0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MSP430FR2522IPW16R

MSP430FR2522IPW16R

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    TSSOP16

  • 描述:

    IC MCU 16BIT 7.5KB FRAM 16TSSOP

  • 数据手册
  • 价格&库存
MSP430FR2522IPW16R 数据手册
Product Folder Order Now Technical Documents Tools & Software Support & Community MSP430FR2522, MSP430FR2512 ZHCSHB4C – JANUARY 2018 – REVISED DECEMBER 2019 MSP430FR25x2 电容式触摸感应混合信号微控制器 1 器件概述 1.1 特性 1 • CapTIvate™ 技术 – 电容式触控 – 性能 – 两路同步快速电极扫描 – 接近感应 – 可靠性 – 提高了针对电力线、射频及其他环境噪声的抗 扰度 – 内置扩展频谱、自动调优、噪声滤除和消抖算 法 – 提供可靠的触控解决方案,该方案具有 10V RMS 共模噪声、4kV 电气快速瞬变以及 15kV 静电放电,符合 IEC‑61000-4-6、IEC-610004-4 和 IEC‑61000-4-2 标准 – 降低了射频辐射,简化了电气设计 – 支持金属触控和防水设计 – 灵活性 – 多达 8 个自电容式电极和 16 个互电容式电极 – 在同一设计中混合使用自电容式电极和互电容 式电极 – 支持多点触控功能 – 宽电容检测范围;0 至 300pF 宽电极范围 – 低功耗 – 两个传感器的触摸唤醒电流小于 4µA – 触摸唤醒状态机支持在 CPU 休眠过程中进行 电极扫描 – 用于环境补偿、滤波和阈值检测的硬件加速 – 易于使用 – CapTIvate 设计中心,PC GUI 允许工程师对 电容按钮进行实时设计和调试,无需编写代码 – 存储于 ROM 中的 CapTIvate 软件库为客户应 用提供充足的 FRAM • 嵌入式微控制器 – 16 位 RISC 架构 – 支持的时钟频率最高可达 16MHz – 3.6V 至 1.8V 的宽电源电压范围(最低电源电压 受限于 SVS 电平,请参阅 SVS 规格) • 优化的超低功耗模式 – 激活模式:120µA/MHz(典型值) – 待机模式:两个传感器的触摸唤醒电流小于 4µA – 关断模式 (LPM4.5):36nA,无 SVS • 低功耗铁电 RAM (FRAM) – 非易失性存储器容量高达 7.5KB – 内置错误修正码 (ECC) – 可配置的写保护 – 对程序、常量和存储的统一存储 – 耐写次数达 1015 次 – 抗辐射和非磁性 – FRAM 与 SRAM 之比高达 4:1 • 高性能模拟 – 高达 8 通道 10 位模数转换器 (ADC) – 1.5V 的内部基准电压 – 采样与保持 200ksps • 智能数字外设 – 两个 16 位计时器,每个计时器有三个捕捉/比较 寄存器 (Timer_A3) – 一个 16 位计时器,采用 CapTIvate™技术 – 一个仅用作计数器的 16 位 RTC – 16 位循环冗余校验 (CRC) • 增强型串行通信,支持引脚重映射功能(请参阅 器 件比较) – 一个 eUSCI_A 接口,支持 UART、IrDA 和 SPI – 一个 eUSCI_B 接口,支持 SPI 和 I2C • 时钟系统 (CS) – 片上 32kHz RC 振荡器 (REFO) – 带有锁频环 (FLL) 的片上 16MHz 数控振荡器 (DCO) – 室温下的精度为 ±1%(具有片上基准) – 片上超低频 10kHz 振荡器 (VLO) – 片上高频调制振荡器 (MODOSC) – 外部 32kHz 晶振 (LFXT) – 可编程 MCLK 预分频器(1 至 128) – 通过可编程预分频器(1、2、4 或 8)从 MCLK 获得的 SMCLK 1 本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确 性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。 English Data Sheet: SLASEE4 MSP430FR2522, MSP430FR2512 ZHCSHB4C – JANUARY 2018 – REVISED DECEMBER 2019 www.ti.com.cn • 通用输入/输出和引脚功能 – 共计 15 个 I/O(采用 VQFN-20 封装) – 15 个中断引脚(P1 和 P2)可以将 MCU 从低功 耗模式下唤醒 • 开发工具和软件 – 开发工具 – MSP CapTIvate™ MCU 开发套件评估:与 CAPTIVATE‑PGMR 编程器和电容式触控 MSP430FR2522 MCU 板 BOOSTXL‑CAPKEYPAD 配合使用 – 目标开发板 MSP‑TS430RHL20 – 易于使用的生态系统 – CapTIvate 设计中心 – 代码生成、可自定义 GUI、实时调优 1.2 • • • • • • • 12KB ROM 库包含 CapTIvate 触控程序库和驱动程 序库 • 系列成员(另请参阅 器件特性) – MSP430FR2522:7.25KB 程序 FRAM、256B 信息 FRAM、2KB RAM ,多达 8 个自电容式传感器和 16 个互电容式传 感器 – MSP430FR2512:7.25KB 程序 FRAM、256B 信息 FRAM、2KB RAM ,多达 4 个自电容式传感器或互电容式传感器 • 封装选项 – 20 引脚:VQFN (RHL) – 16 引脚:TSSOP (PW) 应用 电子智能锁、门键盘和读取器 车库门系统 入侵 HMI 键盘和控制面板 电梯呼叫按钮 个人电子产品 无线扬声器和耳机 1.3 • • • • • A/V 接收器 电器 电动工具 照明开关 可视门铃 说明 MSP430FR25x2 包含一系列用于电容式触摸传感的超低功耗 MSP430™微控制器 (MCU),它们均采用 CapTIvate™ 触控技术,适用于 应用 采用1到16个电容式按钮或接近感应的成本敏感型应用。 MSP430FR25x2 MCU 适用于 应用 电磁干扰、油液、水和油脂影响的工业应用,可以创造价值,实现高性 能。这些器件可提供 IEC 认证的解决方案,其功耗比同类竞争解决方案低 5 倍且支持接近感应以及透过玻 璃、塑料和金属镀层进行触摸操作。 TI 电容式触摸感应 MSP430 MCU 由一套全面的硬件和软件生态系统进行支持,并配套提供参考设计和代码 示例,协助用户快速开展设计。BOOSTXL-CAPKEYPAD BoosterPack™插件模块可搭配使用 CAPTIVATEPGMR 编程器电路板(单独使用或作为 MSP-CAPT-FR2633 CapTIvate 开发套件的一部分),或 LaunchPad 开发套件生态系统。TI 还提供免费的软件,如 CapTIvate 设计中心,工程师可以在其中 借助 方 便易用的 GUI 和 ™MSP430Ware™ 软件以及包括 CapTIvate 技术指南在内的综合性文档快速进行应用开 发。 采用 CapTIvate 技术的 MSP430 MCU 提供市面上集成度和自主性领先的电容式触控解决方案,可在最低功 耗下实现高可靠性和抗噪能力。有关更多信息,请访问 ti.com.cn/captivate。 有关完整的模块说明,请参阅《MSP430FR4xx 和 MSP430FR2xx 系列器件用户指南》。 器件信息 (1) 封装 封装尺寸 (2) TSSOP (16) 5mm x 4.4mm MSP430FR2522IRHL VQFN (20) 4.5mm x 3.5mm MSP430FR2512IPW16 TSSOP (16) 5mm x 4.4mm MSP430FR2512IRHL VQFN (20) 4.5mm x 3.5mm 器件型号 MSP430FR2522IPW16 (1) (2) 2 器件概述 要获得最新的产品、封装和订购信息,请参见封装选项附录(节 9),或者访问德州仪器 (TI) 网站 www.ti.com.cn。 这里显示的尺寸为近似值。要获得包含误差值的封装尺寸,请参见机械数据(节 9中)。 版权 © 2018–2019, Texas Instruments Incorporated MSP430FR2522, MSP430FR2512 www.ti.com.cn ZHCSHB4C – JANUARY 2018 – REVISED DECEMBER 2019 CAUTION 系统级静电放电 (ESD) 保护必须符合器件级 ESD 规范,以防发生电气过载或对 数据或代码存储器造成干扰。有关更多信息,请参阅《MSP430 系统级 ESD 注 意事项》。 版权 © 2018–2019, Texas Instruments Incorporated 器件概述 3 MSP430FR2522, MSP430FR2512 ZHCSHB4C – JANUARY 2018 – REVISED DECEMBER 2019 1.4 www.ti.com.cn 功能框图 图 1-1 给出了功能框图。 XIN DVCC DVSS RST/NMI VREG LFXT Power Management Module P1.x/P2.x XOUT Clock System FRAM RAM MPY32 CRC16 7.25KB +256B 2KB 32-bit Hardware Multiplier 2 × TA eUSCI_A0 eUSCI_B0 Timer_A3 3 CC Registers (UART, IrDA, SPI) 16-bit Cyclic Redundancy Check I/O Ports P1 : 8 IOs P2 : 7 IOs Interrupt, Wakeup, PA : 15 IOs CapTIvate 8 channels (FR2522) 4 channels (FR2512) RTC Counter BAKMEM ADC 16-bit Real-Time Clock 32-bytes Backup Memory 8 channels Single-end 10 bit 200 ksps MAB 16-MHz CPU including 16 registers MDB EEM TCK TMS TDI/TCLK TDO SBWTCK SBWTDIO SYS JTAG Watchdog SBW 2 (SPI, I C) LPM3.5 Domain Copyright © 2017, Texas Instruments Incorporated • • • • • 4 图 1-1. 功能框图 MCU 的主电源对 DVCC 和 DVSS 分别为数字模块和模拟模块供电。推荐的旁路电容和去耦电容分别为 4.7μF 至 10μF 和 0.1μF,精度为 ±5%。 VREG 是 CapTIvate 稳压器的去耦电容。所需去耦电容的建议值为 1µF,最大等效串联电阻 (ESR) ≤ 200mΩ。 P1 和 P2 特有引脚中断功能,可将 MCU 从所有低功耗模式 (LPM) 唤醒(包括 LPM3.5 和 LPM4)。 每个 Timer_A3 具有三个捕捉/比较寄存器。仅 CCR1 和 CCR2 从外部连接。CCR0 寄存器仅用于内部周 期时序和生成中断。 在 LPM3 或 LPM4 模式下,CapTIvate 模块可以正常工作,而其他外设则会关闭。 器件概述 版权 © 2018–2019, Texas Instruments Incorporated MSP430FR2522, MSP430FR2512 www.ti.com.cn ZHCSHB4C – JANUARY 2018 – REVISED DECEMBER 2019 内容 1 器件概述 .................................................... 1 16 ............................................ ................................................. 6.3 Operating Modes .................................... 6.4 Interrupt Vector Addresses.......................... 6.5 Bootloader (BSL) .................................... 6.6 JTAG Standard Interface............................ 6.7 Spy-Bi-Wire Interface (SBW)........................ 6.8 FRAM................................................ 6.9 Memory Protection .................................. 6.10 Peripherals .......................................... 6.11 Input/Output Diagrams .............................. 6.12 Device Descriptors .................................. 6.13 Memory .............................................. 6.14 Identification ......................................... Applications, Implementation, and Layout........ 7.1 Device Connection and Layout Fundamentals ...... 16 7.2 70 Peripheral- and Interface-Specific Design Information .......................................... 73 7.3 CapTIvate Technology Evaluation .................. 76 1.1 特性 ................................................... 1 1.2 应用 ................................................... 2 1.3 说明 ................................................... 2 1.4 功能框图 .............................................. 4 2 3 修订历史记录............................................... 6 Device Comparison ..................................... 7 4 Terminal Configuration and Functions .............. 8 3.1 4.1 Pin Diagrams ......................................... 8 4.2 Pin Attributes ........................................ 10 4.3 Signal Descriptions .................................. 12 ..................................... 4.5 Buffer Types......................................... 4.6 Connection of Unused Pins ......................... Specifications ........................................... 5.1 Absolute Maximum Ratings ......................... 5.2 ESD Ratings ........................................ 5.3 Recommended Operating Conditions ............... 4.4 5 Pin Multiplexing 15 15 15 16 Active Mode Supply Current Into VCC Excluding External Current ..................................... 17 5.5 5.6 Active Mode Supply Current Per MHz .............. Low-Power Mode (LPM0) Supply Currents Into VCC Excluding External Current.......................... Low-Power Mode (LPM3, LPM4) Supply Currents (Into VCC) Excluding External Current .............. Low-Power Mode (LPMx.5) Supply Currents (Into VCC) Excluding External Current .................... Typical Characteristics - Low-Power Mode Supply Currents ............................................. 5.8 5.9 7 Overview 6.2 CPU 16 5.4 5.7 6 Related Products ..................................... 7 6.1 8 17 17 18 20 21 5.10 Thermal Resistance Characteristics ................ 22 5.11 Timing and Switching Characteristics ............... 22 43 43 44 46 46 47 47 47 47 56 60 61 69 70 器件和文档支持 .......................................... 77 8.1 入门和后续步骤...................................... 77 8.2 器件命名规则 ........................................ 77 8.3 工具和软件 8.4 文档支持 ............................................. 80 8.5 相关链接 ............................................. 81 8.6 社区资源 ............................................. 81 8.7 商标.................................................. 81 8.8 静电放电警告 ........................................ 82 .......................................... ............................... 8.10 Glossary ............................................. 机械、封装和可订购信息................................ 8.9 9 43 Export Control Notice 78 82 82 83 Detailed Description ................................... 43 版权 © 2018–2019, Texas Instruments Incorporated 内容 5 MSP430FR2522, MSP430FR2512 ZHCSHB4C – JANUARY 2018 – REVISED DECEMBER 2019 www.ti.com.cn 2 修订历史记录 注:之前版本的页码可能与当前版本有所不同。 从修订版本 B 更改为修订版本 C Changes from August 20, 2019 to December 10, 2019 • • • • • • • • • • Page Changed the note that begins "Supply voltage changes faster than 0.2 V/µs can trigger a BOR reset..." in Section 5.3, Recommended Operating Conditions ............................................................................. Added the note that begins "TI recommends that power to the DVCC pin must not exceed the limits..." in Section 5.3, Recommended Operating Conditions ............................................................................. Changed the note that begins "A capacitor tolerance of ±20% or better is required..." in Section 5.3, Recommended Operating Conditions ............................................................................................ Added the note "See MSP430 32-kHz Crystal Oscillators for details on crystal section, layout, and testing" to Table 5-4, XT1 Crystal Oscillator (Low Frequency) ............................................................................ Changed the note that begins "Requires external capacitors at both terminals..." in Table 5-4, XT1 Crystal Oscillator (Low Frequency) ........................................................................................................ Added the tTA,cap parameter in Table 5-13, Timer_A ............................................................................ Corrected the test conditions for the RI parameter in Table 5-20, ADC, Power Supply and Input Range Conditions . Added the note that begins "tSample = ln(2n+1) × τ ..." in Table 5-21, ADC, 10-Bit Timing Parameters.................... Changed the CRC covered end address to 0x1AF5 in note (1) in Table 6-18, Device Descriptors ..................... Added "1.5-V reference factor" in Table 6-18, Device Descriptors .......................................................... 16 16 16 24 24 30 37 37 60 61 从修订版本 A 更改为修订版本 B Changes from November 8, 2018 to August 19, 2019 • • • • • • • • • • Page 更新了节 1.1特性...................................................................................................................... 1 Changed CapTIvate BSWP demonstration board to CapTIvate phone demonstration board in note (11) on Section 5.7, Low-Power Mode (LPM3, LPM4) Supply Currents (Into VCC) Excluding External Current ................ 18 Changed CapTIvate BSWP demonstration board to CapTIvate phone demonstration board in note (19) on Section 5.7, Low-Power Mode (LPM3, LPM4) Supply Currents (Into VCC) Excluding External Current ................ 19 Added the tTA,cap parameter in Table 5-13, Timer_A ............................................................................ 30 Moved CREG and CELECTRODE from Section 5.3, Recommended Operating Conditions to Table 5-23, CapTIvate Electrical Characteristics ........................................................................................................... 39 Added test condition for CELECTRODE in Table 5-23 , CapTIvate Electrical Characteristics ................................. 39 Changed the symbol and description of the DCCAPCLK parameter in Table 5-23, CapTIvate Electrical Characteristics ...................................................................................................................... 39 Moved the SNR parameter to Table 5-24, CapTIvate Signal-to-Noise Ratio Characteristics ............................ 39 Updated Section 7.2.2, CapTIvate Peripheral .................................................................................. 74 更新了节 8.2,器件命名规则....................................................................................................... 77 从初始发行版更改为修订版本 A Changes from January 12, 2018 to November 7, 2018 • • • • • • • • 6 Page 删除了节 1.1,特性 中“接近感应”项的“15cm” .................................................................................... 1 更改了 节 1.1,特性 中的列表项“3.6V 至 1.8V 的宽电源电压范围...” .......................................................... 1 Updated Section 3.1, Related Products ........................................................................................... 7 Changed HBM limit to ±1000 V and CDM limit to ±250 V in Section 5.2, ESD Ratings ................................... 16 Changed the MIN value of the VCC parameter from 2 V to 1.8 V in Section 5.3, Recommended Operating Conditions ............................................................................................................................ 16 Changed the crystal in the footnote that begins "Characterized with a Seiko Crystal SC-32S crystal..." in Section 5.7, Low-Power Mode (LPM3, LPM4) Supply Currents (Into VCC) Excluding External Current ................. 18 Changed the crystal in the footnote that begins "Characterized with a Seiko Crystal SC-32S crystal..." in Section 5.8, Low-Power Mode (LPMx.5) Supply Currents (Into VCC) Excluding External Current ....................... 20 Added note on VSVSH- and VSVSH+ parameters to Table 5-2, PMM, SVS and BOR ......................................... 22 修订历史记录 版权 © 2018–2019, Texas Instruments Incorporated MSP430FR2522, MSP430FR2512 www.ti.com.cn • • • • • • • • • • • ZHCSHB4C – JANUARY 2018 – REVISED DECEMBER 2019 Changed the minimum VCC from 2.0 V to 1.8 V in the test conditions for the fREFO, dfREFO/ dVCC, and fDC parameters and in note (2) in Table 5-7, REFO................................................................................. Changed the minimum VCC from 2.0 V to 1.8 V in the test conditions for the dfVLO/dVCC parameter and in note (2) in Table 5-8, Internal Very-Low-Power Low-Frequency Oscillator (VLO)................................................ Changed the minimum VCC from 2.0 V to 1.8 V in the test conditions for the fMODOSC/dVCC parameter in Table 59, Module Oscillator (MODOSC) ................................................................................................. Added the tTA,cap parameter in Table 5-13, Timer_A ............................................................................ Added the SNR parameter in Table 5-23, CapTIvate Electrical Characteristics ........................................... Corrected bitfield from RTCCLK to RTCCKSEL in table note that starts "Controlled by ..." in Table 6-8, Clock Distribution .......................................................................................................................... Corrected bitfield from IRDSEL to IRDSSEL in Section 6.10.8, Timers (Timer0_A3, Timer1_A3), in the description that starts "The interconnection of Timer0_A3 and ..." ........................................................... Corrected ADCINCHx column heading in Table 6-13, ADC Channel Connections ....................................... Corrected ADCINCHx column heading in Table 6-13, ADC Channel Connections ....................................... Added P1SELC information in Table 6-28, Port P1, P2 Registers (Base Address: 0200h) ............................... Added P2SELC information in Table 6-28, Port P1, P2 Registers (Base Address: 0200h) .............................. Copyright © 2018–2019, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR2522 MSP430FR2512 修订历史记录 26 27 27 30 39 48 53 54 55 64 64 7 MSP430FR2522, MSP430FR2512 ZHCSHB4C – JANUARY 2018 – REVISED DECEMBER 2019 www.ti.com.cn 3 Device Comparison Table 3-1 summarizes the features of the available family members. Table 3-1. Device Comparison (1) (2) DEVICE PROGRAM FRAM + INFORMATION FRAM (bytes) SRAM (bytes) TA0,TA1 eUSCI_A eUSCI_B 10-BIT ADC CHANNELS CapTIvate TECHNOLOG Y CHANNELS GPIOs PACKAGE MSP430FR2522IRHL 7424 + 256 2048 2, 3 × CCR (3) 1 1 8 8 15 20 RHL (VQFN) MSP430FR2522IPW16 7424 + 256 2048 2, 3 × CCR (3) 1 1 5 8 11 16 PW (TSSOP) MSP430FR2512IRHL 7424 + 256 2048 2, 3 × CCR (3) 1 1 8 4 15 20 RHL (VQFN) MSP430FR2512IPW16 7424 + 256 2048 2, 3 × CCR (3) 1 1 5 4 11 16 PW (TSSOP) (1) (2) (3) 3.1 For the most current package and ordering information, see the Package Option Addendum in 节 9, or see the TI website at www.ti.com Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/packaging A CCR register is a configurable register that provides internal and external capture or compare inputs, or internal and external PWM outputs. Related Products For information about other devices in this family of products or related products, see the following links. TI 16-bit and 32-bit microcontrollers High-performance, low-power solutions to enable the autonomous future Products for MSP430 ultra-low-power sensing and measurement microcontrollers One platform. One ecosystem. Endless possibilities. Companion Products for MSP430FR2522 Review products that are frequently purchased or used in conjunction with this product. Reference Designs Find reference designs leveraging the best in TI technology to solve your system-level challenges 8 Device Comparison Copyright © 2018–2019, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR2522 MSP430FR2512 MSP430FR2522, MSP430FR2512 www.ti.com.cn ZHCSHB4C – JANUARY 2018 – REVISED DECEMBER 2019 4 Terminal Configuration and Functions 4.1 Pin Diagrams P2.3/TA1.2/UCB0STE/A5 P2.2/TA1.1/SYNC/A4 P1.6/UCA0CLK/TA0CLK/TDI/TCLK/CAP0.2 P1.7/UCA0STE/TDO/CAP0.3 P1.4/UCA0TXD/UCA0SIMO/TA0.1/TCK/CAP0.0 P1.5/UCA0RXD/UCA0SOMI/TA0.2/TMS/CAP0.1 P1.3/UCB0SOMI/UCB0SCL/MCLK/A3/CAP1.3 VREG Figure 4-1 shows the pinout for the 20-pin RHL package. 19 18 17 16 15 14 13 12 P1.2/UCB0SIMO/UCB0SDA/SMCLK/A2/Veref-/CAP1.2 20 11 P2.4/TA1CLK/UCB0CLK/A6 10 P2.5/UCB0SIMO/UCB0SDA/A7 MSP430FR2522IRHL MSP430FR2512IRHL RST/NMI/SBWTDIO DVCC 6 7 8 9 P2.6/UCB0SOMI/UCB0SCL 5 P2.0/UCA0TXD/UCA0SIMO/XOUT 4 DVSS 3 P2.1/UCA0RXD/UCA0SOMI/XIN 2 TEST/SBWTCK 1 P1.0/UCB0STE/A0/Veref+/CAP1.0 P1.1/UCB0CLK/ACLK/A1/VREF+/CAP1.1 NOTE: CAP1.x are available only on MSP430FR2522 device and NOT available on MSP430FR2512 device. Figure 4-1. 20-Pin RHL Package (Top View) Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: MSP430FR2522 MSP430FR2512 Copyright © 2018–2019, Texas Instruments Incorporated 9 MSP430FR2522, MSP430FR2512 ZHCSHB4C – JANUARY 2018 – REVISED DECEMBER 2019 www.ti.com.cn Figure 4-2 shows the pinout for the 16-pin PW package. P1.1/UCB0CLK/ACLK/A1/VREF+/CAP1.1 1 16 P1.0/UCB0STE/A0/Veref+/CAP1.0 2 15 P1.3/UCB0SOMI/UCB0SCL/MCLK/A3/CAP1.3 TEST/SBWTCK 3 14 VREG RST/NMI/SBWTDIO 4 13 P1.4/UCA0TXD/UCA0SIMO/TA0.1/TCK/CAP0.0 DVCC 5 12 P1.5/UCA0RXD/UCA0SOMI/TA0.2/TMS/CAP0.1 MSP430FR2522IPW16 MSP430FR2512IPW16 P1.2/UCB0SIMO/UCB0SDA/SMCLK/A2/Veref-/CAP1.2 DVSS 6 11 P1.6/UCA0CLK/TA0CLK/TDI/TCLK/CAP0.2 P2.1/UCA0RXD/UCA0SOMI/XIN 7 10 P1.7/UCA0STE/TDO/CAP0.3 P2.0/UCA0TXD/UCA0SIMO/XOUT 8 9 P2.2/TA1.1/SYNC/A4 NOTE: CAP1.x are available only on MSP430FR2522 device and NOT available on MSP430FR2512 device. Figure 4-2. 16-Pin PW Package (Top View) 10 Terminal Configuration and Functions Copyright © 2018–2019, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR2522 MSP430FR2512 MSP430FR2522, MSP430FR2512 www.ti.com.cn 4.2 ZHCSHB4C – JANUARY 2018 – REVISED DECEMBER 2019 Pin Attributes Table 4-1 lists the attributes of all pins. Table 4-1. Pin Attributes PIN NUMBER RHL 1 2 3 4 PW16 1 2 3 4 SIGNAL TYPE (3) BUFFER TYPE (4) POWER SOURCE (5) RESET STATE AFTER BOR (6) P1.1 (RD) I/O LVCMOS DVCC OFF UCB0CLK I/O LVCMOS DVCC – ACLK I/O LVCMOS DVCC – CAP1.1 (7) I/O Analog VREG – A1 I Analog DVCC – VREF+ I Analog Power – P1.0 (RD) I/O LVCMOS DVCC OFF UCB0STE I/O LVCMOS DVCC – (7) SIGNAL NAME (1) CAP1.0 (2) I/O Analog VREG – A0 I Analog DVCC – Veref+ I Analog Power – TEST (RD) I LVCMOS DVCC OFF SBWTCK I LVCMOS DVCC – RST (RD) I LVCMOS DVCC OFF – NMI SBWTDIO DVCC LVCMOS DVCC – 5 DVCC P Power DVCC N/A 6 6 DVSS P Power DVCC N/A P2.1 (RD) I/O LVCMOS DVCC OFF UCA0RXD I LVCMOS DVCC – UCA0SOMI I/O LVCMOS DVCC – 7 XIN 8 9 10 8 – – I LVCMOS DVCC – P2.0 (RD) I/O LVCMOS DVCC OFF UCA0TXD O LVCMOS DVCC – UCA0SIMO I/O LVCMOS DVCC – XOUT O LVCMOS DVCC – P2.6 (RD) I/O LVCMOS DVCC OFF UCB0SOMI I/O LVCMOS DVCC – UCB0SCL I/O LVCMOS DVCC – P2.5 (RD) I/O LVCMOS DVCC OFF UCB0SIMO I/O LVCMOS DVCC – UCB0SDA I/O LVCMOS DVCC – I Analog DVCC – I/O LVCMOS DVCC OFF A7 P2.4 (RD) 11 – TA1CLK UCB0CLK A6 (7) LVCMOS 5 7 (1) (2) (3) (4) (5) (6) I I/O I LVCMOS DVCC – I/O LVCMOS DVCC – I Analog DVCC – Signals names with (RD) denote the reset default pin name. To determine the pin mux encodings for each pin, see Section 6.11. Signal Types: I = Input, O = Output, I/O = Input or Output Buffer Types: LVCMOS, Analog, or Power (see Table 4-3) The power source shown in this table is the I/O power source, which may differ from the module power source. Reset States: OFF = High-impedance with Schmitt trigger and pullup or pulldown (if available) disabled N/A = Not applicable MSP430FR2522 only Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: MSP430FR2522 MSP430FR2512 Copyright © 2018–2019, Texas Instruments Incorporated 11 MSP430FR2522, MSP430FR2512 ZHCSHB4C – JANUARY 2018 – REVISED DECEMBER 2019 www.ti.com.cn Table 4-1. Pin Attributes (continued) PIN NUMBER RHL 12 PW16 – SIGNAL TYPE (3) BUFFER TYPE (4) POWER SOURCE (5) RESET STATE AFTER BOR (6) P2.3 (RD) I/O LVCMOS DVCC OFF TA1.2 I/O LVCMOS DVCC – UCB0STE I/O LVCMOS DVCC – SIGNAL NAME (1) A5 13 14 15 9 10 11 I Analog DVCC – P2.2 (RD) I/O LVCMOS DVCC OFF TA1.1 I/O LVCMOS DVCC – SYNC I LVCMOS DVCC – A4 I Analog DVCC – P1.7 (RD) I/O LVCMOS DVCC OFF UCA0STE I/O LVCMOS DVCC – TDO O LVCMOS DVCC – CAP0.3 I/O Analog VREG – P1.6 (RD) I/O LVCMOS DVCC OFF UCA0CLK I/O LVCMOS DVCC – TA0CLK I LVCMOS DVCC – TDI I LVCMOS DVCC – – TCLK 16 17 12 13 I LVCMOS DVCC CAP0.2 I/O Analog VREG – P1.5 (RD) I/O LVCMOS DVCC OFF UCA0RXD I LVCMOS DVCC – UCA0SOMI I/O LVCMOS DVCC – TA0.2 I/O LVCMOS DVCC – TMS I LVCMOS DVCC – CAP0.1 I/O Analog VREG – P1.4 (RD) I/O LVCMOS DVCC OFF UCA0TXD O LVCMOS DVCC – UCA0SIMO I/O LVCMOS DVCC – TA0.1 I/O LVCMOS DVCC – I LVCMOS DVCC – I/O Analog VREG – TCK CAP0.0 18 19 14 15 VREG P Power VREG N/A P1.3 (RD) I/O LVCMOS DVCC OFF UCB0SOMI I/O LVCMOS DVCC – UCB0SCL I/O LVCMOS DVCC – MCLK O LVCMOS DVCC – CAP1.3 (7) I/O Analog VREG – A3 20 12 16 (2) I Analog DVCC – P1.2 (RD) I/O LVCMOS DVCC OFF UCB0SIMO I/O LVCMOS DVCC – UCB0SDA I/O LVCMOS DVCC – SMCLK O LVCMOS DVCC – CAP1.2 (7) I/O Analog VREG – A2 I Analog DVCC – Veref- I Analog Power – Terminal Configuration and Functions Copyright © 2018–2019, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR2522 MSP430FR2512 MSP430FR2522, MSP430FR2512 www.ti.com.cn 4.3 ZHCSHB4C – JANUARY 2018 – REVISED DECEMBER 2019 Signal Descriptions Table 4-2 describes the signals for all device variants and package options. Table 4-2. Signal Descriptions FUNCTION SIGNAL NAME A0 ADC CapTIvate Clock Debug (1) (2) PIN NUMBER RHL PW PIN TYPE (1) 2 2 I Analog input A0 DESCRIPTION A1 1 1 I Analog input A1 A2 20 16 I Analog input A2 A3 19 15 I Analog input A3 A4 13 9 I Analog input A4 A5 12 – I Analog input A5 A6 11 – I Analog input A6 A7 10 – I Analog input A7 Veref+ 2 2 I ADC positive reference Veref- 20 16 I ADC negative reference CAP0.0 17 13 I/O CapTIvate channel CAP0.1 16 12 I/O CapTIvate channel CAP0.2 15 11 I/O CapTIvate channel CAP0.3 14 10 I/O CapTIvate channel (2) 2 2 I/O CapTIvate channel CAP1.1 (2) 1 1 I/O CapTIvate channel CAP1.2 (2) 20 16 I/O CapTIvate channel CAP1.3 (2) 19 15 I/O CapTIvate channel SYNC 13 9 I ACLK 1 1 I/O ACLK output MCLK 19 15 O MCLK output SMCLK 20 16 O SMCLK output XIN 7 7 I Input terminal for crystal oscillator XOUT 8 8 O Output terminal for crystal oscillator SBWTCK 3 3 I Spy-Bi-Wire input clock SBWTDIO 4 4 I/O TCK 17 13 I Test clock TCLK 15 11 I Test clock input TDI 15 11 I Test data input TDO 14 10 O Test data output CAP1.0 CapTIvate synchronous trigger input for processing and conversion Spy-Bi-Wire data input/output TEST 3 3 I Test mode pin – selected digital I/O on JTAG pins TMS 16 12 I Test mode select Pin Types: I = Input, O = Output, I/O = Input or Output, P = Power MSP430FR2522 only Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: MSP430FR2522 MSP430FR2512 Copyright © 2018–2019, Texas Instruments Incorporated 13 MSP430FR2522, MSP430FR2512 ZHCSHB4C – JANUARY 2018 – REVISED DECEMBER 2019 www.ti.com.cn Table 4-2. Signal Descriptions (continued) GPIO I2C PW PIN TYPE (1) P1.0 2 2 I/O General-purpose I/O P1.1 1 1 I/O General-purpose I/O P1.2 20 16 I/O General-purpose I/O P1.3 19 15 I/O General-purpose I/O P1.4 17 13 I/O General-purpose I/O (3) P1.5 16 12 I/O General-purpose I/O (3) P1.6 15 11 I/O General-purpose I/O (3) P1.7 14 10 I/O General-purpose I/O (3) P2.0 8 8 I/O General-purpose I/O P2.1 7 7 I/O General-purpose I/O P2.2 13 9 I/O General-purpose I/O P2.3 12 – I/O General-purpose I/O P2.4 11 – I/O General-purpose I/O P2.5 10 – I/O General-purpose I/O P2.6 9 – I/O General-purpose I/O UCB0SCL (4) 19 15 I/O eUSCI_B0 I2C clock UCB0SDA (4) 20 16 I/O eUSCI_B0 I2C data UCB0SCL (4) 9 – I/O eUSCI_B0 I2C clock 10 – I/O eUSCI_B0 I2C data DVCC 5 5 P Power supply DVSS 6 6 P Power ground VREF+ 1 1 P Output of positive reference voltage with ground as reference VREG 18 14 O CapTIvate regulator external decoupling capacitor UCA0STE 14 10 I/O eUSCI_A0 SPI slave transmit enable UCA0CLK 15 11 I/O eUSCI_A0 SPI clock input/output UCA0SOMI (4) (5) 16 12 I/O eUSCI_A0 SPI slave out/master in (4) (5) SIGNAL NAME UCB0SDA Power (4) UCA0SIMO SPI (3) (4) (5) 14 DESCRIPTION 17 13 I/O eUSCI_A0 SPI slave in/master out UCA0SOMI (4) (5) 7 7 I/O eUSCI_A0 SPI slave out/master in UCA0SIMO (4) (5) 8 8 I/O eUSCI_A0 SPI slave in/master out UCB0STE (4) 2 2 I/O eUSCI_B0 slave transmit enable UCB0CLK (4) 1 1 I/O eUSCI_B0 clock input/output UCB0SOMI (4) 19 15 I/O eUSCI_B0 SPI slave out/master in UCB0SIMO (4) 20 16 I/O eUSCI_B0 SPI slave in/master out UCB0STE (4) 12 – I/O eUSCI_B0 slave transmit enable UCB0CLK (4) 11 – I/O eUSCI_B0 clock input/output UCB0SOMI (4) 9 – I/O eUSCI_B0 SPI slave out/master in eUSCI_B0 SPI slave in/master out UCB0SIMO System PIN NUMBER RHL FUNCTION (4) 10 – I/O NMI 4 4 I Nonmaskable interrupt input RST 4 4 I Active-low reset input Because this pin is multiplexed with the JTAG function, TI recommends disabling the pin interrupt function while in JTAG debug to prevent collisions. These signal assignments are controlled by the USCIARMP bit of the SYSCFG3 register or the USCIBRMP bit of the SYSCFG2 register. Only one group can be selected at one time. Signal assignments on these pins are controlled by the remap functionality and are selected by the USCIARMP bit in the SYSCFG3 register. Only one group can be selected at one time. The CLK and STE assignments are fixed and shared by both SPI function groups. Terminal Configuration and Functions Copyright © 2018–2019, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR2522 MSP430FR2512 MSP430FR2522, MSP430FR2512 www.ti.com.cn ZHCSHB4C – JANUARY 2018 – REVISED DECEMBER 2019 Table 4-2. Signal Descriptions (continued) FUNCTION PIN NUMBER RHL PW PIN TYPE (1) TA0.1 17 13 I/O Timer TA0 CCR1 capture: CCI1A input, compare: Out1 outputs TA0.2 16 12 I/O Timer TA0 CCR2 capture: CCI2A input, compare: Out2 outputs TA0CLK 15 11 I TA1.1 13 9 I/O Timer TA1 CCR1 capture: CCI1A input, compare: Out1 outputs TA1.2 12 – I/O Timer TA1 CCR2 capture: CCI2A input, compare: Out2 outputs TA1CLK 11 – I Timer clock input TACLK for TA1 (4) 16 12 I eUSCI_A0 UART receive data UCA0TXD (4) 17 13 O eUSCI_A0 UART transmit data (4) 7 7 I eUSCI_A0 UART receive data (4) 8 8 O eUSCI_A0 UART transmit data Pad – – QFN package exposed thermal pad. TI recommends connecting to VSS. SIGNAL NAME DESCRIPTION Timer clock input TACLK for TA0 Timer_A UCA0RXD UART UCA0RXD UCA0TXD QFN Pad QFN thermal pad Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: MSP430FR2522 MSP430FR2512 Copyright © 2018–2019, Texas Instruments Incorporated 15 MSP430FR2522, MSP430FR2512 ZHCSHB4C – JANUARY 2018 – REVISED DECEMBER 2019 4.4 www.ti.com.cn Pin Multiplexing Pin multiplexing for this MCU is controlled by both register settings and operating modes (for example, if the MCU is in test mode). For details of the settings for each pin and diagrams of the multiplexed ports, see Section 6.11. 4.5 Buffer Types Table 4-3 defines the pin buffer types that are listed in Table 4-1 Table 4-3. Buffer Types NOMINAL VOLTAGE HYSTERESIS PU OR PD NOMINAL PU OR PD STRENGTH (µA) OUTPUT DRIVE STRENGTH (mA) LVCMOS 3.0 V Y (1) Programmable See Section 5.11.4 See Section 5.11.4 Analog 3.0 V N N/A N/A N/A See analog modules in Section 5 for details. Power (DVCC) 3.0 V N N/A N/A N/A SVS enables hysteresis on DVCC. Power (AVCC) 3.0 V N N/A N/A N/A BUFFER TYPE (STANDARD) (1) OTHER CHARACTERISTICS Only for input pins. 4.6 Connection of Unused Pins Table 4-4 lists the correct termination of unused pins. Table 4-4. Connection of Unused Pins (1) PIN POTENTIAL COMMENT Px.0 to Px.7 Open Switched to port function, output direction (PxDIR.n = 1) RST/NMI DVCC 47-kΩ pullup or internal pullup selected with 10-nF (or 1.1-nF) pulldown (2) TEST Open This pin always has an internal pull-down enabled. (1) (2) 16 Any unused pin with a secondary function that is shared with general-purpose I/O should follow the Px.0 to Px.7 unused pin connection guidelines. The pulldown capacitor should not exceed 1.1 nF when using MCUs with Spy-Bi-Wire interface in Spy-Bi-Wire mode with TI tools like FET interfaces or GANG programmers. Terminal Configuration and Functions Copyright © 2018–2019, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR2522 MSP430FR2512 MSP430FR2522, MSP430FR2512 www.ti.com.cn ZHCSHB4C – JANUARY 2018 – REVISED DECEMBER 2019 5 Specifications Absolute Maximum Ratings (1) 5.1 over operating free-air temperature range (unless otherwise noted) Voltage applied at DVCC pin to VSS Voltage applied to any pin in CapTIvate mode Voltage applied to any other pin (2) (3) MIN MAX –0.3 4.1 V –0.3 VREG V –0.3 VCC + 0.3 (4.1 V Max) V Diode current at any device pin Maximum junction temperature, TJ Storage temperature, Tstg (4) (1) (2) (3) (4) –40 UNIT ±2 mA 85 °C 125 °C Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. This applies I/Os worked in CapTIvate mode. All voltages referenced to VSS. Higher temperature may be applied during board soldering according to the current JEDEC J-STD-020 specification with peak reflow temperatures not higher than classified on the device label on the shipping boxes or reels. 5.2 ESD Ratings VALUE V(ESD) (1) (2) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS‑001 (1) ±1000 Charged-device model (CDM), per JEDEC specification JESD22‑C101 (2) ±250 Recommended Operating Conditions MIN (1) (2) (3) (4) VCC Supply voltage applied at DVCC pin VSS Supply voltage applied at DVSS pin TA Operating free-air temperature –40 TJ Operating junction temperature –40 CDVCC Recommended capacitor at DVCC (5) 4.7 fSYSTEM fACLK fSMCLK (2) (3) (4) (5) (6) (7) (8) V JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Pins listed as ±1000 V may actually have higher performance. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Pins listed as ±250 V may actually have higher performance. 5.3 (1) UNIT Processor frequency (maximum MCLK frequency) NOM 1.8 MAX 3.6 V 85 °C 0 (4) (6) UNIT V 85 10 °C µF No FRAM wait states (NWAITSx = 0) 0 8 With FRAM wait states (NWAITSx = 1) (7) 0 16 (8) MHz Maximum ACLK frequency 40 kHz Maximum SMCLK frequency (8) MHz 16 Supply voltage changes faster than 0.2 V/µs can trigger a BOR reset even within the recommended supply voltage range. Following the data sheet recommendation for capacitor CDVCC limits the slopes accordingly. Modules may have a different supply voltage range specification. See the specification of the respective module in this data sheet. TI recommends that power to the DVCC pin must not exceed the limits specified in Recommended Operating Conditions. Exceeding the specified limits can cause malfunction of the device including erroneous writes to RAM and FRAM. The minimum supply voltage is defined by the SVS levels. See the SVS threshold parameters in Table 5-2. A capacitor tolerance of ±20% or better is required. A low-ESR ceramic capacitor of 100 nF (minimum) should be placed as close as possible (within a few millimeters) to the respective pin pair. Modules may have a different maximum input clock specification. See the specification of the respective module in this data sheet. Wait states only occur on actual FRAM accesses (that is, on FRAM cache misses). RAM and peripheral accesses are always executed without wait states. If clock sources such as HF crystals or the DCO with frequencies >16 MHz are used, the clock must be divided in the clock system to comply with this operating condition. Copyright © 2018–2019, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR2522 MSP430FR2512 Specifications 17 MSP430FR2522, MSP430FR2512 ZHCSHB4C – JANUARY 2018 – REVISED DECEMBER 2019 5.4 See www.ti.com.cn Active Mode Supply Current Into VCC Excluding External Current (1) FREQUENCY (fMCLK = fSMCLK) EXECUTION MEMORY PARAMETER TEST CONDITION 1 MHz 0 WAIT STATES (NWAITSx = 0) TYP IAM, FRAM(0%) IAM, FRAM(100%) IAM, RAM (1) (2) (2) 8 MHz 0 WAIT STATES (NWAITSx = 0) MAX TYP 16 MHz 1 WAIT STATE (NWAITSx = 1) MAX TYP FRAM 0% cache hit ratio 3 V, 25°C 454 2620 2935 3 V, 85°C 471 2700 2980 FRAM 100% cache hit ratio 3 V, 25°C 191 573 950 3 V, 85°C 199 592 974 RAM 3 V, 25°C 216 772 1300 UNIT MAX µA 3250 µA 1200 µA All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current. Characterized with program executing typical data processing. fACLK = 32768 Hz, fMCLK = fSMCLK = fDCO at specified frequency Program and data entirely reside in FRAM. All execution is from FRAM. Program and data reside entirely in RAM. All execution is from RAM. No access to FRAM. 5.5 Active Mode Supply Current Per MHz VCC = 3 V, TA = 25°C (unless otherwise noted) PARAMETER dIAM,FRAM/df 5.6 TEST CONDITIONS Active mode current consumption per MHz, execution from FRAM, no wait states TYP UNIT 120 µA/MHz [IAM (75% cache hit rate) at 8 MHz – IAM (75% cache hit rate) at 1 MHz) / 7 MHz Low-Power Mode (LPM0) Supply Currents Into VCC Excluding External Current VCC = 3 V, TA = 25°C (unless otherwise noted) (1) (2) FREQUENCY (fSMCLK) PARAMETER VCC 1 MHz TYP ILPM0 (1) (2) 18 8 MHz MAX TYP 16 MHz MAX TYP 2V 145 292 395 3V 155 300 394 UNIT MAX µA All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current. Current for watchdog timer clocked by SMCLK included. fACLK = 32768 Hz, fMCLK = 0 MHz, fSMCLK at specified frequency. Specifications Copyright © 2018–2019, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR2522 MSP430FR2512 MSP430FR2522, MSP430FR2512 www.ti.com.cn 5.7 ZHCSHB4C – JANUARY 2018 – REVISED DECEMBER 2019 Low-Power Mode (LPM3, LPM4) Supply Currents (Into VCC) Excluding External Current over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER ILPM3, CapTIvate, 2 buttons, wake on touch ILPM3, CapTIvate, MAX TYP MAX 6.2 UNIT 1.11 2.75 1.08 2.78 3V 0.77 0.92 2.66 2V 0.75 0.90 2.60 Low-power mode 3, RTC, excludes SVS (6) 3V 0.90 1.05 2.77 Low-power mode 3, CapTIvate , excludes SVS (7) 3V 4.7 µA Low-power mode 3, CapTIvate , excludes SVS (8) 3V 3.0 µA Low-power mode 3, CapTIvate, excludes SVS (9) 3V 3.2 µA Low-power mode 3, CapTIvate, excludes SVS (10) 3V 17 µA Low-power mode 3, CapTIvate, excludes SVS (11) 3V 38 µA ILPM3, 1 button, wake on touch TYP 0.93 Low-power mode 3, VLO, excludes SVS (5) ILPM3, CapTIvate, MAX 85°C 0.96 ILPM3,VLO 1 proximity, wake on touch TYP 25°C 2V Low-power mode 3, 12.5-pF crystal, includes SVS (2) (3) (4) ILPM3, CapTIvate, –40°C 3V ILPM3,XT1 RTC VCC (1) 6.0 µA µA µA 8 buttons ILPM3, CapTIvate, 16 buttons ILPM4, ILPM4 (1) (2) (3) SVS Low-power mode 4, includes SVS (12) Low-power mode 4, excludes SVS (12) 3V 0.51 0.64 2.30 2V 0.49 0.61 2.25 3V 0.35 0.48 2.13 2V 0.34 0.46 2.10 µA µA All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current. Not applicable for MCUs with HF crystal oscillator only. Characterized with a Seiko Crystal SC-32S crystal with a load capacitance chosen to closely match the required load. (4) Low-power mode 3, 12.5-pF crystal, includes SVS test conditions: Current for watchdog timer clocked by ACLK and RTC clocked by XT1 included. Current for brownout and SVS included (SVSHE = 1). CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 0 (LPM3), fXT1 = 32768 Hz, fACLK = fXT1, fMCLK = fSMCLK = 0 MHz (5) Low-power mode 3, VLO, excludes SVS test conditions: Current for watchdog timer clocked by VLO included. RTC disabled. Current for brownout included. SVS disabled (SVSHE = 0). CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 0 (LPM3) fXT1 = 32768 Hz, fACLK = fMCLK = fSMCLK = 0 MHz (6) RTC periodically wakes up every second with external 32768-Hz input as source. (7) CapTIvate technology works in LPM3 with one proximity sensor for wake on touch. CapTIvate BSWP demonstration board with 1.5-mm overlay. Current for brownout included. SVS disabled (SVSHE = 0). fSCAN = 8 Hz, fCONVER = 2 MHz, COUNTS = 800 (8) CapTIvate technology works in LPM3 with one button, wake on touch.CapTIvate BSWP demonstration board with 1.5-mm overlay, Current for brownout included. SVS disabled (SVSHE = 0). fSCAN = 8 Hz, fCONVER = 2 MHz, COUNTS = 250 (9) CapTIvate technology works in LPM3 with two self-capacitance buttons, wake on touch. CapTIvate BSWP demonstration board with 1.5-mm overlay. Current for brownout included. SVS disabled (SVSHE = 0). fSCAN = 8 Hz, fCONVER = 2 MHz, COUNTS = 250 (10) CapTIvate technology works in LPM3 with 8 self-capacitance buttons. The CPU enters active mode in between time cycles to configure the conversions and read the results. CapTIvate BSWP demonstration board with 1.5-mm overlay. Current for brownout included. SVS disabled (SVSHE = 0). fSCAN = 8 Hz, fCONVER = 2 MHz, COUNTS = 250 (11) CapTIvate technology works in LPM3 with 16 mutual-capacitance buttons. The CPU enters active mode in between time cycles to configure the conversions and read the results. CapTIvate phone demonstration board with 1.5-mm overlay. Current for brownout included. SVS disabled (SVSHE = 0). fSCAN = 8 Hz, fCONVER = 2 MHz, COUNTS = 250 (12) Low-power mode 4, CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPM4), CPU and all clocks are disabled, WDT and RTC disabled Copyright © 2018–2019, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR2522 MSP430FR2512 Specifications 19 MSP430FR2522, MSP430FR2512 ZHCSHB4C – JANUARY 2018 – REVISED DECEMBER 2019 www.ti.com.cn Low-Power Mode (LPM3, LPM4) Supply Currents (Into VCC) Excluding External Current (continued) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER VCC –40°C TYP 25°C MAX TYP (1) 85°C MAX TYP MAX UNIT ILPM4,VLO Low-power mode 4, RTC is soured from VLO, excludes SVS (13) 3V 0.43 0.56 2.21 2V 0.42 0.55 2.19 ILPM4,XT1 Low-power mode 4, RTC is soured from XT1, excludes SVS (14) 3V 0.80 0.96 2.68 2V 0.79 0.94 2.64 Low-power mode 4, CapTIvate , excludes SVS (15) 3V 4.5 µA Low-power mode 4, CapTIvate , excludes SVS (16) 3V 2.7 µA Low-power mode 4, CapTIvate, excludes SVS (17) 3 V 2.9 µA Low-power mode 4, CapTIvate, excludes SVS (18) 3V 18 µA Low-power mode 4, CapTIvate, excludes SVS (19) 3V 39 µA ILPM4, CapTIvate, 1 proximity, wake on touch ILPM4, CapTIvate, 1 button, wake on touch ILPM4, CapTIvate, 2 buttons, wake on µA µA touch ILPM4, CapTIvate, 8 buttons ILPM4, CapTIvate, 16 buttons (13) Low-power mode 4, VLO, excludes SVS test conditions: Current for RTC clocked by VLO included. Current for brownout included. SVS disabled (SVSHE = 0). CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPM4) fXT1 = 0 Hz, fMCLK = fSMCLK = 0 MHz (14) Low-power mode 4, XT1, excludes SVS test conditions: Current for RTC clocked by XT1 included. Current for brownout included. SVS disabled (SVSHE = 0). CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPM4) fXT1 = 32768 Hz, fMCLK = fSMCLK = 0 MHz (15) CapTIvate technology works in LPM4 with one proximity sensor for wake on touch. CapTIvate BSWP demonstration board with 1.5-mm overlay. Current for brownout included. SVS disabled (SVSHE = 0). The VLO (10 kHz) sources the CapTIvate timer, no external crystal. fSCAN = 8 Hz, fCONVER = 2 MHz, COUNTS = 800 (16) CapTIvate technology works in LPM4 with one button, wake on touch. CapTIvate BSWP demonstration board with 1.5-mm overlay, Current for brownout included. SVS disabled (SVSHE = 0). The VLO (10 kHz) sources the CapTIvate timer, no external crystal. fSCAN = 8 Hz, fCONVER = 2 MHz, COUNTS = 250 (17) CapTIvate technology works in LPM4 with two self-capacitance buttons, wake on touch. CapTIvate BSWP demonstration board with 1.5-mm overlay. Current for brownout included. SVS disabled (SVSHE = 0). VLO (10 kHz) sources the CapTIvate timer, no external crystal. fSCAN = 8 Hz, fCONVER = 2 MHz, COUNTS = 250 (18) CapTIvate technology works in LPM4 with 8 self-capacitance buttons. The CPU enters active mode in between time cycles to configure the conversions and read the results. CapTIvate BSWP demonstration board with 1.5-mm overlay. Current for brownout included. SVS disabled (SVSHE = 0). The VLO (10 kHz) sources the CapTIvate timer, no external crystal. fSCAN = 8 Hz, fCONVER = 2 MHz, COUNTS = 250 (19) CapTIvate technology works in LPM4 with 16 mutual-capacitance buttons. The CPU enters active mode in between time cycles to configure the conversions and read the results. CapTIvate phone demonstration board with 1.5-mm overlay. Current for brownout included. SVS disabled (SVSHE = 0). The VLO (10 kHz) sources the CapTIvate timer, no external crystal. fSCAN = 8 Hz, fCONVER = 2 MHz, COUNTS = 250 20 Specifications Copyright © 2018–2019, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR2522 MSP430FR2512 MSP430FR2522, MSP430FR2512 www.ti.com.cn 5.8 ZHCSHB4C – JANUARY 2018 – REVISED DECEMBER 2019 Low-Power Mode (LPMx.5) Supply Currents (Into VCC) Excluding External Current over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER ILPM3.5, XT1 Low-power mode 3.5, 12.5-pF crystal, includes SVS (1) (2) (3) (also see Figure 5-3) ILPM4.5, SVS Low-power mode 4.5, includes SVS (4) ILPM4.5 Low-power mode 4.5, excludes SVS (5) VCC –40°C TYP MAX 25°C TYP 85°C MAX TYP MAX 1.54 3V 0.57 0.63 0.81 2V 0.54 0.60 0.79 3V 0.23 0.25 0.31 2V 0.21 0.23 0.29 3V 0.027 0.036 0.080 2V 0.022 0.031 0.073 (1) (2) Not applicable for MCUs with HF crystal oscillator only. Characterized with a Seiko Crystal SC-32S crystal with a load capacitance chosen to closely match the required load. (3) Low-power mode 3.5, 12.5-pF crystal, includes SVS test conditions: Current for RTC clocked by XT1 included. Current for brownout and SVS included (SVSHE = 1). Core regulator disabled. PMMREGOFF = 1, CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPMx.5), fXT1 = 32768 Hz, fACLK = 0, fMCLK = fSMCLK = 0 MHz Low-power mode 4.5, includes SVS test conditions: Current for brownout and SVS included (SVSHE = 1). Core regulator disabled. PMMREGOFF = 1, CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPMx.5) fXT1 = 0 Hz, fACLK = fMCLK = fSMCLK = 0 MHz Low-power mode 4.5, excludes SVS test conditions: Current for brownout included. SVS disabled (SVSHE = 0). Core regulator disabled. PMMREGOFF = 1, CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPMx.5) fXT1 = 0 Hz, fACLK = fMCLK = fSMCLK = 0 MHz (4) (5) Copyright © 2018–2019, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR2522 MSP430FR2512 UNIT µA 0.45 0.15 Specifications µA µA 21 MSP430FR2522, MSP430FR2512 ZHCSHB4C – JANUARY 2018 – REVISED DECEMBER 2019 5.9 www.ti.com.cn Typical Characteristics - Low-Power Mode Supply Currents VCC = 3 V RTC enabled SVS disabled VCC = 3 V Figure 5-1. LPM3 Supply Current vs Temperature VCC = 3 V XT1 enabled SVS enabled Figure 5-3. LPM3.5 Supply Current vs Temperature RTC enabled SVS disabled Figure 5-2. LPM4 Supply Current vs Temperature VCC = 3 V SVS enabled Figure 5-4. LPM4.5 Supply Current vs Temperature Table 5-1. Typical Characteristics – Current Consumption Per Module MODULE TEST CONDITIONS Timer_A REFERENCE CLOCK MIN TYP MAX UNIT Module input clock 5 µA/MHz eUSCI_A UART mode Module input clock 7 µA/MHz eUSCI_A SPI mode Module input clock 5 µA/MHz eUSCI_B SPI mode Module input clock 5 µA/MHz 5 µA/MHz eUSCI_B 2 I C mode, 100 kbaud Module input clock RTC CRC 22 From start to end of operation Specifications 32 kHz 85 nA MCLK 8.5 µA/MHz Copyright © 2018–2019, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR2522 MSP430FR2512 MSP430FR2522, MSP430FR2512 www.ti.com.cn ZHCSHB4C – JANUARY 2018 – REVISED DECEMBER 2019 5.10 Thermal Resistance Characteristics THERMAL METRIC (1) RθJA Junction-to-ambient thermal resistance, still air RθJC Junction-to-case (top) thermal resistance RθJB Junction-to-board thermal resistance (1) (2) VALUE (2) VQFN 20 pin (RHL) 37.8 TSSOP 16 pin (PW16) 101.7 VQFN 20 pin (RHL) 34.1 TSSOP 16 pin (PW16) 33.7 VQFN 20 pin (RHL) 15.3 TSSOP 16 pin (PW16) 47.5 UNIT ºC/W ºC/W ºC/W For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics. These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC (RθJC) value, which is based on a JEDEC-defined 1S0P system) and will change based on environment and application. For more information, see these EIA/JEDEC standards: • JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air) • JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages • JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages • JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements 5.11 Timing and Switching Characteristics 5.11.1 Power Supply Sequencing Table 5-2 lists the characteristics of the SVS and BOR. Table 5-2. PMM, SVS and BOR over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT VBOR, safe Safe BOR power-down level (1) 0.1 V tBOR, safe Safe BOR reset delay (2) 10 ms ISVSH,AM SVSH current consumption, active mode VCC = 3.6 V ISVSH,LPM SVSH current consumption, low-power modes VCC = 3.6 V VSVSH- SVSH power-down level (3) VSVSH+ SVSH power-up level VSVSH_hys SVSH hysteresis tPD,SVSH, AM tPD,SVSH, LPM (1) (2) (3) 1.5 240 (3) µA nA 1.71 1.80 1.87 1.76 1.88 1.99 80 V V mV SVSH propagation delay, active mode SVSH propagation delay, low-power modes 10 µs 100 µs A safe BOR can be correctly generated only if DVCC drops below this voltage before it rises. When an BOR occurs, a safe BOR can be correctly generated only if DVCC is kept low longer than this period before it reaches VSVSH+. For additional information, see the Dynamic Voltage Scaling Power Solution for MSP430 Devices With Single-Channel LDO Reference Design. V Power Cycle Reset SVS Reset V SVS+ BOR Reset V SVS– V BOR t BOR t Figure 5-5. Power Cycle, SVS, and BOR Reset Conditions Copyright © 2018–2019, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR2522 MSP430FR2512 Specifications 23 MSP430FR2522, MSP430FR2512 ZHCSHB4C – JANUARY 2018 – REVISED DECEMBER 2019 www.ti.com.cn 5.11.2 Reset Timing Table 5-3 lists the timing characteristics of wakeup from LPMs and reset. Table 5-3. Wake-up Times From Low-Power Modes and Reset over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) TEST CONDITIONS PARAMETER VCC tWAKE-UP FRAM Additional wake-up time to activate the FRAM in AM if previously disabled by the FRAM controller or from a LPM if immediate activation is selected for wakeup (1) tWAKE-UP LPM0 Wake-up time from LPM0 to active mode (1) 3V tWAKE-UP LPM3 Wake-up time from LPM3 to active mode (2) 3V tWAKE-UP LPM4 Wake-up time from LPM4 to active mode tWAKE-UP LPM3.5 Wake-up time from LPM3.5 to active mode 3V (2) (2) SVSHE = 1 µs 200 + 2.5 / fDCO ns 10 µs 3V 350 µs 350 µs 1 ms 1 ms tWAKE-UP-RESET 3V tRESET Pulse duration required at RST/NMI pin to accept a reset 3V 24 10 UNIT 3V Wake-up time from RST or BOR event to active mode (2) (2) MAX µs Wake-up time from LPM4.5 to active mode SVSHE = 0 TYP 10 tWAKE-UP LPM4.5 (1) MIN 3V 2 µs The wake-up time is measured from the edge of an external wake-up signal (for example, port interrupt or wake-up event) to the first externally observable MCLK clock edge. The wake-up time is measured from the edge of an external wake-up signal (for example, port interrupt or wake-up event) until the first instruction of the user program is executed. Specifications Copyright © 2018–2019, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR2522 MSP430FR2512 MSP430FR2522, MSP430FR2512 www.ti.com.cn ZHCSHB4C – JANUARY 2018 – REVISED DECEMBER 2019 5.11.3 Clock Specifications Table 5-4 lists the characteristics of the LF XT1. Table 5-4. XT1 Crystal Oscillator (Low Frequency) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1) (2) PARAMETER TEST CONDITIONS fXT1, LF XT1 oscillator crystal, low frequency LFXTBYPASS = 0 DCXT1, LF XT1 oscillator LF duty cycle Measured at MCLK, fLFXT = 32768 Hz fXT1,SW XT1 oscillator logic-level squarewave input frequency LFXTBYPASS = 1 DCXT1, SW LFXT oscillator logic-level squareLFXTBYPASS = 1 wave input duty cycle OALFXT Oscillation allowance for LF crystals (5) LFXTBYPASS = 0, LFXTDRIVE = {3}, fLFXT = 32768 Hz, CL,eff = 12.5 pF CL,eff Integrated effective load capacitance (6) See tSTART,LFXT Start-up time fFault,LFXT MIN (9) TYP MAX 32768 30% (3) (4) 70% 40% (7) XTS = 0 (10) UNIT Hz 32.768 fOSC = 32768 Hz, LFXTBYPASS = 0, LFXTDRIVE = {3}, TA = 25°C, CL,eff = 12.5 pF (8) Oscillator fault frequency VCC kHz 60% 200 kΩ 1 pF 1000 ms 0 3500 Hz (1) To improve EMI on the LFXT oscillator, observe the following guidelines: • Keep the trace between the device and the crystal as short as possible. • Design a good ground plane around the oscillator pins. • Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT. • Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins. • Use assembly materials and processes that avoid any parasitic load on the oscillator XIN and XOUT pins. • If conformal coating is used, make sure that it does not induce capacitive or resistive leakage between the oscillator pins. (2) See MSP430 32-kHz Crystal Oscillators for details on crystal section, layout, and testing. (3) When LFXTBYPASS is set, LFXT circuits are automatically powered down. Input signal is a digital square wave with parametrics defined in the Schmitt-trigger inputs section of this data sheet. Duty cycle requirements are defined by DCLFXT, SW. (4) Maximum frequency of operation of the entire device cannot be exceeded. (5) Oscillation allowance is based on a safety factor of 5 for recommended crystals. The oscillation allowance is a function of the LFXTDRIVE settings and the effective load. In general, comparable oscillator allowance can be achieved based on the following guidelines, but should be evaluated based on the actual crystal selected for the application: • For LFXTDRIVE = {0}, CL,eff = 3.7 pF • For LFXTDRIVE = {1}, 6 pF ≤ CL,eff ≤ 9 pF • For LFXTDRIVE = {2}, 6 pF ≤ CL,eff ≤ 10 pF • For LFXTDRIVE = {3}, 6 pF ≤ CL,eff ≤ 12 pF (6) Includes parasitic bond and package capacitance (approximately 2 pF per pin). (7) Requires external capacitors at both terminals to meet the effective load capacitance specified by crystal manufacturers. Recommended effective load capacitance values supported are 3.7 pF, 6 pF, 9 pF, and 12.5 pF. Maximum shunt capacitance of 1.6 pF. The PCB adds additional capacitance, so it must also be considered in the overall capacitance. Verify that the recommended effective load capacitance of the selected crystal is met. (8) Includes start-up counter of 1024 clock cycles. (9) Frequencies above the MAX specification do not set the fault flag. Frequencies between the MIN and MAX specifications might set the flag. A static condition or stuck at fault condition sets the flag. (10) Measured with logic-level input frequency but also applies to operation with crystals. Table 5-5 lists the frequency characteristics of the FLL. Table 5-5. DCO FLL, Frequency over recommended operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS FLL lock frequency, 16 MHz, 25°C fDCO, FLL lock frequency, 16 MHz, –40°C to 85°C Measured at MCLK, Internal trimmed REFO as reference VCC MIN 3V –1.0% TYP 1.0% MAX 3V –2.0% 2.0% 3V –0.5% 0.5% UNIT FLL FLL lock frequency, 16 MHz, –40°C to 85°C Measured at MCLK, XT1 crystal as reference Copyright © 2018–2019, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR2522 MSP430FR2512 Specifications 25 MSP430FR2522, MSP430FR2512 ZHCSHB4C – JANUARY 2018 – REVISED DECEMBER 2019 www.ti.com.cn Table 5-5. DCO FLL, Frequency (continued) over recommended operating free-air temperature (unless otherwise noted) PARAMETER fDUTY Duty cycle Jittercc Cycle-to-cycle jitter, 16 MHz Jitterlong Long term jitter, 16 MHz tFLL, lock FLL lock time, 16MHz TEST CONDITIONS Measured at MCLK, XT1 crystal as reference VCC MIN TYP MAX 3V 40% 50% 60% 3V 0.25% 3V 0.022% 3V 280 UNIT ms Table 5-6 lists the characteristics of the DCO. Table 5-6. DCO Frequency over recommended operating free-air temperature (unless otherwise noted) (see Figure 5-6) PARAMETER TEST CONDITIONS VCC DCORSEL = 101b, DISMOD = 1b, DCOFTRIMEN = 1b, DCOFTRIM = 000b, DCO = 0 fDCO, fDCO, fDCO, fDCO, fDCO, 16MHz 12MHz 8MHz 4MHz 2MHz DCO frequency, 16 MHz DCO frequency, 12 MHz DCO frequency, 8 MHz DCO frequency, 4 MHz DCO frequency, 2 MHz DCORSEL = 101b, DISMOD = 1b, DCOFTRIMEN = 1b, DCOFTRIM = 000b, DCO = 511 DCORSEL = 101b, DISMOD = 1b, DCOFTRIMEN = 1b, DCOFTRIM = 111b, DCO = 0 Specifications 11.8 3V MHz 17 27.7 DCORSEL = 100b, DISMOD = 1b, DCOFTRIMEN = 1b, DCOFTRIM = 000b, DCO = 0 5.5 DCORSEL = 100b, DISMOD = 1b, DCOFTRIMEN = 1b, DCOFTRIM = 000b, DCO = 511 DCORSEL = 100b, DISMOD = 1b, DCOFTRIMEN = 1b, DCOFTRIM = 111b, DCO = 0 9.1 3V MHz 13.1 DCORSEL = 100b, DISMOD = 1b, DCOFTRIMEN = 1b, DCOFTRIM = 111b, DCO = 511 21.5 DCORSEL = 011b, DISMOD = 1b, DCOFTRIMEN = 1b, DCOFTRIM = 000b, DCO = 0 3.7 DCORSEL = 011b, DISMOD = 1b, DCOFTRIMEN = 1b, DCOFTRIM = 000b, DCO = 511 DCORSEL = 011b, DISMOD = 1b, DCOFTRIMEN = 1b, DCOFTRIM = 111b, DCO = 0 6.3 3V MHz 9.0 DCORSEL = 011b, DISMOD = 1b, DCOFTRIMEN = 1b, DCOFTRIM = 111b, DCO = 511 14.9 DCORSEL = 010b, DISMOD = 1b, DCOFTRIMEN = 1b, DCOFTRIM = 000b, DCO = 0 1.9 DCORSEL = 010b, DISMOD = 1b, DCOFTRIMEN = 1b, DCOFTRIM = 000b, DCO = 511 DCORSEL = 010b, DISMOD = 1b, DCOFTRIMEN = 1b, DCOFTRIM = 111b, DCO = 0 3.2 3V MHz 4.6 DCORSEL = 010b, DISMOD = 1b, DCOFTRIMEN = 1b, DCOFTRIM = 111b, DCO = 511 7.8 DCORSEL = 001b, DISMOD = 1b, DCOFTRIMEN = 1b, DCOFTRIM = 000b, DCO = 0 0.96 DCORSEL = 001b, DISMOD = 1b, DCOFTRIMEN = 1b, DCOFTRIM = 000b, DCO = 511 DCORSEL = 001b, DISMOD = 1b, DCOFTRIMEN = 1b, DCOFTRIM = 111b, DCO = 0 UNIT 7.1 DCORSEL = 101b, DISMOD = 1b, DCOFTRIMEN = 1b, DCOFTRIM = 111b, DCO = 511 DCORSEL = 001b, DISMOD = 1b, DCOFTRIMEN = 1b, DCOFTRIM = 111b, DCO = 511 26 TYP 1.6 3V MHz 2.3 4.0 Copyright © 2018–2019, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR2522 MSP430FR2512 MSP430FR2522, MSP430FR2512 www.ti.com.cn ZHCSHB4C – JANUARY 2018 – REVISED DECEMBER 2019 Table 5-6. DCO Frequency (continued) over recommended operating free-air temperature (unless otherwise noted) (see Figure 5-6) PARAMETER TEST CONDITIONS VCC TYP DCORSEL = 000b, DISMOD = 1b, DCOFTRIMEN = 1b, DCOFTRIM = 000b, DCO = 0 fDCO, 1MHz 0.5 DCORSEL = 000b, DISMOD = 1b, DCOFTRIMEN = 1b, DCOFTRIM = 000b, DCO = 511 DCO frequency, 1 MHz UNIT 0.85 3V DCORSEL = 000b, DISMOD = 1b, DCOFTRIMEN = 1b, DCOFTRIM = 111b, DCO = 0 MHz 1.2 DCORSEL = 000b, DISMOD = 1b, DCOFTRIMEN = 1b, DCOFTRIM = 111b, DCO = 511 2.0 30 DCOFTRIM = 7 25 DCOFTRIM = 7 Frequency (MHz) 20 DCOFTRIM = 7 15 10 DCOFTRIM = 7 DCOFTRIM = 7 5 DCOFTRIM = 0 DCOFTRIM = 0 DCOFTRIM = 7 DCOFTRIM = 0 DCOFTRIM = 0 0 DCOFTRIM = 0 DCO 511 0 DCORSEL 0 DCOFTRIM = 0 511 0 511 0 1 VCC = 3 V 511 0 2 3 511 0 4 511 0 5 TA = –40°C to 85°C Figure 5-6. Typical DCO Frequency Table 5-7 lists the characteristics of the REFO. Table 5-7. REFO over recommended operating free-air temperature (unless otherwise noted) PARAMETER IREFO TEST CONDITIONS VCC REFO oscillator current consumption TA = 25°C REFO calibrated frequency Measured at MCLK REFO absolute calibrated tolerance –40°C to 85°C dfREFO/dT REFO frequency temperature drift Measured at MCLK (1) dfREFO/ dVCC REFO frequency supply voltage drift Measured at MCLK at 25°C (2) 1.8 V to 3.6 V fDC REFO duty cycle Measured at MCLK 1.8 V to 3.6 V tSTART REFO start-up time 40% to 60% duty cycle fREFO (1) (2) MIN 3V MAX 15 3V 1.8 V to 3.6 V TYP µA 32768 –3.5% 3V 40% UNIT Hz +3.5% 0.01 %/°C 1 %/V 50% 60% 50 µs Calculated using the box method: (MAX(–40°C to 85°C) – MIN(–40°C to 85°C)) / MIN(–40°C to 85°C) / (85°C – (–40°C)) Calculated using the box method: (MAX(1.8 V to 3.6 V) – MIN(1.8 V to 3.6 V)) / MIN(1.8 V to 3.6 V) / (3.6 V – 1.8 V) Copyright © 2018–2019, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR2522 MSP430FR2512 Specifications 27 MSP430FR2522, MSP430FR2512 ZHCSHB4C – JANUARY 2018 – REVISED DECEMBER 2019 www.ti.com.cn Table 5-8 lists the characteristics of the VLO. Table 5-8. Internal Very-Low-Power Low-Frequency Oscillator (VLO) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER fVLO TEST CONDITIONS VLO frequency Measured at MCLK (1) dfVLO/dT VLO frequency temperature drift Measured at MCLK dfVLO/dVCC VLO frequency supply voltage drift Measured at MCLK (2) fVLO,DC Duty cycle Measured at MCLK (1) (2) VCC TYP 3V 10 kHz 3V 0.5 %/°C 4 %/V 1.8 V to 3.6 V 3V UNIT 50% Calculated using the box method: (MAX(–40°C to 85°C) – MIN(–40°C to 85°C)) / MIN(–40°C to 85°C) / (85°C – (–40°C)) Calculated using the box method: (MAX(1.8 V to 3.6 V) – MIN(1.8 V to 3.6 V)) / MIN(1.8 V to 3.6 V) / (3.6 V – 1.8 V) NOTE The VLO clock frequency is reduced by 15% (typical) when the device switches from active mode to LPM3 or LPM4, because the reference changes. This lower frequency is not a violation of the VLO specifications (see Table 5-8). Table 5-9 lists the characteristics of the MODOSC. Table 5-9. Module Oscillator (MODOSC) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) VCC MIN TYP MAX fMODOSC MODOSC frequency PARAMETER 3V 3.8 4.8 5.8 fMODOSC/dT MODOSC frequency temperature drift 3V fMODOSC/dVCC MODOSC frequency supply voltage drift fMODOSC,DC Duty cycle 28 Specifications TEST CONDITIONS 0.102 1.8 V to 3.6 V 3V 50% MHz %/℃ 1.02 40% UNIT %/V 60% Copyright © 2018–2019, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR2522 MSP430FR2512 MSP430FR2522, MSP430FR2512 www.ti.com.cn ZHCSHB4C – JANUARY 2018 – REVISED DECEMBER 2019 5.11.4 Digital I/Os Table 5-10 lists the characteristics of the digital inputs. Table 5-10. Digital Inputs over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VCC MIN TYP MAX 2V 0.90 1.50 3V 1.35 2.25 2V 0.50 1.10 3V 0.75 1.65 2V 0.3 0.8 3V 0.4 1.2 UNIT VIT+ Positive-going input threshold voltage VIT– Negative-going input threshold voltage Vhys Input voltage hysteresis (VIT+ – VIT–) RPull Pullup or pulldown resistor For pullup: VIN = VSS For pulldown: VIN = VCC CI,dig Input capacitance, digital only port pins VIN = VSS or VCC 3 pF CI,ana Input capacitance, port pins with shared analog VIN = VSS or VCC functions 5 pF Ilkg(Px.y) High-impedance leakage current of GPIO pins 20 35 50 V V V kΩ See (1) (2) 2 V, 3 V –20 20 nA Ilkg(Px.y) High-impedance leakage current of GPIO pins shared with CapTIvate functionality See (1) (2) (3) 2 V, 3 V –30 30 nA t(int) External interrupt timing (external trigger pulse duration to set interrupt flag) (4) Ports with interrupt capability (see block diagram and terminal function descriptions) 2 V, 3 V 50 (1) (2) (3) (4) ns The leakage current is measured with VSS or VCC applied to the corresponding pins, unless otherwise noted. The leakage of the digital port pins is measured individually. The port pin is selected for input and the pullup or pulldown resistor is disabled. Applies only to GPIOs that are shared with CapTIvate I/Os An external signal sets the interrupt flag every time the minimum interrupt pulse duration t(int) is met. It may be set by trigger signals shorter than t(int). Table 5-11 lists the characteristics of the digital outputs. Table 5-11. Digital Outputs over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER VCC MIN I(OHmax) = –3 mA (1) TEST CONDITIONS 2V 1.4 2.0 I(OHmax) = –5 mA (1) 3V 2.4 3.0 I(OLmax) = 3 mA (1) 2V 0.0 0.60 I(OHmax) = 5 mA (1) 3V 0.0 0.60 2V 16 3V 16 VOH High-level output voltage VOL Low-level output voltage fPort_CLK Clock output frequency CL = 20 pF (2) trise,dig Port output rise time, digital only port pins CL = 20 pF tfall,dig Port output fall time, digital only port pins CL = 20 pF (1) (2) TYP MAX UNIT V V MHz 2V 10 3V 7 2V 10 3V 5 ns ns The maximum total current, I(OHmax) and I(OLmax), for all outputs combined should not exceed ±48 mA to hold the maximum voltage drop specified. The port can output frequencies at least up to the specified limit and might support higher frequencies. Copyright © 2018–2019, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR2522 MSP430FR2512 Specifications 29 MSP430FR2522, MSP430FR2512 ZHCSHB4C – JANUARY 2018 – REVISED DECEMBER 2019 www.ti.com.cn 5.11.4.1 Typical Characteristics – Outputs at 3 V and 2 V DVCC = 3 V DVCC = 2 V Figure 5-7. Typical Low-Level Output Current vs Low-Level Output Voltage DVCC = 3 V DVCC = 2 V Figure 5-9. Typical High-Level Output Current vs High-Level Output Voltage 30 Specifications Figure 5-8. Typical Low-Level Output Current vs Low-Level Output Voltage Figure 5-10. Typical High-Level Output Current vs High-Level Output Voltage Copyright © 2018–2019, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR2522 MSP430FR2512 MSP430FR2522, MSP430FR2512 www.ti.com.cn ZHCSHB4C – JANUARY 2018 – REVISED DECEMBER 2019 5.11.5 VREF+ Built-in Reference Table 5-12 lists the characteristics of the VREF+. Table 5-12. VREF+ over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VREF+ Positive built-in reference voltage TCREF+ Temperature coefficient of built-in reference voltage EXTREFEN = 1 with 1-mA load current VCC MIN TYP MAX UNIT 2 V, 3 V 1.15 1.19 1.23 V 30 µV/°C 5.11.6 Timer_A Table 5-13 lists the characteristics of Timer_A. Table 5-13. Timer_A over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS fTA Timer_A input clock frequency Internal: SMCLK, ACLK External: TACLK Duty cycle = 50% ±10% tTA,cap Timer_A capture timing All capture inputs, minimum pulse duration required for capture VCC 2 V, 3 V 2 V, 3 V MIN TYP MAX UNIT 16 MHz 20 ns tTIMR Timer Clock Timer CCR0-1 CCR0 0h CCR0-1 1h CCR0 0h tHD,PWM tVALID,PWM TAx.1 Figure 5-11. Timer PWM Mode Capture tTIMR Timer Clock tSU,CCIA t,HD,CCIA TAx.CCIA Figure 5-12. Timer Capture Mode Copyright © 2018–2019, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR2522 MSP430FR2512 Specifications 31 MSP430FR2522, MSP430FR2512 ZHCSHB4C – JANUARY 2018 – REVISED DECEMBER 2019 www.ti.com.cn 5.11.7 eUSCI Table 5-14 lists the supported frequencies of the eUSCI in UART mode. Table 5-14. eUSCI (UART Mode) Clock Frequency over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS feUSCI eUSCI input clock frequency fBITCLK BITCLK clock frequency (equals baud rate in Mbaud) VCC Internal: SMCLK, MODCLK External: UCLK Duty cycle = 50% ±10% MIN MAX UNIT 2 V, 3 V 16 MHz 2 V, 3 V 5 MHz Table 5-15 lists the characteristics of the eUSCI in UART mode. Table 5-15. eUSCI (UART Mode) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VCC TYP UCGLITx = 0 tt UART receive deglitch time (1) 12 UCGLITx = 1 2 V, 3 V UCGLITx = 2 UCGLITx = 3 (1) UNIT 40 68 ns 110 Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. To ensure that pulses are correctly recognized, their duration should exceed the maximum specification of the deglitch time. Table 5-16 lists the supported frequencies of the eUSCI in SPI master mode. Table 5-16. eUSCI (SPI Master Mode) Clock Frequency over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER feUSCI 32 eUSCI input clock frequency Specifications TEST CONDITIONS Internal: SMCLK, MODCLK Duty cycle = 50% ±10% MIN MAX UNIT 8 MHz Copyright © 2018–2019, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR2522 MSP430FR2512 MSP430FR2522, MSP430FR2512 www.ti.com.cn ZHCSHB4C – JANUARY 2018 – REVISED DECEMBER 2019 Table 5-17 lists the characteristics of the eUSCI in SPI master mode. Table 5-17. eUSCI (SPI Master Mode) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1) PARAMETER TEST CONDITIONS tSTE,LEAD STE lead time, STE active to clock tSTE,LAG STE lag time, last clock to STE inactive tSU,MI SOMI input data setup time tHD,MI SOMI input data hold time tVALID,MO SIMO output data valid time (2) UCLK edge to SIMO valid, CL = 20 pF tHD,MO SIMO output data hold time (3) CL = 20 pF (1) (2) (3) VCC UCSTEM = 0, UCMODEx = 01 or 10 UCSTEM = 1, UCMODEx = 01 or 10 UCSTEM = 0, UCMODEx = 01 or 10 UCSTEM = 1, UCMODEx = 01 or 10 MIN MAX UNIT 1 UCxCLK cycles 1 UCxCLK cycles 2V 48 3V 37 2V 0 3V 0 ns ns 2V 20 3V 20 2V -6 3V -5 ns ns fUCxCLK = 1/2tLO/HI with tLO/HI = max(tVALID,MO(eUSCI) + tSU,SI(Slave), tSU,MI(eUSCI) + tVALID,SO(Slave)) For the slave parameters tSU,SI(Slave) and tVALID,SO(Slave), see the SPI parameters of the attached slave. Specifies the time to drive the next valid data to the SIMO output after the output changing UCLK clock edge. See the timing diagrams in Figure 5-13 and Figure 5-14. Specifies how long data on the SIMO output is valid after the output changing UCLK clock edge. Negative values indicate that the data on the SIMO output can become invalid before the output changing clock edge observed on UCLK. See the timing diagrams in Figure 513 and Figure 5-14. Copyright © 2018–2019, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR2522 MSP430FR2512 Specifications 33 MSP430FR2522, MSP430FR2512 ZHCSHB4C – JANUARY 2018 – REVISED DECEMBER 2019 www.ti.com.cn UCMODEx = 01 tSTE,LEAD STE tSTE,LAG UCMODEx = 10 1/fUCxCLK CKPL = 0 UCLK CKPL = 1 tLOW/HIGH tLOW/HIGH tSU,MI tHD,MI SOMI tHD,MO tSTE,ACC tSTE,DIS tVALID,MO SIMO Figure 5-13. SPI Master Mode, CKPH = 0 UCMODEx = 01 tSTE,LEAD STE tSTE,LAG UCMODEx = 10 1/fUCxCLK CKPL = 0 UCLK CKPL = 1 tLOW/HIGH tLOW/HIGH tHD,MI tSU,MI SOMI tHD,MO tSTE,ACC tSTE,DIS tVALID,MO SIMO Figure 5-14. SPI Master Mode, CKPH = 1 34 Specifications Copyright © 2018–2019, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR2522 MSP430FR2512 MSP430FR2522, MSP430FR2512 www.ti.com.cn ZHCSHB4C – JANUARY 2018 – REVISED DECEMBER 2019 Table 5-18 lists the characteristics of the eUSCI in SPI slave mode. Table 5-18. eUSCI (SPI Slave Mode) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1) PARAMETER TEST CONDITIONS tSTE,LEAD STE lead time, STE active to clock tSTE,LAG STE lag time, Last clock to STE inactive tSTE,ACC STE access time, STE active to SOMI data out tSTE,DIS STE disable time, STE inactive to SOMI high impedance tSU,SI SIMO input data setup time tHD,SI SIMO input data hold time tVALID,SO SOMI output data valid time (2) tHD,SO SOMI output data hold time (1) (2) (3) UCLK edge to SOMI valid, CL = 20 pF (3) CL = 20 pF VCC MIN 2V 55 3V 45 2V 20 3V 20 MAX ns ns 2V 65 3V 40 2V 40 3V 35 2V 8 3V 6 2V 12 3V 12 68 42 3V 5 ns ns 3V 5 ns ns 2V 2V UNIT ns ns fUCxCLK = 1/2tLO/HI with tLO/HI ≥ max(tVALID,MO(Master) + tSU,SI(eUSCI), tSU,MI(Master) + tVALID,SO(eUSCI)) For the master parameters tSU,MI(Master) and tVALID,MO(Master), see the SPI parameters of the attached master. Specifies the time to drive the next valid data to the SOMI output after the output changing UCLK clock edge. See the timing diagrams in Figure 5-15 and Figure 5-16. Specifies how long data on the SOMI output is valid after the output changing UCLK clock edge. See the timing diagrams in Figure 5-15 and Figure 5-16. Copyright © 2018–2019, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR2522 MSP430FR2512 Specifications 35 MSP430FR2522, MSP430FR2512 ZHCSHB4C – JANUARY 2018 – REVISED DECEMBER 2019 www.ti.com.cn UCMODEx = 01 tSTE,LEAD STE tSTE,LAG UCMODEx = 10 1/fUCxCLK CKPL = 0 UCLK CKPL = 1 tLOW/HIGH tSU,SI tLOW/HIGH tHD,SI SIMO tHD,SO tSTE,ACC tSTE,DIS tVALID,SO SOMI Figure 5-15. SPI Slave Mode, CKPH = 0 UCMODEx = 01 tSTE,LEAD STE tSTE,LAG UCMODEx = 10 1/fUCxCLK CKPL = 0 UCLK CKPL = 1 tLOW/HIGH tLOW/HIGH tHD,SI tSU,SI SIMO tHD,SO tSTE,ACC tSTE,DIS tVALID,SO SOMI Figure 5-16. SPI Slave Mode, CKPH = 1 36 Specifications Copyright © 2018–2019, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR2522 MSP430FR2512 MSP430FR2522, MSP430FR2512 www.ti.com.cn ZHCSHB4C – JANUARY 2018 – REVISED DECEMBER 2019 Table 5-19 lists the characteristics of the eUSCI in I2C mode. Table 5-19. eUSCI (I2C Mode) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5-17) PARAMETER TEST CONDITIONS feUSCI eUSCI input clock frequency fSCL SCL clock frequency VCC MIN TYP Internal: SMCLK, MODCLK External: UCLK Duty cycle = 50% ±10% 2 V, 3 V fSCL = 100 kHz UNIT 16 MHz 400 kHz 4.0 tHD,STA Hold time (repeated) START tSU,STA Setup time for a repeated START tHD,DAT Data hold time 2 V, 3 V 0 ns tSU,DAT Data setup time 2 V, 3 V 250 ns tSU,STO tSP fSCL > 100 kHz fSCL = 100 kHz fSCL > 100 kHz fSCL = 100 kHz Setup time for STOP fSCL > 100 kHz Pulse duration of spikes suppressed by input filter 2 V, 3 V 0 MAX 2 V, 3 V 2 V, 3 V 4.7 µs 0.6 4.0 µs 0.6 UCGLITx = 0 50 600 UCGLITx = 1 25 300 12.5 150 UCGLITx = 2 2 V, 3 V UCGLITx = 3 6.3 UCCLTOx = 1 tTIMEOUT Clock low time-out µs 0.6 UCCLTOx = 2 tSU,STA 75 27 2 V, 3 V 30 UCCLTOx = 3 tHD,STA ns ms 33 tHD,STA tBUF SDA tLOW tHIGH tSP SCL tSU,DAT tSU,STO tHD,DAT Figure 5-17. I2C Mode Timing Copyright © 2018–2019, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR2522 MSP430FR2512 Specifications 37 MSP430FR2522, MSP430FR2512 ZHCSHB4C – JANUARY 2018 – REVISED DECEMBER 2019 www.ti.com.cn 5.11.8 ADC Table 5-20 lists the characteristics of the ADC power supply and input range conditions. Table 5-20. ADC, Power Supply and Input Range Conditions over operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS DVCC ADC supply voltage V(Ax) Analog input voltage range IADC Operating supply current into DVCC terminal, reference current not included, repeatsingle-channel mode fADCCLK = 5 MHz, ADCON = 1, REFON = 0, SHT0 = 0, SHT1 = 0, ADCDIV = 0, ADCCONSEQx = 10b CI Input capacitance Only one terminal Ax can be selected at one time from the pad to the ADC capacitor array, including wiring and pad RI Input MUX ON resistance DVCC = 2 V, 0 V ≤ VAx ≤ DVCC VCC MIN All ADC pins TYP MAX UNIT 2.0 3.6 V 0 DVCC V 2V 185 3V 207 2.2 V 2.5 µA 3.5 pF 36 kΩ Table 5-21 lists the ADC 10-bit timing parameters. Table 5-21. ADC, 10-Bit Timing Parameters over operating free-air temperature range (unless otherwise noted) PARAMETER VCC MIN TYP MAX UNIT For specified performance of ADC linearity parameters 2 V to 3.6 V 0.45 5 5.5 MHz Internal ADC oscillator (MODOSC) ADCDIV = 0, fADCCLK = fADCOSC 2 V to 3.6 V 3.8 4.8 5.8 MHz 2 V to 3.6 V 2.18 Conversion time REFON = 0, Internal oscillator, 10 ADCCLK cycles, 10-bit mode, fADCOSC = 4.5 MHz to 5.5 MHz External fADCCLK from ACLK, MCLK, or SMCLK, ADCSSEL ≠ 0 2 V to 3.6 V fADCCLK fADCOSC tCONVERT TEST CONDITIONS tADCON Turnon settling time of the ADC The error in a conversion started after tADCON is less than ±0.5 LSB. Reference and input signal are already settled. tSample Sampling time RS = 1000 Ω, RI = 36000 Ω, CI = 3.5 pF. Approximately 8 Tau (t) are required for an error of less than ±0.5 LSB. (1) (1) 38 2.67 µs 12 × 1 / fADCCLK 100 3V 2.0 ns µs tSample = ln(2n+1) × τ, where n = ADC resolution, τ = (RI + RS) × CI Specifications Copyright © 2018–2019, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR2522 MSP430FR2512 MSP430FR2522, MSP430FR2512 www.ti.com.cn ZHCSHB4C – JANUARY 2018 – REVISED DECEMBER 2019 Table 5-22 lists the ADC 10-bit linearity parameters. Table 5-22. ADC, 10-Bit Linearity Parameters over operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS Integral linearity error (10-bit mode) EI Integral linearity error (8-bit mode) Differential linearity error (10-bit mode) ED Differential linearity error (8-bit mode) Offset error (10-bit mode) EO Veref+ as reference Gain error (10-bit mode) Internal 1.5-V reference EG Veref+ as reference Gain error (8-bit mode) Internal 1.5-V reference Total unadjusted error (10-bit mode) ET Total unadjusted error (8-bit mode) TCSENSOR tSENSOR (sample) (1) (2) (3) Veref+ reference Veref+ reference Offset error (8-bit mode) VSENSOR Veref+ reference Veref+ as reference Internal 1.5-V reference Veref+ as reference Internal 1.5-V reference VCC MIN TYP MAX 2.4 V to 3.6 V –2 2 2.0 V to 3.6 V –2 2 2.4 V to 3.6 V –1 1 2.0 V to 3.6 V –1 1 2.4 V to 3.6 V –6.5 6.5 2.0 V to 3.6 V –6.5 6.5 2.4 V to 3.6 V 2.0 V to 3.6 V 2.4 V to 3.6 V 2.0 V to 3.6 V –2.0 2.0 –3.0% 3.0% –2.0 2.0 –3.0% 3.0% –2.0 2.0 –3.0% 3.0% –2.0 2.0 –3.0% 3.0% UNIT LSB LSB mV LSB LSB LSB LSB See (1) ADCON = 1, INCH = 0Ch, TA = 0℃ 3V 913 mV See (2) ADCON = 1, INCH = 0Ch 3V 3.35 mV/℃ ADCON = 1, INCH = 0Ch, Error of conversion result ≤1 LSB, AM and all LPMs above LPM3 3V ADCON = 1, INCH = 0Ch, Error of conversion result ≤1 LSB, LPM3 3V Sample time required if channel 12 is selected (3) 30 µs 100 The temperature sensor offset can vary significantly. TI recommends a single-point calibration to minimize the offset error of the built-in temperature sensor. The device descriptor structure contains calibration values for 30℃ and 85℃ for each available reference voltage level. The sensor voltage can be computed as VSENSE = TCSENSOR × (Temperature, ℃) + VSENSOR, where TCSENSOR and VSENSOR can be computed from the calibration values for higher accuracy. The typical equivalent impedance of the sensor is 700 kΩ. The sample time required includes the sensor on time, tSENSOR(on). Copyright © 2018–2019, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR2522 MSP430FR2512 Specifications 39 MSP430FR2522, MSP430FR2512 ZHCSHB4C – JANUARY 2018 – REVISED DECEMBER 2019 www.ti.com.cn 5.11.9 CapTIvate Table 5-23 lists the characteristics of the CapTIvate module. Table 5-23. CapTIvate Electrical Characteristics over operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT VREG Reference voltage output CREG External buffer capacitor ESR ≤ 200 mΩ 1.5 1.55 1.6 V 0.8 1 1.2 µF CELECTRODE Maximum capacitance of all external electrodes on all CapTIvate blocks Running a conversion at 4 MHz 300 pF tWAKEUP,COLD Voltage regulator wake-up time LDO completely off then turned on 700 tWAKEUP,WARM Voltage regulator wake-up time LDO in low-power mode then turned on 260 µs fCAPCLK CapTIvate oscillator frequency, nominal TA = 25ºC, CAPCLK0, FREQSHFT = 00b 16 MHz DCCAPCLK CapTIvate oscillator duty cycle Excluding first clock cycle, DC = thigh × f 40% 50% µs 60% Table 5-24 lists the signal-to-noise ratio of the CapTIvate module. Table 5-24. CapTIvate Signal-to-Noise Ratio Characteristics over operating free-air temperature range from –40°C to 105°C ambient (TA), unless otherwise noted PARAMETER TEST CONDITIONS TA = 25°C, Ct > 0.5 pF, Cp < 20 pF, >2.5% change in capacitance (2) SNR (1) (2) 40 Signal-to-noise ratio (1) MIN TYP 5:1 36:1 TA = 0°C, Ct > 0.5 pF, Cp < 20 pF, >2.5% change in capacitance (2) 28:1 TA = –40°C, Ct > 0.5 pF, Cp < 20 pF, >2.5% change in capacitance (2) 19:1 MAX UNIT SNR is defined as the ratio of the measured change in electrode capacitance due to a touch compared with the measured change in capacitance due to the device noise floor. For additional detail on SNR in capacitive sensing applications and how to measure it in your system, see Sensitivity, SNR, and Design Margin in Capacitive Touch Applications. Ct represents the increase or decrease in electrode capacitance due to a touch. Cp represents the inherent parasitic capacitance of the sensing electrode that is present when no touch is applied. Therefore, the touch signal is defined as Ct/Cp, expressed as a percent change in capacitance. Increasing Ct or decreasing Cp increases signal. Specifications Copyright © 2018–2019, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR2522 MSP430FR2512 MSP430FR2522, MSP430FR2512 www.ti.com.cn ZHCSHB4C – JANUARY 2018 – REVISED DECEMBER 2019 5.11.10 FRAM Table 5-25 lists the characteristics of the FRAM. Table 5-25. FRAM over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS Current to write into FRAM IERASE Erase current tWRITE Write time tREAD (1) (2) (3) (4) 10 Data retention duration IWRITE TYP 15 Read and write endurance tRetention MIN Read time TJ = 25°C 100 TJ = 70°C 40 TJ = 85°C 10 MAX UNIT cycles years IREAD (1) nA N/A (2) nA tREAD (3) ns (4) NWAITSx = 0 1 / fSYSTEM NWAITSx = 1 2 / fSYSTEM (4) ns Writing to FRAM does not require a setup sequence or additional power when compared to reading from FRAM. The FRAM read current IREAD is included in the active mode current consumption parameter IAM,FRAM. FRAM does not require a special erase sequence. Writing into FRAM is as fast as reading. The maximum read (and write) speed is specified by fSYSTEM using the appropriate wait state settings (NWAITSx). Copyright © 2018–2019, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR2522 MSP430FR2512 Specifications 41 MSP430FR2522, MSP430FR2512 ZHCSHB4C – JANUARY 2018 – REVISED DECEMBER 2019 www.ti.com.cn 5.11.11 Debug and Emulation Table 5-26 lists the characteristics of the 2-wire SBW interface. Table 5-26. JTAG, Spy-Bi-Wire Interface over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5-18) PARAMETER VCC MIN TYP MAX UNIT fSBW Spy-Bi-Wire input frequency 2 V, 3 V 0 8 MHz tSBW,Low Spy-Bi-Wire low clock pulse duration 2 V, 3 V 0.028 15 µs tSU, SBWTDIO SBWTDIO setup time (before falling edge of SBWTCK in TMS and TDI slot, Spy-Bi-Wire) 2 V, 3 V 4 ns tHD, SBWTDIO hold time (after rising edge of SBWTCK in TMS and TDI slot, Spy-Bi-Wire) 2 V, 3 V 19 ns tValid, SBWTDIO SBWTDIO data valid time (after falling edge of SBWTCK in TDO slot, Spy-Bi-Wire) 2 V, 3 V 31 ns tSBW, En Spy-Bi-Wire enable time (TEST high to acceptance of first clock edge) (1) 2 V, 3 V 110 µs tSBW,Ret Spy-Bi-Wire return to normal operation time (2) 2 V, 3 V 15 100 µs Rinternal Internal pulldown resistance on TEST 2 V, 3 V 20 50 kΩ (1) (2) SBWTDIO 35 Tools that access the Spy-Bi-Wire interface must wait for the tSBW,En time after pulling the TEST/SBWTCK pin high before applying the first SBWTCK clock edge. Maximum tSBW,Ret time after pulling or releasing the TEST/SBWTCK pin low until the Spy-Bi-Wire pins revert from their Spy-Bi-Wire function to their application function. This time applies only if the Spy-Bi-Wire mode is selected. tSBW,EN 1/fSBW tSBW,Low tSBW,High tSBW,Ret TEST/SBWTCK tEN,SBWTDIO tValid,SBWTDIO RST/NMI/SBWTDIO tSU,SBWTDIO tHD,SBWTDIO Figure 5-18. JTAG Spy-Bi-Wire Timing 42 Specifications Copyright © 2018–2019, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR2522 MSP430FR2512 MSP430FR2522, MSP430FR2512 www.ti.com.cn ZHCSHB4C – JANUARY 2018 – REVISED DECEMBER 2019 Table 5-27 lists the characteristics of the 4-wire JTAG interface. Table 5-27. JTAG, 4-Wire Interface over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5-19) PARAMETER VCC MIN TYP MAX UNIT 10 MHz fTCK TCK input frequency (1) 2 V, 3 V 0 tTCK,Low TCK low clock pulse duration 2 V, 3 V 15 ns tTCK,High TCK high clock pulse duration 2 V, 3 V 15 ns tSU,TMS TMS setup time (before rising edge of TCK) 2 V, 3 V 11 ns tHD,TMS TMS hold time (after rising edge of TCK) 2 V, 3 V 3 ns tSU,TDI TDI setup time (before rising edge of TCK) 2 V, 3 V 13 ns tHD,TDI TDI hold time (after rising edge of TCK) 2 V, 3 V 5 tZ-Valid,TDO TDO high impedance to valid output time (after falling edge of TCK) 2 V, 3 V 26 ns tValid,TDO TDO to new valid output time (after falling edge of TCK) 2 V, 3 V 26 ns tValid-Z,TDO TDO valid to high-impedance output time (after falling edge of TCK) 2 V, 3 V 26 ns tJTAG,Ret Spy-Bi-Wire return to normal operation time 100 µs Rinternal Internal pulldown resistance on TEST 50 kΩ (1) ns 15 2 V, 3 V 20 35 fTCK may be restricted to meet the timing requirements of the module selected. 1/fTCK tTCK,Low tTCK,High TCK TMS tSU,TMS tHD,TMS TDI (or TDO as TDI) tSU,TDI tHD,TDI TDO tZ-Valid,TDO tValid,TDO tValid-Z,TDO tJTAG,Ret TEST Figure 5-19. JTAG 4-Wire Timing Copyright © 2018–2019, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR2522 MSP430FR2512 Specifications 43 MSP430FR2522, MSP430FR2512 ZHCSHB4C – JANUARY 2018 – REVISED DECEMBER 2019 www.ti.com.cn 6 Detailed Description 6.1 Overview The MSP430FR2522 and MSP430FR2512 ultra-low-power MCUs are FRAM-based MCUs with integrated high-performance charge-transfer CapTIvate technology in ultra-low-power high-reliability high-flexibility MCUs. The MSP430FR2522 and MSP430FR2512 MCUs feature up to 8 self-capacitance or 16 mutualcapacitance electrodes, proximity sensing, and high accuracy up to 1-fF detection. The MCUs also include two 16-bit timers, eUSCIs that support UART, SPI, and I2C, a hardware multiplier, an RTC module, and a high-performance 10-bit ADC. 6.2 CPU The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All operations, other than program-flow instructions, are performed as register operations in conjunction with seven addressing modes for source operand and four addressing modes for destination operand. The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-toregister operation execution time is one cycle of the CPU clock. Four of the registers, R0 to R3, are dedicated as program counter (PC), stack pointer (SP), status register (SR), and constant generator (CG), respectively. The remaining registers are general-purpose registers. Peripherals are connected to the CPU using data, address, and control buses. Peripherals can be handled with all instructions. 6.3 Operating Modes The MSP430 has one active mode and several software-selectable low-power modes of operation (see Table 6-1). An interrupt event can wake the MCU from low-power mode LPM0, LPM3 or LPM4, service the request, and restore the MCU back to the low-power mode on return from the interrupt program. Lowpower modes LPM3.5 and LPM4.5 disable the core supply to minimize power consumption. NOTE XT1CLK and VLOCLK can be active during LPM4 mode if requested by low-frequency peripherals, such as RTC, WDT, and CapTIvate. 44 Detailed Description Copyright © 2018–2019, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR2522 MSP430FR2512 MSP430FR2522, MSP430FR2512 www.ti.com.cn ZHCSHB4C – JANUARY 2018 – REVISED DECEMBER 2019 Table 6-1. Operating Modes MODE Maximum system clock Power consumption at 25°C, 3 V Wake-up time I/O (1) (2) 6.4 LPM3.5 LPM4.5 CPU OFF STANDBY OFF ONLY RTC SHUTDOWN 16 MHz 16 MHz 40 kHz 0 40 kHz 0 126 µA/MHz 40 µA/MHz 1.7 µA/button average with 8-Hz scan 0.49 µA without SVS 0.73 µA with RTC counter only in LFXT 16 nA without SVS N/A Instant 10 µs 10 µs 350 µs 350 µs RTC I/O I/O All Full Regulation Full Regulation Partial Power Down Partial Power Down Partial Power Down Power Down SVS On On Optional Optional Optional Optional Brownout On On On On On On Active Off Off Off Off Off SMCLK Optional Optional Off Off Off Off FLL Optional Optional Off Off Off Off DCO Optional Optional Off Off Off Off MODCLK Optional Optional Off Off Off Off REFO Optional Optional Optional Off Off Off ACLK Optional Optional Optional Off Off Off XT1CLK Optional Optional Optional Off Optional Off VLOCLK Optional Optional Optional Off Optional Off CapTIvate MODCLK Optional Optional Optional Off Off Off CPU On Off Off Off Off Off FRAM On On Off Off Off Off RAM On On On On Off Off Backup memory Peripherals LPM4 All MCLK Core LPM3 N/A Regulator Clock (1) LPM0 CapTIvate I/O Wake-up events Power AM ACTIVE MODE (FRAM ON) (2) On On On On On Off Timer0_A3 Optional Optional Optional Off Off Off Timer1_A3 Optional Optional Optional Off Off Off WDT Optional Optional Optional Off Off Off eUSCI_A0 Optional Optional Optional Off Off Off eUSCI_B0 Optional Optional Optional Off Off Off CRC Optional Optional Off Off Off Off ADC Optional Optional Optional Off Off Off RTC Optional Optional Optional Off Optional Off CapTIvate Optional Optional Optional Off Off Off On Optional State Held State Held State Held State Held General-purpose digital input/output The status shown for LPM4 applies to internal clocks only. Backup memory contains 32 bytes of register space in peripheral memory. See Table 6-20 and Table 6-35 for its memory allocation. Interrupt Vector Addresses The interrupt vectors and the power-up start address are in the address range 0FFFFh to 0FF80h (see Table 6-2). The vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence. Copyright © 2018–2019, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR2522 MSP430FR2512 Detailed Description 45 MSP430FR2522, MSP430FR2512 ZHCSHB4C – JANUARY 2018 – REVISED DECEMBER 2019 www.ti.com.cn Table 6-2. Interrupt Sources, Flags, and Vectors INTERRUPT SOURCE INTERRUPT FLAG SYSTEM INTERRUPT WORD ADDRESS PRIORITY System Reset Power up, Brownout, Supply supervisor External reset RST Watchdog time-out, Key violation FRAM uncorrectable bit error detection Software POR, BOR FLL unlock error SVSHIFG PMMRSTIFG WDTIFG PMMPORIFG, PMMBORIFG SYSRSTIV FLLUNLOCKIFG Reset FFFEh 63, Highest System NMI Vacant memory access JTAG mailbox FRAM access time error FRAM bit error detection VMAIFG JMBINIFG, JMBOUTIFG CBDIFG, UBDIFG Nonmaskable FFFCh 62 User NMI External NMI Oscillator fault NMIIFG OFIFG Nonmaskable FFFAh 61 Timer0_A3 TA0CCR0 CCIFG0 Maskable FFF8h 60 Timer0_A3 TA0CCR1 CCIFG1, TA0CCR2 CCIFG2, TA0IFG (TA0IV) Maskable FFF6h 59 Timer1_A3 TA1CCR0 CCIFG0 Maskable FFF4h 58 Timer1_A3 TA1CCR1 CCIFG1, TA1CCR2 CCIFG2, TA1IFG (TA1IV) Maskable FFF2h 57 RTC RTCIFG Maskable FFF0h 56 Watchdog timer interval mode WDTIFG Maskable FFEEh 55 eUSCI_A0 receive or transmit UCTXCPTIFG, UCSTTIFG, UCRXIFG, UCTXIFG (UART mode) UCRXIFG, UCTXIFG (SPI mode) (UCA0IV) Maskable FFECh 54 eUSCI_B0 receive or transmit UCB0RXIFG, UCB0TXIFG (SPI mode) UCALIFG, UCNACKIFG, UCSTTIFG, UCSTPIFG, UCRXIFG0, UCTXIFG0, UCRXIFG1, UCTXIFG1, UCRXIFG2, UCTXIFG2, UCRXIFG3, UCTXIFG3, UCCNTIFG, UCBIT9IFG (I2C mode) (UCB0IV) Maskable FFEAh 53 ADC ADCIFG0, ADCINIFG, ADCLOIFG, ADCHIIFG, ADCTOVIFG, ADCOVIFG (ADCIV) Maskable FFE8h 52 P1 P1IFG.0 to P1IFG.7 (P1IV) Maskable FFE6h 51 P2 P2IFG.0 to P2IFG.6 (P2IV) Maskable FFE4h 50 CapTIvate (See CapTivate Design Center for details) Maskable FFE2h 49, Lowest Reserved Reserved Maskable FFE0h–FF88h Table 6-3. Signatures 46 Detailed Description SIGNATURE WORD ADDRESS BSL Signature2 0FF86h BSL Signature1 0FF84h JTAG Signature2 0FF82h JTAG Signature1 0FF80h Copyright © 2018–2019, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR2522 MSP430FR2512 MSP430FR2522, MSP430FR2512 www.ti.com.cn 6.5 ZHCSHB4C – JANUARY 2018 – REVISED DECEMBER 2019 Bootloader (BSL) The BSL lets users program the FRAM or RAM using either the UART serial interface or the I2C interface. Access to the MCU memory through the BSL is protected by an user-defined password. Use of the BSL requires four pins (see Table 6-4 and Table 6-5). The BSL entry requires a specific entry sequence on the RST/NMI/SBWTDIO and TEST/SBWTCK pins. This device can support the blank device detection automatically to invoke the BSL with bypass this special entry sequence for saving time and on board programmable. For the complete description of the feature of the BSL, see the MSP430 FRAM Device Bootloader (BSL) User's Guide. Table 6-4. UART BSL Pin Requirements and Functions DEVICE SIGNAL BSL FUNCTION RST/NMI/SBWTDIO Entry sequence signal TEST/SBWTCK Entry sequence signal P1.4 Data transmit P1.5 Data receive DVCC Power supply DVSS Ground supply Table 6-5. I2C BSL Pin Requirements and Functions 6.6 DEVICE SIGNAL BSL FUNCTION RST/NMI/SBWTDIO Entry sequence signal TEST/SBWTCK Entry sequence signal P1.2 Data transmit and receive P1.3 Clock DVCC Power supply DVSS Ground supply JTAG Standard Interface The MSP low-power microcontrollers support the standard JTAG interface, which requires four signals for sending and receiving data. The JTAG signals are shared with general-purpose I/O. The TEST/SBWTCK pin enables the JTAG signals. In addition to these signals, the RST/NMI/SBWTDIO is required to interface with MSP430 development tools and device programmers. Table 6-6 lists the JTAG pin requirements. For further details on interfacing to development tools and device programmers, see the MSP430 Hardware Tools User's Guide. For details on using the JTAG interface, see MSP430 Programming With the JTAG Interface. Table 6-6. JTAG Pin Requirements and Function DEVICE SIGNAL DIRECTION JTAG FUNCTION P1.4/.../TCK IN JTAG clock input P1.5/.../TMS IN JTAG state control P1.6/.../TDI/TCLK IN JTAG data input, TCLK input P1.7/.../TDO OUT JTAG data output TEST/SBWTCK IN Enable JTAG pins RST/NMI/SBWTDIO IN External reset DVCC – Power supply DVSS – Ground supply Copyright © 2018–2019, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR2522 MSP430FR2512 Detailed Description 47 MSP430FR2522, MSP430FR2512 ZHCSHB4C – JANUARY 2018 – REVISED DECEMBER 2019 6.7 www.ti.com.cn Spy-Bi-Wire Interface (SBW) The MSP low-power microcontrollers support the 2-wire SBW interface. SBW can be used to interface with MSP development tools and device programmers. Table 6-7 lists the SBW interface pin requirements. For further details on interfacing to development tools and device programmers, see the MSP430 Hardware Tools User's Guide. For details on using the SBW interface, see the MSP430 Programming With the JTAG Interface. Table 6-7. Spy-Bi-Wire Pin Requirements and Functions 6.8 DEVICE SIGNAL DIRECTION SBW FUNCTION TEST/SBWTCK IN Spy-Bi-Wire clock input RST/NMI/SBWTDIO IN, OUT Spy-Bi-Wire data input and output DVCC – Power supply DVSS – Ground supply FRAM The FRAM can be programmed using the JTAG port, SBW, the BSL, or in-system by the CPU. Features of the FRAM include: • Byte and word access capability • Programmable wait state generation • Error correction coding (ECC) 6.9 Memory Protection The device features memory protection for user access authority and write protection, including options to: • Secure the whole memory map to prevent unauthorized access from JTAG port or BSL, by writing JTAG and BSL signatures using the JTAG port, SBW, the BSL, or in-system by the CPU. • Enable write protection to prevent unwanted write operation to FRAM contents by setting the control bits in the System Configuration 0 register. For detailed information, see the SYS chapter in the MP430FR4xx and MP430FR2xx Family User's Guide. 6.10 Peripherals Peripherals are connected to the CPU through data, address, and control buses. All peripherals can be handled by using all instructions in the memory map. For complete module description, see the MP430FR4xx and MP430FR2xx Family User's Guide. 6.10.1 Power-Management Module (PMM) The PMM includes an integrated voltage regulator that supplies the core voltage to the device. The PMM also includes supply voltage supervisor (SVS) and brownout protection. The brownout reset circuit (BOR) is implemented to provide the proper internal reset signal to the device during power on and power off. The SVS circuitry detects if the supply voltage drops below a user-selectable safe level. SVS circuitry is available on the primary supply. The device contains two on-chip reference: 1.5 V for internal reference and 1.2 V for external reference. The 1.5-V reference is internally connected to ADC channel 13. DVCC is internally connected to ADC channel 15. When DVCC is set as the reference voltage for ADC conversion, the DVCC can be easily represent as Equation 1 by using ADC sampling 1.5-V reference without any external components support. DVCC = (1023 × 1.5 V) ÷ 1.5-V reference ADC result 48 Detailed Description (1) Copyright © 2018–2019, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR2522 MSP430FR2512 MSP430FR2522, MSP430FR2512 www.ti.com.cn ZHCSHB4C – JANUARY 2018 – REVISED DECEMBER 2019 A 1.2-V reference voltage can be buffered, when EXTREFEN = 1 on PMMCTL2 register, and it can be output to P1.1/../A1/VREF+ , meanwhile the ADC channel 1 can also be selected to monitor this voltage. For more detailed information, see the MSP430FR4xx and MSP430FR2xx Family User's Guide. 6.10.2 Clock System (CS) and Clock Distribution The clock system includes a 32-kHz crystal oscillator (XT1), an internal very-low-power low-frequency oscillator (VLO), an integrated 32-kHz RC oscillator (REFO), an integrated internal digitally controlled oscillator (DCO) that may use frequency-locked loop (FLL) locking with internal or external 32-kHz reference clock, and an on-chip asynchronous high-speed clock (MODOSC). The clock system is designed for cost-effective designs with minimal external components. A fail-safe mechanism is included for XT1. The clock system module offers the following clock signals. • Main Clock (MCLK): The system clock used by the CPU and all relevant peripherals accessed by the bus. All clock sources except MODOSC can be selected as the source with a predivider of 1, 2, 4, 8, 16, 32, 64, or 128. • Sub-Main Clock (SMCLK): The subsystem clock used by the peripheral modules. SMCLK derives from the MCLK with a predivider of 1, 2, 4, or 8. This means SMCLK is always equal to or less than MCLK. • Auxiliary Clock (ACLK): This clock is derived from the external XT1 clock or internal REFO clock up to 40 kHz. All peripherals may have one or several clock sources depending on specific functionality. Table 6-8 lists the clock distribution used in this device. Table 6-8. Clock Distribution CLOCK SOURCE SELECT BITS Frequency Range MCLK SMCLK ACLK MODCLK XT1CLK VLOCLK EXTERNAL PIN DC to 16 MHz DC to 16 MHz DC to 40 kHz 5 MHz ±10% DC to 40 kHz 10 kHz ±50% – CPU N/A Default – – – – – – FRAM N/A Default – – – – – – RAM N/A Default – – – – – – CRC N/A Default – – – – – – I/O N/A Default – – – – – – TA0 TASSEL – 10b 01b – – 11b 00b (TA0CLK pin) TA1 TASSEL – 10b 01b – – – 00b (TA1CLK pin) eUSCI_A0 UCSSEL – 10b or 11b 01b – – – 00b (UCA0CLK pin) eUSCI_B0 UCSSEL – 10b or 11b 01b – – – 00b (UCB0CLK pin) WDTSSEL – 00b 01b – – 10b – ADC ADCSSEL – 10b or 11b 01b 00b – – – CapTIvate CAPTSSEL – – 00b – – 01b – RTCSS – 01b (1) 01b (1) – 10b 11b – WDT RTC (1) Controlled by the RTCCKSEL bit in the SYSCFG2 register Copyright © 2018–2019, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR2522 MSP430FR2512 Detailed Description 49 MSP430FR2522, MSP430FR2512 CPU FRAM SRAM CRC I/O Timer_A A0 Timer_A A1 eUSCI_A0 eUSCI_B0 WDT 00 www.ti.com.cn 00 ZHCSHB4C – JANUARY 2018 – REVISED DECEMBER 2019 00 CapTIvate 01 10, 11 00 01 ADC10 11 01 RTC 10 00 01 10 11 10, 11 00 01 00 01 10 01 10 01 Clock System (CS) 10, 11 MCLK SMCLK ACLK VLOCLK MODCLK Selected on SYSCFG2 UB0CLK UA0CLK TA1CLK TA0CLK XT1CLK Figure 6-1. Clock Distribution Block Diagram 50 Detailed Description Copyright © 2018–2019, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR2522 MSP430FR2512 MSP430FR2522, MSP430FR2512 www.ti.com.cn ZHCSHB4C – JANUARY 2018 – REVISED DECEMBER 2019 6.10.3 General-Purpose Input/Output Port (I/O) Up to 15 I/O ports are implemented. • P1 implements 8 bits, and P2 implements 7 bits. • All individual I/O bits are independently programmable. • Any combination of input, output, and interrupt conditions is possible. • Programmable pullup or pulldown on all ports. • Edge-selectable interrupt and LPMx.5 wake-up input capability are available for P1 and P2. • Read and write access to port-control registers is supported by all instructions. • Ports can be accessed byte-wise or word-wise as a pair. • CapTIvate functionality is supported on all CAPx.y pins. NOTE Configuration of digital I/Os after BOR reset To prevent any cross currents during start-up of the device, all port pins are high-impedance with Schmitt triggers and module functions disabled. To enable the I/O functions after a BOR reset, the ports must be configured first and then the LOCKLPM5 bit must be cleared. For details, see the Configuration After Reset section in the Digital I/O chapter of the MP430FR4xx and MP430FR2xx Family User's Guide. 6.10.4 Watchdog Timer (WDT) The primary function of the WDT module is to perform a controlled system restart after a software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed in an application, the module can be configured as an interval timer and can generate interrupts at selected time intervals. Table 6-9 lists the system clocks that can be used to source the WDT. Table 6-9. WDT Clocks WDTSSEL NORMAL OPERATION (WATCHDOG AND INTERVAL TIMER MODE) 00 SMCLK 01 ACLK 10 VLOCLK 11 Reserved Copyright © 2018–2019, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR2522 MSP430FR2512 Detailed Description 51 MSP430FR2522, MSP430FR2512 ZHCSHB4C – JANUARY 2018 – REVISED DECEMBER 2019 www.ti.com.cn 6.10.5 System (SYS) Module The SYS module handles many of the system functions within the device. These features include poweron reset (POR) and power-up clear (PUC) handling, NMI source selection and management, reset interrupt vector generators, bootloader entry mechanisms, and configuration management (device descriptors). The SYS module also includes a data exchange mechanism through SBW called a JTAG mailbox mail box that can be used in the application. Table 6-10 summarizes the interrupts that are managed by the SYS module. Table 6-10. System Module Interrupt Vector Registers INTERRUPT VECTOR REGISTER SYSRSTIV, System Reset SYSSNIV, System NMI SYSUNIV, User NMI 52 Detailed Description ADDRESS 015Eh 015Ch 015Ah INTERRUPT EVENT VALUE No interrupt pending 00h Brownout (BOR) 02h RSTIFG RST/NMI (BOR) 04h PMMSWBOR software BOR (BOR) 06h LPMx.5 wakeup (BOR) 08h Security violation (BOR) 0Ah Reserved 0Ch SVSHIFG SVSH event (BOR) 0Eh Reserved 10h Reserved 12h PMMSWPOR software POR (POR) 14h WDTIFG watchdog time-out (PUC) 16h WDTPW password violation (PUC) 18h FRCTLPW password violation (PUC) 1Ah Uncorrectable FRAM bit error detection 1Ch Peripheral area fetch (PUC) 1Eh PMMPW PMM password violation (PUC) 20h FLL unlock (PUC) 24h Reserved 22h, 26h to 3Eh No interrupt pending 00h SVS low-power reset entry 02h Uncorrectable FRAM bit error detection 04h Reserved 06h Reserved 08h Reserved 0Ah Reserved 0Ch Reserved 0Eh Reserved 10h VMAIFG vacant memory access 12h JMBINIFG JTAG mailbox input 14h JMBOUTIFG JTAG mailbox output 16h Correctable FRAM bit error detection 18h Reserved 1Ah to 1Eh No interrupt pending 00h NMIIFG NMI pin or SVSH event 02h OFIFG oscillator fault 04h Reserved 06h to 1Eh PRIORITY Highest Lowest Highest Lowest Highest Lowest Copyright © 2018–2019, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR2522 MSP430FR2512 MSP430FR2522, MSP430FR2512 www.ti.com.cn ZHCSHB4C – JANUARY 2018 – REVISED DECEMBER 2019 6.10.6 Cyclic Redundancy Check (CRC) The 16-bit cyclic redundancy check (CRC) module produces a signature based on a sequence of data values and can be used for data checking purposes. The CRC generation polynomial is compliant with CRC-16-CCITT standard of x16 + x12 + x5 + 1. 6.10.7 Enhanced Universal Serial Communication Interface (eUSCI_A0, eUSCI_B0) The eUSCI modules are used for serial data communications. The eUSCI_A module supports either UART or SPI communications. The eUSCI_B module supports either SPI or I2C communications. Additionally, eUSCI_A supports automatic baud-rate detection and IrDA. The eUSCI_A and eUSCI_B are connected either from P1 port or P2 port, it can be selected from the USCIARMP of SYSCFG3 or USCIBRMP bit of SYSCFG2. Table 6-11 lists the pin configurations that are required for each eUSCI mode. Table 6-11. eUSCI Pin Configurations eUSCI_A0 eUSCI_B0 PIN (USCIARMP = 0) UART SPI P1.4 TXD SIMO P1.5 RXD SOMI P1.6 – SCLK P1.7 – STE PIN (USCIARMP = 1) UART SPI P2.0 TXD SIMO P2.1 RXD SOMI P1.6 – SCLK STE P1.7 – PIN (USCIBRMP = 0) I2C SPI P1.0 – STE P1.1 – SCLK P1.2 SDA SIMO P1.3 SCL SOMI PIN (USCIBRMP = 1) I2C SPI P2.3 – STE P2.4 – SCLK P2.5 SDA SIMO P2.6 SCL SOMI Copyright © 2018–2019, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR2522 MSP430FR2512 Detailed Description 53 MSP430FR2522, MSP430FR2512 ZHCSHB4C – JANUARY 2018 – REVISED DECEMBER 2019 www.ti.com.cn 6.10.8 Timers (Timer0_A3, Timer1_A3) The Timer0_A3 and Timer1_A3 modules are 16-bit timers and counters with three capture/compare registers each. Each timer supports multiple captures or compares, PWM outputs, and interval timing (see Figure 6-2). Each timer has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers. The CCR0 registers on both Timer0_A3 and Timer1_A3 are not externally connected and can only be used for hardware period timing and interrupt generation. In Up mode, they can be used to set the overflow value of the counter. Timer_A0 TA0CLK Timer_A1 00 ACLK 01 SMCLK 10 ACLK 01 VLO 11 SMCLK 10 TA1CLK 00 16-bit Counter 16-bit Counter 11 ACLK 00 VLO 01 DVSS 10 DVCC 11 00 TA0.0A CCR0 TA0.0B 01 TA0.0A CCR0 P1.4 DVSS 10 DVCC 11 P2.2 00 DVSS 10 DVCC 11 P2.3 00 DVSS 10 DVCC 11 TA0.0B 00 RTC 01 DVSS 10 DVCC 11 TA0.1A P1.4 CCR1 TA0.1B 01 TA0.1A P2.2 TA0.1B To ADC Trigger TA0.2A P2.3 CCR1 P1.5 00 DVSS 10 DVCC 11 01 TA0.2A P1.5 CCR2 TA0.2B 01 CCR2 TA0.2B Coding Carrier eUSCI_A0 UCA0TXD/UCA0SIMO Infrared Logic (SYS) P2.0/UCA0TXD/UCA0SIMO Data Figure 6-2. Timer0_A3 and Timer1_A3 Signal Connections The interconnection of Timer0_A3 and Timer1_A3 can be used to modulate the eUSCI_A pin of UCA0TXD/UCA0SIMO in either ASK or FSK mode, with which a user can easily acquire a modulated infrared command for directly driving an external IR diode. The IR functions are fully controlled by SYS configuration registers 1 including IREN (enable), IRPSEL (polarity select), IRMSEL (mode select), IRDSSEL (data select), and IRDATA (data) bits. For more information, see the SYS chapter in the MP430FR4xx and MP430FR2xx Family User's Guide. 6.10.9 Hardware Multiplier (MPY) The multiplication operation is supported by a dedicated peripheral module. The module performs operations with 32-, 24-, 16-, and 8-bit operands. The MPY module supports signed multiplication, unsigned multiplication, signed multiply-and-accumulate, and unsigned multiply-and-accumulate operations. 54 Detailed Description Copyright © 2018–2019, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR2522 MSP430FR2512 MSP430FR2522, MSP430FR2512 www.ti.com.cn ZHCSHB4C – JANUARY 2018 – REVISED DECEMBER 2019 6.10.10 Backup Memory (BAKMEM) The BAKMEM supports data retention during LPM3.5. This device provides up to 32 bytes that are retained during LPM3.5. 6.10.11 Real-Time Clock (RTC) The RTC is a 16-bit modulo counter that is functional in AM, LPM0, LPM3, and LPM3.5. This module can periodically wake up the CPU from LPM0, LPM3, or LPM3.5 based on timing from a low-power clock source such as the XT1 and VLO clocks. RTC also can be sourced from ACLK controlled by RTCCLK in SYSCFG2. In AM, RTC can be driven by SMCLK to generate high-frequency timing events and interrupts. The RTC overflow events trigger: • Timer0_B3 CCI1B • ADC conversion trigger when ADCSHSx bits are set as 01b Table 6-12. RTC Clock Source (1) RTCSS CLOCK SOURCE 00 Reserved 01 SMCLK or ACLK is selected (1) 10 XT1CLK 11 VLOCLK Controlled by the RTCCLK bit of the SYSCFG2 register 6.10.12 10-Bit Analog-to-Digital Converter (ADC) The 10-bit ADC module supports fast 10-bit analog-to-digital conversions with single-ended input. The module implements a 10-bit SAR core, sample select control, a reference generator, and a conversion result buffer. A window comparator with lower and upper limits allows CPU-independent result monitoring with three window comparator interrupt flags. The ADC supports 10 external inputs and 4 internal inputs (see Table 6-13). Table 6-13. ADC Channel Connections ADCINCHx ADC CHANNELS EXTERNAL PIN 0 A0/Veref+ P1.0 1 A1 (1) P1.1 2 A2/Veref- P1.2 3 A3 P1.3 4 A4 P2.2 5 A5 P2.3 6 A6 P2.4 7 A7 P2.5 8 Not used N/A 9 Not used N/A 10 Not used N/A 11 Not used N/A 12 On-chip temperature sensor N/A 13 Reference voltage (1.5 V) N/A (1) When A7 is used, the PMM 1.2-V reference voltage can be output to this pin by setting the PMM control register. The 1.2-V voltage can be measured by the A1 channel. Copyright © 2018–2019, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR2522 MSP430FR2512 Detailed Description 55 MSP430FR2522, MSP430FR2512 ZHCSHB4C – JANUARY 2018 – REVISED DECEMBER 2019 www.ti.com.cn Table 6-13. ADC Channel Connections (continued) ADCINCHx ADC CHANNELS EXTERNAL PIN 14 DVSS N/A 15 DVCC N/A The analog-to-digital conversion can be started by software or a hardware trigger. Table 6-14 lists the trigger sources that are available. Table 6-14. ADC Trigger Signal Connections ADCSHSx TRIGGER SOURCE BINARY DECIMAL 00 0 ADCSC bit (software trigger) 01 1 RTC event 10 2 TA1.1B 11 3 Reserved 6.10.13 CapTIvate Technology The CapTIvate module detects the capacitance changed with a charge-transfer method and is functional in AM, LPM0, LPM3 and LPM4. The CapTIvate module can periodically wake the CPU from LPM0, LPM3 or LPM4 based on a CapTIvate timer source such as ACLK or VLO clock. The CapTIvate module also can work on wake-on-touch state machine mode for better power saving without periodically woke up the CPU. The CapTIvate module supports the following touch-sensing capability: • The MSP430FR2522 supports up to 16 CapTIvate buttons composed of 2 CapTIvate blocks. The MSP430FR2512 supports up to 4 CapTIvate buttons composed of 1 CapTIvate block. Each block consists of 4 I/Os, and these blocks scan in parallel of 2 electrodes. • Each block can be individually configured in self or mutual mode. Each CapTIvate I/O can be used for either self or mutual electrodes. • Supports a wake-on-touch state machine. • Supports synchronized conversion on a zero-crossing event trigger. • Processing logic to perform filter calculation and threshold detection. To learn more about MSP MCUs featuring CapTIvate technology, see the CapTIvate™ Technology Guide. 6.10.14 Embedded Emulation Module (EEM) The EEM supports real-time in-system debugging. The EEM on these devices has the following features: • Three hardware triggers or breakpoints on memory access • One hardware trigger or breakpoint on CPU register write access • Up to four hardware triggers can be combined to form complex triggers or breakpoints • One cycle counter • Clock control on module level • EEM version: S 56 Detailed Description Copyright © 2018–2019, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR2522 MSP430FR2512 MSP430FR2522, MSP430FR2512 www.ti.com.cn ZHCSHB4C – JANUARY 2018 – REVISED DECEMBER 2019 6.11 Input/Output Diagrams 6.11.1 Port P1 (P1.0 to P1.7) Input/Output With Schmitt Trigger Figure 6-3 shows the port diagram. Table 6-15 summarizes the selection of pin function. A0 to A3 CAP0.0 to CAP0.3 CAP1.0 to CAP1.3 From CapTIvate P1SEL.x = 11 P1REN.x P1DIR.x From Module1 00 01 10 11 2 bit From Module2 DVSS 0 DVCC 1 00 01 10 11 P1OUT.x From Module1 From Module2 DVSS 2 bit P1SEL.x EN To module D P1IN.x P1IE.x P1 Interrupt Q Bus Keeper D S P1IFG.x P1.0/UCB0STE/A0/Veref+/CAP1.0 P1.1/UCB0CLK/ACLK/A1/VREF+/CAP1.1 P1.2/UCB0SIMO/UCB0SDA/SMCLK/A2/Veref-/CAP1.2 P1.3/UCB0SOMI/UCB0SCL/MCLK/A3/CAP1.3 P1.4/UCA0TXD/UCA0SIMO/TA0.1/TCK/CAP0.0 P1.5/UCA0RXD/UCA0SOMI/TA0.2/TMS/CAP0.1 P1.6/UCA0CLK/TA0CLK/TDI/TCLK/CAP0.2 P1.7/UCA0STE/TDO/CAP0.3 Edge Select P1IES.x From JTAG To JTAG NOTE: CapTIvate channel 1 is available on the MSP430FR2522 only. Figure 6-3. Port P1 (P1.0 to P1.7) Input/Output With Schmitt Trigger NOTE CapTIvate shared with alternative functions The CapTIvate function and alternative functions are powered by different power supplies (1.5 V and 3.3 V, respectively). To prevent pad damage when changing the function, TI recommends checking the external application circuit of each pad before enabling the alternative function. Copyright © 2018–2019, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR2522 MSP430FR2512 Detailed Description 57 MSP430FR2522, MSP430FR2512 ZHCSHB4C – JANUARY 2018 – REVISED DECEMBER 2019 www.ti.com.cn Table 6-15. Port P1 (P1.0 to P1.7) Pin Functions CONTROL BITS AND SIGNALS (1) PIN NAME (P1.x) P1.0/UCB0STE/A0/ Veref+/CAP1.0 (3) P1.1/UCB0CLK/ACLK/ A1/VREF+/CAP1.1 (3) x 0 1 FUNCTION P1DIR.x P1SELx ANALOG FUNCTION (2) JTAG P1.0 (I/O) I: 0; O: 1 00 0 N/A UCB0STE X 01 0 N/A X ADCPCTLx = 1 (x = 0) from SYSCFG2 CAP1.0 (3) X P1SELx = 11, or from CapTIvate P1.1 (I/O) I: 0; O: 1 00 0 N/A UCB0CLK X 01 0 N/A ACLK 1 10 0 N/A A1,VREF+ X ADCPCTLx = 1 (x = 1) from SYSCFG2 X P1SELx = 11, or from CapTIvate A0,Veref+ CAP1.1 (3) P1.2 (I/O) P1.2/UCB0SIMO/ UCB0SDA/SMCLK/A2/ Veref-/CAP1.2 (3) 2 I: 0; O: 1 00 0 N/A X 01 0 N/A SMCLK 1 10 0 N/A A2, Veref(3) P1.3 (I/O) P1.4/UCA0TXD/ UCA0SIMO/TA0.1/ TCK/CAP0.0 P1.5/UCA0RXD/ UCA0SOMI/TA0.2/ TMS/CAP0.1 P1.6/UCA0CLK/ TA0CLK/TDI/TCLK/ CAP0.2 P1.7/UCA0STE/TDO/ CAP0.3 (1) (2) (3) 58 3 5 6 7 X ADCPCTLx = 1 (x = 2) from SYSCFG2 X P1SELx = 11, or from CapTIvate N/A I: 0; O: 1 00 0 N/A UCB0SOMI/UCB0SCL X 01 0 N/A MCLK 1 10 0 N/A X ADCPCTLx = 1 (x = 3) from SYSCFG2 CAP1.3 (3) X P1SELx = 11, or from CapTIvate P1.4 (I/O) I: 0; O: 1 00 0 Disabled UCA0TXD/UCA0SIMO X 01 0 Disabled TA0.CCI1A 0 TA0.1 1 10 0 Disabled CAP0.0 X A3 4 N/A UCB0SIMO/UCB0SDA CAP1.2 P1.3/UCB0SOMI/ UCB0SCL/MCLK/A3/ CAP1.3 (3) N/A N/A P1SELx = 11, or from CapTIvate Disabled JTAG TCK X X X TCK P1.5 (I/O) I: 0; O: 1 00 0 Disabled UCA0RXD/UCA0SOMI X 01 0 Disabled TA0.CCI2A 0 TA0.2 1 10 0 Disabled CAP0.1 X JTAG TMS X X X TMS P1.6 (I/O) I: 0; O: 1 00 0 Disabled UCA0CLK X 01 0 Disabled TA0CLK 0 10 0 Disabled CAP0.2 X JTAG TDI/TCLK X X X TDI/TCLK P1.7 (I/O) I: 0; O: 1 00 0 Disabled UCA0STE X 01 0 Disabled CAP0.3 X JTAG TDO X P1SELx = 11, or from CapTIvate Disabled P1SELx = 11, or from CapTIvate Disabled P1SELx = 11, or from CapTIvate X X Disabled TDO X = don't care Setting the bits disables both the output driver and input Schmitt trigger to prevent leakage when analog signals are applied. CapTIvate channel 1 is available on the MSP430FR2522 only. Detailed Description Copyright © 2018–2019, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR2522 MSP430FR2512 MSP430FR2522, MSP430FR2512 www.ti.com.cn ZHCSHB4C – JANUARY 2018 – REVISED DECEMBER 2019 6.11.2 Port P2 (P2.0 to P2.6) Input/Output With Schmitt Trigger Figure 6-4 shows the port diagram. Table 6-16 summarizes the selection of pin function. A4 to A7 P2SEL.x = 11 P2REN.x P2DIR.x From Module1 00 01 10 11 2 bit From Module2 DVSS 0 DVCC 1 00 01 10 11 P2OUT.x From Module1 From Module2 DVSS 2 bit P2SEL.x EN To module D P2IN.x P2IE.x Bus Keeper P2 Interrupt Q D S P2IFG.x Edge Select P2IES.x P2.0/UCA0TXD/UCA0SIMO/XOUT P2.1/UCA0RXD/UCA0SOMI/XIN P2.2/TA1.1/SYNC/A4 P2.3/TA1.2/UCB0STE/A5 P2.4/TA1CLK/UCB0CLK/A6 P2.5/UCB0SIMO/UCB0SDA/A7 P2.6/UCB0SOMI/UCB0SCL Figure 6-4. Port P2 (P2.0 to P2.6) Input/Output With Schmitt Trigger Copyright © 2018–2019, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR2522 MSP430FR2512 Detailed Description 59 MSP430FR2522, MSP430FR2512 ZHCSHB4C – JANUARY 2018 – REVISED DECEMBER 2019 www.ti.com.cn Table 6-16. Port P2 (P2.0 to P2.6) Pin Functions CONTROL BITS AND SIGNALS (1) PIN NAME (P2.x) x FUNCTION P2DIR.x P2SELx ANALOG FUNCTION (2) I: 0; O: 1 00 0 UCA0TXD/UCA0SIMO X 01 0 XOUT X 10 0 I: 0; O: 1 00 0 UCA0RXD/UCA0SOMI X 01 0 XIN X 10 0 I: 0; O: 1 00 0 01 0 P2.0 (I/O) P2.0/UCA0TXD/ UCA0SIMO/XOUT 0 P2.1 (I/O) P2.1/UCA0RXD/ UCA0SOMI/XIN 1 P2.2 (I/O) P2.2/TA1.1/SYNC/A4 2 TA1.CCI1A 0 TA1.1 1 SYNC 0 A4 P2.3 (I/O) P2.3/TA1.2/ UCB0STE/A5 3 4 P2.6/UCB0SOMI/ UCB0SCL (1) (2) 60 5 6 X X I: 0; O: 1 00 0 01 0 0 TA1.2 1 UCB0STE X 10 0 X X ADCPCTLx = 1 (x = 5) from SYSCFG2 (2) P2.4 (I/O) I: 0; O: 1 00 0 TA1CLK 0 01 0 UCB0CLK X 10 0 A6 X X ADCPCTLx = 1 (x = 6) from SYSCFG2 (2) P2.5 (I/O) P2.5/UCB0SIMO/ UCB0SDA/A7 0 ADCPCTLx = 1 (x = 4) from SYSCFG2 (2) TA1.CCI2A A5 P2.4/TA1CLK/ UCB0CLK/A6 10 I: 0; O: 1 00 0 UCB0SIMO/UCB0SDA X 10 0 A7 X X ADCPCTLx = 1 (x = 7) from SYSCFG2 (2) I: 0; O: 1 00 0 X 10 0 P2.6 (I/O) UCB0SOMI/UCB0SCL X = don't care Setting the bits disables both the output driver and input Schmitt trigger to prevent leakage when analog signals are applied. Detailed Description Copyright © 2018–2019, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR2522 MSP430FR2512 MSP430FR2522, MSP430FR2512 www.ti.com.cn ZHCSHB4C – JANUARY 2018 – REVISED DECEMBER 2019 6.12 Device Descriptors Table 6-17 lists the Device IDs of the devices. Table 6-18 lists the contents of the device descriptor taglength-value (TLV) structure for the devices. Table 6-17. Device IDs DEVICE ID DEVICE 1A05h 1A04h MSP430FR2522 83h 10h MSP430FR2512 83h 1Ch Table 6-18. Device Descriptors DESCRIPTION VALUE Info length 1A00h 06h CRC length 1A01h 06h 1A02h Per unit 1A03h Per unit CRC value (1) Information Block Device ID 1A05h See Table 6-17. 1A06h Per unit Firmware revision 1A07h Per unit Die record tag 1A08h 08h Die record length 1A09h 0Ah 1A0Ah Per unit 1A0Bh Per unit 1A0Ch Per unit 1A0Dh Per unit 1A0Eh Per unit 1A0Fh Per unit 1A10h Per unit 1A11h Per unit 1A12h Per unit 1A13h Per unit ADC calibration tag 1A14h Per unit ADC calibration length 1A15h Per unit 1A16h Per unit 1A17h Per unit 1A18h Per unit Die Record Die X position Die Y position Test result ADC gain factor ADC offset ADC 1.5-V reference, temperature 30°C ADC 1.5-V reference, temperature 85°C (1) 1A04h Hardware revision Lot wafer ID ADC calibration MSP430FR25x2 ADDRESS 1A19h Per unit 1A1Ah Per unit 1A1Bh Per unit 1A1Ch Per unit 1A1Dh Per unit The CRC value covers the check sum from 0x1A04h to 0x1AF5h by applying the CRC-CCITT-16 polynomial of x16 + x12 + x5 + 1. Copyright © 2018–2019, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR2522 MSP430FR2512 Detailed Description 61 MSP430FR2522, MSP430FR2512 ZHCSHB4C – JANUARY 2018 – REVISED DECEMBER 2019 www.ti.com.cn Table 6-18. Device Descriptors (continued) MSP430FR25x2 DESCRIPTION ADDRESS VALUE Calibration tag 1A1Eh 12h Calibration length 1A1Fh 04h 1A20h Per unit 1A21h Per unit 1A22h Per unit 1A23h Per unit Reference and DCO Calibration 1.5-V reference factor DCO tap setting for 16 MHz, temperature 30°C (2) (2) This value can be directly loaded into DCO bits in CSCTL0 registers to get accurate 16-MHz frequency at room temperature, especially when the MCU exits from LPM3 and below. TI suggests using the predivider to decrease the frequency if the temperature drift might result an overshoot beyond 16 MHz. 6.13 Memory 6.13.1 Memory Organization Table 6-19 summarizes the memory organization of the devices. Table 6-19. Memory Organization ACCESS MSP430FR2522 MSP430FR2512 Read/Write (Optional Write Protect) (1) 7.25KB FFFFh to FF80h FFFFh to E300h Read/Write 2KB 27FFh to 2000h Read/Write (Optional Write Protect) (2) 256B 18FFh to 1800h Bootloader (BSL1) Memory (ROM) Read only 2KB 17FFh to 1000h Bootloader (BSL2) Memory (ROM) Read only 1KB FFFFFh to FFC00h CapTIvate Libraries and Driver Libraries (ROM) Read only 12KB 6FFFh to 4000h Peripherals Read/Write 4KB 0FFFh to 0000h Memory (FRAM) Main: interrupt vectors and signatures Main: code memory RAM Information Memory (FRAM) (1) (2) 62 The Program FRAM can be write protected by setting PFWP bit in SYSCFG0 register. See the SYS chapter in the MP430FR4xx and MP430FR2xx Family User's Guide for more details The Information FRAM can be write protected by setting DFWP bit in SYSCFG0 register. See the SYS chapter in the MP430FR4xx and MP430FR2xx Family User's Guide for more details Detailed Description Copyright © 2018–2019, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR2522 MSP430FR2512 MSP430FR2522, MSP430FR2512 www.ti.com.cn ZHCSHB4C – JANUARY 2018 – REVISED DECEMBER 2019 6.13.2 Peripheral File Map Table 6-20 lists the available peripherals and the register base address for each. Table 6-20. Peripherals Summary BASE ADDRESS SIZE Special Functions (See Table 6-21) MODULE NAME 0100h 0010h PMM (See Table 6-22) 0120h 0020h SYS (See Table 6-23) 0140h 0040h CS (See Table 6-24) 0180h 0020h FRAM (See Table 6-25) 01A0h 0010h CRC (See Table 6-26) 01C0h 0008h WDT (See Table 6-27) 01CCh 0002h Port P1, P2 (See Table 6-28) 0200h 0020h RTC (See Table 6-29) 0300h 0010h Timer0_A3 (See Table 6-30) 0380h 0030h Timer1_A3 (See Table 6-31) 03C0h 0030h MPY32 (See Table 6-32) 04C0h 0030h eUSCI_A0 (See Table 6-33) 0500h 0020h eUSCI_B0 (See Table 6-34) 0540h 0030h Backup Memory (See Table 6-35) 0660h 0020h ADC (See Table 6-36) 0700h 0040h CapTIvate (See CapTivate Design Center for details ) 0A00h 0200h Table 6-21. Special Function Registers (Base Address: 0100h) REGISTER DESCRIPTION SFR interrupt enable SFR interrupt flag SFR reset pin control ACRONYM OFFSET SFRIE1 00h SFRIFG1 02h SFRRPCR 04h Table 6-22. PMM Registers (Base Address: 0120h) ACRONYM OFFSET PMM control 0 REGISTER DESCRIPTION PMMCTL0 00h PMM control 1 PMMCTL1 02h PMM control 2 PMMCTL2 04h PMM interrupt flags PMMIFG 0Ah PM5 control 0 PM5CTL0 10h Copyright © 2018–2019, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR2522 MSP430FR2512 Detailed Description 63 MSP430FR2522, MSP430FR2512 ZHCSHB4C – JANUARY 2018 – REVISED DECEMBER 2019 www.ti.com.cn Table 6-23. SYS Registers (Base Address: 0140h) REGISTER DESCRIPTION ACRONYM OFFSET SYSCTL 00h Bootloader configuration area SYSBSLC 02h JTAG mailbox control SYSJMBC 06h JTAG mailbox input 0 SYSJMBI0 08h JTAG mailbox input 1 SYSJMBI1 0Ah JTAG mailbox output 0 SYSJMBO0 0Ch JTAG mailbox output 1 SYSJMBO1 0Eh Bus error vector generator SYSBERRIV 18h User NMI vector generator SYSUNIV 1Ah System control System NMI vector generator SYSSNIV 1Ch Reset vector generator SYSRSTIV 1Eh System configuration 0 SYSCFG0 20h System configuration 1 SYSCFG1 22h System configuration 2 SYSCFG2 24h Table 6-24. CS Registers (Base Address: 0180h) ACRONYM OFFSET CS control 0 REGISTER DESCRIPTION CSCTL0 00h CS control 1 CSCTL1 02h CS control 2 CSCTL2 04h CS control 3 CSCTL3 06h CS control 4 CSCTL4 08h CS control 5 CSCTL5 0Ah CS control 6 CSCTL6 0Ch CS control 7 CSCTL7 0Eh CS control 8 CSCTL8 10h Table 6-25. FRAM Registers (Base Address: 01A0h) REGISTER DESCRIPTION ACRONYM OFFSET FRAM control 0 FRCTL0 00h General control 0 GCCTL0 04h General control 1 GCCTL1 06h Table 6-26. CRC Registers (Base Address: 01C0h) REGISTER DESCRIPTION ACRONYM OFFSET CRC16DI 00h CRC data input reverse byte CRCDIRB 02h CRC initialization and result CRCINIRES 04h CRC result reverse byte CRCRESR 06h CRC data input Table 6-27. WDT Registers (Base Address: 01CCh) REGISTER DESCRIPTION Watchdog timer control 64 Detailed Description ACRONYM OFFSET WDTCTL 00h Copyright © 2018–2019, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR2522 MSP430FR2512 MSP430FR2522, MSP430FR2512 www.ti.com.cn ZHCSHB4C – JANUARY 2018 – REVISED DECEMBER 2019 Table 6-28. Port P1, P2 Registers (Base Address: 0200h) REGISTER DESCRIPTION ACRONYM OFFSET P1IN 00h Port P1 output P1OUT 02h Port P1 direction P1DIR 04h Port P1 input Port P1 pulling enable P1REN 06h Port P1 selection 0 P1SEL0 0Ah Port P1 selection 1 P1SEL1 0Ch Port P1 interrupt vector word P1IV 0Eh Port P1 interrupt edge select P1IES 18h Port P1 complement selection P1SELC 16h Port P1 interrupt enable Port P1 interrupt flag Port P2 input P1IE 1Ah P1IFG 1Ch P2IN 01h P2OUT 03h Port P2 direction P2DIR 05h Port P2 pulling enable P2REN 07h Port P2 selection 0 P2SEL0 0Bh Port P2 selection 1 P2SEL1 0Ch Port P2 complement selection P2SELC 17h Port P2 interrupt vector word P2IV 1Eh Port P2 interrupt edge select P2IES 19h P2IE 1Bh P2IFG 1Dh Port P2 output Port P2 interrupt enable Port P2 interrupt flag Table 6-29. RTC Registers (Base Address: 0300h) REGISTER DESCRIPTION RTC control RTC interrupt vector ACRONYM OFFSET RTCCTL 00h RTCIV 04h RTC modulo RTCMOD 08h RTC counter RTCCNT 0Ch Copyright © 2018–2019, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR2522 MSP430FR2512 Detailed Description 65 MSP430FR2522, MSP430FR2512 ZHCSHB4C – JANUARY 2018 – REVISED DECEMBER 2019 www.ti.com.cn Table 6-30. Timer0_A3 Registers (Base Address: 0380h) REGISTER DESCRIPTION ACRONYM OFFSET TA0CTL 00h Capture/compare control 0 TA0CCTL0 02h Capture/compare control 1 TA0CCTL1 04h Capture/compare control 2 TA0CCTL2 06h TA0R 10h Capture/compare 0 TA0CCR0 12h Capture/compare 1 TA0CCR1 14h Capture/compare 2 TA0CCR2 16h TA0EX0 20h TA0IV 2Eh TA0 control TA0 counter TA0 expansion 0 TA0 interrupt vector Table 6-31. Timer1_A3 Registers (Base Address: 03C0h) REGISTER DESCRIPTION TA1 control ACRONYM OFFSET TA1CTL 00h Capture/compare control 0 TA1CCTL0 02h Capture/compare control 1 TA1CCTL1 04h Capture/compare control 2 TA1CCTL2 06h TA1R 10h Capture/compare 0 TA1CCR0 12h Capture/compare 1 TA1CCR1 14h Capture/compare 2 TA1CCR2 16h TA1 counter TA1 expansion 0 TA1 interrupt vector 66 Detailed Description TA1EX0 20h TA1IV 2Eh Copyright © 2018–2019, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR2522 MSP430FR2512 MSP430FR2522, MSP430FR2512 www.ti.com.cn ZHCSHB4C – JANUARY 2018 – REVISED DECEMBER 2019 Table 6-32. MPY32 Registers (Base Address: 04C0h) REGISTER DESCRIPTION 16-bit operand 1 – multiply 16-bit operand 1 – signed multiply 16-bit operand 1 – multiply accumulate 16-bit operand 1 – signed multiply accumulate 16-bit operand 2 16 × 16 result low word 16 × 16 result high word ACRONYM OFFSET MPY 00h MPYS 02h MAC 04h MACS 06h OP2 08h RESLO 0Ah RESHI 0Ch 16 × 16 sum extension SUMEXT 0Eh 32-bit operand 1 – multiply low word MPY32L 10h 32-bit operand 1 – multiply high word MPY32H 12h 32-bit operand 1 – signed multiply low word MPYS32L 14h 32-bit operand 1 – signed multiply high word MPYS32H 16h MAC32L 18h 32-bit operand 1 – multiply accumulate low word 32-bit operand 1 – multiply accumulate high word MAC32H 1Ah 32-bit operand 1 – signed multiply accumulate low word MACS32L 1Ch 32-bit operand 1 – signed multiply accumulate high word MACS32H 1Eh 32-bit operand 2 – low word OP2L 20h 32-bit operand 2 – high word OP2H 22h 32 × 32 result 0 – least significant word RES0 24h 32 × 32 result 1 RES1 26h 32 × 32 result 2 RES2 28h 32 × 32 result 3 – most significant word RES3 2Ah MPY32CTL0 2Ch MPY32 control 0 Table 6-33. eUSCI_A0 Registers (Base Address: 0500h) REGISTER DESCRIPTION ACRONYM OFFSET eUSCI_A control word 0 UCA0CTLW0 00h eUSCI_A control word 1 UCA0CTLW1 02h eUSCI_A control rate 0 UCA0BR0 06h UCA0BR1 07h eUSCI_A control rate 1 eUSCI_A modulation control UCA0MCTLW 08h UCA0STAT 0Ah eUSCI_A receive buffer UCA0RXBUF 0Ch eUSCI_A transmit buffer UCA0TXBUF 0Eh eUSCI_A LIN control UCA0ABCTL 10h eUSCI_A IrDA transmit control lUCA0IRTCTL 12h eUSCI_A IrDA receive control IUCA0IRRCTL 13h UCA0IE 1Ah UCA0IFG 1Ch UCA0IV 1Eh eUSCI_A status eUSCI_A interrupt enable eUSCI_A interrupt flags eUSCI_A interrupt vector word Table 6-34. eUSCI_B0 Registers (Base Address: 0540h) REGISTER DESCRIPTION ACRONYM OFFSET eUSCI_B control word 0 UCB0CTLW0 00h eUSCI_B control word 1 UCB0CTLW1 02h eUSCI_B bit rate 0 UCB0BR0 06h eUSCI_B bit rate 1 UCB0BR1 07h Copyright © 2018–2019, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR2522 MSP430FR2512 Detailed Description 67 MSP430FR2522, MSP430FR2512 ZHCSHB4C – JANUARY 2018 – REVISED DECEMBER 2019 www.ti.com.cn Table 6-34. eUSCI_B0 Registers (Base Address: 0540h) (continued) REGISTER DESCRIPTION eUSCI_B status word ACRONYM OFFSET UCB0STATW 08h eUSCI_B byte counter threshold UCB0TBCNT 0Ah eUSCI_B receive buffer UCB0RXBUF 0Ch eUSCI_B transmit buffer UCB0TXBUF 0Eh eUSCI_B I2C own address 0 UCB0I2COA0 14h eUSCI_B I2C own address 1 UCB0I2COA1 16h eUSCI_B I2C own address 2 UCB0I2COA2 18h eUSCI_B I2C own address 3 UCB0I2COA3 1Ah eUSCI_B receive address UCB0ADDRX 1Ch UCB0ADDMASK 1Eh UCB0I2CSA 20h eUSCI_B address mask eUSCI_B I2C slave address eUSCI_B interrupt enable eUSCI_B interrupt flags eUSCI_B interrupt vector word 68 Detailed Description UCB0IE 2Ah UCB0IFG 2Ch UCB0IV 2Eh Copyright © 2018–2019, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR2522 MSP430FR2512 MSP430FR2522, MSP430FR2512 www.ti.com.cn ZHCSHB4C – JANUARY 2018 – REVISED DECEMBER 2019 Table 6-35. Backup Memory Registers (Base Address: 0660h) ACRONYM OFFSET Backup memory 0 REGISTER DESCRIPTION BAKMEM0 00h Backup memory 1 BAKMEM1 02h Backup memory 2 BAKMEM2 04h Backup memory 3 BAKMEM3 06h Backup memory 4 BAKMEM4 08h Backup memory 5 BAKMEM5 0Ah Backup memory 6 BAKMEM6 0Ch Backup memory 7 BAKMEM7 0Eh Backup memory 8 BAKMEM8 10h Backup memory 9 BAKMEM9 12h Backup memory 10 BAKMEM10 14h Backup memory 11 BAKMEM11 16h Backup memory 12 BAKMEM12 18h Backup memory 13 BAKMEM13 1Ah Backup memory 14 BAKMEM14 1Ch Backup memory 15 BAKMEM15 1Eh Table 6-36. ADC Registers (Base Address: 0700h) REGISTER DESCRIPTION REGISTER OFFSET ADC control 0 ADCCTL0 00h ADC control 1 ADCCTL1 02h ADC control 2 ADCCTL2 04h ADCLO 06h ADC window comparator low threshold ADC window comparator high threshold ADCHI 08h ADC memory control 0 ADCMCTL0 0Ah ADC conversion memory ADCMEM0 12h ADC interrupt enable ADC interrupt flags ADC interrupt vector word ADCIE 1Ah ADCIFG 1Ch ADCIV 1Eh Copyright © 2018–2019, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR2522 MSP430FR2512 Detailed Description 69 MSP430FR2522, MSP430FR2512 ZHCSHB4C – JANUARY 2018 – REVISED DECEMBER 2019 www.ti.com.cn 6.14 Identification 6.14.1 Revision Identification The device revision information is included as part of the top-side marking on the device package. The device-specific errata sheet describes these markings. The hardware revision is also stored in the Device Descriptor structure in the Info Block section. For details on this value, see the Hardware Revision entries in Section 6.12. 6.14.2 Device Identification The device type can be identified from the top-side marking on the device package. The device-specific errata sheet describes these markings. A device identification value is also stored in the Device Descriptor structure in the Info Block section. For details on this value, see the Device ID entries in Section 6.12. 6.14.3 JTAG Identification Programming through the JTAG interface, including reading and identifying the JTAG ID, is described in detail in MSP430 Programming With the JTAG Interface. 70 Detailed Description Copyright © 2018–2019, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR2522 MSP430FR2512 MSP430FR2522, MSP430FR2512 www.ti.com.cn ZHCSHB4C – JANUARY 2018 – REVISED DECEMBER 2019 7 Applications, Implementation, and Layout NOTE Information in the following Applications section is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality. 7.1 Device Connection and Layout Fundamentals This section discusses the recommended guidelines when designing with the MSP430 devices. These guidelines are to make sure that the device has proper connections for powering, programming, debugging, and optimum analog performance. 7.1.1 Power Supply Decoupling and Bulk Capacitors TI recommends connecting a combination of a 10-µF plus a 100-nF low-ESR ceramic decoupling capacitor to the DVCC and DVSS pins. Higher-value capacitors may be used but can impact supply rail ramp-up time. Decoupling capacitors must be placed as close as possible to the pins that they decouple (within a few millimeters). Additionally, TI recommends separated grounds with a single-point connection for better noise isolation from digital-to-analog circuits on the board and to achieve high analog accuracy. DVCC Digital Power Supply Decoupling + 10 µF 100 nF DVSS Figure 7-1. Power Supply Decoupling 7.1.2 External Oscillator This device supports only a low-frequency crystal (32 kHz) on the XIN and XOUT pins. External bypass capacitors for the crystal oscillator pins are required. It is also possible to apply digital clock signals to the XIN input pin that meet the specifications of the respective oscillator if the appropriate XT1BYPASS mode is selected. In this case, the associated XOUT pin can be used for other purposes. If the XIN and XOUT pins are not used, they must be terminated according to Section 4.6. Figure 7-2 shows a typical connection diagram. XIN CL1 XOUT CL2 Figure 7-2. Typical Crystal Connection Applications, Implementation, and Layout Submit Documentation Feedback Product Folder Links: MSP430FR2522 MSP430FR2512 Copyright © 2018–2019, Texas Instruments Incorporated 71 MSP430FR2522, MSP430FR2512 ZHCSHB4C – JANUARY 2018 – REVISED DECEMBER 2019 www.ti.com.cn See MSP430 32-kHz Crystal Oscillators for more information on selecting, testing, and designing a crystal oscillator with the MSP430 devices. 7.1.3 JTAG With the proper connections, the debugger and a hardware JTAG interface (such as the MSP-FET or MSP-FET430UIF) can be used to program and debug code on the target board. In addition, the connections also support the MSP-GANG production programmers, thus providing an easy way to program prototype boards, if desired. Figure 7-3 shows the connections between the 14-pin JTAG connector and the target device required to support in-system programming and debugging for 4-wire JTAG communication. Figure 7-4 shows the connections for 2-wire JTAG mode (Spy-Bi-Wire). The connections for the MSP-FET and MSP-FET430UIF interface modules and the MSP-GANG are identical. Both can supply VCC to the target board (through pin 2). In addition, the MSP-FET and MSPFET430UIF interface modules and MSP-GANG have a VCC sense feature that, if used, requires an alternate connection (pin 4 instead of pin 2). The VCC sense feature detects the local VCC present on the target board (that is, a battery or other local power supply) and adjusts the output signals accordingly. Figure 7-3 and Figure 7-4 show a jumper block that supports both scenarios of supplying VCC to the target board. If this flexibility is not required, the desired VCC connections may be hard-wired to eliminate the jumper block. Pins 2 and 4 must not be connected at the same time. For additional design information regarding the JTAG interface, see the MSP430 Hardware Tools User's Guide. VCC Important to connect MSP430FRxxx J1 (see Note A) DVCC J2 (see Note A) R1 47 kW JTAG VCC TOOL VCC TARGET TEST 2 RST/NMI/SBWTDIO 1 4 3 6 5 8 7 10 9 12 11 14 13 TDO/TDI TDI TDO/TDI TDI TMS TMS TCK TCK GND RST TEST/SBWTCK C1 1 nF (see Note B) A. B. DVSS If a local target power supply is used, make connection J1. If power from the debug or programming adapter is used, make connection J2. The upper limit for C1 is 1.1 nF when using current TI tools. Figure 7-3. Signal Connections for 4-Wire JTAG Communication 72 Applications, Implementation, and Layout Copyright © 2018–2019, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR2522 MSP430FR2512 MSP430FR2522, MSP430FR2512 www.ti.com.cn ZHCSHB4C – JANUARY 2018 – REVISED DECEMBER 2019 VCC Important to connect MSP430FRxxx J1 (see Note A) DVCC J2 (see Note A) R1 47 kΩ (see Note B) JTAG VCC TOOL VCC TARGET 2 1 4 3 6 5 8 7 10 9 12 11 14 13 TDO/TDI RST/NMI/SBWTDIO TCK GND TEST/SBWTCK C1 1 nF (see Note B) A. B. DVSS Make connection J1 if a local target power supply is used, or make connection J2 if the target is powered from the debug or programming adapter. The device RST/NMI/SBWTDIO pin is used in 2-wire mode for bidirectional communication with the device during JTAG access, and any capacitance that is attached to this signal may affect the ability to establish a connection with the device. The upper limit for C1 is 1.1 nF when using current TI tools. Figure 7-4. Signal Connections for 2-Wire JTAG Communication (Spy-Bi-Wire) 7.1.4 Reset The reset pin can be configured as a reset function (default) or as an NMI function in the Special Function Register (SFR), SFRRPCR. In reset mode, the RST/NMI pin is active low, and a pulse applied to this pin that meets the reset timing specifications generates a BOR-type device reset. Setting SYSNMI causes the RST/NMI pin to be configured as an external NMI source. The external NMI is edge sensitive, and its edge is selectable by SYSNMIIES. Setting the NMIIE enables the interrupt of the external NMI. When an external NMI event occurs, the NMIIFG is set. The RST/NMI pin can have either a pullup or pulldown that is enabled or not. SYSRSTUP selects either pullup or pulldown, and SYSRSTRE causes the pullup (default) or pulldown to be enabled (default) or not. If the RST/NMI pin is unused, it is required either to select and enable the internal pullup or to connect an external 47-kΩ pullup resistor to the RST/NMI pin with a 10-nF pulldown capacitor. The pulldown capacitor should not exceed 1.1 nF when using devices with Spy-Bi-Wire interface in Spy-Bi-Wire mode or in 4-wire JTAG mode with TI tools like FET interfaces or GANG programmers. See the MP430FR4xx and MP430FR2xx Family User's Guide for more information on the referenced control registers and bits. 7.1.5 Unused Pins For details on the connection of unused pins, see Section 4.6. Applications, Implementation, and Layout Submit Documentation Feedback Product Folder Links: MSP430FR2522 MSP430FR2512 Copyright © 2018–2019, Texas Instruments Incorporated 73 MSP430FR2522, MSP430FR2512 ZHCSHB4C – JANUARY 2018 – REVISED DECEMBER 2019 7.1.6 www.ti.com.cn General Layout Recommendations • • • • 7.1.7 Proper grounding and short traces for external crystal to reduce parasitic capacitance. See MSP430 32-kHz Crystal Oscillators for recommended layout guidelines. Proper bypass capacitors on DVCC and reference pins, if used. Avoid routing any high-frequency signal close to an analog signal line. For example, keep digital switching signals such as PWM or JTAG signals away from the oscillator circuit. Proper ESD level protection should be considered to protect the device from unintended high-voltage electrostatic discharge. See MSP430 System-Level ESD Considerations for guidelines. Do's and Don'ts During power up, power down, and device operation, DVCC must not exceed the limits specified in Section 5.1. Exceeding the specified limits may cause malfunction of the device including erroneous writes to RAM and FRAM. 7.2 Peripheral- and Interface-Specific Design Information 7.2.1 ADC Peripheral 7.2.1.1 Partial Schematic Figure 7-5 shows the recommended decoupling circuit when an external voltage reference is used. DVSS Using an external positive reference VREF+/VEREF+ + 10 µF 100 nF Using an external negative reference VEREF+ 10 µF 100 nF Figure 7-5. ADC Grounding and Noise Considerations 7.2.1.2 Design Requirements As with any high-resolution ADC, appropriate printed-circuit-board layout and grounding techniques should be followed to eliminate ground loops, unwanted parasitic effects, and noise. Ground loops are formed when return current from the ADC flows through paths that are common with other analog or digital circuitry. If care is not taken, this current can generate small unwanted offset voltages that can add to or subtract from the reference or input voltages of the ADC. The general guidelines in Section 7.1.1 combined with the connections shown in Figure 7-5 prevent this. Quickly switching digital signals and noisy power supply lines can corrupt the conversion results, so keep the ADC input trace shielded from those digital and power supply lines. Putting the MCU in low-power mode during the ADC conversion improves the ADC performance in a noisy environment. If the device includes the analog power pair inputs (AVCC and AVSS), TI recommends a noise-free design using separate analog and digital ground planes with a single-point connection to achieve high accuracy. Figure 7-5 shows the recommended decoupling circuit when an external voltage reference is used. The internal reference module has a maximum drive current as described in the sections ADC Pin Enable and 1.2-V Reference Settings of the MSP430FR4xx and MSP430FR2xx Family User's Guide. 74 Applications, Implementation, and Layout Copyright © 2018–2019, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR2522 MSP430FR2512 MSP430FR2522, MSP430FR2512 www.ti.com.cn ZHCSHB4C – JANUARY 2018 – REVISED DECEMBER 2019 The reference voltage must be a stable voltage for accurate measurements. The capacitor values that are selected in the general guidelines filter out the high- and low-frequency ripple before the reference voltage enters the device. In this case, the 10-µF capacitor buffers the reference pin and filters any low-frequency ripple. A bypass capacitor of 100 nF filters out any high-frequency noise. 7.2.1.3 Layout Guidelines Components that are shown in the partial schematic (see Figure 7-5) should be placed as close as possible to the respective device pins to avoid long traces, because they add additional parasitic capacitance, inductance, and resistance on the signal. Avoid routing analog input signals close to a high-frequency pin (for example, a high-frequency PWM), because the high-frequency switching can be coupled into the analog signal. 7.2.2 CapTIvate Peripheral This section provides a brief introduction to the CapTIvate technology with examples of PCB layout and performance from the design kit. A more detailed description of the CapTIvate technology and the tools needed to be successful, application development tools, hardware design guides, and software library, can be found in the CapTIvate™ Technology Guide. 7.2.2.1 Device Connection and Layout Fundamentals To learn more on how to design the CapTIvate Technology, see the Capacitive Touch Design Flow for MSP430™ MCUs With CapTIvate™ Technology application report. Applications, Implementation, and Layout Submit Documentation Feedback Product Folder Links: MSP430FR2522 MSP430FR2512 Copyright © 2018–2019, Texas Instruments Incorporated 75 MSP430FR2522, MSP430FR2512 ZHCSHB4C – JANUARY 2018 – REVISED DECEMBER 2019 7.2.2.2 www.ti.com.cn Measurements The following measurements are taken from the CapTIvate Technology Design Center, using the CAPTIVATE-PHONE and CAPTIVATE-BSWP panels. Unless otherwise stated, the settings used are the out-of-box settings, which can be found in the example projects. The intent of these measurements is to show performance in a configuration that is readily available and reproducible. Figure 7-6. CAPTIVATE-PHONE and CAPTIVATE-BSWP Panels 7.2.2.2.1 SNR The Sensitivity, SNR, and Design Margin in Capacitive Touch Applications application report provides a specific view for analyzing the signal-to-noise ratio of each element. 7.2.2.2.2 Sensitivity To show sensitivity, in terms of farads, the internal reference capacitor is used as the change in capacitance. In the mutual-capacitance case, the 0.1-pF capacitor is used. In the self-capacitance case, the 1-pF reference capacitor is used. For simplicity, the results for only button 1 on both the CAPTIVATEPHONE and CAPTIVATE-BSWP panels are reported in Table 7-1. Table 7-1. Button Sensitivity CAPTIVATE-PHONE BUTTON 1 CAPTIVATE-BSWP BUTTON 1 CONVERSION COUNT CONVERSION GAIN 100 100 25 6 50 8 200 200 50 10 100 16 200 100 50 21 100 31 800 400 200 70 400 112 800 200 200 140 400 202 800 100 200 257 400 333 CONVERSION TIME (µs) COUNTS FOR 0.1-pF CHANGE CONVERSION TIME (µs) COUNTS FOR 1-pF CHANGE An alternative measure in sensitivity is the ability to resolve capacitance change over a wide range of base capacitance. Table 7-2 shows example conversion times (for a self-mode measurement of discrete capacitors) that can be used to achieve the desired resolution for a given parasitic load capacitance. 76 Applications, Implementation, and Layout Copyright © 2018–2019, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR2522 MSP430FR2512 MSP430FR2522, MSP430FR2512 www.ti.com.cn ZHCSHB4C – JANUARY 2018 – REVISED DECEMBER 2019 Table 7-2. Button Sensitivity CAPACITANC E Cp (pF) (1) CONVERSION COUNT/GAIN CONVERSION TIME (µs) COUNTS FOR 0.130-pF CHANGE COUNTS FOR 0.260-pF CHANGE COUNTS FOR 0.520-pF CHANGE 23 400/100 200 10 23 35 50 550/100 275 11 24 37 78 650/100 325 11 23 36 150 850/100 425 11 22 35 (2) 1200/200 600 11 23 37 200 (2) 1200/150 600 13 26 41 150 (1) (2) These measurements were taken with the CapTIvate MCU processor board with the 470-Ω series resistors replaced with 0-Ω resistors. 0-V discharge voltage is used. 7.2.2.2.3 Power The low-power mode LPM3 and LPM4 specifications in Section 5.7 are derived from the CapTIvate technology design kit as indicated in the notes. 7.3 CapTIvate Technology Evaluation Table 7-3 lists tools that demonstrate the use of the MSP430FR25x2 devices. See CapTIvate Evaluation Tools to get started with evaluating the CapTIvate technology in various real-world application scenarios. Consult these evaluation tool designs for additional guidance regarding schematics, layout, and software implementation. Table 7-3. Evaluation Tools DESIGN NAME MSP430 CapTIvate™ Touch Keypad BoosterPack Plug-in Module 版权 © 2018–2019, Texas Instruments Incorporated LINK http://www.ti.com/tool/boostxl-capkeypad Applications, Implementation, and Layout 提交文档反馈意见 产品主页链接: MSP430FR2522 MSP430FR2512 77 MSP430FR2522, MSP430FR2512 ZHCSHB4C – JANUARY 2018 – REVISED DECEMBER 2019 www.ti.com.cn 8 器件和文档支持 8.1 入门和后续步骤 有关帮助您进行开发的 MSP 低功耗微控制器、工具和库的更多信息,请访问《MSP430™ 超低功耗传感和 测量 MCU 概述》。 8.2 器件命名规则 为了标示产品开发周期所处的阶段,TI 为所有 MSP MCU 器件的部件号分配了前缀。每个 MSP MCU 商用 系列产品成员都具有以下两个前缀之一:MSP 或 XMS。这些前缀代表了产品开发的发展阶段,即从工程原 型 (XMS) 直到完全合格的生产器件 (MSP)。 XMS - 实验器件,不一定代表最终器件的电气规格 MSP - 完全合格的生产器件 XMS 器件在供货时附带如下免责声明: “开发中的产品用于内部评估用途。” MSP 用。 器件的特性已经全部明确,并且器件的质量和可靠性已经完全论证。TI 的标准保修证书对该器件适 预测显示原型器件 (XMS) 的故障率大于标准生产器件。由于这些器件的预计最终使用故障率尚不确定,德 州仪器 (TI) 建议不要将它们用于任何生产系统。请仅使用合格的生产器件。 TI 器件的命名规则还包括一个带有器件系列名称的后缀。此后缀表示温度范围、封装类型和配送形式。图 81 提供了解读完整器件名称的图例。 MSP 430 FR 2 522 I RHL T Processor Family MCU Platform Device Type Distribution Format Series Feature Set Packaging Temperature Range Processor Family MSP = Mixed-signal processor XMS = Experimental silicon MCU Platform 430 = MSP430 16-bit low-power platform Device Type FR = FRAM Series 2 = Up to 16 MHz without LCD Feature Set 522 = 2 CapTIvate blocks, 8KB of FRAM, 2KB of RAM, up to 8 CapTIvate I/Os 512 = 1 CapTIvate block, 8KB of FRAM, 2KB of RAM, up to 4 CapTIvate I/Os Temperature Range I = –40°C to 85°C Packaging www.ti.com/packaging Distribution Format T = Small reel R = Large reel No marking = Tube or tray 图 8-1. 器件命名规则 78 器件和文档支持 版权 © 2018–2019, Texas Instruments Incorporated 提交文档反馈意见 产品主页链接: MSP430FR2522 MSP430FR2512 MSP430FR2522, MSP430FR2512 www.ti.com.cn 8.3 ZHCSHB4C – JANUARY 2018 – REVISED DECEMBER 2019 工具和软件 表 8-1 列出 调试 的调试功能。请参阅《适用于 MSP430 MCU 的 Code Composer Studio IDE 用户指 南》,以了解有关可用 功能)的详细信息。 表 8-1. 硬件 特性 MSP430 架构 四线制 JTAG 两线制 JTAG 断点 (N) 范围断点 时钟控制 状态序列发生器 跟踪缓冲 器 LPMx.5 调试支 持 EEM 版本 MSP430Xv2 有 有 3 有 是 否 否 否 S 设计套件与评估模块 适用于 MSP430FR2x MCU 的 MSP-TS430RHL20 20 引脚目标开发板 MSP-TS430RHL20 是独立的 ZIF 插接目标板,用于通过 JTAG 接口或 Spy Bi-Wire(双线制 JTAG)协议 对 MSP430 进行系统内编程和调试。该开发板支持采用 20 引脚 VQFN 封装(TI 封装代码:RHL)的所有 MSP430FR252x 和 MSP430FR242x 闪存部件。 MSP-FET + MSP-TS430RHL20 FRAM 微控制器开发套件包 MSP-FET430RHL20-BNDL 开发套件包包含适用于 MSP430FR2422 微控制器(例如 MSP430FR2422RHL)且支持 20 引脚 RHL 封装的两种调试工具。这两种工具分别为 MSP-TS430RHL20 和 MSP-FET。 软件 MSP430Ware™ 软件 MSP430Ware 软件集合了所有 MSP430 器件的代码示例、数据表以及其他设计资源,打包提供给用户。除 了提供已有 MSP430 设计资源的完整集合外,MSP430Ware 软件还包含名为 MSP430 驱动程序库的高级 API。借助该库可以轻松地对 MSP430 硬件进行编程。MSP430Ware 软件以 CCS 组件或独立软件包两种形 式提供。 MSP430FR2422 代码示例 根据不同应用需求配置各集成外设的每个 MSP 器件均具备相应的 C 代码示例。 MSP 驱动程序库 驱动程序库的抽象化 API 通过提供易于使用的函数调用使您不再拘泥于 MSP430 硬件的细节。完整的文档 通过具有帮助意义的 API 指南交付,其中包括有关每个函数调用和经过验证的参数的详细信息。开发人员可 以使用驱动程序库功能,以最低开销编写完整项目。 MSP EnergyTrace™ 技术 MSP430 微控制器的 EnergyTrace 技术是基于能量的代码分析工具,用于测量和显示应用的能量配置,同 时协助优化应用以实现超低功耗。 ULP(超低功耗)Advisor ULP Advisor™软件是一款辅助工具,旨在指导开发人员编写更为高效的代码,从而充分利用 MSP 和 MSP432 微控制器独特的 超低功耗 功能。ULP Advisor 的目标人群是微控制器的资深开发者和开发新手, 可以根据详尽的 ULP 检验表检查代码,以便最大限度地利用应用程序。在编译时,ULP Advisor 会提供通 知和备注以突出显示代码中可以进一步优化的区域,进而实现更低功耗。 器件和文档支持 版权 © 2018–2019, Texas Instruments Incorporated 提交文档反馈意见 产品主页链接: MSP430FR2522 MSP430FR2512 79 MSP430FR2522, MSP430FR2512 ZHCSHB4C – JANUARY 2018 – REVISED DECEMBER 2019 www.ti.com.cn 适用于 MSP 超低功耗微控制器的 FRAM 嵌入式软件实用程序 FRAM 实用程序旨在作为不断扩充的嵌入式软件实用程序集合,其中的实用程序充分利用 FRAM 的超低功 耗和近乎无限次的写入寿命。这些实用程序适用于 MSP430FRxx FRAM 微控制器并提供示例代码协助应用 程序开发。其中的实用程序包含功耗计算实用程序 (CTPL)。CTPL 是一套实用程序 API 集,通过 CTPL 能 够轻松使用 LPMx.5 低功耗模式以及强大的关断模式,允许应用程序在检测到功率损耗时节约能耗并恢复关 键的系统元件。 IEC60730 软件包 IEC60730 MSP430 软件包经过专门开发,用于协助客户达到 IEC 60730-1:2010(家用及类似用途的自动化 电气控制 - 第 1 部分:一般要求)B 类产品的要求。其中涵盖家用电器、电弧检测器、电源转换器、电动工 具、电动自行车及其他诸多产品。IEC60730 MSP430 软件包可以嵌入在 MSP430 中 运行的客户应用, 从 而帮助客户简化其消费类器件在功能安全方面遵循 IEC 60730-1:2010 B 类规范的认证工作。 适用于 MSP 的定点数学库 MSP IQmath 和 Qmath 库是为 C 语言开发者提供的一套经过高度优化的高精度数学运算函数集合,能够将 浮点算法无缝嵌入 MSP430 和 MSP432 器件的定点代码中。这些例程通常用于计算密集型实时 应用, 而 优化的执行速度、高精度以及超低能耗通常是影响这些实时应用的关键因素。与使用浮点数学算法编写的同 等代码相比,使用 IQmath 和 Qmath 库可以大幅提高执行速度并显著降低能耗。 适用于 MSP430 的浮点数学库 TI 在低功耗和低成本微控制器领域锐意创新,为您提供 MSPMATHLIB。这是标量函数的浮点数学库,能够 充分利用器件的智能外设,使性能提升高达 26 倍。Mathlib 能够轻松集成到您的设计中。该运算库免费使用 并集成在 Code Composer Studio 和 IAR IDE 中。如需深入了解该数学库及相关基准,请阅读用户指南。 开发工具 适用于 MSP 微控制器的 Code Composer Studio™ 集成开发环境 Code Composer Studio 是一种集成开发环境 (IDE),支持所有 MSP 微控制器。Code Composer Studio 包 含一整套开发和调试嵌入式应用 的嵌入式软件实用程序的工具。它包含了优化的 C/C++ 编译器、源代码编 辑器、项目构建环境、调试器、描述器以及其他多种 功能。直观的 IDE 提供了单个用户界面,有助于完成 应用程序开发流程的每个步骤。熟悉的实用程序和界面可提升用户的入门速度。Code Composer Studio 将 Eclipse 软件框架的优点和 TI 先进的嵌入式调试功能相结合,为嵌入式开发人员提供了一种功能丰富的优异 开发环境。当 CCS 与 MSP MCU 搭配使用时,可以使用独特而强大的插件和嵌入式软件实用程序,从而充 分利用 MSP 微控制器的功能。 命令行编程器 MSP Flasher 是一款基于 shell 的开源接口,可使用 JTAG 或 Spy-Bi-Wire (SBW) 通信通过 FET 编程器或 eZ430 对 MSP 微控制器进行编程。MSP Flasher 可用于将二进制文件(.txt 或 .hex 文件)直接下载到 MSP 微控制器,而无需使用 IDE。 80 器件和文档支持 版权 © 2018–2019, Texas Instruments Incorporated 提交文档反馈意见 产品主页链接: MSP430FR2522 MSP430FR2512 MSP430FR2522, MSP430FR2512 www.ti.com.cn ZHCSHB4C – JANUARY 2018 – REVISED DECEMBER 2019 MSP MCU 编程器和调试器 MSP-FET 是一款强大的仿真开发工具(通常称为调试探针),可让用户在 MSP 低功耗微控制器 (MCU) 上 快速进行应用开发。创建 MCU 软件通常需要将生成的二进制程序下载到 MSP 器件,以进行验证和调试。 MSP-FET 在主机和目标 MSP 间提供调试通信通道。此外,MSP-FET 还在计算机的 USB 接口和 MSP UART 之间提供反向通道 UART 连接。这为 MSP 编程器提供了一种便捷方法,实现了 MSP 和在计算机上 运行的终端之间的串行通信。 MSP-GANG 生产编程器 MSP Gang 编程器可同时对多达八个完全相同的 MSP430 或 MSP432 闪存或 FRAM 器件进行编程。MSP Gang 编程器可使用标准的 RS-232 或 USB 连接与主机 PC 相连并提供灵活的编程选项,允许用户完全自定 义流程。MSP Gang 编程器配有扩展板“Gang 分离器”,可在 MSP Gang 编程器和多个目标器件间实现互 连。 8.4 文档支持 以下文档介绍了 MSP430FR25x2 微控制器。www.ti.com.cn 网站上提供了这些文档的副本。 接收文档更新通知 如需接收文档更新通知(包括器件勘误表),请转至 ti.com.cn 上相关器件的产品文件夹(例如, MSP430FR2522)。请单击右上角的“通知我”按钮。点击注册后,即可收到产品信息更改每周摘要(如 有)。有关更改的详细信息,请查阅已修订文档的修订历史记录。 勘误 《MSP430FR2522 器件勘误表》 介绍了该器件的所有器件修订版本功能规格的已知例外情况。 《MSP430FR2512 器件勘误表》 介绍了该器件的所有器件修订版本功能规格的已知例外情况。 用户指南 《MSP430FR4xx 和 MSP430FR2xx 系列用户指南》 可 说明 。 《MSP430 FRAM 器件引导加载程序 (BSL) 用户指南》 BSL 能在 MSP430 MCU 项目开发和更新阶段对存储器进行编程。BSL 可由使用串行协议发送命令的工具激 活。BSL 支持用户控制 MSP430 器件的活动,可与个人计算机或其他设备进行数据交换。 《通过 JTAG 接口对 MSP430 进行编程》 此文档介绍了使用 JTAG 通信端口擦除、编程和验证基于 MSP430 闪存和 FRAM 的微控制器系列的存储器 模块所需的功能。此外,该文档还介绍了如何编程所有 MSP430 器件上均具备的 JTAG 访问安全保险丝。 此文档介绍了使用标准四线制 JTAG 接口和两线制 JTAG 接口(也称为 Spy-Bi-Wire (SBW))的器件访问。 器件和文档支持 版权 © 2018–2019, Texas Instruments Incorporated 提交文档反馈意见 产品主页链接: MSP430FR2522 MSP430FR2512 81 MSP430FR2522, MSP430FR2512 ZHCSHB4C – JANUARY 2018 – REVISED DECEMBER 2019 www.ti.com.cn 《MSP430 硬件工具用户指南》 此手册介绍了 TI MSP-FET430 闪存仿真工具 (FET) 的硬件。FET 是针对 MSP430 超低功耗微控制器的程 序开发工具。 应用报告 《MSP430 32kHz 晶体振荡器》 选择合适的晶体、正确的负载电路和适当的电路板布局是实现稳定的晶体振荡器的关键。该应用报告总结了 晶体振荡器的功能,介绍了用于选择合适的晶体以实现 MSP430 超低功耗运行的参数。此外,还给出了正 确电路板布局的提示和示例。此外,为了确保振荡器在大规模生产后能够稳定运行,还可能需要进行一些振 荡器测试,该文档中提供了有关这些测试的详细信息。 《MSP430 系统级 ESD 注意事项》 随着芯片技术向更低电压方向发展以及设计具有成本效益的超低功耗组件的需求的出现,系统级 ESD 要求 变得越来越苛刻。该应用报告介绍了不同的 ESD 主题,旨在帮助电路板设计人员和 OEM 理解并设计出稳 健耐用的系统级设计。另外还介绍了若干实际应用系统级 ESD 保护设计示例及其结果。 8.5 相关链接 表 8-2 列出了快速访问链接。类别包括技术文档、支持与社区资源、工具和软件,以及申请样片或购买产品 的快速链接。 表 8-2. 相关链接 器件 产品文件夹 立即订购 技术文档 工具和软件 支持和社区 MSP430FR2522 单击此处 单击此处 单击此处 单击此处 单击此处 MSP430FR2512 单击此处 单击此处 单击此处 单击此处 单击此处 8.6 社区资源 下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商“按照原样”提供。这些内容并不构成 TI 技术 规范,并且不一定反映 TI 的观点;请参见 TI 的 《使用条款》。 TI E2E™ 社区 TI 的工程师交流 (E2E) 社区. 此社区的创建目的是为了促进工程师之间协作。在 e2e.ti.com 中,您可以提 问、共享知识、拓展思路,在同领域工程师的帮助下解决问题。 TI 嵌入式处理器维基网页 德州仪器 (TI) 嵌入式处理器维基网页。此网站的建立是为了帮助开发人员熟悉德州仪器 (TI) 的嵌入式处理 器,并且也为了促进与这些器件相关的硬件和软件的总体知识的创新和增长。 8.7 商标 CapTIvate, MSP430, BoosterPack, MSP430Ware, EnergyTrace, ULP Advisor, 适用于 MSP 微控制器的 Code Composer Studio, E2E are trademarks of Texas Instruments. CapTIvate, MSP430, BoosterPack, are trademarks of ~ Texas Instruments. All other trademarks are the property of their respective owners. 82 器件和文档支持 版权 © 2018–2019, Texas Instruments Incorporated 提交文档反馈意见 产品主页链接: MSP430FR2522 MSP430FR2512 MSP430FR2522, MSP430FR2512 www.ti.com.cn 8.8 ZHCSHB4C – JANUARY 2018 – REVISED DECEMBER 2019 静电放电警告 ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可 能会损坏集成电路。 ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可 能会导致器件与其发布的规格不相符。 8.9 Export Control Notice Recipient agrees to not knowingly export or re-export, directly or indirectly, any product or technical data (as defined by the U.S., EU, and other Export Administration Regulations) including software, or any controlled product restricted by other applicable national regulations, received from disclosing party under nondisclosure obligations (if any), or any direct product of such technology, to any destination to which such export or re-export is restricted or prohibited by U.S. or other applicable laws, without obtaining prior authorization from U.S. Department of Commerce and other competent Government authorities to the extent required by those laws. 8.10 Glossary TI Glossary This glossary lists and explains terms, acronyms, and definitions. 器件和文档支持 版权 © 2018–2019, Texas Instruments Incorporated 提交文档反馈意见 产品主页链接: MSP430FR2522 MSP430FR2512 83 MSP430FR2522, MSP430FR2512 ZHCSHB4C – JANUARY 2018 – REVISED DECEMBER 2019 www.ti.com.cn 9 机械、封装和可订购信息 以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。这些数据会在无通知且不对 本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。 84 机械、封装和可订购信息 版权 © 2018–2019, Texas Instruments Incorporated 提交文档反馈意见 产品主页链接: MSP430FR2522 MSP430FR2512 MSP430FR2522, MSP430FR2512 www.ti.com.cn ZHCSHB4C – JANUARY 2018 – REVISED DECEMBER 2019 机械、封装和可订购信息 版权 © 2018–2019, Texas Instruments Incorporated 提交文档反馈意见 产品主页链接: MSP430FR2522 MSP430FR2512 85 MSP430FR2522, MSP430FR2512 ZHCSHB4C – JANUARY 2018 – REVISED DECEMBER 2019 www.ti.com.cn PACKAGE OUTLINE VQFN - 1 mm max height RHL0020A PLASTIC QUAD FLATPACK- NO LEAD A 3.6 3.4 B PIN 1 INDEX AREA 4.6 4.4 C 1 MAX SEATING PLANE 0.08 C 2.05±0.1 2X 1.5 20X 0.5 0.3 SYMM 10 14X 0.5 2X 3.5 (0.2) TYP 11 9 12 SYMM 21 3.05±0.1 19 2 PIN 1 ID (OPTIONAL) 1 20 4X (0.2) 20X 0.29 0.19 0.1 0.05 C A B C 2X (0.55) 4219071 / A 06/2017 NOTES: 1. 2. 3. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. This drawing is subject to change without notice. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance. www.ti.com 86 机械、封装和可订购信息 版权 © 2018–2019, Texas Instruments Incorporated 提交文档反馈意见 产品主页链接: MSP430FR2522 MSP430FR2512 MSP430FR2522, MSP430FR2512 www.ti.com.cn ZHCSHB4C – JANUARY 2018 – REVISED DECEMBER 2019 EXAMPLE BOARD LAYOUT VQFN - 1 mm max height RHL0020A PLASTIC QUAD FLATPACK- NO LEAD (3.3) (2.05) 2X (1.5) SYMM 1 20 2X (0.4) 20X (0.6) 19 2 20X (0.24) 14X (0.5) SYMM 21 (3.05) (4.3) 6X (0.525) 2X (0.75) SOLDER MASK OPENING METAL UNDER SOLDER MASK 9 12 (R0.05) TYP (Ø0.2) VIA TYP) 11 10 4X (0.2) 4X (0.775) 2X (0.55) LAND PATTERN EXAMPLE EXPOSED METAL SHOWN SCALE: 18X 0.07 MAX ALL AROUND EXPOSED METAL SOLDER MASK OPENING SOLDER MASK OPENING 0.07 MIN ALL AROUND EXPOSED METAL METAL METAL UNDER SOLDER MASK NON SOLDER MASK DEFINED (PREFERRED) SOLDER MASK DEFINED SOLDER MASK DETAILS 4219071 / A 06/2017 NOTES: (continued) 4. 5. 6. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271) . Solder mask tolerances between and around signal pads can vary based on board fabrication site. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to theri locations shown on this view. It is recommended that vias under paste be filled, plugged or tented. www.ti.com 机械、封装和可订购信息 版权 © 2018–2019, Texas Instruments Incorporated 提交文档反馈意见 产品主页链接: MSP430FR2522 MSP430FR2512 87 MSP430FR2522, MSP430FR2512 ZHCSHB4C – JANUARY 2018 – REVISED DECEMBER 2019 www.ti.com.cn EXAMPLE STENCIL DESIGN VQFN - 1 mm max height RHL0020A PLASTIC QUAD FLATPACK- NO LEAD (3.3) 2X (1.5) (0.55) TYP 1 (0.56) TYP SOLDER MASK EDGE TYP 20 20X (0.6) 2 19 20X (0.24) 14X (0.5) (1.05) TYP SYMM (4.3) 21 6X (0.85) (R0.05) TYP METAL TYP 12 9 2X (0.775) 2X (0.25) 11 10 4X (0.2) 6X (0.92) SYMM SOLDER PASTE EXAMPLE BASED ON 0.1mm THICK STENCIL EXPOSED PAD 75% PRINTED COVERAGE BY AREA SCALE: 20X 4219071 / A 06/2017 NOTES: (continued) 7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.. www.ti.com 88 机械、封装和可订购信息 版权 © 2018–2019, Texas Instruments Incorporated 提交文档反馈意见 产品主页链接: MSP430FR2522 MSP430FR2512 PACKAGE OPTION ADDENDUM www.ti.com 10-Dec-2020 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) (6) MSP430FR2512IPW16 ACTIVE TSSOP PW 16 90 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 85 FR2512 MSP430FR2512IPW16R ACTIVE TSSOP PW 16 2000 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 85 FR2512 MSP430FR2512IRHLR ACTIVE VQFN RHL 20 3000 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 85 FR2512 MSP430FR2512IRHLT ACTIVE VQFN RHL 20 250 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 85 FR2512 MSP430FR2522IPW16 ACTIVE TSSOP PW 16 90 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 85 FR2522 MSP430FR2522IPW16R ACTIVE TSSOP PW 16 2000 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 85 FR2522 MSP430FR2522IRHLR ACTIVE VQFN RHL 20 3000 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 85 FR2522 MSP430FR2522IRHLT ACTIVE VQFN RHL 20 250 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 85 FR2522 (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
MSP430FR2522IPW16R 价格&库存

很抱歉,暂时无法提供与“MSP430FR2522IPW16R”相匹配的价格&库存,您可以联系我们找货

免费人工找货