference source if it is used for the ADC10_A. Also see the MSP430x5xx and MSP430x6xx Family User's Guide . Specifications Copyright © 2015–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A www.ti.com SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 5.8.12 REF Module Table 5-47 lists the characteristics of the built-in reference. Table 5-47. REF, Built-In Reference over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER VREF+ AVCC(min) Positive built-in reference voltage AVCC minimum voltage, Positive built-in reference active TEST CONDITIONS VCC MIN TYP MAX REFVSEL = {2} for 2.5 V, REFON = 1 3V 2.47 2.51 2.55 REFVSEL = {1} for 2.0 V, REFON = 1 3V 1.95 1.99 2.03 REFVSEL = {0} for 1.5 V, REFON = 1 2.2 V, 3 V 1.46 1.50 1.54 REFVSEL = {0} for 1.5 V 1.8 REFVSEL = {1} for 2.0 V 2.2 REFVSEL = {2} for 2.5 V 2.7 fADC10CLK = 5 MHz, REFON = 1, REFBURST = 0, REFVSEL = {2} for 2.5 V IREF+ Operating supply current into AVCC terminal (1) 30 21 27 fADC10CLK = 5 MHz, REFON = 1, REFBURST = 0, REFVSEL = {0} for 1.5 V 19 25 10 50 3V V V 23 fADC10CLK = 5 MHz, REFON = 1, REFBURST = 0, REFVSEL = {1} for 2.0 V UNIT µA TCREF+ Temperature coefficient of built-in reference (2) REFVSEL = {0, 1, 2}, REFON = 1 ISENSOR Operating supply current into AVCC terminal REFON = 1, ADC10ON = 1, INCH = 0Ah, TA = 30°C 2.2 V 145 220 3V 170 245 VSENSOR See REFON = 1, ADC10ON = 1, INCH = 0Ah, TA = 30°C 2.2 V 780 3V 780 VMID AVCC divider at channel 11 ADC10ON = 1, INCH = 0Bh, VMID ≈ 0.5 × VAVCC 2.2 V 1.08 1.1 1.12 3V 1.48 1.5 1.52 tSENSOR(sample) Sample time required if channel 10 is selected (4) REFON = 1, ADC10ON = 1, INCH = 0Ah, Error of conversion result ≤ 1 LSB tVMID(sample) Sample time required if channel 11 is selected (5) ADC10ON = 1, INCH = 0Bh, Error of conversion result ≤ 1 LSB PSRR_DC Power supply rejection ratio (DC) AVCC = AVCC(min) to AVCC(max), TA = 25°C, REFVSEL = {0, 1, 2}, REFON = 1 PSRR_AC Power supply rejection ratio (AC) AVCC = AVCC(min) to AVCC(max), TA = 25°C, f = 1 kHz, ΔVpp = 100 mV, REFVSEL = {0, 1, 2}, REFON = 1 1 mV/V tSETTLE Settling time of reference voltage (6) AVCC = AVCC(min) to AVCC(max), REFVSEL = {0, 1, 2}, REFON = 0 → 1 75 µs VSD24REF SD24_B internal reference voltage SD24REFS = 1 3V tON SD24_B internal reference turnon time (7) SD24REFS = 0→1, CREF = 100 nF 3V (1) (2) (3) (4) (5) (6) (7) (3) ppm/ °C µA mV V 30 µs 1 µs 120 1.137 1.151 300 1.165 200 µV/V V µs The internal reference current is supplied by terminal AVCC. Consumption is independent of the ADC10ON control bit, unless a conversion is active. The REFON bit enables to settle the built-in reference before starting an A/D conversion. Calculated using the box method: (MAX(–40°C to 85°C) – MIN(–40°C to 85°C)) / MIN(–40°C to 85°C)/(85°C – (–40°C)). The temperature sensor offset can be significant. TI recommends a single-point calibration to minimize the offset error of the built-in temperature sensor. The typical equivalent impedance of the sensor is 51 kΩ. The sample time required includes the sensor-on time tSENSOR(on). The on-time tVMID(on) is included in the sampling time tVMID(sample); no additional on time is needed. The condition is that the error in a conversion started after tREFON is ≤ 1 LSB. The condition is that SD24_B conversion started after tON should ensure specified SINAD values for the selected Gain, OSR, and fSD24. Specifications Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A Copyright © 2015–2018, Texas Instruments Incorporated 73 MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 www.ti.com 5.8.13 Flash Table 5-48 lists the characteristics of the flash memory. Table 5-48. Flash Memory over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TJ MIN TYP UNIT DVCC(PGM/ERASE) Program and erase supply voltage IPGM Average supply current from DVCC during program 3 5 mA IERASE Average supply current from DVCC during erase 6 11 mA IMERASE, IBANK Average supply current from DVCC during mass erase or bank erase 6 11 mA tCPT Cumulative program time 1.8 MAX (1) 16 104 Program and erase endurance tRetention tWord 3.6 Data retention duration 100 (2) ms cycles years 64 85 µs 0 Block program time for first byte or word (2) 49 65 µs tBlock, 1–(N–1) Block program time for each additional byte or word, except for last byte or word (2) 37 49 µs tBlock, N Block program time for last byte or word (2) 55 73 µs tErase Erase time for segment erase, mass erase, and bank erase when available (2) 23 32 ms fMCLK,MGR MCLK frequency in marginal read mode (FCTL4.MGR0 = 1 or FCTL4. MGR1 = 1) 0 1 MHz tBlock, (1) (2) Word or byte program time 25°C 105 V The cumulative program time must not be exceeded when writing to a 128-byte flash block. This parameter applies to all programming modes: individual word or byte write and block write. These values are hardwired into the state machine of the flash controller. 5.8.14 Emulation and Debug Table 5-49 lists the characteristics of the JTAG and Spy-Bi-Wire interface. Table 5-49. JTAG and Spy-Bi-Wire Interface over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) MAX UNIT fSBW Spy-Bi-Wire input frequency PARAMETER 2.2 V, 3 V 0 20 MHz tSBW,Low Spy-Bi-Wire low clock pulse duration 2.2 V, 3 V 0.025 15 µs tSBW, En Spy-Bi-Wire enable time (TEST high to acceptance of first clock edge) (1) 2.2 V, 3 V 1 µs tSBW,Rst Spy-Bi-Wire return to normal operation time µs fTCK TCK input frequency for 4-wire JTAG (2) Rinternal Internal pulldown resistance on TEST (1) (2) 74 VCC MIN TYP 15 100 2.2 V 0 5 3V 0 10 2.2 V, 3 V 45 60 80 MHz kΩ Tools that access the Spy-Bi-Wire interface must wait for the minimum tSBW,En time after pulling the TEST/SBWTCK pin high before applying the first SBWTCK clock edge. fTCK may be restricted to meet the timing requirements of the module selected. Specifications Copyright © 2015–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A www.ti.com SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 6 Detailed Description 6.1 Overview The MSP430F673xA and MSP430F673xA microcontrollers feature three high-performance 24-bit sigmadelta ADCs, a 10-bit ADC, four enhanced universal serial communication interfaces (three eUSCI_A modules and one eUSCI_B module), four 16-bit timers, a hardware multiplier, a DMA module, an RTC module with alarm capabilities, a segment LCD driver with integrated contrast control, an auxiliary supply system, and up to 72 I/O pins in the 100-pin devices and 52 I/O pins in the 80-pin devices. 6.2 CPU The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All operations, other than program-flow instructions, are performed as register operations in conjunction with seven addressing modes for source operand and four addressing modes for destination operand. The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-toregister operation execution time is one cycle of the CPU clock. Four of the registers, R0 to R3, are dedicated as program counter, stack pointer, status register, and constant generator, respectively. The remaining registers are general-purpose registers (see Figure 6-1). Peripherals are connected to the CPU using data, address, and control buses. Peripherals can be managed with all instructions. Program Counter PC/R0 Stack Pointer SP/R1 Status Register Constant Generator SR/CG1/R2 CG2/R3 General-Purpose Register R4 General-Purpose Register R5 General-Purpose Register R6 General-Purpose Register R7 General-Purpose Register R8 General-Purpose Register R9 General-Purpose Register R10 General-Purpose Register R11 General-Purpose Register R12 General-Purpose Register R13 General-Purpose Register R14 General-Purpose Register R15 Figure 6-1. Integrated CPU Registers Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A Copyright © 2015–2018, Texas Instruments Incorporated 75 MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 6.3 www.ti.com Instruction Set The instruction set consists of the original 51 instructions with three formats and seven address modes and additional instructions for the expanded address range. Each instruction can operate on word and byte data. Table 6-1 lists examples of the three types of instruction formats. Table 6-2 lists the address modes. Table 6-1. Instruction Word Formats INSTRUCTION WORD FORMAT EXAMPLE Dual operands, source-destination ADD R4,R5 Single operands, destination only CALL Relative jump, conditional or unconditional JNE R8 OPERATION R4 + R5 → R5 PC → (TOS), R8 → PC Jump-on-equal bit = 0 Table 6-2. Address Mode Descriptions ADDRESS MODE S (1) D (1) SYNTAX EXAMPLE Register + + MOV Rs,Rd MOV R10,R11 R10 → R11 Indexed + + MOV X(Rn),Y(Rm) MOV 2(R5),6(R6) M(2+R5) → M(6+R6) Symbolic (PC relative) + + MOV EDE,TONI Absolute + + MOV & MEM, & TCDAT Indirect + MOV @Rn,Y(Rm) MOV @R10,Tab(R6) M(R10) → M(Tab+R6) Indirect autoincrement + MOV @Rn+,Rm MOV @R10+,R11 M(R10) → R11 R10 + 2 → R10 Immediate + MOV #X,TONI MOV #45,TONI #45 → M(TONI) (1) S = source, D = destination 76 Detailed Description OPERATION M(EDE) → M(TONI) M(MEM) → M(TCDAT) Copyright © 2015–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A www.ti.com 6.4 SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 Operating Modes The MSP430F673xA and MSP430F673xA microcontrollers have one active mode and seven softwareselectable low-power modes of operation. An interrupt event can wake up the device from any of the lowpower modes, service the request, and restore back to the low-power mode on return from the interrupt program. Software can configure the following operating modes: • Active mode (AM) – All clocks are active • Low-power mode 0 (LPM0) – CPU is disabled – ACLK and SMCLK remain active, MCLK is disabled – FLL loop control remains active • Low-power mode 1 (LPM1) – CPU is disabled – FLL loop control is disabled – ACLK and SMCLK remain active, MCLK is disabled • Low-power mode 2 (LPM2) – CPU is disabled – MCLK and FLL loop control and DCOCLK are disabled – DC generator of the DCO remains enabled – ACLK remains active • Low-power mode 3 (LPM3) – CPU is disabled – MCLK, FLL loop control, and DCOCLK are disabled – DC generator of the DCO is disabled – ACLK remains active • Low-power mode 4 (LPM4) – CPU is disabled – ACLK is disabled – MCLK, FLL loop control, and DCOCLK are disabled – DC generator of the DCO is disabled – Crystal oscillator is stopped – Complete data retention • Low-power mode 3.5 (LPM3.5) – Internal regulator disabled – No RAM retention, Backup RAM retained – I/O pad state retention – RTC clocked by low-frequency oscillator – Wake-up input from RST/NMI, RTC_C events, Ports P1 and P2 • Low-power mode 4.5 (LPM4.5) – Internal regulator disabled – No RAM retention, Backup RAM retained – RTC is disabled – I/O pad state retention – Wake-up input from RST/NMI, Ports P1 and P2 Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A Copyright © 2015–2018, Texas Instruments Incorporated 77 MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 6.5 www.ti.com Interrupt Vector Addresses The interrupt vectors and the power-up start address are in the address range 0FFFFh to 0FF80h (see Table 6-3). The vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence. Table 6-3. Interrupt Sources, Flags, and Vectors INTERRUPT SOURCE System Reset Power-Up External Reset Watchdog Time-out, Key Violation Flash Memory Key Violation INTERRUPT FLAG WDTIFG, KEYV (SYSRSTIV) (1) (2) SYSTEM INTERRUPT WORD ADDRESS PRIORITY Reset 0FFFEh 63, highest System NMI PMM Vacant Memory Access JTAG Mailbox SVMLIFG, SVMHIFG, DLYLIFG, DLYHIFG, VLRLIFG, VLRHIFG, VMAIFG, JMBNIFG, JMBOUTIFG (SYSSNIV) (1) (3) (Non)maskable 0FFFCh 62 User NMI NMI Oscillator Fault Flash Memory Access Violation Supply Switch NMIIFG, OFIFG, ACCVIFG, AUXSWNMIFG (SYSUNIV) (1) (3) (Non)maskable 0FFFAh 61 Watchdog Timer_A Interval Timer Mode WDTIFG Maskable 0FFF8h 60 (4) Maskable 0FFF6h 59 (1) (4) Maskable 0FFF4h 58 Maskable 0FFF2h 57 Maskable 0FFF0h 56 Maskable 0FFEEh 55 Maskable 0FFECh 54 Maskable 0FFEAh 53 Maskable 0FFE8h 52 Maskable 0FFE6h 51 Maskable 0FFE4h 50 Maskable 0FFE2h 49 Maskable 0FFE0h 48 Maskable 0FFDEh 47 Maskable 0FFDCh 46 Maskable 0FFDAh 45 eUSCI_A0 Receive or Transmit eUSCI_B0 Receive or Transmit ADC10_A SD24_B Timer TA0 Timer TA0 UCA0RXIFG, UCA0TXIFG (UCA0IV) (1) UCB0RXIFG, UCB0TXIFG (UCB0IV) ADC10IFG0, ADC10INIFG, ADC10LOIFG, ADC10HIIFG, ADC10TOVIFG, ADC10OVIFG (ADC10IV) (1) (4) SD24_B Interrupt Flags (SD24IV) (1) TA0CCR0 CCIFG0 (4) (4) TA0CCR1 CCIFG1, TA0CCR2 CCIFG2, TA0IFG (TA0IV) (1) (4) (1) (4) eUSCI_A1 Receive or Transmit UCA1RXIFG, UCA1TXIFG (UCA1IV) eUSCI_A2 Receive or Transmit UCA2RXIFG, UCA2TXIFG (UCA2IV) (1) Auxiliary Supplies DMA (1) (2) (3) (4) 78 Auxiliary Supplies Interrupt Flags (AUXIV) (4) (1) (4) DMA0IFG, DMA1IFG, DMA2IFG (DMAIV) (1) Timer TA1 TA1CCR0 CCIFG0 (4) Timer TA1 TA1CCR1 CCIFG1, TA1IFG (TA1IV) (1) (4) I/O Port P1 P1IFG.0 to P1IFG.7 (P1IV) Timer TA2 TA2CCR0 CCIFG0 (4) Timer TA2 TA2CCR1 CCIFG1, TA2IFG (TA2IV) (1) (4) (4) (1) (4) (1) (4) I/O Port P2 P2IFG.0 to P2IFG.7 (P2IV) Maskable 0FFD8h 44 Timer TA3 TA3CCR0 CCIFG0 (4) Maskable 0FFD6h 43 Timer TA3 TA3CCR1 CCIFG1, TA3IFG (TA3IV) (1) (4) Maskable 0FFD4h 42 Maskable 0FFD2h 41 Maskable 0FFD0h 40 LCD_C LCD_C Interrupt Flags (LCDCIV) (1) (4) RTC_C RTCOFIFG, RTCRDYIFG, RTCTEVIFG, RTCAIFG, RT0PSIFG, RT1PSIFG (RTCIV) (1) (4) Multiple source flags A reset is generated if the CPU tries to fetch instructions from within peripheral space or vacant memory space. (Non)maskable: the individual interrupt-enable bit can disable an interrupt event, but the general-interrupt enable cannot disable it. Interrupt flags are located in the module. Detailed Description Copyright © 2015–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A www.ti.com SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 Table 6-3. Interrupt Sources, Flags, and Vectors (continued) (5) INTERRUPT SOURCE INTERRUPT FLAG Reserved Reserved (5) SYSTEM INTERRUPT WORD ADDRESS PRIORITY 0FFCEh 39 ⋮ ⋮ 0FF80h 0, lowest Reserved interrupt vectors at addresses are not used in this device and can be used for regular program code if necessary. To maintain compatibility with other devices, TI recommends reserving these locations. 6.6 Bootloader (BSL) The BSL lets users program the flash memory or RAM using various serial interfaces. Access to the device memory through the BSL is protected by an user-defined password. BSL entry requires a specific entry sequence on the RST/NMI/SBWTDIO and TEST/SBWTCK pins. For complete description of the features of the BSL and its implementation, see the MSP430™ Flash Device Bootloader (BSL) User's Guide. Table 6-4 lists the BSL pin requirements. Table 6-4. UART BSL Pin Requirements and Functions 6.7 6.7.1 DEVICE SIGNAL BSL FUNCTION RST/NMI/SBWTDIO Entry sequence signal TEST/SBWTCK Entry sequence signal P3.0 Data transmit P3.1 Data receive DVCC Power supply DVSS Ground supply JTAG Operation JTAG Standard Interface The MSP430 family supports the standard JTAG interface which requires four signals for sending and receiving data. The JTAG signals are shared with general-purpose I/O. The TEST/SBWTCK pin is used to enable the JTAG signals. In addition to these signals, the RST/NMI/SBWTDIO is required to interface with MSP430 development tools and device programmers. Table 6-5 lists the JTAG pin requirements. For further details on interfacing to development tools and device programmers, see the MSP430 Hardware Tools User's Guide and MSP430 Programming With the JTAG Interface. Table 6-5. JTAG Pin Requirements and Functions DEVICE SIGNAL DIRECTION FUNCTION PJ.3/ACLK/TCK IN JTAG clock input PJ.2/ADC10CLK/TMS IN JTAG state control PJ.1/MCLK/TDI/TCLK IN JTAG data input/TCLK input PJ.0/SMCLK/TDO OUT JTAG data output TEST/SBWTCK IN Enable JTAG pins RST/NMI/SBWTDIO IN External reset DVCC Power supply DVSS Ground supply Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A Copyright © 2015–2018, Texas Instruments Incorporated 79 MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 6.7.2 www.ti.com Spy-Bi-Wire Interface In addition to the standard JTAG interface, the MSP430 family supports the two-wire Spy-Bi-Wire interface. Spy-Bi-Wire can be used to interface with MSP430 development tools and device programmers. Table 6-6 lists the Spy-Bi-Wire interface pin requirements. For further details on interfacing to development tools and device programmers, see the MSP430 Hardware Tools User's Guide and MSP430 Programming With the JTAG Interface. Table 6-6. Spy-Bi-Wire Pin Requirements and Functions 6.8 DEVICE SIGNAL DIRECTION FUNCTION TEST/SBWTCK IN Spy-Bi-Wire clock input RST/NMI/SBWTDIO IN, OUT Spy-Bi-Wire data input/output DVCC Power supply DVSS Ground supply Flash Memory The flash memory can be programmed through the JTAG port, Spy-Bi-Wire (SBW), the BSL, or in-system by the CPU. The CPU can perform single-byte, single-word, and long-word writes to the flash memory. Features of the flash memory include: • Flash memory has n segments of main memory and four segments of information memory (A to D) of 128 bytes each. Each segment in main memory is 512 bytes in size. • Segments 0 to n may be erased in one step, or each segment may be individually erased. • Segments A to D can be erased individually, or as a group with segments 0 to n. Segments A to D are also called information memory. • Segment A can be locked separately. 6.9 RAM The RAM is made up of n sectors. Each sector can be completely powered down to save leakage; however, all data are lost. Features of the RAM include: • RAM has n sectors of 2 kbytes each. • Each sector 0 to n can be completely disabled; however, data retention is lost. • Each sector 0 to n automatically enters low-power retention mode when possible. 6.10 Backup RAM The backup RAM provides a limited number of bytes of RAM that are retained during LPMx.5. This backup RAM is part of the Backup subsystem that operates on dedicated power supply AUXVCC3. 8 bytes of backup RAM are available in this device. The backup RAM can be word-wise accessed through the registers BAKMEM0, BAKMEM1, BAKMEM2, and BAKMEM3. The backup RAM registers cannot be accessed by the CPU when the high-side SVS is disabled by software. 80 Detailed Description Copyright © 2015–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A www.ti.com SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 6.11 Peripherals Peripherals are connected to the CPU through data, address, and control buses. The peripherals can be handled using all instructions. For complete module descriptions, see the MSP430x5xx and MSP430x6xx Family User's Guide. 6.11.1 Oscillator and System Clock The Unified Clock System (UCS) module includes support for a 32768-Hz watch crystal oscillator, an internal very-low-power low-frequency oscillator (VLO), an internal trimmed low-frequency oscillator (REFO), and an integrated internal digitally controlled oscillator (DCO). The UCS module is designed to meet the requirements of both low system cost and low power consumption. The UCS module features digital frequency-locked loop (FLL) hardware that, in conjunction with a digital modulator, stabilizes the DCO frequency to a programmable multiple of the selected FLL reference frequency. The internal DCO provides a fast turn-on clock source and stabilizes in 3 µs (typical). The UCS module provides the following clock signals: • Auxiliary clock (ACLK), sourced from a 32768-Hz watch crystal, the internal low-frequency oscillator (VLO), or the trimmed low-frequency oscillator (REFO). • Main clock (MCLK), the system clock used by the CPU. MCLK can be sourced by same sources made available to ACLK. • Sub-Main clock (SMCLK), the subsystem clock used by the peripheral modules. SMCLK can be sourced by same sources made available to ACLK. • ACLK/n, the buffered output of ACLK, ACLK/2, ACLK/4, ACLK/8, ACLK/16, ACLK/32. 6.11.2 Power-Management Module (PMM) The PMM includes an integrated voltage regulator that supplies the core voltage to the device and contains programmable output levels to provide for power optimization. The PMM also includes supply voltage supervisor (SVS) and supply voltage monitoring (SVM) circuitry, as well as brownout protection. The brownout circuit is implemented to provide the proper internal reset signal to the device during poweron and power-off. The SVS/SVM circuitry detects if the supply voltage drops below a user-selectable level and supports both supply voltage supervision (the device is automatically reset) and supply voltage monitoring (the device is not automatically reset). SVS and SVM are available on the primary supply and the core supply. 6.11.3 Auxiliary Supply System The auxiliary supply system provides the possibility to operate the device from auxiliary supplies when the primary supply fails.There are two auxililary supplies (AUXVCC1 and AUXVCC2) are supported. This module supports automatic and manual switching from primary supply to auxiliary suppllies while maintaining full functionality. It allows threshold based monitoring of primary and auxiliary supplies. The device can be started from primary supply or AUXVCC1, whichever is higher. Auxiliary supply system enables internal monitoring of voltage levels on primary and auxiliary supplies using ADC10_A. Also this module implements simple charger for backup supplies. 6.11.4 Backup Subsystem The Backup subsystem operates on a dedicated power supply AUXVCC3. This subsystem includes lowfrequency oscillator (XT1), RTC module, and backup RAM. The functionality of the Backup subsystem is retained during LPM3.5. The Backup subsystem module registers cannot be accessed by CPU when the high-side SVS is disabled by the user. It is necessary to keep the high-side SVS enabled with SVSHMD = 1 and SVSMHACE = 0 to turn off the low-frequency oscillator (XT1) in LPM4. Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A Copyright © 2015–2018, Texas Instruments Incorporated 81 MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 www.ti.com 6.11.5 Digital I/O Up to nine 8-bit I/O ports are implemented. For 100-pin options, Ports P1 to P8 are complete, and P9 is reduced to 4-bit I/O. For 80-pin options, Ports P1 to P6 are complete, and P7 to P9 are completely removed. Port PJ contains four individual I/O pins, common to all devices. All I/O bits are individually programmable. • Any combination of input, output and interrupt conditions is possible. • Pullup or pulldown on all ports is programmable. • Programmable drive strength on all ports. • Edge-selectable interrupt and LPM3.5, LPM4.5 wake-up input capability available for all bits of ports P1 and P2. • Read and write access to port-control registers is supported by all instructions. • Ports can be accessed byte-wise (P1 through P9) or word-wise in pairs (PA through PE). 6.11.6 Port Mapping Controller The port mapping controller allows flexible and reconfigurable mapping of digital functions to P1, P2, and P3 (see Table 6-7). Table 6-8 lists the default settings for all pins that support port mapping. Table 6-7. Port Mapping Mnemonics and Functions VALUE PxMAPy MNEMONIC INPUT PIN FUNCTION OUTPUT PIN FUNCTION 0 PM_NONE None DVSS 1 2 3 4 5 6 eUSCI_A0 UART RXD (direction controlled by eUSCI – Input) PM_UCA0SOMI eUSCI_A0 SPI slave out master in (direction controlled by eUSCI) PM_UCA0TXD eUSCI_A0 UART TXD (direction controlled by eUSCI – Output) PM_UCA0SIMO eUSCI_A0 SPI slave in master out (direction controlled by eUSCI) PM_UCA0CLK eUSCI_A0 clock input/output (direction controlled by eUSCI) PM_UCA0STE eUSCI_A0 SPI slave transmit enable (direction controlled by eUSCI) PM_UCA1RXD eUSCI_A1 UART RXD (direction controlled by eUSCI – Input) PM_UCA1SOMI eUSCI_A1 SPI slave out master in (direction controlled by eUSCI) PM_UCA1TXD eUSCI_A1 UART TXD (direction controlled by eUSCI – Output) PM_UCA1SIMO eUSCI_A1 SPI slave in master out (direction controlled by eUSCI) 7 PM_UCA1CLK eUSCI_A1 clock input/output (direction controlled by eUSCI) 8 PM_UCA1STE eUSCI_A1 SPI slave transmit enable (direction controlled by eUSCI) 9 10 PM_UCA2RXD eUSCI_A2 UART RXD (direction controlled by eUSCI – Input) PM_UCA2SOMI eUSCI_A2 SPI slave out master in (direction controlled by eUSCI) PM_UCA2TXD eUSCI_A2 UART TXD (direction controlled by eUSCI – Output) PM_ UCA2SIMO eUSCI_A2 SPI slave in master out (direction controlled by eUSCI) 11 PM_UCA2CLK eUSCI_A2 clock input/output (direction controlled by eUSCI) 12 PM_UCA2STE eUSCI_A2 SPI slave transmit enable (direction controlled by eUSCI) 13 14 82 PM_UCA0RXD PM_UCB0SIMO eUSCI_B0 SPI slave in master out (direction controlled by eUSCI) PM_UCB0SDA eUSCI_B0 I2C data (open drain and direction controlled by eUSCI) PM_UCB0SOMI eUSCI_B0 SPI slave out master in (direction controlled by eUSCI) PM_UCB0SCL eUSCI_B0 I2C clock (open drain and direction controlled by eUSCI) 15 PM_UCB0CLK eUSCI_B0 clock input/output (direction controlled by eUSCI) 16 PM_UCB0STE eUSCI_B0 SPI slave transmit enable (direction controlled by eUSCI) 17 PM_TA0.0 TA0 CCR0 capture input CCI0A TA0 CCR0 compare output Out0 18 PM_TA0.1 TA0 CCR1 capture input CCI1A TA0 CCR1 compare output Out1 19 PM_TA0.2 TA0 CCR2 capture input CCI2A TA0 CCR2 compare output Out2 20 PM_TA1.0 TA1 CCR0 capture input CCI0A TA1 CCR0 compare output Out0 21 PM_TA1.1 TA1 CCR1 capture input CCI1A TA1 CCR1 compare output Out1 Detailed Description Copyright © 2015–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A www.ti.com SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 Table 6-7. Port Mapping Mnemonics and Functions (continued) VALUE PxMAPy MNEMONIC INPUT PIN FUNCTION OUTPUT PIN FUNCTION 22 PM_TA2.0 TA2 CCR0 capture input CCI0A TA2 CCR0 compare output Out0 23 PM_TA2.1 TA2 CCR1 capture input CCI1A TA2 CCR1 compare output Out1 24 PM_TA3.0 TA3 CCR0 capture input CCI0A TA3 CCR0 compare output Out0 25 PM_TA3.1 TA3 CCR1 capture input CCI1A TA3 CCR1 compare output Out1 PM_TACLK Timer_A clock input to TA0, TA1, TA2, TA3 None None RTC_C clock output 26 PM_RTCCLK 27 PM_SDCLK SD24_B bit stream clock input/output (direction controlled by SD24_B) 28 PM_SD0DIO SD24_B converter 0 bit stream data input/output (direction controlled by SD24_B) 29 PM_SD1DIO SD24_B converter 1 bit stream data input/output (direction controlled by SD24_B) 30 PM_SD2DIO SD24_B converter 2 bit stream data input/output (direction controlled by SD24_B) PM_ANALOG Disables the output driver and the input Schmitt-trigger to prevent parasitic cross currents when applying analog signals. 31 (0FFh) (1) (1) The value of the PM_ANALOG mnemonic is set to 0FFh. The port mapping registers are only 5 bits wide, and the upper bits are ignored, which results in a read value of 31. Table 6-8. Default Mapping PIN NAME PZ PN PxMAPy MNEMONIC INPUT PIN FUNCTION OUTPUT PIN FUNCTION P1.0/PM_TA0.0/ VeREF-/A2 P1.0/PM_TA0.0/ VeREF-/A2 PM_TA0.0 TA0 CCR0 capture input CCI0A TA0 CCR0 compare output Out0 P1.1/PM_TA0.1/ VeREF+/A1 P1.1/PM_TA0.1/ VeREF+/A1 PM_TA0.1 TA0 CCR1 capture input CCI1A TA0 CCR1 compare output Out1 P1.2/PM_UCA0RXD/ PM_UCA0SOMI/A0 P1.2/PM_UCA0RXD/ PM_UCA0SOMI/A0 PM_UCA0RXD, PM_UCA0SOMI eUSCI_A0 UART RXD (direction controlled by eUSCI – input), eUSCI_A0 SPI slave out master in (direction controlled by eUSCI) P1.3/PM_UCA0TXD/ PM_UCA0SIMO/R03 P1.3/PM_UCA0TXD/ PM_UCA0SIMO/R03 PM_UCA0TXD, PM_UCA0SIMO eUSCI_A0 UART TXD (direction controlled by eUSCI – output), eUSCI_A0 SPI slave in master out (direction controlled by eUSCI) P1.4/PM_UCA1RXD/ PM_UCA1SOMI/ LCDREF/R13 P1.4/PM_UCA1RXD/ PM_UCA1SOMI/ LCDREF/R13 PM_UCA1RXD, PM_UCA1SOMI eUSCI_A1 UART RXD (direction controlled by eUSCI – input), eUSCI_A1 SPI slave out master in (direction controlled by eUSCI) P1.5/PM_UCA1TXD/ PM_UCA1SIMO/R23 P1.5/PM_UCA1TXD/ PM_UCA1SIMO/R23 PM_UCA1TXD, PM_UCA1SIMO eUSCI_A1 UART TXD (direction controlled by eUSCI – output), eUSCI_A1 SPI slave in master out (direction controlled by eUSCI) P1.6/PM_UCA0CLK/ COM4 P1.6/PM_UCA0CLK/ COM4 PM_UCA0CLK eUSCI_A0 clock input/output (direction controlled by eUSCI) P1.7/PM_UCB0CLK/ COM5 P1.7/PM_UCB0CLK/ COM5 PM_UCB0CLK eUSCI_B0 clock input/output (direction controlled by eUSCI) P2.0/PM_UCB0SOMI/ PM_UCB0SCL/COM6 P2.0/PM_UCB0SOMI/ PM_UCB0SCL/COM6/S39 PM_UCB0SOMI, PM_UCB0SCL eUSCI_B0 SPI slave out master in (direction controlled by eUSCI), eUSCI_B0 I2C clock (open drain and direction controlled by eUSCI) P2.1/PM_UCB0SIMO/ PM_UCB0SDA/COM7 P2.1/PM_UCB0SIMO/ PM_UCB0SDA/COM7/S38 PM_UCB0SIMO, PM_UCB0SDA eUSCI_B0 SPI slave in master out (direction controlled by eUSCI), eUSCI_B0 I2C data (open drain and direction controlled by eUSCI) P2.2/PM_UCA2RXD/ PM_UCA2SOMI P2.2/PM_UCA2RXD/ PM_UCA2SOMI/S37 PM_UCA2RXD, PM_UCA2SOMI eUSCI_A2 UART RXD (direction controlled by eUSCI – input), eUSCI_A2 SPI slave out master in (direction controlled by eUSCI) P2.3/PM_UCA2TXD/ PM_UCA2SIMO P2.3/PM_UCA2TXD/ PM_UCA2SIMO/S36 PM_UCA2TXD, PM_UCA2SIMO eUSCI_A2 UART TXD (direction controlled by eUSCI – output), eUSCI_A2 SPI slave in master out (direction controlled by eUSCI) P2.4/PM_UCA1CLK P2.4/PM_UCA1CLK/S35 PM_UCA1CLK eUSCI_A1 clock input/output (direction controlled by eUSCI) Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A Copyright © 2015–2018, Texas Instruments Incorporated 83 MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 www.ti.com Table 6-8. Default Mapping (continued) PIN NAME PZ PN PxMAPy MNEMONIC INPUT PIN FUNCTION PM_UCA2CLK OUTPUT PIN FUNCTION P2.5/PM_UCA2CLK P2.5/PM_UCA2CLK/S34 P2.6/PM_TA1.0 P2.6/PM_TA1.0/S33 PM_TA1.0 TA1 CCR0 capture input CCI0A eUSCI_A2 clock input/output (direction controlled by eUSCI) TA1 CCR0 compare output Out0 P2.7/PM_TA1.1 P2.7/PM_TA1.1/S32 PM_TA1.1 TA1 CCR1 capture input CCI1A TA1 CCR1 compare output Out1 P3.0/PM_TA2.0 P3.0/PM_TA2.0/S31 PM_TA2.0 TA2 CCR0 capture input CCI0A TA2 CCR0 compare output Out0 P3.1/PM_TA2.1 P3.1/PM_TA2.1/S30 PM_TA2.1 TA2 CCR1 capture input CCI1A TA2 CCR1 compare output Out1 P3.2/PM_TACLK/ PM_RTCCLK P3.2/PM_TACLK/ PM_RTCCLK/S29 PM_TACLK, PM_RTCCLK Timer_A clock input to TA0, TA1, TA2, TA3 RTC_C clock output P3.3/PM_TA0.2 P3.3/PM_TA0.2/S28 PM_TA0.2 TA0 CCR2 capture input CCI2A TA0 CCR2 compare output Out2 P3.4/PM_SDCLK/S39 P3.4/PM_SDCLK/S27 PM_SDCLK SD24_B bit stream clock input/output (direction controlled by SD24_B) P3.5/PM_SD0DIO/S38 P3.5/PM_SD0DIO/S26 PM_SD0DIO SD24_B converter 0 bit stream data input/output (direction controlled by SD24_B) P3.6/PM_SD1DIO/S37 P3.6/PM_SD1DIO/S25 PM_SD1DIO SD24_B converter 1 bit stream data input/output (direction controlled by SD24_B) P3.7/PM_SD2DIO/S36 P3.7/PM_SD2DIO/S24 PM_SD2DIO SD24_B converter 2 bit stream data input/output (direction controlled by SD24_B) 6.11.7 System Module (SYS) The SYS module handles many of the system functions within the device. These include power-on reset (POR) and power-up clear (PUC) handling, NMI source selection and management, reset interrupt vector generators (see Table 6-9), bootloader entry mechanisms, and configuration management (device descriptors). It also includes a data exchange mechanism through JTAG called a JTAG mailbox that can be used in the application. Table 6-9. System Module Interrupt Vector Registers INTERRUPT VECTOR REGISTER SYSRSTIV, System Reset 84 Detailed Description INTERRUPT EVENT WORD ADDRESS OFFSET No interrupt pending 00h Brownout (BOR) 02h RST/NMI (POR) 04h DoBOR (BOR) 06h Wakeup from LPMx.5 (BOR) 08h Security violation (BOR) 0Ah SVSL (POR) 0Ch SVSH (POR) 0Eh SVML_OVP (POR) SVMH_OVP (POR) 019Eh PRIORITY Highest 10h 12h DoPOR (POR) 14h WDT time-out (PUC) 16h WDT key violation (PUC) 18h KEYV flash key violation (PUC) 1Ah Reserved 1Ch Peripheral area fetch (PUC) 1Eh PMM key violation (PUC) 20h Reserved 22h to 3Eh Lowest Copyright © 2015–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A www.ti.com SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 Table 6-9. System Module Interrupt Vector Registers (continued) INTERRUPT VECTOR REGISTER INTERRUPT EVENT WORD ADDRESS OFFSET No interrupt pending 00h SVMLIFG 02h SVMHIFG 04h DLYLIFG 06h DLYHIFG SYSSNIV, System NMI Highest 08h VMAIFG 019Ch 0Ah JMBINIFG 0Ch JMBOUTIFG 0Eh VLRLIFG 10h VLRHIFG 12h Reserved 14h to 1Eh No interrupt pending 00h NMIIFG 02h OFIFG SYSUNIV, User NMI PRIORITY 019Ah ACCVIFG Lowest Highest 04h 06h AUXSWNMIFG 08h Reserved 0Ah to 1Eh Lowest 6.11.8 Watchdog Timer (WDT_A) The primary function of the WDT_A module is to perform a controlled system restart after a software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed in an application, the timer can be configured as an interval timer and can generate interrupts at selected time intervals. 6.11.9 DMA Controller The DMA controller allows movement of data from one memory address to another without CPU intervention. For example, the DMA controller can be used to move data from the ADC10_A conversion memory to RAM. Using the DMA controller can increase the throughput of peripheral modules. The DMA controller reduces system power consumption by allowing the CPU to remain in sleep mode, without having to awaken to move data to or from a peripheral. Table 6-10 lists the available DMA triggers. Table 6-10. DMA Trigger Assignments (1) TRIGGER (1) CHANNEL 0 1 0 DMAREQ 1 TA0CCR0 CCIFG 2 TA0CCR2 CCIFG 3 TA1CCR0 CCIFG 4 Reserved 5 TA2CCR0 CCIFG 6 Reserved 7 TA3CCR0 CCIFG 8 Reserved 9 Reserved 2 Reserved DMA triggers may be used by other devices in the family. Reserved DMA triggers do not cause any DMA trigger event when selected. Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A Copyright © 2015–2018, Texas Instruments Incorporated 85 MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 www.ti.com Table 6-10. DMA Trigger Assignments(1) (continued) TRIGGER CHANNEL 0 1 10 Reserved 11 Reserved 12 Reserved 13 SD24IFG 14 Reserved 15 Reserved 16 UCA0RXIFG 17 UCA0TXIFG 18 UCA1RXIFG 19 UCA1TXIFG 20 UCA2RXIFG 21 UCA2TXIFG 22 UCB0RXIFG0 23 UCB0TXIFG0 24 ADC10IFG0 25 Reserved 26 Reserved 27 Reserved 28 Reserved 29 MPY ready 30 31 DMA2IFG DMA0IFG 2 DMA1IFG Reserved 6.11.10 CRC16 The CRC16 module produces a signature based on a sequence of entered data values and can be used for data checking purposes. The CRC16 module signature is based on the CRC-CCITT standard. 6.11.11 Hardware Multiplier The multiplication operation is supported by a dedicated peripheral module. The module performs operations with 32-, 24-, 16-, and 8-bit operands. The module supports signed and unsigned multiplication as well as signed and unsigned multiply-and-accumulate operations. 6.11.12 Enhanced Universal Serial Communication Interface (eUSCI) The eUSCI module is used for serial data communication. The eUSCI module supports synchronous communication protocols such as SPI (3- or 4-pin) and I2C, and asynchronous communication protocols such as UART, enhanced UART with automatic baud-rate detection, and IrDA. The eUSCI_An module supports for SPI (3- or 4-pin), UART, enhanced UART, or IrDA. The eUSCI_Bn module supports for SPI (3- or 4-pin) or I2C. Three eUSCI_A and one eUSCI_B module are implemented. 6.11.13 ADC10_A The ADC10_A module supports fast 10-bit analog-to-digital conversions. The module implements a 10-bit SAR core, sample select control, reference generator, and a conversion results buffer. A window comparator with a lower and upper limit allows CPU independent result monitoring with three window comparator interrupt flags. 86 Detailed Description Copyright © 2015–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A www.ti.com SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 6.11.14 SD24_B The SD24_B module integrates up to three independent 24-bit sigma-delta analog-to-digital converters. Each converter is designed with a fully differential analog input pair and programmable gain amplifier input stage. The converters are based on second-order over-sampling sigma-delta modulators and digital decimation filters. The decimation filters are comb-type filters with selectable oversampling ratios of up to 1024. 6.11.15 TA0 TA0 is a 16-bit timer/counter (Timer_A type) with three capture/compare registers. TA0 can support multiple capture/compares, PWM outputs, and interval timing (see Table 6-11). TA0 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers. Table 6-11. TA0 Signal Connections DEVICE INPUT SIGNAL MODULE INPUT NAME PM_TACLK TACLK ACLK (internal) ACLK SMCLK (internal) SMCLK PM_TACLK INCLK PM_TA0.0 CCI0A DVSS CCI0B DVSS GND MODULE BLOCK MODULE OUTPUT SIGNAL DEVICE OUTPUT SIGNAL Timer NA NA PM_TA0.0 CCR0 TA0 DVCC VCC PM_TA0.1 CCI1A PM_TA0.1 ACLK (internal) CCI1B ADC10_A (internal) ADC10SHSx = {1} DVSS GND DVCC VCC PM_TA0.2 CCI2A DVSS CCI2B DVSS GND DVCC VCC CCR1 TA1 SD24_B (internal) SD24SCSx = {1} PM_TA0.2 CCR2 TA2 Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A Copyright © 2015–2018, Texas Instruments Incorporated 87 MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 www.ti.com 6.11.16 TA1 TA1 is a 16-bit timer/counter (Timer_A type) with two capture/compare registers. TA1 can support multiple capture/compares, PWM outputs, and interval timing (see Table 6-12). TA1 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers. Table 6-12. TA1 Signal Connections DEVICE INPUT SIGNAL PM_TACLK MODULE INPUT NAME MODULE BLOCK MODULE OUTPUT SIGNAL DEVICE OUTPUT SIGNAL PZ TACLK ACLK (internal) ACLK SMCLK (internal) SMCLK PM_TACLK INCLK PM_TA1.0 CCI0A DVSS CCI0B DVSS GND DVCC VCC PM_TA1.1 CCI1A ACLK (internal) CCI1B DVSS GND DVCC VCC Timer NA NA PM_TA1.0 CCR0 TA0 PM_TA1.1 CCR1 TA1 6.11.17 TA2 TA2 is a 16-bit timer/counter (Timer_A type) with two capture/compare registers. TA2 can support multiple capture/compares, PWM outputs, and interval timing (see Table 6-13). TA2 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers. Table 6-13. TA2 Signal Connections DEVICE INPUT SIGNAL MODULE INPUT NAME PM_TACLK TACLK 88 ACLK (internal) ACLK SMCLK (internal) SMCLK PM_TACLK INCLK PM_TA2.0 CCI0A DVSS CCI0B DVSS GND MODULE BLOCK MODULE OUTPUT SIGNAL DEVICE OUTPUT SIGNAL Timer NA NA PM_TA2.0 CCR0 TA0 DVCC VCC PM_TA2.1 CCI1A PM_TA2.1 ACLK (internal) CCI1B SD24_B (internal) SD24SCSx = {2} DVSS GND DVCC VCC Detailed Description CCR1 TA1 Copyright © 2015–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A www.ti.com SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 6.11.18 TA3 TA3 is a 16-bit timer/counter (Timer_A type) with two capture/compare registers. TA3 can support multiple capture/compares, PWM outputs, and interval timing (see Table 6-14). TA3 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers. Table 6-14. TA3 Signal Connections DEVICE INPUT SIGNAL MODULE INPUT NAME PM_TACLK TACLK MODULE BLOCK MODULE OUTPUT SIGNAL Timer NA DEVICE OUTPUT SIGNAL ACLK (internal) ACLK SMCLK (internal) SMCLK PM_TACLK INCLK PM_TA3.0 CCI0A PM_TA3.0 DVSS CCI0B TA0 ADC10_A (internal) ADC10SHSx = {2} DVSS GND TA1 CCR0 DVCC VCC PM_TA3.1 CCI1A PM_TA3.1 ACLK (internal) CCI1B SD24_B (internal) SD24SCSx = {3} DVSS GND DVCC VCC CCR1 6.11.19 SD24_B Triggers Table 6-15 lists the input trigger connections to SD24_B converters from Timer_A modules and the output trigger pulse connection from SD24_B to ADC10_A. Table 6-15. SD24_B Input/Output Trigger Connections DEVICE INPUT SIGNAL MODULE INPUT SIGNAL TA0.1 (internal) SD24_B SD24SCSx = {1} TA2.1 (internal) SD24_B SD24SCSx = {2} TA3.1 (internal) SD24_B SD24SCSx = {3} MODULE BLOCK MODULE OUTPUT SIGNAL DEVICE OUTPUT SIGNAL Trigger Pulse ADC10_A (internal) ADC10SHSx = {3} SD24_B 6.11.20 ADC10_A Triggers Table 6-16 lists the input trigger connections to ADC10_A from Timer_A modules and SD24_B. Table 6-16. ADC10_A Input Trigger Connections DEVICE INPUT SIGNAL MODULE INPUT SIGNAL TA0.1 (internal) ADC10_A ADC10SHSx = {1} TA3.0 (internal) ADC10_A ADC10SHSx = {2} MODULE BLOCK ADC10_A Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A Copyright © 2015–2018, Texas Instruments Incorporated 89 MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 www.ti.com 6.11.21 Real-Time Clock (RTC_C) The RTC_C module can be configured for real-time clock or calendar mode that provides seconds, hours, day of week, day of month, month, and year. The RTC_C control and configuration registers are password-protected to ensure clock integrity against runaway code. Calendar mode integrates an internal calendar that compensates for months with less than 31 days and includes leap year correction. The RTC_C also supports flexible alarm functions, offset calibration, and temperature compensation. The RTC_C on this device operates on dedicated AUXVCC3 supply and supports operation in LPM3.5. 6.11.22 Reference (REF) ModuleVoltage Reference The REF is responsible for generation of all critical reference voltages that can be used by the various analog peripherals in the device. These include the ADC10_A, LCD_C, and SD24_B modules. 6.11.23 LCD_C The LCD_C driver generates the segment and common signals required to drive a segment liquid crystal display (LCD). The LCD_C controller has dedicated data memories to hold segment drive information. Common and segment signals are generated as defined by the mode. Static, 2-mux, 3-mux, 4-mux, up to 8-mux LCDs are supported. The module can provide a LCD voltage independent of the supply voltage with its integrated charge pump. It is possible to control the level of the LCD voltage, and thus contrast, by software. The module also provides an automatic blinking capability for individual segments in static, 2mux, 3-mux, and 4-mux modes. 6.11.24 Embedded Emulation Module (EEM) (S Version) The EEM supports real-time in-system debugging. The S version of the EEM has the following features: • Three hardware triggers or breakpoints on memory access • One hardware trigger or breakpoint on CPU register write access • Up to four hardware triggers can be combined to form complex triggers or breakpoints • One cycle counter • Clock control on module level 90 Detailed Description Copyright © 2015–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A www.ti.com SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 6.12 Input/Output Diagrams 6.12.1 Port P1 (P1.0 and P1.1) Input/Output With Schmitt Trigger (MSP430F67xxAIPZ and MSP430F67xxAIPN) Figure 6-2 shows the port diagram. Table 6-17 summarizes the selection of the pin functions. Pad Logic to/from Reference To ADC10_A INCHx = y P1REN.x P1MAP.x = PMAP_ANALOG P1DIR.x 0 from Port Mapping 1 P1OUT.x 0 from Port Mapping 1 DVSS 0 DVCC 1 1 Direction 0: Input 1: Output P1DS.x 0: Low drive 1: High drive P1SEL.x P1.0/PM_TA0.0/VeREF-/A2 P1.1/PM_TA0.1/VeREF+/A1 P1IN.x Bus Keeper EN to Port Mapping D P1IE.x EN P1IRQ.x Q P1IFG.x P1SEL.x P1IES.x Set Interrupt Edge Select Figure 6-2. Port P1 (P1.0 and P1.1) Diagram (MSP430F67xxAIPZ and MSP430F67xxAIPN) Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A Copyright © 2015–2018, Texas Instruments Incorporated 91 MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 www.ti.com Table 6-17. Port P1 (P1.0 and P1.1) Pin Functions (MSP430F67xxAIPZ and MSP430F67xxAIPN) PIN NAME (P1.x) x FUNCTION P1DIR.x P1SEL.x I: 0; O: 1 0 X 0 1 default TA0.TA0 1 1 default VeREF-/A2 (2) X 1 = 31 I: 0; O: 1 0 X TA0.CCI1A 0 1 default TA0.TA1 1 1 default VeREF+/A1 (2) X 1 = 31 P1.0 (I/O) P1.0/PM_TA0.0/ VeREF-/A2 0 TA0.CCI0A P1.1 (I/O) P1.1/PM_TA0.1/ VeREF+/A1 (1) (2) 92 1 CONTROL BITS OR SIGNALS (1) P1MAPx X = Don't care Setting P1SEL.x bit together with P1MAPx = PM_ANALOG disables the output driver and the input Schmitt trigger. Detailed Description Copyright © 2015–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A www.ti.com SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 6.12.2 Port P1 (P1.2) Input/Output With Schmitt Trigger (MSP430F67xxAIPZ and MSP430F67xxAIPN) Figure 6-3 shows the port diagram. Table 6-18 summarizes the selection of the pin functions. Pad Logic To ADC10_A INCHx = y P1REN.x P1MAP.x = PMAP_ANALOG P1DIR.x 0 from Port Mapping 1 P1OUT.x 0 from Port Mapping 1 DVSS 0 DVCC 1 1 Direction 0: Input 1: Output P1.2/PM_UCA0RXD/PM_UCA0SOMI/A0 P1DS.x 0: Low drive 1: High drive P1SEL.x P1IN.x Bus Keeper EN to Port Mapping D P1IE.x EN P1IRQ.x Q P1IFG.x P1SEL.x P1IES.x Set Interrupt Edge Select Figure 6-3. Port P1 (P1.2) Diagram (MSP430F67xxAIPZ and MSP430F67xxAIPN) Table 6-18. Port P1 (P1.2) Pin Functions (MSP430F67xxAIPZ and MSP430F67xxAIPN) PIN NAME (P1.x) x FUNCTION P1DIR.x P1SEL.x I: 0; O: 1 0 X UCA0RXD/UCA0SOMI X 1 default A0 (2) X 1 = 31 P1.2 (I/O) P1.2/PM_UCA0RXD/ PM_UCA0SOMI/A0 (1) (2) 2 CONTROL BITS OR SIGNALS (1) P1MAPx X = Don't care Setting P1SEL.x bit together with P1MAPx = PM_ANALOG disables the output driver and the input Schmitt trigger. Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A Copyright © 2015–2018, Texas Instruments Incorporated 93 MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 www.ti.com 6.12.3 Port P1 (P1.3 to P1.5) Input/Output With Schmitt Trigger (MSP430F67xxAIPZ and MSP430F67xxAIPN) Figure 6-4 shows the port diagram. Table 6-19 summarizes the selection of the pin functions. to LCD_C Pad Logic P1REN.x P1MAP.x = PMAP_ANALOG P1DIR.x 0 from Port Mapping 1 P1OUT.x 0 from Port Mapping 1 DVSS 0 DVCC 1 1 Direction 0: Input 1: Output P1DS.x 0: Low drive 1: High drive P1SEL.x P1.3/PM_UCA0TXD/PM_UCA0SIMO/R03 P1.4/PM_UCA1RXD/PM_UCA1SOMI/LCDREF/R13 P1.5/PM_UCA1TXD/PM_UCA1SIMO/R23 P1IN.x Bus Keeper EN to Port Mapping D P1IE.x EN P1IRQ.x Q P1IFG.x P1SEL.x P1IES.x Set Interrupt Edge Select Figure 6-4. Port P1 (P1.3 to P1.5) Diagram (MSP430F67xxAIPZ and MSP430F67xxAIPN) Table 6-19. Port P1 (P1.3 to P1.5) Pin Functions (MSP430F67xxAIPZ and MSP430F67xxAIPN) PIN NAME (P1.x) x P1.3/PM_UCA0TXD/ PM_UCA0SIMO/R03 3 FUNCTION P1.3 (I/O) P1.4/PM_UCA1RXD/ PM_UCA1SOMI/ LCDREF/R13 UCA0TXD/UCA0SIMO R03 (2) (1) (2) 94 5 P1SEL.x P1MAPx I: 0; O: 1 0 X X 1 default X 1 = 31 0 X UCA1RXD/UCA1SOMI X 1 default LCDREF/R13 (2) X 1 = 31 I: 0; O: 1 0 X UCA1TXD/UCA1SIMO X 1 default R23 (2) X 1 = 31 P1.5 (I/O) P1.5/PM_UCA1TXD/ PM_UCA1SIMO/R23 P1DIR.x I: 0; O: 1 P1.4 (I/O) 4 CONTROL BITS OR SIGNALS (1) X = Don't care Setting P1SEL.x bit together with P1MAPx = PM_ANALOG disables the output driver and the input Schmitt trigger. Detailed Description Copyright © 2015–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A www.ti.com SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 6.12.4 Port P1 (P1.6 and P1.7) (MSP430F67xxAIPZ and MSP430F67xxAIPN) and Port P2 (P2.0 and P2.1) (MSP430F67xxAIPZ Only) Input/Output With Schmitt Trigger Figure 6-5 shows the port diagram. Table 6-20 and Table 6-21 summarize the selection of the pin functions. COM4 to COM7 from LCD_C Pad Logic PyREN.x PyMAP.x = PMAP_ANALOG PyDIR.x 0 from Port Mapping 1 PyOUT.x 0 from Port Mapping 1 DVSS 0 DVCC 1 1 Direction 0: Input 1: Output PyDS.x 0: Low drive 1: High drive PySEL.x P1.6/PM_UCA0CLK/COM4 P1.7/PM_UCB0CLK/COM5 P2.0/PM_UCB0SOMI/PM_UCB0SCL/COM6 P2.1/PM_UCB0SIMO/PM_UCB0SDA/COM7 PyIN.x Bus Keeper EN to Port Mapping D PyIE.x EN PyIRQ.x Q PyIFG.x PySEL.x PyIES.x Set Interrupt Edge Select Figure 6-5. Port P1 (P1.6 and P1.7) (MSP430F67xxAIPZ and MSP430F67xxAIPN), Port P2 (P2.0 and P2.1) (MSP430F67xxAIPZ Only) Diagram Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A Copyright © 2015–2018, Texas Instruments Incorporated 95 MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 www.ti.com Table 6-20. Port P1 (P1.6 and P1.7) Pin Functions (MSP430F67xxAIPZ and MSP430F67xxAIPN) CONTROL BITS OR SIGNALS (1) PIN NAME (P1.x) P1.6/PM_UCA0CLK/COM4 x 6 FUNCTION P1DIR.x P1SEL.x P1MAPx COM4, COM5 Enable Signal P1.6 (I/O) I: 0; O: 1 0 X 0 UCA0CLK X 1 default 0 Output driver and input Schmitt trigger disabled X 1 = 31 0 COM4 P1.7/PM_UCB0CLK/COM5 (1) 7 X X X 1 P1.7 (I/O) I: 0; O: 1 0 X 0 UCB0CLK X 1 default 0 Output driver and input Schmitt trigger disabled X 1 = 31 0 COM5 X X X 1 X = Don't care Table 6-21. Port P2 (P2.0 and P2.1) Pin Functions (MSP430F67xxAIPZ Only) CONTROL BITS OR SIGNALS (1) PIN NAME (P2.x) x FUNCTION P2DIR.x P2SEL.x P2MAPx COM6, COM7 Enable Signal I: 0; O: 1 0 X 0 UCB0SOMI/UCB0SCL X 1 default 0 Output driver and input Schmitt trigger disabled X 1 = 31 0 P2.0 (I/O) P2.0/PM_UCB0SOMI/ PM_UCB0SCL/COM6 0 COM6 X X X 1 I: 0; O: 1 0 X 0 UCB0SIMO/UCB0SDA X 1 default 0 Output driver and input Schmitt trigger disabled X 1 = 31 0 COM7 X X X 1 P2.1 (I/O) P2.1/PM_UCB0SIMO/ PM_UCB0SDA/COM7 (1) 96 1 X = Don't care Detailed Description Copyright © 2015–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A www.ti.com SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 6.12.5 Port P2 (P2.2 to P2.7) Input/Output With Schmitt Trigger (MSP430F67xxAIPZ Only) Figure 6-6 shows the port diagram. Table 6-22 summarizes the selection of the pin functions. Pad Logic P2REN.x P2MAP.x = PMAP_ANALOG P2DIR.x 0 from Port Mapping 1 P2OUT.x 0 from Port Mapping 1 DVSS 0 DVCC 1 Direction 0: Input 1: Output P2DS.x 0: Low drive 1: High drive P2SEL.x P2IN.x P2.2/PM_UCA2RXD/PM_UCA2SOMI P2.3/PM_UCA2TXD/PM_UCA2SIMO P2.4/PM_UCA1CLK P2.5/PM_UCA2CLK P2.6/PM_TA1.0 P2.7/PM_TA1.1 Bus Keeper EN to Port Mapping 1 D P2IE.x EN P2IRQ.x Q P2IFG.x P2SEL.x P2IES.x Set Interrupt Edge Select Figure 6-6. Port P2 (P2.2 to P2.7) Diagram (MSP430F67xxAIPZ Only) Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A Copyright © 2015–2018, Texas Instruments Incorporated 97 MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 www.ti.com Table 6-22. Port P2 (P2.2 to P2.7) Pin Functions (MSP430F67xxAIPZ Only) PIN NAME (P2.x) x FUNCTION P2.2 (I/O) P2.2/PM_UCA2RXD/ PM_UCA2SOMI 2 UCA2RXD/UCA2SOMI Output driver and input Schmitt trigger disabled P2.3 (I/O) P2.3/PM_UCA2TXD/ PM_UCA2SIMO 3 UCA2TXD/UCA2SIMO Output driver and input Schmitt trigger disabled P2.4/PM_UCA1CLK 4 5 6 (1) 98 P2MAPx X X 1 default = 31 X 1 I: 0; O: 1 0 X X 1 default = 31 1 0 X UCA1CLK X 1 default = 31 X 1 P2.5 (I/O) I: 0; O: 1 0 X UCA2CLK X 1 default Output driver and input Schmitt trigger disabled X 1 = 31 I: 0; O: 1 0 X TA1.CC10A 0 1 default TA1.TA0 1 1 default = 31 X 1 I: 0; O: 1 0 X 0 1 default TA1.TA1 1 1 default Output driver and input Schmitt trigger disabled X 1 = 31 P2.7 (I/O) 7 0 X Output driver and input Schmitt trigger disabled P2.7/PM_TA1.1 P2SEL.x I: 0; O: 1 P2.6 (I/O) P2.6/PM_TA1.0 P2DIR.x I: 0; O: 1 P2.4 (I/O) Output driver and input Schmitt trigger disabled P2.5/PM_UCA2CLK CONTROL BITS OR SIGNALS (1) TA1.CCI1A X = Don't care Detailed Description Copyright © 2015–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A www.ti.com SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 6.12.6 Port P3 (P3.0 to P3.3) Input/Output With Schmitt Trigger (MSP430F67xxAIPZ Only) Figure 6-7 shows the port diagram. Table 6-23 summarizes the selection of the pin functions. Pad Logic P3REN.x P3MAP.x = PMAP_ANALOG P3DIR.x 0 from Port Mapping 1 P3OUT.x 0 from Port Mapping 1 DVSS 0 DVCC 1 1 Direction 0: Input 1: Output P3.0/PM_TA2.0 P3.1/PM_TA2.1 P3.2/PM_TACLK/PM_RTCCLK P3.3/PM_TA0.2 P3DS.x 0: Low drive 1: High drive P3SEL.x P3IN.x Bus Keeper EN to Port Mapping D Figure 6-7. Port P3 (P3.0 to P3.3) Diagram (MSP430F67xxAIPZ Only) Table 6-23. Port P3 (P3.0 to P3.3) Pin Functions (MSP430F67xxAIPZ Only) PIN NAME (P3.x) x FUNCTION P3.0 (I/O) P3.0/PM_TA2.0 0 2 0 X 1 default TA2.TA0 1 1 default = 31 X 1 I: 0; O: 1 0 X 0 1 default TA2.TA1 1 1 default Output driver and input Schmitt trigger disabled X 1 = 31 I: 0; O: 1 0 X 0 1 default RTCCLK 1 1 default Output driver and input Schmitt trigger disabled X 1 = 31 I: 0; O: 1 0 X TA0.CCI2A 0 1 default TA0.TA2 1 1 default Output driver and input Schmitt trigger disabled X 1 = 31 TA2.CCI1A TACLK P3.3 (I/O) P3.3/PM_TA0.2 (1) 3 P3MAPx 0 P3.2 (I/O) P3.2/PM_TACLK/ PM_RTCCLK P3SEL.x I: 0; O: 1 P3.1 (I/O) 1 P3DIR.x TA2.CC10A Output driver and input Schmitt trigger disabled P3.1/PM_TA2.1 CONTROL BITS OR SIGNALS (1) X = Don't care Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A Copyright © 2015–2018, Texas Instruments Incorporated 99 MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 www.ti.com 6.12.7 Port P3 (P3.4 to P3.7) Input/Output With Schmitt Trigger (MSP430F67xxAIPZ Only) Figure 6-8 shows the port diagram. Table 6-24 summarizes the selection of the pin functions. S39 to S37 LCDS39 to LCDS37 Pad Logic P3REN.x P3MAP.x = PMAP_ANALOG P3DIR.x 0 from Port Mapping 1 P3OUT.x 0 from Port Mapping 1 DVSS 0 DVCC 1 1 Direction 0: Input 1: Output P3DS.x 0: Low drive 1: High drive P3SEL.x P3.4/PM_SDCLK/S39 P3.5/PM_SD0DIO/S38 P3.6/PM_SD1DIO/S37 P3.7/PM_SD2DIO/S36 P3IN.x EN to Port Mapping Bus Keeper D Figure 6-8. Port P3 (P3.4 to P3.7) Diagram (MSP430F67xxAIPZ Only) 100 Detailed Description Copyright © 2015–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A www.ti.com SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 Table 6-24. Port P3 (P3.4 to P3.7) Pin Functions (MSP430F67xxAIPZ Only) CONTROL BITS OR SIGNALS (1) PIN NAME (P3.x) x FUNCTION P3DIR.x P3SEL.x P3MAPx LCDS39... LCDS36 I: 0; O: 1 0 X 0 SDCLK X 1 default 0 Output driver and input Schmitt trigger disabled X 1 = 31 0 P3.4 (I/O) P3.4/PM_SDCLK/S39 4 S39 X X X 1 I: 0; O: 1 0 X 0 SD0DIO X 1 default 0 Output driver and input Schmitt trigger disabled X 1 = 31 0 P3.5 (I/O) P3.5/PM_SD0DIO/S38 5 S38 X X X 1 I: 0; O: 1 0 X 0 SD1DIO X 1 default 0 Output driver and input Schmitt trigger disabled X 1 = 31 0 S37 X X X 1 P3.6 (I/O) P3.6/PM_SD1DIO/S37 6 P3.7 (I/O) P3.7/PM_SD2DIO/S36 (1) 7 I: 0; O: 1 0 X 0 SD2DIO X 1 default 0 Output driver and input Schmitt trigger disabled X 1 = 31 0 S36 X X X 1 X = Don't care Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A Copyright © 2015–2018, Texas Instruments Incorporated 101 MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 www.ti.com 6.12.8 Port P4 (P4.0 to P4.7), Port P5 (P5.0 to P5.7), Port P6 (P6.0 to P6.7), Port P7 (P7.0 to P7.7), Port P8 (P8.0 to P8.3) Input/Output With Schmitt Trigger (MSP430F67xxAIPZ Only) Figure 6-9 shows the port diagram. Table 6-25 through Table 6-29 summarize the selection of the pin functions. Sz LCDSz Pad Logic PyREN.x PyDIR.x 0 0 DVSS 1 0 DVCC 1 1 Direction 0: Input 1: Output 1 PyOUT.x DVSS PyDS.x 0: Low drive 1: High drive PySEL.x Py.x/Sz PyIN.x EN Not Used Bus Keeper D Figure 6-9. Port P4 (P4.0 to P4.7), Port P5 (P5.0 to P5.7), Port P6 (P6.0 to P6.7), Port P7 (P7.0 to P7.7), Port P8 (P8.0 to P8.3) Diagram (MSP430F67xxAIPZ Only) 102 Detailed Description Copyright © 2015–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A www.ti.com SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 Table 6-25. Port P4 (P4.0 to P4.7) Pin Functions (MSP430F67xxAIPZ Only) CONTROL BITS OR SIGNALS (1) PIN NAME (P4.x) x FUNCTION P4DIR.x P4SEL.x LCDS35... LCDS28 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S35 X X 1 P4.0 (I/O) P4.0/S35 0 P4.1 (I/O) P4.1/S34 1 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S34 X X 1 P4.2 (I/O) P4.2/S33 2 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S33 P4.3 (I/O) P4.3/S32 3 N/A 4 5 6 (1) 7 1 0 1 1 0 X 1 I: 0; O: 1 0 0 0 1 0 N/A DVSS 1 1 0 S31 X X 1 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S30 X X 1 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S29 X X 1 P4.7 (I/O) P4.7/S28 0 0 X P4.6 (I/O) P4.6/S29 1 0 S32 P4.5 (I/O) P4.5/S30 X DVSS P4.4 (I/O) P4.4/S31 X I: 0; O: 1 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S28 X X 1 X = Don't care Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A Copyright © 2015–2018, Texas Instruments Incorporated 103 MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 www.ti.com Table 6-26. Port P5 (P5.0 to P5.7) Pin Functions (MSP430F67xxAIPZ Only) CONTROL BITS OR SIGNALS (1) PIN NAME (P5.x) x FUNCTION P5DIR.x P5SEL.x LCDS27... LCDS20 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S27 X X 1 P5.0 (I/O) P5.0/S27 0 P5.1 (I/O) P5.1/S26 1 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S26 X X 1 P5.2 (I/O) P5.2/S25 2 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S25 P5.3 (I/O) P5.3/S24 3 N/A 4 5 6 (1) 104 7 1 0 1 1 0 X 1 I: 0; O: 1 0 0 0 1 0 N/A DVSS 1 1 0 S23 X X 1 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S22 X X 1 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S21 X X 1 P5.7 (I/O) P5.7/S20 0 0 X P5.6 (I/O) P5.6/S21 1 0 S24 P5.5 (I/O) P5.5/S22 X DVSS P5.4 (I/O) P5.4/S23 X I: 0; O: 1 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S20 X X 1 X = Don't care Detailed Description Copyright © 2015–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A www.ti.com SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 Table 6-27. Port P6 (P6.0 to P6.7) Pin Functions (MSP430F67xxAIPZ Only) CONTROL BITS OR SIGNALS (1) PIN NAME (P6.x) x FUNCTION P6DIR.x P6SEL.x LCDS19... LCDS12 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S19 X X 1 P6.0 (I/O) P6.0/S19 0 P6.1 (I/O) P6.1/S18 1 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S18 X X 1 P6.2 (I/O) P6.2/S17 2 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S17 P6.3 (I/O) P6.3/S16 3 N/A 4 5 6 (1) 7 1 0 1 1 0 X 1 I: 0; O: 1 0 0 0 1 0 N/A DVSS 1 1 0 S15 X X 1 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S14 X X 1 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S13 X X 1 P6.7 (I/O) P6.7/S12 0 0 X P6.6 (I/O) P6.6/S13 1 0 S16 P6.5 (I/O) P6.5/S14 X DVSS P6.4 (I/O) P6.4/S15 X I: 0; O: 1 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S12 X X 1 X = Don't care Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A Copyright © 2015–2018, Texas Instruments Incorporated 105 MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 www.ti.com Table 6-28. Port P7 (P7.0 to P7.7) Pin Functions (MSP430F67xxAIPZ Only) CONTROL BITS OR SIGNALS (1) PIN NAME (P7.x) x FUNCTION P7DIR.x P7SEL.x LCDS11... LCDS4 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S11 X X 1 P7.0 (I/O) P7.0/S11 0 P7.1 (I/O) P7.1/S10 1 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S10 X X 1 P7.2 (I/O) P7.2/S9 2 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S9 P7.3 (I/O) P7.3/S8 3 N/A 4 5 6 (1) 106 7 1 0 1 1 0 X 1 I: 0; O: 1 0 0 0 1 0 N/A DVSS 1 1 0 S7 X X 1 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S6 X X 1 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S5 X X 1 P7.7 (I/O) P7.7/S4 0 0 X P7.6 (I/O) P7.6/S5 1 0 S8 P7.5 (I/O) P7.5/S6 X DVSS P7.4 (I/O) P7.4/S7 X I: 0; O: 1 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S4 X X 1 X = Don't care Detailed Description Copyright © 2015–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A www.ti.com SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 Table 6-29. Port P8 (P8.0 to P8.3) Pin Functions (MSP430F67xxAIPZ Only) CONTROL BITS OR SIGNALS (1) PIN NAME (P8.x) x FUNCTION P8DIR.x P8SEL.x LCDS3... LCDS0 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S3 X X 1 P8.0 (I/O) P8.0/S3 0 P8.1 (I/O) P8.1/S2 1 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S2 X X 1 P8.2 (I/O) P8.2/S1 2 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S1 P8.3 (I/O) P8.3/S0 (1) 3 N/A X X 1 I: 0; O: 1 0 0 0 1 0 DVSS 1 1 0 S0 X X 1 X = Don't care Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A Copyright © 2015–2018, Texas Instruments Incorporated 107 MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 www.ti.com 6.12.9 Port P8 (P8.4 to P8.7) Input/Output With Schmitt Trigger (MSP430F67xxAIPZ Only) Figure 6-10 shows the port diagram. Table 6-30 summarizes the selection of the pin functions. Pad Logic P8REN.x P8DIR.x 0 0 DVCC 1 1 Direction 0: Input 1: Output 1 P8OUT.x DVSS 0 1 Module X OUT P8.4/TA1.0 P8.5/TA1.1 P8.6/TA2.0 P8.7/TA2.1 P8DS.x 0: Low drive 1: High drive P8SEL.x P8IN.x EN Module X IN D Figure 6-10. Port P8 (P8.4 to P8.7) Diagram (MSP430F67xxAIPZ Only) Table 6-30. Port P8 (P8.4 to P8.7) Pin Functions (MSP430F67xxAIPZ Only) PIN NAME (P8.x) x FUNCTION P8DIR.x P8SEL.x I: 0; O: 1 0 TA1.CCI0A 0 1 TA1.TA0 1 1 P8.5 (I/O) P8.4 (I/O) P8.4/TA1.0 4 P8.5/TA1.1 5 P8.6/TA2.0 6 P8.7/TA2.1 108 7 Detailed Description CONTROL BITS OR SIGNALS I: 0; O: 1 0 TA1.CCI1A 0 1 TA1.TA1 1 1 P8.6 (I/O) I: 0; O: 1 0 TA2.CCI0A 0 1 TA2.TA0 1 1 P8.7 (I/O) I: 0; O: 1 0 TA2.CCI1A 0 1 TA2.TA1 1 1 Copyright © 2015–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A www.ti.com SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 6.12.10 Port P9 (P9.0) Input/Output With Schmitt Trigger (MSP430F67xxAIPZ Only) Figure 6-11 shows the port diagram. Table 6-31 summarizes the selection of the pin functions. Pad Logic P9REN.x P9DIR.x 0 Module X OUT 0 DVCC 1 1 Direction 0: Input 1: Output 1 P9OUT.x DVSS 0 1 P9.0/TACLK/RTCCLK P9DS.x 0: Low drive 1: High drive P9SEL.x P9IN.x EN Module X IN D Figure 6-11. Port P9 (P9.0) Diagram (MSP430F67xxAIPZ Only) Table 6-31. Port P9 (P9.0) Pin Functions (MSP430F67xxAIPZ Only) PIN NAME (P9.x) x FUNCTION P9.0 (I/O) P9.0/TACLK/RTCCLK 0 CONTROL BITS OR SIGNALS P9DIR.x P9SEL.x I: 0; O: 1 0 TACLK 0 1 RTCCLK 1 1 Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A Copyright © 2015–2018, Texas Instruments Incorporated 109 MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 www.ti.com 6.12.11 Port P9 (P9.1 to P9.3) Input/Output With Schmitt Trigger (MSP430F67xxAIPZ Only) Figure 6-12 shows the port diagram. Table 6-32 summarizes the selection of the pin functions. Pad Logic To ADC10 INCHx = y P9REN.x DVSS 0 DVCC 1 1 P9DIR.x P9OUT.x P9.1/A5 P9.2/A4 P9.3/A3 P9DS.x 0: Low drive 1: High drive P9SEL.x P9IN.x Bus Keeper Figure 6-12. Port P9 (P9.1 to P9.3) Diagram (MSP430F67xxAIPZ Only) Table 6-32. Port P9 (P9.1 to P9.3) Pin Functions (MSP430F67xxAIPZ Only) PIN NAME (P9.x) P9.1/A5 x 1 P9.2/A4 2 P9.3/A3 3 (1) (2) 110 FUNCTION P9.1 (I/O) A5 (2) P9.2 (I/O) A4 (2) P9.3 (I/O) A3 (2) CONTROL BITS OR SIGNALS (1) P9DIR.x P9SEL.x I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 X = Don't care Setting P9SEL.x bit disables the output driver and the input Schmitt trigger. Detailed Description Copyright © 2015–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A www.ti.com SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 6.12.12 Port P2 (P2.0 and P2.1) Input/Output With Schmitt Trigger (MSP430F67xxAIPN Only) Figure 6-13 shows the port diagram. Table 6-33 summarizes the selection of the pin functions. S39, S38 LCDS39, LCDS38 COM6, COM7 from LCD_C Pad Logic P2REN.x P2MAP.x = PMAP_ANALOG P2DIR.x 0 from Port Mapping 1 P2OUT.x 0 from Port Mapping 1 DVSS 0 DVCC 1 1 Direction 0: Input 1: Output P2DS.x 0: Low drive 1: High drive P2SEL.x P2.0/PM_UCB0SOMI/PM_UCB0SCL/COM6/S39 P2.1/PM_UCB0SIMO/PM_UCB0SDA/COM7/S38 P2IN.x Bus Keeper EN to Port Mapping D P2IE.x EN P2IRQ.x Q P2IFG.x P2SEL.x P2IES.x Set Interrupt Edge Select Figure 6-13. Port P2 (P2.0 and P2.1) Diagram (MSP430F67xxAIPN Only) Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A Copyright © 2015–2018, Texas Instruments Incorporated 111 MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 www.ti.com Table 6-33. Port P2 (P2.0 and P2.1) Pin Functions (MSP430F67xxAIPN Only) CONTROL BITS OR SIGNALS (1) PIN NAME (P2.x) x FUNCTION P2.0 (I/O) P2.0/PM_UCB0SOMI/ PM_UCB0SCL/COM6/ S39 0 (1) 112 1 P2SEL.x P2MAPx LCDS39, LCDS38 COM6, COM7 Enable Signal I: 0; O: 1 0 X 0 0 UCB0SOMI/UCB0SCL X 1 default 0 0 Output driver and input Schmitt trigger disabled X 1 = 31 0 0 COM6 X X X X 1 S39 X X X 1 0 P2.1 (I/O) P2.1/PM_UCB0SIMO/ PM_UCB0SDA/COM7/ S38 P2DIR.x I: 0; O: 1 0 X 0 0 UCB0SIMO/UCB0SDA X 1 default 0 0 Output driver and input Schmitt trigger disabled X 1 = 31 0 0 COM7 X X X X 1 S38 X X X 1 0 X = Don't care Detailed Description Copyright © 2015–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A www.ti.com SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 6.12.13 Port P2 (P2.2 to P2.7) Input/Output With Schmitt Trigger (MSP430F67xxAIPN Only) Figure 6-14 shows the port diagram. Table 6-34 summarizes the selection of the pin functions. S37...S32 LCDS37...LCDS32 Pad Logic P2REN.x P2MAP.x = PMAP_ANALOG P2DIR.x 0 from Port Mapping 1 P2OUT.x 0 from Port Mapping 1 DVSS 0 DVCC 1 Direction 0: Input 1: Output P2DS.x 0: Low drive 1: High drive P2SEL.x P2IN.x P2.2/PM_UCA2RXD/PM_UCA2SOMI/S37 P2.3/PM_UCA2TXD/PM_UCA2SIMO/S36 P2.4/PM_UCA1CLK/S35 P2.5/PM_UCA2CLK/S34 P2.6/PM_TA1.0/S33 P2.7/PM_TA1.1/S32 Bus Keeper EN to Port Mapping 1 D P2IE.x EN P2IRQ.x Q P2IFG.x P2SEL.x P2IES.x Set Interrupt Edge Select Figure 6-14. Port P2 (P2.2 to P2.7) Diagram (MSP430F67xxAIPN Only) Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A Copyright © 2015–2018, Texas Instruments Incorporated 113 MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 www.ti.com Table 6-34. Port P2 (P2.2 to P2.7) Pin Functions (MSP430F67xxAIPN Only) CONTROL BITS OR SIGNALS (1) PIN NAME (P2.x) x FUNCTION P2DIR.x P2SEL.x P2MAPx LCDS37... LCDS32 I: 0; O: 1 0 X 0 UCA2RXD/UCA2SOMI X 1 default 0 Output driver and input Schmitt trigger disabled X 1 = 31 0 P2.2 (I/O) P2.2/PM_UCA2RXD/ PM_UCA2SOMI/S37 2 S37 X X X 1 I: 0; O: 1 0 X 0 UCA2TXD/UCA2SIMO X 1 default 0 Output driver and input Schmitt trigger disabled X 1 = 31 0 P2.3 (I/O) P2.3/PM_UCA2TXD/ PM_UCA2SIMO/S36 3 S36 P2.4/PM_UCA1CLK/S35 P2.5/PM_UCA2CLK/S34 4 5 X X X 1 P2.4 (I/O) I: 0; O: 1 0 X 0 UCA1CLK X 1 default 0 Output driver and input Schmitt trigger disabled X 1 = 31 0 S35 X X X 1 P2.5 (I/O) I: 0; O: 1 0 X 0 UCA2CLK X 1 default 0 Output driver and input Schmitt trigger disabled X 1 = 31 0 S34 X X X 1 I: 0; O: 1 0 X 0 TA1.CCI0A 0 1 default 0 TA1.TA0 1 1 default 0 Output driver and input Schmitt trigger disabled X 1 = 31 0 P2.6 (I/O) P2.6/PM_TA1.0/S33 6 S33 X X X 1 I: 0; O: 1 0 X 0 TA1.CCI1A 0 1 default 0 TA1.TA1 1 1 default 0 Output driver and input Schmitt trigger disabled X 1 = 31 0 S32 X X X 1 P2.7 (I/O) P2.7/PM_TA1.1/S32 (1) 114 7 X = Don't care Detailed Description Copyright © 2015–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A www.ti.com SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 6.12.14 Port P3 (P3.0 to P3.7) Input/Output With Schmitt Trigger (MSP430F67xxAIPN Only) Figure 6-15 shows the port diagram. Table 6-35 summarizes the selection of the pin functions. S31 to S24 LCDS31 to LCDS24 Pad Logic P3REN.x P3MAP.x = PMAP_ANALOG P3DIR.x 0 from Port Mapping 1 P3OUT.x 0 from Port Mapping 1 DVSS 0 DVCC 1 Direction 0: Input 1: Output P3DS.x 0: Low drive 1: High drive P3SEL.x P3IN.x EN to Port Mapping 1 Bus Keeper P3.0/PM_TA2.0/S31 P3.1/PM_TA2.1/S30 P3.2/PM_TACLK/PM_RTCCLK/S29 P3.3/PM_TA0.2/S28 P3.4/PM_SDCLK/S27 P3.5/PM_SD0DIO/S26 P3.6/PM_SD1DIO/S25 P3.7/PM_SD2DIO/S24 D Figure 6-15. Port P3 (P3.0 to P3.7) Diagram (MSP430F67xxAIPN Only) Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A Copyright © 2015–2018, Texas Instruments Incorporated 115 MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 www.ti.com Table 6-35. Port P3 (P3.0 to P3.7) Pin Functions (MSP430F67xxAIPN Only) CONTROL BITS OR SIGNALS (1) PIN NAME (P3.x) x FUNCTION P3DIR.x P3SEL.x P3MAPx LCDS31... LCDS24 I: 0; O: 1 0 X 0 TA2.CCI0A 0 1 default 0 TA2.TA0 1 1 default 0 Output driver and input Schmitt trigger disabled X 1 = 31 0 P3.0 (I/O) P3.0/PM_TA2.0/S31 0 S31 X X X 1 I: 0; O: 1 0 X 0 TA2.CCI1A 0 1 default 0 TA2.TA1 1 1 default 0 Output driver and input Schmitt trigger disabled X 1 = 31 0 P3.1 (I/O) P3.1/PM_TA2.1/S30 1 S30 X X X 1 I: 0; O: 1 0 X 0 TACLK 0 1 default 0 RTCCLK 1 1 default 0 Output driver and input Schmitt trigger disabled X 1 = 31 0 S29 X X X 1 P3.2 (I/O) P3.2/PM_TACLK/ PM_RTCCLK/S29 2 P3.3 (I/O) P3.3/PM_TA0.2/S28 3 I: 0; O: 1 0 X 0 TA0.CCI2A 0 1 default 0 TA0.TA2 1 1 default 0 Output driver and input Schmitt trigger disabled X 1 = 31 0 S28 X X X 1 I: 0; O: 1 0 X 0 SDCLK X 1 default 0 Output driver and input Schmitt trigger disabled X 1 = 31 0 P3.4 (I/O) P3.4/PM_SDCLK/S27 4 S27 X X X 1 I: 0; O: 1 0 X 0 SD0DIO X 1 default 0 Output driver and input Schmitt trigger disabled X 1 = 31 0 P3.5 (I/O) P3.5/PM_SD0DIO/S26 5 S26 X X X 1 I: 0; O: 1 0 X 0 SD1DIO X 1 default 0 Output driver and input Schmitt trigger disabled X 1 = 31 0 S25 X X X 1 P3.6 (I/O) P3.6/PM_SD1DIO/S25 6 P3.7 (I/O) P3.7/PM_SD2DIO/S24 (1) 116 7 I: 0; O: 1 0 X 0 SD2DIO X 1 default 0 Output driver and input Schmitt trigger disabled X 1 = 31 0 S24 X X X 1 X = Don't care Detailed Description Copyright © 2015–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A www.ti.com SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 6.12.15 Port P4 (P4.0 to P4.7), Port P5 (P5.0 to P5.7), Port P6 (P6.0 to P6.7) Input/Output With Schmitt Trigger (MSP430F67xxAIPN Only) Figure 6-16 shows the port diagram. Table 6-36 through Table 6-38 summarize the selection of the pin functions. Sz LCDSz Pad Logic PyREN.x PyDIR.x 0 0 DVSS 1 0 DVCC 1 1 Direction 0: Input 1: Output 1 PyOUT.x DVSS PyDS.x 0: Low drive 1: High drive PySEL.x Py.x/Sz PyIN.x EN Not Used Bus Keeper D Figure 6-16. Port P4 (P4.0 to P4.7), Port P5 (P5.0 to P5.7), Port P6 (P6.0 to P6.7) Diagram (MSP430F67xxAIPN Only) Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A Copyright © 2015–2018, Texas Instruments Incorporated 117 MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 www.ti.com Table 6-36. Port P4 (P4.0 to P4.7) Pin Functions (MSP430F67xxAIPN Only) CONTROL BITS OR SIGNALS (1) PIN NAME (P4.x) x FUNCTION P4DIR.x P4SEL.x LCDS23... LCDS16 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S23 X X 1 P4.0 (I/O) P4.0/S23 0 P4.1 (I/O) P4.1/S22 1 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S22 X X 1 P4.2 (I/O) P4.2/S21 2 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S21 P4.3 (I/O) P4.3/S20 3 N/A 4 5 6 (1) 118 7 1 0 1 1 0 X 1 I: 0; O: 1 0 0 0 1 0 N/A DVSS 1 1 0 S19 X X 1 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S18 X X 1 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S17 X X 1 P4.7 (I/O) P4.7/S16 0 0 X P4.6 (I/O) P4.6/S17 1 0 S20 P4.5 (I/O) P4.5/S18 X DVSS P4.4 (I/O) P4.4/S19 X I: 0; O: 1 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S16 X X 1 X = Don't care Detailed Description Copyright © 2015–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A www.ti.com SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 Table 6-37. Port P5 (P5.0 to P5.7) Pin Functions (MSP430F67xxAIPN Only) CONTROL BITS OR SIGNALS (1) PIN NAME (P5.x) x FUNCTION P5DIR.x P5SEL.x LCDS15... LCDS8 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S15 X X 1 P5.0 (I/O) P5.0/S15 0 P5.1 (I/O) P5.1/S14 1 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S14 X X 1 P5.2 (I/O) P5.2/S13 2 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S13 P5.3 (I/O) P5.3/S12 3 N/A 4 5 6 (1) 7 1 0 1 1 0 X 1 I: 0; O: 1 0 0 0 1 0 N/A DVSS 1 1 0 S11 X X 1 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S10 X X 1 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S9 X X 1 P5.7 (I/O) P5.7/S8 0 0 X P5.6 (I/O) P5.6/S9 1 0 S12 P5.5 (I/O) P5.5/S10 X DVSS P5.4 (I/O) P5.4/S11 X I: 0; O: 1 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S8 X X 1 X = Don't care Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A Copyright © 2015–2018, Texas Instruments Incorporated 119 MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 www.ti.com Table 6-38. Port P6 (P6.0 to P6.7) Pin Functions (MSP430F67xxAIPN Only) CONTROL BITS OR SIGNALS (1) PIN NAME (P6.x) x FUNCTION P6DIR.x P6SEL.x LCDS7... LCDS0 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S7 X X 1 P6.0 (I/O) P6.0/S7 0 P6.1 (I/O) P6.1/S6 1 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S6 X X 1 P6.2 (I/O) P6.2/S5 2 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S5 P6.3 (I/O) P6.3/S4 3 N/A 4 5 6 (1) 120 7 1 0 1 1 0 X 1 I: 0; O: 1 0 0 0 1 0 N/A DVSS 1 1 0 S3 X X 1 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S2 X X 1 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S1 X X 1 P6.7 (I/O) P6.7/S0 0 0 X P6.6 (I/O) P6.6/S1 1 0 S4 P6.5 (I/O) P6.5/S2 X DVSS P6.4 (I/O) P6.4/S3 X I: 0; O: 1 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S0 X X 1 X = Don't care Detailed Description Copyright © 2015–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A www.ti.com SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 6.12.16 Port PJ (PJ.0) JTAG Pin TDO, Input/Output With Schmitt Trigger or Output Figure 6-17 shows the port diagram. Table 6-39 summarizes the selection of the pin functions. Pad Logic PJREN.x PJDIR.x 0 DVCC 1 PJOUT.x 00 From JTAG 01 SMCLK 10 DVSS 0 DVCC 1 PJDS.0 0: Low drive 1: High drive 11 1 PJ.0/SMCLK/TDO PJSEL.x From JTAG PJIN.x Bus Holder EN D Figure 6-17. Port PJ (PJ.0) Diagram Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A Copyright © 2015–2018, Texas Instruments Incorporated 121 MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 www.ti.com 6.12.17 Port PJ (PJ.1 to PJ.3) JTAG Pins TMS, TCK, TDI/TCLK, Input/Output With Schmitt Trigger or Output Figure 6-18 shows the port diagram. Table 6-39 summarizes the selection of the pin functions. Pad Logic PJREN.x PJDIR.x DVSS DVSS 0 DVCC 1 1 0 1 PJOUT.x 00 From JTAG 01 MCLK/ADC10CLK/ACLK 10 PJ.1/MCLK/TDI/TCLK PJ.2/ADC10CLK/TMS PJ.3/ACLK/TCK PJDS.x 0: Low drive 1: High drive 11 PJSEL.x From JTAG PJIN.x Bus Holder EN D To JTAG Figure 6-18. Port PJ (PJ.1 to PJ.3) Diagram Table 6-39. Port PJ (PJ.0 to PJ.3) Pin Functions CONTROL BITS OR SIGNALS (1) PIN NAME (PJ.x) x FUNCTION PJ.0 (I/O) (2) PJ.0/SMCLK/TDO 0 1 0 0 1 1 0 TDO (3) X X 1 I: 0; O: 1 0 0 1 1 0 X X 1 I: 0; O: 1 0 0 1 1 0 X X 1 I: 0; O: 1 0 0 1 1 0 X X 1 (2) MCLK PJ.2 (I/O) 2 122 (2) ACLK TCK (1) (2) (3) (4) (2) (3) (4) PJ.3 (I/O) 3 (3) (4) ADC10CLK TMS PJ.3/ACLK/TCK JTAG Mode Signal I: 0; O: 1 TDI/TCLK PJ.2/ADC10CLK/TMS PJSEL.x SMCLK PJ.1 (I/O) PJ.1/MCLK/TDI/TCLK PJDIR.x (3) (4) X = Don't care Default condition The pin direction is controlled by the JTAG module. In JTAG mode, pullups are activated automatically on TMS, TCK, and TDI/TCLK. PJREN.x are don't care. Detailed Description Copyright © 2015–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A www.ti.com SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 6.13 Device Descriptors (TLV) Table 6-40 and Table 6-41 list the complete contents of the device descriptor tag-length-value (TLV) structure for each device type. Table 6-40. MSP430F673xA Device Descriptors Info Block Die Record ADC10 Calibration VALUE ADDRESS SIZE (bytes) F6736A F6735A F6734A F6733A F6731A F6730A Info length 01A00h 1 06h 06h 06h 06h 06h 06h CRC length 01A01h 1 06h 06h 06h 06h 06h 06h CRC value 01A02h 2 Per unit Per unit Per unit Per unit Per unit Per unit Device ID 01A04h 1 86h 85h 84h 83h 81h 80h Device ID 01A05h 1 82h 82h 82h 82h 82h 82h Hardware revision 01A06h 1 Per unit Per unit Per unit Per unit Per unit Per unit Firmware revision 01A07h 1 Per unit Per unit Per unit Per unit Per unit Per unit Die record tag 01A08h 1 08h 08h 08h 08h 08h 08h Die record length 01A09h 1 0Ah 0Ah 0Ah 0Ah 0Ah 0Ah DESCRIPTION Lot/wafer ID 01A0Ah 4 Per unit Per unit Per unit Per unit Per unit Per unit Die X position 01A0Eh 2 Per unit Per unit Per unit Per unit Per unit Per unit Die Y position 01A10h 2 Per unit Per unit Per unit Per unit Per unit Per unit Test results 01A12h 2 Per unit Per unit Per unit Per unit Per unit Per unit ADC10 calibration tag 01A14h 1 13h 13h 13h 13h 13h 13h ADC10 calibration length 01A15h 1 10h 10h 10h 10h 10h 10h ADC gain factor 01A16h 2 Per unit Per unit Per unit Per unit Per unit Per unit ADC offset 01A18h 2 Per unit Per unit Per unit Per unit Per unit Per unit ADC 1.5-V reference Temperature sensor 30°C 01A1Ah 2 Per unit Per unit Per unit Per unit Per unit Per unit ADC 1.5-V reference Temperature sensor 85°C 01A1Ch 2 Per unit Per unit Per unit Per unit Per unit Per unit ADC 2.0-V reference Temperature sensor 30°C 01A1Eh 2 Per unit Per unit Per unit Per unit Per unit Per unit ADC 2.0-V reference Temperature sensor 85°C 01A20h 2 Per unit Per unit Per unit Per unit Per unit Per unit ADC 2.5-V reference Temperature sensor 30°C 01A22h 2 Per unit Per unit Per unit Per unit Per unit Per unit ADC 2.5-V reference Temperature sensor 85°C 01A24h 2 Per unit Per unit Per unit Per unit Per unit Per unit Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A Copyright © 2015–2018, Texas Instruments Incorporated 123 MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 www.ti.com Table 6-41. MSP430F672xA Device Descriptors Info Block Die Record ADC10 Calibration 124 VALUE ADDRESS SIZE (bytes) F6726A F6725A F6724A F6723A F6721A F6720A Info length 01A00h 1 06h 06h 06h 06h 06h 06h CRC length 01A01h 1 06h 06h 06h 06h 06h 06h CRC value 01A02h 2 Per unit Per unit Per unit Per unit Per unit Per unit Device ID 01A04h 1 7Ch 7Bh 7Ah 79h 77h 76h Device ID 01A05h 1 82h 82h 82h 82h 82h 82h Hardware revision 01A06h 1 Per unit Per unit Per unit Per unit Per unit Per unit Firmware revision 01A07h 1 Per unit Per unit Per unit Per unit Per unit Per unit Die record tag 01A08h 1 08h 08h 08h 08h 08h 08h Die record length 01A09h 1 0Ah 0Ah 0Ah 0Ah 0Ah 0Ah DESCRIPTION Lot/wafer ID 01A0Ah 4 Per unit Per unit Per unit Per unit Per unit Per unit Die X position 01A0Eh 2 Per unit Per unit Per unit Per unit Per unit Per unit Die Y position 01A10h 2 Per unit Per unit Per unit Per unit Per unit Per unit Test results 01A12h 2 Per unit Per unit Per unit Per unit Per unit Per unit ADC10 calibration tag 01A14h 1 13h 13h 13h 13h 13h 13h ADC10 calibration length 01A15h 1 10h 10h 10h 10h 10h 10h ADC gain factor 01A16h 2 Per unit Per unit Per unit Per unit Per unit Per unit ADC offset 01A18h 2 Per unit Per unit Per unit Per unit Per unit Per unit ADC 1.5-V reference Temperature sensor 30°C 01A1Ah 2 Per unit Per unit Per unit Per unit Per unit Per unit ADC 1.5-V reference Temperature sensor 85°C 01A1Ch 2 Per unit Per unit Per unit Per unit Per unit Per unit ADC 2.0-V reference Temperature sensor 30°C 01A1Eh 2 Per unit Per unit Per unit Per unit Per unit Per unit ADC 2.0-V reference Temperature sensor 85°C 01A20h 2 Per unit Per unit Per unit Per unit Per unit Per unit ADC 2.5-V reference Temperature sensor 30°C 01A22h 2 Per unit Per unit Per unit Per unit Per unit Per unit ADC 2.5-V reference Temperature sensor 85°C 01A24h 2 Per unit Per unit Per unit Per unit Per unit Per unit Detailed Description Copyright © 2015–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A www.ti.com SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 6.14 Memory 6.14.1 Memory Organization Table 6-42 and Table 6-43 summarize the memory map for all device variants. Table 6-42. Memory Organization Main Memory (flash) MSP430F6730A MSP430F6720A MSP430F6731A MSP430F6721A MSP430F6733A MSP430F6723A 16KB 32KB 64KB 00FFFFh–00FF80h 00FFFFh–00FF80h 00FFFFh–00FF80h Bank 3 Not available Not available Not available Bank 2 Not available Not available Not available Bank 1 Not available 16KB 00FFFFh–00C000h 32KB 013FFFh–00C000h Bank 0 16KB 00FFFFh–00C000h 16KB 00BFFFh–008000h 32KB 00BFFFh–004000h Total Size Main: Interrupt vector Main: code memory RAM Total Size Information memory (flash) Bootloader (BSL) memory (flash) Peripherals 1KB 2KB 4KB Sector 3 Not available Not available Not available Sector 2 Not available Not available Not available Sector 1 Not available Not available 2KB 002BFFh–002400h Sector 0 1KB 001FFFh–001C00h 2KB 0023FFh–001C00h 2KB 0023FFh–001C00h Info A 128 B 0019FFh–001980h 128 B 0019FFh–001980h 128 B 0019FFh–001980h Info B 128 B 00197Fh–001900h 128 B 00197Fh–001900h 128 B 00197Fh–001900h Info C 128 B 0018FFh–001880h 128 B 0018FFh–001880h 128 B 0018FFh–001880h Info D 128 B 00187Fh–001800h 128 B 00187Fh–001800h 128 B 00187Fh–001800h BSL 3 512 B 0017FFh–001600h 512 B 0017FFh–001600h 512 B 0017FFh–001600h BSL 2 512 B 0015FFh–001400h 512 B 0015FFh–001400h 512 B 0015FFh–001400h BSL 1 512 B 0013FFh–001200h 512 B 0013FFh–001200h 512 B 0013FFh–001200h BSL 0 512 B 0011FFh–001000h 512 B 0011FFh–001000h 512 B 0011FFh–001000h 4 KB 000FFFh–0h 4 KB 000FFFh–0h 4 KB 000FFFh–0h Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A Copyright © 2015–2018, Texas Instruments Incorporated 125 MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 www.ti.com Table 6-43. Memory Organization MSP430F6734A MSP430F6724A MSP430F6735A MSP430F6725A MSP430F6736A MSP430F6726A 96KB 128KB 128KB 00FFFFh–00FF80h 00FFFFh–00FF80h 00FFFFh–00FF80h Bank 3 Not available 32KB 023FFFh–01C000h 32KB 023FFFh–01C000h Bank 2 32KB 01BFFFh–014000h 32KB 01BFFFh–014000h 32KB 01BFFFh–014000h Bank 1 32KB 013FFFh–00C000h 32KB 013FFFh–00C000h 32KB 013FFFh–00C000h Bank 0 32KB 00BFFFh–004000h 32KB 00BFFFh–004000h 32KB 00BFFFh–004000h 4KB 4KB 8KB Sector 3 Not available Not available 2KB 003BFFh–003400h Sector 2 Not available Not available 2KB 0033FFh–002C00h Sector 1 2KB 002BFFh–002400h 2KB 002BFFh–002400h 2KB 002BFFh–002400h Sector 0 2KB 0023FFh–001C00h 2KB 0023FFh–001C00h 2KB 0023FFh–001C00h Info A 128 B 0019FFh–001980h 128 B 0019FFh–001980h 128 B 0019FFh–001980h Info B 128 B 00197Fh–001900h 128 B 00197Fh–001900h 128 B 00197Fh–001900h Info C 128 B 0018FFh–001880h 128 B 0018FFh–001880h 128 B 0018FFh–001880h Info D 128 B 00187Fh–001800h 128 B 00187Fh–001800h 128 B 00187Fh–001800h BSL 3 512 B 0017FFh–001600h 512 B 0017FFh–001600h 512 B 0017FFh–001600h BSL 2 512 B 0015FFh–001400h 512 B 0015FFh–001400h 512 B 0015FFh–001400h BSL 1 512 B 0013FFh–001200h 512 B 0013FFh–001200h 512 B 0013FFh–001200h BSL 0 512 B 0011FFh–001000h 512 B 0011FFh–001000h 512 B 0011FFh–001000h 4 KB 000FFFh–0h 4 KB 000FFFh–0h 4 KB 000FFFh–0h Total Size Main Memory (flash) Main: Interrupt vector Main: code memory Total Size RAM Information memory (flash) Bootloader (BSL) memory (flash) Peripherals 126 Detailed Description Copyright © 2015–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A www.ti.com SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 6.14.2 Peripheral File Map Table 6-44 lists the available modules with the base address and the offset range for each. Table 6-45 through Table 6-82 list all of the available registers for each module. Table 6-44. Peripheral File Map MODULE NAME BASE ADDRESS OFFSET ADDRESS RANGE Special Functions (see Table 6-45) 0100h 000h–01Fh PMM (see Table 6-46) 0120h 000h–01Fh Flash Control (see Table 6-47) 0140h 000h–00Fh CRC16 (see Table 6-48) 0150h 000h–007h RAM Control (see Table 6-49) 0158h 000h–001h Watchdog (see Table 6-50) 015Ch 000h–001h UCS (see Table 6-51) 0160h 000h–01Fh SYS (see Table 6-52) 0180h 000h–01Fh Shared Reference (see Table 6-53) 01B0h 000h–001h Port Mapping Control (see Table 6-54) 01C0h 000h–007h Port Mapping Port P1 (see Table 6-55) 01C8h 000h–007h Port Mapping Port P2 (see Table 6-56) 01D0h 000h–007h Port Mapping Port P3 (see Table 6-57) 01D8h 000h–007h Port P1, P2 (see Table 6-58) 0200h 000h–01Fh Port P3, P4 (see Table 6-59) 0220h 000h–00Bh Port P5, P6 (see Table 6-60) 0240h 000h–00Bh Port P7, P8 (see Table 6-61) (Port P7, P8 not available in MSP430F67xxAIPN) 0260h 000h–00Bh Port P9 (Port P9 not available in MSP430F67xxAIPN) (see Table 6-62) 0280h 000h–00Bh Port PJ (refer toTable 6-63) 0320h 000h–01Fh Timer TA0 (see Table 6-64) 0340h 000h–03Fh Timer TA1 (see Table 6-65) 0380h 000h–03Fh Timer TA2 (see Table 6-66) 0400h 000h–03Fh Timer TA3 (see Table 6-67) 0440h 000h–03Fh Backup Memory (see Table 6-68) 0480h 000h–00Fh RTC_C (see Table 6-69) 04A0h 000h–01Fh 32-Bit Hardware Multiplier (see Table 6-70) 04C0h 000h–02Fh DMA General Control (see Table 6-71) 0500h 000h–00Fh DMA Channel 0 (see Table 6-72) 0500h 010h–01Fh DMA Channel 1 (see Table 6-73) 0500h 020h–02Fh DMA Channel 2 (see Table 6-74) 0500h 030h–03Fh eUSCI_A0 (see Table 6-75) 05C0h 000h–01Fh eUSCI_A1 (see Table 6-76) 05E0h 000h–01Fh eUSCI_A2 (see Table 6-77) 0600h 000h–01Fh eUSCI_B0 (see Table 6-78) 0640h 000h–02Fh ADC10_A (see Table 6-79) 0740h 000h–01Fh SD24_B (see Table 6-80) 0800h 000h–06Fh Auxiliary Supply (see Table 6-74) 09E0h 000h–01Fh LCD_C (see Table 6-82) 0A00h 000h–05Fh Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A Copyright © 2015–2018, Texas Instruments Incorporated 127 MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 www.ti.com Table 6-45. Special Function Registers (Base Address: 0100h) REGISTER DESCRIPTION REGISTER OFFSET SFR interrupt enable SFRIE1 00h SFR interrupt flag SFRIFG1 02h SFR reset pin control SFRRPCR 04h Table 6-46. PMM Registers (Base Address: 0120h) REGISTER DESCRIPTION REGISTER OFFSET PMM control 0 PMMCTL0 00h PMM control 1 PMMCTL1 02h SVS high-side control SVSMHCTL 04h SVS low-side control SVSMLCTL 06h PMM interrupt flags PMMIFG 0Ch PMM interrupt enable PMMIE 0Eh PMM power mode 5 control 0 PM5CTL0 10h Table 6-47. Flash Control Registers (Base Address: 0140h) REGISTER DESCRIPTION REGISTER OFFSET Flash control 1 FCTL1 00h Flash control 3 FCTL3 04h Flash control 4 FCTL4 06h Table 6-48. CRC16 Registers (Base Address: 0150h) REGISTER DESCRIPTION REGISTER OFFSET CRC data input CRC16DI 00h CRC data input reverse byte CRC16DIRB 02h CRC result CRCINIRES 04h CRC result reverse byte CRCRESR 06h Table 6-49. RAM Control Registers (Base Address: 0158h) REGISTER DESCRIPTION RAM control 0 REGISTER RCCTL0 OFFSET 00h Table 6-50. Watchdog Registers (Base Address: 015Ch) REGISTER DESCRIPTION Watchdog timer control REGISTER WDTCTL OFFSET 00h Table 6-51. UCS Registers (Base Address: 0160h) REGISTER DESCRIPTION REGISTER OFFSET UCS control 0 UCSCTL0 00h UCS control 1 UCSCTL1 02h UCS control 2 UCSCTL2 04h UCS control 3 UCSCTL3 06h UCS control 4 UCSCTL4 08h UCS control 5 UCSCTL5 0Ah UCS control 6 UCSCTL6 0Ch UCS control 7 UCSCTL7 0Eh 128 Detailed Description Copyright © 2015–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A www.ti.com SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 Table 6-51. UCS Registers (Base Address: 0160h) (continued) REGISTER DESCRIPTION UCS control 8 REGISTER UCSCTL8 OFFSET 10h Table 6-52. SYS Registers (Base Address: 0180h) REGISTER DESCRIPTION REGISTER OFFSET System control SYSCTL 00h Bootloader configuration area SYSBSLC 02h JTAG mailbox control SYSJMBC 06h JTAG mailbox input 0 SYSJMBI0 08h JTAG mailbox input 1 SYSJMBI1 0Ah JTAG mailbox output 0 SYSJMBO0 0Ch JTAG mailbox output 1 SYSJMBO1 0Eh Bus error vector generator SYSBERRIV 18h User NMI vector generator SYSUNIV 1Ah System NMI vector generator SYSSNIV 1Ch Reset vector generator SYSRSTIV 1Eh Table 6-53. Shared Reference Registers (Base Address: 01B0h) REGISTER DESCRIPTION Shared reference control REGISTER REFCTL OFFSET 00h Table 6-54. Port Mapping Controller (Base Address: 01C0h) REGISTER DESCRIPTION REGISTER OFFSET Port mapping password PMAPPWD 00h Port mapping control PMAPCTL 02h Table 6-55. Port Mapping for Port P1 (Base Address: 01C8h) REGISTER DESCRIPTION REGISTER OFFSET Port P1.0 mapping P1MAP0 00h Port P1.1 mapping P1MAP1 01h Port P1.2 mapping P1MAP2 02h Port P1.3 mapping P1MAP3 03h Port P1.4 mapping P1MAP4 04h Port P1.5 mapping P1MAP5 05h Port P1.6 mapping P1MAP6 06h Port P1.7 mapping P1MAP7 07h Table 6-56. Port Mapping for Port P2 (Base Address: 01D0h) REGISTER DESCRIPTION REGISTER OFFSET Port P2.0 mapping P2MAP0 00h Port P2.1 mapping P2MAP2 01h Port P2.2 mapping P2MAP2 02h Port P2.3 mapping P2MAP3 03h Port P2.4 mapping P2MAP4 04h Port P2.5 mapping P2MAP5 05h Port P2.6 mapping P2MAP6 06h Port P2.7 mapping P2MAP7 07h Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A Copyright © 2015–2018, Texas Instruments Incorporated 129 MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 www.ti.com Table 6-57. Port Mapping for Port P3 (Base Address: 01D8h) REGISTER DESCRIPTION REGISTER OFFSET Port P3.0 mapping P3MAP0 00h Port P3.1 mapping P3MAP3 01h Port P3.2 mapping P3MAP2 02h Port P3.3 mapping P3MAP3 03h Port P3.4 mapping P3MAP4 04h Port P3.5 mapping P3MAP5 05h Port P3.6 mapping P3MAP6 06h Port P3.7 mapping P3MAP7 07h Table 6-58. Port P1, P2 Registers (Base Address: 0200h) REGISTER DESCRIPTION REGISTER OFFSET Port P1 input P1IN 00h Port P1 output P1OUT 02h Port P1 direction P1DIR 04h Port P1 resistor enable P1REN 06h Port P1 drive strength P1DS 08h Port P1 selection P1SEL 0Ah Port P1 interrupt vector word P1IV 0Eh Port P1 interrupt edge select P1IES 18h Port P1 interrupt enable P1IE 1Ah Port P1 interrupt flag P1IFG 1Ch Port P2 input P2IN 01h Port P2 output P2OUT 03h Port P2 direction P2DIR 05h Port P2 resistor enable P2REN 07h Port P2 drive strength P2DS 09h Port P2 selection P2SEL 0Bh Port P2 interrupt vector word P2IV 1Eh Port P2 interrupt edge select P2IES 19h Port P2 interrupt enable P2IE 1Bh Port P2 interrupt flag P2IFG 1Dh Table 6-59. Port P3, P4 Registers (Base Address: 0220h) REGISTER DESCRIPTION REGISTER OFFSET Port P3 input P3IN 00h Port P3 output P3OUT 02h Port P3 direction P3DIR 04h Port P3 resistor enable P3REN 06h Port P3 drive strength P3DS 08h Port P3 selection P3SEL 0Ah Port P4 input P4IN 01h Port P4 output P4OUT 03h Port P4 direction P4DIR 05h Port P4 resistor enable P4REN 07h Port P4 drive strength P4DS 09h Port P4 selection P4SEL 0Bh 130 Detailed Description Copyright © 2015–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A www.ti.com SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 Table 6-60. Port P5, P6 Registers (Base Address: 0240h) REGISTER DESCRIPTION REGISTER OFFSET Port P5 input P5IN 00h Port P5 output P5OUT 02h Port P5 direction P5DIR 04h Port P5 resistor enable P5REN 06h Port P5 drive strength P5DS 08h Port P5 selection P5SEL 0Ah Port P6 input P6IN 01h Port P6 output P6OUT 03h Port P6 direction P6DIR 05h Port P6 resistor enable P6REN 07h Port P6 drive strength P6DS 09h Port P6 selection P6SEL 0Bh Table 6-61. Port P7, P8 Registers (Base Address: 0260h) REGISTER DESCRIPTION REGISTER OFFSET Port P7 input P7IN 00h Port P7 output P7OUT 02h Port P7 direction P7DIR 04h Port P7 resistor enable P7REN 06h Port P7 drive strength P7DS 08h Port P7 selection P7SEL 0Ah Port P8 input P8IN 01h Port P8 output P8OUT 03h Port P8 direction P8DIR 05h Port P8 resistor enable P8REN 07h Port P8 drive strength P8DS 09h Port P8 selection P8SEL 0Bh Table 6-62. Port P9 Registers (Base Address: 0280h) REGISTER DESCRIPTION REGISTER OFFSET Port P9 input P9IN 00h Port P9 output P9OUT 02h Port P9 direction P9DIR 04h Port P9 resistor enable P9REN 06h Port P9 drive strength P9DS 08h Port P9 selection P9SEL 0Ah Table 6-63. Port J Registers (Base Address: 0320h) REGISTER DESCRIPTION REGISTER OFFSET Port PJ input PJIN 00h Port PJ output PJOUT 02h Port PJ direction PJDIR 04h Port PJ resistor enable PJREN 06h Port PJ drive strength PJDS 08h Port PJ selection PJSEL 0Ah Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A Copyright © 2015–2018, Texas Instruments Incorporated 131 MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 www.ti.com Table 6-64. TA0 Registers (Base Address: 0340h) REGISTER DESCRIPTION REGISTER OFFSET TA0 control TA0CTL 00h Capture/compare control 0 TA0CCTL0 02h Capture/compare control 1 TA0CCTL1 04h Capture/compare control 2 TA0CCTL2 06h TA0 counter TA0R 10h Capture/compare 0 TA0CCR0 12h Capture/compare 1 TA0CCR1 14h Capture/compare 2 TA0CCR2 16h TA0 expansion 0 TA0EX0 20h TA0 interrupt vector TA0IV 2Eh Table 6-65. TA1 Registers (Base Address: 0380h) REGISTER DESCRIPTION REGISTER OFFSET TA1 control TA1CTL 00h Capture/compare control 0 TA1CCTL0 02h Capture/compare control 1 TA1CCTL1 04h TA1 counter TA1R 10h Capture/compare 0 TA1CCR0 12h Capture/compare 1 TA1CCR1 14h TA1 expansion 0 TA1EX0 20h TA1 interrupt vector TA1IV 2Eh Table 6-66. TA2 Registers (Base Address: 0400h) REGISTER DESCRIPTION REGISTER OFFSET TA2 control TA2CTL 00h Capture/compare control 0 TA2CCTL0 02h Capture/compare control 1 TA2CCTL1 04h TA2 counter TA2R 10h Capture/compare 0 TA2CCR0 12h Capture/compare 1 TA2CCR1 14h TA2 expansion 0 TA2EX0 20h TA2 interrupt vector TA2IV 2Eh Table 6-67. TA3 Registers (Base Address: 0440h) REGISTER DESCRIPTION REGISTER OFFSET TA3 control TA3CTL 00h Capture/compare control 0 TA3CCTL0 02h Capture/compare control 1 TA3CCTL1 04h TA3 counter TA3R 10h Capture/compare 0 TA3CCR0 12h Capture/compare 1 TA3CCR1 14h TA3 expansion 0 TA3EX0 20h TA3 interrupt vector TA3IV 2Eh 132 Detailed Description Copyright © 2015–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A www.ti.com SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 Table 6-68. Backup Memory Registers (Base Address: 0480h) REGISTER DESCRIPTION REGISTER OFFSET Backup memory 0 BAKMEM0 00h Backup memory 1 BAKMEM1 02h Backup memory 2 BAKMEM2 04h Backup memory 3 BAKMEM3 06h Table 6-69. RTC_C Registers (Base Address: 04A0h) REGISTER DESCRIPTION REGISTER OFFSET RTC control 0 RTCCTL0 00h RTC password RTCPWD 01h RTC control 1 RTCCTL1 02h RTC control 3 RTCCTL3 03h RTC offset calibration RTCOCAL 04h RTC temperature compensation RTCTCMP 06h RTC prescaler 0 control RTCPS0CTL 08h RTC prescaler 1 control RTCPS1CTL 0Ah RTC prescaler 0 RTCPS0 0Ch RTC prescaler 1 RTCPS1 0Dh RTC interrupt vector word RTCIV 0Eh RTC seconds RTCSEC 10h RTC minutes RTCMIN 11h RTC hours RTCHOUR 12h RTC day of week RTCDOW 13h RTC days RTCDAY 14h RTC month RTCMON 15h RTC year RTCYEAR 16h RTC alarm minutes RTCAMIN 18h RTC alarm hours RTCAHOUR 19h RTC alarm day of week RTCADOW 1Ah RTC alarm days RTCADAY 1Bh Binary-to-BCD conversion BIN2BCD 1Ch BCD-to-binary conversion BCD2BIN 1Eh Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A Copyright © 2015–2018, Texas Instruments Incorporated 133 MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 www.ti.com Table 6-70. 32-Bit Hardware Multiplier Registers (Base Address: 04C0h) REGISTER DESCRIPTION REGISTER OFFSET 16-bit operand 1 – multiply MPY 00h 16-bit operand 1 – signed multiply MPYS 02h 16-bit operand 1 – multiply accumulate MAC 04h 16-bit operand 1 – signed multiply accumulate MACS 06h 16-bit operand 2 OP2 08h 16 × 16 result low word RESLO 0Ah 16 × 16 result high word RESHI 0Ch 16 × 16 sum extension SUMEXT 0Eh 32-bit operand 1 – multiply low word MPY32L 10h 32-bit operand 1 – multiply high word MPY32H 12h 32-bit operand 1 – signed multiply low word MPYS32L 14h 32-bit operand 1 – signed multiply high word MPYS32H 16h 32-bit operand 1 – multiply accumulate low word MAC32L 18h 32-bit operand 1 – multiply accumulate high word MAC32H 1Ah 32-bit operand 1 – signed multiply accumulate low word MACS32L 1Ch 32-bit operand 1 – signed multiply accumulate high word MACS32H 1Eh 32-bit operand 2 – low word OP2L 20h 32-bit operand 2 – high word OP2H 22h 32 × 32 result 0 – least significant word RES0 24h 32 × 32 result 1 RES1 26h 32 × 32 result 2 RES2 28h 32 × 32 result 3 – most significant word RES3 2Ah MPY32 control 0 MPY32CTL0 2Ch Table 6-71. DMA General Control Registers (Base Address: 0500h) REGISTER DESCRIPTION REGISTER OFFSET DMA module control 0 DMACTL0 00h DMA module control 1 DMACTL1 02h DMA module control 2 DMACTL2 04h DMA module control 3 DMACTL3 06h DMA module control 4 DMACTL4 08h DMA interrupt vector DMAIV 0Eh Table 6-72. DMA Channel 0 Registers (Base Address: 0500h) REGISTER DESCRIPTION REGISTER OFFSET DMA channel 0 control DMA0CTL 10h DMA channel 0 source address low DMA0SAL 12h DMA channel 0 source address high DMA0SAH 14h DMA channel 0 destination address low DMA0DAL 16h DMA channel 0 destination address high DMA0DAH 18h DMA channel 0 transfer size DMA0SZ 1Ah 134 Detailed Description Copyright © 2015–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A www.ti.com SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 Table 6-73. DMA Channel 1 Registers (Base Address: 0500h) REGISTER DESCRIPTION REGISTER OFFSET DMA channel 1 control DMA1CTL 20h DMA channel 1 source address low DMA1SAL 22h DMA channel 1 source address high DMA1SAH 24h DMA channel 1 destination address low DMA1DAL 26h DMA channel 1 destination address high DMA1DAH 28h DMA channel 1 transfer size DMA1SZ 2Ah Table 6-74. DMA Channel 2 Registers (Base Address: 0500h) REGISTER DESCRIPTION REGISTER OFFSET DMA channel 2 control DMA2CTL 30h DMA channel 2 source address low DMA2SAL 32h DMA channel 2 source address high DMA2SAH 34h DMA channel 2 destination address low DMA2DAL 36h DMA channel 2 destination address high DMA2DAH 38h DMA channel 2 transfer size DMA2SZ 3Ah Table 6-75. eUSCI_A0 Registers (Base Address: 05C0h) REGISTER DESCRIPTION REGISTER OFFSET eUSCI_A control word 0 UCA0CTLW0 00h eUSCI _A control word 1 UCA0CTLW1 02h eUSCI_A baud rate 0 UCA0BR0 06h eUSCI_A baud rate 1 UCA0BR1 07h eUSCI_A modulation control UCA0MCTLW 08h eUSCI_A status UCA0STAT 0Ah eUSCI_A receive buffer UCA0RXBUF 0Ch eUSCI_A transmit buffer UCA0TXBUF 0Eh eUSCI_A LIN control UCA0ABCTL 10h eUSCI_A IrDA transmit control UCA0IRTCTL 12h eUSCI_A IrDA receive control UCA0IRRCTL 13h eUSCI_A interrupt enable UCA0IE 1Ah eUSCI_A interrupt flags UCA0IFG 1Ch eUSCI_A interrupt vector word UCA0IV 1Eh Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A Copyright © 2015–2018, Texas Instruments Incorporated 135 MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 www.ti.com Table 6-76. eUSCI_A1 Registers (Base Address:05E0h) REGISTER DESCRIPTION REGISTER OFFSET eUSCI_A control word 0 UCA1CTLW0 00h eUSCI _A control word 1 UCA1CTLW1 02h eUSCI_A baud rate 0 UCA1BR0 06h eUSCI_A baud rate 1 UCA1BR1 07h eUSCI_A modulation control UCA1MCTLW 08h eUSCI_A status UCA1STAT 0Ah eUSCI_A receive buffer UCA1RXBUF 0Ch eUSCI_A transmit buffer UCA1TXBUF 0Eh eUSCI_A LIN control UCA1ABCTL 10h eUSCI_A IrDA transmit control UCA1IRTCTL 12h eUSCI_A IrDA receive control UCA1IRRCTL 13h eUSCI_A interrupt enable UCA1IE 1Ah eUSCI_A interrupt flags UCA1IFG 1Ch eUSCI_A interrupt vector word UCA1IV 1Eh Table 6-77. eUSCI_A2 Registers (Base Address:0600h) REGISTER DESCRIPTION REGISTER OFFSET eUSCI_A control word 0 UCA2CTLW0 00h eUSCI _A control word 1 UCA2CTLW1 02h eUSCI_A baud rate 0 UCA2BR0 06h eUSCI_A baud rate 1 UCA2BR1 07h eUSCI_A modulation control UCA2MCTLW 08h eUSCI_A status UCA2STAT 0Ah eUSCI_A receive buffer UCA2RXBUF 0Ch eUSCI_A transmit buffer UCA2TXBUF 0Eh eUSCI_A LIN control UCA2ABCTL 10h eUSCI_A IrDA transmit control UCA2IRTCTL 12h eUSCI_A IrDA receive control UCA2IRRCTL 13h eUSCI_A interrupt enable UCA2IE 1Ah eUSCI_A interrupt flags UCA2IFG 1Ch eUSCI_A interrupt vector word UCA2IV 1Eh 136 Detailed Description Copyright © 2015–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A www.ti.com SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 Table 6-78. eUSCI_B0 Registers (Base Address: 0640h) REGISTER DESCRIPTION REGISTER OFFSET eUSCI_B control word 0 UCB0CTLW0 00h eUSCI_B control word 1 UCB0CTLW1 02h eUSCI_B bit rate 0 UCB0BR0 06h eUSCI_B bit rate 1 UCB0BR1 07h eUSCI_B status word UCB0STATW 08h eUSCI_B byte counter threshold UCB0TBCNT 0Ah eUSCI_B receive buffer UCB0RXBUF 0Ch eUSCI_B transmit buffer UCB0TXBUF 0Eh eUSCI_B I2C own address 0 UCB0I2COA0 14h eUSCI_B I2C own address 1 UCB0I2COA1 16h eUSCI_B I2C own address 2 UCB0I2COA2 18h eUSCI_B I2C own address 3 UCB0I2COA3 1Ah eUSCI_B received address UCB0ADDRX 1Ch eUSCI_B address mask UCB0ADDMASK 1Eh eUSCI I2C slave address UCB0I2CSA 20h eUSCI interrupt enable UCB0IE 2Ah eUSCI interrupt flags UCB0IFG 2Ch eUSCI interrupt vector word UCB0IV 2Eh Table 6-79. ADC10_A Registers (Base Address: 0740h) REGISTER DESCRIPTION REGISTER OFFSET ADC10_A control 0 ADC10CTL0 00h ADC10_A control 1 ADC10CTL1 02h ADC10_A control 2 ADC10CTL2 04h ADC10_A window comparator low threshold ADC10LO 06h ADC10_A window comparator high threshold ADC10HI 08h ADC10_A memory control 0 ADC10MCTL0 0Ah ADC10_A conversion memory ADC10MCTL0 12h ADC10_A interrupt enable ADC10IE 1Ah ADC10_A interrupt flags ADC10IGH 1Ch ADC10_A interrupt vector word ADC10IV 1Eh Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A Copyright © 2015–2018, Texas Instruments Incorporated 137 MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 www.ti.com Table 6-80. SD24_B Registers (Base Address: 0800h) REGISTER DESCRIPTION REGISTER OFFSET SD24_B control 0 SD24BCTL0 00h SD24_B control 1 SD24BCTL1 02h SD24_B interrupt flag SD24BIFG 0Ah SD24_B interrupt enable SD24BIE 0Ch SD24_B interrupt vector SD24BIV 0Eh SD24_B converter 0 control SD24BCCTL0 10h SD24_B converter 0 input control SD24BINCTL0 12h SD24_B converter 0 OSR control SD24BOSR0 14h SD24_B converter 0 preload SD24BPRE0 16h SD24_B converter 1 control SD24BCCTL1 18h SD24_B converter 1 input control SD24BINCTL1 1Ah SD24_B converter 1 OSR control SD24BOSR1 1Ch SD24_B converter 1 preload SD24BPRE1 1Eh SD24_B converter 2 control SD24BCCTL2 20h SD24_B converter 2 input control SD24BINCTL2 22h SD24_B converter 2 OSR control SD24BOSR2 24h SD24_B converter 2 preload SD24BPRE2 26h SD24_B converter 0 conversion memory low word SD24BMEML0 50h SD24_B converter 0 conversion memory high word SD24BMEMH0 52h SD24_B converter 1 conversion memory low word SD24BMEML1 54h SD24_B converter 1 conversion memory high word SD24BMEMH1 56h SD24_B converter 2 conversion memory low word SD24BMEML2 58h SD24_B converter 2 conversion memory high word SD24BMEMH2 5Ah Table 6-81. Auxiliary Supplies Registers (Base Address: 09E0h) REGISTER DESCRIPTION REGISTER OFFSET Auxiliary supply control 0 AUXCTL0 00h Auxiliary supply control 1 AUXCTL1 02h Auxiliary supply control 2 AUXCTL2 04h AUX2 charger control AUX2CHCTL 12h AUX3 charger control AUX3CHCTL 14h AUX ADC control AUXADCCTL 16h AUX interrupt flag AUXIFG 1Ah AUX interrupt enable AUXIE 1Ch AUX interrupt vector word AUXIV 1Eh 138 Detailed Description Copyright © 2015–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A www.ti.com SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 Table 6-82. LCD_C Registers (Base Address: 0A00h) REGISTER DESCRIPTION REGISTER OFFSET LCD_C control 0 LCDCCTL0 000h LCD_C control 1 LCDCCTL1 002h LCD_C blinking control LCDCBLKCTL 004h LCD_C memory control LCDCMEMCTL 006h LCD_C voltage control LCDCVCTL 008h LCD_C port control 0 LCDCPCTL0 00Ah LCD_C port control 1 LCDCPCTL1 00Ch LCD_C port control 2 LCDCPCTL2 00Eh LCD_C charge pump control LCDCCPCTL 012h LCD_C interrupt vector LCDCIV 01Eh LCD_C memory 1 LCDM1 020h LCD_C memory 2 LCDM2 021h Static and 2 to 4 mux modes ⋮ ⋮ ⋮ LCD_C memory 20 LCDM20 033h LCD_C blinking memory 1 LCDBM1 040h LCD_C blinking memory 2 LCDBM2 041h ⋮ ⋮ LCD_C blinking memory 20 ⋮ LCDBM20 053h LCD_C memory 1 LCDM1 020h LCD_C memory 2 LCDM2 021h 5 to 8 mux modes ⋮ ⋮ LCD_C memory 40 LCDM40 ⋮ 047h Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A Copyright © 2015–2018, Texas Instruments Incorporated 139 MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 www.ti.com 6.15 Identification 6.15.1 Revision Identification The device revision information is shown as part of the top-side marking on the device package. The device-specific errata sheet describes these markings. For links to all of the errata sheets for the devices in this data sheet, see Section 8.4. The hardware revision is also stored in the Device Descriptor structure in the Info Block section. For details on this value, see the "Hardware Revision" entries in Section 6.13. 6.15.2 Device Identification The device type can be identified from the top-side marking on the device package. The device-specific errata sheet describes these markings. For links to all of the errata sheets for the devices in this data sheet, see Section 8.4. A device identification value is also stored in the Device Descriptor structure in the Info Block section. For details on this value, see the "Device ID" entries in Section 6.13. 6.15.3 JTAG Identification Programming through the JTAG interface, including reading and identifying the JTAG ID, is described in detail in the MSP430 Programming With the JTAG Interface. 140 Detailed Description Copyright © 2015–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A www.ti.com SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 7 Applications, Implementation, and Layout NOTE Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality. The following resources provide application guidelines and best practices when designing with the MSP430F673xA and MSP430F672xA. Implementation of a Single-Phase Electronic Watt-Hour Meter Using the MSP430F6736(A) This application report describes the implementation of a single-phase electronic electricity meter using the Texas Instruments MSP430F673x(A) metering processor. It also includes the necessary information with regard to metrology software and hardware procedures for this single-chip implementation. High-Accuracy Single-Phase Electricity Meter With Tamper Detection This design, featuring the MSP430F6736(A) device, implements a highly-integrated single-chip electricity metering (e-meter) solution. Hardware and software design files are provided to enable calculation of various parameters for single phase energy measurement, such as RMS current and voltage, active and reactive power and energies, power factor, and frequency. Features • Low-power single-phase e-metering implementation • Calculate parameters such as RMS current and voltage, active and reactive power and energies, power factor and frequency • Based on the highly-integrated MSP430F67xx(A) family of metering-focused MCU SoCs • Segment LCD is also implemented in this design • RF modules can also be added to this design to enable unique connectivity solutions. Applications, Implementation, and Layout Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A Copyright © 2015–2018, Texas Instruments Incorporated 141 MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 www.ti.com 8 Device and Documentation Support 8.1 Getting Started and Next Steps For more information on the MSP430™ family of devices and the tools and libraries that are available to help with your development, visit the Getting Started page. 8.2 Device Nomenclature To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all MSP MCU devices. Each MSP MCU commercial family member has one of two prefixes: MSP or XMS. These prefixes represent evolutionary stages of product development from engineering prototypes (XMS) through fully qualified production devices (MSP). XMS – Experimental device that is not necessarily representative of the final device's electrical specifications MSP – Fully qualified production device XMS devices are shipped against the following disclaimer: "Developmental product is intended for internal evaluation purposes." MSP devices have been characterized fully, and the quality and reliability of the device have been demonstrated fully. TI's standard warranty applies. Predictions show that prototype devices (XMS) have a greater failure rate than the standard production devices. TI recommends that these devices not be used in any production system because their expected end-use failure rate still is undefined. Only qualified production devices are to be used. TI device nomenclature also includes a suffix with the device family name. This suffix indicates the temperature range, package type, and distribution format. Figure 8-1 provides a legend for reading the complete device name. 142 Device and Documentation Support Copyright © 2015–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A www.ti.com SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 MSP 430 F 5 438 A I ZQW T -EP Processor Family Optional: Additional Features MCU Platform Optional: Tape and Reel Device Type Packaging Series Feature Set Processor Family Optional: Temperature Range Optional: A = Revision CC = Embedded RF Radio MSP = Mixed-Signal Processor XMS = Experimental Silicon PMS = Prototype Device 430 = MSP430 low-power microcontroller platform MCU Platform Device Type Memory Type C = ROM F = Flash FR = FRAM G = Flash or FRAM (Value Line) L = No Nonvolatile Memory Specialized Application AFE = Analog Front End BQ = Contactless Power CG = ROM Medical FE = Flash Energy Meter FG = Flash Medical FW = Flash Electronic Flow Meter Series 1 = Up to 8 MHz 2 = Up to 16 MHz 3 = Legacy 4 = Up to 16 MHz with LCD 5 = Up to 25 MHz 6 = Up to 25 MHz with LCD 0 = Low-Voltage Series Feature Set Various levels of integration within a series Optional: A = Revision N/A Optional: Temperature Range S = 0°C to 50°C C = 0°C to 70°C I = –40°C to 85°C T = –40°C to 105°C Packaging http://www.ti.com/packaging Optional: Tape and Reel T = Small reel R = Large reel No markings = Tube or tray Optional: Additional Features -EP = Enhanced Product (–40°C to 105°C) -HT = Extreme Temperature Parts (–55°C to 150°C) -Q1 = Automotive Q100 Qualified Figure 8-1. Device Nomenclature Device and Documentation Support Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A Copyright © 2015–2018, Texas Instruments Incorporated 143 MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 8.3 www.ti.com Tools and Software All MSP microcontrollers are supported by a wide variety of software and hardware development tools. Tools are available from TI and various third parties. See them all at MSP430 Ultra-Low-Power MCUs – Tools & software. Table 8-1 lists the debug features of the MSP430F673xA and MSP430F672xA MCUs. See the Code Composer Studio for MSP430 User's Guide for details on the available features. Table 8-1. Hardware Debug Features MSP430 ARCHITECTURE 4-WIRE JTAG 2-WIRE JTAG BREAKPOINTS (N) RANGE BREAKPOINTS CLOCK CONTROL STATE SEQUENCER TRACE BUFFER LPMx.5 DEBUGGING SUPPORT MSP430Xv2 Yes Yes 3 Yes Yes No No No Design Kits and Evaluation Modules MSP-TS430PZ100B - 100-Pin Target Development Board for MSP430F6x MCUs The MSPTS430PZ100B is a stand-alone 100-pin ZIF socket target board used to program and debug the MSP430 MCU in-system through the JTAG interface or the Spy Bi-Wire (2-wire JTAG) protocol. 100-Pin Target Development Board and MSP-FET Programmer Bundle for MSP430F6x MCUs The MSP-FET is a powerful flash emulation tool to quickly begin application development on the MSP430 MCU. It includes USB debugging interface used to program and debug the MSP430 in-system through the JTAG interface or the pin saving Spy Bi-Wire (2-wire JTAG) protocol. EVM430-F6736 - MSP430F6736 EVM for Metering This EVM430-F6736 is a single-phase electricity meter evaluation module based on the MSP430F6736 device. The E-meter can be connected to the main power lines and has inputs for voltage and current, as well as a third connection to setup anti-tampering. Software MSP430Ware™ Software MSP430Ware software is a collection of code examples, data sheets, and other design resources for all MSP430 devices delivered in a convenient package. In addition to providing a complete collection of existing MSP430 design resources, MSP430Ware software also includes a high-level API called MSP Driver Library. This library makes it easy to program MSP430 hardware. MSP430Ware software is available as a component of CCS or as a stand-alone package. Energy Measurement Design Center for MSP430 MCUs The Energy Measurement Design Center is a rapid development tool that enables energy measurement using TI MSP430i20xx and MSP430F67xx flash-based microcontrollers (MCUs). It includes a graphical user interface (GUI), documentation, software library, and examples that can simplify development and accelerate designs in a wide range of power monitoring and energy measurement applications, including smart grid and building automation. Using the Design Center, you can configure, calibrate, and view results without writing a single line of code. MSP Driver Library The abstracted API of MSP Driver Library provides easy-to-use function calls that free you from directly manipulating the bits and bytes of the MSP430 hardware. Thorough documentation is delivered through a helpful API Guide, which includes details on each function call and the recognized parameters. Developers can use Driver Library functions to write complete projects with minimal overhead. IEC60730 Software Package The IEC60730 MSP430 software package was developed to help customers comply with IEC 60730-1:2010 (Automatic Electrical Controls for Household and Similar Use – Part 1: General Requirements) for up to Class B products, which includes home appliances, arc detectors, power converters, power tools, e-bikes, and many others. The IEC60730 MSP430 software package can be embedded in customer applications running on MSP430s to help simplify the customer’s certification efforts of functional safetycompliant consumer devices to IEC 60730-1:2010 Class B. MSP430F673xA, MSP430F672xA Code Examples C Code examples are available for every MSP device that configures each of the integrated peripherals for various application needs. 144 Device and Documentation Support Copyright © 2015–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A www.ti.com SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 Capacitive Touch Software Library Free C libraries for enabling capacitive touch capabilities on MSP430 MCUs. The MSP430 MCU version of the library features several capacitive touch implementations including the RO and RC method. MSP EnergyTrace™ Technology EnergyTrace technology for MSP430 microcontrollers is an energybased code analysis tool that measures and displays the energy profile of the application and helps to optimize it for ultra-low-power consumption. ULP (Ultra-Low Power) Advisor ULP Advisor™ software is a tool for guiding developers to write more efficient code to fully use the unique ultra-low-power features of MSP and MSP432 microcontrollers. Aimed at both experienced and new microcontroller developers, ULP Advisor checks your code against a thorough ULP checklist to help minimize the energy consumption of your application. At build time, ULP Advisor provides notifications and remarks to highlight areas of your code that can be further optimized for lower power. Fixed Point Math Library for MSP The MSP IQmath and Qmath Libraries are a collection of highly optimized and high-precision mathematical functions for C programmers to seamlessly port a floating-point algorithm into fixed-point code on MSP430 and MSP432 devices. These routines are typically used in computationally intensive real-time applications where optimal execution speed, high accuracy, and ultra-low energy are critical. By using the IQmath and Qmath libraries, it is possible to achieve execution speeds considerably faster and energy consumption considerably lower than equivalent code written using floating-point math. Floating Point Math Library for MSP430 Continuing to innovate in the low-power and low-cost microcontroller space, TI provides MSPMATHLIB. Leveraging the intelligent peripherals of our devices, this floating-point math library of scalar functions that are up to 26 times faster than the standard MSP430 math functions. Mathlib is easy to integrate into your designs. This library is free and is integrated in both Code Composer Studio IDE and IAR Embedded Workbench IDE. Development Tools Code Composer Studio™ Integrated Development Environment for MSP Microcontrollers Code Composer Studio (CCS) integrated development environment (IDE) supports all MSP microcontroller devices. CCS comprises a suite of embedded software utilities used to develop and debug embedded applications. It includes an optimizing C/C++ compiler, source code editor, project build environment, debugger, profiler, and many other features. Command-Line Programmer MSP Flasher is an open-source shell-based interface for programming MSP microcontrollers through a FET programmer or eZ430 using JTAG or Spy-Bi-Wire (SBW) communication. MSP Flasher can download binary files (.txt or .hex) directly to the MSP microcontroller without an IDE. MSP MCU Programmer and Debugger The MSP-FET is a powerful emulation development tool – often called a debug probe – which lets users quickly begin application development on MSP lowpower MCUs. Creating MCU software usually requires downloading the resulting binary program to the MSP device for validation and debugging. MSP-GANG Production Programmer The MSP Gang Programmer is an MSP430 or MSP432 device programmer that can program up to eight identical MSP430 or MSP432 flash or FRAM devices at the same time. The MSP Gang Programmer connects to a host PC using a standard RS-232 or USB connection and provides flexible programming options that let the user fully customize the process. Device and Documentation Support Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A Copyright © 2015–2018, Texas Instruments Incorporated 145 MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 8.4 www.ti.com Documentation Support The following documents describe the MSP430F673xA and MSP430F672xA MCUs. Copies of these documents are available on the Internet at www.ti.com. Receiving Notification of Document Updates To receive notification of documentation updates—including silicon errata—go to the product folder for your device on ti.com (see Section 8.5 for links). In the upper right corner, click the "Alert me" button. This registers you to receive a weekly digest of product information that has changed (if any). For change details, check the revision history of any revised document. Errata MSP430F6736A Device Erratasheet Describes the known exceptions to the functional specifications. MSP430F6735A Device Erratasheet Describes the known exceptions to the functional specifications. MSP430F6734A Device Erratasheet Describes the known exceptions to the functional specifications. MSP430F6733A Device Erratasheet Describes the known exceptions to the functional specifications. MSP430F6731A Device Erratasheet Describes the known exceptions to the functional specifications. MSP430F6730A Device Erratasheet Describes the known exceptions to the functional specifications. MSP430F6726A Device Erratasheet Describes the known exceptions to the functional specifications. MSP430F6725A Device Erratasheet Describes the known exceptions to the functional specifications. MSP430F6724A Device Erratasheet Describes the known exceptions to the functional specifications. MSP430F6723A Device Erratasheet Describes the known exceptions to the functional specifications. MSP430F6721A Device Erratasheet Describes the known exceptions to the functional specifications. MSP430F6720A Device Erratasheet Describes the known exceptions to the functional specifications. User's Guides MSP430x5xx and MSP430x6xx Family User's Guide peripherals available in this device family. Detailed information on the modules and MSP430™ Flash Device Bootloader (BSL) User's Guide The MSP430 bootloader (BSL) lets users communicate with embedded memory in the MSP430 microcontroller during the prototyping phase, final production, and in service. Both the programmable memory (flash memory) and the data memory (RAM) can be modified as required. Do not confuse the bootloader with the bootstrap loader programs found in some digital signal processors (DSPs) that automatically load program code (and data) from external memory to the internal memory of the DSP. MSP430 Programming With the JTAG Interface This document describes the functions that are required to erase, program, and verify the memory module of the MSP430 flash-based and FRAM-based microcontroller families using the JTAG communication port. In addition, it describes how to program the JTAG access security fuse that is available on all MSP430 devices. This document describes device access using both the standard 4-wire JTAG interface and the 2-wire JTAG interface, which is also referred to as Spy-Bi-Wire (SBW). MSP430 Hardware Tools User's Guide This manual describes the hardware of the TI MSP-FET430 Flash Emulation Tool (FET). The FET is the program development tool for the MSP430 ultralow-power microcontroller. Both available interface types, the parallel port interface and the USB interface, are described. 146 Device and Documentation Support Copyright © 2015–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A www.ti.com SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 Application Reports Implementation of a Single-Phase Electronic Watt-Hour Meter Using MSP430F6736(A) This application report describes the implementation of a single-phase electronic electricity meter using the Texas Instruments MSP430F673x(A) metering processor. It also includes the necessary information with regard to metrology software and hardware procedures for this single-chip implementation. Differences Between MSP430F67xx and MSP430F67xxA Devices This application report describes the enhancements of the MSP430F67xxA devices from the non-A MSP430F67xx devices. This application report describes the MSP430F67xx errata that are fixed in the MSP430F67xxA and the additional features added to the MSP430F67xxA devices. In addition, metrology results are compared to further show that the changes implemented in the MSP430F67xxA devices do not affect the metrology performance. MSP430 32-kHz Crystal Oscillators Selection of the correct crystal, correct load circuit, and proper board layout are important for a stable crystal oscillator. This application report summarizes crystal oscillator function and explains the parameters to select the correct crystal for MSP430 ultra-low-power operation. In addition, hints and examples for correct board layout are given. The document also contains detailed information on the possible oscillator tests to ensure stable oscillator operation in mass production. MSP430 System-Level ESD Considerations System-Level ESD has become increasingly demanding with silicon technology scaling towards lower voltages and the need for designing costeffective and ultra-low-power components. This application report addresses three different ESD topics to help board designers and OEMs understand and design robust system-level designs. Designing With MSP430 and Segment LCDs Segment liquid crystal displays (LCDs) are needed to provide information to users in a wide variety of applications from smart meters to electronic shelf labels (ESLs) to medical equipment. Several MSP430™ microcontroller families include built-in low-power LCD driver circuitry that allows the MSP430 MCU to directly control the segmented LCD glass. This application note helps explain how segmented LCDs work, the different features of the various LCD modules across the MSP430 MCU family, LCD hardware layout tips, guidance on writing efficient and easy-to-use LCD driver software, and an overview of the portfolio of MSP430 devices that include different LCD features to aid in device selection. Device and Documentation Support Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A Copyright © 2015–2018, Texas Instruments Incorporated 147 MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 8.5 www.ti.com Related Links Table 8-2 lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy. Table 8-2. Related Links PARTS PRODUCT FOLDER ORDER NOW TECHNICAL DOCUMENTS TOOLS & SOFTWARE SUPPORT & COMMUNITY MSP430F6736A Click here Click here Click here Click here Click here MSP430F6735A Click here Click here Click here Click here Click here MSP430F6734A Click here Click here Click here Click here Click here MSP430F6733A Click here Click here Click here Click here Click here MSP430F6731A Click here Click here Click here Click here Click here MSP430F6730A Click here Click here Click here Click here Click here MSP430F6726A Click here Click here Click here Click here Click here MSP430F6725A Click here Click here Click here Click here Click here MSP430F6724A Click here Click here Click here Click here Click here MSP430F6723A Click here Click here Click here Click here Click here MSP430F6721A Click here Click here Click here Click here Click here MSP430F6720A Click here Click here Click here Click here Click here 8.6 Community Resources The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. TI E2E™ Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas, and help solve problems with fellow engineers. TI Embedded Processors Wiki Texas Instruments Embedded Processors Wiki. Established to help developers get started with embedded processors from Texas Instruments and to foster innovation and growth of general knowledge about the hardware and software surrounding these devices. 8.7 Trademarks MSP430, MSP430Ware, EnergyTrace, ULP Advisor, Code Composer Studio, E2E are trademarks of Texas Instruments. All other trademarks are the property of their respective owners. 148 Device and Documentation Support Copyright © 2015–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A MSP430F6736A, MSP430F6735A, MSP430F6734A, MSP430F6733A MSP430F6731A, MSP430F6730A, MSP430F6726A, MSP430F6725A MSP430F6724A, MSP430F6723A, MSP430F6721A, MSP430F6720A www.ti.com 8.8 SLASE46A – FEBRUARY 2015 – REVISED OCTOBER 2018 Electrostatic Discharge Caution This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. 8.9 Export Control Notice Recipient agrees to not knowingly export or re-export, directly or indirectly, any product or technical data (as defined by the U.S., EU, and other Export Administration Regulations) including software, or any controlled product restricted by other applicable national regulations, received from disclosing party under nondisclosure obligations (if any), or any direct product of such technology, to any destination to which such export or re-export is restricted or prohibited by U.S. or other applicable laws, without obtaining prior authorization from U.S. Department of Commerce and other competent Government authorities to the extent required by those laws. 8.10 Glossary TI Glossary This glossary lists and explains terms, acronyms, and definitions. 9 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. Mechanical, Packaging, and Orderable Information Submit Documentation Feedback Product Folder Links: MSP430F6736A MSP430F6735A MSP430F6734A MSP430F6733A MSP430F6731A MSP430F6730A MSP430F6726A MSP430F6725A MSP430F6724A MSP430F6723A MSP430F6721A MSP430F6720A Copyright © 2015–2018, Texas Instruments Incorporated 149 PACKAGE OPTION ADDENDUM www.ti.com 10-Dec-2020 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) (6) MSP430F6720AIPN ACTIVE LQFP PN 80 119 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6720A MSP430F6720AIPNR ACTIVE LQFP PN 80 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6720A MSP430F6720AIPZ ACTIVE LQFP PZ 100 90 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6720A MSP430F6720AIPZR ACTIVE LQFP PZ 100 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6720A MSP430F6721AIPN ACTIVE LQFP PN 80 119 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6721A MSP430F6721AIPNR ACTIVE LQFP PN 80 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6721A MSP430F6721AIPZ ACTIVE LQFP PZ 100 90 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6721A MSP430F6721AIPZR ACTIVE LQFP PZ 100 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6721A MSP430F6723AIPN ACTIVE LQFP PN 80 119 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6723A MSP430F6723AIPNR ACTIVE LQFP PN 80 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6723A MSP430F6723AIPZ ACTIVE LQFP PZ 100 90 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6723A MSP430F6723AIPZR ACTIVE LQFP PZ 100 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6723A MSP430F6724AIPN ACTIVE LQFP PN 80 119 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6724A MSP430F6724AIPNR ACTIVE LQFP PN 80 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6724A MSP430F6724AIPZ ACTIVE LQFP PZ 100 90 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6724A MSP430F6724AIPZR ACTIVE LQFP PZ 100 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6724A MSP430F6725AIPN ACTIVE LQFP PN 80 119 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6725A MSP430F6725AIPNR ACTIVE LQFP PN 80 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6725A MSP430F6725AIPZ ACTIVE LQFP PZ 100 90 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6725A MSP430F6725AIPZR ACTIVE LQFP PZ 100 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6725A Addendum-Page 1 Samples PACKAGE OPTION ADDENDUM www.ti.com Orderable Device 10-Dec-2020 Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) (6) MSP430F6726AIPN ACTIVE LQFP PN 80 119 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6726A MSP430F6726AIPNR ACTIVE LQFP PN 80 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6726A MSP430F6726AIPZ ACTIVE LQFP PZ 100 90 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6726A MSP430F6726AIPZR ACTIVE LQFP PZ 100 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6726A MSP430F6730AIPN ACTIVE LQFP PN 80 119 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6730A MSP430F6730AIPNR ACTIVE LQFP PN 80 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6730A MSP430F6730AIPZ ACTIVE LQFP PZ 100 90 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6730A MSP430F6730AIPZR ACTIVE LQFP PZ 100 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6730A MSP430F6731AIPN ACTIVE LQFP PN 80 119 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6731A MSP430F6731AIPNR ACTIVE LQFP PN 80 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6731A MSP430F6731AIPZ ACTIVE LQFP PZ 100 90 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6731A MSP430F6731AIPZR ACTIVE LQFP PZ 100 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6731A MSP430F6733AIPN ACTIVE LQFP PN 80 119 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6733A MSP430F6733AIPNR ACTIVE LQFP PN 80 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6733A MSP430F6733AIPZ ACTIVE LQFP PZ 100 90 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6733A MSP430F6733AIPZR ACTIVE LQFP PZ 100 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6733A MSP430F6734AIPN ACTIVE LQFP PN 80 119 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6734A MSP430F6734AIPNR ACTIVE LQFP PN 80 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6734A MSP430F6734AIPZ ACTIVE LQFP PZ 100 90 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6734A MSP430F6734AIPZR ACTIVE LQFP PZ 100 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6734A MSP430F6735AIPN ACTIVE LQFP PN 80 119 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6735A Addendum-Page 2 Samples PACKAGE OPTION ADDENDUM www.ti.com Orderable Device 10-Dec-2020 Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) (6) MSP430F6735AIPNR ACTIVE LQFP PN 80 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6735A MSP430F6735AIPZ ACTIVE LQFP PZ 100 90 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6735A MSP430F6735AIPZR ACTIVE LQFP PZ 100 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6735A MSP430F6736AIPN ACTIVE LQFP PN 80 119 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6736A MSP430F6736AIPNR ACTIVE LQFP PN 80 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6736A MSP430F6736AIPZ ACTIVE LQFP PZ 100 90 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6736A MSP430F6736AIPZR ACTIVE LQFP PZ 100 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6736A (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
MSP430F6736AIPZ 价格&库存

很抱歉,暂时无法提供与“MSP430F6736AIPZ”相匹配的价格&库存,您可以联系我们找货

免费人工找货
MSP430F6736AIPZ
    •  国内价格
    • 1000+36.19000

    库存:2434