0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MSP430FG6626IPZ

MSP430FG6626IPZ

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    LQFP100

  • 描述:

    IC MCU 16BIT 128KB FLASH 100LQFP

  • 数据手册
  • 价格&库存
MSP430FG6626IPZ 数据手册
MSP430FG6626, MSP430FG6625 MSP430FG6626, MSP430FG6425 MSP430FG6625 MSP430FG6426, MSP430FG6426, MSP430FG6425 SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 MSP430FG662x, MSP430FG642x Mixed-Signal Microcontrollers • 1 Features • • • • • • • • Low supply voltage range: 3.6 V down to 1.8 V High-performance integrated signal chain – Continuous-time sigma-delta 16-bit analog-todigital converter (ADC) with internal reference with 10 external analog inputs, 6 single-ended and 4 selectable as differential or single-ended – Dual operational amplifiers – Quad low-impedance ground switches – Voltage comparator Dual 12-bit digital-to-analog converters (DACs) with synchronization Integrated LCD driver with contrast control for up to 160 segments MSP430FG662x: Full-speed universal serial bus (USB) – Integrated USB-PHY – Integrated 3.3-V and 1.8-V USB power system – Integrated USB-PLL – Eight input and eight output endpoints Ultra-low power consumption – Active mode (AM), all system clocks active: 250 µA/MHz at 8 MHz, 3.0 V, flash program execution (typical) – Standby mode (LPM3): watchdog with crystal, and supply supervisor operational, full RAM retention, fast wakeup: 3.2 µA at 2.2 V, 3.4 µA at 3.0 V (typical) – Shutdown RTC mode (LPM3.5): shutdown mode, active RTC with crystal: 0.9 µA at 3.0 V (typical) – Shutdown mode (LPM4.5): 0.2 µA at 3.0 V (typical) Intelligent digital peripherals – Two 16-bit timers with three capture/compare registers each – One 16-bit timer with five capture/compare registers – One 16-bit timer with seven capture/compare registers – 6-channel internal DMA – Hardware multiplier supports 32-bit operations Four universal serial communication interfaces (USCIs) – USCI_A0 and USCI_A1 • • • • • • • • • • Enhanced UART with automatic baud-rate detection • IrDA encoder and decoder • Synchronous SPI – USCI_B0 and USCI_B1 • I2C • Synchronous SPI RTC with calibration logic for time offset correction, operation in LPM 3.5 16-bit RISC architecture, extended memory, up to 20-MHz system clock Flexible power-management system – Fully integrated LDO with programmable regulated core supply voltage – Supply voltage supervision, monitoring, and brownout Unified clock system – FLL control loop for frequency stabilization – Low-power low-frequency internal clock source (VLO) – Low-frequency trimmed internal reference source (REFO) – 32-kHz crystals (XT1) – High-frequency crystals up to 32 MHz (XT2) Separate voltage supply for backup subsystem – 32-kHz low-frequency oscillator (XT1) – RTC – Backup memory (8 bytes) Development tools and software (also see Tools and Software) – MSP-TS430PZ100AUSB 100-pin target development board – MSP430Ware™ code examples Wake up from standby mode in 3 µs (typical) Serial onboard programming, no external programming voltage needed Available in 100-pin LQFP and 113-pin Microstar Junior™ BGA packages Device Comparison summarizes the available family members 2 Applications • • • • • • Analog sensor systems Digital sensor systems Hand-held meters Medical diagnostic meters Hand-held industrial testers Measurement equipment An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated intellectual property matters and other important disclaimers. PRODUCTION DATA. Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 1 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 3 Description The Texas Instruments MSP430FG662x and MSP430FG642x microcontrollers (MCUs) are part of the MSP430TM Metrology and Monitoring portfolio. The architecture and integrated peripherals, combined with five extensive low-power modes, are optimized to achieve extended battery life in portable and battery-powered measurement applications. The device features a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that contribute to maximum code efficiency. The digitally controlled oscillator (DCO) allows the devices to wake up from low-power modes to active mode in less than 5 µs. The MSP430FG662x MCUs are targeted at small signal-monitoring applications and include a 16-bit sigma-delta ADC, dual low-power operational amplifiers, dual 12-bit DACs, voltage comparator, four USCIs (two USCI_A modules and two USCI_B modules), four 16-bit timers, a hardware multiplier, a DMA module, an RTC module, an LCD driver with integrated contrast control for up to 160 segments, integrated full-speed USB, an auxiliary supply system, up to 128KB flash, 10KB SRAM and 73 I/O pins in 100‑pin devices and 113‑pin devices. The MSP430FG642x MCUs are targeted at small-signal monitoring applications and include a 16-bit sigma-delta ADC, dual low-power operational amplifiers, dual 12-bit DACs, voltage comparator, four USCIs (two USCI_A modules and two USCI_B modules), four 16-bit timers, a hardware multiplier, a DMA module, an RTC module, an LCD driver with integrated contrast control for up to 160 segments, an auxiliary supply system, up to 128KB of flash, 10KB of SRAM, and 73 I/O pins in 100‑pin devices and 113‑pin devices. Typical applications for these microcontrollers include small signal-monitoring applications such as handheld test and measurement equipment, field transmitters, and blood glucose meters. These microcontrollers can reduce overall system cost through high analog integration and enable long battery life by low-power operation. The MSP430FG662x and MSP430FG642x MCUs are supported by an extensive hardware and software ecosystem with reference designs and code examples to get your design started quickly. Development kits include the MSP-TS430PZ100AUSB 100-pin target development board. TI also provides free MSP430Ware™ software, which is available as a component of Code Composer Studio™ IDE desktop and cloud versions within TI Resource Explorer. The MSP430 MCUs are also supported by extensive online collateral, training, and online support through the TI E2E™ support forums. For complete module descriptions, see the MSP430F5xx and MSP430F6xx Family User's Guide. Device Information PART NUMBER(1) MSP430FG6626IPZ MSP430FG6626IZCA MSP430FG6626IZQW(3) (1) (2) (3) 2 PACKAGE BODY SIZE(2) PZ (100) 14 mm × 14 mm nFBGA (113) 7 mm × 7 mm MicroStar Junior™ BGA (113) 7 mm × 7 mm For the most current part, package, and ordering information for all available devices, see the Package Option Addendum in Section 12, or see the TI website at www.ti.com. The sizes shown here are approximations. For the package dimensions with tolerances, see the Mechanical Data in Section 12. All orderable part numbers in the ZQW (MicroStar Junior BGA) package have been changed to a status of Last Time Buy. Visit the Product life cycle page for details on this status. Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 4 Functional Block Diagrams Figure 4-1 shows the functional block diagram for the MSP430FG6626 and MSP430FG6625 devices. XIN XOUT DVCC DVSS AVCC AVSS RST/NMI VCORE NR P1.x XT2IN XT2OUT Unified Clock System 8KB RAM ACLK 128KB 64KB SMCLK MCLK Watchdog +2KB RAM USB Buffer Flash SYS Power Management LDO SVM, SVS Brownout +8B Backup RAM P2 Port Mapping Controller PA P2.x P3.x PB P4.x P5.x PC P6.x P7.x PD P8.x I/O Ports P1, P2 2×8 I/Os Interrupt Capability I/O Ports P3, P4 2×8 I/Os Interrupt Capability I/O Ports P5, P6 1×7 I/Os 1×8 I/Os I/O Ports P7, P8 1×6 I/Os 1×8 I/Os PA 1×16 I/Os PB 1×16 I/Os PC 1×15 I/Os PD 1×14 I/Os P9.x DP, DM, PUR I/O Ports P9 1×8 I/Os PE 1×8 I/Os USCI0,1 USB Ax: UART, IrDA, SPI Full-Speed 2 Bx: SPI, I C CPUXV2 and Working Registers DMA 6 Channel EEM (L: 8+2) TA1 and TA2 TA0 JTAG, SBW Interface MPY32 Port PJ Timer_A 5 CC Registers PJ.x 2 Timer_A each with 3 CC Registers TB0 Timer_B 7 CC Registers CTSD16 Sigma-Delta ADC RTC_B CRC16 Comp_B Battery Backup System DAC12_A 14 inputs (6 SE ext, 4 SE/diff ext, 4 int) 12 bit 2 channels voltage out Reference 1.5 V, 2.0 V, 2.5 V LCD_B 160 Segments Operational Amplifiers OA0, OA1 Quad Ground Switches 1.16 V VREFBG Figure 4-1. Functional Block Diagram – MSP430FG6626, MSP430FG6625 Figure 4-2 shows the functional block diagram for the MSP430FG6426 and MSP430FG6425 devices. XIN XOUT DVCC DVSS AVCC AVSS RST/NMI VCORE NR P1.x XT2IN XT2OUT Unified Clock System MCLK ACLK SMCLK Power Management 128KB 64KB 10KB RAM Flash +8B Backup RAM SYS Watchdog LDO SVM, SVS Brownout P2 Port Mapping Controller PA P2.x I/O Ports P1, P2 2×8 I/Os Interrupt Capability PA 1×16 I/Os P3.x PB P4.x I/O Ports P3, P4 2×8 I/Os Interrupt Capability PB 1×16 I/Os P5.x PC P6.x I/O Ports P5, P6 1×7 I/Os 1×8 I/Os PC 1×15 I/Os P7.x PD P8.x I/O Ports P7, P8 1×6 I/Os 1×8 I/Os PD 1×14 I/Os PU.0, PU.1 LDOO LDOI P9.x I/O Ports P9 1×8 I/Os PE 1×8 I/Os USCI0,1 PU Port Ax: UART, IrDA, SPI LDO 2 Bx: SPI, I C CPUXV2 and Working Registers DMA 6 Channel EEM (L: 8+2) JTAG, SBW Interface Port PJ PJ.x TA1 and TA2 TA0 MPY32 Timer_A 5 CC Registers 2 Timer_A each with 3 CC Registers CTSD16 Sigma-Delta ADC RTC_B TB0 Timer_B 7 CC Registers CRC16 Battery Backup System Comp_B 14 inputs (6 SE ext, 4 SE/dif ext, 4 int) Reference DAC12_A 12 bit 2 channels voltage out 1.5 V, 2.0 V, 2.5 V LCD_B 160 Segments Operational Amplifiers OA0, OA1 Quad Ground Switches 1.16 V VREFBG Figure 4-2. Functional Block Diagram – MSP430FG6426, MSP430FG6425 Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 3 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 Table of Contents 1 Features............................................................................1 2 Applications..................................................................... 1 3 Description.......................................................................2 4 Functional Block Diagrams............................................ 3 5 Revision History.............................................................. 5 6 Device Comparison......................................................... 6 6.1 Related Products........................................................ 7 7 Terminal Configuration and Functions..........................8 7.1 Pin Diagrams.............................................................. 8 7.2 Pin Attributes.............................................................11 7.3 Signal Descriptions................................................... 18 7.4 Pin Multiplexing.........................................................25 7.5 Buffer Type................................................................25 7.6 Connection of Unused Pins...................................... 26 8 Specifications................................................................ 27 8.1 Absolute Maximum Ratings ..................................... 27 8.2 ESD Ratings............................................................. 27 8.3 Recommended Operating Conditions.......................27 8.4 Active Mode Supply Current Into VCC Excluding External Current.......................................................... 29 8.5 Low-Power Mode Supply Currents (Into VCC) Excluding External Current..........................................30 8.6 Low-Power Mode With LCD Supply Currents (Into VCC) Excluding External Current......................... 31 8.7 Thermal Resistance Characteristics ........................ 32 8.8 Timing and Switching Characteristics....................... 32 9 Detailed Description......................................................76 9.1 Overview................................................................... 76 9.2 CPU.......................................................................... 76 9.3 Instruction Set........................................................... 77 9.4 Operating Modes...................................................... 78 4 Submit Document Feedback 9.5 Interrupt Vector Addresses....................................... 79 9.6 USB BSL...................................................................80 9.7 UART BSL................................................................ 80 9.8 JTAG Operation........................................................ 81 9.9 Flash Memory........................................................... 81 9.10 RAM........................................................................ 81 9.11 Backup RAM........................................................... 82 9.12 Peripherals..............................................................82 9.13 Input/Output Diagrams............................................96 9.14 Device Descriptors................................................136 9.15 Memory................................................................. 136 9.16 Identification..........................................................152 10 Applications, Implementation, and Layout............. 153 10.1 Device Connection and Layout Fundamentals..... 153 10.2 Peripheral- and Interface-Specific Design Information................................................................ 157 11 Device and Documentation Support........................168 11.1 Getting Started...................................................... 168 11.2 Device Nomenclature............................................168 11.3 Tools and Software................................................170 11.4 Documentation Support........................................ 172 11.5 Related Links........................................................ 173 11.6 Support Resources............................................... 173 11.7 Trademarks........................................................... 173 11.8 Electrostatic Discharge Caution............................ 173 11.9 Export Control Notice............................................ 173 11.10 Glossary.............................................................. 174 12 Mechanical, Packaging, and Orderable Information.................................................................. 175 12.1 Packaging Information.......................................... 175 Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 5 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. Changes from revision A to revision B Changes from September 27, 2018 to September 11, 2020 Page • Updated the numbering for sections, tables, figures, and cross-references throughout the document..............1 • Updated Section 1, Features ............................................................................................................................. 1 • Added nFBGA package (ZCA) information throughout document......................................................................2 • Added note about status change for all orderable part numbers in the ZQW package in Device Information .. 2 • Updated Section 3, Description ......................................................................................................................... 2 • Corrected the signal name and description (changed DVCC to AVCC) on pin 16 (or H1, G2) in Table 7-2, Signal Descriptions .......................................................................................................................................... 18 • Changed the MAX value of the IERASE and IMERASE, IBANK parameters in Section 8.8.19.1, Flash Memory ... 75 Changes from initial release to revision A Changes from May 22, 2015 to September 26, 2018 Page • Added Section 6.1, Related Products ................................................................................................................7 • Added typical conditions statements at the beginning of Section 8, Specifications .........................................27 • Updated notes (1) and (2) and added note (3) in Section 8.8.4.1, Wake-up Times From Low-Power Modes and Reset ........................................................................................................................................................ 37 • Removed duplicate symbol and removed note (5) on Ri(VREFBG), Ri(VeREF+) parameter in Section 8.8.13.4, 12Bit DAC, Reference Input Specifications ......................................................................................................... 64 • Added "CBPWRMD = 00 or 01" to Test Conditions of the first row of the tEN_CMP parameter; Added second row for tEN_CMP with Test Conditions of "CBPWRMD = 10" and MAX value of 100 µs in Section 8.8.16.1, Comparator_B ................................................................................................................................................. 70 • Added Section 8.8.18, LDO-PWR (LDO Power System) ................................................................................ 74 • Throughout document, changed all instances of "bootstrap loader" to "bootloader"........................................ 85 • Changed decoupling capacitor recommendation from "one 10 µF and one 100 nF" to "one 1 µF and one 100 nF" for consistency with Section 10.1.1 .................................................................................................. 157 • Changed decoupling capacitor recommendation from "one 10 µF and one 100 nF" to "one 1 µF and one 100 nF" for consistency with Section 10.1.1 .................................................................................................. 158 • Changed decoupling capacitor recommendation from "one 10 µF and one 100 nF" to "one 1 µF and one 100 nF" for consistency with Section 10.1.1 .................................................................................................. 161 • Added Section 10.2.5, DAC12 Peripheral ..................................................................................................... 165 • Added Section 10.2.6, USB Module .............................................................................................................. 166 • Added Section 10.2.7, LDO Module .............................................................................................................. 167 • Replaced former section Development Tools Support with Section 11.3, Tools and Software ......................170 • Changed format and added content to Section 11.4, Documentation Support ..............................................172 Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 5 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 6 Device Comparison Table 6-1 summarizes the available family members. Table 6-1. Device Comparison DEVICE(1) (2) FLASH (KB) SRAM (KB)(3) Timer_A(4) Timer_B(5) USCI_A: UART, IrDA, SPI MSP430FG6626 128 8+2 5, 3, 3 7 2 2 10 ext, 5 int 2 2 12 1 73 100 PZ, 113 ZCA 113 ZQW MSP430FG6625 64 8+2 5, 3, 3 7 2 2 10 ext, 5 int 2 2 12 1 73 100 PZ, 113 ZCA 113 ZQW MSP430FG6426 128 10 5, 3, 3 7 2 2 10 ext, 5 int 2 2 12 0 73 100 PZ, 113 ZCA 113 ZQW MSP430FG6425 64 10 5, 3, 3 7 2 2 10 ext, 5 int 2 2 12 0 73 100 PZ, 113 ZCA 113 ZQW (1) (2) (3) (4) (5) (6) 6 USCI_B: SPI, I2C CTSD16 (Ch)(6) DAC12_A (Ch) OA Comp_B (channels) USB I/Os PACKAGE For the most current package and ordering information, see the Package Option Addendum in Section 12, or see the TI website at www.ti.com. Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/packaging. The additional 2KB of USB SRAM that is listed can be used as general-purpose SRAM when USB is not in use. Each number in the sequence represents an instantiation of Timer_A with its associated number of capture compare registers and PWM output generators available. For example, a number sequence of 3, 5 would represent two instantiations of Timer_A, the first instantiation having 3 and the second instantiation having 5 capture compare registers and PWM output generators, respectively. Each number in the sequence represents an instantiation of Timer_B with its associated number of capture compare registers and PWM output generators available. For example, a number sequence of 3, 5 would represent two instantiations of Timer_B, the first instantiation having 3 and the second instantiation having 5 capture compare registers and PWM output generators, respectively. ADC inputs consist of a mix of single ended and differential. See the pinning for available input pairs and types. Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 6.1 Related Products For information about other devices in this family of products or related products, see the following links. Products for TI microcontrollers TI's low-power and high-performance MCUs, with wired and wireless connectivity options, are optimized for a broad range of applications. Products for MSP430 ultra-low-power microcontrollers One platform. One ecosystem. Endless possibilities. Enabling the connected world with innovations in ultra-lowpower microcontrollers with advanced peripherals for precise sensing and measurement. Companion products for MSP430FG6626 Review products that are frequently purchased or used with this product. Reference designs for MSP430FG6626 Find reference designs that leverage the best in TI technology to solve your system-level challenges. Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 7 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 7 Terminal Configuration and Functions 7.1 Pin Diagrams 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 MSP430FG6626 MSP430FG6625 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 P9.7/S0 P9.6/S1 P9.5/S2 P9.4/S3 P9.3/S4 P9.2/S5 P9.1/S6 P9.0/S7 P8.7/S8 P8.6/UCB1SOMI/UCB1SCL/S9 P8.5/UCB1SIMO/UCB1SDA/S10 DVCC2 DVSS2 P8.4/UCB1CLK/UCA1STE/S11 P8.3/UCA1RXD/UCA1SOMI/S12 P8.2/UCA1TXD/UCA1SIMO/S13 P8.1/UCB1STE/UCA1CLK/S14 P8.0/TB0CLK/S15 P4.7/TB0OUTH/SVMOUT/S16 P4.6/TB0.6/S17 P4.5/TB0.5/S18 P4.4/TB0.4/S19 P4.3/TB0.3/S20 P4.2/TB0.2/S21 P4.1/TB0.1/S22 DVCC1 DVSS1 VCORE LCDCAP/R33 COM0 P5.3/COM1/S42 P5.4/COM2/S41 P5.5/COM3/S40 P1.0/TA0CLK/ACLK/S39 P1.1/TA0.0/S38 P1.2/TA0.1/S37 P1.3/TA0.2/S36 P1.4/TA0.3/S35 P1.5/TA0.4/S34 P1.6/TA0.1/S33 P1.7/TA0.2/S32 P3.0/TA1CLK/CBOUT/S31 P3.1/TA1.0/S30 P3.2/TA1.1/S29 P3.3/TA1.2/S28 P3.4/TA2CLK/SMCLK/S27 P3.5/TA2.0/S26 P3.6/TA2.1/S25 P3.7/TA2.2/S24 P4.0/TB0.0/S23 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 P6.4/CB4/AD0+/OA0O P6.5/CB5/AD0-/OA0IN0 P6.6/CB6/AD1+/G0SW0 P6.7/CB7/AD1-/G0SW1 P7.4/CB8/AD2+/OA1O P7.5/CB9/AD2-/OA1IN0 P7.6/CB10/AD3+/G1SW0 P7.7/CB11/AD3-/G1SW1 P5.0/VREFBG/VeREF+ P5.1/A4/DAC0 P5.6/A5/DAC1 NR AVSS1 XOUT XIN AVCC CPCAP P2.0/P2MAP0/DAC0 P2.1/P2MAP1/DAC1 P2.2/P2MAP2 P2.3/P2MAP3 P2.4/P2MAP4/R03 P2.5/P2MAP5 P2.6/P2MAP6/LCDREF/R13 P2.7/P2MAP7/R23 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 P6.3/CB3/A3/OA1IP0 P6.2/CB2/A2/OA0IP0 P6.1/CB1/A1 P6.0/CB0/A0 RST/NMI/SBWTDIO PJ.3/TCK PJ.2/TMS PJ.1/TDI/TCLK PJ.0/TDO TEST/SBWTCK DVSS3 DVCC3 P5.7/DMAE0/RTCCLK VBAT VBAK P7.3/XT2OUT P7.2/XT2IN AVSS2 V18 VUSB VBUS PU.1/DM PUR PU.0/DP VSSU Figure 7-1 shows the pinout for the MSP430FG6626 and MSP430FG6625 devices in the 100-pin PZ package. CAUTION: LCDCAP/R33 must be connected to DVSS if not used. Figure 7-1. 100-Pin PZ Package (Top View), MSP430FG6626IPZ, MSP430FG6625IPZ 8 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 MSP430FG6426 MSP430FG6425 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 P9.7/S0 P9.6/S1 P9.5/S2 P9.4/S3 P9.3/S4 P9.2/S5 P9.1/S6 P9.0/S7 P8.7/S8 P8.6/UCB1SOMI/UCB1SCL/S9 P8.5/UCB1SIMO/UCB1SDA/S10 DVCC2 DVSS2 P8.4/UCB1CLK/UCA1STE/S11 P8.3/UCA1RXD/UCA1SOMI/S12 P8.2/UCA1TXD/UCA1SIMO/S13 P8.1/UCB1STE/UCA1CLK/S14 P8.0/TB0CLK/S15 P4.7/TB0OUTH/SVMOUT/S16 P4.6/TB0.6/S17 P4.5/TB0.5/S18 P4.4/TB0.4/S19 P4.3/TB0.3/S20 P4.2/TB0.2/S21 P4.1/TB0.1/S22 DVCC1 DVSS1 VCORE LCDCAP/R33 COM0 P5.3/COM1/S42 P5.4/COM2/S41 P5.5/COM3/S40 P1.0/TA0CLK/ACLK/S39 P1.1/TA0.0/S38 P1.2/TA0.1/S37 P1.3/TA0.2/S36 P1.4/TA0.3/S35 P1.5/TA0.4/S34 P1.6/TA0.1/S33 P1.7/TA0.2/S32 P3.0/TA1CLK/CBOUT/S31 P3.1/TA1.0/S30 P3.2/TA1.1/S29 P3.3/TA1.2/S28 P3.4/TA2CLK/SMCLK/S27 P3.5/TA2.0/S26 P3.6/TA2.1/S25 P3.7/TA2.2/S24 P4.0/TB0.0/S23 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 P6.4/CB4/AD0+/OA0O P6.5/CB5/AD0-/OA0IN0 P6.6/CB6/AD1+/G0SW0 P6.7/CB7/AD1-/G0SW1 P7.4/CB8/AD2+/OA1O P7.5/CB9/AD2-/OA1IN0 P7.6/CB10/AD3+/G1SW0 P7.7/CB11/AD3-/G1SW1 P5.0/VREFBG/VeREF+ P5.1/A4/DAC0 P5.6/A5/DAC1 NR AVSS1 XOUT XIN AVCC CPCAP P2.0/P2MAP0/DAC0 P2.1/P2MAP1/DAC1 P2.2/P2MAP2 P2.3/P2MAP3 P2.4/P2MAP4/R03 P2.5/P2MAP5 P2.6/P2MAP6/LCDREF/R13 P2.7/P2MAP7/R23 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 P6.3/CB3/A3/OA1IP0 P6.2/CB2/A2/OA0IP0 P6.1/CB1/A1 P6.0/CB0/A0 RST/NMI/SBWTDIO PJ.3/TCK PJ.2/TMS PJ.1/TDI/TCLK PJ.0/TDO TEST/SBWTCK DVSS3 DVCC3 P5.7/DMAE0/RTCCLK VBAT VBAK P7.3/XT2OUT P7.2/XT2IN AVSS2 NC LDOO LDOI PU.1 NC PU.0 VSSU Figure 7-2 shows the pinout for the MSP430FG6426 and MSP430FG6425 devices in the 100-pin PZ package. A. CAUTION: LCDCAP/R33 must be connected to DVSS if not used. Figure 7-2. 100-Pin PZ Package (Top View), MSP430FG6426IPZ, MSP430FG6425IPZ Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 9 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 Figure 7-3 shows the pinout for the 113-pin ZCA or ZQW package. A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 C1 C2 C3 C11 C12 D1 D2 D4 D5 D6 D7 D8 D9 D11 D12 E1 E2 E4 E5 E6 E7 E8 E9 E11 E12 F1 F2 F4 F5 F8 F9 F11 F12 G1 G2 G4 G5 G8 G9 G11 G12 H1 H2 H4 H5 H6 H7 H8 H9 H11 H12 J1 J2 J4 J5 J6 J7 J8 J9 J11 J12 K1 K2 K11 K12 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 NOTE: For terminal assignments, see Section 7.3. Figure 7-3. 113-Pin ZCA or ZQW Package (Top View), MSP430FG6626IZCA, MSP430FG6625IZCA, MSP430FG6426IZCA, MSP430FG6425IZCA, MSP430FG6626IZQW, MSP430FG6625IZQW, MSP430FG6426IZQW, MSP430FG6425IZQW 10 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 7.2 Pin Attributes Table 7-1 describes the attributes of the pins. Table 7-1. Pin Attributes PIN NO. PZ 1 2 3 SIGNAL NAME (1) (2) ZCA, ZQW A1 B2 B1 C3 I/O LVCMOS DVCC OFF I Analog DVCC N/A AD0+ I Analog DVCC N/A OA0O O Analog DVCC N/A P6.5 I/O LVCMOS DVCC OFF CB5 I Analog DVCC N/A AD0- I Analog DVCC N/A OA0IN0 I Analog DVCC N/A P6.6 I/O LVCMOS DVCC OFF CB6 I Analog DVCC N/A AD1+ I Analog DVCC N/A I Analog DVCC N/A P6.7 I/O LVCMOS DVCC OFF CB7 I Analog DVCC N/A AD1- I Analog DVCC N/A I Analog DVCC N/A I/O LVCMOS DVCC OFF G0SW1 6 C2 C1 CB8 I Analog DVCC N/A AD2+ I Analog DVCC N/A OA1O O Analog DVCC N/A P7.5 I/O LVCMOS DVCC OFF CB9 I Analog DVCC N/A AD2- I Analog DVCC N/A OA1IN0 7 D4 I Analog DVCC N/A P7.6 I/O LVCMOS DVCC OFF CB10 I Analog DVCC N/A AD3+ I Analog DVCC N/A I Analog DVCC N/A I/O LVCMOS DVCC OFF G1SW0 P7.7 8 D2 CB11 I Analog DVCC N/A AD3- I Analog DVCC N/A G1SW1 9 D1 I Analog DVCC N/A P5.0 I/O LVCMOS DVCC OFF VREFBG O Analog DVCC N/A VeREF+ I Analog N/A N/A I/O LVCMOS DVCC OFF I Analog DVCC N/A P5.1 10 11 E4 E2 RESET STATE AFTER BOR (6) (7) CB4 P7.4 5 POWER SOURCE(5) P6.4 G0SW0 4 SIGNAL TYPE (3) BUFFER TYPE (4) A4 DAC0 O Analog DVCC N/A P5.6 I/O LVCMOS DVCC OFF A5 I Analog DVCC N/A DAC1 O Analog DVCC N/A Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 11 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 Table 7-1. Pin Attributes (continued) PIN NO. POWER SOURCE(5) RESET STATE AFTER BOR (6) (7) Analog N/A N/A Power N/A N/A O Analog N/A N/A I Analog N/A N/A N/A SIGNAL TYPE (3) BUFFER TYPE (4) ZCA, ZQW 12 E1 NR I 13 F2 AVSS1 P 14 F1 XOUT 15 G1 XIN 16 H1, G2 17 G4 18 19 20 21 22 23 24 H2 J1 H4 J2 K1 K2 L2 AVCC P Power N/A CPCAP I/O Analog DVCC N/A P2.0 I/O LVCMOS DVCC OFF P2MAP0 I/O LVCMOS DVCC N/A DAC0 O Analog DVCC N/A P2.1 I/O LVCMOS DVCC OFF P2MAP1 I/O LVCMOS DVCC N/A DAC1 O Analog DVCC N/A P2.2 I/O LVCMOS DVCC OFF P2MAP2 I/O LVCMOS DVCC N/A P2.3 I/O LVCMOS DVCC OFF P2MAP3 I/O LVCMOS DVCC N/A P2.4 I/O LVCMOS DVCC OFF P2MAP4 I/O LVCMOS DVCC N/A R03 I/O Analog DVCC N/A P2.5 I/O LVCMOS DVCC OFF P2MAP5 I/O LVCMOS DVCC N/A P2.6 I/O LVCMOS DVCC OFF P2MAP6 I/O LVCMOS DVCC N/A I Analog N/A N/A R13 LCDREF I/O Analog DVCC N/A P2.7 I/O LVCMOS DVCC OFF 25 L3 P2MAP7 I/O LVCMOS DVCC N/A R23 I/O Analog DVCC N/A 26 L1 DVCC1 P Power N/A N/A 27 M1 DVSS1 P Power N/A N/A 28 M2 VCORE P Power DVCC N/A 29 M3 LCDCAP I/O Analog DVCC N/A R33 I/O Analog DVCC N/A 30 J4 31 32 33 34 12 SIGNAL NAME (1) (2) PZ L4 M4 J5 L5 COM0 O Analog DVCC N/A P5.3 I/O LVCMOS DVCC OFF COM1 O Analog DVCC N/A S42 O Analog DVCC N/A P5.4 I/O LVCMOS DVCC OFF COM2 O LVCMOS DVCC N/A S41 O Analog DVCC N/A P5.5 I/O LVCMOS DVCC OFF COM3 I/O LVCMOS DVCC N/A S40 O Analog DVCC N/A P1.0 I/O LVCMOS DVCC OFF Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 Table 7-1. Pin Attributes (continued) PIN NO. PZ 35 36 37 38 39 40 41 42 43 44 45 46 47 ZCA, ZQW M5 J6 H6 M6 L6 J7 M7 L7 H7 M8 L8 J8 M9 SIGNAL NAME (1) (2) SIGNAL TYPE (3) BUFFER TYPE (4) POWER SOURCE(5) RESET STATE AFTER BOR (6) (7) TA0CLK I LVCMOS DVCC N/A ACLK O LVCMOS DVCC N/A S39 O Analog DVCC N/A P1.1 I/O LVCMOS DVCC OFF TA0.0 I/O LVCMOS DVCC N/A BSLTX O LVCMOS DVCC N/A S38 O Analog DVCC N/A P1.2 I/O LVCMOS DVCC OFF TA0.1 I/O LVCMOS DVCC N/A BSLRX I LVCMOS DVCC N/A S37 O Analog DVCC N/A P1.3 I/O LVCMOS DVCC OFF TA0.2 I/O LVCMOS DVCC N/A S36 O Analog DVCC N/A P1.4 I/O LVCMOS DVCC OFF TA0.3 I/O LVCMOS DVCC N/A S35 O Analog DVCC N/A P1.5 I/O LVCMOS DVCC OFF TA0.4 I/O LVCMOS DVCC N/A S34 O Analog DVCC N/A P1.6 I/O LVCMOS DVCC OFF TA0.1 I/O LVCMOS DVCC N/A S33 O Analog DVCC N/A P1.7 I/O LVCMOS DVCC OFF TA0.2 I/O LVCMOS DVCC N/A S32 O Analog DVCC N/A P3.0 I/O LVCMOS DVCC OFF TA1CLK I LVCMOS DVCC N/A CBOUT O LVCMOS DVCC N/A S31 O Analog DVCC N/A P3.1 I/O LVCMOS DVCC OFF TA1.0 I/O LVCMOS DVCC N/A S30 O Analog DVCC N/A P3.2 I/O LVCMOS DVCC OFF TA1.1 I/O LVCMOS DVCC N/A S29 O Analog DVCC N/A P3.3 I/O LVCMOS DVCC OFF TA1.2 I/O LVCMOS DVCC N/A S28 O Analog DVCC N/A P3.4 I/O LVCMOS DVCC OFF TA2CLK I LVCMOS DVCC N/A SMCLK O LVCMOS DVCC N/A S27 O Analog DVCC N/A P3.5 I/O LVCMOS DVCC OFF Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 13 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 Table 7-1. Pin Attributes (continued) PIN NO. PZ 48 49 50 51 52 53 54 55 56 57 58 59 60 14 ZCA, ZQW L9 M10 J9 M11 L10 M12 L12 L11 K11 K12 J11 J12 H11 SIGNAL NAME (1) (2) SIGNAL TYPE (3) BUFFER TYPE (4) POWER SOURCE(5) RESET STATE AFTER BOR (6) (7) TA2.0 I/O LVCMOS DVCC N/A S26 O Analog DVCC N/A P3.6 I/O LVCMOS DVCC OFF TA2.1 I/O LVCMOS DVCC N/A S25 O Analog DVCC N/A P3.7 I/O LVCMOS DVCC OFF TA2.2 I/O LVCMOS DVCC N/A S24 O Analog DVCC N/A P4.0 I/O LVCMOS DVCC OFF TB0.0 I/O LVCMOS DVCC N/A S23 O Analog DVCC N/A P4.1 I/O LVCMOS DVCC OFF TB0.1 I/O LVCMOS DVCC N/A S22 O Analog DVCC N/A P4.2 I/O LVCMOS DVCC OFF TB0.2 I/O LVCMOS DVCC N/A S21 O Analog DVCC N/A P4.3 I/O LVCMOS DVCC OFF TB0.3 I/O LVCMOS DVCC N/A S20 O Analog DVCC N/A P4.4 I/O LVCMOS DVCC OFF TB0.4 I/O LVCMOS DVCC N/A S19 O Analog DVCC N/A P4.5 I/O LVCMOS DVCC OFF TB0.5 I/O LVCMOS DVCC N/A S18 O Analog DVCC N/A P4.6 I/O LVCMOS DVCC OFF TB0.6 I/O LVCMOS DVCC N/A S17 O Analog DVCC N/A P4.7 I/O LVCMOS DVCC OFF TB0OUTH I LVCMOS DVCC N/A SVMOUT O LVCMOS DVCC N/A S16 O Analog DVCC N/A P8.0 I/O LVCMOS DVCC OFF I LVCMOS DVCC N/A TB0CLK S15 O Analog DVCC N/A P8.1 I/O LVCMOS DVCC OFF UCB1STE I/O LVCMOS DVCC N/A UCA1CLK I/O LVCMOS DVCC N/A S14 O Analog DVCC N/A P8.2 I/O LVCMOS DVCC OFF UCA1TXD O LVCMOS DVCC N/A UCA1SIMO I/O LVCMOS DVCC N/A S13 O Analog DVCC N/A Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 Table 7-1. Pin Attributes (continued) PIN NO. PZ SIGNAL NAME (1) (2) ZCA, ZQW P8.3 61 H12 SIGNAL TYPE (3) BUFFER TYPE (4) POWER SOURCE(5) RESET STATE AFTER BOR (6) (7) I/O LVCMOS DVCC OFF UCA1RXD I LVCMOS DVCC N/A UCA1SOMI I/O LVCMOS DVCC N/A S12 O Analog DVCC N/A P8.4 I/O LVCMOS DVCC OFF UCB1CLK I/O LVCMOS DVCC N/A UCA1STE I/O LVCMOS DVCC N/A 62 G11 S11 O Analog DVCC N/A 63 G12 DVSS2 P Power N/A N/A 64 F12 DVCC2 65 66 67 68 69 70 71 72 73 74 F11 G9 E12 E11 F9 D12 D11 E9 C12 C11 75 D9 76 B11, B12 77 A12 78 B10 79 A11 P Power N/A N/A P8.5 I/O LVCMOS DVCC OFF UCB1SIMO I/O LVCMOS DVCC N/A UCB1SDA I/O LVCMOS DVCC N/A S10 O Analog DVCC N/A P8.6 I/O LVCMOS DVCC OFF UCB1SOMI I/O LVCMOS DVCC N/A UCB1SCL I/O LVCMOS DVCC N/A S9 O Analog DVCC N/A P8.7 I/O LVCMOS DVCC OFF S8 O Analog DVCC N/A P9.0 I/O LVCMOS DVCC OFF S7 O Analog DVCC N/A P9.1 I/O LVCMOS DVCC OFF S6 O Analog DVCC N/A P9.2 I/O LVCMOS DVCC OFF S5 O Analog DVCC N/A P9.3 I/O LVCMOS DVCC OFF S4 O Analog DVCC N/A P9.4 I/O LVCMOS DVCC OFF S3 O Analog DVCC N/A P9.5 I/O LVCMOS DVCC OFF S2 O Analog DVCC N/A P9.6 I/O LVCMOS DVCC OFF S1 O Analog DVCC N/A P9.7 I/O LVCMOS DVCC OFF S0 O Analog DVCC N/A VSSU P Power N/A N/A PU.0 I/O HVCMOS VBUS HiZ DP I/O HVCMOS VBUS N/A PUR (FG662x only) I/O HVCMOS/opendrain VBUS HiZ NC (FG642x only) I/O N/A N/A N/A PU.1 I/O HVCMOS VBUS HiZ DM I/O HVCMOS VBUS N/A Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 15 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 Table 7-1. Pin Attributes (continued) PIN NO. PZ ZCA, ZQW 80 A10 81 A9 82 B9 83 A8 84 B8 85 B7 SIGNAL NAME (1) (2) POWER SOURCE(5) RESET STATE AFTER BOR (6) (7) VBUS I Power N/A N/A LDOI I Analog External N/A VUSB O Power N/A N/A LDOO O Analog VBUS N/A V18 (FG662x only) O Power N/A N/A NC (FG642x only) – N/A N/A N/A AVSS2 P Power N/A N/A I/O LVCMOS DVCC OFF I Analog DVCC N/A P7.3 I/O LVCMOS DVCC OFF XT2OUT O Analog DVCC N/A P7.2 XT2IN 86 A7 VBAK I/O Analog N/A N/A 87 D8 VBAT P Power N/A N/A P5.7 I/O LVCMOS DVCC OFF 88 D7 DMAE0 I LVCMOS DVCC N/A RTCCLK O LVCMOS DVCC N/A 89 A6 DVCC3 P Power N/A N/A 90 A5 DVSS3 P Power N/A N/A 91 B6 TEST I LVCMOS DVCC No Emu: PD Emu: PD SBWTCK I LVCMOS DVCC N/A I/O LVCMOS DVCC OFF PJ.0 92 93 B5 A4 94 E7 95 D6 96 97 A3 B4 TDO O LVCMOS DVCC No Emu: OFF Emu: DRIVE0 PJ.1 I/O LVCMOS DVCC OFF TDI I LVCMOS DVCC No Emu: OFF Emu: PU TCLK I LVCMOS DVCC No Emu: OFF Emu: OFF PJ.2 I/O LVCMOS DVCC OFF TMS I LVCMOS DVCC No Emu: OFF Emu: PU PJ.3 I/O LVCMOS DVCC OFF TCK I LVCMOS DVCC No Emu: OFF Emu: PU RST I/O LVCMOS DVCC PU NMI I LVCMOS DVCC N/A SBWTDIO I/O LVCMOS DVCC PU P6.0 I/O LVCMOS DVCC OFF CB0 I Analog DVCC N/A I Analog DVCC N/A I/O LVCMOS DVCC OFF N/A A0 P6.1 98 99 16 SIGNAL TYPE (3) BUFFER TYPE (4) B3 A2 CB1 I Analog DVCC A1 I Analog DVCC N/A P6.2 I/O LVCMOS DVCC OFF CB2 I Analog DVCC N/A Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 Table 7-1. Pin Attributes (continued) PIN NO. PZ 100 N/A (1) (2) (3) (4) (5) (6) (7) SIGNAL NAME (1) (2) ZCA, ZQW D5 SIGNAL TYPE (3) BUFFER TYPE (4) POWER SOURCE(5) RESET STATE AFTER BOR (6) (7) A2 I Analog DVCC N/A OA0IP0 I Analog DVCC N/A P6.3 I/O LVCMOS DVCC OFF CB3 I Analog DVCC N/A A3 I Analog DVCC N/A OA1IP0 I Analog DVCC N/A - – – – E5, E6, E8, F4, F5, F8, Reserved G5, G8, H5, H8, H9 For each multiplexed pin, the signal that is listed first in this table is the reset default. To determine the pin mux encodings for each pin, refer to Section 9.13. Signal Types: I = Input, O = Output, I/O = Input or Output, P = power Buffer Types: LVCMOS, HVCMOS, Analog, or Power (see Table 7-3 for details). The power source shown in this table is the I/O power source, which may differ from the module power source. Reset States: OFF = High-impedance input with pullup or pulldown disabled (if available) HiZ = High-impedance (neither input nor output) PD = High-impedance input with pulldown enabled PU = High-impedance input with pullup enabled DRIVE0 = Drive output low DRIVE1 = Drive output high N/A = Not applicable For Debug pins: Emu = with emulator attached at reset, No Emu = without emulator attached at reset Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 17 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 7.3 Signal Descriptions Table 7-2 describes the signals for all device variants and package options. Table 7-2. Signal Descriptions SIGNAL NAME FUNCTION ADC BSL PIN NO. PIN TYPE(1) ZCA, ZQW A0 97 B4 I ADC analog single ended input A0 A1 98 B3 I ADC analog single ended input A1 A2 99 A2 I ADC analog single ended input A2 A3 100 D5 I ADC analog single ended input A3 A4 10 E4 I ADC analog single ended input A4 A5 11 E2 I ADC analog single ended input A5 AD0+ 1 A1 I ADC positive analog differential input AD0+ AD0- 2 B2 I ADC negative analog differential input AD0- AD1+ 3 B1 I ADC positive analog differential input AD1+ AD1- 4 C3 I ADC negative analog differential input AD1- AD2+ 5 C2 I ADC positive analog differential input AD2+ AD2- 6 C1 I ADC negative analog differential input AD2- AD3+ 7 D4 I ADC positive analog differential input AD3+ AD3- 8 D2 I ADC negative analog differential input AD3- VeREF+ 9 D1 I Input for an external reference voltage to the ADC and DAC BSLRX 36 J6 I BSL receive input BSLTX 35 M5 O BSL transmit output VBAK 86 A7 I/O Capacitor for backup subsystem. Do not load this pin externally. For capacitor values, see CBAK in Section 8.3. VBAT 87 D8 P CPCAP 17 G4 I/O ACLK 34 L5 O ACLK output (divided by 1, 2, 4, 8, 16, or 32) RTCCLK 88 D7 O RTCCLK output SMCLK 46 J8 O SMCLK output XIN 15 G1 I Input terminal for crystal oscillator XT1 XOUT 14 F1 O Output terminal of crystal oscillator XT1 XT2IN 84 B8 I Input terminal for crystal oscillator XT2 XT2OUT 85 B7 O Output terminal of crystal oscillator XT2 CB0 97 B4 I Comparator_B input CB0 CB1 98 B3 I Comparator_B input CB1 Backup Charge Pump Clock Comparator 18 DESCRIPTION PZ Backup or secondary supply voltage. If backup voltage is not supplied, connect to DVCC externally. Capacitor for op amp and CTSD16 rail-to-rail charge pump CB2 99 A2 I Comparator_B input CB2 CB3 100 D5 I Comparator_B input CB3 CB4 1 A1 I Comparator_B input CB4 CB5 2 B2 I Comparator_B input CB5 CB6 3 B1 I Comparator_B input CB6 CB7 4 C3 I Comparator_B input CB7 CB8 5 C2 I Comparator_B input CB8 CB9 6 C1 I Comparator_B input CB9 CB10 7 D4 I Comparator_B input CB10 CB11 8 D2 I Comparator_B input CB11 CBOUT 42 L7 O Comparator_B output Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 Table 7-2. Signal Descriptions (continued) FUNCTION SIGNAL NAME Debug PIN TYPE(1) ZCA, ZQW DAC0 10 18 E4 H2 O DAC output channel 0 DAC1 11 19 E2 J1 O DAC output channel 1 DMAE0 88 D7 I DMA external trigger input SBWTCK 91 B6 I Spy-Bi-Wire input clock TCK 95 D6 I Test clock TCLK 93 A4 I Test clock input TDI 93 A4 I Test data input TDO 92 B5 O Test data output TEST 91 B6 I Test mode pin; selects digital I/O on JTAG pins TMS 94 E7 I Test mode select SBWTDIO 96 A3 I/O Spy-Bi-Wire data input/output P1.0 34 L5 I/O General-purpose digital I/O with port interrupt P1.1 35 M5 I/O General-purpose digital I/O with port interrupt P1.2 36 J6 I/O General-purpose digital I/O with port interrupt P1.3 37 H6 I/O General-purpose digital I/O with port interrupt P1.4 38 M6 I/O General-purpose digital I/O with port interrupt P1.5 39 L6 I/O General-purpose digital I/O with port interrupt P1.6 40 J7 I/O General-purpose digital I/O with port interrupt P1.7 41 M7 I/O General-purpose digital I/O with port interrupt P2.0 18 H2 I/O General-purpose digital I/O with port interrupt and mappable secondary function P2.1 19 J1 I/O General-purpose digital I/O with port interrupt and mappable secondary function P2.2 20 H4 I/O General-purpose digital I/O with port interrupt and mappable secondary function P2.3 21 J2 I/O General-purpose digital I/O with port interrupt and mappable secondary function P2.4 22 K1 I/O General-purpose digital I/O with port interrupt and mappable secondary function P2.5 23 K2 I/O General-purpose digital I/O with port interrupt and mappable secondary function P2.6 24 L2 I/O General-purpose digital I/O with port interrupt and mappable secondary function P2.7 25 L3 I/O General-purpose digital I/O with port interrupt and mappable secondary function P3.0 42 L7 I/O General-purpose digital I/O with port interrupt P3.1 43 H7 I/O General-purpose digital I/O with port interrupt P3.2 44 M8 I/O General-purpose digital I/O with port interrupt P3.3 45 L8 I/O General-purpose digital I/O with port interrupt P3.4 46 J8 I/O General-purpose digital I/O with port interrupt P3.5 47 M9 I/O General-purpose digital I/O with port interrupt P3.6 48 L9 I/O General-purpose digital I/O with port interrupt P3.7 49 M10 I/O General-purpose digital I/O with port interrupt P4.0 50 J9 I/O General-purpose digital I/O with port interrupt GPIO GPIO DESCRIPTION PZ DAC DMA PIN NO. Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 19 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 Table 7-2. Signal Descriptions (continued) FUNCTION GPIO 20 SIGNAL NAME PIN NO. PIN TYPE(1) DESCRIPTION PZ ZCA, ZQW P4.1 51 M11 I/O General-purpose digital I/O with port interrupt P4.2 52 L10 I/O General-purpose digital I/O with port interrupt P4.3 53 M12 I/O General-purpose digital I/O with port interrupt P4.4 54 L12 I/O General-purpose digital I/O with port interrupt P4.5 55 L11 I/O General-purpose digital I/O with port interrupt P4.6 56 K11 I/O General-purpose digital I/O with port interrupt P4.7 57 K12 I/O General-purpose digital I/O with port interrupt P5.0 9 D1 I/O General-purpose digital I/O P5.1 10 E4 I/O General-purpose digital I/O P5.3 31 L4 I/O General-purpose digital I/O P5.4 32 M4 I/O General-purpose digital I/O P5.5 33 J5 I/O General-purpose digital I/O P5.6 11 E2 I/O General-purpose digital I/O P5.7 88 D7 I/O General-purpose digital I/O P6.0 97 B4 I/O General-purpose digital I/O P6.1 98 B3 I/O General-purpose digital I/O P6.2 99 A2 I/O General-purpose digital I/O P6.3 100 D5 I/O General-purpose digital I/O P6.4 1 A1 I/O General-purpose digital I/O P6.5 2 B2 I/O General-purpose digital I/O P6.6 3 B1 I/O General-purpose digital I/O P6.7 4 C3 I/O General-purpose digital I/O P7.2 84 B8 I/O General-purpose digital I/O P7.3 85 B7 I/O General-purpose digital I/O P7.4 5 C2 I/O General-purpose digital I/O P7.5 6 C1 I/O General-purpose digital I/O P7.6 7 D4 I/O General-purpose digital I/O P7.7 8 D2 I/O General-purpose digital I/O P8.0 58 J11 I/O General-purpose digital I/O P8.1 59 J12 I/O General-purpose digital I/O P8.2 60 H11 I/O General-purpose digital I/O P8.3 61 H12 I/O General-purpose digital I/O P8.4 62 G11 I/O General-purpose digital I/O P8.5 65 F11 I/O General-purpose digital I/O P8.6 66 G9 I/O General-purpose digital I/O P8.7 67 E12 I/O General-purpose digital I/O P9.0 68 E11 I/O General-purpose digital I/O P9.1 69 F9 I/O General-purpose digital I/O P9.2 70 D12 I/O General-purpose digital I/O P9.3 71 D11 I/O General-purpose digital I/O P9.4 72 E9 I/O General-purpose digital I/O P9.5 73 C12 I/O General-purpose digital I/O P9.6 74 C11 I/O General-purpose digital I/O P9.7 75 D9 I/O General-purpose digital I/O Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 Table 7-2. Signal Descriptions (continued) SIGNAL NAME FUNCTION PIN NO. PIN TYPE(1) ZCA, ZQW PJ.0 92 B5 I/O General-purpose digital I/O PJ.1 93 A4 I/O General-purpose digital I/O PJ.2 94 E7 I/O General-purpose digital I/O PJ.3 95 D6 I/O General-purpose digital I/O PU.0 77 A12 I/O General-purpose digital I/O - controlled by USB control register (FG662x devices) or PU control register PU.1 79 A11 I/O General-purpose digital I/O - controlled by USB control register (FG662x devices) or PU control register G0SW0 3 B1 I Analog switch to AVSS. Internally connected to ADC positive analog differential input AD1+. G0SW1 4 C3 I Analog switch to AVSS. Internally connected to ADC negative analog differential input AD1-. G1SW0 7 D4 I Analog switch to AVSS. Internally connected to ADC positive analog differential input AD3+. G1SW1 8 D2 I Analog switch to AVSS. Internally connected to ADC negative analog differential input AD3-. UCB1SCL 66 G9 I/O USCI_B1 I2C clock UCB1SDA 65 F11 I/O USCI_B1 I2C data COM0 30 J4 O LCD common output COM0 for LCD backplane COM1 31 L4 O LCD common output COM1 for LCD backplane COM2 32 M4 O LCD common output COM2 for LCD backplane COM3 33 J5 I/O LCD common output COM3 for LCD backplane LCDCAP 29 M3 I/O LCD capacitor connection CAUTION: LCDCAP/R33 must be connected to DVSS if not used. LCDREF 24 L2 I R03 22 K1 I/O Input/output port of lowest analog LCD voltage (V5) R13 24 L2 I/O Input/output port of third most positive analog LCD voltage (V3 or V4) R23 25 L3 I/O Input/output port of second most positive analog LCD voltage (V2) R33 29 M3 I/O Input/output port of most positive analog LCD voltage (V1) CAUTION: LCDCAP/R33 must be connected to DVSS if not used. S0 75 D9 O LCD segment output S0 S1 74 C11 O LCD segment output S1 S2 73 C12 O LCD segment output S2 S3 72 E9 O LCD segment output S3 S4 71 D11 O LCD segment output S4 S5 70 D12 O LCD segment output S5 S6 69 F9 O LCD segment output S6 S7 68 E11 O LCD segment output S7 S8 67 E12 O LCD segment output S8 S9 66 G9 O LCD segment output S9 S10 65 F11 O LCD segment output S10 S11 62 G11 O LCD segment output S11 S12 61 H12 O LCD segment output S12 S13 60 H11 O LCD segment output S13 S14 59 J12 O LCD segment output S14 S15 58 J11 O LCD segment output S15 Ground Switch I2C LCD LCD DESCRIPTION PZ Copyright © 2020 Texas Instruments Incorporated External reference voltage input for regulated LCD voltage Submit Document Feedback Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 21 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 Table 7-2. Signal Descriptions (continued) FUNCTION SIGNAL NAME PIN NO. PIN TYPE(1) ZCA, ZQW S16 57 K12 O LCD segment output S16 S17 56 K11 O LCD segment output S17 S18 55 L11 O LCD segment output S18 S19 54 L12 O LCD segment output S19 S20 53 M12 O LCD segment output S20 S21 52 L10 O LCD segment output S21 S22 51 M11 O LCD segment output S22 S23 50 J9 O LCD segment output S23 S24 49 M10 O LCD segment output S24 S25 48 L9 O LCD segment output S25 S26 47 M9 O LCD segment output S26 S27 46 J8 O LCD segment output S27 S28 45 L8 O LCD segment output S28 S29 44 M8 O LCD segment output S29 S30 43 H7 O LCD segment output S30 S31 42 L7 O LCD segment output S31 S32 41 M7 O LCD segment output S32 S33 40 J7 O LCD segment output S33 S34 39 L6 O LCD segment output S34 S35 38 M6 O LCD segment output S35 S36 37 H6 O LCD segment output S36 S37 36 J6 O LCD segment output S37 S38 35 M5 O LCD segment output S38 S39 34 L5 O LCD segment output S39 S40 33 J5 O LCD segment output S40 S41 32 M4 O LCD segment output S41 S42 31 L4 O LCD segment output S42 P2MAP0 18 H2 I/O Default mapping: USCI_B0 SPI slave transmit enable; USCI_A0 clock input/output Mapping Options: See Table 9-8 P2MAP1 19 J1 I/O Default mapping: USCI_B0 SPI slave in/master out; USCI_B0 I2C data Mapping Options: See Table 9-8 P2MAP2 20 H4 I/O Default mapping: USCI_B0 SPI slave out/master in; USCI_B0 I2C clock Mapping Options: See Table 9-8 P2MAP3 21 J2 I/O Default mapping: USCI_B0 clock input/output; USCI_A0 SPI slave transmit enable Mapping Options: See Table 9-8 P2MAP4 22 K1 I/O Default mapping: USCI_A0 UART transmit data; USCI_A0 SPI slave in/ master out Mapping Options: See Table 9-8 P2MAP5 23 K2 I/O Default mapping: USCI_A0 UART receive data; USCI_A0 slave out/ master in Mapping Options: See Table 9-8 P2MAP6 24 L2 I/O Default mapping: no secondary function Mapping Options: See Table 9-8 P2MAP7 25 L3 I/O Default mapping: no secondary function Mapping Options: See Table 9-8 Mappable 22 DESCRIPTION PZ Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 Table 7-2. Signal Descriptions (continued) FUNCTION Noise Reduction Op Amp SIGNAL NAME REF System Timer_A DESCRIPTION ZCA, ZQW NR 12 E1 I Noise reduction. Connect pin to analog ground. OA1IN0 6 C1 I OA1 negative input internally connected to ADC negative analog differential input AD2- OA0IN0 2 B2 I OA0 negative input internally connected to ADC negative analog differential input AD0- OA0IP0 99 A2 I OA0 positive input internally connected to ADC analog input A2 OA0O 1 A1 O OA0 output internally connected to ADC positive analog differential input AD0+ 100 D5 I OA1 positive input internally connected to ADC analog input A3 OA1O 5 C2 O OA1 output internally connected to ADC positive analog differential input AD2+ AVSS1 13 F2 P Analog ground supply AVSS2 83 A8 P Analog ground supply AVCC 16 H1, G2 P Analog power supply DVCC1 26 L1 P Digital power supply DVCC2 64 F12 P Digital power supply DVCC3 89 A6 P Digital power supply DVSS1 27 M1 P Digital ground supply DVSS2 63 G12 P Digital ground supply DVSS3 90 A5 P Digital ground supply LDOI 80 A10 I LDO input (not available on FG662x devices) LDOO 81 A9 O LDO output (not available on FG662x devices) VCORE(2) 28 M2 O Regulated core power supply (internal use only, no external current loading) VREFBG 9 D1 O Output of reference voltage to the ADC and DAC NC 78 82 B10 B9 I/O Not connected (not available on FG662x devices) Reserved – E5, E6, E8, F4, F5, F8, G5, G8, H5, H8, H9 – UCA1CLK 59 J12 I/O USCI_A1 clock input/output UCA1SIMO 60 H11 I/O USCI_A1 SPI slave in/master out UCA1SOMI 61 H12 I/O USCI_A1 SPI slave out/master in UCA1STE 62 G11 I/O USCI_A1 SPI slave transmit enable UCB1CLK 62 G11 I/O USCI_B1 clock input/output UCB1SIMO 65 F11 I/O USCI_B1 SPI slave in/master out UCB1SOMI 66 G9 I/O USCI_B1 SPI slave out/master in UCB1STE 59 J12 I/O USCI_B1 SPI slave transmit enable NMI 96 A3 I RST 96 A3 I/O Reset input (active low)(3) SVMOUT 57 K12 O SVM output TA0.0 35 M5 I/O Timer TA0 CCR0 capture: CCI0A input, compare: Out0 output TA0.1 36 J6 I/O Timer TA0 CCR1 capture: CCI1A input, compare: Out1 output Reserved SPI PIN TYPE(1) PZ OA1IP0 Power PIN NO. Copyright © 2020 Texas Instruments Incorporated Reserved. Internally connected to DVSS. TI recommends external connection to ground (DVSS). Nonmaskable interrupt input Submit Document Feedback Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 23 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 Table 7-2. Signal Descriptions (continued) SIGNAL NAME FUNCTION TA0.2 Timer_B UART PIN NO. PZ ZCA, ZQW PIN TYPE(1) DESCRIPTION 40 J7 I/O Timer TA0 CCR1 capture: CCI1B input, compare: Out1 output 37 H6 I/O Timer TA0 CCR2 capture: CCI2A input, compare: Out2 output 41 M7 I/O Timer TA0 CCR2 capture: CCI2B input, compare: Out2 output TA0.3 38 M6 I/O Timer TA0 CCR3 capture: CCI3A input compare: Out3 output TA0.4 39 L6 I/O Timer TA0 CCR4 capture: CCI4A input, compare: Out4 output TA0CLK 34 L5 I Timer TA0 clock signal TACLK input TA1.0 43 H7 I/O Timer TA1 capture CCR0: CCI0A input, compare: Out0 output TA1.1 44 M8 I/O Timer TA1 capture CCR1: CCI1A input, compare: Out1 output TA1.2 45 L8 I/O Timer TA1 capture CCR2: CCI2A input, compare: Out2 output TA1CLK 42 L7 I TA2.0 47 M9 I/O Timer TA2 capture CCR0: CCI0A input, compare: Out0 output TA2.1 48 L9 I/O Timer TA2 capture CCR1: CCI1A input, compare: Out1 output TA2.2 49 M10 I/O TA2CLK 46 J8 I TB0.0 50 J9 I/O Timer TB0 capture CCR0: CCI0A input, compare: Out0 output TB0.1 51 M11 I/O Timer TB0 capture CCR1: CCI1A input, compare: Out1 output TB0.2 52 L10 I/O Timer TB0 capture CCR2: CCI2A input, compare: Out2 output TB0.3 53 M12 I/O Timer TB0 capture CCR3: CCI3A input, compare: Out3 output TB0.4 54 L12 I/O Timer TB0 capture CCR4: CCI4A input, compare: Out4 output TB0.5 55 L11 I/O Timer TB0 capture CCR5: CCI5A input, compare: Out5 output TB0.6 56 K11 I/O Timer TB0 capture CCR6: CCI6A input, compare: Out6 output TB0CLK 58 J11 I TB0OUTH 57 K12 I UCA1CLK 59 J12 I/O UCA1RXD 61 H12 I USCI_A1 UART receive data UCA1TXD 60 H11 O USCI_A1 UART transmit data DM 79 A11 I/O USB data terminal DM (not available on FG6426 and FG6425 devices) DP 77 A12 I/O USB data terminal DP (not available on FG6426 and FG6425 devices) Timer TA1 clock input Timer TA2 capture CCR2: CCI2A input, compare: Out2 output Timer TA2 clock input Timer TB0 clock input Timer TB0: switch all PWM outputs to high impedance USCI_A1 clock input/output USB pullup resistor pin (open drain). The voltage level at the PUR pin is used to invoke the default USB BSL. PUR 78 B10 I/O Not available on FG6426 and FG6425 devices. USB (FG662x only) (1) (2) (3) 24 Recommended 1-MΩ resistor to ground. See Section 9.6 for more information. V18 82 B9 O USB regulated power (internal use only, no external current loading) (not available on FG6426 and FG6425 devices) VBUS 80 A10 I USB LDO input (connect to USB power source) (not available on FG6426 and FG6425 devices) VSSU 76 B11 B12 P USB PHY ground supply VUSB 81 A9 O USB LDO output (not available on FG6426 and FG6425 devices) I = input, O = output, I/O = input or output, P = power VCORE is for internal use only. No external current loading is possible. VCORE must be connected to the recommended capacitor value, CVCORE. When this pin is configured as reset, the internal pullup resistor is enabled by default. Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 7.4 Pin Multiplexing Pin multiplexing for these devices is controlled by both register settings and operating modes (for example, if the device is in test mode). For details of the settings for each pin and schematics of the multiplexed ports, see Section 9.13. 7.5 Buffer Type Table 7-3 describes the buffer types that are referenced in Table 7-1. Table 7-3. Buffer Type BUFFER TYPE (STANDARD) Analog(2) NOMINAL VOLTAGE HYSTERESIS 3.0 V N PU OR PD NOMINAL PU OR PD STRENGTH (µA) OUTPUT DRIVE STRENGTH (mA) OTHER CHARACTERISTICS N/A N/A N/A See analog modules in Section 8, Specifications for details HVCMOS 5.0 V Y N/A N/A See Section 8.8.5.7, Typical Characteristics – Outputs LVCMOS 3.0 V Y(1) Programmable See Section 8.8.5, GeneralPurpose I/Os See Section 8.8.5.7, Typical Characteristics – Outputs Power (DVCC)(3) 3.0 V N N/A N/A N/A Power (AVCC)(3) 3.0 V N N/A N/A N/A 0V N N/A N/A N/A Power (DVSS and AVSS)(3) (1) (2) (3) SVS enables hysteresis on DVCC Only for input pins This is a switch, not a buffer. This is supply input, not a buffer. Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 25 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 7.6 Connection of Unused Pins Table 7-4 lists the correct termination of all unused pins. Table 7-4. Connection of Unused Pins (1)PIN AVCC POTENTIAL COMMENT DVCC AVSS DVSS CPCAP Open LCDCAP DVSS LDOI DVSS For devices with LDO-PWR module when not being used in the application. LDOO Open For devices with LDO-PWR module when not being used in the application. NC Open PJ.0/TDO PJ.1/TDI PJ.2/TMS PJ.3/TCK Open The JTAG pins are shared with general-purpose I/O function (PJ.x). If not being used, these must be switched to port function, output direction (PJDIR.n = 1). When used as JTAG pins, these pins must remain open. PU.0/DP PU.1/DM Open For USB devices only when USB module is not being used in the application PUR(3) DVSS For USB devices only when USB module is not being used in the application Px.y Open Switched to port function, output direction (PxDIR.n = 1). Px.y represents port x and bit y of port x (for example, P1.0, P1.1, P2.2, PJ.0, PJ.1) RST/NMI DVCC or VCC 47-kΩ pullup or internal pullup selected with 10-nF (2.2 nF) pulldown(2) For devices where the charge pump is not used (no rail-to-rail OA and no rail-to-rail CTSD16). Reserved DVSS TEST Open This pin always has an internal pulldown enabled. V18 Open For USB devices only when USB module is not being used in the application VBAK Open For devices where no separate battery backup supply is used in the system. Set bit BAKDIS = 1. VBAT DVCC For devices where no separate battery backup supply is used in the system. Set bit BAKDIS = 1. VBUS, VSSU DVSS For USB devices only when USB module is not being used in the application VUSB Open For USB devices only when USB module is not being used in the application XIN DVSS For dedicated XIN pins only. XIN pins with shared GPIO functions must be programmed to GPIO and follow Px.y recommendations. XOUT Open For dedicated XOUT pins only. XOUT pins with shared GPIO functions must be programmed to GPIO and follow Px.y recommendations. XT2IN DVSS For dedicated XT2IN pins only. XT2IN pins with shared GPIO functions must be programmed to GPIO and follow Px.y recommendations. XT2OUT Open For dedicated XT2OUT pins only. XT2OUT pins with shared GPIO functions must be programmed to GPIO and follow Px.y recommendations. (1) (2) (3) 26 Any unused pin with a secondary function that is shared with general-purpose I/O should follow the Px.y unused pin connection guidelines. The pulldown capacitor should not exceed 2.2 nF when using devices with Spy-Bi-Wire interface in Spy-Bi-Wire mode or in 4-wire JTAG mode with TI tools such as FET interfaces or GANG programmers. The default USB BSL evaluates the state of the PUR pin after a BOR reset. If it is pulled high externally, then the BSL is invoked. Therefore, unless invoking the BSL, it is important to keep PUR pulled low after a BOR reset, even if BSL or USB is never used. TI recommends a 1-MΩ resistor to ground. Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 8 Specifications All graphs in this section are for typical conditions, unless otherwise noted. Typical (TYP) values are specified at VCC = 3.3 V and TA = 25°C, unless otherwise noted. 8.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted) (1) MIN MAX UNIT Voltage applied at VCC to VSS –0.3 4.1 V Voltage applied to any pin (excluding VCORE, VBUS, V18, LDOI) (2) –0.3 VCC + 0.3 V ±2 mA –55 150 °C 95 °C Diode current at any device pin Storage temperature, Tstg (3) Maximum junction temperature, TJ (1) (2) (3) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltages referenced to VSS. VCORE is for internal device use only. No external DC loading or voltage should be applied. Higher temperature may be applied during board soldering according to the current JEDEC J-STD-020 specification with peak reflow temperatures not higher than classified on the device label on the shipping boxes or reels. 8.2 ESD Ratings VALUE V(ESD) (1) (2) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±1000 Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±250 UNIT V JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Pins listed as ±1000 V may actually have higher performance. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Pins listed as ±250 V may actually have higher performance. 8.3 Recommended Operating Conditions Typical values are specified at VCC = 3.3 V and TA = 25°C (unless otherwise noted) MIN VCC VCC,USB (2) Supply voltage during program execution and flash programming (AVCC = DVCC1 = DVCC2 = DVCC3 = DVCC = VCC) (1) (2) (3) Supply voltage during USB operation, USB PLL disabled (USB_EN = 1, UPLLEN = 0) Supply voltage during USB operation, USB PLL enabled (USB_EN = 1, UPLLEN = 1) (4) NOM MAX PMMCOREV = 0 1.8 PMMCOREV = 0, 1 2.0 3.6 PMMCOREV = 0, 1, 2 2.2 3.6 PMMCOREV = 0, 1, 2, 3 2.4 3.6 PMMCOREV = 0 1.8 3.6 PMMCOREV = 0, 1 2.0 3.6 PMMCOREV = 0, 1, 2 2.2 3.6 PMMCOREV = 0, 1, 2, 3 2.4 3.6 PMMCOREV = 2 2.2 3.6 PMMCOREV = 2, 3 2.4 VSS Supply voltage (AVSS1 = AVSS2 = AVSS3 = DVSS1 = DVSS2 = DVSS3 = VSS) VBAT,RTC Backup-supply voltage with RTC operational UNIT 3.6 V V 3.6 0 V TA = 0°C to 85°C 1.55 3.6 TA = –40°C to 85°C 1.70 3.6 V VBAT,MEM Backup-supply voltage with backup memory retained TA = –40°C to 85°C 1.20 3.6 V TA Operating free-air temperature I version –40 85 °C TJ Operating junction temperature I version –40 CBAK Capacitance at pin VBAK Copyright © 2020 Texas Instruments Incorporated 1 4.7 85 °C 10 nF Submit Document Feedback Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 27 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 8.3 Recommended Operating Conditions (continued) Typical values are specified at VCC = 3.3 V and TA = 25°C (unless otherwise noted) MIN CVCORE Capacitor at VCORE(5) CDVCC/ CVCORE Capacitor ratio of DVCC to VCORE fSYSTEM Processor frequency (maximum MCLK frequency) (6) (7) (see Figure 8-1) USB_wait Wait state cycles during USB operation (4) (5) (6) (7) UNIT nF 10 Minimum processor frequency for USB operation (2) (3) MAX 470 fSYSTEM_USB (1) NOM PMMCOREV = 0, 1.8 V ≤ VCC ≤ 3.6 V (default condition) 0 8.0 PMMCOREV = 1, 2 V ≤ VCC ≤ 3.6 V 0 12.0 PMMCOREV = 2, 2.2 V ≤ VCC ≤ 3.6 V 0 16.0 PMMCOREV = 3, 2.4 V ≤ VCC ≤ 3.6 V 0 20.0 1.5 MHz MHz 16 cycles TI recommends powering AVCC and DVCC from the same source. A maximum difference of 0.3 V between AVCC and DVCC can be tolerated during power up and operation. Some modules may have reduced recommended ranges of operation. The minimum supply voltage is defined by the supervisor SVS levels when it is enabled. See the threshold parameters in Section 8.8.6.2 for the exact values and further details. USB operation with USB PLL enabled requires PMMCOREV ≥ 2 for proper operation. A capacitor tolerance of ±20% is required. The MSP430 CPU is clocked directly with MCLK. Both the high and low phase of MCLK must not exceed the pulse duration of the specified maximum frequency. Modules may have a different maximum input clock specification. See the specification of the respective module in this data sheet. 25 System Frequency - MHz 20 3 16 2 2, 3 1 1, 2 1, 2, 3 0, 1 0, 1, 2 0, 1, 2, 3 12 8 0 0 1.8 2.0 2.2 2.4 3.6 Supply Voltage - V NOTE: The numbers within the fields denote the supported PMMCOREVx settings. Figure 8-1. Frequency vs Supply Voltage 28 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 8.4 Active Mode Supply Current Into VCC Excluding External Current over recommended operating free-air temperature (unless otherwise noted)(1) (2) (3) PARAMETER IAM, Flash IAM, RAM (1) (2) (3) EXECUTION MEMORY Flash RAM FREQUENCY (fDCO = fMCLK = fSMCLK) VCC 3V 3V PMMCOREV 1 MHz 8 MHz 12 MHz TYP MAX TYP MAX 0 0.31 0.36 2.0 2.4 1 0.35 2 3 20 MHz TYP MAX 2.3 3.4 4.0 0.37 2.5 3.8 0.4 2.7 4.0 0 0.2 1 0.22 0.23 1.1 1.3 1.9 2 0.24 1.5 2.2 3 0.26 1.6 2.4 TYP UNIT MAX mA 6.6 1.2 2.1 mA 3.9 All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current. The currents are characterized with a Micro Crystal MS1V-T1K crystal with a load capacitance of 12.5 pF. The internal and external load capacitance are chosen to closely match the required 12.5 pF. Characterized with program executing typical data processing. FG6626 and FG6625 USB disabled (VUSBEN = 0, SLDOEN = 0). FG6426 and FG6425 LDO disabled (LDOEN = 0). fACLK = 32786 Hz, fDCO = fMCLK = fSMCLK at specified frequency. XTS = CPUOFF = SCG0 = SCG1 = OSCOFF = SMCLKOFF = 0. Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 29 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 8.5 Low-Power Mode Supply Currents (Into VCC) Excluding External Current over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1) (2) TEMPERATURE (TA) PARAMETER VCC PMMCOREV –40°C TYP ILPM0,1MHz Low-power mode 0(3) (9) ILPM2 Low-power mode 2(4) (9) ILPM3,XT1LF ILPM3, Low-power mode 4(7) (9) ILPM4 ILPM3.5, RTC,VCC ILPM3.5, RTC,VBAT ILPM3.5, RTC,TOT ILPM4.5 (1) (2) (3) (4) (5) (6) 30 60°C MAX TYP 85°C MAX TYP UNIT MAX 0 72 77 87 81 87 98 3V 3 86 92 105 97 104 117 2.2 V 0 6.9 7.5 9.9 8.5 12 17 3V 3 7.9 8.5 11 9.7 14 20 0 2.8 3.2 3.7 4.2 7.6 13.5 2.2 V 1 3.1 3.6 4.6 8.2 2 3.5 4.0 5.1 8.8 0 3.0 3.4 4.4 7.9 1 3.3 3.8 4.9 8.5 2 3.7 4.2 5.3 9.0 3 3.7 4.2 4.8 5.3 9.1 16 2.1 12.5 3V VLO,WDT 25°C TYP 2.2 V Low-power mode 3, crystal mode(5) (9) Low-power mode 3, VLO mode, Watchdog enabled(6) (9) MAX 3V 3V 4.0 14 0 1.2 1.5 2.4 5.8 1 1.4 1.6 2.6 6.1 2 1.6 1.8 2.8 6.5 3 1.6 1.8 2.6 2.9 6.5 14 1.8 11.5 µA µA µA 0 0.6 0.9 1.9 5.4 1 0.7 1.0 2.0 5.6 2 0.8 1.1 2.2 5.9 3 0.8 1.1 2.2 6.0 13 2.1 µA µA Low-power mode 3.5 (LPM3.5) current with active RTC into primary supply pin DVCC (10) 3V 0.2 0.7 1.7 µA Low-power mode 3.5 (LPM3.5) current with active RTC into backup supply pin VBAT(11) 3V 0.7 0.9 1.2 µA Total low-power mode 3.5 (LPM3.5) current with active RTC(12) 3V 0.8 0.9 1.0 1.6 2.9 µA Low-power mode 4.5 (LPM4.5)(8) 3V 0.12 0.2 0.32 0.8 1.9 µA 0.6 All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current. The currents are characterized with a Micro Crystal CC4V-T1A SMD crystal with a load capacitance of 9 pF. The internal and external load capacitance are chosen to closely match the required 9 pF. Current for watchdog timer clocked by SMCLK included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0). CPUOFF = 1, SCG0 = 0, SCG1 = 0, OSCOFF = 0 (LPM0), fACLK = 32768 Hz, fMCLK = 0 MHz, fSMCLK = fDCO = 1 MHz FG6626 and FG6625 USB disabled (VUSBEN = 0, SLDOEN = 0). FG6426 and FG6425 LDO disabled (LDOEN = 0). Current for watchdog timer clocked by ACLK and RTC clocked by LFXT1 (32768 Hz) included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0). CPUOFF = 1, SCG0 = 0, SCG1 = 1, OSCOFF = 0 (LPM2), fACLK = 32768 Hz, fMCLK = 0 MHz, fSMCLK = fDCO = 0 MHz; DCO setting = 1 MHz operation, DCO bias generator enabled. FG6626 and FG6625 USB disabled (VUSBEN = 0, SLDOEN = 0). FG6426 and FG6425 LDO disabled (LDOEN = 0). Current for watchdog timer clocked by ACLK and RTC clocked by LFXT1 (32768 Hz) included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0). CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3), fACLK = 32768 Hz, fMCLK = fSMCLK = fDCO = 0 MHz FG6626 and FG6625 USB disabled (VUSBEN = 0, SLDOEN = 0). FG6426 and FG6425 LDO disabled (LDOEN = 0). Current for watchdog timer clocked by VLO included. CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3), fACLK = fMCLK = fSMCLK = fDCO = 0 MHz Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 FG6626 and FG6625 USB disabled (VUSBEN = 0, SLDOEN = 0). FG6426 and FG6425 LDO disabled (LDOEN = 0). CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1 (LPM4), fDCO = fACLK = fMCLK = fSMCLK = 0 MHz FG6626 and FG6625 USB disabled (VUSBEN = 0, SLDOEN = 0). FG6426 and FG6425 LDO disabled (LDOEN = 0). (8) Internal regulator disabled. No data retention. CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1, PMMREGOFF = 1 (LPM4.5), fDCO = fACLK = fMCLK = fSMCLK = 0 MHz (9) Current for brownout included. Low-side supervisor and monitors disabled (SVSL, SVML). High-side supervisor and monitor disabled (SVSH, SVMH). RAM retention enabled. (10) VVBAT = VCC – 0.2 V, fDCO = fMCLK = fSMCLK = 0 MHz, fACLK = 32768 Hz, PMMREGOFF = 1, RTC in backup domain active (11) VVBAT = VCC – 0.2 V, fDCO = fMCLK = fSMCLK = 0 MHz, fACLK = 32768 Hz, PMMREGOFF = 1, RTC in backup domain active, no current drawn on VBAK (12) fDCO = fMCLK = fSMCLK = 0 MHz, fACLK = 32768 Hz, PMMREGOFF = 1, RTC in backup domain active, no current drawn on VBAK (7) 8.6 Low-Power Mode With LCD Supply Currents (Into VCC) Excluding External Current over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1) (2) TEMPERATURE (TA) PARAMETER VCC PMMCOREV –40°C TYP Low-power mode 3 ILPM3, LCD, (LPM3) current, LCD 4ext. bias mux mode, external biasing(1) (2) Low-power mode 3 (LPM3) current, LCD 4ILPM3, LCD, mux mode, internal int. bias biasing, charge pump disabled(1) (3) ILPM3 LCD,CP (1) (2) (3) (4) Low-power mode 3 (LPM3) current, LCD 4mux mode, internal biasing, charge pump enabled(1) (4) 3V 3V 2.2 V 3V MAX 25°C 60°C 85°C TYP MAX TYP 0 3.7 4.3 4.9 5.5 1 4.1 4.7 5.9 9.6 2 4.5 5.1 6.3 10.2 3 4.5 5.2 5.8 6.5 10.4 18.0 0 4.2 4.8 5.4 6.0 9.6 17.0 1 4.7 5.4 6.6 10.4 2 5.1 5.8 7.1 11.0 3 5.0 5.7 7.0 11.0 0 6.4 1 6.77 2 7.13 0 6.53 1 7.0 2 7.43 3 7.6 6.4 MAX UNIT TYP MAX 9.0 15.0 µA µA 19.0 µA µA Current for watchdog timer clocked by ACLK and RTC clocked by LFXT1 (32768 Hz) included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0). CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3), fACLK = 32768 Hz, fMCLK = fSMCLK = fDCO = 0 MHz Current for brownout included. Low-side supervisor (SVSL) and low-side monitor (SVML) disabled. High-side supervisor (SVSH) and high-side monitor (SVMH) disabled. RAM retention enabled. LCDMx = 11 (4-mux mode), LCDREXT = 1, LCDEXTBIAS = 1 (external biasing), LCD2B = 0 (1/3 bias), LCDCPEN = 0 (charge pump disabled), LCDSSEL = 0, LCDPREx = 101, LCDDIVx = 00011 (fLCD = 32768 Hz / 32 / 4 = 256 Hz) Current through external resistors not included (voltage levels are supplied by test equipment). Even segments S0, S2,... = 0, odd segments S1, S3,... = 1. No LCD panel load. LCDMx = 11 (4-mux mode), LCDREXT = 0, LCDEXTBIAS = 0 (internal biasing), LCD2B = 0 (1/3 bias), LCDCPEN = 0 (charge pump disabled), LCDSSEL = 0, LCDPREx = 101, LCDDIVx = 00011 (fLCD = 32768 Hz / 32 / 4 = 256 Hz) Even segments S0, S2,... = 0, odd segments S1, S3,... = 1. No LCD panel load. LCDMx = 11 (4-mux mode), LCDREXT = 0, LCDEXTBIAS = 0 (internal biasing), LCD2B = 0 (1/3 bias), LCDCPEN = 1 (charge pump enabled), VLCDx = 1000 (VLCD = 3 V, typical), LCDSSEL = 0, LCDPREx = 101, LCDDIVx = 00011 (fLCD = 32768 Hz / 32 / 4 = 256 Hz) Even segments S0, S2,... = 0, odd segments S1, S3,... = 1. No LCD panel load. Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 31 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 8.7 Thermal Resistance Characteristics PARAMETER θJA Junction-to-ambient thermal resistance, still air (1) θJC(TOP) Junction-to-case (top) thermal resistance (2) θJB Junction-to-board thermal resistance (3) (1) (2) (3) VALUE QFP (PZ) 122 BGA (ZQW) 108 QFP (PZ) 83 BGA (ZQW) 72 QFP (PZ) 98 BGA (ZQW) 76 UNIT °C/W °C/W °C/W The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, High-K board, as specified in JESD51-7, in an environment described in JESD51-2a. The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific JEDECstandard test exists, but a close description can be found in the ANSI SEMI standard G30-88. The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB temperature, as described in JESD51-8. 8.8 Timing and Switching Characteristics 8.8.1 Power Supply Sequencing TI recommends powering AVCC and DVCC pins from the same source. At a minimum, during power up, power down, and device operation, the voltage difference between AVCC and DVCC must not exceed the limits specified in Absolute Maximum Ratings. Exceeding the specified limits may cause malfunction of the device including erroneous writes to RAM and flash. Section 8.8.1.1 lists the device reset requirements. 8.8.1.1 Brownout and Device Reset Power Ramp Requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS V(DVCC_BOR_IT–) BORH on voltage, DVCC falling level | dDVCC/dt | < 3 V/s V(DVCC_BOR_IT+) BORH off voltage, DVCC rising level | dDVCC/dt | < 3 V/s V(DVCC_BOR_hys) BORH hysteresis MIN TYP 0.80 1.30 60 MAX UNIT 1.47 V 1.55 V 250 mV 8.8.2 Reset Timing Section 8.8.2.1 lists the reset input timing. 8.8.2.1 Reset Input over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) tRESET 32 PARAMETER TYP Pulse duration required at RST/NMI pin to accept a reset 2 Submit Document Feedback UNIT µs Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 8.8.3 Clock Specifications Section 8.8.3.1 lists the characteristics of XT1 in low-frequency mode. 8.8.3.1 Crystal Oscillator, XT1, Low-Frequency Mode over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1) PARAMETER TEST CONDITIONS VCC MIN TYP fOSC = 32768 Hz, XTS = 0, XT1BYPASS = 0, XT1DRIVEx = 1 ΔIDVCC,LF Differential XT1 oscillator crystal current consumption from lowest drive setting, LF mode fOSC = 32768 Hz, XTS = 0, XT1BYPASS = 0, XT1DRIVEx = 2 fXT1,LF,SW XT1 oscillator logic-level squarewave input frequency, LF mode XTS = 0, XT1BYPASS = 1(2) (3) OALF 0.170 32768 XTS = 0, XT1BYPASS = 0 Oscillation allowance for LF crystals(4) 3V 0.290 XT1 oscillator crystal frequency, LF mode 10 32.768 XTS = 0, XT1BYPASS = 0, XT1DRIVEx = 0, fXT1,LF = 32768 Hz, CL,eff = 6 pF 210 XTS = 0, XT1BYPASS = 0, XT1DRIVEx = 1, fXT1,LF = 32768 Hz, CL,eff = 12 pF 300 Integrated effective load capacitance, LF mode(5) fFault,LF tSTART,LF (1) (2) (3) (4) (5) 5.5 XTS = 0, XCAPx = 2 8.5 XTS = 0, XCAPx = 3 12.0 Duty cycle, LF mode Oscillator fault frequency, LF mode(7) XTS = 0(8) Start-up time, LF mode fOSC = 32768 Hz, XTS = 0, XT1BYPASS = 0, XT1DRIVEx = 0, CL,eff = 6 pF fOSC = 32768 Hz, XTS = 0, XT1BYPASS = 0, XT1DRIVEx = 3, CL,eff = 12 pF Hz 50 kHz 1 XTS = 0, XCAPx = 1 XTS = 0, Measured at ACLK, fXT1,LF = 32768 Hz µA kΩ XTS = 0, XCAPx = 0(6) CL,eff UNIT 0.075 fOSC = 32768 Hz, XTS = 0, XT1BYPASS = 0, XT1DRIVEx = 3 fXT1,LF0 MAX pF 30% 70% 10 10000 Hz 1000 3V ms 500 To improve EMI on the XT1 oscillator, observe the following guidelines. • Keep the trace between the device and the crystal as short as possible. • Design a good ground plane around the oscillator pins. • Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT. • Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins. • Use assembly materials and processes that avoid any parasitic load on the oscillator XIN and XOUT pins. • If conformal coating is used, make sure that it does not induce capacitive or resistive leakage between the oscillator pins. When XT1BYPASS is set, XT1 circuit is automatically powered down. Input signal is a digital square wave with parametrics defined in the Schmitt-trigger Inputs section of this data sheet. Maximum frequency of operation of the entire device cannot be exceeded. Oscillation allowance is based on a safety factor of 5 for recommended crystals. The oscillation allowance is a function of the XT1DRIVEx settings and the effective load. In general, comparable oscillator allowance can be achieved based on the following guidelines, but should be evaluated based on the actual crystal selected for the application: • For XT1DRIVEx = 0, CL,eff ≤ 6 pF • For XT1DRIVEx = 1, 6 pF ≤ CL,eff ≤ 9 pF • For XT1DRIVEx = 2, 6 pF ≤ CL,eff ≤ 10 pF • For XT1DRIVEx = 3, CL,ef f ≥ 6 pF Includes parasitic bond and package capacitance (approximately 2 pF per pin). Because the PCB adds additional capacitance, verify the correct load by measuring the ACLK frequency. For a correct setup, the effective load capacitance should always match the specification of the used crystal. Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 33 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 (6) (7) (8) Requires external capacitors at both terminals. Values are specified by crystal manufacturers. Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag. Frequencies between the MIN and MAX specifications might set the flag. Measured with logic-level input frequency but also applies to operation with crystals. Section 8.8.3.2 lists the characteristics of XT2. 8.8.3.2 Crystal Oscillator, XT2 over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1) (2) PARAMETER TEST CONDITIONS VCC MIN fOSC = 4 MHz, XT2OFF = 0, TA = 25°C, XT2BYPASS = 0, XT2DRIVEx = 0 IDVCC,XT2 XT2 oscillator crystal current consumption fOSC = 12 MHz, XT2OFF = 0, TA = 25°C, XT2BYPASS = 0, XT2DRIVEx = 1 fOSC = 20 MHz, XT2OFF = 0, TA = 25°C, XT2BYPASS = 0, XT2DRIVEx = 2 TYP MAX UNIT 200 260 3V µA 325 fOSC = 32 MHz, XT2OFF = 0, TA = 25°C, XT2BYPASS = 0, XT2DRIVEx = 3 450 fXT2,HF0 XT2 oscillator crystal frequency, mode 0 XT2DRIVEx = 0, XT2BYPASS = 0(3) 4 8 MHz fXT2,HF1 XT2 oscillator crystal frequency, mode 1 XT2DRIVEx = 1, XT2BYPASS = 0(3) 8 16 MHz fXT2,HF2 XT2 oscillator crystal frequency, mode 2 XT2DRIVEx = 2, XT2BYPASS = 0(3) 16 24 MHz fXT2,HF3 XT2 oscillator crystal frequency, mode 3 XT2DRIVEx = 3, XT2BYPASS = 0(3) 24 32 MHz fXT2,HF,SW XT2 oscillator logic-level squarewave input frequency XT2BYPASS = 1(3) (4) 0.7 32 MHz Oscillation allowance for HF crystals(5) OAHF tSTART,HF Start-up time fFault,HF 34 XT2DRIVEx = 1, XT2BYPASS = 0, fXT2,HF1 = 12 MHz, CL,eff = 15 pF 320 XT2DRIVEx = 2, XT2BYPASS = 0, fXT2,HF2 = 20 MHz, CL,eff = 15 pF 200 XT2DRIVEx = 3, XT2BYPASS = 0, fXT2,HF3 = 32 MHz, CL,eff = 15 pF 200 fOSC = 6 MHz, XT2BYPASS = 0, XT2DRIVEx = 0, TA = 25°C, CL,eff = 15 pF 0.5 fOSC = 20 MHz, XT2BYPASS = 0, XT2DRIVEx = 3, TA = 25°C, CL,eff = 15 pF Duty cycle (3) (4) (5) 450 Ω 3V ms 0.3 Integrated effective load capacitance, HF mode(6) (1) CL,eff (1) (2) XT2DRIVEx = 0, XT2BYPASS = 0, fXT2,HF0 = 6 MHz, CL,eff = 15 pF 1 Measured at ACLK, fXT2,HF2 = 20 MHz Oscillator fault frequency(7) XT2BYPASS = 1(8) 40% 30 50% pF 60% 300 kHz Requires external capacitors at both terminals. Values are specified by crystal manufacturers. To improve EMI on the XT2 oscillator, observe the following guidelines. • Keep the traces between the device and the crystal as short as possible. • Design a good ground plane around the oscillator pins. • Prevent crosstalk from other clock or data lines into oscillator pins XT2IN and XT2OUT. • Avoid running PCB traces underneath or adjacent to the XT2IN and XT2OUT pins. • Use assembly materials and processes that avoid any parasitic load on the oscillator XT2IN and XT2OUT pins. • If conformal coating is used, make sure that it does not induce capacitive or resistive leakage between the oscillator pins. Maximum frequency of operation of the entire device cannot be exceeded. When XT2BYPASS is set, the XT2 circuit is automatically powered down. Oscillation allowance is based on a safety factor of 5 for recommended crystals. Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com (6) (7) (8) SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 Includes parasitic bond and package capacitance (approximately 2 pF per pin). Because the PCB adds additional capacitance, verify the correct load by measuring the ACLK frequency. For a correct setup, the effective load capacitance should always match the specification of the used crystal. Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag. Frequencies between the MIN and MAX specifications might set the flag. Measured with logic-level input frequency but also applies to operation with crystals. Section 8.8.3.3 lists the characteristics of the VLO. 8.8.3.3 Internal Very-Low-Power Low-Frequency Oscillator (VLO) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER fVLO VLO frequency dfVLO/dT VLO frequency temperature drift dfVLO/dVCC VLO frequency supply voltage drift Duty cycle (1) (2) TEST CONDITIONS Measured at ACLK VCC 1.8 V to 3.6 V MIN TYP MAX 6 9.4 14 UNIT kHz ACLK(1) 1.8 V to 3.6 V 0.5 %/°C Measured at ACLK(2) 1.8 V to 3.6 V 4 %/V Measured at ACLK 1.8 V to 3.6 V Measured at 40% 50% 60% Calculated using the box method: (MAX(–40°C to 85°C) – MIN(–40°C to 85°C)) / MIN(–40°C to 85°C) / (85°C – (–40°C)) Calculated using the box method: (MAX(1.8 V to 3.6 V) – MIN(1.8 V to 3.6 V)) / MIN(1.8 V to 3.6 V) / (3.6 V – 1.8 V) Section 8.8.3.4 lists the characteristics of the REFO. 8.8.3.4 Internal Reference, Low-Frequency Oscillator (REFO) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER IREFO fREFO TEST CONDITIONS VCC MAX UNIT 1.8 V to 3.6 V 3 µA REFO frequency calibrated Measured at ACLK 1.8 V to 3.6 V 32768 Hz REFO absolute tolerance calibrated Full temperature range 1.8 V to 3.6 V ±3.5% TA = 25°C 3V ±1.5% ACLK(1) 1.8 V to 3.6 V 0.01 %/°C 1.0 %/V REFO frequency temperature drift Measured at dfREFO/dVCC REFO frequency supply voltage drift Measured at ACLK(2) 1.8 V to 3.6 V Duty cycle Measured at ACLK 1.8 V to 3.6 V REFO start-up time 40%/60% duty cycle 1.8 V to 3.6 V (1) (2) TYP TA = 25°C dfREFO/dT tSTART MIN REFO oscillator current consumption 40% 50% 25 60% µs Calculated using the box method: (MAX(–40°C to 85°C) – MIN(–40°C to 85°C)) / MIN(–40°C to 85°C) / (85°C – (–40°C)) Calculated using the box method: (MAX(1.8 V to 3.6 V) – MIN(1.8 V to 3.6 V)) / MIN(1.8 V to 3.6 V) / (3.6 V – 1.8 V) Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 35 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 Section 8.8.3.5 lists the characteristics of the DCO frequency. 8.8.3.5 DCO Frequency over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER fDCO(0,0) TEST CONDITIONS DCO frequency (0, 0)(1) 31)(1) fDCO(0,31) DCO frequency (0, fDCO(1,0) DCO frequency (1, 0)(1) 31)(1) fDCO(1,31) DCO frequency (1, fDCO(2,0) DCO frequency (2, 0)(1) 31)(1) MAX UNIT DCORSELx = 0, DCOx = 0, MODx = 0 0.07 MIN TYP 0.20 MHz DCORSELx = 0, DCOx = 31, MODx = 0 0.70 1.70 MHz DCORSELx = 1, DCOx = 0, MODx = 0 0.15 0.36 MHz DCORSELx = 1, DCOx = 31, MODx = 0 1.47 3.45 MHz DCORSELx = 2, DCOx = 0, MODx = 0 0.32 0.75 MHz fDCO(2,31) DCO frequency (2, DCORSELx = 2, DCOx = 31, MODx = 0 3.17 7.38 MHz fDCO(3,0) DCO frequency (3, 0)(1) DCORSELx = 3, DCOx = 0, MODx = 0 0.64 1.51 MHz fDCO(3,31) DCO frequency (3, 31)(1) DCORSELx = 3, DCOx = 31, MODx = 0 6.07 14.0 MHz 0)(1) fDCO(4,0) DCO frequency (4, fDCO(4,31) DCO frequency (4, 31)(1) 0)(1) fDCO(5,0) DCO frequency (5, fDCO(5,31) DCO frequency (5, 31)(1) 0)(1) fDCO(6,0) DCO frequency (6, fDCO(6,31) DCO frequency (6, 31)(1) 0)(1) DCORSELx = 4, DCOx = 0, MODx = 0 1.3 3.2 MHz DCORSELx = 4, DCOx = 31, MODx = 0 12.3 28.2 MHz DCORSELx = 5, DCOx = 0, MODx = 0 2.5 6.0 MHz DCORSELx = 5, DCOx = 31, MODx = 0 23.7 54.1 MHz DCORSELx = 6, DCOx = 0, MODx = 0 4.6 10.7 MHz DCORSELx = 6, DCOx = 31, MODx = 0 39.0 88.0 MHz fDCO(7,0) DCO frequency (7, DCORSELx = 7, DCOx = 0, MODx = 0 8.5 19.6 MHz fDCO(7,31) DCO frequency (7, 31)(1) DCORSELx = 7, DCOx = 31, MODx = 0 60 135 MHz SDCORSEL Frequency step between range DCORSEL and DCORSEL + 1 SRSEL = fDCO(DCORSEL+1,DCO)/fDCO(DCORSEL,DCO) 1.2 2.3 ratio SDCO Frequency step between tap DCO and DCO + 1 SDCO = fDCO(DCORSEL,DCO+1)/fDCO(DCORSEL,DCO) 1.02 1.12 ratio Duty cycle Measured at SMCLK 40% dfDCO/dT DCO frequency temperature drift fDCO = 1 MHz, 0.1 %/°C dfDCO/dVCC DCO frequency voltage drift fDCO = 1 MHz 1.9 %/V (1) 50% 60% When selecting the proper DCO frequency range (DCORSELx), the target DCO frequency, fDCO, should be set to reside within the range of fDCO(n, 0),MAX ≤ fDCO ≤ fDCO(n, 31),MIN, where fDCO(n, 0),MAX represents the maximum frequency specified for the DCO frequency, range n, tap 0 (DCOx = 0) and fDCO(n,31),MIN represents the minimum frequency specified for the DCO frequency, range n, tap 31 (DCOx = 31). This ensures that the target DCO frequency resides within the range selected. It should also be noted that if the actual fDCO frequency for the selected range causes the FLL or the application to select tap 0 or 31, the DCO fault flag is set to report that the selected range is at its minimum or maximum tap setting. 100 VCC = 3.0 V TA = 25°C fDCO – MHz 10 DCOx = 31 1 0.1 DCOx = 0 0 1 2 3 4 5 6 7 DCORSEL Figure 8-2. Typical DCO Frequency 36 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 8.8.4 Wake-up Characteristics Section 8.8.4.1 lists the characteristics of the wake-up times. 8.8.4.1 Wake-up Times From Low-Power Modes and Reset over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS TYP MAX fMCLK ≥ 4 MHz MIN 3 6.5 UNIT 1 MHz < fMCLK < 4 MHz 4 8.0 150 165 µs tWAKE-UP-FAST Wake-up time from LPM2, LPM3, or LPM4 to active mode(1) PMMCOREV = SVSMLRRL = n (where n = 0, 1, 2, or 3), SVSLFP = 1 tWAKE-UP-SLOW Wake-up time from LPM2, LPM3, or LPM4 to active mode(2) (3) PMMCOREV = SVSMLRRL = n (where n = 0, 1, 2, or 3), SVSLFP = 0 tWAKE-UP-LPM5 Wake-up time from LPM3.5 or LPM4.5 to active mode(4) 2 3 ms tWAKE-UP-RESET Wake-up time from RST or BOR event to active mode(4) 2 3 ms (1) (2) (3) (4) µs This value represents the time from the wake-up event to the first active edge of MCLK. The wake-up time depends on the performance mode of the low-side supervisor (SVSL) and low-side monitor (SVML). tWAKE-UP-FAST is possible with SVSL and SVML in full performance mode or disabled. For specific register settings, see the Low-Side SVS and SVM Control and Performance Mode Selection section in the Power Management Module and Supply Voltage Supervisor chapter of the MSP430F5xx and MSP430F6xx Family User's Guide. This value represents the time from the wake-up event to the first active edge of MCLK. The wake-up time depends on the performance mode of the low-side supervisor (SVSL) and low-side monitor (SVML). tWAKE-UP-SLOW is set with SVSL and SVML in normal mode (low current mode). For specific register settings, see the Low-Side SVS and SVM Control and Performance Mode Selection section in the Power Management Module and Supply Voltage Supervisor chapter of the MSP430F5xx and MSP430F6xx Family User's Guide. The wake-up times from LPM0 and LPM1 to AM are not specified. They are proportional to MCLK cycle time but are not affected by the performance mode settings as for LPM2, LPM3, and LPM4. This value represents the time from the wake-up event to the reset vector execution. Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 37 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 8.8.5 General-Purpose I/Os Section 8.8.5.1 lists the characteristics of the Schmitt-trigger inputs. 8.8.5.1 Schmitt-Trigger Inputs – General-Purpose I/O over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1) PARAMETER TEST CONDITIONS VIT+ Positive-going input threshold voltage VIT– Negative-going input threshold voltage Vhys Input voltage hysteresis (VIT+ – VIT–) RPull Pullup or pulldown resistor For pullup: VIN = VSS For pulldown: VIN = VCC CI Input capacitance VIN = VSS or VCC (1) VCC MIN 1.8 V 0.80 1.40 3V 1.50 2.10 1.8 V 0.45 1.00 3V 0.75 1.65 1.8 V 0.3 0.8 3V 0.4 1.0 20 TYP 35 MAX 50 5 UNIT V V V kΩ pF The same parametrics apply to clock input pin when crystal bypass mode is used on XT1 (XIN) or XT2 (XT2IN). Section 8.8.5.2 lists the characteristics of P1, P2, P3, and P4 . 8.8.5.2 Inputs – Ports P1, P2, P3, and P4 over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1) PARAMETER External interrupt timing(2) t(int) (1) (2) TEST CONDITIONS Port P1, P2, P3, P4: P1.x to P4.x, External trigger pulse duration to set interrupt flag VCC 2.2 V, 3 V MIN MAX 20 UNIT ns Some devices may contain additional ports with interrupts. See the block diagram and terminal function descriptions. An external signal sets the interrupt flag every time the minimum interrupt pulse duration t(int) is met. It may be set by trigger signals shorter than t(int). Section 8.8.5.3 lists the leakage current of the GPIOs. 8.8.5.3 Leakage Current – General-Purpose I/O over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER Ilkg(Px.x) (1) (2) 38 High-impedance leakage current TEST CONDITIONS See (1) (2) VCC 1.8 V, 3 V MIN MAX UNIT ±50 nA The leakage current is measured with VSS or VCC applied to the corresponding pin(s), unless otherwise noted. The leakage of the digital port pins is measured individually. The port pin is selected for input and the pullup or pulldown resistor is disabled. Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 Section 8.8.5.4 lists the output characteristics of the GPIOs. 8.8.5.4 Outputs – General-Purpose I/O (Full Drive Strength) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS I(OHmax) = –3 mA(1) VOH High-level output voltage I(OHmax) = –10 mA(2) I(OHmax) = –5 mA(1) I(OHmax) = –15 mA(2) I(OLmax) = 3 mA(1) VOL Low-level output voltage I(OLmax) = 10 mA(2) I(OLmax) = 5 mA(1) I(OLmax) = 15 mA(2) (1) (2) VCC 1.8 V 3V 1.8 V 3V MIN MAX VCC – 0.25 VCC VCC – 0.60 VCC VCC – 0.25 VCC VCC – 0.60 VCC VSS VSS + 0.25 VSS VSS + 0.60 VSS VSS + 0.25 VSS VSS + 0.60 UNIT V V The maximum total current, I(OHmax) and I(OLmax), for all outputs combined should not exceed ±48 mA to hold the maximum voltage drop specified. The maximum total current, I(OHmax) and I(OLmax), for all outputs combined should not exceed ±100 mA to hold the maximum voltage drop specified. Section 8.8.5.5 lists the output characteristics of the GPIOs. 8.8.5.5 Outputs – General-Purpose I/O (Reduced Drive Strength) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(3) PARAMETER TEST CONDITIONS I(OHmax) = –1 mA(1) VOH High-level output voltage I(OHmax) = –3 mA(2) I(OHmax) = –2 mA(1) I(OHmax) = –6 mA(2) I(OLmax) = 1 mA(1) VOL Low-level output voltage I(OLmax) = 3 mA(2) I(OLmax) = 2 mA(1) I(OLmax) = 6 mA(2) (1) (2) (3) VCC 1.8 V 3V 1.8 V 3V MIN MAX VCC – 0.25 VCC VCC – 0.60 VCC VCC – 0.25 VCC VCC – 0.60 VCC VSS VSS + 0.25 VSS VSS + 0.60 VSS VSS + 0.25 VSS VSS + 0.60 UNIT V V The maximum total current, I(OHmax) and I(OLmax), for all outputs combined, should not exceed ±48 mA to hold the maximum voltage drop specified. The maximum total current, I(OHmax) and I(OLmax), for all outputs combined, should not exceed ±100 mA to hold the maximum voltage drop specified. Selecting reduced drive strength may reduce EMI. Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 39 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 Section 8.8.5.6 lists the frequency characteristics of the GPIOs. 8.8.5.6 Output Frequency – Ports P1, P2 and P3 over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER fPx.y fPort_CLK (1) (2) (3) 40 TEST CONDITIONS Port output frequency (with load) P3.4/TA2CLK/SMCLK/S27 CL = 20 pF, RL = 1 kΩ(1) or 3.2 kΩ(2) (3) Clock output frequency P1.0/TA0CLK/ACLK/S39 P3.4/TA2CLK/SMCLK/S27 P2.0/P2MAP0 (P2MAP0 = PM_MCLK ) CL = 20 pF(3) MIN MAX VCC = 1.8 V PMMCOREVx = 0 8 VCC = 3 V PMMCOREVx = 3 20 VCC = 1.8 V PMMCOREVx = 0 8 VCC = 3 V PMMCOREVx = 3 20 UNIT MHz MHz Full drive strength of port: A resistive divider with 2 × 0.5 kΩ between VCC and VSS is used as load. The output is connected to the center tap of the divider. Reduced drive strength of port: A resistive divider with 2 × 1.6 kΩ between VCC and VSS is used as load. The output is connected to the center tap of the divider. The output voltage reaches at least 10% and 90% VCC at the specified toggle frequency. Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 8.8.5.7 Typical Characteristics – Outputs, Reduced Drive Strength (PxDS.y = 0) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) 8.0 IOL – Typical Low-Level Output Current – mA IOL – Typical Low-Level Output Current – mA 25.0 TA = 25°C 20.0 TA = 85°C 15.0 10.0 5.0 0.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 TA = 25°C 7.0 6.0 TA = 85°C 5.0 4.0 3.0 2.0 1.0 0.0 0.0 3.5 0.5 VCC = 3.0 V VCC = 1.8 V P3.2 Figure 8-3. Typical Low-Level Output Current vs Low-Level Output Voltage IOH – Typical High-Level Output Current – mA IOH – Typical High-Level Output Current – mA −10.0 −25.0 0.0 2.0 P3.2 0.0 −5.0 −20.0 1.5 Figure 8-4. Typical Low-Level Output Current vs Low-Level Output Voltage 0.0 −15.0 1.0 VOL – Low-Level Output Voltage – V VOL – Low-Level Output Voltage – V TA = 85°C TA = 25°C 0.5 1.0 1.5 2.0 2.5 3.0 3.5 −1.0 −2.0 −3.0 −4.0 −5.0 TA = 85°C −6.0 TA = 25°C −7.0 −8.0 0.0 VOH – High-Level Output Voltage – V VCC = 3.0 V P3.2 Figure 8-5. Typical High-Level Output Current Vs High-Level Output Voltage Copyright © 2020 Texas Instruments Incorporated VCC = 1.8 V 0.5 1.0 1.5 VOH – High-Level Output Voltage – V 2.0 P3.2 Figure 8-6. Typical High-Level Output Current Vs High-Level Output Voltage Submit Document Feedback Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 41 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 8.8.5.8 Typical Characteristics – Outputs, Full Drive Strength (PxDS.y = 1) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) 24 TA = 25°C 55.0 IOL – Typical Low-Level Output Current – mA IOL – Typical Low-Level Output Current – mA 60.0 50.0 TA = 85°C 45.0 40.0 35.0 30.0 25.0 20.0 15.0 10.0 TA = 25°C 20 16 TA = 85°C 12 8 4 5.0 0.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0 0.0 3.5 0.5 VCC = 3.0 V VCC = 1.8 V P3.2 Figure 8-7. Typical Low-Level Output Current vs Low-Level Output Voltage IOH – Typical High-Level Output Current – mA IOH – Typical High-Level Output Current – mA −15.0 P3.2 −20.0 −25.0 −30.0 −35.0 −40.0 −45.0 TA = 85°C −55.0 TA = 25°C 0.5 1.0 1.5 2.0 2.5 3.0 3.5 −4 −8 −12 TA = 85°C −16 TA = 25°C −20 0.0 VOH – High-Level Output Voltage – V VCC = 3.0 V P3.2 Figure 8-9. Typical High-Level Output Current vs High-level Output Voltage 42 2.0 0 −10.0 −60.0 0.0 1.5 Figure 8-8. Typical Low-Level Output Current vs Low-Level Output Voltage 0.0 −5.0 −50.0 1.0 VOL – Low-Level Output Voltage – V VOL – Low-Level Output Voltage – V Submit Document Feedback 0.5 1.0 1.5 2.0 VOH – High-Level Output Voltage – V VCC = 1.8 V P3.2 Figure 8-10. Typical High-Level Output Current vs High-level Output Voltage Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 8.8.6 PMM Section 8.8.6.1 lists the characteristics of the PMM core voltage. 8.8.6.1 PMM, Core Voltage over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT VCORE3(AM) Core voltage, active mode, PMMCOREV = 3 2.4 V ≤ DVCC ≤ 3.6 V, 0 mA ≤ I(VCORE) ≤ 21 mA 1.90 V VCORE2(AM) Core voltage, active mode, PMMCOREV = 2 2.2 V ≤ DVCC ≤ 3.6 V, 0 mA ≤ I(VCORE) ≤ 21 mA 1.80 V VCORE1(AM) Core voltage, active mode, PMMCOREV = 1 2 V ≤ DVCC ≤ 3.6 V, 0 mA ≤ I(VCORE) ≤ 17 mA 1.60 V VCORE0(AM) Core voltage, active mode, PMMCOREV = 0 1.8 V ≤ DVCC ≤ 3.6 V, 0 mA ≤ I(VCORE) ≤ 13 mA 1.40 V VCORE3(LPM) Core voltage, low-current mode, PMMCOREV = 3 2.4 V ≤ DVCC ≤ 3.6 V, 0 µA ≤ I(VCORE) ≤ 30 µA 1.94 V VCORE2(LPM) Core voltage, low-current mode, PMMCOREV = 2 2.2 V ≤ DVCC ≤ 3.6 V, 0 µA ≤ I(VCORE) ≤ 30 µA 1.84 V VCORE1(LPM) Core voltage, low-current mode, PMMCOREV = 1 2 V ≤ DVCC ≤ 3.6 V, 0 µA ≤ I(VCORE) ≤ 30 µA 1.64 V VCORE0(LPM) Core voltage, low-current mode, PMMCOREV = 0 1.8 V ≤ DVCC ≤ 3.6 V, 0 µA ≤ I(VCORE) ≤ 30 µA 1.44 V Section 8.8.6.2 lists the characteristics of the SVS high side. 8.8.6.2 PMM, SVS High Side over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS MIN SVSHE = 0, DVCC = 3.6 V I(SVSH) SVS current consumption V(SVSH_IT+) SVSH on voltage level(1) SVSH off voltage level(1) tpd(SVSH) SVSH propagation delay t(SVSH) SVSH on or off delay time dVDVCC/dt DVCC rise time (1) MAX 0 SVSHE = 1, DVCC = 3.6 V, SVSHFP = 0 2.0 µA SVSHE = 1, SVSHRVL = 0 1.59 1.64 1.69 SVSHE = 1, SVSHRVL = 1 1.79 1.84 1.91 SVSHE = 1, SVSHRVL = 2 1.98 2.04 2.11 SVSHE = 1, SVSHRVL = 3 2.10 2.16 2.23 SVSHE = 1, SVSMHRRL = 0 1.62 1.74 1.81 SVSHE = 1, SVSMHRRL = 1 1.88 1.94 2.01 SVSHE = 1, SVSMHRRL = 2 2.07 2.14 2.21 SVSHE = 1, SVSMHRRL = 3 2.20 2.26 2.33 SVSHE = 1, SVSMHRRL = 4 2.32 2.40 2.48 SVSHE = 1, SVSMHRRL = 5 2.56 2.70 2.84 SVSHE = 1, SVSMHRRL = 6 2.85 3.00 3.15 SVSHE = 1, SVSMHRRL = 7 2.85 3.00 3.15 SVSHE = 1, dVDVCC/dt = 10 mV/µs, SVSHFP = 1 2.5 SVSHE = 1, dVDVCC/dt = 1 mV/µs, SVSHFP = 0 20 SVSHE = 0→1, SVSHFP = 1 12.5 SVSHE = 0→1, SVSHFP = 0 100 0 UNIT nA 200 SVSHE = 1, DVCC = 3.6 V, SVSHFP = 1 V(SVSH_IT–) TYP V V µs µs 1000 V/s The SVSH settings available depend on the VCORE (PMMCOREV) setting. See the Power Management Module and Supply Voltage Supervisor chapter in the MSP430F5xx and MSP430F6xx Family User's Guide on recommended settings and use. Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 43 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 Section 8.8.6.3 lists the characteristics of the SVM high side. 8.8.6.3 PMM, SVM High Side over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS MIN SVMHE = 0, DVCC = 3.6 V I(SVMH) V(SVMH) SVMH current consumption SVMH on or off voltage level(1) SVMH propagation delay t(SVMH) SVMH on or off delay time (1) MAX 0 SVMHE = 1, DVCC = 3.6 V, SVMHFP = 0 200 SVMHE = 1, DVCC = 3.6 V, SVMHFP = 1 2.0 UNIT nA µA SVMHE = 1, SVSMHRRL = 0 1.65 1.74 1.86 SVMHE = 1, SVSMHRRL = 1 1.85 1.94 2.02 SVMHE = 1, SVSMHRRL = 2 2.02 2.14 2.22 SVMHE = 1, SVSMHRRL = 3 2.18 2.26 2.35 SVMHE = 1, SVSMHRRL = 4 2.32 2.40 2.48 SVMHE = 1, SVSMHRRL = 5 2.56 2.70 2.84 SVMHE = 1, SVSMHRRL = 6 2.85 3.00 3.15 SVMHE = 1, SVSMHRRL = 7 2.85 3.00 3.15 SVMHE = 1, SVMHOVPE = 1 tpd(SVMH) TYP V 3.75 SVMHE = 1, dVDVCC/dt = 10 mV/µs, SVMHFP = 1 2.5 SVMHE = 1, dVDVCC/dt = 1 mV/µs, SVMHFP = 0 20 SVMHE = 0→1, SVSMFP = 1 12.5 SVMHE = 0→1, SVMHFP = 0 100 µs µs The SVMH settings available depend on the VCORE (PMMCOREV) setting. See the Power Management Module and Supply Voltage Supervisor chapter in the MSP430F5xx and MSP430F6xx Family User's Guide on recommended settings and use. Section 8.8.6.4 lists the characteristics of the SVS low side. 8.8.6.4 PMM, SVS Low Side over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS MIN SVSLE = 0, PMMCOREV = 2 I(SVSL) SVSL current consumption tpd(SVSL) SVSL propagation delay t(SVSL) SVSL on or off delay time 44 Submit Document Feedback TYP 0 SVSLE = 1, PMMCOREV = 2, SVSLFP = 0 200 SVSLE = 1, PMMCOREV = 2, SVSLFP = 1 2.0 SVSLE = 1, dVCORE/dt = 10 mV/µs, SVSLFP = 1 2.5 SVSLE = 1, dVCORE/dt = 1 mV/µs, SVSLFP = 0 20 SVSLE = 0→1, SVSLFP = 1 12.5 SVSLE = 0→1, SVSLFP = 0 100 MAX UNIT nA µA µs µs Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 Section 8.8.6.5 lists the characteristics of the SVM low side. 8.8.6.5 PMM, SVM Low Side over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP SVMLE = 0, PMMCOREV = 2 I(SVML) SVML current consumption tpd(SVML) SVML propagation delay t(SVML) SVML on or off delay time MAX 0 SVMLE = 1, PMMCOREV = 2, SVMLFP = 0 200 SVMLE = 1, PMMCOREV = 2, SVMLFP = 1 2.0 SVMLE = 1, dVCORE/dt = 10 mV/µs, SVMLFP = 1 2.5 SVMLE = 1, dVCORE/dt = 1 mV/µs, SVMLFP = 0 20 SVMLE = 0→1, SVMLFP = 1 12.5 SVMLE = 0→1, SVMLFP = 0 100 UNIT nA µA µs µs 8.8.7 Timers Section 8.8.7.1 lists the characteristics of Timer_A. 8.8.7.1 Timer_A, Timers TA0, TA1, and TA2 over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VCC MIN fTA Timer_A input clock frequency Internal: SMCLK or ACLK, External: TACLK, Duty cycle = 50% ±10% 1.8 V, 3 V tTA,cap Timer_A capture timing All capture inputs, minimum pulse duration required for capture 1.8 V, 3 V MAX UNIT 20 MHz 20 ns Section 8.8.7.2 lists the characteristics of Timer_B. 8.8.7.2 Timer_B, Timer TB0 over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VCC MIN fTB Timer_B input clock frequency Internal: SMCLK or ACLK, External: TBCLK, Duty cycle = 50% ±10% 1.8 V, 3 V tTB,cap Timer_B capture timing All capture inputs, minimum pulse duration required for capture 1.8 V, 3 V Copyright © 2020 Texas Instruments Incorporated 20 MAX UNIT 20 MHz ns Submit Document Feedback Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 45 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 8.8.8 Battery Backup Section 8.8.8.1 lists the characteristics of the battery backup. 8.8.8.1 Battery Backup over operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS VBAT = 1.7 V, DVCC not connected, RTC running Current into VBAT terminal in VBAT = 2.2 V, DVCC not connected, case no primary battery is RTC running connected. IVBAT VBAT = 3 V, DVCC not connected, RTC running VCC MIN TYP TA = –40°C 0.43 TA = 25°C 0.52 TA = 60°C 0.58 TA = 85°C 0.66 TA = –40°C 0.50 TA = 25°C 0.59 TA = 60°C 0.64 TA = 85°C 0.72 TA = –40°C 0.68 TA = 25°C 0.75 TA = 60°C 0.79 TA = 85°C Switch-over level (VCC to VBAT) RON_VBAT ON-resistance of switch between VBAT and VBAK VBAT3 VBAT to ADC: VBAT divided, VBAT3 = VBAT /3 VCHVx RCHARGE 46 Charger end voltage Charge limiting resistor Submit Document Feedback CVCC = 4.7 µF µA VSVSH_IT- SVSHRL = 0 1.59 1.69 SVSHRL = 1 1.79 1.91 SVSHRL = 2 1.98 2.11 SVSHRL = 3 2.10 2.23 VBAT = 1.8 V CHVx = 2 UNIT 0.86 General VSWITCH MAX 0V 0.35 1 1.8 V 0.6 ±5% 3V 1.0 ±5% 3.6 V 1.2 ±5% 2.7 2.9 2.65 CHCx = 1 5.2 CHCx = 2 10.2 CHCx = 3 20 V kΩ V V kΩ Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 8.8.9 USCI Section 8.8.9.1 lists the characteristics of the USCI in UART mode. 8.8.9.1 USCI (UART Mode) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS fUSCI USCI input clock frequency fBITCLK BITCLK clock frequency (equals baud rate in MBaud) UART receive deglitch time(1) tτ (1) VCC MIN Internal: SMCLK or ACLK, External: UCLK, Duty cycle = 50% ±10% MAX UNIT fSYSTEM MHz 1 MHz 2.2 V 50 600 3V 50 600 ns Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. To ensure that pulses are correctly recognized, their duration should exceed the maximum specification of the deglitch time. Section 8.8.9.2 lists the characteristics of the USCI in SPI master mode. 8.8.9.2 USCI (SPI Master Mode) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1) (see Figure 8-11 and Figure 8-12) PARAMETER fUSCI TEST CONDITIONS USCI input clock frequency PMMCOREV = 0 tSU,MI SOMI input data setup time PMMCOREV = 3 PMMCOREV = 0 tHD,MI SOMI input data hold time PMMCOREV = 3 tVALID,MO SIMO output data valid time(2) SIMO output data hold (2) (3) 1.8 V 55 3V 38 2.4 V 30 3V 25 1.8 V 0 3V 0 2.4 V 0 3V 0 MAX UNIT fSYSTEM MHz ns ns 1.8 V 20 3V 18 UCLK edge to SIMO valid, CL = 20 pF, PMMCOREV = 3 2.4 V 16 time(3) CL = 20 pF, PMMCOREV = 3 (1) MIN UCLK edge to SIMO valid, CL = 20 pF, PMMCOREV = 0 CL = 20 pF, PMMCOREV = 0 tHD,MO VCC SMCLK, ACLK, duty cycle = 50% ±10% 3V ns 15 1.8 V –10 3V –8 2.4 V –10 3V –8 ns fUCxCLK = 1/2tLO/HI with tLO/HI ≥ max(tVALID,MO(USCI) + tSU,SI(Slave), tSU,MI(USCI) + tVALID,SO(Slave)) For the slave parameters tSU,SI(Slave) and tVALID,SO(Slave), see the SPI parameters of the attached slave. Specifies the time to drive the next valid data to the SIMO output after the output changing UCLK clock edge. See the timing diagrams in Figure 8-11 and Figure 8-12. Specifies how long data on the SIMO output is valid after the output changing UCLK clock edge. Negative values indicate that the data on the SIMO output can become invalid before the output changing clock edge observed on UCLK. See the timing diagrams in Figure 8-11 and Figure 8-12. Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 47 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 1/fUCxCLK CKPL = 0 UCLK CKPL = 1 tLO/HI tLO/HI tSU,MI tHD,MI SOMI tHD,MO tVALID,MO SIMO Figure 8-11. SPI Master Mode, CKPH = 0 1/fUCxCLK CKPL = 0 UCLK CKPL = 1 tLO/HI tLO/HI tSU,MI tHD,MI SOMI tHD,MO tVALID,MO SIMO Figure 8-12. SPI Master Mode, CKPH = 1 48 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 Section 8.8.9.3 lists the characteristics of the USCI in SPI slave mode. 8.8.9.3 USCI (SPI Slave Mode) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1) (see Figure 8-13 and Figure 8-14) PARAMETER TEST CONDITIONS PMMCOREV = 0 tSTE,LEAD STE lead time, STE low to clock PMMCOREV = 3 PMMCOREV = 0 tSTE,LAG STE lag time, Last clock to STE high PMMCOREV = 3 PMMCOREV = 0 tSTE,ACC STE access time, STE low to SOMI data out PMMCOREV = 3 PMMCOREV = 0 tSTE,DIS STE disable time, STE high to SOMI high impedance PMMCOREV = 3 PMMCOREV = 0 tSU,SI SIMO input data setup time PMMCOREV = 3 PMMCOREV = 0 tHD,SI SIMO input data hold time PMMCOREV = 3 tVALID,SO SOMI output data valid time(2) (2) (3) 11 3V 8 2.4 V 7 3V 6 1.8 V 3 3V 3 2.4 V 3 3V 3 MAX ns 1.8 V 66 3V 50 2.4 V 36 3V 30 1.8 V 30 3V 30 2.4 V 30 3V 30 1.8 V 5 3V 5 2.4 V 2 3V 2 1.8 V 5 3V 5 2.4 V 5 3V 5 60 UCLK edge to SOMI valid, CL = 20 pF, PMMCOREV = 3 2.4 V 44 3V 40 SOMI output data hold time(3) 12 12 2.4 V 12 3V 12 ns ns 76 3V ns ns 3V 1.8 V UNIT ns 1.8 V CL = 20 pF, PMMCOREV = 3 (1) MIN UCLK edge to SOMI valid, CL = 20 pF, PMMCOREV = 0 CL = 20 pF, PMMCOREV = 0 tHD,SO VCC 1.8 V ns ns fUCxCLK = 1/2tLO/HI with tLO/HI ≥ max(tVALID,MO(Master) + tSU,SI(USCI), tSU,MI(Master) + tVALID,SO(USCI)) For the master parameters tSU,MI(Master) and tVALID,MO(Master), see the SPI parameters of the attached master. Specifies the time to drive the next valid data to the SOMI output after the output changing UCLK clock edge. See the timing diagrams in Figure 8-13 and Figure 8-14. Specifies how long data on the SOMI output is valid after the output changing UCLK clock edge. See the timing diagrams in Figure 8-13 and Figure 8-14. Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 49 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 tSTE,LEAD tSTE,LAG STE 1/fUCxCLK CKPL = 0 UCLK CKPL = 1 tLO/HI tSU,SI tLO/HI tHD,SI SIMO tHD,SO tVALID,SO tSTE,ACC tSTE,DIS SOMI Figure 8-13. SPI Slave Mode, CKPH = 0 tSTE,LAG tSTE,LEAD STE 1/fUCxCLK CKPL = 0 UCLK CKPL = 1 tLO/HI tLO/HI tHD,SI tSU,SI SIMO tSTE,ACC tHD,MO tVALID,SO tSTE,DIS SOMI Figure 8-14. SPI Slave Mode, CKPH = 1 50 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 Section 8.8.9.4 lists the characteristics of the USCI in I2C mode. 8.8.9.4 USCI (I2C Mode) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 8-15) PARAMETER TEST CONDITIONS fUSCI USCI input clock frequency Internal: SMCLK or ACLK, External: UCLK, Duty cycle = 50% ±10% fSCL SCL clock frequency tHD,STA Hold time (repeated) START tSU,STA Setup time for a repeated START VCC MIN 2.2 V, 3 V fSCL ≤ 100 kHz 0 fSCL ≤ 100 kHz fSYSTEM MHz 400 kHz µs 0.6 4.7 2.2 V, 3 V fSCL > 100 kHz UNIT 4.0 2.2 V, 3 V fSCL > 100 kHz MAX µs 0.6 tHD,DAT Data hold time 2.2 V, 3 V 0 ns tSU,DAT Data setup time 2.2 V, 3 V 250 ns tSU,STO Setup time for STOP tSP Pulse duration of spikes suppressed by input filter fSCL ≤ 100 kHz tSU,STA tHD,STA 4.0 2.2 V, 3 V fSCL > 100 kHz µs 0.6 2.2 V 50 600 3V 50 600 tHD,STA ns tBUF SDA tLOW tHIGH tSP SCL tSU,DAT tSU,STO tHD,DAT Figure 8-15. I2C Mode Timing Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 51 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 8.8.10 LCD Controller Section 8.8.10.1 lists the operating conditions of the LCD controller. 8.8.10.1 LCD_B Operating Conditions PARAMETER VCC,LCD_B, CONDITIONS MIN NOM MAX UNIT Supply voltage range, charge pump enabled, VLCD ≤ 3.6 V LCDCPEN = 1, 0000 < VLCDx ≤ 1111 (charge pump enabled, VLCD ≤ 3.6 V) 2.2 3.6 V Supply voltage range, charge pump enabled, VLCD ≤ 3.3 V LCDCPEN = 1, 0000 < VLCDx ≤ 1100 (charge pump enabled, VLCD ≤ 3.3 V) 2.0 3.6 V VCC,LCD_B, int. bias Supply voltage range, internal biasing, charge pump disabled LCDCPEN = 0, VLCDEXT = 0 2.4 3.6 V VCC,LCD_B, ext. bias Supply voltage range, external biasing, charge pump disabled LCDCPEN = 0, VLCDEXT = 0 2.4 3.6 V Supply voltage range, external LCD voltage, internal or external biasing, charge pump disabled LCDCPEN = 0, VLCDEXT = 1 2.0 3.6 V VLCDCAP/R33 External LCD voltage at LCDCAP/ R33, internal or external biasing, charge pump disabled LCDCPEN = 0, VLCDEXT = 1 2.4 3.6 V CLCDCAP Capacitor on LCDCAP when charge pump enabled LCDCPEN = 1, VLCDx > 0000 (charge pump enabled) 10 µF fFrame LCD frame frequency range fLCD = 2 × mux × fFRAME (mux = 1 (static), 2, 3, 4) 100 Hz fACLK,in ACLK input frequency range 40 kHz CPanel Panel capacitance 100-Hz frame frequency 10000 pF VCC + 0.2 V CP en,3.6 VCC,LCD_B, CP en,3.3 VCC,LCD_B, VLCDEXT 4.7 0 30 32 VR33 Analog input voltage at R33 LCDCPEN = 0, VLCDEXT = 1 VR23,1/3bias Analog input voltage at R23 LCDREXT = 1, LCDEXTBIAS = 1, LCD2B = 0 VR13 VR03 + 2/3 × (VR33 – VR03) VR33 V VR13,1/3bias Analog input voltage at R13 with 1/3 biasing LCDREXT = 1, LCDEXTBIAS = 1, LCD2B = 0 VR03 VR03 + 1/3 × (VR33 – VR03) VR23 V VR13,1/2bias Analog input voltage at R13 with 1/2 biasing LCDREXT = 1, LCDEXTBIAS = 1, LCD2B = 1 VR03 VR03 + 1/2 × (VR33 – VR03) VR33 V VR03 Analog input voltage at R03 R0EXT = 1 VLCD-VR03 Voltage difference between VLCD and R03 LCDCPEN = 0, R0EXT = 1 2.4 VLCDREF/R13 External LCD reference voltage applied at LCDREF/R13 VLCDREFx = 01 0.8 52 Submit Document Feedback 2.4 VSS V 1.2 VCC + 0.2 V 1.5 V Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 Section 8.8.10.2 lists the characteristics of the LCD controller. 8.8.10.2 LCD_B, Electrical Characteristics over operating free-air temperature range (unless otherwise noted) PARAMETER VLCD LCD voltage TEST CONDITIONS VCC MIN TYP VLCDx = 0000, VLCDEXT = 0 2.4 V to 3.6 V VCC LCDCPEN = 1, VLCDx = 0001 2 V to 3.6 V 2.60 LCDCPEN = 1, VLCDx = 0010 2 V to 3.6 V 2.66 LCDCPEN = 1, VLCDx = 0011 2 V to 3.6 V 2.72 LCDCPEN = 1, VLCDx = 0100 2 V to 3.6 V 2.79 LCDCPEN = 1, VLCDx = 0101 2 V to 3.6 V 2.85 LCDCPEN = 1, VLCDx = 0110 2 V to 3.6 V 2.92 LCDCPEN = 1, VLCDx = 0111 2 V to 3.6 V 2.98 LCDCPEN = 1, VLCDx = 1000 2 V to 3.6 V 3.05 LCDCPEN = 1, VLCDx = 1001 2 V to 3.6 V 3.10 LCDCPEN = 1, VLCDx = 1010 2 V to 3.6 V 3.17 LCDCPEN = 1, VLCDx = 1011 2 V to 3.6 V 3.24 LCDCPEN = 1, VLCDx = 1100 2 V to 3.6 V 3.30 LCDCPEN = 1, VLCDx = 1101 2.2 V to 3.6 V 3.36 LCDCPEN = 1, VLCDx = 1110 2.2 V to 3.6 V 3.42 LCDCPEN = 1, VLCDx = 1111 2.2 V to 3.6 V 3.48 MAX UNIT V 3.6 ICC,Peak,CP Peak supply currents due to charge pump activities LCDCPEN = 1, VLCDx = 1111 2.2 V 400 tLCD,CP,on Time to charge CLCD when discharged CLCD = 4.7 µF, LCDCPEN = 0→1, VLCDx = 1111 2.2 V 100 ICP,Load Maximum charge pump load current LCDCPEN = 1, VLCDx = 1111 2.2 V RLCD,Seg LCD driver output impedance, segment lines LCDCPEN = 1, VLCDx = 1000, ILOAD = ±10 µA 2.2 V 10 kΩ RLCD,COM LCD driver output impedance, common lines LCDCPEN = 1, VLCDx = 1000, ILOAD = ±10 µA 2.2 V 10 kΩ Copyright © 2020 Texas Instruments Incorporated µA 500 50 ms µA Submit Document Feedback Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 53 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 8.8.11 CTSD16 Note The delta-sigma analog-to-digital converter uses the CTSD16. The CTSD16 is proceeded by a unitygain buffer stage following the channel muxing as shown in Figure 9-2. See Section 8.8.14.1 for the electrical characteristics of the PGA buffer stages. Section 8.8.11.1 lists the operating conditions of the CTSD16. 8.8.11.1 CTSD16, Power Supply and Operating Conditions PARAMETER TEST CONDITIONS VCC VCC Supply voltage range ICTSD16 Analog plus digital supply current per converter (reference current not included) CTSD16OSRx = 256, CTSD16RRI = 0 CTSD16 clock current consumption This is requested when CTSD16 is converting, or CTSD16RRIBURST = 0, or when OA is in rail-torail input mode (OARRI = 1), or when OA charge pump is on. The current should only be counted once even if both OA and CTSD16 are requesting the clock. ICTSD16CLK (1) AVSS = DVSS = 0 V MIN TYP 2.2 GAIN: 1, 2, 4, 8, 16 3V GAIN: 1, 16 3V MAX UNIT 3.6 V 190(1) µA 300(1) 3V 205 240 µA See Table 8-1 to calculate total current from CTSD16 for different use cases. Table 8-1 explains how to compute the total current, ITOTAL, when the CTSD, along with associated modules, are used. See Section 8.8.14.2 for a similar table for the OA. A "yes" means it must be included in computing ITOTAL. Here is an example current calculation for CTS16D in rail-to-rail input mode (CTSD16RRI = 1) using the internal reference (CTSD16REFS = 1) and OA0 and OA1 enabled in rail-to-rail input modes, OARRI = 1. As an example, assume that the application uses the CTS16D in rail-to-rail input mode (CTSD16RRI = 1) with the internal reference (CTSD16REFS = 1) and OA0 and OA1 are enabled in rail-to-rail input modes, OARRI = 1. The total current, ITOTAL, would be computed as follows: ITOTAL = ICTSD16 + ICTSD16CLK+ ICP + IREFBG + 2 × IOA (1) Table 8-1. CTSD16, Current Calculation USE CASE DETAILS USE CASE NAME CTSD16 CTSD16 rail-to-rail inputs (1) (2) (3) (4) CTSD16RRI = 1 ICTSD16 ICTSD16CLK (1) ICP (2) IREFBG (3) IREF (4) yes yes no yes if CTSD16REFS = 1 no if CTSD16REFS = 0 yes yes yes yes yes if CTSD16REFS = 1 no if CTSD16REFS = 0 yes Count this only once no matter how many modules use it. OA can also use this when rail-to-rail input is selected. Count this only once no matter how many modules use it. OA also uses this. This current is listed in Section 8.8.14.1. Count this only once no matter how many modules use it. DAC can use this as well as internal reference when it is available externally, REFOUT = 1. This current is listed in Section 8.8.12.1. Count this only once no matter how many modules use it. This current is listed in Section 8.8.14.1. If IREFBG is used that includes IREF current. Section 8.8.11.2 lists the characteristics of the CTSD16 external voltage reference. 8.8.11.2 CTSD16, External Voltage Reference VCC MIN TYP MAX VVeREF+ Input voltage range PARAMETER CTSD16REFS = 0 3V 1.0 1.2 1.5 V IVeREF+ Input current CTSD16REFS = 0 3V 50 nA 54 Submit Document Feedback TEST CONDITIONS UNIT Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 Section 8.8.11.3 lists the characteristics of the CTSD16 input range. 8.8.11.3 CTSD16, Input Range over operating free-air temperature range (unless otherwise noted)(1) PARAMETER TEST CONDITIONS VID,FSR Differential full-scale input voltage range VID = VI,A+ – VI,A– VI,FSR Single-ended full-scale input voltage range VID = VI,A+ – VR negative input is tied to VR VID Differential input voltage range for specified performance(2) CTSD16REFS = 1 VCC MIN TYP MAX UNIT –VR/Gain +VR/Gain V VR – VR/ Gain VR + VR/ Gain V CTSD16GAINx = 1 ±928 CTSD16GAINx = 2 ±464 CTSD16GAINx = 4 ±232 CTSD16GAINx = 8 ±116 CTSD16GAINx = 16 mV ±58 VR – (0.8 × VR/ Gain) VR + (0.8 × VR/ Gain) VI Single-ended input voltage range for specified performance ZI Input impedance (pin Ax or ADx+ or ADx- to AVSS) CTSD16GAINx = 1, 16 3V 20 MΩ ZID Differential input impedance (pin ADx+ to pin ADx-) CTSD16GAINx = 1, 16 3V 35 MΩ VI Absolute input voltage range AVSS VCC V VIC Common-mode input voltage range AVSS VCC V (1) (2) V All parameters pertain to each CTSD16 input. The full-scale range is defined by VFSR+ = +VR/GAIN and VFSR- = -VR/GAIN; FSR = VFSR+ - VFSR- = 2xVR/GAIN. If VR is sourced externally, the analog input range should not exceed 80% of VFSR+ or VFSR-; that is, VID = 0.8 VFSR- to 0.8 VFSR+. If VR is sourced internally, the given VID ranges apply. Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 55 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 Section 8.8.11.4 lists the performance characteristics of the CTSD16. 8.8.11.4 CTSD16, Performance CTSD16OSRx = 256, CTSD164REFS = 1 (see Figure 8-16, Figure 8-17, and Figure 8-18) PARAMETER fM TEST CONDITIONS VCC MIN Modulator clock CTSD16GAINx = 1, input ADx+ and ADx- (differential) 84 CTSD16GAINx = 2, input ADx+ and ADx- (differential) SINAD SINAD Signal-to-noise + distortion ratio for differential inputs Signal-to-noise + distortion ratio for single-ended input CTSD16GAINx = 4, input ADx+ and ADx- (differential) fIN = 50 Hz(1) 87 CTSD16GAINx = 8, input ADx+ and ADx- (differential) 82 CTSD16GAINx = 16, input ADx+ and ADx- (differential) 77 CTSD16GAINx = 1, input Ax (singleended) 83 CTSD16GAINx = 2, input Ax (singleended) 82 CTSD16GAINx = 4, input Ax (singleended) UNIT MHz 85 3V fIN = 50 Hz(1) 3V CTSD16GAINx = 8, input Ax (singleended) 72 CTSD16GAINx = 16, input Ax (singleended) 66 CTSD16GAINx = 4 dB 78 dB 1 CTSD16GAINx = 2 Nominal gain MAX 86 CTSD16GAINx = 1 G TYP 1.024 2 3V 4 CTSD16GAINx = 8 8 CTSD16GAINx = 16 16 EG Gain error CTSD16GAINx: 1, 8, or 16 with external reference (1.2 V) 3V ΔEG/ΔT Gain error temperature coefficient, internal reference CTSD16GAINx: 1, 8, or 16 3V 3 50 ppm/ °C ΔEG/ΔT Gain error temperature coefficient, external reference CTSD16GAIN: 1, 8, or 16 with external reference (1.2 V) 3V 4 15 ppm/ °C ΔEG/ ΔVCC Gain error vs VCC –1% CTSD16GAINx: 1, 8, or 16 CTSD16GAINx = 1 +1% 0.02 ±4.1 EOS Offset error ΔEOS/ΔT Offset error temperature coefficient CTSD16GAINx = 1, 16 3V ±1 ΔEOS/ ΔVCC Offset error vs VCC CTSD16GAINx = 1, 16 3V 11 CMRR, 50Hz CTSD16GAINx = 1, VID = 928 mV, fIN = 50 Hz Common-mode rejection ratio at 50 Hz CTSD16GAINx = 16, VID = 58 mV, fIN = 50 Hz 3V 56 Submit Document Feedback CTSD16GAINx = 16 %/V 3V ±3.4 78 80 ±10 mV ppm FSR/ °C µV/V dB Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 8.8.11.4 CTSD16, Performance (continued) CTSD16OSRx = 256, CTSD164REFS = 1 (see Figure 8-16, Figure 8-17, and Figure 8-18) PARAMETER AC PSRR DC PSRR (1) AC power supply rejection ratio DC power supply rejection ratio TEST CONDITIONS VCC MIN TYP CTSD16GAINx: 1, VCC = 3 V ±50 mV × sin(2π × fVcc × t), fVcc = 50 Hz, Inputs grounded (no analog signal applied) 95 CTSD16GAINx: 8, VCC = 3 V ±50 mV × sin(2π × fVcc × t), fVcc = 50 Hz, Inputs grounded (no analog signal applied) 105 CTSD16GAINx: 16, VCC = 3 V ±50 mV × sin(2π × fVcc × t), fVcc = 50 Hz, Inputs grounded (no analog signal applied) 105 CTSD16GAINx: (1, 8, 16), VCC = 2.2 V to 3.6 V, (PSRR [dB] = –20 log(dVout/dVcc) with dVout observed as change in the digital conversion result; assumed to be dominated by reference) 90 MAX UNIT dB dB The following voltages were applied to the CTSD16 inputs: VI,A+(t) = 0 V + VPP/2 × sin(2π × fIN × t) VI,A–(t) = 0 V – VPP/2 × sin(2π × fIN × t) resulting in a differential voltage of VID = VIN,A+(t) – VIN,A-(t) = VPP × sin(2π × fIN × t) with VPP being selected as the maximum value allowed for a given range (according to CTSD16 input range). Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 57 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 0 3 -0.2 2.5 Offset Voltage (mV) Offset (mV) -0.4 -0.6 -0.8 -1 -1.2 -1.4 -40 A. 1.5 1 0.5 Gain = 1 Gain = 16 -20 2 0 20 40 Temperature (°C) 60 80 0 0.25 100 A. Average of four typical devices 0.55 Gain = 1 0.85 1.5 1.8 1.2 2.1 Common-Mode Voltage (V) OSR = 256 2.4 2.7 DIfferential Signal = 300 Figure 8-17. CTSD16 Typical Offset Voltage vs Common-Mode Voltage Figure 8-16. CTSD16 Offset Voltage vs Temperature 90 85 SINAD (dB) 80 75 70 65 60 55 50 10 CTSD16REFS = 1 100 OSR 1000 CTSD16GAINx = 1 Figure 8-18. SINAD Performance vs OSR 58 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 Section 8.8.11.5 lists the characteristics of the built-in Vcc sense. 8.8.11.5 Built-in Vcc Sense PARAMETER VCC,sense TEST CONDITIONS AVCC divider MIN 0.95 × (AVCC / 2) CTSD16ON = 1, CTSD16INCH = 0111 TYP MAX AVCC / 2 1.05 × (AVCC / 2) UNIT V Section 8.8.11.6 lists the characteristics of the temperature sensor. 8.8.11.6 Temperature Sensor over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS Vsensor Temperature sensor output voltage(1) (2) CTSD16ON = 1, CTSD16INCH = 110, VCC = 3 V, TA = 30°C Isensor Temperature sensor quiescent current consumption CTSD16ON = 1, CTSD16INCH = 110, TA = 85°C (1) (2) MIN TYP MAX UNIT 800 mV 2 uA The temperature sensor offset can be as much as ±30°C. TI recommends a single-point calibration to minimize the offset error of the built-in temperature sensor. The device descriptor structure contains calibration values for 30°C ±3°C and 85°C ±3°C for each of the available reference voltage levels. The sensor voltage can be computed as VSENSE = TCSENSOR * (Temperature, °C) + VSENSOR, where TCSENSOR and VSENSOR can be computed from the calibration values for higher accuracy. Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 59 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 8.8.12 REF Section 8.8.12.1 lists the characteristics of the REF and REFBG built-in reference. 8.8.12.1 REF and REFBG, Built-In Reference over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS IREFBG Operating supply current into AVCC VCC = 3.0 V, REFON = 1 and REFOUT = 1 terminal(1) VREFBG Bandgap output voltage calibrated IREF Operating supply current into AVCC VCC = 3.0 V, REFON = 1 terminal(1) VREF Positive built-in reference voltage output VCC = 3.0 V, VeREF+ ≤ 1.5 V if used MIN 1.146 TYP MAX UNIT 110 130 µA 1.16 1.174 V 15 20 µA REFVSEL = {2} for 2.5 V, REFON = 1 2.5 ±1% REFVSEL = {1} for 2.0 V, REFON = 1 2.0 ±1% 1.5 ±1% REFVSEL = {0} for 1.5 V, REFON = 1 AVCC(min) AVCC minimum voltage, Positive built-in reference active DAC12SREFx = 0, REFVSEL = {0} for 1.5 V 2.2 DAC12SREFx = 0, REFVSEL = {1} for 2 V 2.3 DAC12SREFx = 0, REFVSEL = {2} for 2.5 V 2.8 V V PSRR_DC Power supply rejection ratio (DC) VCC = 2.2 V to 3.6 V, TA = 25°C 50 µV/V PSRR_AC Power supply rejection ratio (AC) VCC = 2.2 V to 3.6 V, TA = 25°C, f = 1 kHz, ΔVpp = 100 mV 1.5 mV/V 15 TCREF+ Bandgap reference temperature coefficient(2) IVREF+ = 0 A tSETTLE Settling time of VREFBG reference voltage(3) AVCC = AVCC (min) through AVCC(max), REFON = 0 → 1 CVREFBG Capacitance at VREFBG terminal ILOAD IL(VREFBG) (1) (2) (3) (4) (5) 60 50 ppm/°C 120 µs See (4) 1 nF VREFBG maximum load current REFOUT = REFON = 1 1 mA Load-current regulation, VREFBG terminal(5) I(VREF+) = +1 mA or –1 mA, AVCC = AVCC (min), REFON = REFOUT = 1 3.5 mV/mA The internal reference current is supplied from terminal AVCC. Consumption is independent of the CTSD16ON control bit, unless a conversion is active. The REFON bit enables to settle the built-in reference before starting an A/D conversion. Calculated using the box method: (MAX(–40°C to 85°C) – MIN(–40°C to 85°C)) / MIN(–40°C to 85°C)/(85°C – (–40°C)). The condition is that the error in a conversion started after tREFON is less than ±0.5 LSB. There is no capacitance required on VREFBG if the reference voltage is not used externally. However, TI recommends a capacitance close to the maximum value to reduce any reference voltage noise. Contribution only due to the reference and buffer including package. This does not include resistance due to PCB traces or other external factors. Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 8.8.13 DAC Section 8.8.13.1 lists the supply specifications of the DAC. 8.8.13.1 12-Bit DAC, Supply Specifications over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER AVCC TEST CONDITIONS Analog supply voltage VCC Supply current, single DAC channel(1) (2) 3V DAC12AMPx = 2, DAC12IR = 1, DAC12_xDAT = 0800h, VeREF+ = AVCC 2.2 V to 3.6 V DAC12AMPx = 7, DAC12IR = 1, DAC12_xDAT = 0800h, VeREF+ = AVCC PSRR (1) (2) (3) (4) Power supply rejection MAX 3.6 65 110 125 165 UNIT V µA DAC12AMPx = 5, DAC12IR = 1, DAC12_xDAT = 0800h, VeREF+ = AVCC ratio(3) (4) TYP 2.2 DAC12AMPx = 2, DAC12IR = 0, DAC12OG = 1, DAC12_xDAT = 0800h, VeREF+ = VREFBG = 1.16 V IDD MIN AVCC = DVCC, AVSS = DVSS = 0 V DAC12_xDAT = 800h, VeREF+ = 1.16 V or 1.5 V, ΔAVCC = 100 mV 2.2 V to 3.6 V DAC12_xDAT = 800h, VeREF+ = 1.16 V or 2.5 V ΔAVCC = 100 mV 3V 250 350 750 1100 70 dB 70 No load at the output pin, DAC12_0 or DAC12_1, assuming that the control bits for the shared pins are set properly. Current into reference terminals not included. If DAC12IR = 1 current flows through the input divider; see Reference Input specifications Section 8.8.13.4. PSRR = 20 log (ΔAVCC / ΔVDAC12_xOUT) The internal reference is not used. DAC VOUT DAC Output VR+ RLoad = ¥ Ideal transfer function AVCC 2 Offset Error CLoad = 100 pF Gain Error Positive Negative DAC Code Figure 8-19. Linearity Test Load Conditions, Gain and Offset Definition Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 61 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 Section 8.8.13.2 lists the linearity specifications of the DAC. 8.8.13.2 12-Bit DAC, Linearity Specifications over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 8-19) PARAMETER Resolution TEST CONDITIONS INL Integral nonlinearity(1) DNL Differential nonlinearity(1) MIN TYP MAX 12 VeREF+ = 1.16 V, DAC12AMPx = 7, DAC12IR = 1 2.2 V, 3 V ±2 ±4 2.2 V, 3 V ±2 ±4 VeREF+ = 1.16 V, DAC12AMPx = 7, DAC12IR = 1 2.2 V, 3 V ±0.4 ±1 VeREF+ = 2.5 V, DAC12AMPx = 7, DAC12IR = 1 2.2 V, 3 V ±0.4 ±1 calibration(1) (2) Offset voltage With calibration(1) (2) VeREF+ = 1.16 V, DAC12AMPx = 7, DAC12IR = 1 2.2 V, 3 V ±21 VeREF+ = 2.5 V, DAC12AMPx = 7, DAC12IR = 1 2.2 V, 3 V ±21 VeREF+ = 1.16 V, DAC12AMPx = 7, DAC12IR = 1 2.2 V, 3 V ±1.5 VeREF+ = 2.5 V, DAC12AMPx = 7, DAC12IR = 1 2.2 V, 3 V ±1.5 Offset error temperature With calibration coefficient(1) 2.2 V, 3 V EG Gain error VeREF+ = 1.16 V 2.2 V, 3 V ±2.5 VeREF+ = 2.5 V 2.2 V, 3 V ±2.5 dE(G)/dT Gain temperature coefficient(1) tOffset_Cal Time for offset calibration(3) 2.2 V, 3 V DAC12AMPx = 2 (2) (3) 62 LSB ±10 µV/°C %FSR ppm of FSR/ °C 10 165 2.2 V, 3 V DAC12AMPx = 4, 6, 7 (1) LSB mV dE(O)/dT DAC12AMPx = 3, 5 UNIT bits VeREF+ = 2.5 V, DAC12AMPx = 7, DAC12IR = 1 Without EO VCC 12-bit monotonic 66 ms 16.5 Parameters calculated from the best-fit curve from 0x0F to 0xFFF. The best-fit curve method is used to deliver coefficients "a" and "b" of the first-order equation: y = a + bx. VDAC12_xOUT = EO + (1 + EG) × (VeREF+/4095) × DAC12_xDAT, DAC12IR = 1. The offset calibration works on the output operational amplifier. Offset Calibration is triggered setting bit DAC12CALON The offset calibration can be done if DAC12AMPx = {2, 3, 4, 5, 6, 7}. The output operational amplifier is switched off with DAC12AMPx = {0, 1}. TI recommends configuring the DAC12 module before initiating calibration. Port activity during calibration may affect accuracy and is not recommended. Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 Section 8.8.13.3 lists the output specifications of the DAC. 8.8.13.3 12-Bit DAC, Output Specifications over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VCC MIN No load, VeREF+ = AVCC, DAC12_xDAT = 0h, DAC12IR = 1, DAC12AMPx = 7 Output voltage range(1) (see Figure 8-20) VO No load, VeREF+ = AVCC, DAC12_xDAT = 0FFFh, DAC12IR = 1, DAC12AMPx = 7 RLoad = 3 kΩ, VeREF+ = AVCC, DAC12_xDAT = 0h, DAC12IR = 1, DAC12AMPx = 7 Maximum DAC12 load capacitance IL(DAC12) Maximum DAC12 load current 0 0.005 AVCC – 0.05 AVCC 0 0.1 AVCC – 0.13 AVCC 2.2 V, 3.6 V DAC12AMPx = 2, DAC12_xDAT = 0FFFh, VO/P(DAC12) > AVCC – 0.3 DAC12AMPx = 2, DAC12_xDAT = 0h, VO/P(DAC12) < 0.3 V Output resistance (see Figure 8-20) RLoad = 3 kΩ, VO/P(DAC12) > AVCC – 0.3 V, DAC12_xDAT = 0FFFh 100 pF –1 2.2 V, 3.6 V mA 1 2.2 V, 3.6 V 150 250 150 250 RLoad = 3 kΩ, 0.3 V ≤ VO/P(DAC12) ≤ AVCC – 0.3 V (1) UNIT V RLoad = 3 kΩ, VO/P(DAC12) < 0.3 V, DAC12AMPx = 2, DAC12_xDAT = 0h RO/P(DAC12) MAX 2.2 V, 3.6 V RLoad = 3 kΩ, VeREF+ = AVCC, DAC12_xDAT = 0FFFh, DAC12IR = 1, DAC12AMPx = 7 CL(DAC12) TYP Ω 6 Data is valid after the offset calibration of the output amplifier. RO/P(DAC12_x) Max RLoad ILoad AVCC DAC12 2 O/P(DAC12_x) CLoad = 100 pF Min 0.3 AVCC – 0.3 V VOUT AVCC Figure 8-20. DAC12_x Output Resistance Tests Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 63 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 Section 8.8.13.4 lists the reference input specificaitons of the DAC. 8.8.13.4 12-Bit DAC, Reference Input Specifications over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER VeREF+ TEST CONDITIONS Reference input voltage range DAC12IR = 0(1) (2) VCC MIN 2.2 V to 3.6 V DAC12IR = 1(3) (4) DAC12_0 DAC12IR = DAC12_1 DAC12IR = 0 TYP MAX AVCC / 3 AVCC + 0.2 AVCC AVCC + 0.2 20 DAC12_0 DAC12IR = 0, DAC12_1 DAC12IR = 1 52 2.2 V, 3 V 52 kΩ DAC12_0 DAC12IR = DAC12_1 DAC12IR = 1, DAC12_0 DAC12SREFx = DAC12_1 DAC12SREFx(5) (1) (2) (3) (4) (5) V MΩ DAC12_0 DAC12IR = 1, DAC12_1 DAC12IR = 0 Ri(VREFBG), Reference input Ri(VeREF+) resistance UNIT 26 For a full-scale output, the reference input voltage can be as high as 1/3 of the maximum output voltage swing (AVCC). The maximum voltage applied at reference input voltage terminal VeREF+ = [AVCC – VE(O)] / [3 × (1 + EG)]. For a full-scale output, the reference input voltage can be as high as the maximum output voltage swing (AVCC). The maximum voltage applied at reference input voltage terminal VeREF+ = [AVCC – VE(O)] / (1 + EG). When DAC12IR = 1 and DAC12SREFx = 0 or 1 for both channels, the reference input resistive dividers for each DAC are in parallel and reduce the reference input resistance. Section 8.8.13.5 and Section 8.8.13.6 list the dynamic specifications of the DAC. 8.8.13.5 12-Bit DAC, Dynamic Specifications VREF = VCC, DAC12IR = 1 (see Figure 8-21 and Figure 8-22), over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER tON TEST CONDITIONS DAC12_xDAT = 800h, ErrorV(O) < ±0.5 LSB(1) (see Figure 8-21) DAC12 on time VCC MIN DAC12AMPx = 0 → {2, 3, 4} DAC12AMPx = 0 → {5, 6} 2.2 V, 3 V DAC12AMPx = 0 → 7 DAC12AMPx = 2 tS(FS) Settling time, full scale DAC12_xDAT = 80h → F7Fh → 80h DAC12AMPx = 3, 5 2.2 V, 3 V DAC12AMPx = 4, 6, 7 tS(C-C) Settling time, code to code DAC12_xDAT = 3F8h → 408h → 3F8h, BF8h → C08h → BF8h DAC12AMPx = 2 DAC12AMPx = 3, 5 Slew rate DAC12_xDAT = 80h → F7Fh → 80h(2) Glitch energy DAC12_xDAT = 800h → 7FFh → 800h (1) (2) 64 120 30 6 12 100 200 40 80 15 30 UNIT µs µs µs 1 2.2 V, 3 V DAC12AMPx = 4, 6, 7 DAC12AMPx = 7 60 15 2 2.2 V, 3 V DAC12AMPx = 4, 6, 7 DAC12AMPx = 3, 5 MAX 5 DAC12AMPx = 2 SR TYP 0.05 0.35 0.35 1.10 1.50 5.20 2.2 V, 3 V 35 V/µs nV-s RLoad and CLoad connected to AVSS (not AVCC/2) in Figure 8-21. Slew rate applies to output voltage steps ≥ 200 mV. Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 Conversion 1 VOUT DAC Output Conversion 2 ±1/2 LSB Glitch Energy RLoad = 3 kW Conversion 3 ILoad AVCC 2 ±1/2 LSB CLoad = 100 pF RO/P(DAC12.x) tsettleLH tsettleHL Figure 8-21. Settling Time and Glitch Energy Testing Conversion 1 Conversion 2 Conversion 3 VOUT 90% 90% 10% 10% tSRLH tSRHL Figure 8-22. Slew Rate Testing 8.8.13.6 12-Bit DAC, Dynamic Specifications (Continued) over recommended ranges of supply voltage and TA = 25°C (unless otherwise noted) PARAMETER BW–3dB TEST CONDITIONS 3-dB bandwidth, VDC = 1.5 V, VAC = 0.1 VPP (see Figure 8-23) DAC12AMPx = {5, 6}, DAC12SREFx = 2, DAC12IR = 1, DAC12_xDAT = 800h MIN TYP MAX UNIT 40 2.2 V, 3 V DAC12AMPx = 7, DAC12SREFx = 2, DAC12IR = 1, DAC12_xDAT = 800h Channel-to-channel crosstalk(1) (see Figure 8-24) (1) VCC DAC12AMPx = {2, 3, 4}, DAC12SREFx = 2, DAC12IR = 1, DAC12_xDAT = 800h kHz 180 550 DAC12_0DAT = 800h, No load, DAC12_1DAT = 80h ↔ F7Fh, RLoad = 3 kΩ, fDAC12_1OUT = 10 kHz at 50/50 duty cycle DAC12_0DAT = 80h ↔ F7Fh, RLoad = 3 kΩ, DAC12_1DAT = 800h, No load, fDAC12_0OUT = 10 kHz at 50/50 duty cycle –80 2.2 V, 3 V dB –80 RLoad = 3 kΩ, CLoad = 100 pF RLoad = 3 kW ILoad VeREF+ AVCC DAC12_x 2 DACx AC CLoad = 100 pF DC Figure 8-23. Test Conditions for 3-dB Bandwidth Specification Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 65 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 RLoad ILoad AVCC DAC12_0 DAC12_xDA T 2 DAC0 080h 080h F7Fh F7Fh 080h VOUT CLoad = 100 pF VREF+ VDAC12_yOUT RLoad ILoad AVCC DAC12_1 VDAC12_xOUT 2 DAC1 1/fToggle CLoad = 100 pF Figure 8-24. Crosstalk Test Conditions 8.8.14 Operational Amplifier Section 8.8.14.1 lists the characteristics of the OA. 8.8.14.1 Operational Amplifier, OA0, OA1, PGA Buffers over operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT VCC Analog supply voltage AVCC = DVCC, AVSS = DVSS = 0 V 2.2 CCPCAP External charge pump capacitor to AVSS. Required when charge pump is enabled 20 ICP_PEAK Charge pump peak current OARRI = 0h to 1h, ICP_LOAD = 0 μA ICP Charge pump average OARRI = 1h, ICP_LOAD = 100 μA current tCP_EN_fast Charge pump enable time fast tCP_EN_slow Charge pump enable time slow IOA Supply current, per opamp IO = 0 mA, OARRI = 0h (charge pump disabled) VOS Input offset voltage Noninverting, unity gain ±2 mV dVOS/dT Input offset voltage temperature drift Noninverting, unity gain ±1 μV/°C dVOS/dV Input offset voltage voltage drift Noninverting, unity gain ±3 μV/V Cin Input capacitance Differential 4 pF Common mode 6 pF PSRR_DC Power supply rejection Noninverting, unity gain, ratio, DC VINP = positive input of OA = 1 V 50 μV/V VCM Common mode voltage range(2) CMRR_DC Common mode rejection ratio, DC en Input voltage noise density AOL Open-loop voltage gain, DC 66 Submit Document Feedback 22 3.6 V 24 nF 1.6 570(1) OARRI = 0h to 1h, ICP_LOAD = 0 μA, AFE biases previously enabled and settled which can be done with REFON=1 or other modules requesting REFON. OARRI = 0h to 1h, ICP_LOAD = 0 μA, Includes AFE bias settling mA 710(1) μA 50 μs 75 μs 105(1) 130(1) μA OARRI = 0h, Noninverting, unity gain 0.1 VCC - 1.0 V OARRI = 1h, Noninverting, unity gain 0.1 VCC - 0.1 V Over common-mode voltage range 110 f = 100 Hz, OARRI = 0h or 1h 3.0 V 90 f = 50 kHz, OARRI = 0h or 1h 3.0 V 25 95 dB nV/√Hz dB Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 over operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT GBW Gain-bandwidth product CL = 100 pF, OAM = 1h 800 kHz SR Slew rate Noninverting, unity gain, CL = 100 pF, OAM = 1h 0.4 V/μs tSETTLE Settling time Noninverting, unity gain, 2.0-V step, 0.1%, OAM = 1h 5.3 μs VO Voltage output swing from rail –250 μA ≤ IO ≤ 250 μA, Noninverting, unity gain (OAM = 1h) 5 55 mV Enable time fast Noninverting, unity gain, OAM = 0h transition to 1h, AFE biases previously enabled and settled which can be done with REFON = 1 or other modules requesting REFON(3) 3 7 μs tEN_SLOW Enable time slow Noninverting,unity gain, OARRI = 0h transition to 1h, OAM = 0h transition to 1h, Includes AFE bias and charge pump settling(3) 190 225 μs tDIS Disable time tEN_FAST (1) (2) 3.0 V 0.4 μs See Section 8.8.14.2 to calculate total current from OA for different use cases. The common-mode input range is measured with the OA in a unity-gain source-follower configuration. The input signal is swept from 0 V to VCC, and the output of the OA is monitored. The minimum and maximum values represent when the input and output differ more than 10 mV, not including the offset, VOS. The AFE bias is used by several modules including the OA charge pump, OA, and CTSD16. Any of these modules will request the AFE bias when enabled. The AFE bias is generated by the REF module, so enabling the REF module also enables the AFE bias. (3) Section 8.8.14.2 explains how to compute the total current, ITOTAL, when the OA and associated modules are used. See Table 8-1 for a similar table for the CTSD16. A "yes" means it must be included in computing ITOTAL. As an example, assume that the application uses the CTS16D in rail-to-rail input mode (CTSD16RRI = 1) with the internal reference (CTSD16REFS = 1) and OA0 and OA1 are enabled in rail-to-rail input modes, OARRI = 1. The total current, ITOTAL, would be computed as follows: ITOTAL = ICTSD16 + ICTSD16CLK+ ICP + IREFBG + 2 × IOA 700 160 650 140 600 550 120 Number of Units Number of Units 500 450 400 350 300 250 200 100 80 60 40 150 100 20 50 0 0 0.4 0.6 0.8 1 1.2 1.5 1.6 1.8 Offset Voltage (mV) 2 2.2 2.4 2.6 Figure 8-25. OA Offset Voltage Sample Production Distribution Copyright © 2020 Texas Instruments Incorporated 0 0.5 1 1.5 2 2.5 3 Offset Voltage Drift (µV/°C) 3.5 4 4.5 Figure 8-26. OA Offset Voltage Drift Sample Production Distribution Submit Document Feedback Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 67 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 8.8.14.2 OA, Current Calculation USE CASE NAME USE CASE DETAILS IOA ICTSD16CLK (1) ICP (2) IREF (3) OA OARRI = 0 yes no no yes OA with rail-to-rail input OARRI = 1 yes yes yes yes Rail-to-rail input up, module off (CTSD16SC = 0) AND (CTSD16RRI = 1) AND (CTSD16RRIBURST = 0) OR ((OARRI = 1 (for any OA)) AND (OAM = 0)) no yes yes yes (1) (2) (3) Count this current only once no matter how many modules use it. CTSD16 and the charge pump also use this. This current is listed in Section 8.8.11.1. Count this current only once no matter how many modules use it. CTSD16 also uses this when rail-to-rail inputs are selected. Count this current only once no matter how many modules use it. This current is listed in Section 8.8.14.1. If IREFBG is used, that includes the IREF current. 8.8.15 Switches Section 8.8.15.1 lists the characteristics of the ground switches. 8.8.15.1 Ground Switches (GSW0A, GSW0B, GSW1A, GSW1B) over operating free-air temperature range (unless otherwise noted) PARAMETER VCC TEST CONDITIONS Supply voltage TYP 2.2 TA = 0°C to 60°C ILKG Input leakage(1) IIN Input current switch to AVSS RON Switch ON resistance with switch closed IIN = 100 µA, TA = –40°C to 85°C ROFF Switch OFF resistance with switch open TA = –40°C to 85°C, Input signal frequency < 100 Hz tON/OFF Enable or disable time TA = –40°C to 85°C (1) MIN MAX 3.6 ±0.25 TA = –40°C to 85°C ±50 0 9.5 100 UNIT V nA 100 µA 18.5 Ω MΩ 0.25 µs Ground switches are shared with general-purpose I/Os. This leakage includes all leakage seen at the device pin, not only leakage caused by the switch itself. 4 DVCC = 2.2 V DVCC = 3 V DVCC = 3.6 V Input Leakage Current (nA) 3.5 3 2.5 2 1.5 1 0.5 0 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 Temperature (°C) Average of three typical devices Figure 8-27. Ground Switch Input Leakage Current vs Temperature 68 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 Section 8.8.15.2 lists the characteristics of the OA switches. 8.8.15.2 Operational Amplifier Switches over operating free-air temperature range (unless otherwise noted) PARAMETER VCC Supply voltage ILKG Input leakage(1) IIN Input current through switch TEST CONDITIONS TYP 2.2 TA = 0°C to 60°C MAX ±0.25 ±50 0 RON Switch ON resistance with switch closed(2) ROFF Switch OFF resistance with switch open TA = –40°C to 85°C, Input signal frequency < 100 Hz tON/OFF Enable or disable time TA = –40°C to 85°C UNIT 3.6 TA = –40°C to 85°C IIN = 100 µA, TA = –40°C to 85°C (1) MIN 100 1 V nA µA kΩ 100 MΩ 0.45 µs This leakage includes all leakage seen at the device pin, not only leakage caused by the switch itself. It assumes a total of five switches present and a shared digital I/O. The resistance varies with input voltage range. This resistance represents the peak resistance at the worst case input range (see Figure 8-29). (2) 1400 0.30 Input Leakage Current (nA) 0.25 0.20 0.15 0.10 0.05 0.00 -0.05 0 5 10 15 20 25 30 35 40 45 50 55 60 65 Temperature (°C) Average of three typical devices Figure 8-28. OA Switch Input Leakage Current vs Temperature Copyright © 2020 Texas Instruments Incorporated 1200 Switch ON-Resistance – RON (W) DVCC = 2.2 V DVCC = 2.3 V DVCC = 3 V DVCC = 3.6 V 1000 800 600 400 200 0 0.2 TA = –40°C TA = 25°C TA = 85°C 0.6 1.0 1.4 1.8 2.2 Common-Mode Voltage (V) 2.6 3.0 Average of three typical devices Figure 8-29. OA Switch RON vs Common-Mode Voltage Submit Document Feedback Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 69 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 8.8.16 Comparator Section 8.8.16.1 lists the characteristics of the comparator. 8.8.16.1 Comparator_B over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER VCC TEST CONDITIONS VCC Supply voltage MIN TYP 1.8 3.6 1.8 V CBPWRMD = 00, CBON = 1, CBRSx = 00 IAVCC_COMP Comparator operating supply current into AVCC, Excludes reference resistor ladder IAVCC_REF Quiescent current of resistor ladder into AVCC, Includes REF module current VIC Common mode input range VOFFSET Input offset voltage CIN Input capacitance RSIN Series input resistance Propagation delay, response time tPD tPD,filter tEN_CMP Propagation delay with filter active Comparator enable time V 40 2.2 V 30 50 3V 40 65 2.2 V, 3 V 10 30 CBPWRMD = 10, CBON = 1, CBRSx = 00 2.2 V, 3 V 0.5 1.3 CBREFACC = 1, CBREFLx = 01, CBRSx = 10, REFON = 0, CBON = 0 2.2 V, 3 V 10 22 µA 0 VCC – 1 V CBPWRMD = 00 –20 20 CBPWRMD = 01 or 10 –10 10 µA 5 On (switch closed) Off (switch open) 3 50 CBPWRMD = 01, CBF = 0 600 CBPWRMD = 10, CBF = 0 50 CBPWRMD = 00, CBON = 1, CBF = 1, CBFDLY = 00 0.35 0.6 1.5 CBPWRMD = 00, CBON = 1, CBF = 1, CBFDLY = 01 0.6 1.0 1.8 CBPWRMD = 00, CBON = 1, CBF = 1, CBFDLY = 10 1.0 1.8 3.4 CBPWRMD = 00, CBON = 1, CBF = 1, CBFDLY = 11 1.8 3.4 6.5 1 2 Reference voltage for a given tap VIN = reference into resistor ladder, n = 0 to 31 µs µs CBON = 0 → 1, CBPWRMD = 10 VCB_REF ns µs CBON = 0 → 1, CBPWRMD = 00 or 01 Temperature coefficient of VCB_REF kΩ MΩ 450 TCCB_REF mV pF 4 CBPWRMD = 00, CBF = 0 Resistor reference enable time CBON = 0 → 1 Submit Document Feedback UNIT CBPWRMD = 01, CBON = 1, CBRSx = 00 tEN_REF 70 MAX 100 1.0 1.5 µs 50 ppm/ °C VIN × VIN × VIN × (n + 0.5) / (n + 1) / (n + 1.5) / 32 32 32 V Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 8.8.17 USB Section 8.8.17.1 lists the characteristics of PU.0 and PU.1. 8.8.17.1 Ports PU.0 and PU.1 over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER VOH TEST CONDITIONS High-level output voltage (see Figure 8-31) MIN VUSB = 3.3 V ±10%, IOH = –25 mA VOL Low-level output voltage (see Figure 8-30) VUSB = 3.3 V ±10%, IOL = 25 mA VIH High-level input voltage (see Figure 8-32) VUSB = 3.3 V ±10% VIL Low-level input voltage (see Figure 8-32) VUSB = 3.3 V ±10% MAX 2.4 UNIT V 0.4 2.0 V V 0.8 V IOL - Typical Low-Level Output Current - mA 90 VCC = 3.0 V TA = 25ºC 80 VCC = 3.0 V TA = 85ºC VCC = 1.8 V TA = 25ºC 70 60 50 VCC = 1.8 V TA = 85ºC 40 30 20 10 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 VOL - Low-Level Output Voltage - V Figure 8-30. Ports PU.0, PU.1 Typical Low-Level Output Characteristics IOH - Typical High-Level Output Current - mA 0 -10 -20 -30 VCC = 1.8 V TA = 85ºC -40 -50 VCC = 3.0 V TA = 85ºC -60 VCC = 1.8 V TA = 25ºC -70 VCC = 3.0 V TA = 25ºC -80 -90 0.5 1 1.5 2 VOH - High-Level Output Voltage - V 2.5 3 Figure 8-31. Ports PU.0, PU.1 Typical High-Level Output Characteristics Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 71 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 2.0 TA = 25°C, 85°C 1.8 VIT+, postive-going input threshold 1.6 Input Threshold - V 1.4 1.2 VIT–, negative-going input threshold 1.0 0.8 0.6 0.4 0.2 0.0 1.8 2.2 2.6 VUSB Supply Voltage, VUSB - V 3 3.4 Figure 8-32. Ports PU.0, PU.1 Typical Input Threshold Characteristics Section 8.8.17.2 and Section 8.8.17.3 list the characteristics of the DP and DM ports. 8.8.17.2 USB Output Ports DP and DM over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VOH D+, D– single ended USB 2.0 load conditions MIN MAX 2.8 3.6 UNIT 0 0.3 V 28 44 Ω V VOL D+, D– single ended USB 2.0 load conditions Z(DRV) D+, D– impedance Including external series resistor of 27 Ω tRISE Rise time Full speed, differential, CL = 50 pF, 10%/90%, Rpu on D+ 4 20 ns tFALL Fall time Full speed, differential, CL = 50 pF, 10%/90%, Rpu on D+ 4 20 ns 8.8.17.3 USB Input Ports DP and DM over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER MIN MAX 2.5 V(CM) Differential input common mode range 0.8 Z(IN) Input impedance 300 UNIT V kΩ VCRS Crossover voltage 1.3 VIL Static SE input logic low level 0.8 VIH Static SE input logic high level 2.0 V VDI Differential input voltage 0.2 V 72 Submit Document Feedback 2.0 V V Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 Section 8.8.17.4 lists the characteristics of the USB power system. 8.8.17.4 USB-PWR (USB Power System) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER VLAUNCH VBUS detection threshold VBUS USB bus voltage VUSB USB LDO output voltage TEST CONDITIONS Normal operation MIN TYP 3.76 3.3 voltage(1) MAX UNIT 3.75 V 5.5 V ±9% V V18 Internal USB IUSB_EXT Maximum external current from VUSB terminal(2) IDET USB LDO current overload detection(3) ISUSPEND Operating supply current into VBUS terminal(4) CBUS VBUS terminal recommended capacitance 4.7 µF CUSB VUSB terminal recommended capacitance 220 nF C18 V18 terminal recommended capacitance 220 nF tENABLE Settling time VUSB and V18 RPUR Pullup resistance of PUR terminal (1) (2) (3) (4) 1.8 USB LDO is on 60 USB LDO is on, USB PLL disabled Within 2%, recommended capacitances 70 110 V 12 mA 100 mA 250 µA 2 ms 150 Ω This voltage is for internal use only. No external DC loading should be applied. This represents additional current that can be supplied to the application from the VUSB terminal beyond the needs of the USB operation. A current overload is detected when the total current supplied from the USB LDO, including IUSB_EXT, exceeds this value. Does not include current contribution of Rpu and Rpd as outlined in the USB specification. Section 8.8.17.5 lists the characteristics of the USB PLL. 8.8.17.5 USB-PLL (USB Phase-Locked Loop) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER IPLL Operating supply current fPLL PLL frequency MIN TYP MAX 7 48 fUPD PLL reference frequency tLOCK PLL lock time tJitter PLL jitter 1.5 1000 Copyright © 2020 Texas Instruments Incorporated UNIT mA MHz 3 MHz 2 ms ps Submit Document Feedback Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 73 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 8.8.18 LDO-PWR (LDO Power System) Section 8.8.18.1 lists the characteristics of the LDP power system. 8.8.18.1 LDO-PWR (LDO Power System) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VLAUNCH LDO input detection threshold VLDOI LDO input voltage VLDO LDO output voltage VLDO_EXT LDOO terminal input voltage with LDO disabled LDO disabled ILDOO Maximum external current from LDOO terminal LDO is on IDET LDO current overload detection (1) CLDOI LDOI terminal recommended capacitance CLDOO LDOO terminal recommended capacitance tENABLE Settling time VLDO (1) 74 MIN TYP 3.76 3.3 1.8 60 MAX UNIT 3.75 V 5.5 V ±9% V 3.6 V 20 mA 100 mA 4.7 µF 220 Within 2%, recommended capacitances nF 2 ms A current overload will be detected when the total current supplied from the LDO exceeds this value. Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 8.8.19 Flash Section 8.8.19.1 lists the characteristics of the flash memory. 8.8.19.1 Flash Memory over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TJ DVCC(PGM/ERASE) Program and erase supply voltage MIN TYP 1.8 MAX 3.6 UNIT V IPGM Average supply current from DVCC during program 3 5 mA IERASE Average supply current from DVCC during erase 6 15 mA IMERASE, IBANK Average supply current from DVCC during mass erase or bank erase 6 15 mA tCPT Cumulative program time(1) 16 ms 104 Program and erase endurance tRetention Data retention duration 25°C time(2) 105 cycles 100 years tWord Word or byte program 64 85 µs tBlock, 0 Block program time for first byte or word(2) 49 65 µs tBlock, 1–(N–1) Block program time for each additional byte or word, except for last byte or word(2) 37 49 µs tBlock, N Block program time for last byte or word(2) 55 73 µs tSeg Erase Erase time for segment, mass erase, and bank erase when available(2) 23 32 ms fMCLK,MGR MCLK frequency in marginal read mode (FCTL4.MGR0 = 1 or FCTL4.MGR1 = 1) 0 1 MHz (1) (2) The cumulative program time must not be exceeded when writing to a 128-byte flash block. This parameter applies to all programming methods: individual word or byte write and block write modes. These values are hardwired into the state machine of the flash controller. 8.8.20 Debug and Emulation Section 8.8.20.1 lists the characteristics of the JTAG and SBW interface. 8.8.20.1 JTAG and Spy-Bi-Wire Interface over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER VCC MIN TYP MAX UNIT fSBW Spy-Bi-Wire input frequency 2.2 V, 3 V 0 20 MHz tSBW,Low Spy-Bi-Wire low clock pulse duration 2.2 V, 3 V 0.025 15 µs 1 µs 15 100 µs tSBW, En Spy-Bi-Wire enable time (TEST high to acceptance of first clock tSBW,Rst Spy-Bi-Wire return to normal operation time fTCK TCK input frequency (4-wire JTAG)(2) Rinternal Internal pulldown resistance on TEST (1) (2) edge)(1) 2.2 V, 3 V 2.2 V 0 5 MHz 3V 0 10 MHz 2.2 V, 3 V 45 80 kΩ 60 Tools that access the Spy-Bi-Wire interface must wait for the tSBW,En time after pulling the TEST/SBWTCK pin high before applying the first SBWTCK clock edge. fTCK may be restricted to meet the timing requirements of the module selected. Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 75 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 9 Detailed Description 9.1 Overview The MSP430FG6626 and MSP430FG6625 are microcontroller configurations with a high-performance 16-bit ADC, dual 12-bit DACs, dual low-power operational amplifiers, a comparator (COMPB), two USCIs, USB 2.0, a hardware multiplier (MPY32), DMA, four 16-bit timers, an RTC module with alarm capabilities, an LCD driver, and up to 73 I/O pins. The MSP430FG6426 and MSP430FG6425 are microcontroller configurations with a high-performance 16-bit ADC, dual 12-bit DACs, dual low-power operational amplifiers, a comparator (COMPB), two USCIs, a 3.3-V LDO, a hardware multiplier (MPY32), DMA, four 16-bit timers, an RTC module with alarm capabilities, an LCD driver, and up to 73 I/O pins. 9.2 CPU The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All operations, other than program-flow instructions, are performed as register operations in conjunction with seven addressing modes for source operand and four addressing modes for destination operand. The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to-register operation execution time is one cycle of the CPU clock. Four of the registers, R0 to R3, are dedicated as program counter, stack pointer, status register, and constant generator, respectively. The remaining registers are general-purpose registers (see Figure 9-1). Peripherals are connected to the CPU using data, address, and control buses. Peripherals can be managed with all instructions. Program Counter PC/R0 Stack Pointer SP/R1 Status Register Constant Generator SR/CG1/R2 CG2/R3 General-Purpose Register R4 General-Purpose Register R5 General-Purpose Register R6 General-Purpose Register R7 General-Purpose Register R8 General-Purpose Register R9 General-Purpose Register R10 General-Purpose Register R11 General-Purpose Register R12 General-Purpose Register R13 General-Purpose Register R14 General-Purpose Register R15 Figure 9-1. Integrated CPU Registers 76 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 9.3 Instruction Set The instruction set consists of the original 51 instructions with three formats and seven address modes and additional instructions for the expanded address range. Each instruction can operate on word and byte data. Table 9-1 lists examples of the three types of instruction formats, and Table 9-2 lists the address modes. Table 9-1. Instruction Word Formats INSTRUCTION WORD FORMAT Dual operands, source and destination Single operands, destination only EXAMPLE OPERATION ADD R4,R5 R4 + R5 → R5 CALL R8 PC → (TOS), R8 → PC JNE Jump-on-equal bit = 0 Relative jump, unconditional or conditional Table 9-2. Address Mode Descriptions S(1) D(1) Register ✓ ✓ MOV Rs,Rd MOV R10,R11 R10 → R11 Indexed ✓ ✓ MOV X(Rn),Y(Rm) MOV 2(R5),6(R6) M(2+R5) → M(6+R6) Symbolic (PC relative) ✓ ✓ MOV EDE,TONI M(EDE) → M(TONI) Absolute ✓ ✓ MOV &MEM, &TCDAT M(MEM) → M(TCDAT) Indirect ✓ MOV @Rn,Y(Rm) MOV @R10,Tab(R6) M(R10) → M(Tab+R6) Indirect auto-increment ✓ MOV @Rn+,Rm MOV @R10+,R11 M(R10) → R11 R10 + 2 → R10 Immediate ✓ MOV #X,TONI MOV #45,TONI #45 → M(TONI) ADDRESS MODE (1) SYNTAX EXAMPLE OPERATION S = source, D = destination Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 77 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 9.4 Operating Modes The devices have one active mode and seven software-selectable low-power modes of operation. An interrupt event can wake up the device from any of the low-power modes, service the request, and restore back to the low-power mode on return from the interrupt program. Software can configure the following operating modes: • • • • • • • • 78 Active mode (AM) – All clocks are active Low-power mode 0 (LPM0) – CPU is disabled – ACLK and SMCLK remain active, MCLK is disabled – FLL loop control remains active Low-power mode 1 (LPM1) – CPU is disabled – FLL loop control is disabled – ACLK and SMCLK remain active, MCLK is disabled Low-power mode 2 (LPM2) – CPU is disabled – MCLK, FLL loop control, and DCOCLK are disabled – DC generator of the DCO remains enabled – ACLK remains active Low-power mode 3 (LPM3) – CPU is disabled – MCLK, FLL loop control, and DCOCLK are disabled – DC generator of the DCO is disabled – ACLK remains active Low-power mode 4 (LPM4) – CPU is disabled – ACLK is disabled – MCLK, FLL loop control, and DCOCLK are disabled – DC generator of the DCO is disabled – Crystal oscillator is stopped – Complete data retention Low-power mode 3.5 (LPM3.5) – Internal regulator disabled – No data retention – RTC enabled and clocked by low-frequency oscillator – Wake-up input from RST/NMI, RTC_B, P1, P2, P3, and P4 Low-power mode 4.5 (LPM4.5) – Internal regulator disabled – No data retention – Wake-up input from RST/NMI, P1, P2, P3, and P4 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 9.5 Interrupt Vector Addresses The interrupt vectors and the power-up start address are in the address range 0FFFFh to 0FF80h (see Table 9-3). The vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence. Table 9-3. Interrupt Sources, Flags, and Vectors INTERRUPT SOURCE INTERRUPT FLAG SYSTEM INTERRUPT WORD ADDRESS PRIORITY System Reset Power-up, External reset Watchdog time-out, key violation Flash memory key violation WDTIFG, KEYV (SYSRSTIV)(1) (3) Reset 0FFFEh 63, highest System NMI PMM Vacant memory access JTAG mailbox SVMLIFG, SVMHIFG, DLYLIFG, DLYHIFG, VLRLIFG, VLRHIFG, VMAIFG, JMBNIFG, JMBOUTIFG (SYSSNIV)(1) (Non)maskable 0FFFCh 62 (Non)maskable 0FFFAh 61 User NMI NMI Oscillator fault Flash memory access violation NMIIFG, OFIFG, ACCVIFG, BUSIFG (SYSUNIV) (1) (3) Comp_B Comparator B interrupt flags (CBIV)(1) (2) Maskable 0FFF8h 60 Timer TB0 TB0CCR0 CCIFG0(2) Maskable 0FFF6h 59 Timer TB0 TB0CCR1 CCIFG1 to TB0CCR6 CCIFG6, TB0IFG (TBIV)(1) (2) Maskable 0FFF4h 58 Watchdog interval timer mode WDTIFG Maskable 0FFF2h 57 USCI_A0 receive or transmit UCA0RXIFG, UCA0TXIFG (UCA0IV)(1) (2) Maskable 0FFF0h 56 USCI_B0 receive or transmit UCB0RXIFG, UCB0TXIFG (UCB0IV)(1) (2) Maskable 0FFEEh 55 CTSD16 CTSD16IFG0, CTSD16OVIFG0(1) (2) Maskable 0FFECh 54 Timer TA0 TA0CCR0 CCIFG0(2) Maskable 0FFEAh 53 Timer TA0 TA0CCR1 CCIFG1 to TA0CCR4 CCIFG4, TA0IFG (TA0IV)(1) (2) Maskable 0FFE8h 52 USB_UBM(5) USB interrupts (USBIV)(1) (2) LDO-PWR (6) LDOOFFIG, LDOONIFG, LDOOVLIFG Maskable 0FFE6h 51 DMA DMA0IFG, DMA1IFG, DMA2IFG, DMA3IFG, DMA4IFG, DMA5IFG (DMAIV)(1) (2) Maskable 0FFE4h 50 Timer TA1 TA1CCR0 CCIFG0(2) Maskable 0FFE2h 49 Timer TA1 TA1CCR1 CCIFG1 to TA1CCR2 CCIFG2, TA1IFG (TA1IV)(1) (2) Maskable 0FFE0h 48 I/O Port P1 P1IFG.0 to P1IFG.7 (P1IV)(1) (2) Maskable 0FFDEh 47 USCI_A1 receive or transmit UCA1RXIFG, UCA1TXIFG (UCA1IV)(1) (2) Maskable 0FFDCh 46 USCI_B1 receive or transmit (UCB1IV)(1) (2) UCB1RXIFG, UCB1TXIFG P2IFG.0 to P2IFG.7 (P2IV)(1) (2) I/O port P2 LCD_B LCD_B Interrupt Flags (LCDBIV)(1) Maskable 0FFDAh 45 Maskable 0FFD8h 44 Maskable 0FFD6h 43 RTC_B RTCRDYIFG, RTCTEVIFG, RTCAIFG, RT0PSIFG, RT1PSIFG, RTCOFIFG (RTCIV)(1) (2) Maskable 0FFD4h 42 DAC12_A DAC12_0IFG, DAC12_1IFG(1) (2) Maskable 0FFD2h 41 Timer TA2 TA2CCR0 CCIFG0(2) Maskable 0FFD0h 40 Timer TA2 TA2CCR1 CCIFG1 to TA2CCR2 CCIFG2, TA2IFG (TA2IV)(1) (2) Maskable 0FFCEh 39 I/O port P3 P3IFG.0 to P3IFG.7 (P3IV)(1) (2) Maskable 0FFCCh 38 I/O port P4 (P4IV)(1) (2) Maskable 0FFCAh 37 0FFC8h 36 ⋮ ⋮ P4IFG.0 to P4IFG.7 Reserved(4) Reserved Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 79 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 Table 9-3. Interrupt Sources, Flags, and Vectors (continued) INTERRUPT SOURCE (1) (2) (3) (4) (5) (6) INTERRUPT FLAG SYSTEM INTERRUPT WORD ADDRESS PRIORITY 0FF80h 0, lowest Multiple source flags Interrupt flags are in the module. A reset is generated if the CPU tries to fetch instructions from within peripheral space or vacant memory space. (Non)maskable: the individual interrupt enable bit can disable an interrupt event, but the general interrupt enable bit cannot disable it. Reserved interrupt vectors at addresses are not used in this device and can be used for regular program code if necessary. To maintain compatibility with other devices, TI recommends reserving these locations. Only on devices with peripheral module USB (MSP430FG6626 and MSP430FG6625) Only on devices with peripheral module LDO-PWR (MSP430FG6426 and MSP430FG6425) 9.6 USB BSL The devices MSP430FG6626 and MSP430FG6625 are preprogrammed with the USB BSL. Use of the USB BSL requires external access to six pins (see Table 9-4). In addition to these pins, the application must support external components necessary for normal USB operation; for example, the proper crystal on XT2IN and XT2OUT, proper decoupling, and so on. For additional information, see the MSP430™ Flash Device Bootloader (BSL) User's Guide. Table 9-4. USB BSL Pin Requirements and Functions DEVICE SIGNAL BSL FUNCTION RST/NMI/SBWTDIO Entry sequence signal PU.0/DP USB data terminal DP PU.1/DM USB data terminal DM PUR USB pullup resistor terminal VBUS USB bus power supply VSSU USB ground supply Note The default USB BSL evaluates the logic level of the PUR pin after a BOR reset. If it is pulled high externally, then the BSL is invoked. Therefore, unless the application is invoking the BSL, it is important to keep PUR pulled low after a BOR reset, even if BSL or USB is never used. TI recommends applying a 1-MΩ resistor to ground. 9.7 UART BSL Devices without a USB module (MSP430FG642x) come preprogrammed with the UART BSL. A UART BSL is also available for devices with the USB module (MSP430FG662x), and it can be programmed by the user into the BSL memory by replacing the preprogrammed factory-supplied USB BSL. Use of the UART BSL requires external access to six pins (see Table 9-5). For additional information, see the MSP430™ Flash Device Bootloader (BSL) User's Guide. Table 9-5. UART BSL Pin Requirements and Functions 80 DEVICE SIGNAL BSL FUNCTION RST/NMI/SBWTDIO Entry sequence signal TEST/SBWTCK Entry sequence signal P1.1 Data transmit P1.2 Data receive Submit Document Feedback VCC Power supply VSS Ground supply Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 9.8 JTAG Operation 9.8.1 JTAG Standard Interface The MSP430 family supports the standard JTAG interface, which requires four signals for sending and receiving data. The JTAG signals are shared with general-purpose I/Os. The TEST/SBWTCK pin is used to enable the JTAG signals. In addition to these signals, the RST/NMI/SBWTDIO is required to interface with MSP430 development tools and device programmers. Table 9-6 lists the JTAG pin requirements. For further details on interfacing to development tools and device programmers, see the MSP430 Hardware Tools User's Guide. For a complete description of the features of the JTAG interface and its implementation, see MSP430 Programming With the JTAG Interface. Table 9-6. JTAG Pin Requirements and Functions DEVICE SIGNAL DIRECTION FUNCTION PJ.3/TCK IN JTAG clock input PJ.2/TMS IN JTAG state control PJ.1/TDI/TCLK IN JTAG data input, TCLK input PJ.0/TDO OUT JTAG data output TEST/SBWTCK IN Enable JTAG pins RST/NMI/SBWTDIO IN External reset VCC Power supply VSS Ground supply 9.8.2 Spy-Bi-Wire Interface In addition to the standard JTAG interface, the MSP430 family supports the two-wire Spy-Bi-Wire interface. SpyBi-Wire can be used to interface with MSP430 development tools and device programmers. Table 9-7 lists the Spy-Bi-Wire interface pin requirements. For further details on interfacing to development tools and device programmers, see the MSP430 Hardware Tools User's Guide. For a complete description of the features of the JTAG interface and its implementation, see MSP430 Programming With the JTAG interface. Table 9-7. Spy-Bi-Wire Pin Requirements and Functions DEVICE SIGNAL DIRECTION FUNCTION TEST/SBWTCK IN Spy-Bi-Wire clock input RST/NMI/SBWTDIO IN, OUT Spy-Bi-Wire data input/output VCC Power supply VSS Ground supply 9.9 Flash Memory The flash memory can be programmed through the JTAG port, Spy-Bi-Wire (SBW), the BSL, or in-system by the CPU. The CPU can perform single-byte, single-word, and long-word writes to the flash memory. Features of the flash memory include: • • • • Flash memory has n segments of main memory and four segments of information memory (A to D) of 128 bytes each. Each segment in main memory is 512 bytes in size. Segments 0 to n may be erased in one step, or each segment may be individually erased. Segments A to D can be erased individually, or as a group with segments 0 to n. Segments A to D are also called information memory. Segment A can be locked separately. 9.10 RAM The RAM is made up of n sectors. Each sector can be completely powered down to save leakage; however, all data is lost. Features of the RAM include: Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 81 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 • • • • RAM has n sectors. The size of a sector can be found in Section 9.15. Each sector 0 to n can be complete disabled; however, data retention is lost. Each sector 0 to n automatically enters low-power retention mode when possible. For devices that contain USB memory, the USB memory can be used as normal RAM if USB is not required. 9.11 Backup RAM The backup RAM provides a limited number of bytes of RAM that are retained during LPMx.5 and during operation from a backup supply if the Battery Backup System module is implemented. There are 8 bytes of backup RAM. It can be word-wise accessed through the control registers BAKMEM0, BAKMEM1, BAKMEM2, and BAKMEM3. 9.12 Peripherals Peripherals are connected to the CPU through data, address, and control buses. The peripherals can be managed using all instructions. For complete module descriptions, see the MSP430F5xx and MSP430F6xx Family User's Guide. 9.12.1 Digital I/O Up to nine 8-bit I/O ports are implemented: P1 through P9 are complete except P5.2, and port PJ contains four individual I/O ports. • • • • • • • 82 All individual I/O bits are independently programmable. Any combination of input, output, and interrupt conditions is possible. Programmable pullup or pulldown on all ports. Programmable drive strength on all ports. Edge-selectable interrupt input capability for all the eight bits of ports P1, P2, P3, and P4. Read and write access to port-control registers is supported by all instructions. Ports can be accessed byte-wise (P1 through P9) or word-wise (P1 through P8) in pairs (PA through PD). Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 9.12.2 Port Mapping Controller The port mapping controller allows the flexible and reconfigurable mapping of digital functions to port P2 (see Table 9-8). Table 9-8. Port Mapping Mnemonics and Functions VALUE 0 1 2 3 INPUT PIN FUNCTION OUTPUT PIN FUNCTION PM_NONE None DVSS PM_CBOUT – Comparator_B output PM_TB0CLK Timer TB0 clock input – Reserved – Reserved PM_DMAE0 DMAE0 Input – PM_SVMOUT – SVM output PM_TB0OUTH Timer TB0 high impedance input TB0OUTH – 4 PM_TB0CCR0B Timer TB0 CCR0 capture input CCI0B Timer TB0: TB0.0 compare output Out0 5 PM_TB0CCR1B Timer TB0 CCR1 capture input CCI1B Timer TB0: TB0.1 compare output Out1 6 PM_TB0CCR2B Timer TB0 CCR2 capture input CCI2B Timer TB0: TB0.2 compare output Out2 7 PM_TB0CCR3B Timer TB0 CCR3 capture input CCI3B Timer TB0: TB0.3 compare output Out3 8 PM_TB0CCR4B Timer TB0 CCR4 capture input CCI4B Timer TB0: TB0.4 compare output Out4 9 PM_TB0CCR5B Timer TB0 CCR5 capture input CCI5B Timer TB0: TB0.5 compare output Out5 10 PM_TB0CCR6B Timer TB0 CCR6 capture input CCI6B Timer TB0: TB0.6 compare output Out6 11 12 13 14 15 16 PM_UCA0RXD USCI_A0 UART RXD (Direction controlled by USCI – input) PM_UCA0SOMI USCI_A0 SPI slave out master in (direction controlled by USCI) PM_UCA0TXD USCI_A0 UART TXD (Direction controlled by USCI – output) PM_UCA0SIMO USCI_A0 SPI slave in master out (direction controlled by USCI) PM_UCA0CLK USCI_A0 clock input/output (direction controlled by USCI) PM_UCB0STE USCI_B0 SPI slave transmit enable (direction controlled by USCI – input) PM_UCB0SOMI USCI_B0 SPI slave out master in (direction controlled by USCI) PM_UCB0SCL USCI_B0 I2C clock (open drain and direction controlled by USCI) PM_UCB0SIMO USCI_B0 SPI slave in master out (direction controlled by USCI) PM_UCB0SDA USCI_B0 I2C data (open drain and direction controlled by USCI) PM_UCB0CLK USCI_B0 clock input/output (direction controlled by USCI) PM_UCA0STE USCI_A0 SPI slave transmit enable (direction controlled by USCI – input) 17 PM_MCLK 18-30 Reserved 31 (0FFh)(1) (1) PxMAPy MNEMONIC PM_ANALOG – MCLK None DVSS Disables the output driver and the input Schmitt-trigger to prevent parasitic cross currents when applying analog signals. The value of the PM_ANALOG mnemonic is set to 0FFh. The port mapping registers are 5 bits wide, and the upper bits are ignored, which results in a read value of 31. Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 83 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 Table 9-9 lists the default settings for all pins that support port mapping. Table 9-9. Default Mapping PIN PxMAPy MNEMONIC P2.0/P2MAP0 PM_UCB0STE, PM_UCA0CLK USCI_B0 SPI slave transmit enable (direction controlled by USCI – input), USCI_A0 clock input/output (direction controlled by USCI) P2.1/P2MAP1 PM_UCB0SIMO, PM_UCB0SDA USCI_B0 SPI slave in master out (direction controlled by USCI), USCI_B0 I2C data (open drain and direction controlled by USCI) P2.2/P2MAP2 PM_UCB0SOMI, PM_UCB0SCL USCI_B0 SPI slave out master in (direction controlled by USCI), USCI_B0 I2C clock (open drain and direction controlled by USCI) P2.3/P2MAP3 PM_UCB0CLK, PM_UCA0STE USCI_B0 clock input/output (direction controlled by USCI), USCI_A0 SPI slave transmit enable (direction controlled by USCI – input) P2.4/P2MAP4 PM_UCA0TXD, PM_UCA0SIMO USCI_A0 UART TXD (direction controlled by USCI – output), USCI_A0 SPI slave in master out (direction controlled by USCI) P2.5/P2MAP5/R23 PM_UCA0RXD, PM_UCA0SOMI USCI_A0 UART RXD (direction controlled by USCI – input), USCI_A0 SPI slave out master in (direction controlled by USCI) P2.6/P2MAP6/R03 PM_NONE - DVSS P2.7/P2MAP7/LCDREF/R13 PM_NONE - DVSS INPUT PIN FUNCTION OUTPUT PIN FUNCTION 9.12.3 Oscillator and System Clock The clock system in the MSP430FG662x and MSP430FG642x devices are supported by the Unified Clock System (UCS) module that includes support for a 32-kHz watch crystal oscillator (in XT1 LF mode; XT1 HF mode is not supported), an internal very-low-power low-frequency oscillator (VLO), an internal trimmed lowfrequency oscillator (REFO), an integrated internal digitally controlled oscillator (DCO), and a high-frequency crystal oscillator XT2. The UCS module is designed to meet the requirements of both low system cost and low power consumption. The UCS module features digital frequency locked loop (FLL) hardware that, in conjunction with a digital modulator, stabilizes the DCO frequency to a programmable multiple of the watch crystal frequency. The internal DCO provides a fast turnon clock source and stabilizes in 3 µs (typical). The UCS module provides the following clock signals: • • • • Auxiliary clock (ACLK), sourced from a 32-kHz watch crystal (XT1), a high-frequency crystal (XT2), the internal low-frequency oscillator (VLO), the trimmed low-frequency oscillator (REFO), or the internal digitallycontrolled oscillator (DCO). Main clock (MCLK), the system clock used by the CPU. MCLK can be sourced by same sources available to ACLK. Sub-Main clock (SMCLK), the subsystem clock used by the peripheral modules. SMCLK can be sourced by same sources available to ACLK. ACLK/n, the buffered output of ACLK, ACLK/2, ACLK/4, ACLK/8, ACLK/16, ACLK/32. 9.12.4 Power Management Module (PMM) The PMM includes an integrated voltage regulator that supplies the core voltage to the device and contains programmable output levels to provide for power optimization. The PMM also includes supply voltage supervisor (SVS) and supply voltage monitoring (SVM) circuitry, as well as brownout protection. The brownout circuit provides the proper internal reset signal to the device during power on and power off. The SVS and SVM circuitry detect if the supply voltage drops below a user-selectable level and supports both supply voltage supervision (the device is automatically reset) and supply voltage monitoring (the device is not automatically reset). SVS and SVM circuitry is available on the primary supply and the core supply. 9.12.5 Hardware Multiplier (MPY32) The multiplication operation is supported by a dedicated peripheral module. The module performs operations with 32-, 24-, 16-, and 8-bit operands. The module supports signed and unsigned multiplication as well as signed and unsigned multiply-and-accumulate operations. 84 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 9.12.6 Real-Time Clock (RTC_B) The RTC_B module can be configured for real-time clock (RTC) or calendar mode providing seconds, minutes, hours, day of week, day of month, month, and year. Calendar mode integrates an internal calendar which compensates for months with less than 31 days and includes leap year correction. The RTC_B also supports flexible alarm functions and offset-calibration hardware. The implementation on this device supports operation in LPM3.5 mode and operation from a backup supply. 9.12.7 Watchdog Timer (WDT_A) The primary function of the WDT_A module is to perform a controlled system restart after a software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed in an application, the module can be configured as an interval timer and can generate interrupts at selected time intervals. 9.12.8 System Module (SYS) The SYS module handles many of the system functions within the device. These include power-on reset and power-up clear handling, NMI source selection and management, reset interrupt vector generators, bootloader entry mechanisms, and configuration management (device descriptors). SYS also includes a data exchange mechanism through JTAG called a JTAG mailbox that can be used in the application. Table 9-10 lists the SYS module interrupt vector registers. Table 9-10. System Module Interrupt Vector Registers INTERRUPT VECTOR REGISTER SYSRSTIV, System Reset SYSSNIV, System NMI Copyright © 2020 Texas Instruments Incorporated INTERRUPT EVENT WORD ADDRESS OFFSET No interrupt pending 00h Brownout (BOR) 02h RST/NMI (BOR) 04h PMMSWBOR (BOR) 06h LPM3.5 or LPM4.5 wake up (BOR) 08h Security violation (BOR) 0Ah SVSL (POR) 0Ch SVSH (POR) 0Eh SVML_OVP (POR) SVMH_OVP (POR) Highest 10h 019Eh 12h PMMSWPOR (POR) 14h WDT time-out (PUC) 16h WDT key violation (PUC) 18h KEYV flash key violation (PUC) 1Ah Reserved 1Ch Peripheral area fetch (PUC) 1Eh PMM key violation (PUC) 20h Reserved 22h to 3Eh No interrupt pending 00h SVMLIFG 02h SVMHIFG 04h DLYLIFG 06h DLYHIFG PRIORITY Lowest Highest 08h 019Ch VMAIFG 0Ah JMBINIFG 0Ch JMBOUTIFG 0Eh SVMLVLRIFG 10h Submit Document Feedback Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 85 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 Table 9-10. System Module Interrupt Vector Registers (continued) INTERRUPT VECTOR REGISTER SYSUNIV, User NMI INTERRUPT EVENT WORD ADDRESS OFFSET SVMHVLRIFG 12h Reserved 14h to 1Eh No interrupt pending 00h NMIFG 02h OFIFG 04h ACCVIFG 019Ah 08h Reserved 0Ah to 1Eh USB wait state time-out Reserved 86 Submit Document Feedback Lowest Highest 06h BUSIFG No interrupt pending SYSBERRIV, Bus Error PRIORITY Lowest 00h 0198h 02h Highest 04h to 1Eh Lowest Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 9.12.9 DMA Controller The DMA controller allows movement of data from one memory address to another without CPU intervention. For example, the DMA controller can be used to move data from the ADC conversion memory to RAM. Using the DMA controller can increase the throughput of peripheral modules. The DMA controller reduces system power consumption by allowing the CPU to remain in sleep mode, without having to awaken to move data to or from a peripheral. The USB timestamp generator also uses the channel 0, 1, and 2 DMA trigger assignments (see Table 9-11). The USB timestamp generator is available only on devices with the USB module (MSP430FG662x). Table 9-11. DMA Trigger Assignments TRIGGER(1) CHANNEL 0 1 2 3 0 DMAREQ 1 TA0CCR0 CCIFG 2 TA0CCR2 CCIFG 3 TA1CCR0 CCIFG 4 TA1CCR2 CCIFG 5 TA2CCR0 CCIFG 6 TA2CCR2 CCIFG 7 TBCCR0 CCIFG 8 TBCCR2 CCIFG 9 Reserved 10 Reserved 11 Reserved 12 Reserved 13 Reserved 14 Reserved 15 Reserved 16 UCA0RXIFG 17 UCA0TXIFG 18 UCB0RXIFG 19 UCB0TXIFG 20 UCA1RXIFG 21 UCA1TXIFG 22 UCB1RXIFG 23 UCB1TXIFG 24 CTSD16IFG0 25 DAC12_0IFG 26 DAC12_1IFG 27 USB FNRXD(2) 28 USB ready(2) 29 30 (2) 5 DMA3IFG DMA4IFG MPY ready DMA5IFG DMA0IFG 31 (1) 4 DMA1IFG DMA2IFG DMAE0 Reserved DMA triggers may be used by other devices in the family. Reserved DMA triggers do not cause any DMA trigger event when selected. Only on devices with peripheral module USB (MSP430FG662x), otherwise reserved (MSP430FG642x). Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 87 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 9.12.10 Universal Serial Communication Interface (USCI) The USCI modules are used for serial data communication. The USCI module supports synchronous communication protocols such as SPI (3- or 4-pin) and I2C, and asynchronous communication protocols such as UART, enhanced UART with automatic baudrate detection, and IrDA. Each USCI module contains two portions, A and B. The USCI_An module provides support for SPI (3- or 4-pin), UART, enhanced UART, or IrDA. The USCI_Bn module provides support for SPI (3- or 4-pin) or I2C. The MSP430FG662x and MSP430FG642x include two complete USCI modules (n = 0 to 1). 9.12.11 Timer TA0 Timer TA0 is a 16-bit timer/counter (Timer_A type) with five capture/compare registers. TA0 supports multiple capture/compares, PWM outputs, and interval timing (see Table 9-12). It also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers. Table 9-12. Timer TA0 Signal Connections INPUT PIN NUMBER PZ ZCA, ZQW DEVICE INPUT SIGNAL 34-P1.0 L5-P1.0 TA0CLK TACLK ACLK ACLK SMCLK SMCLK 34-P1.0 L5-P1.0 TA0CLK TACLK 35-P1.1 M5-P1.1 TA0.0 CCI0A DVSS CCI0B DVSS GND DVCC VCC 36-P1.2 J6-P1.2 TA0.1 CCI1A 40-P1.6 J7-P1.6 TA0.1 CCI1B DVSS GND DVCC VCC MODULE BLOCK MODULE OUTPUT SIGNAL DEVICE OUTPUT SIGNAL Timer NA NA CCR0 CCR1 TA0 TA1 OUTPUT PIN NUMBER PZ ZCA, ZQW 35-P1.1 M5-P1.1 36-P1.2 J6-P1.2 40-P1.6 J7-P1.6 TA0.0 TA0.1 37-P1.3 H6-P1.3 TA0.2 CCI2A 37-P1.3 H6-P1.3 41-P1.7 M7-P1.7 TA0.2 CCI2B 41-P1.7 M7-P1.7 DVSS GND DVCC VCC TA0.3 CCI3A 38-P1.4 M6-P1.4 DVSS CCI3B DVSS GND DVCC VCC TA0.4 CCI4A 39-P1.5 L6-P1.5 DVSS CCI4B DVSS GND DVCC VCC 38-P1.4 39-P1.5 88 MODULE INPUT SIGNAL M6-P1.4 L6-P1.5 Submit Document Feedback CCR2 CCR3 CCR4 TA2 TA3 TA4 TA0.2 TA0.3 TA0.4 Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 9.12.12 Timer TA1 Timer TA1 is a 16-bit timer/counter (Timer_A type) with three capture/compare registers. TA1 supports multiple capture/compares, PWM outputs, and interval timing (see Table 9-13). It also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers. Table 9-13. Timer TA1 Signal Connections INPUT PIN NUMBER PZ ZCA, ZQW DEVICE INPUT SIGNAL MODULE INPUT SIGNAL 42-P3.0 L7-P3.0 TA1CLK TACLK ACLK ACLK SMCLK SMCLK 42-P3.0 L7-P3.0 TA1CLK TACLK 43-P3.1 H7-P3.1 TA1.0 CCI0A DVSS CCI0B DVSS GND DVCC VCC TA1.1 CCI1A 44-P3.2 45-P3.3 M8-P3.2 L8-P3.3 CBOUT (internal) CCI1B DVSS GND DVCC VCC TA1.2 CCI2A ACLK (internal) CCI2B DVSS GND DVCC VCC Copyright © 2020 Texas Instruments Incorporated MODULE BLOCK MODULE OUTPUT SIGNAL DEVICE OUTPUT SIGNAL Timer NA NA CCR0 CCR1 TA0 TA1 OUTPUT PIN NUMBER PZ ZCA, ZQW 43-P3.1 H7-P3.1 44-P3.2 M8-P3.2 TA1.0 TA1.1 DAC12_A DAC12_0, DAC12_1 (internal) 45-P3.3 CCR2 TA2 L8-P3.3 TA1.2 Submit Document Feedback Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 89 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 9.12.13 Timer TA2 Timer TA2 is a 16-bit timer/counter (Timer_A type) with three capture/compare registers. TA2 supports multiple capture/compares, PWM outputs, and interval timing (see Table 9-14). It also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers. Table 9-14. Timer TA2 Signal Connections INPUT PIN NUMBER PZ ZCA, ZQW DEVICE INPUT SIGNAL 46-P3.4 J8-P3.4 TA2CLK TACLK ACLK ACLK SMCLK SMCLK 46-P3.4 J8-P3.4 TA2CLK TACLK 47-P3.5 M9-P3.5 TA2.0 CCI0A DVSS CCI0B DVSS GND DVCC VCC 48-P3.6 49-P3.7 90 MODULE INPUT SIGNAL L9-P3.6 TA2.1 CCI1A CBOUT (internal) CCI1B DVSS GND DVCC VCC M10-P3.7 TA2.2 CCI2A ACLK (internal) CCI2B DVSS GND DVCC VCC Submit Document Feedback MODULE BLOCK MODULE OUTPUT SIGNAL DEVICE OUTPUT SIGNAL Timer NA NA CCR0 CCR1 CCR2 TA0 TA1 TA2 OUTPUT PIN NUMBER PZ ZCA, ZQW 47-P3.5 M9-P3.5 48-P3.6 L9-P3.6 49-P3.7 M10-P3.7 TA2.0 TA2.1 TA2.2 Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 9.12.14 Timer TB0 Timer TB0 is a 16-bit timer/counter (Timer_B type) with seven capture/compare registers. TB0 supports multiple capture/compares, PWM outputs, and interval timing (see Table 9-15). It also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers. Table 9-15. Timer TB0 Signal Connections INPUT PIN NUMBER PZ ZCA, ZQW 58-P8.0 P2MAPx(1) J11-P8.0 P2MAPx(1) DEVICE INPUT SIGNAL MODULE INPUT SIGNAL TB0CLK TB0CLK ACLK ACLK SMCLK SMCLK MODULE BLOCK MODULE OUTPUT SIGNAL DEVICE OUTPUT SIGNAL Timer NA NA OUTPUT PIN NUMBER PZ ZCA, ZQW 58-P8.0 P2MAPx(1) J11-P8.0 P2MAPx(1) TB0CLK TB0CLK 50-P4.0 J9-P4.0 TB0.0 CCI0A 50-P4.0 J9-P4.0 P2MAPx(1) P2MAPx(1) TB0.0 CCI0B P2MAPx(1) P2MAPx(1) DVSS GND 51-P4.1 M11-P4.1 P2MAPx(1) P2MAPx(1) 52-P4.2 L10-P4.2 P2MAPx(1) P2MAPx(1) 53-P4.3 M12-P4.3 P2MAPx(1) P2MAPx(1) CCR0 TB0 TB0.0 DVCC VCC TB0.1 CCI1A 51-P4.1 M11-P4.1 TB0.1 CCI1B P2MAPx(1) P2MAPx(1) DVSS GND CCR1 TB1 TB0.1 DVCC VCC TB0.2 CCI2A 52-P4.2 L10-P4.2 TB0.2 CCI2B P2MAPx(1) P2MAPx(1) DVSS GND CCR2 TB2 TB0.2 DAC12_A DAC12_0, DAC12_1 (internal) DVCC VCC TB0.3 CCI3A 53-P4.3 M12-P4.3 TB0.3 CCI3B P2MAPx(1) P2MAPx(1) DVSS GND DVCC VCC CCR3 TB3 TB0.3 54-P4.4 L12-P4.4 TB0.4 CCI4A 54-P4.4 L12-P4.4 P2MAPx(1) P2MAPx(1) TB0.4 CCI4B P2MAPx(1) P2MAPx(1) DVSS GND DVCC VCC CCR4 TB4 TB0.4 55-P4.5 L11-P4.5 TB0.5 CCI5A 55-P4.5 L11-P4.5 P2MAPx(1) P2MAPx(1) TB0.5 CCI5B P2MAPx(1) P2MAPx(1) DVSS GND DVCC VCC CCR5 TB5 TB0.5 56-P4.6 K11-P4.6 TB0.6 CCI6A 56-P4.6 K11-P4.6 P2MAPx(1) P2MAPx(1) TB0.6 CCI6B P2MAPx(1) P2MAPx(1) DVSS GND DVCC VCC (1) CCR6 TB6 TB0.6 Timer functions are selectable by the port mapping controller. Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 91 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 9.12.15 Comparator_B The primary function of the Comparator_B module is to support precision slope analog-to-digital conversions, battery voltage supervision, and monitoring of external analog signals. 9.12.16 Signal Chain All devices include all the building blocks to construct a complete signal chain. These blocks include two digitalto-analog converter (DAC) channels, two integrated operational amplifiers (OAs), a sigma-delta analog-to-digital converter (CTSD16), and low-ohmic switches (GSW). Figure 9-2 shows the various signal chain blocks and their interconnections in the overall system. 92 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 NR Device Boundary P5.0/VREFBG/VeREF+ CTSD16 P6.0/CB0/A0 P6.1/CB1/A1 P6.2/CB2/A2/OA0IP0 P6.3/CB3/A3/OA1IP0 P5.1/A4/DAC0 P5.6/A5/DAC1 A0 A1 A2 A3 A4 A5 Temp Sense REFON A6 AVCC Sense + A7 CTSD16REFS AND CTD16SC BUF VBAT Sense A8 + AD0+ AD0- + PGA BUF - AD1+ AD1- OR Request to shared reference + Delta Sigma Bandgap voltage from shared reference ~1.16 V nominal - - AD2+ AD2AD3+ AD3VREFBG/VeREF+ AD4+ AD4- DAC0 AD4+ AD4- VREFBG/VeREF+ OA0 P6.2/CB2/A2/OA0IP0 PSW 4 PSW0 PSW1 PSW2 DAC12_A DAC12_0 12 bit DAC12AMP>0 & !DAC12OPS OAM PSW3 + P6.4/CB4/AD0+/OA0O DAC12AMP>0 & DAC12OPS NSW 5 NSW0 - P2.0/P2MAP0/DAC0 NSW1 NSW2 NSW3 P5.1/A4/DAC0 NSW4 P5.6/A5/DAC1 P6.5/CB5/AD0-/OA0IN0 GSW0 P6.6/CB6/AD1+/G0SW0 GSW1 P6.7/CB7/AD1-/G0SW1 PSW OA1 4 PSW0 PSW1 PSW2 OAM PSW3 + P7.4/CB8/AD2+/OA1O - DAC12_1 12 bit DAC12AMP>0 & !DAC12OPS DAC12AMP>0 & DAC12OPS NSW 5 NSW0 P2.1/P2MAP1/DAC1 NSW1 P6.3/CB3/A3/OA1IP0 NSW2 NSW3 NSW4 P7.5/CB9/AD2-/OA1IN0 GSW0 P7.6/CB10/AD3+/G1SW0 GSW1 P7.7/CB11/AD3-/G1SW1 Device Boundary A. See the MSP430F5xx and MSP430F6xx Family User's Guide for additional module details. Figure 9-2. Signal Chain Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 93 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 9.12.16.1 CTSD16 The CTSD16 module integrates a single sigma-delta ADC with ten external inputs and four internal inputs. The converter is designed with a fully differential analog input pair and a programmable gain amplifier input stage. The converter is based on second-order over-sampling sigma-delta modulators and digital decimation filters. The decimation filters are comb type filters with selectable oversampling ratios of up to 256. The CTSD16 is proceeded by an analog multiplexer which is used for channel selection, followed by a unity gain buffer stage useful when sampling high impedance sensors. The CTSD16 can use as its reference the internal bandgap voltage from the REF module or an external reference at the VeREF+ pin. 9.12.16.2 DAC12_A The DAC12_A module is a 12-bit R-ladder voltage-output DAC. The DAC12_A can be used in 8-bit or 12-bit mode, and can be used in conjunction with the DMA controller. When multiple DAC12_A modules are present, they may be grouped together for synchronous operation. Two complete channels are available, DAC12_0 and DAC12_1. 9.12.16.3 Operational Amplifiers (OA) The device integrates two low-power operational amplifiers. The operational amplifiers can perform signal conditioning of low-level analog signals before conversion by the ADC. Each operational amplifier can be individually controlled by software. 9.12.16.4 Ground Switches (GSW) The device integrates four low-ohmic switches to ground that are individually controllable in software. These can switch in and out various components in the measurement system. 9.12.17 REF Voltage Reference The reference module (REF) generates all of the critical reference voltages that can be used by the various analog peripherals in the device. 9.12.18 CRC16 The CRC16 module produces a signature based on a sequence of entered data values and can be used for data checking purposes. The CRC16 module signature is based on the CRC-CCITT standard. 9.12.19 LCD_B The LCD_B driver generates the segment and common signals that are required to drive a liquid crystal display (LCD). The LCD_B controller has dedicated data memories to hold segment drive information. Common and segment signals are generated as defined by the mode. Static, 2-mux, 3-mux, and 4-mux LCDs are supported. The module can provide a LCD voltage independent of the supply voltage with its integrated charge pump. It is possible to control the level of the LCD voltage, and thus contrast, by software. The module also provides an automatic blinking capability for individual segments. 9.12.20 USB Universal Serial Bus The USB module is a fully integrated USB interface that is compliant with the USB 2.0 specification. The module supports full-speed operation of control, interrupt, and bulk transfers. The module includes an integrated LDO, PHY, and PLL. The PLL is highly flexible and can support a wide range of input clock frequencies. USB RAM, when not used for USB communication, can be used by the system. The USB module is only available on the MSP430FG662x devices. 9.12.21 LDO and PU Port The integrated 3.3-V power system incorporates an integrated 3.3-V LDO regulator that allows the entire MSP430 microcontroller to be powered from nominal 5-V LDOI when it is made available for the system. Alternatively, the power system can supply power only to other components within the system, or it can be unused altogether. 94 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 The Port U pins (PU.0 and PU.1) function as general-purpose high-current I/O pins. These pins must be configured together as either both inputs or both outputs. Port U is supplied by the LDOO rail. If the 3.3-V LDO is not used in the system (disabled), the LDOO pin can be supplied externally. The LDO-PWR module (LDO and PU port) is available only on the MSP430FG6426 and MSP430FG6425 devices. 9.12.22 Embedded Emulation Module (EEM) (L Version) The EEM supports real-time in-system debugging. The L version of the EEM has the following features: • • • • • • • Eight hardware triggers or breakpoints on memory access. Two hardware triggers or breakpoints on CPU register write access. Up to ten hardware triggers can be combined to form complex triggers or breakpoints. Two cycle counters Sequencer State storage Clock control on module level Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 95 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 9.13 Input/Output Diagrams 9.13.1 Port P1 (P1.0 to P1.7) Input/Output With Schmitt Trigger Figure 9-3 shows the port diagram. Table 9-16 summarizes the selection of the port function. Pad Logic S32...S39 LCDS32...LCDS39 P1REN.x P1DIR.x 0 0 Module X OUT 1 0 DVCC 1 1 Direction 0: Input 1: Output 1 P1OUT.x DVSS P1DS.x 0: Low drive 1: High drive P1SEL.x P1IN.x Bus Keeper EN P1.0/TA0CLK/ACLK/S39 P1.1/TA0.0/S38 P1.2/TA0.1/S37 P1.3/TA0.2/S36 P1.4/TA0.3/S35 P1.5/TA0.4/S34 P1.6/TA0.1/S33 P1.7/TA0.2/S32 D Module X IN P1IE.x EN P1IRQ.x Q P1IFG.x P1SEL.x P1IES.x Set Interrupt Edge Select Figure 9-3. Port P1 (P1.0 to P1.7) Diagram 96 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 Table 9-16. Port P1 (P1.0 to P1.7) Pin Functions CONTROL BITS OR SIGNALS(1) PIN NAME (P1.x) x FUNCTION P1.0 (I/O) P1.0/TA0CLK/ACLK/S39 0 Timer TA0.TA0CLK 1 2 3 5 0 1 I: 0; O: 1 0 0 Timer TA0.CCI0A capture input 0 1 0 Timer TA0.0 output 1 1 0 S38 X X 1 I: 0; O: 1 0 0 Timer TA0.CCI1A capture input 0 1 0 Timer TA0.1 output 1 1 0 S37 X X 1 I: 0; O: 1 0 0 Timer TA0.CCI2A capture input 0 1 0 Timer TA0.2 output 1 1 0 X X 1 I: 0; O: 1 0 0 Timer TA0.CCI3A capture input 0 1 0 Timer TA0.3 output 1 1 0 S35 X X 1 I: 0; O: 1 0 0 Timer TA0.CCI4A capture input 0 1 0 Timer TA0.4 output 1 1 0 S34 X X 1 I: 0; O: 1 0 0 Timer TA0.CCI1B capture input 0 1 0 Timer TA0.1 output 1 1 0 S33 X X 1 I: 0; O: 1 0 0 Timer TA0.CCI2B capture input 0 1 0 Timer TA0.2 output 1 1 0 S32 X X 1 P1.6 (I/O) P1.6/TA0.1/S33 6 P1.7 (I/O) P1.7/TA0.2/S32 (1) 7 0 1 P1.5 (I/O) P1.5/TA0.4/S34 0 1 X P1.4 (I/O) 4 0 0 1 S36 P1.4/TA0.3/S35 I: 0; O: 1 X P1.3 (I/O) P1.3/TA0.2/S36 LCDS32 to LCDS39 S39 P1.2 (I/O) P1.2/TA0.1/S37 P1SEL.x ACLK P1.1 (I/O) P1.1/TA0.0/S38 P1DIR.x X= don't care Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 97 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 9.13.2 Port P2 (P2.0 to P2.7) Input/Output With Schmitt Trigger Figure 9-4 shows the port diagram. Table 9-17 summarizes the selection of the port function. 0 Dvss 1 From DAC12_A 2 Pad Logic 0 if DAC12AMPx=0 1 if DAC12AMPx=1 2 if DAC12AMPx>1 to LCD_B from LCD_B P2REN.x P2DIR.x 0 P2OUT.x 0 1 1 Direction 0: Input 1: Output 1 From Port Mapping DAC12AMPx>0 DVSS DVCC 0 1 DAC12OPS P2DS.x 0: Low drive 1: High drive P2SEL.x P2IN.x From Port Mapping P2.0/P2MAP0/DAC0 P2.1/P2MAP1/DAC1 P2.2/P2MAP2 P2.3/P2MAP3 P2.4/P2MAP4/R03 P2.5/P2MAP5 P2.6/P2MAP6/LCDREF/R13 P2.7/P2MAP7/R23 EN To Port Mapping D P2IE.x EN P2IRQ.x Q P2IFG.x P2SEL.x P2IES.x Set Interrupt Edge Select Figure 9-4. Port P2 (P2.0 to P2.7) Diagram 98 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 Table 9-17. Port P2 (P2.0 to P2.7) Pin Functions PIN NAME (P2.x) x FUNCTION P2.0 (I/O) P2.0/P2MAP0/DAC0 0 Mapped secondary digital function DAC0 P2.1 (I/O) P2.1/P2MAP1/DAC1 1 Mapped secondary digital function DAC1 P2.2 (I/O) P2.2/P2MAP2 2 P2.3/P2MAP3 3 Mapped secondary digital function P2.3 (I/O) Mapped secondary digital function P2.4 (I/O) P2.4/P2MAP4/R03 4 5 6 (1) P2MAPx X 1 ≤ 19 = 31 X X I: 0; O: 1 0 X 1 ≤ 19 = 31 X X I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 DAC12OPS DAC12AMPx X 0 X 0 ≤ 19 ≤ 19 1 >1 X 0 X 0 1 >1 X 0 X 0 X 0 X 0 X 0 X 1 ≤ 19 X 0 R03 X 1 = 31 X 0 I: 0; O: 1 0 X 0 X 1 X 0 I: 0; O: 1 0 X 0 X 1 ≤ 19 X 0 = 31 X 0 X 0 Mapped secondary digital function Mapped secondary digital function ≤ 19 X 1 I: 0; O: 1 0 Mapped secondary digital function X 1 ≤ 19 X 0 R23 X 1 = 31 X 0 P2.7 (I/O) 7 0 0 LCDREF/R13 P2.7/P2MAP7/R23 P2SEL.x I: 0; O: 1 P2.6 (I/O) P2.6/P2MAP6/LCDREF/R13 P2DIR.x I: 0; O: 1 Mapped secondary digital function P2.5 (I/O P2.5/P2MAP5 CONTROL BITS OR SIGNALS(1) X= Don't care Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 99 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 9.13.3 Port P3 (P3.0 to P3.7) Input/Output With Schmitt Trigger Figure 9-5 shows the port diagram. Table 9-18 summarizes the selection of the port function. Pad Logic S24...S31 LCDS24...LCDS31 P3REN.x P3DIR.x 0 0 Module X OUT 1 0 DVCC 1 1 Direction 0: Input 1: Output 1 P3OUT.x DVSS P3.0/TA1CLK/CBOUT/S31 P3.1/TA1.0/S30 P3.2/TA1.1/S29 P3.3/TA1.2/S28 P3.4/TA2CLK/SMCLK/S27 P3.5/TA2.0/S26 P3.6/TA2.1/S25 P3.7/TA2.2/S24 P3DS.x 0: Low drive 1: High drive P3SEL.x P3IN.x Bus Keeper EN D Module X IN P3IE.x EN P3IRQ.x Q P3IFG.x P3SEL.x P3IES.x Set Interrupt Edge Select Figure 9-5. Port P3 (P3.0 to P3.7) Diagram 100 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 Table 9-18. Port P3 (P3.0 to P3.7) Pin Functions CONTROL BITS OR SIGNALS(1) PIN NAME (P3.x) x FUNCTION P3.0 (I/O) P3.0/TA1CLK/CBOUT/S31 0 1 2 0 0 0 1 0 CBOUT 1 1 0 S31 X X 1 I: 0; O: 1 0 0 Timer TA1.CCI0A capture input 0 1 0 Timer TA1.0 output 1 1 0 S30 X X 1 I: 0; O: 1 0 0 Timer TA1.CCI1A capture input 0 1 0 Timer TA1.1 output 1 1 0 S29 X X 1 I: 0; O: 1 0 0 Timer TA1.CCI2A capture input 0 1 0 Timer TA1.2 output 1 1 0 P3.3 (I/O) P3.3/TA1.2/S28 3 S28 X X 1 I: 0; O: 1 0 0 Timer TA2.TA2CLK 0 1 0 SMCLK 1 1 0 S27 X X 1 P3.4 (I/O) P3.4/TA2CLK/SMCLK/S27 4 P3.5 (I/O) P3.5/TA2.0/S26 5 I: 0; O: 1 0 0 Timer TA2.CCI0A capture input 0 1 0 Timer TA2.0 output 1 1 0 S26 X X 1 I: 0; O: 1 0 0 Timer TA2.CCI1A capture input 0 1 0 Timer TA2.1 output 1 1 1 S25 X X 1 I: 0; O: 1 0 0 Timer TA2.CCI2A capture input 0 1 0 Timer TA2.2 output 1 1 0 S24 X X 1 P3.6 (I/O) P3.6/TA2.1/S25 6 P3.7 (I/O) P3.7/TA2.2/S24 (1) 7 LCDS24 to LCDS31 I: 0; O: 1 P3.2 (I/O) P3.2/TA1.1/S29 P3SEL.x Timer TA1.TA1CLK P3.1 (I/O) P3.1/TA1.0/S30 P3DIR.x X= don't care Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 101 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 9.13.4 Port P4 (P4.0 to P4.7) Input/Output With Schmitt Trigger Figure 9-6 shows the port diagram. Table 9-19 summarizes the selection of the port function. Pad Logic S16...S23 LCDS16...LCDS23 P4REN.x P4DIR.x 0 0 Module X OUT 1 0 DVCC 1 P4DS.x 0: Low drive 1: High drive P4SEL.x P4IN.x Bus Keeper EN Module X IN 1 Direction 0: Input 1: Output 1 P4OUT.x DVSS P4.0/TB0.0/S23 P4.1/TB0.1/S22 P4.2/TB0.2/S21 P4.3/TB0.3/S20 P4.4/TB0.4/S19 P4.5/TB0.5/S18 P4.6/TB0.6/S17 P4.7/TB0OUTH/SVMOUT/S16 D P4IE.x EN P4IRQ.x Q P4IFG.x P4SEL.x P4IES.x Set Interrupt Edge Select Figure 9-6. Port P4 (P4.0 to P4.7) Diagram 102 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 Table 9-19. Port P4 (P4.0 to P4.7) Pin Functions CONTROL BITS OR SIGNALS(1) PIN NAME (P4.x) x FUNCTION P4.0 (I/O) P4.0/TB0.0/S23 0 1 0 0 0 1 0 Timer TB0.0 output(2) 1 1 0 S23 X X 1 0 I: 0; O: 1 0 Timer TB0.CCI1A capture input 0 1 0 Timer TB0.1 output(2) 1 1 0 X X 1 I: 0; O: 1 0 0 P4.2 (I/O) 2 Timer TB0.CCI2A capture input 0 1 0 Timer TB0.2 output(2) 1 1 0 S21 X X 1 I: 0; O: 1 0 0 Timer TB0.CCI3A capture input 0 1 0 Timer TB0.3 output(2) 1 1 0 P4.3 (I/O) P4.3/TB0.3/S20 3 S20 X X 1 I: 0; O: 1 0 0 Timer TB0.CCI4A capture input 0 1 0 Timer TB0.4 output(2) 1 1 0 S19 X X 1 0 P4.4 (I/O) P4.4/TB0.4/S19 4 P4.5 (I/O) P4.5/TB0.5/S18 5 I: 0; O: 1 0 Timer TB0.CCI5A capture input 0 1 0 Timer TB0.5 output(2) 1 1 0 X X 1 I: 0; O: 1 0 0 S18 P4.6 (I/O) P4.6/TB0.6/S17 6 Timer TB0.CCI6A capture input 0 1 0 Timer TB0.6 output(2) 1 1 0 S17 X X 1 I: 0; O: 1 0 0 Timer TB0.TB0OUTH 0 1 0 SVMOUT 1 1 0 S16 X X 1 P4.7 (I/O) P4.7/TB0OUTH/ SVMOUT/S16 (1) (2) 7 LCDS16 to LCDS23 I: 0; O: 1 S22 P4.2/TB0.2/S21 P4SEL.x Timer TB0.CCI0A capture input P4.1 (I/O) P4.1/TB0.1/S22 P4DIR.x X= don't care Setting TB0OUTH causes all Timer_B configured outputs to be set to high impedance. Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 103 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 9.13.5 Port P5 (P5.0) Input/Output With Schmitt Trigger Figure 9-7 shows the port diagram. Table 9-20 summarizes the selection of the port function. Pad Logic To/From Reference P5REN.x P5DIR.x DVSS 0 DVCC 1 1 0 1 P5OUT.x 0 Module X OUT 1 P5.0/VREFBG/VeREF+ P5DS.x 0: Low drive 1: High drive P5SEL.x P5IN.x Bus Keeper EN Module X IN D Figure 9-7. Port P5 (P5.0) Diagram Table 9-20. Port P5 (P5.0) Pin Functions PIN NAME (P5.x) x FUNCTION P5.0 P5.0/VREFBG/VeREF+ (1) (2) (3) (4) (5) (6) 104 0 (I/O)(2) CONTROL BITS OR SIGNALS(1) P5DIR.x P5SEL.x REFOUT REFON(5) CTSD16REFS(6) I: 0; O: 1 0 X X X VeREF+(3) X 1 0 X 0 VREFBG(4) X 1 1 1 1 X = Don't care Default condition Setting the P5SEL.0 bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. An external voltage can be applied to VeREF+ and used as the reference for the CTSD16 or DAC. Setting the P5SEL.0 bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. The internal reference voltage signal, VREFBG, is available at the pin. If a module is requesting a reference then REFON need not be set to 1 for VREFBG to be selected on P5.0. If CTSD16 is active, this bit must be set as shown in the table. Otherwise if set to 1, it will force VREFBG to be selected regardless of REFOUT setting and if P5SEL.x is set to 0 it will cause possible contention on the I/O. Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 9.13.6 Port P5 (P5.1 and P5.6) Input/Output With Schmitt Trigger Figure 9-8 shows the port diagram. Table 9-21 summarizes the selection of the port function. 0 Dvss 1 From DAC12_A 2 Pad Logic 0 if DAC12AMPx=0 1 if DAC12AMPx=1 2 if DAC12AMPx>1 To ADC INCHx = y DAC12AMPx>0 DAC12OPS P5REN.x DVSS 0 DVCC 1 1 P5DIR.x P5OUT.x P5.1/A4/DAC0 P5.6/A5/DAC1 P5DS.x 0: Low drive 1: High drive P5SEL.x P5IN.x Bus Keeper Figure 9-8. Port P5 (P5.1 and P5.6) Diagram Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 105 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 Table 9-21. Port P5 (P5.1 and P5.6) Pin Functions PIN NAME (P6.x) x FUNCTION P5DIR.x P5SEL.x DAC12OPS DAC12AMPx I: 0; O: 1 0 X 0 A4(2) (3) X 1 X 0 DAC0 X X 0 >1 P5.1(I/O) P5.1/A4/DAC0 1 P5.6(I/O) P5.6/A5/DAC1 (1) (2) (3) 106 1 CONTROL BITS OR SIGNALS(1) I: 0; O: 1 0 X 0 A5(2) (3) X 1 X 0 DAC1 X X 0 >1 X = Don't care Setting the P5SEL.x bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. The ADC channel Ax is connected internally to AVSS if not selected by the respective INCHx bits. Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 9.13.7 Port P5 (P5.3 to P5.5, P5.7) Input/Output With Schmitt Trigger Figure 9-9 shows the port diagram. Table 9-22 summarizes the selection of the port function. Pad Logic S40...S42 LCDS40...LCDS42 P5REN.x P5DIR.x 0 0 Module X OUT 1 0 DVCC 1 1 Direction 0: Input 1: Output 1 P5OUT.x DVSS P5.3/COM1/S42 P5.4/COM2/S41 P5.5/COM3/S40 P5.7/DMAE0/RTCCLK P5DS.x 0: Low drive 1: High drive P5SEL.x P5IN.x Bus Keeper EN Module X IN D Figure 9-9. Port P5 (P5.3 to P5.5 and P5.7) Diagram Table 9-22. Port P5 (P5.3 to P5.5, P5.7) Pin Functions CONTROL BITS OR SIGNALS(1) PIN NAME (P5.x) x FUNCTION P5.3 (I/O) P5.3/COM1/S42 3 COM1 S42 P5.4 (I/O) P5.4/COM2/S41 4 COM2 S41 P5.5 (I/O) P5.5/COM3/S40 5 COM3 S40 7 P5SEL.x I: 0; O: 1 0 0 X 1 X 1 X 0 I: 0; O: 1 0 0 X 1 X 1 X 0 I: 0; O: 1 0 0 X 1 X X 0 1 I: 0; O: 1 0 na DMAE0 0 1 na RTCCLK 1 1 na P5.7 (I/O) P5.7/DMAE0/RTCCLK LCDS40 to LCDS42 P5DIR.x Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 107 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 9.13.8 Port P6 (P6.0 to P6.1) Input/Output With Schmitt Trigger Figure 9-10 shows the port diagram. Table 9-23 summarizes the selection of the port function. Pad Logic To ADC INCHx = y To Comparator_B From Comparator_B CBPD.x P6REN.x DVSS 0 DVCC 1 1 P6DIR.x P6OUT.x P6.0/CB0/A0 P6.1/CB1/A1 P6DS.x 0: Low drive 1: High drive P6SEL.x P6IN.x Bus Keeper Figure 9-10. Port P6 (P6.0 to P6.1) Diagram Table 9-23. Port P6 (P6.0 to P6.1) Pin Functions PIN NAME (P6.x) x FUNCTION P6DIR.x P6SEL.x CBPD.x I: 0; O: 1 0 0 CB0 X X 1 A0(2) (3) X 1 X I: 0; O: 1 0 0 CB1 X X 1 A1(2) (3) X 1 X P6.0 (I/O) P6.0/CB0/A0 0 P6.1 (I/O) P6.1/CB1/A1 (1) (2) (3) 108 1 CONTROL BITS OR SIGNALS(1) X= Don't care Setting the P6SEL.x bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. The ADC channel Ax is connected internally to AVSS if not selected by the respective INCHx bits. Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 9.13.9 Port P6 (P6.2 and P6.3) Input/Output With Schmitt Trigger Figure 9-11 shows the port diagram. Table 9-24 summarizes the selection of the port function. Pad Logic To ADC INCHx = y To Comparator_B From Comparator_B CBPD.x P6REN.x DVSS 0 DVCC 1 1 P6DIR.x P6.2/CB2/A2/OA0IP0 P6.3/CB3/A3/OA1IP1 P6OUT.x P6DS.x 0: Low drive 1: High drive P6SEL.x P6IN.x Bus Keeper + OAx - Figure 9-11. Port P6 (P6.2 and P6.3) Diagram Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 109 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 Table 9-24. Port P6 (P6.2 and P6.3) Pin Functions PIN NAME (P6.x) x FUNCTION P6.2 (I/O) P6.2/CB2/A2/OA0IP0 P6.3/CB3/A3/OA1IP0 (1) (2) (3) 110 2 3 CONTROL BITS OR SIGNALS(1) P6DIR.x P6SEL.x(3) CBPD.x(3) 0 I: 0; O: 1 0 CB2 X X 1 A2 (2) X 1 X OA0IP0(3) X 1 X P6.2 (I/O) I: 0; O: 1 0 0 CB3 X X 1 A3 (3) X 1 X OA1IP0(3) X 1 X X = Don't care The ADC channel Ax is connected internally to AVSS if not selected by the respective INCHx bits. Setting the P6SEL.x bit or CBPD.x bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 9.13.10 Port P6 (P6.4) Input/Output With Schmitt Trigger Figure 9-12 shows the port diagram. Table 9-25 summarizes the selection of the port function. Pad Logic To ADC INCHx = y To Comparator_B From Comparator_B CBPD.x OAMx P6REN.x DVSS 0 DVCC 1 1 P6DIR.x P6.4/CB4/AD0+/OA0O P6OUT.x P6DS.x 0: Low drive 1: High drive P6SEL.x P6IN.x Bus Keeper + OA0 - Figure 9-12. Port P6 (P6.4) Diagram Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 111 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 Table 9-25. Port P6 (P6.4) Pin Functions PIN NAME (P6.x) x FUNCTION P6DIR.x P6SEL.x(3) CBPD.x(3) OAMx I: 0; O: 1 0 0 0(4) CB4 X X 1 0(4) AD0+ (2) X 1 X 0(4) OA0O X X X = 1(4) P6.4 (I/O) P6.4/CB4/AD0+/OA0O (1) (2) (3) (4) 112 4 CONTROL BITS OR SIGNALS(1) X = Don't care The ADC channel Ax is connected internally to AVSS if not selected by the respective INCHx bits. Setting the P6SEL.x bit, the CBPD.x bit, or the OAMx bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. Setting OAMx = 0 disables the operational amplifier and its output is high impedance. Setting OAMx = 1 enables the operational amplifier output. Because the operational amplifier output is shared with the ADC channel, selection of the respective ADC channel allows for direct measurement of the output voltage of the amplifier. Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 9.13.11 Port P6 (P6.5) Input/Output With Schmitt Trigger Figure 9-13 shows the port diagram. Table 9-26 summarizes the selection of the port function. Pad Logic To ADC INCHx = y To Comparator_B From Comparator_B CBPD.x P6REN.x DVSS 0 DVCC 1 1 P6DIR.x P6.5/CB5/AD0-/OA0IN0 P6OUT.x P6DS.x 0: Low drive 1: High drive P6SEL.x P6IN.x Bus Keeper + OA0 - Figure 9-13. Port P6 (P6.5) Diagram Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 113 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 Table 9-26. Port P6 (P6.5) Pin Functions PIN NAME (P6.x) x FUNCTION P6.5 (I/O) P6.5/CB5/AD0-/OA0IN0 (1) (2) (3) 114 5 CONTROL BITS OR SIGNALS(1) P6DIR.x P6SEL.x(3) CBPD.x(3) 0 I: 0; O: 1 0 CB5 X X 1 AD0- (2) X 1 X OA0IN0(3) X 1 X X = Don't care The ADC channel Ax is connected internally to AVSS if not selected by the respective INCHx bits. Setting the P6SEL.x bit or CBPD.x bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 9.13.12 Port P6 (P6.6) Input/Output With Schmitt Trigger Figure 9-14 shows the port diagram. Table 9-27 summarizes the selection of the port function. Pad Logic To ADC INCHx = y To Comparator_B From Comparator_B CBPD.x GSW0 P6REN.x DVSS 0 DVCC 1 1 P6DIR.x P6.6/CB6/AD1+/G0SW0 P6OUT.x P6DS.x 0: Low drive 1: High drive P6SEL.x P6IN.x Bus Keeper + OA0 - GSW0 GSW1 to P6.7 Figure 9-14. Port P6 (P6.6) Diagram Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 115 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 Table 9-27. Port P6 (P6.6) Pin Functions PIN NAME (P6.x) x FUNCTION P6.6 (I/O) P6.6/CB6/AD1+/G0SW0 (1) (2) (3) (4) 116 6 CONTROL BITS OR SIGNALS(1) P6DIR.x P6SEL.x(3) CBPD.x(3) GSW0(3) I: 0; O: 1 0 0 0 CB6 X X 1 0 AD1+ (2) X 1 X 0 G0SW0(4) X X X 1 X = Don't care The ADC channel Ax is connected internally to AVSS if not selected by the respective INCHx bits. Setting the P6SEL.x bit, the CBPD.x bit, or the GSW0 bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. Setting GSW0 = 1 closes the switch and forces the pin to be switched to ground. All switches are independent of each other, so different settings can impose different voltages on the pin. Application must ensure there are no conflicts. Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 9.13.13 Port P6 (P6.7) Input/Output With Schmitt Trigger Figure 9-15 shows the port diagram. Table 9-28 summarizes the selection of the port function. Pad Logic To ADC INCHx = y To Comparator_B From Comparator_B CBPD.x GSW1 P6REN.x DVSS 0 DVCC 1 1 P6DIR.x P6.7/CB7/AD1-/G0SW1 P6OUT.x P6DS.x 0: Low drive 1: High drive P6SEL.x P6IN.x Bus Keeper + OA0 - GSW0 to P6.6 GSW1 Figure 9-15. Port P6 (P6.7) Diagram Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 117 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 Table 9-28. Port P6 (P6.7) Pin Functions PIN NAME (P6.x) x FUNCTION P6.7 (I/O) P6.7/CB7/AD1-/G0SW1 (1) (2) (3) 118 7 CONTROL BITS OR SIGNALS(1) P6DIR.x P6SEL.x(3) CBPD.x(3) GSW1(3) I: 0; O: 1 0 0 0 CB7 X X 1 0 AD1- (2) X 1 X 0 G0SW1(3) X X X 1 X = Don't care The ADC channel Ax is connected internally to AVSS if not selected by the respective INCHx bits. Setting GSW1 = 1 closes the switch and forces the pin to be switched to ground. All switches are independent of each other, so different settings can impose different voltages on the pin. Application must ensure there are no conflicts. Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 9.13.14 Port P7 (P7.2 and P7.3) Input/Output With Schmitt Trigger Figure 9-16 and Figure 9-17 show the port diagrams. Table 9-29 summarizes the selection of the port function. Pad Logic To XT2 P7REN.2 P7DIR.2 DVSS 0 DVCC 1 1 0 1 P7OUT.2 P7.2/XT2IN P7DS.2 0: Low drive 1: High drive P7SEL.2 P7IN.2 Bus Keeper Figure 9-16. Port P7 (P7.2) Diagram Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 119 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 Pad Logic To XT2 P7REN.3 P7DIR.3 DVSS 0 DVCC 1 1 0 1 P7OUT.3 P7SEL.2 P7.3/XT2OUT P7DS.3 0: Low drive 1: High drive XT2BYPASS P7SEL.3 P7IN.3 Bus Keeper Figure 9-17. Port P7 (P7.3) Diagram Table 9-29. Port P7 (P7.2 and P7.3) Pin Functions PIN NAME (P7.x) x FUNCTION P7.2 (I/O) P7.2/XT2IN 2 3 (3) 120 P7SEL.3 XT2BYPASS I: 0; O: 1 0 X X X 1 X 0 XT2IN bypass mode(2) X 1 X 1 I: 0; O: 1 0 X X X 1 X 0 X 1 X 1 XT2OUT crystal mode(3) P7.3 (1) (2) P7SEL.2 XT2IN crystal mode(2) P7.3 (I/O) P7.3/XT2OUT CONTROL BITS OR SIGNALS(1) P7DIR.x (I/O)(3) X= Don't care Setting P7SEL.2 causes the general-purpose I/O to be disabled. Pending the setting of XT2BYPASS, P7.2 is configured for crystal mode or bypass mode. Setting P7SEL.2 causes the general-purpose I/O to be disabled in crystal mode. When using bypass mode, P7.3 can be used as general-purpose I/O. Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 9.13.15 Port P7 (P7.4) Input/Output With Schmitt Trigger Figure 9-18 shows the port diagram. Table 9-30 summarizes the selection of the port function. Pad Logic To ADC INCHx = y To Comparator_B From Comparator_B CBPD.x OAMx P7REN.x DVSS 0 DVCC 1 1 P7DIR.x P7.4/CB8/AD2+/OA1O P7OUT.x P7DS.x 0: Low drive 1: High drive P7SEL.x P7IN.x Bus Keeper + OA1 - Figure 9-18. Port P7 (P7.4) Diagram Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 121 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 Table 9-30. Port P7 (P7.4) Pin Functions PIN NAME (P6.x) x FUNCTION P6DIR.x P7SEL.x(3) CBPD.x(3) OAMx(3) I: 0; O: 1 0 0 0(3) CB8 X X 1 0(3) AD2+ (2) X 1 X 0(3) OA1O X X X 1(3) P7.4 (I/O) P7.4/CB8/AD2+/OA1O (1) (2) (3) 122 4 CONTROL BITS OR SIGNALS(1) X = Don't care The ADC channel Ax is connected internally to AVSS if not selected by the respective INCHx bits. Setting OAMx = 0 disables the operational amplifier and its output is high impedance. Setting OAMx = 1 enables the operational amplifier output. Because the operational amplifier output is shared with the ADC channel, selection of the respective ADC channel allows for direct measurement of the output voltage of the amplifier. Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 9.13.16 Port P7 (P7.5) Input/Output With Schmitt Trigger Figure 9-19 shows the port diagram. Table 9-31 summarizes the selection of the port function. Pad Logic To ADC INCHx = y To Comparator_B From Comparator_B CBPD.x P7REN.x DVSS 0 DVCC 1 1 P7DIR.x P7.5/CB9/AD2-/OA1IN0 P7OUT.x P7DS.x 0: Low drive 1: High drive P7SEL.x P7IN.x Bus Keeper + OA1 - Figure 9-19. Port P7 (P7.5) Diagram Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 123 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 Table 9-31. Port P7 (P7.5) Pin Functions PIN NAME (P7.x) x FUNCTION P7.5 (I/O) P7.5/CB9/AD2-/OAIN0 (1) (2) (3) 124 5 CONTROL BITS OR SIGNALS(1) P7DIR.x P7SEL.x(3) CBPD.x(3) 0 I: 0; O: 1 0 CB9 X X 1 AD2- (2) X 1 X OAIN0(3) X 1 X X = Don't care The ADC channel Ax is connected internally to AVSS if not selected by the respective INCHx bits. Setting the P7SEL.x bit or the CBPD.x bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 9.13.17 Port P7 (P7.6) Input/Output With Schmitt Trigger Figure 9-20 shows the port diagram. Table 9-32 summarizes the selection of the port function. Pad Logic To ADC INCHx = y To Comparator_B From Comparator_B CBPD.x GSW0 P7REN.x DVSS 0 DVCC 1 1 P7DIR.x P7.6/CB10/AD3+/G1SW0 P7OUT.x P7DS.x 0: Low drive 1: High drive P7SEL.x P7IN.x Bus Keeper + OA1 - GSW0 GSW1 to P7.7 Figure 9-20. Port P7 (P7.6) Diagram Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 125 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 Table 9-32. Port P7 (P7.6) Pin Functions PIN NAME (P7.x) x FUNCTION P7.6 (I/O) P7.6/CB10/AD3+/G1SW0 (1) (2) (3) (4) 126 6 CONTROL BITS OR SIGNALS(1) P6DIR.x P7SEL.x(3) CBPD.x(3) GSW0(3) 0 I: 0; O: 1 0 0 CB10 X X 1 0 AD3+ (2) X 1 X 0 G1SW0(4) X X X 1 X = Don't care The ADC channel Ax is connected internally to AVSS if not selected by the respective INCHx bits. Setting the P7SEL.x bit, the CBPD.x bit, or the GSW0 disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. Setting GSW0 = 1 closes the switch and forces the pin to be switched to ground. All switches are independent of each other, so different settings can impose different voltages on the pin. Application must ensure there are no conflicts. Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 9.13.18 Port P7 (P7.7) Input/Output With Schmitt Trigger Figure 9-21 shows the port diagram. Table 9-33 summarizes the selection of the port function. Pad Logic To ADC INCHx = y To Comparator_B From Comparator_B CBPD.x GSW1 P7REN.x DVSS 0 DVCC 1 1 P7DIR.x P7.7/CB11/AD3-/G1SW1 P7OUT.x P7DS.x 0: Low drive 1: High drive P7SEL.x P7IN.x Bus Keeper + OA1 - GSW0 to P7.6 GSW1 Figure 9-21. Port P7 (P7.7) Diagram Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 127 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 Table 9-33. Port P7 (P7.7) Pin Functions PIN NAME (P7.x) x FUNCTION P7.7 (I/O) P7.7/CB11/AD3-/G1SW1 (1) (2) (3) (4) 128 7 CONTROL BITS OR SIGNALS(1) P6DIR.x P7SEL.x(3) CBPD.x(3) GSW1(3) I: 0; O: 1 0 0 0 CB11 X X 1 0 AD3- (2) X 1 X 0 G1SW1(4) X X X 1 X = Don't care The ADC channel Ax is connected internally to AVSS if not selected by the respective INCHx bits. Setting the P7SEL.x bit, the CBPD.x bit, or the GSW1 bit disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. Setting GSW1 = 1 closes the switch and forces the pin to be switched to ground. All switches are independent of each other, so different settings can impose different voltages on the pin. Application must ensure there are no conflicts. Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 9.13.19 Port P8 (P8.0 to P8.7) Input/Output With Schmitt Trigger Figure 9-22 shows the port diagram. Table 9-34 summarizes the selection of the port function. Pad Logic S8...S15 LCDS8...LCDS15 P8REN.x P8DIR.x 0 From module 1 P8OUT.x 0 Module X OUT 1 DVSS 0 DVCC 1 Direction 0: Input 1: Output P8DS.x 0: Low drive 1: High drive P8SEL.x P8IN.x Bus Keeper EN Module X IN 1 P8.0/TB0CLK/S15 P8.1/UCB1STE/UCA1CLK/S14 P8.2/UCA1TXD/UCA1SIMO/S13 P8.3/UCA1RXD/UCA1SOMI/S12 P8.4/UCB1CLK/UCA1STE/S11 P8.5/UCB1SIMO//UCB1SDA/S10 P8.6/UCB1SOMI/UCB1SCL/S9 P8.7/S8 D Figure 9-22. Port P8 (P8.0 to P8.7) Diagram Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 129 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 Table 9-34. Port P8 (P8.0 to P8.7) Pin Functions PIN NAME (P9.x) x FUNCTION P8DIR.x P8SEL.x LCDS8 to 16 I: 0; O: 1 0 0 Timer TB0.TB0CLK clock input 0 1 0 S15 X X 1 I: 0; O: 1 0 0 X 1 0 P8.0 (I/O) P8.0/TB0CLK/S15 0 P8.1 (I/O) P8.1/UCB1STE/UCA1CLK/S14 1 UCB1STE/UCA1CLK S14 X X 1 I: 0; O: 1 0 0 UCA1TXD/UCA1SIMO X 1 0 S13 X X 1 I: 0; O: 1 0 0 P8.2 (I/O) P8.2/UCA1TXD/UCA1SIMO/S13 2 P8.3 (I/O) P8.3/UCA1RXD/UCA1SOMI/S12 3 UCA1RXD/UCA1SOMI X 1 0 S12 X X 1 I: 0; O: 1 0 0 UCB1CLK/UCA1STE X 1 0 S11 X X 1 P8.4 (I/O) P8.4/UCB1CLK/UCA1STE/S11 4 P8.5 (I/O) P8.5/UCB1SIMO/UCB1SDA/S10 5 I: 0; O: 1 0 0 UCB1SIMO/UCB1SDA X 1 0 S10 X X 1 I: 0; O: 1 0 0 UCB1SOMI/UCB1SCL X 1 0 S9 X X 1 I: 0; O: 1 0 0 X X 1 P8.6 (I/O) P8.6/UCB1SOMI/UCB1SCL/S9 P8.7/S8 (1) 130 6 7 CONTROL BITS OR SIGNALS(1) P8.7 (I/O) S8 X= don't care Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 9.13.20 Port P9 (P9.0 to P9.7) Input/Output With Schmitt Trigger Figure 9-23 shows the port diagram. Table 9-35 summarizes the selection of the port function. Pad Logic S0...S7 LCDS0...LCDS7 P9REN.x DVSS 0 DVCC 1 1 Direction 0: Input 1: Output P9DIR.x P9OUT.x P9.0/S7 P9.1/S6 P9.2/S5 P9.3/S4 P9.4/S3 P9.5/S2 P9.6/S1 P9.7/S0 P9DS.x 0: Low drive 1: High drive P9IN.x Bus Keeper Figure 9-23. Port P9 (P9.0 to P9.7) Diagram Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 131 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 Table 9-35. Port P9 (P9.0 to P9.7) Pin Functions CONTROL BITS OR SIGNALS(1) PIN NAME (P9.x) P9.0/S7 x 0 P9.1/S6 1 P9.2/S5 2 P9.3/S4 P9.4/S3 P9.5/S2 P9.6/S1 P9.7/S0 (1) 132 3 4 5 6 7 FUNCTION P9.0 (I/O) S7 P9.1 (I/O) S6 P9.2 (I/O) S5 P9.3 (I/O) S4 P9.4 (I/O) S3 P9.5 (I/O) S2 P9.6 (I/O) S1 P9.7 (I/O) S0 P9SEL.x LCDS0 to LCDS7 I: 0; O: 1 0 0 X X 1 I: 0; O: 1 0 0 X X 1 I: 0; O: 1 0 0 X X 1 I: 0; O: 1 0 0 X X 1 I: 0; O: 1 0 0 P9DIR.x X X 1 I: 0; O: 1 0 0 X X 1 I: 0; O: 1 0 0 X X 1 I: 0; O: 1 0 0 X X 1 X= don't care Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 9.13.21 Port U (PU.0/DP, PU.1/DM, PUR) USB Ports for MSP430FG662x Figure 9-24 shows the port diagram. Table 9-36 and Table 9-37 summarize the port function selection. PUSEL PUOPE 0 USB output enable 1 PUOUT0 0 USB DP output 1 VUSB VSSU Pad Logic PU.0/DP PUIN0 USB DP input PUIPE PUIN1 USB DM input PUOUT1 0 USB DM output 1 PU.1/DM VUSB VSSU Pad Logic PUREN PUR “1 ” PUSEL PURIN Figure 9-24. Port U (PU.0 and PU.1) Diagram Table 9-36. Port U (PU.0/DP, PU.1/DM) Output Functions for MSP430FG662x CONTROL BITS PIN NAME FUNCTION PUSEL PUDIR PUOUT1 PUOUT0 PU.1/DM PU.0/DP 0 0 X X Hi-Z Hi-Z Outputs off 0 1 0 0 0 0 Outputs enabled 0 1 0 1 0 1 Outputs enabled 0 1 1 0 1 0 Outputs enabled 0 1 1 1 1 1 Outputs enabled 1 X X X DM DP Direction set by USB module Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 133 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 Table 9-37. Port U (PUR) Input Functions CONTROL BITS FUNCTION PUSEL PUREN 0 0 Input disabled Pullup disabled 0 1 Input disabled Pullup enabled 1 0 Input enabled Pullup disabled 1 1 Input enabled Pullup enabled 9.13.22 Port J (J.0) JTAG Pin TDO, Input/Output With Schmitt Trigger or Output Figure 9-25 shows the port diagram. Table 9-38 summarizes the selection of the port function. Pad Logic PJREN.0 PJDIR.0 0 DVCC 1 PJOUT.0 0 From JTAG 1 DVSS 0 DVCC 1 1 PJDS.0 0: Low drive 1: High drive From JTAG PJ.0/TDO PJIN.0 EN D Figure 9-25. Port PJ (PJ.0) Diagram 134 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 9.13.23 Port J (J.1 to J.3) JTAG Pins TMS, TCK, TDI/TCLK, Input/Output With Schmitt Trigger or Output Figure 9-26 shows the port diagram. Table 9-38 summarizes the selection of the port function. Pad Logic PJREN.x PJDIR.x 0 DVSS 1 PJOUT.x 0 From JTAG 1 DVSS 0 DVCC 1 1 PJ.1/TDI/TCLK PJ.2/TMS PJ.3/TCK PJDS.x 0: Low drive 1: High drive From JTAG PJIN.x EN To JTAG D Figure 9-26. Port PJ (PJ.1 to PJ.3) Diagram Table 9-38. Port PJ (PJ.0 to PJ.3) Pin Functions PIN NAME (PJ.x) x CONTROL BITS OR SIGNALS(1) FUNCTION PJDIR.x PJ.0/TDO PJ.1/TDI/TCLK PJ.2/TMS PJ.3/TCK (1) (2) (3) (4) 0 1 2 3 PJ.0 (I/O)(2) I: 0; O: 1 TDO(3) PJ.1 X (I/O)(2) I: 0; O: 1 TDI/TCLK(3) (4) PJ.2 X (I/O)(2) I: 0; O: 1 TMS(3) (4) PJ.3 X (I/O)(2) I: 0; O: 1 TCK(3) (4) X X= don't care Default condition The pin direction is controlled by the JTAG module. In JTAG mode, pullups are activated automatically on TMS, TCK, and TDI/TCLK. PJREN.x are don't care. Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 135 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 9.14 Device Descriptors Table 9-39 summarizes the contents of the device descriptor tag-length-value (TLV) structure. Table 9-39. Device Descriptor Table DESCRIPTION Info Block Die Record CTSD16 Calibration VALUE ADDRESS SIZE (bytes) FG6626 FG6625 FG6426 FG6425 Info length 01A00h 1 06h 06h 06h 06h CRC length 01A01h 1 06h 06h 06h 06h CRC value 01A02h 2 Per unit Per unit Per unit Per unit Device ID 01A04h 2 8234h 8235h 8236h 8237h Hardware revision 01A06h 1 Per unit Per unit Per unit Per unit Firmware revision 01A07h 1 Per unit Per unit Per unit Per unit Die record tag 01A08h 1 08h 08h 08h 08h Die record length 01A09h 1 0Ah 0Ah 0Ah 0Ah Lot/wafer ID 01A0Ah 4 Per unit Per unit Per unit Per unit Die X position 01A0Eh 2 Per unit Per unit Per unit Per unit Die Y position 01A10h 2 Per unit Per unit Per unit Per unit Test results 01A12h 2 Per unit Per unit Per unit Per unit CTSD16 calibration tag 01A14h 1 1Dh 1Dh 1Dh 1Dh CTSD16 calibration length 01A15h 1 0Ch 0Ch 0Ch 0Ch CTSD16 gain factor gain = 1 01A16h 2 Per unit Per unit Per unit Per unit CTSD16 gain factor gain = 16 01A18h 2 Per unit Per unit Per unit Per unit CTSD16 offset gain = 1 01A1Ah 2 Per unit Per unit Per unit Per unit CTSD16 offset gain = 16 01A1Ch 2 Per unit Per unit Per unit Per unit CTSD16 internal reference temperature sensor 30°C 01A1Eh 2 Per unit Per unit Per unit Per unit CTSD16 internal reference temperature sensor 85°C 01A20h 2 Per unit Per unit Per unit Per unit 9.15 Memory Table 9-40 summarizes the memory organization for all devices. Table 9-40. Memory Organization VALUE(1) (2) Memory (flash) Main: interrupt vector MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 Total Size 128KB 00FFFFh to 00FF80h 64KB 00FFFFh to 00FF80h 128KB 00FFFFh to 00FF80h 64KB 00FFFFh to 00FF80h Bank 3 32KB 0243FFh to 01C400h NA 32KB 0243FFh to 01C400h NA Bank 2 32KB 01C3FFh to 014400h NA 32KB 01C3FFh to 014400h NA Bank 1 32KB 0143FFh to 00C400h 32KB 0143FFh to 00C400h 32KB 0143FFh to 00C400h 32KB 0143FFh to 00C400h Bank 0 32KB 00C3FFh to 004400h 32KB 00C3FFh to 004400h 32KB 00C3FFh to 004400h 32KB 00C3FFh to 004400h Sector 3 2KB 0043FFh to 003C00h 2KB 0043FFh to 003C00h 2KB 0043FFh to 003C00h 2KB 0043FFh to 003C00h Sector 2 2KB 003BFFh to 003400h 2KB 003BFFh to 003400h 2KB 003BFFh to 003400h 2KB 003BFFh to 003400h Sector 1 2KB 0033FFh to 002C00h 2KB 0033FFh to 002C00h 2KB 0033FFh to 002C00h 2KB 0033FFh to 002C00h Main: code memory RAM 136 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 Table 9-40. Memory Organization (continued) VALUE(1) (2) MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 Sector 0 2KB 002BFFh to 002400h 2KB 002BFFh to 002400h 2KB 002BFFh to 002400h 2KB 002BFFh to 002400h RAM(3) Sector 7 NA NA 2KB 0023FFh to 001C00h 2KB 0023FFh to 001C00h USB RAM(4) Sector 7 2KB 0023FFh to 001C00h 2KB 0023FFh to 001C00h NA NA A 128 bytes 001BFFh to 001B80h 128 bytes 001BFFh to 001B80h 128 bytes 001BFFh to 001B80h 128 bytes 001BFFh to 001B80h B 128 bytes 001B7Fh to 001B00h 128 bytes 001B7Fh to 001B00h 128 bytes 001B7Fh to 001B00h 128 bytes 001B7Fh to 001B00h C 128 bytes 001AFFh to 001A80h 128 bytes 001AFFh to 001A80h 128 bytes 001AFFh to 001A80h 128 bytes 001AFFh to 001A80h D 128 bytes 001A7Fh to 001A00h 128 bytes 001A7Fh to 001A00h 128 bytes 001A7Fh to 001A00h 128 bytes 001A7Fh to 001A00h Info A 128 bytes 0019FFh to 001980h 128 bytes 0019FFh to 001980h 128 bytes 0019FFh to 001980h 128 bytes 0019FFh to 001980h Info B 128 bytes 00197Fh to 001900h 128 bytes 00197Fh to 001900h 128 bytes 00197Fh to 001900h 128 bytes 00197Fh to 001900h Info C 128 bytes 0018FFh to 001880h 128 bytes 0018FFh to 001880h 128 bytes 0018FFh to 001880h 128 bytes 0018FFh to 001880h Info D 128 bytes 00187Fh to 001800h 128 bytes 00187Fh to 001800h 128 bytes 00187Fh to 001800h 128 bytes 00187Fh to 001800h BSL 3 512 bytes 0017FFh to 001600h 512 bytes 0017FFh to 001600h 512 bytes 0017FFh to 001600h 512 bytes 0017FFh to 001600h BSL 2 512 bytes 0015FFh to 001400h 512 bytes 0015FFh to 001400h 512 bytes 0015FFh to 001400h 512 bytes 0015FFh to 001400h BSL 1 512 bytes 0013FFh to 001200h 512 bytes 0013FFh to 001200h 512 bytes 0013FFh to 001200h 512 bytes 0013FFh to 001200h BSL 0 512 bytes 0011FFh to 001000h 512 bytes 0011FFh to 001000h 512 bytes 0011FFh to 001000h 512 bytes 0011FFh to 001000h Size 4KB 000FFFh to 000000h 4KB 000FFFh to 000000h 4KB 000FFFh to 000000h 4KB 000FFFh to 000000h TI factory memory (ROM) Information memory (flash) Bootloader (BSL) memory (flash) Peripherals (1) (2) (3) (4) N/A = Not available. Backup RAM is accessed through the control registers BAKMEM0, BAKMEM1, BAKMEM2, and BAKMEM3. Only available on FG642x. Only available on FG662x. USB RAM can be used as general-purpose RAM when not used for USB operation. 9.15.1 Peripheral File Map Table 9-41 lists all of the the available peripherals and their base addresses. Table 9-42 through Table 9-78 list the registers and their offset addresses for each peripheral. Table 9-41. Peripherals BASE ADDRESS OFFSET ADDRESS RANGE(1) Special Functions (see Table 9-42) 0100h 000h to 01Fh PMM (see Table 9-43) 0120h 000h to 010h Flash Control (see Table 9-44) 0140h 000h to 00Fh CRC16 (see Table 9-45) 0150h 000h to 007h RAM Control (see Table 9-46) 0158h 000h to 001h Watchdog (see Table 9-47) 015Ch 000h to 001h UCS (see Table 9-48) 0160h 000h to 01Fh MODULE NAME Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 137 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 Table 9-41. Peripherals (continued) MODULE NAME BASE ADDRESS OFFSET ADDRESS RANGE(1) SYS (see Table 9-49) 0180h 000h to 01Fh Shared Reference (see Table 9-50) 01B0h 000h to 001h Port Mapping Control (see Table 9-51) 01C0h 000h to 003h Port Mapping Port P2 (see Table 9-51) 01D0h 000h to 007h Port P1, P2 (see Table 9-52) 0200h 000h to 01Fh Port P3, P4 (see Table 9-53) 0220h 000h to 01Fh Port P5, P6 (see Table 9-54) 0240h 000h to 00Bh Port P7, P8 (see Table 9-55) 0260h 000h to 00Bh Port P9 (see Table 9-56) 0280h 000h to 00Bh Port PJ (see Table 9-57) 0320h 000h to 01Fh Timer TA0 (see Table 9-58) 0340h 000h to 02Eh Timer TA1 (see Table 9-59) 0380h 000h to 02Eh Timer TB0 (see Table 9-60) 03C0h 000h to 02Eh Timer TA2 (see Table 9-61) 0400h 000h to 02Eh Battery Backup (see Table 9-62) 0480h 000h to 01Fh RTC_B (see Table 9-63) 04A0h 000h to 01Fh 32-Bit Hardware Multiplier (see Table 9-64) 04C0h 000h to 02Fh DMA General Control (see Table 9-65) 0500h 000h to 00Fh DMA Channel 0 (see Table 9-65) 0510h 000h to 00Ah DMA Channel 1 (see Table 9-65) 0520h 000h to 00Ah DMA Channel 2 (see Table 9-65) 0530h 000h to 00Ah DMA Channel 3 (see Table 9-65) 0540h 000h to 00Ah DMA Channel 4 (see Table 9-65) 0550h 000h to 00Ah DMA Channel 5 (see Table 9-65) 0560h 000h to 00Ah USCI_A0 (see Table 9-66) 05C0h 000h to 01Fh USCI_B0 (see Table 9-67) 05E0h 000h to 01Fh USCI_A1 (see Table 9-68) 0600h 000h to 01Fh USCI_B1 (see Table 9-69) 0620h 000h to 01Fh DAC12_A (see Table 9-70) 0780h 000h to 01Fh Comparator_B (see Table 9-71) 08C0h 000h to 00Fh USB configuration (see Table 9-72)(2) USB control (see Table 9-73)(2) (1) (2) (3) 138 0900h 000h to 014h 0920h 000h to 01Fh LDO-PWR; LDO and Port U configuration (see Table 9-74) (3) 0900h 000h to 014h LCD_B control (see Table 9-75) 0A00h 000h to 05Fh CTSD16 (see Table 9-76) 0A80h 000h to 05Fh OA0 and GSW0 (see Table 9-77) 0AE0h 000h to 00Fh OA1 and GSW1 (see Table 9-78) 0AF0h 000h to 00Fh For a detailed description of the individual control register offset addresses, see the MSP430F5xx and MSP430F6xx Family User's Guide. Only on devices with peripheral module USB. Only on devices with peripheral module LDO-PWR. Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 Table 9-42. Special Function Registers (Base Address: 0100h) REGISTER DESCRIPTION SFR interrupt enable SFR interrupt flag SFR reset pin control REGISTER OFFSET SFRIE1 00h SFRIFG1 02h SFRRPCR 04h Table 9-43. PMM Registers (Base Address: 0120h) REGISTER DESCRIPTION PMM control 0 PMM control 1 REGISTER OFFSET PMMCTL0 00h PMMCTL1 02h SVS high-side control SVSMHCTL 04h SVS low-side control SVSMLCTL 06h PMM interrupt flags PMMIFG 0Ch PMMIE 0Eh PM5CTL0 10h PMM interrupt enable PMM power mode 5 control Table 9-44. Flash Control Registers (Base Address: 0140h) REGISTER DESCRIPTION REGISTER OFFSET Flash control 1 FCTL1 00h Flash control 3 FCTL3 04h Flash control 4 FCTL4 06h Table 9-45. CRC16 Registers (Base Address: 0150h) REGISTER DESCRIPTION CRC data input CRC result REGISTER OFFSET CRC16DI 00h CRC16INIRES 04h Table 9-46. RAM Control Registers (Base Address: 0158h) REGISTER DESCRIPTION RAM control 0 REGISTER OFFSET RCCTL0 00h Table 9-47. Watchdog Registers (Base Address: 015Ch) REGISTER DESCRIPTION Watchdog timer control Copyright © 2020 Texas Instruments Incorporated REGISTER OFFSET WDTCTL 00h Submit Document Feedback Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 139 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 Table 9-48. UCS Registers (Base Address: 0160h) REGISTER OFFSET UCS control 0 REGISTER DESCRIPTION UCSCTL0 00h UCS control 1 UCSCTL1 02h UCS control 2 UCSCTL2 04h UCS control 3 UCSCTL3 06h UCS control 4 UCSCTL4 08h UCS control 5 UCSCTL5 0Ah UCS control 6 UCSCTL6 0Ch UCS control 7 UCSCTL7 0Eh UCS control 8 UCSCTL8 10h Table 9-49. SYS Registers (Base Address: 0180h) REGISTER DESCRIPTION REGISTER OFFSET SYSCTL 00h Bootloader configuration area SYSBSLC 02h JTAG mailbox control SYSJMBC 06h JTAG mailbox input 0 SYSJMBI0 08h JTAG mailbox input 1 SYSJMBI1 0Ah JTAG mailbox output 0 SYSJMBO0 0Ch JTAG mailbox output 1 SYSJMBO1 0Eh Bus error vector generator SYSBERRIV 18h User NMI vector generator SYSUNIV 1Ah SYSSNIV 1Ch SYSRSTIV 1Eh System control System NMI vector generator Reset vector generator Table 9-50. Shared Reference Registers (Base Address: 01B0h) REGISTER DESCRIPTION Shared reference control REGISTER OFFSET REFCTL 00h Table 9-51. Port Mapping Registers (Base Address of Port Mapping Control: 01C0h, Port P2: 01D0h) REGISTER DESCRIPTION REGISTER OFFSET Port mapping password PMAPPWD 00h Port mapping control PMAPCTL 02h Port P2.0 mapping P2MAP0 00h Port P2.1 mapping P2MAP1 01h Port P2.2 mapping P2MAP2 02h Port P2.3 mapping P2MAP3 03h Port P2.4 mapping P2MAP4 04h Port P2.5 mapping P2MAP5 05h Port P2.6 mapping P2MAP6 06h Port P2.7 mapping P2MAP7 07h 140 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 Table 9-52. Port P1, P2 Registers (Base Address: 0200h) REGISTER DESCRIPTION REGISTER OFFSET P1IN 00h Port P1 output P1OUT 02h Port P1 direction P1DIR 04h Port P1 resistor enable P1REN 06h Port P1 drive strength P1DS 08h Port P1 selection Port P1 input P1SEL 0Ah Port P1 interrupt vector word P1IV 0Eh Port P1 interrupt edge select P1IES 18h Port P1 interrupt enable Port P1 interrupt flag Port P2 input P1IE 1Ah P1IFG 1Ch P2IN 01h P2OUT 03h Port P2 direction P2DIR 05h Port P2 resistor enable P2REN 07h Port P2 output Port P2 drive strength P2DS 09h Port P2 selection P2SEL 0Bh Port P2 interrupt vector word P2IV 1Eh Port P2 interrupt edge select P2IES 19h Port P2 interrupt enable Port P2 interrupt flag P2IE 1Bh P2IFG 1Dh Table 9-53. Port P3, P4 Registers (Base Address: 0220h) REGISTER DESCRIPTION Port P3 input REGISTER OFFSET P3IN 00h P3OUT 02h Port P3 direction P3DIR 04h Port P3 resistor enable P3REN 06h Port P3 output Port P3 drive strength P3DS 08h Port P3 selection P3SEL 0Ah Port P3 interrupt vector word P3IV 0Eh Port P3 interrupt edge select P3IES 18h P3IE 1Ah P3IFG 1Ch P4IN 01h Port P4 output P4OUT 03h Port P4 direction P4DIR 05h Port P4 resistor enable P4REN 07h Port P4 drive strength P4DS 09h Port P4 selection Port P3 interrupt enable Port P3 interrupt flag Port P4 input P4SEL 0Bh Port P4 interrupt vector word P4IV 1Eh Port P4 interrupt edge select P4IES 19h P4IE 1Bh P4IFG 1Dh Port P4 interrupt enable Port P4 interrupt flag Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 141 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 Table 9-54. Port P5, P6 Registers (Base Address: 0240h) REGISTER DESCRIPTION REGISTER OFFSET P5IN 00h Port P5 output P5OUT 02h Port P5 direction P5DIR 04h Port P5 resistor enable P5REN 06h Port P5 drive strength P5DS 08h Port P5 selection P5SEL 0Ah P6IN 01h P6OUT 03h Port P6 direction P6DIR 05h Port P6 resistor enable P6REN 07h Port P5 input Port P6 input Port P6 output Port P6 drive strength P6DS 09h Port P6 selection P6SEL 0Bh Table 9-55. Port P7, P8 Registers (Base Address: 0260h) REGISTER DESCRIPTION Port P7 input REGISTER OFFSET P7IN 00h P7OUT 02h Port P7 direction P7DIR 04h Port P7 resistor enable P7REN 06h Port P7 output Port P7 drive strength P7DS 08h Port P7 selection P7SEL 0Ah Port P8 input P8IN 01h P8OUT 03h Port P8 direction P8DIR 05h Port P8 resistor enable P8REN 07h Port P8 output Port P8 drive strength P8DS 09h Port P8 selection P8SEL 0Bh Table 9-56. Port P9 Register (Base Address: 0280h) REGISTER DESCRIPTION Port P9 input REGISTER OFFSET P9IN 00h Port P9 output P9OUT 02h Port P9 direction P9DIR 04h Port P9 resistor enable P9REN 06h Port P9 drive strength P9DS 08h Port P9 selection P9SEL 0Ah Table 9-57. Port J Registers (Base Address: 0320h) REGISTER DESCRIPTION REGISTER OFFSET PJIN 00h Port PJ output PJOUT 02h Port PJ direction PJDIR 04h Port PJ resistor enable PJREN 06h Port PJ drive strength PJDS 08h Port PJ input 142 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 Table 9-58. TA0 Registers (Base Address: 0340h) REGISTER DESCRIPTION REGISTER OFFSET TA0CTL 00h Capture/compare control 0 TA0CCTL0 02h Capture/compare control 1 TA0CCTL1 04h Capture/compare control 2 TA0CCTL2 06h Capture/compare control 3 TA0CCTL3 08h Capture/compare control 4 TA0CCTL4 0Ah TA0R 10h Capture/compare 0 TA0CCR0 12h Capture/compare 1 TA0CCR1 14h Capture/compare 2 TA0CCR2 16h Capture/compare 3 TA0CCR3 18h Capture/compare 4 TA0CCR4 1Ah TA0 control TA0 counter TA0 expansion 0 TA0 interrupt vector TA0EX0 20h TA0IV 2Eh Table 9-59. TA1 Registers (Base Address: 0380h) REGISTER DESCRIPTION TA1 control REGISTER OFFSET TA1CTL 00h Capture/compare control 0 TA1CCTL0 02h Capture/compare control 1 TA1CCTL1 04h Capture/compare control 2 TA1CCTL2 06h TA1 counter TA1R 10h Capture/compare 0 TA1CCR0 12h Capture/compare 1 TA1CCR1 14h Capture/compare 2 TA1CCR2 16h TA1 expansion 0 TA1 interrupt vector Copyright © 2020 Texas Instruments Incorporated TA1EX0 20h TA1IV 2Eh Submit Document Feedback Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 143 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 Table 9-60. TB0 Registers (Base Address: 03C0h) REGISTER DESCRIPTION REGISTER OFFSET TB0CTL 00h Capture/compare control 0 TB0CCTL0 02h Capture/compare control 1 TB0CCTL1 04h Capture/compare control 2 TB0CCTL2 06h Capture/compare control 3 TB0CCTL3 08h Capture/compare control 4 TB0CCTL4 0Ah Capture/compare control 5 TB0CCTL5 0Ch Capture/compare control 6 TB0CCTL6 0Eh TB0 control TB0 counter TB0R 10h Capture/compare 0 TB0CCR0 12h Capture/compare 1 TB0CCR1 14h Capture/compare 2 TB0CCR2 16h Capture/compare 3 TB0CCR3 18h Capture/compare 4 TB0CCR4 1Ah Capture/compare 5 TB0CCR5 1Ch Capture/compare 6 TB0CCR6 1Eh TB0 expansion 0 TB0 interrupt vector TB0EX0 20h TB0IV 2Eh Table 9-61. TA2 Registers (Base Address: 0400h) REGISTER DESCRIPTION TA2 control REGISTER OFFSET TA2CTL 00h Capture/compare control 0 TA2CCTL0 02h Capture/compare control 1 TA2CCTL1 04h Capture/compare control 2 TA2CCTL2 06h TA2 counter TA2R 10h Capture/compare 0 TA2CCR0 12h Capture/compare 1 TA2CCR1 14h Capture/compare 2 TA2CCR2 16h TA2 expansion 0 TA2 interrupt vector TA2EX0 20h TA2IV 2Eh Table 9-62. Battery Backup Registers (Base Address: 0480h) REGISTER DESCRIPTION REGISTER OFFSET Battery backup memory 0 BAKMEM0 00h Battery backup memory 1 BAKMEM1 02h Battery backup memory 2 BAKMEM2 04h Battery backup memory 3 BAKMEM3 06h Battery backup control BAKCTL 1Ch Battery charger control BAKCHCTL 1Eh 144 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 Table 9-63. Real-Time Clock Registers (Base Address: 04A0h) REGISTER OFFSET RTC control 0 REGISTER DESCRIPTION RTCCTL0 00h RTC control 1 RTCCTL1 01h RTC control 2 RTCCTL2 02h RTC control 3 RTCCTL3 03h RTC prescaler 0 control RTCPS0CTL 08h RTC prescaler 1 control RTCPS1CTL 0Ah RTC prescaler 0 RTCPS0 0Ch RTC prescaler 1 RTCPS1 0Dh RTCIV 0Eh RTCSEC 10h RTC interrupt vector word RTC seconds RTC minutes RTCMIN 11h RTC hours RTCHOUR 12h RTC day of week RTCDOW 13h RTC days RTCDAY 14h RTC month RTCMON 15h RTC year low RTCYEARL 16h RTC year high RTCYEARH 17h RTCAMIN 18h RTC alarm minutes RTC alarm hours RTCAHOUR 19h RTC alarm day of week RTCADOW 1Ah RTC alarm days RTCADAY 1Bh Binary-to-BCD conversion BIN2BCD 1Ch BCD-to-binary conversion BCD2BIN 1Eh Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 145 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 Table 9-64. 32-Bit Hardware Multiplier Registers (Base Address: 04C0h) REGISTER DESCRIPTION 16-bit operand 1 – multiply 16-bit operand 1 – signed multiply 16-bit operand 1 – multiply accumulate 16-bit operand 1 – signed multiply accumulate 16-bit operand 2 REGISTER OFFSET MPY 00h MPYS 02h MAC 04h MACS 06h OP2 08h 16 × 16 result low word RESLO 0Ah 16 × 16 result high word RESHI 0Ch SUMEXT 0Eh 32-bit operand 1 – multiply low word MPY32L 10h 32-bit operand 1 – multiply high word MPY32H 12h 32-bit operand 1 – signed multiply low word MPYS32L 14h 32-bit operand 1 – signed multiply high word MPYS32H 16h 16 × 16 sum extension register 32-bit operand 1 – multiply accumulate low word MAC32L 18h 32-bit operand 1 – multiply accumulate high word MAC32H 1Ah 32-bit operand 1 – signed multiply accumulate low word MACS32L 1Ch 32-bit operand 1 – signed multiply accumulate high word MACS32H 1Eh 32-bit operand 2 – low word OP2L 20h 32-bit operand 2 – high word OP2H 22h 32 × 32 result 0 – least significant word RES0 24h 32 × 32 result 1 RES1 26h 32 × 32 result 2 RES2 28h 32 × 32 result 3 – most significant word RES3 2Ah MPY32CTL0 2Ch MPY32 control 0 146 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 Table 9-65. DMA Registers (Base Address DMA General Control: 0500h, DMA Channel 0: 0510h, DMA Channel 1: 0520h, DMA Channel 2: 0530h, DMA Channel 3: 0540h, DMA Channel 4: 0550h, DMA Channel 5: 0560h) REGISTER OFFSET DMA general control: DMA module control 0 REGISTER DESCRIPTION DMACTL0 00h DMA general control: DMA module control 1 DMACTL1 02h DMA general control: DMA module control 2 DMACTL2 04h DMA general control: DMA module control 3 DMACTL3 06h DMA general control: DMA module control 4 DMACTL4 08h DMA general control: DMA interrupt vector DMAIV 0Ah DMA channel 0 control DMA0CTL 00h DMA channel 0 source address low DMA0SAL 02h DMA channel 0 source address high DMA0SAH 04h DMA channel 0 destination address low DMA0DAL 06h DMA channel 0 destination address high DMA0DAH 08h DMA0SZ 0Ah DMA channel 0 transfer size DMA channel 1 control DMA1CTL 00h DMA channel 1 source address low DMA1SAL 02h DMA channel 1 source address high DMA1SAH 04h DMA channel 1 destination address low DMA1DAL 06h DMA channel 1 destination address high DMA1DAH 08h DMA1SZ 0Ah DMA channel 1 transfer size DMA channel 2 control DMA2CTL 00h DMA channel 2 source address low DMA2SAL 02h DMA channel 2 source address high DMA2SAH 04h DMA channel 2 destination address low DMA2DAL 06h DMA channel 2 destination address high DMA2DAH 08h DMA2SZ 0Ah DMA channel 2 transfer size DMA channel 3 control DMA3CTL 00h DMA channel 3 source address low DMA3SAL 02h DMA channel 3 source address high DMA3SAH 04h DMA channel 3 destination address low DMA3DAL 06h DMA channel 3 destination address high DMA3DAH 08h DMA3SZ 0Ah DMA channel 3 transfer size DMA channel 4 control DMA4CTL 00h DMA channel 4 source address low DMA4SAL 02h DMA channel 4 source address high DMA4SAH 04h DMA channel 4 destination address low DMA4DAL 06h DMA channel 4 destination address high DMA4DAH 08h DMA4SZ 0Ah DMA channel 4 transfer size DMA channel 5 control DMA5CTL 00h DMA channel 5 source address low DMA5SAL 02h DMA channel 5 source address high DMA5SAH 04h DMA channel 5 destination address low DMA5DAL 06h DMA channel 5 destination address high DMA5DAH 08h DMA5SZ 0Ah DMA channel 5 transfer size Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 147 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 Table 9-66. USCI_A0 Registers (Base Address: 05C0h) REGISTER OFFSET USCI control 0 REGISTER DESCRIPTION UCA0CTL0 00h USCI control 1 UCA0CTL1 01h USCI baud rate 0 UCA0BR0 06h UCA0BR1 07h UCA0MCTL 08h USCI baud rate 1 USCI modulation control USCI status UCA0STAT 0Ah USCI receive buffer UCA0RXBUF 0Ch USCI transmit buffer UCA0TXBUF 0Eh USCI LIN control UCA0ABCTL 10h USCI IrDA transmit control UCA0IRTCTL 12h USCI IrDA receive control UCA0IRRCTL 13h UCA0IE 1Ch UCA0IFG 1Dh UCA0IV 1Eh USCI interrupt enable USCI interrupt flags USCI interrupt vector word Table 9-67. USCI_B0 Registers (Base Address: 05E0h) REGISTER DESCRIPTION REGISTER OFFSET USCI synchronous control 0 UCB0CTL0 00h USCI synchronous control 1 UCB0CTL1 01h USCI synchronous bit rate 0 UCB0BR0 06h USCI synchronous bit rate 1 UCB0BR1 07h UCB0STAT 0Ah USCI synchronous receive buffer USCI synchronous status UCB0RXBUF 0Ch USCI synchronous transmit buffer UCB0TXBUF 0Eh USCI I2C own address UCB0I2COA 10h USCI I2C slave address UCB0I2CSA 12h UCB0IE 1Ch UCB0IFG 1Dh UCB0IV 1Eh USCI interrupt enable USCI interrupt flags USCI interrupt vector word Table 9-68. USCI_A1 Registers (Base Address: 0600h) REGISTER DESCRIPTION REGISTER OFFSET USCI control 0 UCA1CTL0 00h USCI control 1 UCA1CTL1 01h USCI baud rate 0 UCA1BR0 06h USCI baud rate 1 USCI modulation control USCI status UCA1BR1 07h UCA1MCTL 08h UCA1STAT 0Ah USCI receive buffer UCA1RXBUF 0Ch USCI transmit buffer UCA1TXBUF 0Eh USCI LIN control UCA1ABCTL 10h USCI IrDA transmit control UCA1IRTCTL 12h USCI IrDA receive control UCA1IRRCTL 13h USCI interrupt enable USCI interrupt flags USCI interrupt vector word 148 Submit Document Feedback UCA1IE 1Ch UCA1IFG 1Dh UCA1IV 1Eh Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 Table 9-69. USCI_B1 Registers (Base Address: 0620h) REGISTER OFFSET USCI synchronous control 0 REGISTER DESCRIPTION UCB1CTL0 00h USCI synchronous control 1 UCB1CTL1 01h USCI synchronous bit rate 0 UCB1BR0 06h USCI synchronous bit rate 1 UCB1BR1 07h USCI synchronous status UCB1STAT 0Ah USCI synchronous receive buffer UCB1RXBUF 0Ch USCI synchronous transmit buffer UCB1TXBUF 0Eh USCI I2C own address UCB1I2COA 10h USCI I2C slave address UCB1I2CSA 12h UCB1IE 1Ch UCB1IFG 1Dh UCB1IV 1Eh USCI interrupt enable USCI interrupt flags USCI interrupt vector word Table 9-70. DAC12_A Registers (Base Address: 0780h) REGISTER DESCRIPTION REGISTER OFFSET DAC12_A channel 0 control 0 DAC12_0CTL0 00h DAC12_A channel 0 control 1 DAC12_0CTL1 02h DAC12_A channel 0 data DAC12_0DAT 04h DAC12_A channel 0 calibration control DAC12_0CALCTL 06h DAC12_A channel 0 calibration data DAC12_0CALDAT 08h DAC12_A channel 1 control 0 DAC12_1CTL0 10h DAC12_A channel 1 control 1 DAC12_1CTL1 12h DAC12_A channel 1 data DAC12_1DAT 14h DAC12_A channel 1 calibration control DAC12_1CALCTL 16h DAC12_A channel 1 calibration data DAC12_1CALDAT 18h DAC12IV 1Eh DAC12_A interrupt vector word Table 9-71. Comparator_B Registers (Base Address: 08C0h) REGISTER DESCRIPTION REGISTER OFFSET Comp_B control 0 CBCTL0 00h Comp_B control 1 CBCTL1 02h Comp_B control 2 CBCTL2 04h Comp_B control 3 CBCTL3 06h Comp_B interrupt CBINT 0Ch CBIV 0Eh Comp_B interrupt vector word Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 149 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 Table 9-72. USB Configuration Registers (Base Address: 0900h) REGISTER DESCRIPTION USB key/ID USB module configuration USB PHY control REGISTER OFFSET USBKEYID 00h USBCNF 02h USBPHYCTL 04h USB power control USBPWRCTL 08h USB power voltage setting USBPWRVSR 0Ah USB PLL control USBPLLCTL 10h USB PLL divider USBPLLDIV 12h USBPLLIR 14h USB PLL interrupts Table 9-73. USB Control Registers (Base Address: 0920h) REGISTER DESCRIPTION Input endpoint_0 configuration Input endpoint_0 byte count REGISTER OFFSET USBIEPCNF_0 00h USBIEPBCNT_0 01h Output endpoint_0 configuration USBOEPCNFG_0 02h Output endpoint_0 byte count USBOEPBCNT_0 03h Input endpoint interrupt enables USBIEPIE 0Eh Output endpoint interrupt enables USBOEPIE 0Fh Input endpoint interrupt flags USBIEPIFG 10h Output endpoint interrupt flags USBOEPIFG 11h USB interrupt vector USBIV 12h USB maintenance USBMAINT 16h Time stamp USBTSREG 18h USB frame number USBFN 1Ah USB control USBCTL 1Ch USBIE 1Dh USBIFG 1Eh USBFUNADR 1Fh USB interrupt enables USB interrupt flags Function address Table 9-74. LDO and Port U Configuration Registers (Base Address: 0900h) REGISTER DESCRIPTION LDO key and ID PU port control LDO power control 150 Submit Document Feedback REGISTER OFFSET LDOKEYPID 00h PUCTL 04h LDOPWRCTL 08h Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 Table 9-75. LCD_B Registers (Base Address: 0A00h) REGISTER DESCRIPTION LCD_B control 0 LCD_B control 1 REGISTER OFFSET LCDBCTL0 000h LCDBCTL1 002h LCD_B blinking control LCDBBLKCTL 004h LCD_B memory control LCDBMEMCTL 006h LCD_B voltage control LCDBVCTL 008h LCD_B port control 0 LCDBPCTL0 00Ah LCD_B port control 1 LCDBPCTL1 00Ch LCD_B port control 2 LCDBPCTL2 00Eh LCD_B charge pump control LCDBCTL0 012h LCD_B interrupt vector word LCDBIV 01Eh LCD_B memory 1 LCDM1 020h LCD_B memory 2 LCDM2 021h ⋮ ⋮ LCD_B memory 22 ⋮ LCDM22 035h LCD_B blinking memory 1 LCDBM1 040h LCD_B blinking memory 2 LCDBM2 041h ⋮ LCD_B blinking memory 22 ⋮ ⋮ LCDBM22 055h Table 9-76. CTSD16 Registers (Base Address: 0A80h) REGISTER DESCRIPTION CTSD16 control REGISTER OFFSET CTSD16CTL 00h CTSD16 channel 0 control CTSD16CCTL0 02h CTSD16 channel 0 input control CTSD16INCTL0 04h CTSD16PRE0 06h CTSD16IFG 2Ch CTSD16IE 2Eh CTSD16IV 30h CTSD16MEM0 32h CTSD16 channel 0 preload CTSD16 interrupt flag CTSD16 interrupt enable CTSD16 interrupt vector CTSD16 channel 0 conversion memory Table 9-77. OA0 Registers (Base Address: 0AE0h) REGISTER DESCRIPTION REGISTER OFFSET OA0CTL0 00h OA0 positive input terminal switches OA0PSW 02h OA0 negative input terminal switches OA0NSW 04h OA0 ground switches OA0GSW 0Eh OA0 control 0 Table 9-78. OA1 Registers (Base Address: 0AF0h) REGISTER DESCRIPTION REGISTER OFFSET OA1CTL0 00h OA1 positive input terminal switches OA1PSW 02h OA1 negative input terminal switches OA1NSW 04h OA1 ground switches OA1GSW 0Eh OA1 control 0 Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 151 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 9.16 Identification 9.16.1 Revision Identification The device revision information is shown as part of the top-side marking on the device package. The devicespecific errata sheet describes these markings. For links to all of the errata sheets for the devices in this data sheet, see Section 11.4. The hardware revision is also stored in the Device Descriptor structure in the Info Block section. For details on this value, see the "Hardware Revision" entries in Section 9.14. 9.16.2 Device Identification The device type can be identified from the top-side marking on the device package. The device-specific errata sheet describes these markings. For links to all of the errata sheets for the devices in this data sheet, see Section 11.4. A device identification value is also stored in the Device Descriptor structure in the Info Block section. For details on this value, see the "Device ID" entries in Section 9.14. 9.16.3 JTAG Identification Programming through the JTAG interface, including reading and identifying the JTAG ID, is described in detail in the MSP430 Programming With the JTAG Interface. 152 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 10 Applications, Implementation, and Layout Note Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality. 10.1 Device Connection and Layout Fundamentals This section discusses the recommended guidelines when designing with the MSP430. These guidelines are to make sure that the device has proper connections for powering, programming, debugging, and optimum analog performance. 10.1.1 Power Supply Decoupling and Bulk Capacitors TI recommends connecting a combination of a 1-µF plus a 100-nF low-ESR ceramic decoupling capacitor to each AVCC and DVCC pin. Higher-value capacitors may be used but can impact supply rail ramp-up time. Decoupling capacitors must be placed as close as possible to the pins that they decouple (within a few millimeters). Additionally, separated grounds with a single-point connection are recommend for better noise isolation from digital to analog circuits on the board and are especially recommended to achieve high analog accuracy. DVCC Digital Power Supply Decoupling 1 µF + 100 nF DVSS AVCC Analog Power Supply Decoupling 1 µF + 100 nF AVSS Figure 10-1. Power Supply Decoupling 10.1.2 External Oscillator Depending on the device variant (see Section 6), the device can support a low-frequency crystal (32 kHz) on the XT1 pins, a high-frequency crystal on the XT2 pins, or both. External bypass capacitors for the crystal oscillator pins are required. It is also possible to apply digital clock signals to the XIN and XT2IN input pins that meet the specifications of the respective oscillator if the appropriate XT1BYPASS or XT2BYPASS mode is selected. In this case, the associated XOUT and XT2OUT pins can be used for other purposes. If they are left unused, they must be terminated according to Table 7-4. Figure 10-2 shows a typical connection diagram. Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 153 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 XIN or XT2IN CL1 XOUT or XT2OUT CL2 Figure 10-2. Typical Crystal Connection See MSP430 32-kHz Crystal Oscillators for more information on selecting, testing, and designing a crystal oscillator with the MSP430 devices. 10.1.3 JTAG With the proper connections, the debugger and a hardware JTAG interface (such as the MSP-FET or MSPFET430UIF) can be used to program and debug code on the target board. In addition, the connections also support the MSP-GANG production programmers, thus providing an easy way to program prototype boards, if desired. Figure 10-3 shows the connections between the 14-pin JTAG connector and the target device required to support in-system programming and debugging for 4-wire JTAG communication. Figure 10-4 shows the connections for 2-wire JTAG mode (Spy-Bi-Wire). The connections for the MSP-FET and MSP-FET430UIF interface modules and the MSP-GANG are identical. Both can supply VCC to the target board (through pin 2). In addition, the MSP-FET and MSP-FET430UIF interface modules and MSP-GANG have a VCC sense feature that, if used, requires an alternate connection (pin 4 instead of pin 2). The VCC-sense feature senses the local VCC present on the target board (that is, a battery or other local power supply) and adjusts the output signals accordingly. Figure 10-3 and Figure 10-4 show a jumper block that supports both scenarios of supplying VCC to the target board. If this flexibility is not required, the desired VCC connections may be hard-wired to eliminate the jumper block. Pins 2 and 4 must not be connected at the same time. For additional design information regarding the JTAG interface, see the MSP430 Hardware Tools User’s Guide. 154 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 VCC Important to connect MSP430FGxxxx J1 (see Note A) AVCC/DVCC J2 (see Note A) R1 47 kW JTAG VCC TOOL VCC TARGET TEST 2 C2 10 µF C3 0.1 µF RST/NMI/SBWTDIO 1 4 3 6 5 8 7 10 9 12 11 14 13 TDO/TDI TDI TDO/TDI TDI TMS TMS TCK TCK GND RST TEST/SBWTCK C1 2.2 nF See Note B AVSS/DVSS A. If a local target power supply is used, make connection J1. If power from the debug or programming adapter is used, make connection J2. B. The upper limit for C1 is 2.2 nF when using current TI tools. Figure 10-3. Signal Connections for 4-Wire JTAG Communication Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 155 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 VCC Important to connect MSP430FGxxxx J1 (see Note A) AVCC/DVCC J2 (see Note A) R1 47 kΩ See Note B C2 10 µF C3 0.1 µF JTAG VCC TOOL VCC TARGET 2 1 4 3 6 5 8 7 10 9 12 11 14 13 TDO/TDI RST/NMI/SBWTDIO TCK GND TEST/SBWTCK C1 2.2 nF See Note B AVSS/DVSS A. Make connection J1 if a local target power supply is used, or make connection J2 if the target is powered from the debug or programming adapter. B. The device RST/NMI/SBWTDIO pin is used in 2-wire mode for bidirectional communication with the device during JTAG access, and any capacitance that is attached to this signal may affect the ability to establish a connection with the device. The upper limit for C1 is 2.2 nF when using current TI tools. Figure 10-4. Signal Connections for 2-Wire JTAG Communication (Spy-Bi-Wire) 10.1.4 Reset The reset pin can be configured as a reset function (default) or as an NMI function in the Special Function Register (SFR), SFRRPCR. In reset mode, the RST/NMI pin is active low, and a pulse applied to this pin that meets the reset timing specifications generates a BOR-type device reset. Setting SYSNMI causes the RST/NMI pin to be configured as an external NMI source. The external NMI is edge sensitive, and its edge is selectable by SYSNMIIES. Setting the NMIIE enables the interrupt of the external NMI. When an external NMI event occurs, the NMIIFG is set. The RST/NMI pin can have either a pullup or pulldown that is enabled or not. SYSRSTUP selects either pullup or pulldown, and SYSRSTRE causes the pullup (default) or pulldown to be enabled (default) or not. If the RST/NMI pin is unused, it is required either to select and enable the internal pullup or to connect an external 47-kΩ pullup resistor to the RST/NMI pin with a 2.2-nF pulldown capacitor. The pulldown capacitor should not exceed 2.2 nF when using devices with Spy-Bi-Wire interface in Spy-Bi-Wire mode or in 4-wire JTAG mode with TI tools like FET interfaces or GANG programmers. See the MSP430F5xx and MSP430F6xx Family User's Guide for more information on the referenced control registers and bits. 10.1.5 Unused Pins For details on the connection of unused pins, see Section 7.6. 156 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 10.1.6 General Layout Recommendations • • • • Proper grounding and short traces for external crystal to reduce parasitic capacitance. See MSP430 32-kHz Crystal Oscillators for recommended layout guidelines. Proper bypass capacitors on DVCC, AVCC, and reference pins if used. Avoid routing any high-frequency signal close to an analog signal line. For example, keep digital switching signals such as PWM or JTAG signals away from the oscillator circuit. Proper ESD level protection should be considered to protect the device from unintended high-voltage electrostatic discharge. See MSP430 System-Level ESD Considerations for guidelines. 10.1.7 Do's and Don'ts TI recommends powering AVCC and DVCC pins from the same source. At a minimum, during power up, power down, and device operation, the voltage difference between AVCC and DVCC must not exceed the limits specified in Section 8.1. Exceeding the specified limits may cause malfunction of the device including erroneous writes to RAM and flash. 10.2 Peripheral- and Interface-Specific Design Information 10.2.1 CTSD16 Peripheral For internal connections between signal chain modules such as CTSD16, OA, and DAC12, see Section 9.12.16. When internal connections are available, they should be chosen over external connections to reduce noise and save pins. Solid decoupling on both the digital and analog supplies is also required (best with two capacitors, one 1 µF and one 100 nF [see Section 10.1.1]). VREFBG/VeREF+ (see Note A) 1 nF CPCAP (see Note B) 22 nF AVSS A. The capacitor reduces noise when using internal VREFBG setting. This pin is also used for the external reference input for the CTSD16 or DAC, and when doing so the capacitor is not needed. Because of the shared signal path and pin, the internal and external references (VREFBG and VeREF+, respectively) cannot be used at the same time. B. The capacitor on CPCAP is required when the charge pump is enabled. The charge pump can be enabled by rail-to-rail operation of the CTSD16 or by the OA module. See the register settings for each module in the MSP430F5xx and MSP430F6xx Family User's Guide for enabling this operation. Figure 10-5. CTSD16 Partial Schematic Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430FG6626 MSP430FG6625 MSP430FG6426 MSP430FG6425 157 MSP430FG6626, MSP430FG6625 MSP430FG6426, MSP430FG6425 www.ti.com SLAS874B – MAY 2015 – REVISED SEPTEMBER 2020 10.2.1.1 Example Measurement Schematic – Differential Input Vm
MSP430FG6626IPZ 价格&库存

很抱歉,暂时无法提供与“MSP430FG6626IPZ”相匹配的价格&库存,您可以联系我们找货

免费人工找货