0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MSP430FR5887IPM

MSP430FR5887IPM

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    LQFP-64

  • 描述:

    IC MCU 16BIT 64KB FRAM 64LQFP

  • 数据手册
  • 价格&库存
MSP430FR5887IPM 数据手册
Product Folder Order Now Technical Documents Tools & Software Support & Community MSP430FR6889, MSP430FR68891, MSP430FR6888, MSP430FR6887 MSP430FR5889, MSP430FR58891, MSP430FR5888, MSP430FR5887 SLASE32C – AUGUST 2014 – REVISED AUGUST 2018 MSP430FR688x(1), MSP430FR588x(1) Mixed-Signal Microcontrollers 1 Device Overview 1.1 Features 1 • Embedded Microcontroller – 16-Bit RISC Architecture up to 16-MHz Clock – Wide Supply Voltage Range From 3.6 V Down to 1.8 V (Minimum Supply Voltage is Restricted by SVS Levels, See the SVS Specifications) • Optimized Ultra-Low-Power Modes – Active Mode: Approximately 100 µA/MHz – Standby (LPM3 With VLO): 0.4 µA (Typical) – Real-Time Clock (RTC) (LPM3.5): 0.35 µA (Typical) (1) – Shutdown (LPM4.5): 0.02 µA (Typical) • Ultra-Low-Power Ferroelectric RAM (FRAM) – Up to 128KB of Nonvolatile Memory – Ultra-Low-Power Writes – Fast Write at 125 ns per Word (64KB in 4 ms) – Unified Memory = Program + Data + Storage in One Single Space – 1015 Write Cycle Endurance – Radiation Resistant and Nonmagnetic • Intelligent Digital Peripherals – 32-Bit Hardware Multiplier (MPY) – Three-Channel Internal Direct Memory Access (DMA) – RTC With Calendar and Alarm Functions – Five 16-Bit Timers With up to 7 Capture/Compare Registers Each – 16-Bit and 32-Bit Cyclic Redundancy Checker (CRC16, CRC32) • High-Performance Analog – Extended Scan Interface (ESI) for Background Water, Heat, and Gas Volume Measurement – 16-Channel Analog Comparator – 12-Bit Analog-to-Digital Converter (ADC) With Internal Reference and Sample-and-Hold and up to 16 External Input Channels – Integrated LCD Driver With Contrast Control for up to 320 Segments • Multifunction Input/Output Ports – All P1 to P10 and PJ Pins Support Capacitive Touch Capability Without Need for External Components (1) • • • • • • – Accessible Bit-, Byte- and Word-Wise (in Pairs) – Edge-Selectable Wakeup From LPM on Ports P1, P2, P3, and P4 – Programmable Pullup and Pulldown on All Ports Code Security – True Random Number Seed for Random Number Generation Algorithm Enhanced Serial Communication – eUSCI_A0 and eUSCI_A1 Support: – UART With Automatic Baud-Rate Detection – IrDA Encode and Decode – SPI – eUSCI_B0 and eUSCI_B1 Support: – I2C With Multiple-Slave Addressing – SPI – Hardware UART and I2C Bootloader (BSL) Flexible Clock System – Fixed-Frequency DCO With 10 Selectable Factory-Trimmed Frequencies – Low-Power Low-Frequency Internal Clock Source (VLO) – 32-kHz Crystals (LFXT) – High-Frequency Crystals (HFXT) Development Tools and Software – Free Professional Development Environments With EnergyTrace++™ Technology – Experimenter and Development Kits Family Members – Device Comparison Summarizes the Device Variants and Available Packages Types For Complete Module Descriptions, See the MSP430FR58xx, MSP430FR59xx, and MSP430FR6xx Family User's Guide RTC is clocked by a 3.7-pF crystal. 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA. MSP430FR6889, MSP430FR68891, MSP430FR6888, MSP430FR6887 MSP430FR5889, MSP430FR58891, MSP430FR5888, MSP430FR5887 SLASE32C – AUGUST 2014 – REVISED AUGUST 2018 1.2 • • • • Applications Water Meters Heat Meters Heat Cost Allocators Portable Medical Meters 1.3 www.ti.com • • Data Logging See Extended Scan Interface (ESI) Peripheral for TI Designs Description The MSP430™ ultra-low-power (ULP) FRAM platform combines uniquely embedded FRAM and a holistic ultra-low-power system architecture, allowing innovators to increase performance at lowered energy budgets. FRAM technology combines the speed, flexibility, and endurance of SRAM with the stability and reliability of flash at much lower power. The MSP430 ULP FRAM portfolio consists of a diverse set of devices that feature FRAM, the ULP 16-bit MSP430 CPU, and intelligent peripherals targeted for various applications. The ULP architecture showcases seven low-power modes, which are optimized to achieve extended battery life in energychallenged applications. Device Information (1) PACKAGE BODY SIZE (2) MSP430FR6889IPZ LQFP (100) 14 mm × 14 mm MSP430FR6889IPN LQFP (80) 12 mm × 12 mm MSP430FR5889IPM LQFP (64) 10 mm × 10 mm MSP430FR5889IRGC VQFN (64) 9 mm × 9 mm PART NUMBER (1) (2) 2 For the most current part, package, and ordering information, see the Package Option Addendum in Section 9, or see the TI website at www.ti.com. The sizes shown here are approximations. For the package dimensions with tolerances, see the Mechanical Data in Section 9. Device Overview Copyright © 2014–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR6889 MSP430FR68891 MSP430FR6888 MSP430FR6887 MSP430FR5889 MSP430FR58891 MSP430FR5888 MSP430FR5887 MSP430FR6889, MSP430FR68891, MSP430FR6888, MSP430FR6887 MSP430FR5889, MSP430FR58891, MSP430FR5888, MSP430FR5887 www.ti.com 1.4 SLASE32C – AUGUST 2014 – REVISED AUGUST 2018 Functional Block Diagram Figure 1-1 and Figure 1-2 show the functional block diagrams. P1.x/P2.x P3.x/P4.x P5.x/P6.x P7.x/P8.x LFXIN, HFXIN 2x8 LFXOUT, HFXOUT 2x8 2x8 P9.x/P10.x PJ.x 2x8 2x8 1x8 Capacitive Touch I/O 0, Capacitive Touch I/O 1 MCLK Clock System Comp_E ADC12_B (up to 16 inputs) (up to 16 std. inputs, up to 8 diff. inputs) SMCLK DMA Controller 3 Channel Bus Control Logic I/O Ports P3, P4 2x8 I/Os I/O Ports P1, P2 2x8 I/Os REF_A ACLK Voltage Reference I/O Port P5, P6 2x8 I/Os I/O Port P7, P8 2x8 I/Os I/O Port P9, P10 1x8 I/Os I/O Port PJ 1x8 I/Os PC PD PE PB PA 1x16 I/Os 1x16 I/Os 1x16 I/Os 1x16 I/Os 1x16 I/Os MAB MDB CPUXV2 incl. 16 Registers MPU IP Encap EEM (S: 3 + 1) EnergyTrace++ Technology CRC16 FRAM RAM Up to 128KB 2KB Power Mgmt LDO SVS Brownout CRC-16CCITT Watchdog MPY32 CRC32 CRC-32ISO-3309 TA2 TA3 Timer_A Timer_A 2 CC Registers (int. only) 5 CC Registers (int. only) MDB JTAG Interface MAB Spy-BiWire TB0 TA0 TA1 Timer_B Timer_A Timer_A 7 CC Registers (int./ext.) 3 CC Registers (int./ext.) 3 CC Registers (int./ext.) RTC_C Calendar and Counter Mode eUSCI_A0 eUSCI_A1 eUSCI_B0 eUSCI_B1 (UART, IrDA, SPI) (I C, SPI) 2 LCD_C Extended Scan Interface (up to 320 seg; static, 2 - 8 mux) LPM3.5 Domain Copyright © 2016, Texas Instruments Incorporated Figure 1-1. Functional Block Diagram – MSP430FR688x, MSP430FR688x1 Device Overview Submit Documentation Feedback Product Folder Links: MSP430FR6889 MSP430FR68891 MSP430FR6888 MSP430FR6887 MSP430FR5889 MSP430FR58891 MSP430FR5888 MSP430FR5887 Copyright © 2014–2018, Texas Instruments Incorporated 3 MSP430FR6889, MSP430FR68891, MSP430FR6888, MSP430FR6887 MSP430FR5889, MSP430FR58891, MSP430FR5888, MSP430FR5887 SLASE32C – AUGUST 2014 – REVISED AUGUST 2018 www.ti.com P1.x/P2.x P3.x/P4.x P5.x/P6.x P7.x/P8.x LFXIN, HFXIN 2x8 LFXOUT, HFXOUT 2x8 2x8 P9.x/P10.x 2x8 2x8 PJ.x 1x8 Capacitive Touch I/O 0, Capacitive Touch I/O 1 MCLK Clock System Comp_E ADC12_B (up to 16 inputs) (up to 16 std. inputs, up to 8 diff. inputs) SMCLK DMA Controller 3 Channel Bus Control Logic I/O Ports P3, P4 2x8 I/Os I/O Ports P1, P2 2x8 I/Os REF_A ACLK Voltage Reference I/O Port P5, P6 2x8 I/Os I/O Port P7, P8 2x8 I/Os I/O Port P9, P10 1x8 I/Os I/O Port PJ 1x8 I/Os PC PD PE PB PA 1x16 I/Os 1x16 I/Os 1x16 I/Os 1x16 I/Os 1x16 I/Os MAB MDB CPUXV2 incl. 16 Registers MPU IP Encap EEM (S: 3 + 1) EnergyTrace++ Technology CRC16 FRAM RAM Up to 128KB 2KB Power Mgmt LDO SVS Brownout CRC-16CCITT Watchdog MPY32 CRC32 CRC-32ISO-3309 TA2 TA3 Timer_A Timer_A 2 CC Registers (int. only) 5 CC Registers (int. only) MDB JTAG Interface MAB Spy-BiWire TB0 TA0 TA1 Timer_B Timer_A Timer_A 7 CC Registers (int./ext.) 3 CC Registers (int./ext.) 3 CC Registers (int./ext.) RTC_C Calendar and Counter Mode eUSCI_A0 eUSCI_A1 eUSCI_B0 eUSCI_B1 (UART, IrDA, SPI) (I C, SPI) 2 Extended Scan Interface LPM3.5 Domain Copyright © 2016, Texas Instruments Incorporated Figure 1-2. Functional Block Diagram – MSP430FR588x, MSP430FR588x1 4 Device Overview Copyright © 2014–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR6889 MSP430FR68891 MSP430FR6888 MSP430FR6887 MSP430FR5889 MSP430FR58891 MSP430FR5888 MSP430FR5887 MSP430FR6889, MSP430FR68891, MSP430FR6888, MSP430FR6887 MSP430FR5889, MSP430FR58891, MSP430FR5888, MSP430FR5887 www.ti.com SLASE32C – AUGUST 2014 – REVISED AUGUST 2018 Table of Contents 1 2 3 Device Overview ......................................... 1 1.2 Applications ........................................... 2 6.1 Overview 1.3 Description ............................................ 2 6.2 CPU 1.4 Functional Block Diagram ............................ 3 6.3 Revision History ......................................... 6 Device Comparison ..................................... 7 6.4 Related Products ..................................... 8 6.6 Terminal Configuration and Functions .............. 9 6.7 4.1 Pin Diagrams ......................................... 9 6.8 4.2 Signal Descriptions .................................. 12 ..................................... 4.4 Connection of Unused Pins ......................... Specifications ........................................... 5.1 Absolute Maximum Ratings ......................... 5.2 ESD Ratings ........................................ 5.3 Recommended Operating Conditions ............... 4.3 5 Timing and Switching Characteristics ............... 39 Features .............................................. 1 3.1 4 5.13 1.1 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 5.12 Pin Multiplexing Active Mode Supply Current Into VCC Excluding External Current .................................... Typical Characteristics, Active Mode Supply Currents ............................................. Low-Power Mode (LPM0, LPM1) Supply Currents Into VCC Excluding External Current ................ Low-Power Mode (LPM2, LPM3, LPM4) Supply Currents (Into VCC) Excluding External Current .... Low-Power Mode With LCD Supply Currents (Into VCC) Excluding External Current .................... Low-Power Mode LPMx.5 Supply Currents (Into VCC) Excluding External Current .................... Typical Characteristics, Low-Power Mode Supply Currents ............................................. Typical Characteristics, Current Consumption per Module .............................................. Thermal Resistance Characteristics ................ 6 Detailed Description ................................... 74 6.9 ............................................ ................................................. Operating Modes .................................... Interrupt Vector Table and Signatures .............. Bootloader (BSL) .................................... JTAG Operation ..................................... FRAM................................................ RAM ................................................. Tiny RAM ............................................ 28 6.10 Memory Protection Unit Including IP Encapsulation 82 6.5 .......................................... 74 75 78 81 81 82 82 82 28 6.11 Peripherals 29 6.12 Device Descriptors (TLV) .......................... 130 29 6.13 Memory 29 6.14 Identification........................................ 151 29 7 31 8 31 32 34 35 36 38 Device Connection and Layout Fundamentals .... 152 Peripheral- and Interface-Specific Design Information ......................................... 156 ................... 8.1 Getting Started and Next Steps 8.2 Device Nomenclature .............................. 162 8.3 Tools and Software ................................ 163 8.4 Documentation Support ............................ 165 8.5 Related Links 8.6 Community Resources............................. 167 8.7 Trademarks ........................................ 167 8.8 ................... Export Control Notice .............................. Glossary............................................ 8.10 9 133 Device and Documentation Support .............. 162 8.9 37 83 Applications, Implementation, and Layout ...... 152 7.1 7.2 30 ............................................ ...................................... Electrostatic Discharge Caution 162 166 167 167 167 Mechanical, Packaging, and Orderable Information ............................................. 168 Table of Contents Submit Documentation Feedback Product Folder Links: MSP430FR6889 MSP430FR68891 MSP430FR6888 MSP430FR6887 MSP430FR5889 MSP430FR58891 MSP430FR5888 MSP430FR5887 Copyright © 2014–2018, Texas Instruments Incorporated 74 5 MSP430FR6889, MSP430FR68891, MSP430FR6888, MSP430FR6887 MSP430FR5889, MSP430FR58891, MSP430FR5888, MSP430FR5887 SLASE32C – AUGUST 2014 – REVISED AUGUST 2018 www.ti.com 2 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. Changes from March 10, 2017 to August 29, 2018 • • • • • 6 Page Updated Section 3.1, Related Products ........................................................................................... 8 Added note (1) to Table 5-2, SVS................................................................................................. 40 Changed capacitor value from 4.7 µF to 470 nF in Figure 7-5, ADC12_B Grounding and Noise Considerations ... 156 Changed capacitor value from 4.7 µF to 470 nF in the last paragraph of Section 7.2.1.2, Design Requirements .. 157 Updates to text and figure in Section 8.2, Device Nomenclature ........................................................... 162 Revision History Copyright © 2014–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR6889 MSP430FR68891 MSP430FR6888 MSP430FR6887 MSP430FR5889 MSP430FR58891 MSP430FR5888 MSP430FR5887 MSP430FR6889, MSP430FR68891, MSP430FR6888, MSP430FR6887 MSP430FR5889, MSP430FR58891, MSP430FR5888, MSP430FR5887 www.ti.com SLASE32C – AUGUST 2014 – REVISED AUGUST 2018 3 Device Comparison Table 3-1 and Table 3-2 summarize the available family members. Table 3-1. Device Comparison (With UART BSL) (1) (1) (2) (3) (4) (5) (6) (7) (8) DEVICE FRAM (KB) SRAM (KB) CLOCK SYSTEM 128 2 DCO HFXT LFXT 3, 3 2, 5 (7) MSP430FR6889 96 2 DCO HFXT LFXT 3, 3 2, 5 (7) MSP430FR6888 64 2 DCO HFXT LFXT 3, 3 2, 5 (7) MSP430FR6887 128 2 DCO HFXT LFXT 3, 3 2, 5 (7) MSP430FR5889 96 2 DCO HFXT LFXT 3, 3 2, 5 (7) MSP430FR5888 64 2 DCO HFXT LFXT 3, 3 2, 5 (7) MSP430FR5887 eUSCI Timer_A Timer_B (3) (4) A (5) B (6) 7 2 7 (8) (8) (8) (8) (8) (8) AES ADC12_B LCD_C I/O PACKAGE 2 no 12 ext 16 ext 240 seg 320 seg 63 83 80 PN 100 PZ 2 2 no 12 ext 16 ext 240 seg 320 seg 63 83 80 PN 100 PZ 7 2 2 no 12 ext 16 ext 240 seg 320 seg 63 83 80 PN 100 PZ 7 2 2 no 12 ext N/A 48 64 PM 64 RGC 7 2 2 no 12 ext N/A 48 64 PM 64 RGC 7 2 2 no 12 ext N/A 48 64 PM 64 RGC For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com. Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/package. Each number in the sequence represents an instantiation of Timer_A with its associated number of capture compare registers and PWM output generators available. For example, a number sequence of 3, 5 would represent two instantiations of Timer_A, the first instantiation having 3 and the second instantiation having 5 capture compare registers and PWM output generators, respectively. Each number in the sequence represents an instantiation of Timer_B with its associated number of capture compare registers and PWM output generators available. For example, a number sequence of 3, 5 would represent two instantiations of Timer_B, the first instantiation having 3 and the second instantiation having 5 capture compare registers and PWM output generators, respectively. eUSCI_A supports UART with automatic baud-rate detection, IrDA encode and decode, and SPI. eUSCI_B supports I2C with multiple slave addresses and SPI. Timer_A TA0 and TA1 provide internal and external capture/compare inputs and internal and external PWM outputs. Timer_A TA2 and TA3 provide only internal capture/compare inputs and only internal PWM outputs (if any). Table 3-2. Device Comparison (With I2C BSL) DEVICE FRAM (KB) SRAM (KB) CLOCK SYSTEM 128 2 DCO HFXT LFXT 3, 3 2, 5 (7) MSP430FR68891 128 2 DCO HFXT LFXT 3, 3 2, 5 (7) MSP430FR58891 (1) (2) (3) (4) (5) (6) (7) (8) (2) eUSCI Timer_A Timer_B (3) (4) A (5) B (6) 7 2 7 2 (8) (8) (1) (2) AES ADC12_B LCD_C I/O PACKAGE TYPE 2 no 12 ext 16 ext 240 seg 320 seg 63 83 80 PN 100 PZ 2 no 12 ext N/A 48 64 PM 64 RGC For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com. Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/package. Each number in the sequence represents an instantiation of Timer_A with its associated number of capture compare registers and PWM output generators available. For example, a number sequence of 3, 5 would represent two instantiations of Timer_A, the first instantiation having 3 and the second instantiation having 5 capture compare registers and PWM output generators, respectively. Each number in the sequence represents an instantiation of Timer_B with its associated number of capture compare registers and PWM output generators available. For example, a number sequence of 3, 5 would represent two instantiations of Timer_B, the first instantiation having 3 and the second instantiation having 5 capture compare registers and PWM output generators, respectively. eUSCI_A supports UART with automatic baud-rate detection, IrDA encode and decode, and SPI. eUSCI_B supports I2C with multiple slave addresses and SPI. Timer_A TA0 and TA1 provide internal and external capture/compare inputs and internal and external PWM outputs. Timer_A TA2 and TA3 provide only internal capture/compare inputs and only internal PWM outputs (if any). Device Comparison Submit Documentation Feedback Product Folder Links: MSP430FR6889 MSP430FR68891 MSP430FR6888 MSP430FR6887 MSP430FR5889 MSP430FR58891 MSP430FR5888 MSP430FR5887 Copyright © 2014–2018, Texas Instruments Incorporated 7 MSP430FR6889, MSP430FR68891, MSP430FR6888, MSP430FR6887 MSP430FR5889, MSP430FR58891, MSP430FR5888, MSP430FR5887 SLASE32C – AUGUST 2014 – REVISED AUGUST 2018 3.1 www.ti.com Related Products For information about other devices in this family of products or related products, see the following links. TI 16-bit and 32-bit microcontrollers High-performance, low-power solutions to enable the autonomous future Products for MSP430 ultra-low-power sensing and measurement microcontrollers One ecosystem. Endless possibilities. One platform. Products for MSP430 ultrasonic and performance sensing microcontrollers Ultra-low-power singlechip MCUs with integrated sensing peripherals Companion products for MSP430FR6889 Review products that are frequently purchased or used with this product. Reference designs for MSP430FR6889 The TI Designs Reference Design Library is a robust reference design library that spans analog, embedded processor, and connectivity. Created by TI experts to help you jump start your system design, all TI Designs include schematic or block diagrams, BOMs, and design files to speed your time to market. Search and download designs at ti.com/tidesigns. 8 Device Comparison Copyright © 2014–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR6889 MSP430FR68891 MSP430FR6888 MSP430FR6887 MSP430FR5889 MSP430FR58891 MSP430FR5888 MSP430FR5887 MSP430FR6889, MSP430FR68891, MSP430FR6888, MSP430FR6887 MSP430FR5889, MSP430FR58891, MSP430FR5888, MSP430FR5887 www.ti.com SLASE32C – AUGUST 2014 – REVISED AUGUST 2018 4 Terminal Configuration and Functions 4.1 Pin Diagrams ESIDVSS ESICI ESICOM AVCC1 AVSS3 PJ.7/HFXOUT PJ.6/HFXIN AVSS1 PJ.4/LFXIN PJ.5/LFXOUT AVSS2 P5.4/UCA1SIMO/UCA1TXD/S12 P5.5/UCA1SOMI/UCA1RXD/S11 P5.6/UCA1CLK/S10 P5.7/UCA1STE/TB0CLK/S9 P4.4/UCB1STE/TA1CLK/S8 P4.5/UCB1CLK/TA1.0/S7 P4.6/UCB1SIMO/UCB1SDA/TA1.1/S6 P4.7/UCB1SOMI/UCB1SCL/TA1.2/S5 P10.0/SMCLK/S4 P4.0/UCB1SIMO/UCB1SDA/MCLK/S3 P4.1/UCB1SOMI/UCB1SCL/ACLK/S2 DVSS3 DVCC3 P4.2/UCA0SIMO/UCA0TXD/UCB1CLK Figure 4-1 shows the pinout of the 100-pin PZ package for the MSP430FR688x and MSP430FR688x1 MCUs. 9 67 P9.0/ESICH0/ESITEST0/A8/C8 P6.3/COM0 10 66 P1.0/TA0.1/DMAE0/RTCCLK/A0/C0/VREF-/VeREF- P6.4/TB0.0/COM1 11 65 P1.1/TA0.2/TA1CLK/COUT/A1/C1/VREF+/VeREF+ P6.5/TB0.1/COM2 12 64 P1.2/TA1.1/TA0CLK/COUT/A2/C2 P6.6/TB0.2/COM3 13 63 P1.3/TA1.2/ESITEST4/A3/C3 P2.4/TB0.3/COM4/S43 14 62 P8.7/A4/C4 P2.5/TB0.4/COM5/S42 15 61 P8.6/A5/C5 P2.6/TB0.5/ESIC1OUT/COM6/S41 16 60 P8.5/A6/C6 P2.7/TB0.6/ESIC2OUT/COM7/S40 17 59 P8.4/A7/C7 P10.2/TA1.0/SMCLK/S39 18 58 DVCC2 P5.0/TA1.1/MCLK/S38 19 57 DVSS2 P5.1/TA1.2/S37 20 56 P7.4/SMCLK/S13 P5.2/TA1.0/TA1CLK/ACLK/S36 21 55 P7.3/TA0.2/S14 P5.3/UCB1STE/S35 22 54 P7.2/TA0.1/S15 P3.0/UCB1CLK/S34 23 53 P7.1/TA0.0/ACLK/S16 P3.1/UCB1SIMO/UCB1SDA/S33 24 52 P7.0/TA0CLK/S17 P3.2/UCB1SOMI/UCB1SCL/S32 25 51 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 P2.0/UCA0SIMO/UCA0TXD/TB0.6/TB0CLK P2.1/UCA0SOMI/UCA0RXD/TB0.5/DMAE0 DVSS1 P2.2/UCA0CLK/TB0.4/RTCCLK P9.1/ESICH1/ESITEST1/A9/C9 P6.2/COUT/R03 P2.3/UCA0STE/TB0OUTH 68 P8.3/MCLK/S18 8 P8.2/S19 P9.2/ESICH2/ESITEST2/A10/C10 P6.1/R13/LCDREF P8.1/DMAE0/S20 69 P8.0/RTCCLK/S21 7 P3.7/UCA1STE/TB0.3/S22 P9.3/ESICH3/ESITEST3/A11/C11 P6.0/R23 P3.6/UCA1CLK/TB0.2/S23 70 P3.5/UCA1SOMI/UCA1RXD/TB0.1/S24 6 P3.4/UCA1SIMO/UCA1TXD/TB0.0/S25 P9.4/ESICI0/A12/C12 R33/LCDCAP P3.3/TA1.1/TB0CLK/S26 71 P7.7/TA1.2/TB0OUTH/S27 5 P10.1/TA0.0/S28 P9.5/ESICI1/A13/C13 P1.7/UCB0SOMI/UCB0SCL/TA0.2 P7.6/TA0.1/S29 72 P7.5/TA0.2/S30 4 P6.7/TA0CLK/S31 P9.6/ESICI2/A14/C14 P1.6/UCB0SIMO/UCB0SDA/TA0.1 PJ.3/TCK/COUT/SRCPUOFF 73 PJ.2/TMS/ACLK/SROSCOFF 3 PJ.1/TDI/TCLK/MCLK/SRSCG0 P9.7/ESICI3/A15/C15 P1.5/UCB0STE/UCA0CLK/TA0.0/S0 PJ.0/TDO/TB0OUTH/SMCLK/SRSCG1 74 RST/NMI/SBWTDIO 2 TEST/SBWTCK ESIDVCC P1.4/UCB0CLK/UCA0STE/TA1.0/S1 DVCC1 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 1 75 P4.3/UCA0SOMI/UCA0RXD/UCB1STE NOTE: On devices with UART BSL: P2.0: BSLTX; P2.1: BSLRX NOTE: On devices with I2C BSL: P1.6: BSLSDA; P1.7: BSLSCL Figure 4-1. 100-Pin PZ Package (Top View) – MSP430FR688x and MSP430FR688x1 Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: MSP430FR6889 MSP430FR68891 MSP430FR6888 MSP430FR6887 MSP430FR5889 MSP430FR58891 MSP430FR5888 MSP430FR5887 Copyright © 2014–2018, Texas Instruments Incorporated 9 MSP430FR6889, MSP430FR68891, MSP430FR6888, MSP430FR6887 MSP430FR5889, MSP430FR58891, MSP430FR5888, MSP430FR5887 SLASE32C – AUGUST 2014 – REVISED AUGUST 2018 www.ti.com ESIDVSS ESICI ESICOM AVCC1 AVSS3 PJ.7/HFXOUT PJ.6/HFXIN AVSS1 PJ.4/LFXIN PJ.5/LFXOUT AVSS2 P4.4/UCB1STE/TA1CLK/S9 P4.5/UCB1CLK/TA1.0/S8 P4.6/UCB1SIMO/UCB1SDA/TA1.1/S7 P4.7/UCB1SOMI/UCB1SCL/TA1.2/S6 P4.0/UCB1SIMO/UCB1SDA/MCLK/S5 P4.1/UCB1SOMI/UCB1SCL/ACLK/S4 DVSS3 DVCC3 P4.2/UCA0SIMO/UCA0TXD/UCB1CLK Figure 4-2 shows the pinout of the 80-pin PN package for the MSP430FR688x and MSP430FR688x1 MCUs. 54 P9.2/ESICH2/ESITEST2/A10/C10 P6.1/R13/LCDREF 8 53 P9.1/ESICH1/ESITEST1/A9/C9 P6.2/COUT/R03 9 52 P9.0/ESICH0/ESITEST0/A8/C8 P6.3/COM0 10 51 P1.0/TA0.1/DMAE0/RTCCLK/A0/C0/VREF-/VeREF- P6.4/TB0.0/COM1/S36 11 50 P1.1/TA0.2/TA1CLK/COUT/A1/C1/VREF+/VeREF+ P6.5/TB0.1/COM2/S35 12 49 P1.2/TA1.1/TA0CLK/COUT/A2/C2 P6.6/TB0.2/COM3/S34 13 48 P1.3/TA1.2/ESITEST4/A3/C3 P2.4/TB0.3/COM4/S33 14 47 DVCC2 P2.5/TB0.4/COM5/S32 15 46 DVSS2 P2.6/TB0.5/ESIC1OUT/COM6/S31 16 45 P7.3/TA0.2/S10 P2.7/TB0.6/ESIC2OUT/COM7/S30 17 44 P7.2/TA0.1/S11 P3.0/UCB1CLK/S29 18 43 P7.1/TA0.0/ACLK/S12 P3.1/UCB1SIMO/UCB1SDA/S28 19 42 P7.0/TA0CLK/S13 P3.2/UCB1SOMI/UCB1SCL/S27 20 41 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 P2.0/UCA0SIMO/UCA0TXD/TB0.6/TB0CLK/S14 P2.1/UCA0SOMI/UCA0RXD/TB0.5/DMAE0/S15 DVSS1 P2.2/UCA0CLK/TB0.4/RTCCLK/S16 7 P2.3/UCA0STE/TB0OUTH/S17 P9.3/ESICH3/ESITEST3/A11/C11 P6.0/R23 P3.7/UCA1STE/TB0.3/S18 55 P3.6/UCA1CLK/TB0.2/S19 6 P3.5/UCA1SOMI/UCA1RXD/TB0.1/S20 P9.4/ESICI0/A12/C12 R33/LCDCAP P3.4/UCA1SIMO/UCA1TXD/TB0.0/S21 56 P3.3/TA1.1/TB0CLK/S22 5 P7.7/TA1.2/TB0OUTH/S23 P9.5/ESICI1/A13/C13 P1.7/UCB0SOMI/UCB0SCL/TA0.2/S0 P7.6/TA0.1/S24 57 P7.5/TA0.2/S25 4 P6.7/TA0CLK/S26 P9.6/ESICI2/A14/C14 P1.6/UCB0SIMO/UCB0SDA/TA0.1/S1 PJ.3/TCK/COUT/SRCPUOFF 58 PJ.2/TMS/ACLK/SROSCOFF 3 PJ.1/TDI/TCLK/MCLK/SRSCG0 P9.7/ESICI3/A15/C15 P1.5/UCB0STE/UCA0CLK/TA0.0/S2 PJ.0/TDO/TB0OUTH/SMCLK/SRSCG1 59 RST/NMI/SBWTDIO 2 TEST/SBWTCK ESIDVCC P1.4/UCB0CLK/UCA0STE/TA1.0/S3 DVCC1 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 1 60 P4.3/UCA0SOMI/UCA0RXD/UCB1STE NOTE: On devices with UART BSL: P2.0: BSLTX; P2.1: BSLRX NOTE: On devices with I2C BSL: P1.6: BSLSDA; P1.7: BSLSCL Figure 4-2. 80-Pin PN Package (Top View) – MSP430FR688x and MSP430FR688x1 10 Terminal Configuration and Functions Copyright © 2014–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR6889 MSP430FR68891 MSP430FR6888 MSP430FR6887 MSP430FR5889 MSP430FR58891 MSP430FR5888 MSP430FR5887 MSP430FR6889, MSP430FR68891, MSP430FR6888, MSP430FR6887 MSP430FR5889, MSP430FR58891, MSP430FR5888, MSP430FR5887 www.ti.com SLASE32C – AUGUST 2014 – REVISED AUGUST 2018 ESIDVSS ESICI ESICOM AVCC1 AVSS3 PJ.7/HFXOUT PJ.6/HFXIN AVSS1 PJ.4/LFXIN PJ.5/LFXOUT AVSS2 P4.0/UCB1SIMO/UCB1SDA/MCLK P4.1/UCB1SOMI/UCB1SCL/ACLK DVSS3 DVCC3 P4.2/UCA0SIMO/UCA0TXD/UCB1CLK Figure 4-3 shows the pinout of the 64-pin PM and RGC packages for the MSP430FR588x and MSP430FR588x1 MCUs. 6 43 P9.3/ESICH3/ESITEST3/A11/C11 P2.5/TB0.4 7 42 P9.2/ESICH2/ESITEST2/A10/C10 P2.6/TB0.5/ESIC1OUT 8 41 P9.1/ESICH1/ESITEST1/A9/C9 P2.7/TB0.6/ESIC2OUT 9 40 P9.0/ESICH0/ESITEST0/A8/C8 P5.0/TA1.1/MCLK 10 39 P1.0/TA0.1/DMAE0/RTCCLK/A0/C0/VREF-/VeREF- P5.1/TA1.2 11 38 P1.1/TA0.2/TA1CLK/COUT/A1/C1/VREF+/VeREF+ P5.2/TA1.0/TA1CLK/ACLK 12 37 P1.2/TA1.1/TA0CLK/COUT/A2/C2 P5.3/UCB1STE 13 36 P1.3/TA1.2/ESITEST4/A3/C3 P3.0/UCB1CLK 14 35 DVCC2 P3.1/UCB1SIMO/UCB1SDA 15 34 DVSS2 P3.2/UCB1SOMI/UCB1SCL 16 33 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 P2.0/UCA0SIMO/UCA0TXD/TB0.6/TB0CLK P2.1/UCA0SOMI/UCA0RXD/TB0.5/DMAE0 DVSS1 P2.2/UCA0CLK/TB0.4/RTCCLK P9.4/ESICI0/A12/C12 P2.4/TB0.3 P2.3/UCA0STE/TB0OUTH 44 P3.7/UCA1STE/TB0.3 5 P3.6/UCA1CLK/TB0.2 P9.5/ESICI1/A13/C13 P1.7/UCB0SOMI/UCB0SCL/TA0.2 P3.5/UCA1SOMI/UCA1RXD/TB0.1 45 P3.4/UCA1SIMO/UCA1TXD/TB0.0 4 P3.3/TA1.1/TB0CLK P9.6/ESICI2/A14/C14 P1.6/UCB0SIMO/UCB0SDA/TA0.1 PJ.3/TCK/COUT/SRCPUOFF 46 PJ.2/TMS/ACLK/SROSCOFF 3 PJ.1/TDI/TCLK/MCLK/SRSCG0 P9.7/ESICI3/A15/C15 P1.5/UCB0STE/UCA0CLK/TA0.0 PJ.0/TDO/TB0OUTH/SMCLK/SRSCG1 47 RST/NMI/SBWTDIO 2 TEST/SBWTCK ESIDVCC P1.4/UCB0CLK/UCA0STE/TA1.0 DVCC1 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 1 48 P4.3/UCA0SOMI/UCA0RXD/UCB1STE NOTE: TI recommends connecting the RGC package pad to VSS. NOTE: On devices with UART BSL: P2.0: BSLTX; P2.1: BSLRX NOTE: On devices with I2C BSL: P1.6: BSLSDA; P1.7: BSLSCL Figure 4-3. 64-Pin PM or RGC Package (Top View) – MSP430FR588x and MSP430FR588x1 Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: MSP430FR6889 MSP430FR68891 MSP430FR6888 MSP430FR6887 MSP430FR5889 MSP430FR58891 MSP430FR5888 MSP430FR5887 Copyright © 2014–2018, Texas Instruments Incorporated 11 MSP430FR6889, MSP430FR68891, MSP430FR6888, MSP430FR6887 MSP430FR5889, MSP430FR58891, MSP430FR5888, MSP430FR5887 SLASE32C – AUGUST 2014 – REVISED AUGUST 2018 4.2 www.ti.com Signal Descriptions Table 4-1 and Table 4-2 describe the device signals. Table 4-1. Signal Descriptions – MSP430FR688x and MSP430FR688x1 TERMINAL NAME PZ NO. PN Seg. NO. DESCRIPTION Seg. General-purpose digital I/O P4.3/UCA0SOMI/UCA0RXD/ UCB1STE USCI_A0: Slave out, master in (SPI mode) 1 1 USCI_A0: Receive data (UART mode) USCI_B1: Slave transmit enable (SPI mode) General-purpose digital I/O P1.4/UCB0CLK/UCA0STE/ TA1.0/Sx USCI_B0: Clock signal input (SPI slave mode), Clock signal output (SPI master mode) 2 S1 2 S3 USCI_A0: Slave transmit enable (SPI mode) Timer_A TA1 CCR0 capture: CCI0A input, compare: Out0 output LCD segment output (segment number is package specific) General-purpose digital I/O USCI_B0: Slave transmit enable (SPI mode) P1.5/UCB0STE/ UCA0CLK/TA0.0/Sx 3 S0 3 S2 USCI_A0: Clock signal input (SPI slave mode), Clock signal output (SPI master mode) Timer_A TA0 CCR0 capture: CCI0A input, compare: Out0 output LCD segment output (segment number is package specific) General-purpose digital I/O USCI_B0: Slave in, master out (SPI mode) P1.6/UCB0SIMO/UCB0SDA/ TA0.1/Sx USCI_B0: I2C data (I2C mode) 4 4 S1 BSL data (I2C BSL) Timer_A TA0 CCR1 capture: CCI1A input, compare: Out1 output LCD segment output (segment number is package specific) General-purpose digital I/O USCI_B0: Slave out, master in (SPI mode) P1.7/UCB0SOMI/UCB0SCL/ TA0.2/Sx USCI_B0: I2C clock (I2C mode) 5 5 S0 BSL clock (I2C BSL) Timer_A TA0 CCR2 capture: CCI2A input, compare: Out2 output LCD segment output (segment number is package specific) Input/output port of most positive analog LCD voltage (V1) R33/LCDCAP 6 6 LCD capacitor connection General-purpose digital I/O P6.0/R23 7 7 Input/output port of second most positive analog LCD voltage (V2) General-purpose digital I/O P6.1/R13/LCDREF 8 8 Input/output port of third most positive analog LCD voltage (V3 or V4) External reference voltage input for regulated LCD voltage General-purpose digital I/O P6.2/COUT/R03 9 9 Comparator output Input/output port of lowest analog LCD voltage (V5) 12 Terminal Configuration and Functions Copyright © 2014–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR6889 MSP430FR68891 MSP430FR6888 MSP430FR6887 MSP430FR5889 MSP430FR58891 MSP430FR5888 MSP430FR5887 MSP430FR6889, MSP430FR68891, MSP430FR6888, MSP430FR6887 MSP430FR5889, MSP430FR58891, MSP430FR5888, MSP430FR5887 www.ti.com SLASE32C – AUGUST 2014 – REVISED AUGUST 2018 Table 4-1. Signal Descriptions – MSP430FR688x and MSP430FR688x1 (continued) TERMINAL NAME PZ NO. PN Seg. NO. DESCRIPTION Seg. General-purpose digital I/O P6.3/COM0 10 10 LCD common output COM0 for LCD backplane General-purpose digital I/O Timer_B TB0 CCR0 capture: CCI0B input, compare: Out0 output P6.4/TB0.0/COM1/Sx 11 11 S36 LCD common output COM1 for LCD backplane LCD segment output (segment number is package specific) General-purpose digital I/O Timer_B TB0 CCR1 capture: CCI1A input, compare: Out1 output P6.5/TB0.1/COM2/Sx 12 12 S35 LCD common output COM2 for LCD backplane LCD segment output (segment number is package specific) General-purpose digital I/O Timer_B TB0 CCR2 capture: CCI2A input, compare: Out2 output P6.6/TB0.2/COM3/Sx 13 13 S34 LCD common output COM3 for LCD backplane LCD segment output (segment number is package specific) General-purpose digital I/O Timer_B TB0 CCR3 capture: CCI3A input, compare: Out3 output P2.4/TB0.3/COM4/Sx 14 S43 14 S33 LCD common output COM4 for LCD backplane LCD segment output (segment number is package specific) General-purpose digital I/O Timer_B TB0 CCR4 capture: CCI4A input, compare: Out4 output P2.5/TB0.4/COM5/Sx 15 S42 15 S32 LCD common output COM5 for LCD backplane LCD segment output (segment number is package specific) General-purpose digital I/O Timer_B TB0 CCR5 capture: CCI5A input, compare: Out5 output P2.6/TB0.5/ESIC1OUT/ COM6/Sx 16 S41 16 S31 ESI Comparator 1 output LCD common output COM6 for LCD backplane LCD segment output (segment number is package specific) General-purpose digital I/O Timer_B TB0 CCR6 capture: CCI6A input, compare: Out6 output P2.7/TB0.6/ESIC2OUT/ COM7/Sx 17 S40 17 S30 ESI comparator 2 output LCD common output COM7 for LCD backplane LCD segment output (segment number is package specific) General-purpose digital I/O Timer_A TA1 CCR0 capture: CCI0B input, compare: Out0 output P10.2/TA1.0/SMCLK/Sx 18 S39 SMCLK output LCD segment output (segment number is package specific) General-purpose digital I/O Timer_A TA1 CCR1 capture: CCI1A input, compare: Out1 output P5.0/TA1.1/MCLK/Sx 19 S38 MCLK output LCD segment output (segment number is package specific) Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: MSP430FR6889 MSP430FR68891 MSP430FR6888 MSP430FR6887 MSP430FR5889 MSP430FR58891 MSP430FR5888 MSP430FR5887 Copyright © 2014–2018, Texas Instruments Incorporated 13 MSP430FR6889, MSP430FR68891, MSP430FR6888, MSP430FR6887 MSP430FR5889, MSP430FR58891, MSP430FR5888, MSP430FR5887 SLASE32C – AUGUST 2014 – REVISED AUGUST 2018 www.ti.com Table 4-1. Signal Descriptions – MSP430FR688x and MSP430FR688x1 (continued) TERMINAL NAME PZ NO. PN Seg. NO. DESCRIPTION Seg. General-purpose digital I/O P5.1/TA1.2/Sx 20 S37 Timer_A TA1 CCR2 capture: CCI2A input, compare: Out2 output LCD segment output (segment number is package specific) General-purpose digital I/O Timer_A TA1 CCR0 capture: CCI0B input, compare: Out0 output P5.2/TA1.0/TA1CLK/ACLK/Sx 21 S36 Timer_A TA1 clock signal TA0CLK input ACLK output LCD segment output (segment number is package specific) General-purpose digital I/O P5.3/UCB1STE/Sx 22 S35 USCI_B1: Slave transmit enable (SPI mode) LCD segment output (segment number is package specific) General-purpose digital I/O P3.0/UCB1CLK/Sx 23 S34 18 S29 USCI_B1: Clock signal input (SPI slave mode), Clock signal output (SPI master mode) LCD segment output (segment number is package specific) General-purpose digital I/O P3.1/UCB1SIMO/UCB1SDA/ Sx USCI_B1: Slave in, master out (SPI mode) 24 S33 19 S28 USCI_B1: I2C data (I2C mode) LCD segment output (segment number is package specific) General-purpose digital I/O USCI_B1: Slave out, master in (SPI mode) P3.2/UCB1SOMI/UCB1SCL/ Sx 25 DVSS1 26 21 Digital ground supply DVCC1 27 22 Digital power supply TEST/SBWTCK 28 23 S32 20 S27 USCI_B1: I2C clock (I2C mode) LCD segment output (segment number is package specific) Test mode pin - select digital I/O on JTAG pins Spy-Bi-Wire input clock Reset input, active low RST/NMI/SBWTDIO 29 24 Nonmaskable interrupt input Spy-Bi-Wire data input/output General-purpose digital I/O Test data output port PJ.0/TDO/TB0OUTH/ SMCLK/SRSCG1 30 25 Switch all PWM outputs high impedance input - Timer_B TB0 SMCLK output Low-power debug: CPU Status register SCG1 General-purpose digital I/O PJ.1/TDI/TCLK/MCLK/ SRSCG0 Test data input or test clock input 31 26 MCLK output Low-power debug: CPU Status register SCG0 14 Terminal Configuration and Functions Copyright © 2014–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR6889 MSP430FR68891 MSP430FR6888 MSP430FR6887 MSP430FR5889 MSP430FR58891 MSP430FR5888 MSP430FR5887 MSP430FR6889, MSP430FR68891, MSP430FR6888, MSP430FR6887 MSP430FR5889, MSP430FR58891, MSP430FR5888, MSP430FR5887 www.ti.com SLASE32C – AUGUST 2014 – REVISED AUGUST 2018 Table 4-1. Signal Descriptions – MSP430FR688x and MSP430FR688x1 (continued) TERMINAL NAME PZ NO. PN Seg. NO. DESCRIPTION Seg. General-purpose digital I/O Test mode select PJ.2/TMS/ACLK/SROSCOFF 32 27 ACLK output Low-power debug: CPU Status register OSCOFF General-purpose digital I/O Test clock PJ.3/TCK/COUT/SRCPUOFF 33 28 Comparator output Low-power debug: CPU Status register CPUOFF General-purpose digital I/O P6.7/TA0CLK/Sx 34 S31 29 S26 Timer_A TA0 clock signal TA0CLK input LCD segment output (segment number is package specific) General-purpose digital I/O P7.5/TA0.2/Sx 35 S30 30 S25 Timer_A TA0 CCR2 capture: CCI2A input, compare: Out2 output LCD segment output (segment number is package specific) General-purpose digital I/O P7.6/TA0.1/Sx 36 S29 31 S24 Timer_A TA0 CCR1 capture: CCI1A input, compare: Out1 output LCD segment output (segment number is package specific) General-purpose digital I/O P10.1/TA0.0/Sx 37 S28 Timer_A TA0 CCR0 capture: CCI0B input, compare: Out0 output LCD segment output (segment number is package specific) General-purpose digital I/O Timer_A TA1 CCR2 capture: CCI2A input, compare: Out2 output P7.7/TA1.2/TB0OUTH/Sx 38 S27 32 S23 Switch all PWM outputs high impedance input - Timer_B TB0 LCD segment output (segment number is package specific) General-purpose digital I/O Timer_A TA1 CCR1 capture: CCI1A input, compare: Out1 output P3.3/TA1.1/TB0CLK/Sx 39 S26 33 S22 Timer_B TB0 clock signal TB0CLK input LCD segment output (segment number is package specific) General-purpose digital I/O USCI_A1: Slave in, master out (SPI mode) P3.4/UCA1SIMO/UCA1TXD/ TB0.0/Sx 40 S25 34 S21 USCI_A1: Transmit data (UART mode) Timer_B TB0 CCR0 capture: CCI0A input, compare: Out0 output LCD segment output (segment number is package specific) General-purpose digital I/O USCI_A1: Slave out, master in (SPI mode) P3.5/UCA1SOMI/UCA1RXD/ TB0.1/Sx 41 S24 35 S20 USCI_A1: Receive data (UART mode) Timer_B TB0 CCR1 capture: CCI1A input, compare: Out1 output LCD segment output (segment number is package specific) Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: MSP430FR6889 MSP430FR68891 MSP430FR6888 MSP430FR6887 MSP430FR5889 MSP430FR58891 MSP430FR5888 MSP430FR5887 Copyright © 2014–2018, Texas Instruments Incorporated 15 MSP430FR6889, MSP430FR68891, MSP430FR6888, MSP430FR6887 MSP430FR5889, MSP430FR58891, MSP430FR5888, MSP430FR5887 SLASE32C – AUGUST 2014 – REVISED AUGUST 2018 www.ti.com Table 4-1. Signal Descriptions – MSP430FR688x and MSP430FR688x1 (continued) TERMINAL NAME PZ NO. PN Seg. NO. DESCRIPTION Seg. General-purpose digital I/O P3.6/UCA1CLK/TB0.2/Sx 42 S23 36 S19 USCI_A1: Clock signal input (SPI slave mode), Clock signal output (SPI master mode) Timer_B TB0 CCR2 capture: CCI2A input, compare: Out2 output LCD segment output (segment number is package specific) General-purpose digital I/O USCI_A1: Slave transmit enable (SPI mode) P3.7/UCA1STE/TB0.3/Sx 43 S22 37 S18 Timer_B TB0 CCR3 capture: CCI3B input, compare: Out3 output LCD segment output (segment number is package specific) General-purpose digital I/O P8.0/RTCCLK/Sx 44 S21 RTC clock output for calibration LCD segment output (segment number is package specific) General-purpose digital I/O P8.1/DMAE0/Sx 45 S20 DMA external trigger input LCD segment output (segment number is package specific) General-purpose digital I/O P8.2/Sx 46 S19 LCD segment output (segment number is package specific) General-purpose digital I/O P8.3/MCLK/Sx 47 S18 MCLK output LCD segment output (segment number is package specific) General-purpose digital I/O USCI_A0: Slave transmit enable (SPI mode) P2.3/UCA0STE/TB0OUTH/Sx 48 38 S17 Switch all PWM outputs high impedance input - Timer_B TB0 LCD segment output (segment number is package specific) General-purpose digital I/O P2.2/UCA0CLK/TB0.4/ RTCCLK/Sx USCI_A0: Clock signal input (SPI slave mode), Clock signal output (SPI master mode) 49 39 S16 Timer_B TB0 CCR4 capture: CCI4B input, compare: Out4 output RTC clock output for calibration LCD segment output (segment number is package specific) General-purpose digital I/O USCI_A0: Slave out, master in (SPI mode) USCI_A0: Receive data (UART mode) P2.1/UCA0SOMI/UCA0RXD/ TB0.5/DMAE0/Sx 50 40 S15 BSL receive (UART BSL) Timer_B TB0 CCR5 capture: CCI5B input, compare: Out5 output DMA external trigger input LCD segment output (segment number is package specific) 16 Terminal Configuration and Functions Copyright © 2014–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR6889 MSP430FR68891 MSP430FR6888 MSP430FR6887 MSP430FR5889 MSP430FR58891 MSP430FR5888 MSP430FR5887 MSP430FR6889, MSP430FR68891, MSP430FR6888, MSP430FR6887 MSP430FR5889, MSP430FR58891, MSP430FR5888, MSP430FR5887 www.ti.com SLASE32C – AUGUST 2014 – REVISED AUGUST 2018 Table 4-1. Signal Descriptions – MSP430FR688x and MSP430FR688x1 (continued) TERMINAL NAME PZ NO. PN Seg. NO. DESCRIPTION Seg. General-purpose digital I/O USCI_A0: Slave in, master out (SPI mode) USCI_A0: Transmit data (UART mode) P2.0/UCA0SIMO/UCA0TXD/ TB0.6/TB0CLK/Sx 51 41 S14 BSL transmit (UART BSL) Timer_B TB0 CCR6 capture: CCI6B input, compare: Out6 output Timer_B TB0 clock signal TB0CLK input LCD segment output (segment number is package specific) General-purpose digital I/O P7.0/TA0CLK/Sx 52 S17 42 S13 Timer_A TA0 clock signal TA0CLK input LCD segment output (segment number is package specific) General-purpose digital I/O Timer_A TA0 CCR0 capture: CCI0B input, compare: Out0 output P7.1/TA0.0/ACLK/Sx 53 S16 43 S12 ACLK output LCD segment output (segment number is package specific) General-purpose digital I/O P7.2/TA0.1/Sx 54 S15 44 S11 Timer_A TA0 CCR1 capture: CCI1A input, compare: Out1 output LCD segment output (segment number is package specific) General-purpose digital I/O P7.3/TA0.2/Sx 55 S14 45 S10 Timer_A TA0 CCR2 capture: CCI2A input, compare: Out2 output LCD segment output (segment number is package specific) General-purpose digital I/O P7.4/SMCLK/Sx 56 S13 SMCLK output LCD segment output (segment number is package specific) DVSS2 57 46 Digital ground supply DVCC2 58 47 Digital power supply General-purpose digital I/O P8.4/A7/C7 59 Analog input A7 Comparator input C7 General-purpose digital I/O P8.5/A6/C6 60 Analog input A6 Comparator input C6 General-purpose digital I/O P8.6/A5/C5 61 Analog input A5 Comparator input C5 General-purpose digital I/O P8.7/A4/C4 62 Analog input A4 Comparator input C4 Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: MSP430FR6889 MSP430FR68891 MSP430FR6888 MSP430FR6887 MSP430FR5889 MSP430FR58891 MSP430FR5888 MSP430FR5887 Copyright © 2014–2018, Texas Instruments Incorporated 17 MSP430FR6889, MSP430FR68891, MSP430FR6888, MSP430FR6887 MSP430FR5889, MSP430FR58891, MSP430FR5888, MSP430FR5887 SLASE32C – AUGUST 2014 – REVISED AUGUST 2018 www.ti.com Table 4-1. Signal Descriptions – MSP430FR688x and MSP430FR688x1 (continued) TERMINAL NAME PZ NO. PN Seg. NO. DESCRIPTION Seg. General-purpose digital I/O ESI test signal 4 P1.3/ESITEST4/TA1.2/A3/C3 63 48 Timer_A TA1 CCR2 capture: CCI2A input, compare: Out2 output Analog input A3 Comparator input C3 General-purpose digital I/O Timer_A TA1 CCR1 capture: CCI1A input, compare: Out1 output P1.2/TA1.1/TA0CLK/ COUT/A2/C2 Timer_A TA0 clock signal TA0CLK input 64 49 Comparator output Analog input A2 Comparator input C2 General-purpose digital I/O Timer_A TA0 CCR2 capture: CCI2A input, compare: Out2 output Timer_A TA1 clock signal TA1CLK input P1.1/TA0.2/TA1CLK/ COUT/A1/C1/VREF+/VeREF+ Comparator output 65 50 Analog input A1 Comparator input C1 Output of positive reference voltage Input for an external positive reference voltage to the ADC General-purpose digital I/O Timer_A TA0 CCR1 capture: CCI1A input, compare: Out1 output DMA external trigger input P1.0/TA0.1/DMAE0/ RTCCLK/A0/C0/ VREF/VeREF- RTC clock output for calibration 66 51 Analog input A0 Comparator input C0 Output of negative reference voltage Input for an external negative reference voltage to the ADC General-purpose digital I/O ESI channel 0 sensor excitation output and signal input P9.0/ESICH0/ESITEST0/ A8/C8 67 52 ESI test signal 0 Analog input A8 Comparator input C8 General-purpose digital I/O ESI channel 1 sensor excitation output and signal input P9.1/ESICH1/ESITEST1/ A9/C9 68 53 ESI test signal 1 Analog input A9 Comparator input C9 General-purpose digital I/O P9.2/ESICH2/ESITEST2/ A10/C10 ESI channel 2 sensor excitation output and signal input 69 54 ESI test signal 2 Analog input A10; comparator input C10 18 Terminal Configuration and Functions Copyright © 2014–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR6889 MSP430FR68891 MSP430FR6888 MSP430FR6887 MSP430FR5889 MSP430FR58891 MSP430FR5888 MSP430FR5887 MSP430FR6889, MSP430FR68891, MSP430FR6888, MSP430FR6887 MSP430FR5889, MSP430FR58891, MSP430FR5888, MSP430FR5887 www.ti.com SLASE32C – AUGUST 2014 – REVISED AUGUST 2018 Table 4-1. Signal Descriptions – MSP430FR688x and MSP430FR688x1 (continued) TERMINAL NAME PZ NO. PN Seg. NO. DESCRIPTION Seg. General-purpose digital I/O ESI channel 3 sensor excitation output and signal input P9.3/ESICH3/ESITEST3/ A11/C11 70 55 ESI test signal 3 Analog input A11 Comparator input C11 General-purpose digital I/O ESI channel 0 signal input to comparator P9.4/ESICI0/A12/C12 71 56 Analog input A12 Comparator input C12 General-purpose digital I/O ESI channel 1 signal input to comparator P9.5/ESICI1/A13/C13 72 57 Analog input A13 Comparator input C13 General-purpose digital I/O ESI channel 2 signal input to comparator P9.6/ESICI2/A14/C14 73 58 Analog input A14 Comparator input C14 General-purpose digital I/O ESI channel 3 signal input to comparator P9.7/ESICI3/A15/C15 74 59 Analog input A15 Comparator input C15 ESIDVCC 75 60 ESI power supply ESIDVSS 76 61 ESI ground supply ESICI 77 62 ESI Scan IF input to Comparator ESICOM 78 63 ESI Common termination for Scan IF sensors AVCC1 79 64 Analog power supply AVSS3 80 65 Analog ground supply PJ.7/HFXOUT 81 66 General-purpose digital I/O Output terminal of crystal oscillator XT2 General-purpose digital I/O PJ.6/HFXIN 82 67 AVSS1 83 68 PJ.4/LFXIN 84 69 Input terminal for crystal oscillator XT2 Analog ground supply General-purpose digital I/O Input terminal for crystal oscillator XT1 General-purpose digital I/O PJ.5/LFXOUT 85 70 AVSS2 86 71 Output terminal of crystal oscillator XT1 Analog ground supply General-purpose digital I/O USCI_A1: Slave in, master out (SPI mode) P5.4/UCA1SIMO/UCA1TXD/Sx 87 S12 USCI_A1: Transmit data (UART mode) LCD segment output (segment number is package specific) Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: MSP430FR6889 MSP430FR68891 MSP430FR6888 MSP430FR6887 MSP430FR5889 MSP430FR58891 MSP430FR5888 MSP430FR5887 Copyright © 2014–2018, Texas Instruments Incorporated 19 MSP430FR6889, MSP430FR68891, MSP430FR6888, MSP430FR6887 MSP430FR5889, MSP430FR58891, MSP430FR5888, MSP430FR5887 SLASE32C – AUGUST 2014 – REVISED AUGUST 2018 www.ti.com Table 4-1. Signal Descriptions – MSP430FR688x and MSP430FR688x1 (continued) TERMINAL NAME PZ NO. PN Seg. NO. DESCRIPTION Seg. General-purpose digital I/O P5.5/UCA1SOMI/UCA1RXD/ Sx USCI_A1: Slave out, master in (SPI mode) 88 S11 USCI_A1: Receive data (UART mode) LCD segment output (segment number is package specific) General-purpose digital I/O P5.6/UCA1CLK/Sx 89 USCI_A1: Clock signal input (SPI slave mode), Clock signal output (SPI master mode) S10 LCD segment output (segment number is package specific) General-purpose digital I/O USCI_A1: Slave transmit enable (SPI mode) P5.7/UCA1STE/TB0CLK/Sx 90 S9 Timer_B TB0 clock signal TB0CLK input LCD segment output (segment number is package specific) General-purpose digital I/O USCI_B1: Slave transmit enable (SPI mode) P4.4/UCB1STE/TA1CLK/Sx 91 S8 72 S9 Timer_A TA1 clock signal TA1CLK input LCD segment output (segment number is package specific) General-purpose digital I/O P4.5/UCB1CLK/TA1.0/Sx 92 S7 73 S8 USCI_B1: Clock signal input (SPI slave mode), Clock signal output (SPI master mode) Timer_A TA1 CCR0 capture: CCI0A input, compare: Out0 output LCD segment output (segment number is package specific) General-purpose digital I/O USCI_B1: Slave in, master out (SPI mode) P4.6/UCB1SIMO/UCB1SDA/ TA1.1/Sx 93 S6 74 S7 USCI_B1: I2C data (I2C mode) Timer_A TA1 CCR1 capture: CCI1A input, compare: Out1 output LCD segment output (segment number is package specific) General-purpose digital I/O USCI_B1: Slave out, master in (SPI mode) P4.7/UCB1SOMI/UCB1SCL/ TA1.2/Sx 94 S5 75 S6 USCI_B1: I2C clock (I2C mode) Timer_A TA1 CCR2 capture: CCI2A input, compare: Out2 output LCD segment output (segment number is package specific) General-purpose digital I/O P10.0/SMCLK/Sx 95 S4 SMCLK output LCD segment output (segment number is package specific) General-purpose digital I/O USCI_B1: Slave in, master out (SPI mode) P4.0/UCB1SIMO/UCB1SDA/ MCLK/Sx 96 S3 76 S5 USCI_B1: I2C data (I2C mode) MCLK output LCD segment output (segment number is package specific) 20 Terminal Configuration and Functions Copyright © 2014–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR6889 MSP430FR68891 MSP430FR6888 MSP430FR6887 MSP430FR5889 MSP430FR58891 MSP430FR5888 MSP430FR5887 MSP430FR6889, MSP430FR68891, MSP430FR6888, MSP430FR6887 MSP430FR5889, MSP430FR58891, MSP430FR5888, MSP430FR5887 www.ti.com SLASE32C – AUGUST 2014 – REVISED AUGUST 2018 Table 4-1. Signal Descriptions – MSP430FR688x and MSP430FR688x1 (continued) TERMINAL NAME PZ NO. PN Seg. NO. DESCRIPTION Seg. General-purpose digital I/O USCI_B1: Slave out, master in (SPI mode) P4.1/UCB1SOMI/UCB1SCL/ ACLK/Sx 97 S2 77 S4 USCI_B1: I2C clock (I2C mode) ACLK output LCD segment output (segment number is package specific) DVSS3 98 78 Digital ground supply DVCC3 99 79 Digital power supply General-purpose digital I/O USCI_A0: Slave in, master out (SPI mode) P4.2/UCA0SIMO/UCA0TXD/ UCB1CLK 100 80 USCI_A0: Transmit data (UART mode) USCI_B1: Clock signal input (SPI slave mode), Clock signal output (SPI master mode) Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: MSP430FR6889 MSP430FR68891 MSP430FR6888 MSP430FR6887 MSP430FR5889 MSP430FR58891 MSP430FR5888 MSP430FR5887 Copyright © 2014–2018, Texas Instruments Incorporated 21 MSP430FR6889, MSP430FR68891, MSP430FR6888, MSP430FR6887 MSP430FR5889, MSP430FR58891, MSP430FR5888, MSP430FR5887 SLASE32C – AUGUST 2014 – REVISED AUGUST 2018 www.ti.com Table 4-2. Signal Descriptions – MSP430FR588x and MSP430FR588x1 TERMINAL NAME PM RGC DESCRIPTION NO. General-purpose digital I/O P4.3/UCA0SOMI/ UCA0RXD/UCB1STE 1 USCI_A0: Slave out, master in (SPI mode), Receive data (UART mode) USCI_B1: Slave transmit enable (SPI mode) General-purpose digital I/O USCI_B0: Clock signal input (SPI slave mode), Clock signal output (SPI master mode) P1.4/UCB0CLK/ UCA0STE/TA1.0 2 USCI_A0: Slave transmit enable (SPI mode) Timer_A TA1 CCR0 capture: CCI0A input, compare: Out0 output General-purpose digital I/O USCI_B0: Slave transmit enable (SPI mode) P1.5/UCB0STE/ UCA0CLK/TA0.0 3 USCI_A0: Clock signal input (SPI slave mode), Clock signal output (SPI master mode) Timer_A TA0 CCR0 capture: CCI0A input, compare: Out0 output General-purpose digital I/O USCI_B0: Slave in, master out (SPI mode), I2C data (I2C mode) P1.6/UCB0SIMO/ UCB0SDA/TA0.1 4 BSL Data (I2C BSL) Timer_A TA0 CCR1 capture: CCI1A input, compare: Out1 output General-purpose digital I/O USCI_B0: Slave out, master in (SPI mode), I2C clock (I2C mode) P1.7/UCB0SOMI/ UCB0SCL/TA0.2 5 BSL Clock (I2C BSL) Timer_A TA0 CCR2 capture: CCI2A input, compare: Out2 output General-purpose digital I/O P2.4/TB0.3 6 Timer_B TB0 CCR3 capture: CCI3A input, compare: Out3 output General-purpose digital I/O P2.5/TB0.4 7 Timer_B TB0 CCR4 capture: CCI4A input, compare: Out4 output General-purpose digital I/O P2.6/TB0.5/ESIC1OUT 8 Timer_B TB0 CCR5 capture: CCI5A input, compare: Out5 output ESI Comparator 1 output General-purpose digital I/O P2.7/TB0.6/ESIC2OUT 9 Timer_B TB0 CCR6 capture: CCI6A input, compare: Out6 output ESI Comparator 2 output General-purpose digital I/O P5.0/TA1.1/MCLK 10 Timer_A TA1 CCR1 capture: CCI1A input, compare: Out1 output MCLK output General-purpose digital I/O P5.1/TA1.2 11 Timer_A TA1 CCR2 capture: CCI2A input, compare: Out2 output General-purpose digital I/O Timer_A TA1 CCR0 capture: CCI0B input, compare: Out0 output P5.2/TA1.0/TA1CLK/ACLK 12 Timer_A TA1 clock signal TA0CLK input ACLK output General-purpose digital I/O P5.3/UCB1STE 13 USCI_B1: Slave transmit enable (SPI mode) 22 Terminal Configuration and Functions Copyright © 2014–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR6889 MSP430FR68891 MSP430FR6888 MSP430FR6887 MSP430FR5889 MSP430FR58891 MSP430FR5888 MSP430FR5887 MSP430FR6889, MSP430FR68891, MSP430FR6888, MSP430FR6887 MSP430FR5889, MSP430FR58891, MSP430FR5888, MSP430FR5887 www.ti.com SLASE32C – AUGUST 2014 – REVISED AUGUST 2018 Table 4-2. Signal Descriptions – MSP430FR588x and MSP430FR588x1 (continued) TERMINAL NAME PM RGC DESCRIPTION NO. General-purpose digital I/O P3.0/UCB1CLK 14 USCI_B1: Clock signal input (SPI slave mode), Clock signal output (SPI master mode) General-purpose digital I/O P3.1/UCB1SIMO/UCB1SDA 15 USCI_B1: Slave in, master out (SPI mode) USCI_B1: I2C data (I2C mode) General-purpose digital I/O P3.2/UCB1SOMI/UCB1SCL 16 USCI_B1: Slave out, master in (SPI mode) USCI_B1: I2C clock (I2C mode) DVSS1 17 Digital ground supply DVCC1 18 Digital power supply TEST/SBWTCK 19 Test mode pin - select digital I/O on JTAG pins Spy-Bi-Wire input clock Reset input, active low RST/NMI/SBWTDIO 20 Nonmaskable interrupt input Spy-Bi-Wire data input/output General-purpose digital I/O Test data output port PJ.0/TDO/TB0OUTH/ SMCLK/SRSCG1 21 Switch all PWM outputs high impedance input - Timer_B TB0 SMCLK output Low-power debug: CPU Status register SCG1 General-purpose digital I/O Test data input or test clock input PJ.1/TDI/TCLK/MCLK/SRSCG0 22 MCLK output Low-power debug: CPU Status register SCG0 General-purpose digital I/O Test mode select PJ.2/TMS/ACLK/SROSCOFF 23 ACLK output Low-power debug: CPU Status register OSCOFF General-purpose digital I/O Test clock PJ.3/TCK/COUT/SRCPUOFF 24 Comparator output Low-power debug: CPU Status register CPUOFF General-purpose digital I/O P3.3/TA1.1/TB0CLK 25 Timer_A TA1 CCR1 capture: CCI1A input, compare: Out1 output Timer_B TB0 clock signal TB0CLK input General-purpose digital I/O USCI_A1: Slave in, master out (SPI mode) P3.4/UCA1SIMO/UCA1TXD/TB0.0 26 USCI_A1: Transmit data (UART mode) Timer_B TB0 CCR0 capture: CCI0A input, compare: Out0 output Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: MSP430FR6889 MSP430FR68891 MSP430FR6888 MSP430FR6887 MSP430FR5889 MSP430FR58891 MSP430FR5888 MSP430FR5887 Copyright © 2014–2018, Texas Instruments Incorporated 23 MSP430FR6889, MSP430FR68891, MSP430FR6888, MSP430FR6887 MSP430FR5889, MSP430FR58891, MSP430FR5888, MSP430FR5887 SLASE32C – AUGUST 2014 – REVISED AUGUST 2018 www.ti.com Table 4-2. Signal Descriptions – MSP430FR588x and MSP430FR588x1 (continued) TERMINAL NAME PM RGC DESCRIPTION NO. General-purpose digital I/O USCI_A1: Slave out, master in (SPI mode) P3.5/UCA1SOMI/UCA1RXD/TB0.1 27 USCI_A1: Receive data (UART mode) Timer_B TB0 CCR1 capture: CCI1A input, compare: Out1 output General-purpose digital I/O P3.6/UCA1CLK/TB0.2 28 USCI_A1: Clock signal input (SPI slave mode), Clock signal output (SPI master mode) Timer_B TB0 CCR2 capture: CCI2A input, compare: Out2 output General-purpose digital I/O P3.7/UCA1STE/TB0.3 29 USCI_A1: Slave transmit enable (SPI mode) Timer_B TB0 CCR3 capture: CCI3B input, compare: Out3 output General-purpose digital I/O P2.3/UCA0STE/TB0OUTH 30 USCI_A0: Slave transmit enable (SPI mode) Switch all PWM outputs high impedance input - Timer_B TB0 General-purpose digital I/O USCI_A0: Clock signal input (SPI slave mode), Clock signal output (SPI master mode) P2.2/UCA0CLK/TB0.4/RTCCLK 31 Timer_B TB0 CCR4 capture: CCI4B input, compare: Out4 output RTC clock output for calibration General-purpose digital I/O USCI_A0: Slave out, master in (SPI mode) P2.1/UCA0SOMI/UCA0RXD/TB0.5/ DMAE0 USCI_A0: Receive data (UART mode) 32 BSL receive (UART BSL) Timer_B TB0 CCR5 capture: CCI5B input, compare: Out5 output DMA external trigger input General-purpose digital I/O USCI_A0: Slave in, master out (SPI mode) P2.0/UCA0SIMO/UCA0TXD/TB0.6/ TB0CLK USCI_A0: Transmit data (UART mode) 33 BSL transmit (UART BSL) Timer_B TB0 CCR6 capture: CCI6B input, compare: Out6 output Timer_B TB0 clock signal TB0CLK input DVSS2 34 Digital ground supply DVCC2 35 Digital power supply General-purpose digital I/O ESI test signal 4 P1.3/ESITEST4/TA1.2/A3/C3 36 Timer_A TA1 CCR2 capture: CCI2A input, compare: Out2 output Analog input A3 Comparator input C3 24 Terminal Configuration and Functions Copyright © 2014–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR6889 MSP430FR68891 MSP430FR6888 MSP430FR6887 MSP430FR5889 MSP430FR58891 MSP430FR5888 MSP430FR5887 MSP430FR6889, MSP430FR68891, MSP430FR6888, MSP430FR6887 MSP430FR5889, MSP430FR58891, MSP430FR5888, MSP430FR5887 www.ti.com SLASE32C – AUGUST 2014 – REVISED AUGUST 2018 Table 4-2. Signal Descriptions – MSP430FR588x and MSP430FR588x1 (continued) TERMINAL NAME PM RGC DESCRIPTION NO. General-purpose digital I/O Timer_A TA1 CCR1 capture: CCI1A input, compare: Out1 output Timer_A TA0 clock signal TA0CLK input P1.2/TA1.1/TA0CLK/COUT/A2/C2 37 Comparator output Analog input A2 Comparator input C2 General-purpose digital I/O Timer_A TA0 CCR2 capture: CCI2A input, compare: Out2 output Timer_A TA1 clock signal TA1CLK input P1.1/TA0.2/TA1CLK/ COUT/A1/C1/VREF+/ VeREF+ Comparator output 38 Analog input A1 Comparator input C1 Output of positive reference voltage Input for an external positive reference voltage to the ADC General-purpose digital I/O Timer_A TA0 CCR1 capture: CCI1A input, compare: Out1 output DMA external trigger input P1.0/TA0.1/DMAE0/ RTCCLK/A0/C0/ VREF-/VeREF- RTC clock output for calibration 39 Analog input A0 Comparator input C0 Output of negative reference voltage Input for an external negative reference voltage to the ADC General-purpose digital I/O P9.0/ESICH0/ESITEST0/ A8/C8 40 ESI channel 0 sensor excitation output and signal input ESI test signal 0 Analog input A8; comparator input C8 General-purpose digital I/O ESI channel 1 sensor excitation output and signal input P9.1/ESICH1/ESITEST1/ A9/C9 41 ESI test signal 1 Analog input A9 Comparator input C9 General-purpose digital I/O ESI channel 2 sensor excitation output and signal input P9.2/ESICH2/ESITEST2/ A10/C10 42 ESI test signal 2 Analog input A10 Comparator input C10 Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: MSP430FR6889 MSP430FR68891 MSP430FR6888 MSP430FR6887 MSP430FR5889 MSP430FR58891 MSP430FR5888 MSP430FR5887 Copyright © 2014–2018, Texas Instruments Incorporated 25 MSP430FR6889, MSP430FR68891, MSP430FR6888, MSP430FR6887 MSP430FR5889, MSP430FR58891, MSP430FR5888, MSP430FR5887 SLASE32C – AUGUST 2014 – REVISED AUGUST 2018 www.ti.com Table 4-2. Signal Descriptions – MSP430FR588x and MSP430FR588x1 (continued) TERMINAL NAME PM RGC DESCRIPTION NO. General-purpose digital I/O ESI channel 3 sensor excitation output and signal input P9.3/ESICH3/ESITEST3/ A11/C11 43 ESI test signal 3 Analog input A11 Comparator input C11 General-purpose digital I/O ESI channel 0 signal input to comparator P9.4/ESICI0/A12/C12 44 Analog input A12 Comparator input C12 General-purpose digital I/O ESI channel 1 signal input to comparator P9.5/ESICI1/A13/C13 45 Analog input A13 Comparator input C13 General-purpose digital I/O ESI channel 2 signal input to comparator P9.6/ESICI2/A14/C14 46 Analog input A14 Comparator input C14 General-purpose digital I/O ESI channel 3 signal input to comparator P9.7/ESICI3/A15/C15 47 Analog input A15 Comparator input C15 ESIDVCC 48 ESI Power supply ESIDVSS 49 ESI Ground supply ESICI 50 ESI Scan IF input to Comparator ESICOM 51 ESI Common termination for Scan IF sensors AVCC1 52 Analog power supply AVSS3 53 Analog ground supply PJ.7/HFXOUT 54 General-purpose digital I/O Output terminal of crystal oscillator XT2 General-purpose digital I/O PJ.6/HFXIN 55 Input terminal for crystal oscillator XT2 AVSS1 56 PJ.4/LFXIN 57 Analog ground supply General-purpose digital I/O Input terminal for crystal oscillator XT1 General-purpose digital I/O PJ.5/LFXOUT 58 AVSS2 59 Output terminal of crystal oscillator XT1 Analog ground supply General-purpose digital I/O USCI_B1: Slave in, master out (SPI mode) P4.0/UCB1SIMO/UCB1SDA/MCLK 60 USCI_B1: I2C data (I2C mode) MCLK output 26 Terminal Configuration and Functions Copyright © 2014–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR6889 MSP430FR68891 MSP430FR6888 MSP430FR6887 MSP430FR5889 MSP430FR58891 MSP430FR5888 MSP430FR5887 MSP430FR6889, MSP430FR68891, MSP430FR6888, MSP430FR6887 MSP430FR5889, MSP430FR58891, MSP430FR5888, MSP430FR5887 www.ti.com SLASE32C – AUGUST 2014 – REVISED AUGUST 2018 Table 4-2. Signal Descriptions – MSP430FR588x and MSP430FR588x1 (continued) TERMINAL NAME PM RGC DESCRIPTION NO. General-purpose digital I/O USCI_B1: Slave out, master in (SPI mode) P4.1/UCB1SOMI/UCB1SCL/ACLK 61 DVSS3 62 Digital ground supply DVCC3 63 Digital power supply USCI_B1: I2C clock (I2C mode) ACLK output General-purpose digital I/O P4.2/UCA0SIMO/UCA0TXD/ UCB1CLK USCI_A0: Slave in, master out (SPI mode) 64 USCI_A0: Transmit data (UART mode) USCI_B1: Clock signal input (SPI slave mode), Clock signal output (SPI master mode) Thermal pad Pad RGC package only. QFN package exposed thermal pad. TI recommends connection to VSS. Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: MSP430FR6889 MSP430FR68891 MSP430FR6888 MSP430FR6887 MSP430FR5889 MSP430FR58891 MSP430FR5888 MSP430FR5887 Copyright © 2014–2018, Texas Instruments Incorporated 27 MSP430FR6889, MSP430FR68891, MSP430FR6888, MSP430FR6887 MSP430FR5889, MSP430FR58891, MSP430FR5888, MSP430FR5887 SLASE32C – AUGUST 2014 – REVISED AUGUST 2018 4.3 www.ti.com Pin Multiplexing Pin multiplexing for these devices is controlled by both register settings and operating modes (for example, if the device is in test mode). For details of the settings for each pin and diagrams of the multiplexed ports, see Section 6.11.23. 4.4 Connection of Unused Pins Table 4-3 lists the correct termination of all unused pins. Table 4-3. Connection of Unused Pins (1) (1) (2) 28 PIN POTENTIAL AVCC DVCC COMMENT AVSS DVSS Px.0 to Px.7 Open Set to port function, output direction (PxDIR.n = 1) R33/LCDCAP DVSS or DVCC If the pin is not used, it can be tied to either supply. ESIDVCC DVCC ESIDVSS DVSS ESICOM Open ESICI Open RST/NMI DVCC or VCC PJ.0/TDO PJ.1/TDI PJ.2/TMS PJ.3/TCK Open The JTAG pins are shared with general-purpose I/O function (PJ.x). If not used as JTAG pins, these pins should be switched to port function, output direction. When used as JTAG pins, these pins should remain open. TEST Open This pin always has an internal pulldown enabled. 47-kΩ pullup or internal pullup selected with 2.2-nF (10-nF (2)) pulldown Any unused pin with a secondary function that is shared with general-purpose I/O should follow the Px.0 to Px.7 unused pin connection guidelines. The pulldown capacitor should not exceed 2.2 nF when using devices in Spy-Bi-Wire mode or in 4-wire JTAG mode with TI tools like FET interfaces or GANG programmers. If JTAG or Spy-Bi-Wire access is not needed, up to a 10-nF pulldown capacitor may be used. Terminal Configuration and Functions Copyright © 2014–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR6889 MSP430FR68891 MSP430FR6888 MSP430FR6887 MSP430FR5889 MSP430FR58891 MSP430FR5888 MSP430FR5887 MSP430FR6889, MSP430FR68891, MSP430FR6888, MSP430FR6887 MSP430FR5889, MSP430FR58891, MSP430FR5888, MSP430FR5887 www.ti.com SLASE32C – AUGUST 2014 – REVISED AUGUST 2018 5 Specifications Absolute Maximum Ratings (1) 5.1 over operating free-air temperature range (unless otherwise noted) Voltage applied at DVCC and AVCC pins to VSS Voltage difference between DVCC and AVCC pins Voltage applied to any pin MIN MAX –0.3 4.1 V ±0.3 V –0.3 VCC + 0.3 V (4.1 Max) V (2) (3) Diode current at any device pin Storage temperature, Tstg (1) (2) (3) (4) (4) –40 UNIT ±2 mA 125 °C Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. Voltage differences between DVCC and AVCC exceeding the specified limits may cause malfunction of the device including erroneous writes to RAM and FRAM. All voltages referenced to VSS. Higher temperature may be applied during board soldering according to the current JEDEC J-STD-020 specification with peak reflow temperatures not higher than classified on the device label on the shipping boxes or reels. 5.2 ESD Ratings VALUE V(ESD) (1) (2) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1) UNIT ±1000 Charged-device model (CDM), per JEDEC specification JESD22-C101 (2) V ±250 JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Pins listed as ±1000 V may actually have higher performance. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Pins listed as ±250 V may actually have higher performance. 5.3 Recommended Operating Conditions Typical data are based on VCC = 3.0 V, TA = 25°C unless otherwise noted. MIN UNIT VSS Supply voltage applied at all DVSS, AVSS, and ESIDVSS pins TA Operating free-air temperature TJ Operating junction temperature CDVCC Capacitor value at DVCC and ESIDVCC fSYSTEM Processor frequency (maximum MCLK frequency) (6) fACLK Maximum ACLK frequency 50 kHz Maximum SMCLK frequency (9) MHz fSMCLK (2) (3) (4) (5) (6) (7) (8) (9) 1.8 (4) MAX Supply voltage range applied at all DVCC, AVCC, and ESIDVCC pins (1) (1) (2) (3) NOM VCC 3.6 V –40 85 °C –40 85 0 (5) V 1–20% No FRAM wait states (NWAITSx = 0) With FRAM wait states (NWAITSx = 1) (8) °C µF 0 8 (7) 0 16 (9) 16 MHz TI recommends powering the DVCC, AVCC, and ESIDVCC pins from the same source. At a minimum, during power up, power down, and device operation, the voltage difference between DVCC, AVCC, and ESIDVCC must not exceed the limits specified in Absolute Maximum Ratings. Exceeding the specified limits may cause malfunction of the device including erroneous writes to RAM and FRAM. See Table 5-1 for additional important information. Modules may have a different supply voltage range specification. See the specification of each module in this data sheet. The minimum supply voltage is defined by the supervisor SVS levels. See Table 5-2 for the exact values. Connect a low-ESR capacitor with at least the value specified and a maximum tolerance of 20% as close as possible to the DVCC and ESIDVCC pins. Modules may have a different maximum input clock specification. See the specification of each module in this data sheet. DCO settings and HF crystals with a typical value less than or equal to the specified MAX value are permitted. Wait states only occur on actual FRAM accesses; that is, on FRAM cache misses. RAM and peripheral accesses are always executed without wait states. DCO settings and HF crystals with a typical value less than or equal to the specified MAX value are permitted. If a clock sources with a larger typical value is used, the clock must be divided in the clock system. Specifications Submit Documentation Feedback Product Folder Links: MSP430FR6889 MSP430FR68891 MSP430FR6888 MSP430FR6887 MSP430FR5889 MSP430FR58891 MSP430FR5888 MSP430FR5887 Copyright © 2014–2018, Texas Instruments Incorporated 29 MSP430FR6889, MSP430FR68891, MSP430FR6888, MSP430FR6887 MSP430FR5889, MSP430FR58891, MSP430FR5888, MSP430FR5887 SLASE32C – AUGUST 2014 – REVISED AUGUST 2018 5.4 www.ti.com Active Mode Supply Current Into VCC Excluding External Current over recommended operating free-air temperature (unless otherwise noted) (1) (2) FREQUENCY (fMCLK = fSMCLK) PARAMETER EXECUTION MEMORY VCC 1 MHz 0 WAIT STATES (NWAITSx = 0) TYP IAM, FRAM_UNI (Unified memory) (3) (4) (5) MAX 4 MHz 0 WAIT STATES (NWAITSx = 0) TYP MAX 8 MHz 0 WAIT STATES (NWAITSx = 0) TYP MAX 12 MHz 1 WAIT STATE (NWAITSx = 1) TYP MAX 16 MHz 1 WAIT STATE (NWAITSx = 1) TYP UNIT MAX FRAM 3.0 V 210 640 1220 1475 1845 µA FRAM 0% cache hit ratio 3.0 V 375 1290 2525 2100 2675 µA IAM, FRAM(0%) IAM, FRAM(50%) (4) (5) FRAM 50% cache hit ratio 3.0 V 240 745 1440 1575 1990 µA IAM, FRAM(66%) (4) (5) FRAM 66% cache hit ratio 3.0 V 200 560 1070 1300 1620 µA IAM, FRAM(75%) (4) (5) FRAM 75% cache hit ratio 3.0 V 170 480 890 IAM, FRAM(100% FRAM 100% cache hit ratio 3.0 V 110 235 420 640 730 IAM, RAM RAM 3.0 V 130 320 585 890 1070 RAM 3.0 V 100 290 555 860 1040 (6) (5) IAM, RAM only (1) (2) (3) (4) (5) (6) (7) 30 (4) (5) (7) (5) 255 180 1085 1155 1310 1420 1620 µA µA µA 1300 µA All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current. Characterized with program executing typical data processing. fACLK = 32768 Hz, fMCLK = fSMCLK = fDCO at specified frequency, except for 12 MHz. For 12 MHz, fDCO = 24 MHz and fMCLK = fSMCLK = fDCO / 2. At MCLK frequencies above 8 MHz, the FRAM requires wait states. When wait states are required, the effective MCLK frequency (fMCLK,eff) decreases. The effective MCLK frequency also depends on the cache hit ratio. SMCLK is not affected by the number of wait states or the cache hit ratio. The following equation can be used to compute fMCLK,eff: fMCLK,eff = fMCLK / [wait states × (1 – cache hit ratio) + 1] For example, with 1 wait state and 75% cache hit ratio fMCKL,eff = fMCLK / [1 × (1 – 0.75) + 1] = fMCLK / 1.25. Represents typical program execution. Program and data reside entirely in FRAM. All execution is from FRAM. Program resides in FRAM. Data resides in SRAM. Average current dissipation varies with cache hit-to-miss ratio as specified. Cache hit ratio represents number cache accesses divided by the total number of FRAM accesses. For example, a 75% ratio implies three of every four accesses is from cache, and the remaining are FRAM accesses. See Figure 5-1 for typical curves. Each characteristic equation shown in the graph is computed using the least squares method for best linear fit using the typical data shown in Section 5.4. Program and data reside entirely in RAM. All execution is from RAM. Program and data reside entirely in RAM. All execution is from RAM. FRAM is off. Specifications Copyright © 2014–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR6889 MSP430FR68891 MSP430FR6888 MSP430FR6887 MSP430FR5889 MSP430FR58891 MSP430FR5888 MSP430FR5887 MSP430FR6889, MSP430FR68891, MSP430FR6888, MSP430FR6887 MSP430FR5889, MSP430FR58891, MSP430FR5888, MSP430FR5887 www.ti.com 5.5 SLASE32C – AUGUST 2014 – REVISED AUGUST 2018 Typical Characteristics, Active Mode Supply Currents 3000 I(AM,0%) I(AM,50%) 2500 I(AM,66%) Active Mode Current (µA) I(AM,75%) 2000 I(AM,100%) I(AM,75%)[µA] = 103 × f[MHz] + 68 I(AM,RAMonly) 1500 1000 500 0 0 1 2 3 4 5 6 7 8 9 MCLK Frequency (MHz) I(AM, cache hit ratio): Program resides in FRAM. Data resides in SRAM. Average current dissipation varies with cache hit-to-miss ratio as specified. Cache hit ratio represents number cache accesses divided by the total number of FRAM accesses. For example, a 75% ratio implies three of every four accesses is from cache, and the remaining are FRAM accesses. I(AM, RAMonly): Program and data reside entirely in RAM. All execution is from RAM. FRAM is off. Figure 5-1. Typical Active Mode Supply Currents, No Wait States 5.6 Low-Power Mode (LPM0, LPM1) Supply Currents Into VCC Excluding External Current over recommended operating free-air temperature (unless otherwise noted) (1) (2) FREQUENCY (fSMCLK) PARAMETER VCC 1 MHz TYP ILPM0 ILPM1 (1) (2) 2.2 V 75 3.0 V 85 2.2 V 40 3.0 V 40 4 MHz MAX 120 65 TYP 8 MHz MAX TYP 12 MHz MAX TYP 16 MHz MAX TYP 105 165 250 230 115 175 260 240 65 130 215 195 65 130 215 195 UNIT MAX 275 220 µA µA All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current. Current for watchdog timer clocked by SMCLK included. fACLK = 32768 Hz, fMCLK = 0 MHz, fSMCLK = fDCO at specified frequency, except for 12 MHz: here fDCO = 24 MHz and fSMCLK = fDCO / 2. Specifications Submit Documentation Feedback Product Folder Links: MSP430FR6889 MSP430FR68891 MSP430FR6888 MSP430FR6887 MSP430FR5889 MSP430FR58891 MSP430FR5888 MSP430FR5887 Copyright © 2014–2018, Texas Instruments Incorporated 31 MSP430FR6889, MSP430FR68891, MSP430FR6888, MSP430FR6887 MSP430FR5889, MSP430FR58891, MSP430FR5888, MSP430FR5887 SLASE32C – AUGUST 2014 – REVISED AUGUST 2018 5.7 www.ti.com Low-Power Mode (LPM2, LPM3, LPM4) Supply Currents (Into VCC) Excluding External Current over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1) TEMPERATURE (TA) PARAMETER VCC –40°C TYP 25°C MAX TYP ILPM2,XT12 Low-power mode 2, 12-pF crystal (2) (3) (4) 2.2 V 0.6 1.2 3.0 V 0.6 1.2 ILPM2,XT3.7 Low-power mode 2, 3.7-pF crystal (2) (5) (4) 2.2 V 0.5 3.0 V 0.5 ILPM2,VLO Low-power mode 2, VLO, includes SVS (6) 2.2 V 0.3 0.9 3.0 V 0.3 0.9 ILPM3,XT12 Low-power mode 3, 12-pF crystal, excludes SVS (2) (3) 2.2 V 0.5 0.7 3.0 V 0.5 0.7 Low-power mode 3, 3.7-pF crystal, excludes SVS (2) (5) (8) (also see Figure 5-2) 2.2 V 0.4 ILPM3,XT3.7 3.0 V ILPM3,VLO Low-power mode 3, VLO, excludes SVS ILPM3,VLO, RAMoff (7) (9) Low-power mode 3, VLO, excludes SVS, RAM powered-down completely (10) 60°C MAX TYP 85°C MAX TYP 3.1 8.8 3.1 8.8 1.1 3.0 8.7 1.1 3.0 8.7 2.8 8.5 2.8 8.5 1.2 2.5 1.2 2.5 0.6 1.1 2.4 0.4 0.6 1.1 2.4 2.2 V 0.3 0.4 0.9 2.2 3.0 V 0.3 0.4 0.9 2.2 2.2 V 0.3 0.4 0.8 2.1 3.0 V 0.3 0.4 0.8 2.1 2.2 2.0 1.0 0.8 0.7 UNIT MAX 20.8 μA μA 20.5 6.4 μA μA μA 6.1 5.2 μA μA (1) (2) (3) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current. Not applicable for devices with HF crystal oscillator only. Characterized with a Micro Crystal MS1V-T1K crystal with a load capacitance of 12.5 pF. The internal and external load capacitance are chosen to closely match the required 12.5 pF load. (4) Low-power mode 2, crystal oscillator test conditions: Current for watchdog timer clocked by ACLK and RTC clocked by XT1 included. Current for brownout and SVS included. CPUOFF = 1, SCG0 = 0 SCG1 = 1, OSCOFF = 0 (LPM2), fXT1 = 32768 Hz, fACLK = fXT1, fMCLK = fSMCLK = 0 MHz (5) Characterized with a Seiko SSP-T7-FL (SMD) crystal with a load capacitance of 3.7 pF. The internal and external load capacitance are chosen to closely match the required 3.7-pF load. (6) Low-power mode 2, VLO test conditions: Current for watchdog timer clocked by ACLK included. RTC disabled (RTCHOLD = 1). Current for brownout and SVS included. CPUOFF = 1, SCG0 = 0 SCG1 = 1, OSCOFF = 0 (LPM2), fXT1 = 0 Hz, fACLK = fVLO, fMCLK = fSMCLK = 0 MHz (7) Low-power mode 3, 12-pF crystal excluding SVS test conditions: Current for watchdog timer clocked by ACLK and RTC clocked by XT1 included. Current for brownout included. SVS disabled (SVSHE = 0). CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 0 (LPM3), fXT1 = 32768 Hz, fACLK = fXT1, fMCLK = fSMCLK = 0 MHz Activating additional peripherals increases the current consumption due to active supply current contribution as well as due to additional idle current. See the idle currents specified for the respective peripheral groups. (8) Low-power mode 3, 3.7-pF crystal excluding SVS test conditions: Current for watchdog timer clocked by ACLK and RTC clocked by XT1 included. Current for brownout included. SVS disabled (SVSHE = 0). CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 0 (LPM3), fXT1 = 32768 Hz, fACLK = fXT1, fMCLK = fSMCLK = 0 MHz Activating additional peripherals increases the current consumption due to active supply current contribution as well as due to additional idle current. See the idle currents specified for the respective peripheral groups. (9) Low-power mode 3, VLO excluding SVS test conditions: Current for watchdog timer clocked by ACLK included. RTC disabled (RTCHOLD = 1). Current for brownout included. SVS disabled (SVSHE = 0). CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 0 (LPM3), fXT1 = 0 Hz, fACLK = fVLO, fMCLK = fSMCLK = 0 MHz Activating additional peripherals increases the current consumption due to active supply current contribution as well as due to additional idle current. See the idle currents specified for the respective peripheral groups. (10) Low-power mode 3, VLO excluding SVS test conditions: Current for watchdog timer clocked by ACLK included. RTC disabled (RTCHOLD = 1). RAM disabled (RCCTL0 = 5A55h). Current for brownout included. SVS disabled (SVSHE = 0). CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 0 (LPM3), fXT1 = 0 Hz, fACLK = fVLO, fMCLK = fSMCLK = 0 MHz Activating additional peripherals increases the current consumption due to active supply current contribution as well as due to additional idle current. See the idle currents specified for the respective peripheral groups. 32 Specifications Copyright © 2014–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR6889 MSP430FR68891 MSP430FR6888 MSP430FR6887 MSP430FR5889 MSP430FR58891 MSP430FR5888 MSP430FR5887 MSP430FR6889, MSP430FR68891, MSP430FR6888, MSP430FR6887 MSP430FR5889, MSP430FR58891, MSP430FR5888, MSP430FR5887 www.ti.com SLASE32C – AUGUST 2014 – REVISED AUGUST 2018 Low-Power Mode (LPM2, LPM3, LPM4) Supply Currents (Into VCC) Excluding External Current (continued) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1) TEMPERATURE (TA) PARAMETER VCC –40°C TYP 25°C MAX TYP ILPM4,SVS Low-power mode 4, includes SVS (11) 2.2 V 0.4 0.5 3.0 V 0.4 0.5 ILPM4 Low-power mode 4, excludes SVS (12) 2.2 V 0.2 0.3 3.0 V 0.2 0.3 Low-power mode 4, excludes SVS, RAM powered-down completely (13) 2.2 V 0.2 0.3 ILPM4,RAMoff 3.0 V 0.2 0.3 IIDLE,GroupA Additional idle current if one or more modules from Group A (see Table 6-3) are activated in LPM3 or LPM4 3.0V IIDLE,GroupB Additional idle current if one or more modules from Group B (see Table 6-3) are activated in LPM3 or LPM4 IIDLE,GroupC IIDLE,GroupD 60°C MAX TYP 85°C MAX TYP UNIT MAX 0.9 2.3 0.9 2.3 0.7 2.0 0.7 2.0 0.7 1.9 0.7 1.9 5.1 0.02 0.3 1.2 μA 3.0V 0.02 0.3 1.2 μA Additional idle current if one or more modules from Group C (see Table 6-3) are activated in LPM3 or LPM4 3.0V 0.02 0.38 1.5 μA Additional idle current if one or more modules from Group D (see Table 6-3) are activated in LPM3 or LPM4 3.0V 0.015 0.25 1.0 μA 0.8 0.6 0.6 6.2 6.0 μA μA μA (11) Low-power mode 4 including SVS test conditions: Current for brownout and SVS included (SVSHE = 1). CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPM4), fXT1 = 0 Hz, fACLK = 0 Hz, fMCLK = fSMCLK = 0 MHz Activating additional peripherals increases the current consumption due to active supply current contribution as well as due to additional idle current. See the idle currents specified for the respective peripheral groups. (12) Low-power mode 4 excluding SVS test conditions: Current for brownout included. SVS disabled (SVSHE = 0). CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPM4), fXT1 = 0 Hz, fACLK = 0 Hz, fMCLK = fSMCLK = 0 MHz Activating additional peripherals increases the current consumption due to active supply current contribution as well as due to additional idle current. See the idle currents specified for the respective peripheral groups. (13) Low-power mode 4 excluding SVS test conditions: Current for brownout included. SVS disabled (SVSHE = 0). RAM disabled (RCCTL0 = 5A55h). CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPM4), fXT1 = 0 Hz, fACLK = 0 Hz, fMCLK = fSMCLK = 0 MHz Activating additional peripherals increases the current consumption due to active supply current contribution as well as due to additional idle current. See the idle currents specified for the respective peripheral groups. Specifications Submit Documentation Feedback Product Folder Links: MSP430FR6889 MSP430FR68891 MSP430FR6888 MSP430FR6887 MSP430FR5889 MSP430FR58891 MSP430FR5888 MSP430FR5887 Copyright © 2014–2018, Texas Instruments Incorporated 33 MSP430FR6889, MSP430FR68891, MSP430FR6888, MSP430FR6887 MSP430FR5889, MSP430FR58891, MSP430FR5888, MSP430FR5887 SLASE32C – AUGUST 2014 – REVISED AUGUST 2018 5.8 www.ti.com Low-Power Mode With LCD Supply Currents (Into VCC) Excluding External Current over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) TEMPERATURE (TA) PARAMETER VCC –40°C TYP 25°C MAX TYP ILPM3,XT12 LCD, ext. bias Low-power mode 3 (LPM3) current,12-pF crystal, LCD 4mux mode, external biasing, excludes SVS (1) (2) 3.0 V 0.7 0.9 ILPM3,XT12 LCD, int. bias Low-power mode 3 (LPM3) current, 12-pF crystal, LCD 4mux mode, internal biasing, charge pump disabled, excludes SVS (1) (3) 3.0 V 2.0 2.2 Low-power mode 3 (LPM3) current,12-pF crystal, LCD 4mux mode, internal biasing, charge pump enabled, 1/3 bias, excludes SVS (1) (4) 2.2 V 5.0 ILPM3,XT12 LCD,CP 3.0 V 4.5 (1) (2) (3) (4) 34 60°C MAX TYP 85°C MAX TYP 1.5 3.1 2.8 4.4 5.2 5.8 7.4 4.7 5.3 6.9 2.9 UNIT MAX µA 9.3 µA µA Current for watchdog timer clocked by ACLK and RTC clocked by XT1 included. Current for brownout included. SVS disabled (SVSHE = 0). CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 0 (LPM3), fXT1 = 32768 Hz, fACLK = fXT1, fMCLK = fSMCLK = 0 MHz Activating additional peripherals increases the current consumption due to active supply current contribution as well as due to additional idle current - idle current of Group containing LCD module already included. See the idle currents specified for the respective peripheral groups. LCDMx = 11 (4-mux mode), LCDREXT = 1, LCDEXTBIAS = 1 (external biasing), LCD2B = 0 (1/3 bias), LCDCPEN = 0 (charge pump disabled), LCDSSEL = 0, LCDPREx = 101, LCDDIVx = 00011 (fLCD = 32768 Hz / 32 / 4 = 256 Hz) Current through external resistors not included (voltage levels are supplied by test equipment). Even segments S0, S2, ... = 0, odd segments S1, S3, ... = 1. No LCD panel load. LCDMx = 11 (4-mux mode), LCDREXT = 0, LCDEXTBIAS = 0 (internal biasing), LCD2B = 0 (1/3 bias), LCDCPEN = 0 (charge pump disabled), LCDSSEL = 0, LCDPREx = 101, LCDDIVx = 00011 (fLCD = 32768 Hz / 32 / 4 = 256 Hz) Even segments S0, S2, ...=0, odd segments S1, S3, ... = 1. No LCD panel load. LCDMx = 11 (4-mux mode), LCDREXT = 0, LCDEXTBIAS = 0 (internal biasing), LCD2B = 0 (1/3 bias), LCDCPEN = 1 (charge pump enabled), VLCDx = 1000 (VLCD= 3 V typical), LCDSSEL = 0, LCDPREx = 101, LCDDIVx = 00011 (fLCD = 32768 Hz / 32 / 4 = 256 Hz) Even segments S0, S2, ...=0, odd segments S1, S3, ... = 1. No LCD panel load. CLCDCAP = 10 µF Specifications Copyright © 2014–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR6889 MSP430FR68891 MSP430FR6888 MSP430FR6887 MSP430FR5889 MSP430FR58891 MSP430FR5888 MSP430FR5887 MSP430FR6889, MSP430FR68891, MSP430FR6888, MSP430FR6887 MSP430FR5889, MSP430FR58891, MSP430FR5888, MSP430FR5887 www.ti.com 5.9 SLASE32C – AUGUST 2014 – REVISED AUGUST 2018 Low-Power Mode LPMx.5 Supply Currents (Into VCC) Excluding External Current over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1) PARAMETER VCC –40°C TYP 25°C MAX TYP ILPM3.5,XT12 Low-power mode 3.5, 12-pF crystal including SVS (2) (3) (4) 2.2 V 0.4 0.45 3.0 V 0.4 0.45 ILPM3.5,XT3.7 Low-power mode 3.5, 3.7-pF crystal excluding SVS (2) (5) (6) 2.2 V 0.3 3.0 V 0.3 ILPM4.5,SVS Low-power mode 4.5, including SVS (7) 2.2 V 0.2 0.2 3.0 V 0.2 0.2 ILPM4.5 Low-power mode 4.5, excluding SVS (8) 2.2 V 0.02 3.0 V 0.02 (1) (2) (3) (4) (5) (6) (7) (8) 60°C MAX TYP 85°C MAX TYP 0.55 0.75 0.55 0.75 0.35 0.4 0.65 0.35 0.4 0.65 0.25 0.35 0.25 0.35 0.02 0.03 0.14 0.02 0.03 0.13 0.7 0.4 MAX 1.6 UNIT μA μA 0.7 0.5 μA μA All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current. Not applicable for devices with HF crystal oscillator only. Characterized with a Micro Crystal MS1V-T1K crystal with a load capacitance of 12.5 pF. The internal and external load capacitance are chosen to closely match the required 12.5 pF load. Low-power mode 3.5, 1-pF crystal including SVS test conditions: Current for RTC clocked by XT1 included. Current for brownout and SVS included (SVSHE = 1). Core regulator disabled. PMMREGOFF = 1, CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPMx.5), fXT1 = 32768 Hz, fACLK = fXT1, fMCLK = fSMCLK = 0 MHz Characterized with a Seiko SSP-T7-FL (SMD) crystal with a load capacitance of 3.7 pF. The internal and external load capacitance are chosen to closely match the required 3.7-pF load. Low-power mode 3.5, 3.7-pF crystal excluding SVS test conditions: Current for RTC clocked by XT1 included.Current for brownout included. SVS disabled (SVSHE = 0). Core regulator disabled. PMMREGOFF = 1, CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPMx.5), fXT1 = 32768 Hz, fACLK = fXT1, fMCLK = fSMCLK = 0 MHz Low-power mode 4.5 including SVS test conditions: Current for brownout and SVS included (SVSHE = 1). Core regulator disabled. PMMREGOFF = 1, CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPMx.5), fXT1 = 0 Hz, fACLK = 0 Hz, fMCLK = fSMCLK = 0 MHz Low-power mode 4.5 excluding SVS test conditions: Current for brownout included. SVS disabled (SVSHE = 0). Core regulator disabled. PMMREGOFF = 1, CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPMx.5), fXT1 = 0 Hz, fACLK = 0 Hz, fMCLK = fSMCLK = 0 MHz Specifications Submit Documentation Feedback Product Folder Links: MSP430FR6889 MSP430FR68891 MSP430FR6888 MSP430FR6887 MSP430FR5889 MSP430FR58891 MSP430FR5888 MSP430FR5887 Copyright © 2014–2018, Texas Instruments Incorporated 35 MSP430FR6889, MSP430FR68891, MSP430FR6888, MSP430FR6887 MSP430FR5889, MSP430FR58891, MSP430FR5888, MSP430FR5887 SLASE32C – AUGUST 2014 – REVISED AUGUST 2018 www.ti.com 5.10 Typical Characteristics, Low-Power Mode Supply Currents 3 3 3.0 V, SVS off 3.0 V, SVS off 2.2 V, SVS off 2.2 V, SVS off 3.0 V, SVS on 2.5 3.0 V, SVS on 2.5 2.2 V, SVS on LPM4 Supply Current (µA) LPM3 Supply Current (µA) 2.2 V, SVS on 2 1.5 1 0.5 2 1.5 1 0.5 0 0 -50 -25 0 25 50 75 100 -50 -25 0 25 Temperature (°C) 50 75 100 Temperature (°C) Figure 5-2. LPM3 Supply Current vs Temperature (LPM3, XT3.7) Figure 5-3. LPM4 Supply Current vs Temperature (LPM4, SVS) 0.7 0.7 3.0 V, SVS off 3.0 V, SVS off 2.2 V, SVS off 0.6 2.2 V, SVS off 0.6 LPM4.5 Supply Current (µA) LPM3.5 Supply Current (µA) 3.0 V, SVS on 0.5 0.4 0.3 0.2 0.1 0.4 0.3 0.2 0.1 0 0 -50 -25 0 25 50 75 100 Temperature (°C) Figure 5-4. LPM3.5 Supply Current vs Temperature (LPM3.5, XT3.7) 36 2.2 V, SVS on 0.5 Specifications -50 -25 0 25 50 75 100 Temperature (°C) Figure 5-5. LPM4.5 Supply Current vs Temperature (LPM4.5) Copyright © 2014–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR6889 MSP430FR68891 MSP430FR6888 MSP430FR6887 MSP430FR5889 MSP430FR58891 MSP430FR5888 MSP430FR5887 MSP430FR6889, MSP430FR68891, MSP430FR6888, MSP430FR6887 MSP430FR5889, MSP430FR58891, MSP430FR5888, MSP430FR5887 www.ti.com SLASE32C – AUGUST 2014 – REVISED AUGUST 2018 5.11 Typical Characteristics, Current Consumption per Module (1) MODULE TEST CONDITIONS Timer_A REFERENCE CLOCK MIN TYP Module input clock Timer_B MAX UNIT 3 μA/MHz Module input clock 5 μA/MHz eUSCI_A UART mode Module input clock 5.5 μA/MHz eUSCI_A SPI mode Module input clock 3.5 μA/MHz eUSCI_B SPI mode Module input clock 3.5 μA/MHz eUSCI_B I2C mode, 100 kbaud Module input clock 3.5 μA/MHz 32 kHz 100 nA RTC_C MPY Only from start to end of operation MCLK 25 μA/MHz CRC16 Only from start to end of operation MCLK 2.5 μA/MHz CRC32 Only from start to end of operation MCLK 2.5 μA/MHz (1) LCD_C: See Section 5.8. For other module currents not listed here, see the module-specific parameter sections. Specifications Submit Documentation Feedback Product Folder Links: MSP430FR6889 MSP430FR68891 MSP430FR6888 MSP430FR6887 MSP430FR5889 MSP430FR58891 MSP430FR5888 MSP430FR5887 Copyright © 2014–2018, Texas Instruments Incorporated 37 MSP430FR6889, MSP430FR68891, MSP430FR6888, MSP430FR6887 MSP430FR5889, MSP430FR58891, MSP430FR5888, MSP430FR5887 SLASE32C – AUGUST 2014 – REVISED AUGUST 2018 www.ti.com 5.12 Thermal Resistance Characteristics THERMAL METRIC (1) PACKAGE VALUE (2) UNIT 49.8 °C/W θJA Junction-to-ambient thermal resistance, still air (3) θJC(TOP) Junction-to-case (top) thermal resistance (4) 9.7 °C/W θJB Junction-to-board thermal resistance (5) 26.0 °C/W ΨJB Junction-to-board thermal characterization parameter 25.7 °C/W ΨJT Junction-to-top thermal characterization parameter 0.2 °C/W θJC(BOTTOM) Junction-to-case (bottom) thermal resistance (6) N/A °C/W θJA Junction-to-ambient thermal resistance, still air (3) 49.5 °C/W 14.7 °C/W 24.1 °C/W 23.8 °C/W 0.7 °C/W LQFP-100 (PZ) (4) θJC(TOP) Junction-to-case (top) thermal resistance θJB Junction-to-board thermal resistance (5) ΨJB Junction-to-board thermal characterization parameter ΨJT Junction-to-top thermal characterization parameter LQFP-80 (PN) (6) θJC(BOTTOM) Junction-to-case (bottom) thermal resistance N/A °C/W θJA Junction-to-ambient thermal resistance, still air (3) 55.3 °C/W θJC(TOP) Junction-to-case (top) thermal resistance (4) 16.8 °C/W 26.8 °C/W 26.5 °C/W 0.8 °C/W (5) θJB Junction-to-board thermal resistance ΨJB Junction-to-board thermal characterization parameter ΨJT Junction-to-top thermal characterization parameter LQFP-64 (PM) (6) θJC(BOTTOM) Junction-to-case (bottom) thermal resistance N/A °C/W θJA Junction-to-ambient thermal resistance, still air (3) 29.2 °C/W θJC(TOP) Junction-to-case (top) thermal resistance (4) 13.9 °C/W θJB Junction-to-board thermal resistance (5) 8.1 °C/W ΨJB Junction-to-board thermal characterization parameter 8.0 °C/W ΨJT Junction-to-top thermal characterization parameter 0.2 °C/W θJC(BOTTOM) Junction-to-case (bottom) thermal resistance (6) 1.0 °C/W (1) (2) (3) (4) (5) (6) 38 VQFN-64 (RGC) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics. N/A = not applicable The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, High-K board, as specified in JESD51-7, in an environment described in JESD51-2a. The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific JEDECstandard test exists, but a close description can be found in the ANSI SEMI standard G30-88. The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB temperature, as described in JESD51-8. The junction-to-case (bottom) thermal resistance is obtained by simulating a cold plate test on the exposed (power) pad. No specific JEDEC standard test exists, but a close description can be found in the ANSI SEMI standard G30-88. Specifications Copyright © 2014–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR6889 MSP430FR68891 MSP430FR6888 MSP430FR6887 MSP430FR5889 MSP430FR58891 MSP430FR5888 MSP430FR5887 MSP430FR6889, MSP430FR68891, MSP430FR6888, MSP430FR6887 MSP430FR5889, MSP430FR58891, MSP430FR5888, MSP430FR5887 www.ti.com SLASE32C – AUGUST 2014 – REVISED AUGUST 2018 5.13 Timing and Switching Characteristics 5.13.1 Power Supply Sequencing TI recommends powering the AVCC, DVCC, and ESIDVCC pins from the same source. At a minimum, during power up, power down, and device operation, the voltage difference between AVCC, DVCC, and ESIDVCC must not exceed the limits specified in Absolute Maximum Ratings. Exceeding the specified limits may cause malfunction of the device including erroneous writes to RAM and FRAM. At power up, the device does not start executing code before the supply voltage reached VSVSH+ if the supply rises monotonically to this level. Table 5-1 lists the power ramp requirements. Table 5-1. Brownout and Device Reset Power Ramp Requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VVCC_BOR– Brownout power-down level (1) (2) VVCC_BOR+ Brownout power-up level (2) (1) (2) (3) (4) | dDVCC/dt | < 3 V/s (3) | dDVCC/dt | > 300 V/s (3) | dDVCC/dt | < 3 V/s (4) MIN MAX 0.7 1.66 0 0.79 1.68 UNIT V V In case of a supply voltage brownout, the device supply voltages must ramp down to the specified brownout power-down level (VVCC_BOR-) before the voltage is ramped up again to ensure a reliable device start-up and performance according to the data sheet including the correct operation of the on-chip SVS module. Fast supply voltage changes can trigger a BOR reset even within the recommended supply voltage range. To avoid unwanted BOR resets, the supply voltage must change by less than 0.05 V per microsecond (±0.05 V/µs). Following the data sheet recommendation for capacitor CDVCC should limit the slopes accordingly. The brownout levels are measured with a slowly changing supply. With faster slopes, the MIN level required to reset the device properly can decrease to 0 V. Use the graph in Figure 5-6 to estimate the VVCC_BOR- level based on the down slope of the supply voltage. After removing VCC, the down slope can be estimated based on the current consumption and the capacitance on DVCC: dV/dt = I/C where dV/dt = slope, I = current, C = capacitance. The brownout levels are measured with a slowly changing supply. 2 Brownout Power-Down Level (V) Process-Temperature Corner Case 1 1.5 Typical 1 Process-Temperature Corner Case 2 MIN Limit 0.5 V VCC_BOR- for reliable device start-up 0 1 10 100 1000 10000 100000 Supply Voltage Power-Down Slope (V/s) Figure 5-6. Brownout Power-Down Level vs Supply Voltage Down Slope Specifications Submit Documentation Feedback Product Folder Links: MSP430FR6889 MSP430FR68891 MSP430FR6888 MSP430FR6887 MSP430FR5889 MSP430FR58891 MSP430FR5888 MSP430FR5887 Copyright © 2014–2018, Texas Instruments Incorporated 39 MSP430FR6889, MSP430FR68891, MSP430FR6888, MSP430FR6887 MSP430FR5889, MSP430FR58891, MSP430FR5888, MSP430FR5887 SLASE32C – AUGUST 2014 – REVISED AUGUST 2018 www.ti.com Table 5-2 lists the characteristics of the SVS. Table 5-2. SVS over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER ISVSH,LPM TEST CONDITIONS (1) VSVSH- SVSH power-down level VSVSH+ SVSH power-up level (1) VSVSH_hys SVSH hysteresis tPD,SVSH, AM SVSH propagation delay, active mode (1) MIN TYP MAX UNIT 170 300 nA 1.75 1.80 1.85 V 1.77 1.88 1.99 V 120 mV 10 µs SVSH current consumption, low-power modes 40 dVVcc/dt = –10 mV/µs For additional information, see the Dynamic Voltage Scaling Power Solution for MSP430 Devices With Single-Channel LDO Reference Design. 5.13.2 Reset Timing Table 5-11 lists the input requirements for the RST signal. Table 5-3. Reset Input over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER t(RST) (1) 40 External reset pulse duration on RST (1) VCC 2.2 V, 3.0 V MIN 2 MAX UNIT µs Not applicable if RST/NMI pin configured as NMI. Specifications Copyright © 2014–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR6889 MSP430FR68891 MSP430FR6888 MSP430FR6887 MSP430FR5889 MSP430FR58891 MSP430FR5888 MSP430FR5887 MSP430FR6889, MSP430FR68891, MSP430FR6888, MSP430FR6887 MSP430FR5889, MSP430FR58891, MSP430FR5888, MSP430FR5887 www.ti.com SLASE32C – AUGUST 2014 – REVISED AUGUST 2018 5.13.3 Clock Specifications Table 5-4 lists the characteristics of the LFXT. Table 5-4. Low-Frequency Crystal Oscillator, LFXT (1) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VCC MIN fOSC = 32768 Hz, LFXTBYPASS = 0, LFXTDRIVE = {0}, TA = 25°C, CL,eff = 3.7 pF, ESR ≈ 44 kΩ IVCC.LFXT Current consumption fOSC = 32768 Hz, LFXTBYPASS = 0, LFXTDRIVE = {1}, TA = 25°C, CL,eff = 6 pF, ESR ≈ 40 kΩ fOSC = 32768 Hz, LFXTBYPASS = 0, LFXTDRIVE = {2}, TA = 25°C, CL,eff = 9 pF, ESR ≈ 40 kΩ LFXT oscillator crystal frequency LFXTBYPASS = 0 DCLFXT LFXT oscillator duty cycle Measured at ACLK, fLFXT = 32768 Hz fLFXT,SW LFXT oscillator logic-level square-wave input frequency LFXTBYPASS = 1 (2) DCLFXT, SW LFXT oscillator logic-level square-wave input duty cycle LFXTBYPASS = 1 OALFXT Oscillation allowance for LF crystals (4) MAX 185 3.0 V nA 225 330 32768 30% (3) UNIT 180 fOSC = 32768 Hz, LFXTBYPASS = 0, LFXTDRIVE = {3}, TA = 25°C, CL,eff = 12.5 pF, ESR ≈ 40 kΩ fLFXT TYP 10.5 Hz 70% 32.768 30% 50 kHz 70% LFXTBYPASS = 0, LFXTDRIVE = {1}, fLFXT = 32768 Hz, CL,eff = 6 pF 210 LFXTBYPASS = 0, LFXTDRIVE = {3}, fLFXT = 32768 Hz, CL,eff = 12.5 pF 300 kΩ CLFXIN Integrated load capacitance at LFXIN terminal (5) (6) 2 pF CLFXOUT Integrated load capacitance at LFXOUT terminal (5) (6) 2 pF (1) (2) (3) (4) (5) (6) To improve EMI on the LFXT oscillator, observe the following guidelines. • Keep the trace between the device and the crystal as short as possible. • Design a good ground plane around the oscillator pins. • Prevent crosstalk from other clock or data lines into oscillator pins LFXIN and LFXOUT. • Avoid running PCB traces underneath or adjacent to the LFXIN and LFXOUT pins. • Use assembly materials and processes that avoid any parasitic load on the oscillator LFXIN and LFXOUT pins. • If conformal coating is used, ensure that it does not induce capacitive or resistive leakage between the oscillator pins. When LFXTBYPASS is set, LFXT circuits are automatically powered down. Input signal is a digital square wave with parametrics defined in the Schmitt-trigger Inputs section of this data sheet. Duty cycle requirements are defined by DCLFXT, SW. Maximum frequency of operation of the entire device cannot be exceeded. Oscillation allowance is based on a safety factor of 5 for recommended crystals. The oscillation allowance is a function of the LFXTDRIVE settings and the effective load. In general, comparable oscillator allowance can be achieved based on the following guidelines, but should be evaluated based on the actual crystal selected for the application: • For LFXTDRIVE = {0}, CL,eff = 3.7 pF. • For LFXTDRIVE = {1}, CL,eff = 6 pF • For LFXTDRIVE = {2}, 6 pF ≤ CL,eff ≤ 9 pF • For LFXTDRIVE = {3}, 9 pF ≤ CL,eff ≤ 12.5 pF This represents all the parasitic capacitance present at the LFXIN and LFXOUT terminals, respectively, including parasitic bond and package capacitance. The effective load capacitance, CL,eff can be computed as CIN × COUT / (CIN + COUT), where CIN and COUT are the total capacitance at the LFXIN and LFXOUT terminals, respectively. Requires external capacitors at both terminals to meet the effective load capacitance specified by crystal manufacturers. Recommended effective load capacitance values supported are 3.7 pF, 6 pF, 9 pF, and 12.5 pF. Maximum shunt capacitance of 1.6 pF. The PCB adds additional capacitance, so it must also be considered in the overall capacitance. Verify that the recommended effective load capacitance of the selected crystal is met. Specifications Submit Documentation Feedback Product Folder Links: MSP430FR6889 MSP430FR68891 MSP430FR6888 MSP430FR6887 MSP430FR5889 MSP430FR58891 MSP430FR5888 MSP430FR5887 Copyright © 2014–2018, Texas Instruments Incorporated 41 MSP430FR6889, MSP430FR68891, MSP430FR6888, MSP430FR6887 MSP430FR5889, MSP430FR58891, MSP430FR5888, MSP430FR5887 SLASE32C – AUGUST 2014 – REVISED AUGUST 2018 www.ti.com Table 5-4. Low-Frequency Crystal Oscillator, LFXT(1) (continued) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER tSTART,LFXT (9) (7) Oscillator fault frequency (8) fFault,LFXT (7) (8) Start-up time TEST CONDITIONS VCC fOSC = 32768 Hz, LFXTBYPASS = 0, LFXTDRIVE = {0}, TA = 25°C, CL,eff = 3.7 pF 3.0 V fOSC = 32768 Hz, LFXTBYPASS = 0, LFXTDRIVE = {3}, TA = 25°C, CL,eff = 12.5 pF 3.0 V MIN TYP MAX UNIT 800 ms (9) 1000 0 3500 Hz Includes start-up counter of 1024 clock cycles. Frequencies above the MAX specification do not set the fault flag. Frequencies between the MIN and MAX specification may set the flag. A static condition or stuck at fault condition sets the flag. Measured with logic-level input frequency but also applies to operation with crystals. Table 5-5 lists the characteristics of the HFXT. Table 5-5. High-Frequency Crystal Oscillator, HFXT (1) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VCC MIN fOSC = 4 MHz, HFXTBYPASS = 0, HFXTDRIVE = 0, HFFREQ = 1 (2) TA = 25°C, CL,eff = 18 pF, Typical ESR, Cshunt IDVCC.HFXT HFXT oscillator crystal current HF mode at typical ESR fOSC = 8 MHz, HFXTBYPASS = 0, HFXTDRIVE = 1, HFFREQ = 1, TA = 25°C, CL,eff = 18 pF, Typical ESR, Cshunt fOSC = 16 MHz, HFXTBYPASS = 0, HFXTDRIVE = 2, HFFREQ = 2, TA = 25°C, CL,eff = 18 pF, Typical ESR, Cshunt fHFXT HFXT oscillator duty cycle DCHFXT HFXT oscillator logic-level squarewave input frequency, bypass mode fHFXT,SW DCHFXT, (1) (2) (3) (4) 42 SW HFXTBYPASS = 0, HFFREQ = 1 (2) (3) MAX 120 3.0 V μA 190 250 4 8 HFXTBYPASS = 0, HFFREQ = 2 (3) 8.01 16 HFXTBYPASS = 0, HFFREQ = 3 (3) 16.01 24 Measured at SMCLK, fHFXT = 16 MHz 40% 50% 0.9 4 HFXTBYPASS = 1, HFFREQ = 1 (4) (3) 4.01 8 (4) (3) 8.01 16 HFXTBYPASS = 1, HFFREQ = 3 (4) (3) 16.01 24 40% 60% HFXTBYPASS = 1, HFFREQ = 2 HFXT oscillator logic-level squareHFXTBYPASS = 1 wave input duty cycle MHz 60% (4) (3) HFXTBYPASS = 1, HFFREQ = 0 UNIT 75 fOSC = 24 MHz, HFXTBYPASS = 0, HFXTDRIVE = 3, HFFREQ = 3, TA = 25°C, CL,eff = 18 pF, Typical ESR, Cshunt HFXT oscillator crystal frequency, crystal mode TYP MHz To improve EMI on the HFXT oscillator, observe the following guidelines. • Keep the traces between the device and the crystal as short as possible. • Design a good ground plane around the oscillator pins. • Prevent crosstalk from other clock or data lines into oscillator pins HFXIN and HFXOUT. • Avoid running PCB traces underneath or adjacent to the HFXIN and HFXOUT pins. • Use assembly materials and processes that avoid any parasitic load on the oscillator HFXIN and HFXOUT pins. • If conformal coating is used, ensure that it does not induce capacitive or resistive leakage between the oscillator pins. HFFREQ = {0} is not supported for HFXT crystal mode of operation. Maximum frequency of operation of the entire device cannot be exceeded. When HFXTBYPASS is set, HFXT circuits are automatically powered down. Input signal is a digital square wave with parametrics defined in the Schmitt-trigger Inputs section of this data sheet. Duty cycle requirements are defined by DCHFXT, SW. Specifications Copyright © 2014–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR6889 MSP430FR68891 MSP430FR6888 MSP430FR6887 MSP430FR5889 MSP430FR58891 MSP430FR5888 MSP430FR5887 MSP430FR6889, MSP430FR68891, MSP430FR6888, MSP430FR6887 MSP430FR5889, MSP430FR58891, MSP430FR5888, MSP430FR5887 www.ti.com SLASE32C – AUGUST 2014 – REVISED AUGUST 2018 Table 5-5. High-Frequency Crystal Oscillator, HFXT(1) (continued) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER tSTART,HFXT CHFXIN Start-up time TEST CONDITIONS (5) VCC fOSC = 4 MHz, HFXTBYPASS = 0, HFXTDRIVE = 0, HFFREQ = 1, TA = 25°C, CL,eff = 16 pF 3.0 V fOSC = 24 MHz , HFXTBYPASS = 0, HFXTDRIVE = 3, HFFREQ = 3, TA = 25°C, CL,eff = 16 pF 3.0 V MIN TYP MAX UNIT 1.6 ms 0.6 Integrated load capacitance at HFXIN terminaI (6) 2 pF 2 pF (7) CHFXOUT Integrated load capacitance at HFXOUT terminaI (6) (7) fFault,HFXT Oscillator fault frequency (8) (9) (5) (6) (7) (8) (9) 0 800 kHz Includes start-up counter of 1024 clock cycles. This represents all the parasitic capacitance present at the HFXIN and HFXOUT terminals, respectively, including parasitic bond and package capacitance. The effective load capacitance, CL,eff can be computed as CIN × COUT / (CIN + COUT), where CIN and COUT are the total capacitance at the HFXIN and HFXOUT terminals, respectively. Requires external capacitors at both terminals to meet the effective load capacitance specified by crystal manufacturers. Recommended effective load capacitance values supported are 14 pF, 16 pF, and 18 pF. Maximum shunt capacitance of 7 pF. The PCB adds additional capacitance, so it must also be considered in the overall capacitance. Verify that the recommended effective load capacitance of the selected crystal is met. Frequencies above the MAX specification do not set the fault flag. Frequencies between the MIN and MAX might set the flag. A static condition or stuck at fault condition set the flag. Measured with logic-level input frequency but also applies to operation with crystals. Specifications Submit Documentation Feedback Product Folder Links: MSP430FR6889 MSP430FR68891 MSP430FR6888 MSP430FR6887 MSP430FR5889 MSP430FR58891 MSP430FR5888 MSP430FR5887 Copyright © 2014–2018, Texas Instruments Incorporated 43 MSP430FR6889, MSP430FR68891, MSP430FR6888, MSP430FR6887 MSP430FR5889, MSP430FR58891, MSP430FR5888, MSP430FR5887 SLASE32C – AUGUST 2014 – REVISED AUGUST 2018 www.ti.com Table 5-6 lists the characteristics of the DCO. Table 5-6. DCO over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT 1 ±3.5% MHz fDCO1 DCO frequency range 1 MHz, trimmed Measured at SMCLK, divide by 1, DCORSEL = 0, DCOFSEL = 0, DCORSEL = 1, DCOFSEL = 0 fDCO2.7 DCO frequency range 2.7 MHz, trimmed Measured at SMCLK, divide by 1, DCORSEL = 0, DCOFSEL = 1 2.667 ±3.5% MHz fDCO3.5 DCO frequency range 3.5 MHz, trimmed Measured at SMCLK, divide by 1, DCORSEL = 0, DCOFSEL = 2 3.5 ±3.5% MHz fDCO4 DCO frequency range 4 MHz, trimmed Measured at SMCLK, divide by 1, DCORSEL = 0, DCOFSEL = 3 4 ±3.5% MHz fDCO5.3 DCO frequency range 5.3 MHz, trimmed Measured at SMCLK, divide by 1, DCORSEL = 0, DCOFSEL = 4, DCORSEL = 1, DCOFSEL = 1 5.333 ±3.5% MHz fDCO7 DCO frequency range 7 MHz, trimmed Measured at SMCLK, divide by 1, DCORSEL = 0, DCOFSEL = 5, DCORSEL = 1, DCOFSEL = 2 7 ±3.5% MHz fDCO8 DCO frequency range 8 MHz, trimmed Measured at SMCLK, divide by 1, DCORSEL = 0, DCOFSEL = 6, DCORSEL = 1, DCOFSEL = 3 8 ±3.5% MHz fDCO16 DCO frequency range 16 MHz, trimmed Measured at SMCLK, divide by 1, DCORSEL = 1, DCOFSEL = 4 16 ±3.5% (1) MHz fDCO21 DCO frequency range 21 MHz, trimmed Measured at SMCLK, divide by 2, DCORSEL = 1, DCOFSEL = 5 21 ±3.5% (1) MHz fDCO24 DCO frequency range 24 MHz, trimmed Measured at SMCLK, divide by 2, DCORSEL = 1, DCOFSEL = 6 24 ±3.5% (1) MHz Duty cycle Measured at SMCLK, divide by 1, no external divide, all DCORSEL/DCOFSEL settings except DCORSEL = 1, DCOFSEL = 5 and DCORSEL = 1, DCOFSEL = 6 50% 52% DCO jitter Based on fsignal = 10 kHz and DCO used for 12-bit SAR ADC sampling source. This achieves >74 dB SNR due to jitter (that is, it is limited by ADC performance). 2 3 fDCO,DC tDCO, JITTER dfDCO/dT (1) (2) 44 DCO temperature drift (2) 48% 3.0 V 0.01 ns %/ºC After a wakeup from LPM1, LPM2, LPM3, or LPM4, the DCO frequency fDCO might exceed the specified frequency range for a few clock cycles by up to 5% before settling into the specified steady-state frequency range. Calculated using the box method: (MAX(–40ºC to 85ºC) – MIN(–40ºC to 85ºC)) / MIN(–40ºC to 85ºC) / (85ºC – (–40ºC)) Specifications Copyright © 2014–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR6889 MSP430FR68891 MSP430FR6888 MSP430FR6887 MSP430FR5889 MSP430FR58891 MSP430FR5888 MSP430FR5887 MSP430FR6889, MSP430FR68891, MSP430FR6888, MSP430FR6887 MSP430FR5889, MSP430FR58891, MSP430FR5888, MSP430FR5887 www.ti.com SLASE32C – AUGUST 2014 – REVISED AUGUST 2018 Table 5-7 lists the characteristics of the VLO. Table 5-7. Internal Very-Low-Power Low-Frequency Oscillator (VLO) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS IVLO Current consumption fVLO VLO frequency Measured at ACLK dfVLO/dT VLO frequency temperature drift Measured at ACLK (1) dfVLO/dVCC VLO frequency supply voltage drift Measured at ACLK (2) fVLO,DC Duty cycle Measured at ACLK (1) (2) MIN TYP MAX 100 6 9.4 nA 14 0.2 50% kHz %/°C 0.7 40% UNIT %/V 60% Calculated using the box method: (MAX(–40ºC to 85°C) – MIN(–40ºC to 85°C)) / MIN(–40ºC to 85°C) / (85°C – (–40°C)) Calculated using the box method: (MAX(1.8 V to 3.6 V) – MIN(1.8 V to 3.6 V)) / MIN(1.8 V to 3.6 V) / (3.6 V – 1.8 V) Table 5-8 lists the characteristics of the MODOSC. Table 5-8. Module Oscillator (MODOSC) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER IMODOSC Current consumption fMODOSC MODOSC frequency fMODOSC/dT MODOSC frequency temperature drift (1) fMODOSC/dVCC MODOSC frequency supply voltage drift (2) DCMODOSC Duty cycle (1) (2) TEST CONDITIONS MIN TYP 4.0 4.8 Enabled Measured at SMCLK, divide by 1 MAX UNIT 5.4 MHz 25 40% μA 0.08 %/℃ 1.4 %/V 50% 60% Calculated using the box method: (MAX(–40ºC to 85°C) – MIN(–40ºC to 85°C)) / MIN(–40ºC to 85°C) / (85°C – (–40°C)) Calculated using the box method: (MAX(1.8 V to 3.6 V) – MIN(1.8 V to 3.6 V)) / MIN(1.8 V to 3.6 V) / (3.6 V – 1.8 V) Specifications Submit Documentation Feedback Product Folder Links: MSP430FR6889 MSP430FR68891 MSP430FR6888 MSP430FR6887 MSP430FR5889 MSP430FR58891 MSP430FR5888 MSP430FR5887 Copyright © 2014–2018, Texas Instruments Incorporated 45 MSP430FR6889, MSP430FR68891, MSP430FR6888, MSP430FR6887 MSP430FR5889, MSP430FR58891, MSP430FR5888, MSP430FR5887 SLASE32C – AUGUST 2014 – REVISED AUGUST 2018 www.ti.com 5.13.4 Wake-up Characteristics Table 5-9 lists the wake-up times. Table 5-9. Wake-up Times From Low-Power Modes and Reset over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) TEST CONDITIONS PARAMETER VCC MIN TYP MAX UNIT 6 10 μs 400 + 1.5 / fDCO ns tWAKE-UP FRAM (Additional) wake-up time to activate the FRAM in AM if previously disabled by the FRAM controller or from an LPM if immediate activation is selected for wakeup tWAKE-UP LPM0 Wake-up time from LPM0 to active mode (1) 2.2 V, 3.0 V tWAKE-UP LPM1 Wake-up time from LPM1 to active mode (1) 2.2 V, 3.0 V 6 tWAKE-UP LPM2 Wake-up time from LPM2 to active mode (1) 2.2 V, 3.0 V 6 tWAKE-UP LPM3 Wake-up time from LPM3 to active mode (1) 2.2 V, 3.0 V 7 10 μs tWAKE-UP LPM4 Wake-up time from LPM4 to active mode (1) 2.2 V, 3.0 V 7 10 μs μs tWAKE-UP LPM3.5 Wake-up time from LPM3.5 to active mode (2) tWAKE-UP-BOR (1) (2) μs 2.2 V, 3.0 V 250 375 SVSHE = 1 2.2 V, 3.0 V 250 375 μs SVSHE = 0 2.2 V, 3.0 V 1 1.5 ms Wake-up time from a RST pin triggered reset to active mode (2) 2.2 V, 3.0 V 250 375 μs (2) 2.2 V, 3.0 V 1 1.5 ms tWAKE-UP LPM4.5 Wake-up time from LPM4.5 to active mode (2) tWAKE-UP-RST μs Wake-up time from power-up to active mode The wake-up time is measured from the edge of an external wake-up signal (for example, port interrupt or wake-up event) to the first externally observable MCLK clock edge. MCLK is sourced by the DCO and the MCLK divider is set to divide-by-1 (DIVMx = 000b, fMCLK = fDCO). This time includes the activation of the FRAM during wakeup. The wake-up time is measured from the edge of an external wake-up signal (for example, port interrupt or wake-up event) until the first instruction of the user program is executed. Table 5-10 lists the typical charge consumed during wakeup from various low-power modes. Table 5-10. Typical Wake-up Charge (1) also see Figure 5-7 and Figure 5-8 PARAMETER TEST CONDITIONS MIN TYP MAX UNIT QWAKE-UP FRAM Charge used for activating the FRAM in AM or during wake-up from LPM0 if previously disabled by the FRAM controller. 15.1 nAs QWAKE-UP LPM0 Charge used for wake-up from LPM0 to active mode (with FRAM active) 4.4 nAs QWAKE-UP LPM1 Charge used for wake-up from LPM1 to active mode (with FRAM active) 15.1 nAs QWAKE-UP LPM2 Charge used for wake-up from LPM2 to active mode (with FRAM active) 15.3 nAs QWAKE-UP LPM3 Charge used for wake-up from LPM3 to active mode (with FRAM active) 16.5 nAs QWAKE-UP LPM4 Charge used for wake-up from LPM4 to active mode (with FRAM active) 16.5 nAs 76 nAs (2) QWAKE-UP LPM3.5 Charge used for wake-up from LPM3.5 to active mode QWAKE-UP LPM4.5 Charge used for wake-up from LPM4.5 to active mode (2) QWAKE-UP-RESET Charge used for reset from RST or BOR event to active mode (2) (1) (2) 46 SVSHE = 1 77 SVSHE = 0 77.5 75 nAs nAs Charge used during the wake-up time from a given low-power mode to active mode. This does not include the energy required in active mode (for example, for an interrupt service routine). Charge required until start of user code. This does not include the energy required to reconfigure the device. Specifications Copyright © 2014–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR6889 MSP430FR68891 MSP430FR6888 MSP430FR6887 MSP430FR5889 MSP430FR58891 MSP430FR5888 MSP430FR5887 MSP430FR6889, MSP430FR68891, MSP430FR6888, MSP430FR6887 MSP430FR5889, MSP430FR58891, MSP430FR5888, MSP430FR5887 www.ti.com SLASE32C – AUGUST 2014 – REVISED AUGUST 2018 5.13.4.1 Typical Characteristics, Average LPM Currents vs Wake-up Frequency 10000.00 LPM0 LPM1 Average Wake-up Current (µA) 1000.00 LPM2,XT12 LPM3,XT12 LPM3.5,XT12 100.00 10.00 1.00 0.10 0.001 0.01 0.1 1 10 100 1000 10000 100000 Wake-up Frequency (Hz) NOTE: The average wake-up current does not include the energy required in active mode; for example, for an interrupt service routine or to reconfigure the device. Figure 5-7. Average LPM Currents vs Wake-up Frequency at 25°C 10000.00 LPM0 LPM1 Average Wake-up Current (µA) 1000.00 LPM2,XT12 LPM3,XT12 LPM3.5,XT12 100.00 10.00 1.00 0.10 0.001 0.01 0.1 1 10 100 1000 10000 100000 Wake-up Frequency (Hz) NOTE: The average wake-up current does not include the energy required in active mode; for example, for an interrupt service routine or to reconfigure the device. Figure 5-8. Average LPM Currents vs Wake-up Frequency at 85°C Specifications Submit Documentation Feedback Product Folder Links: MSP430FR6889 MSP430FR68891 MSP430FR6888 MSP430FR6887 MSP430FR5889 MSP430FR58891 MSP430FR5888 MSP430FR5887 Copyright © 2014–2018, Texas Instruments Incorporated 47 MSP430FR6889, MSP430FR68891, MSP430FR6888, MSP430FR6887 MSP430FR5889, MSP430FR58891, MSP430FR5888, MSP430FR5887 SLASE32C – AUGUST 2014 – REVISED AUGUST 2018 www.ti.com 5.13.5 Peripherals 5.13.5.1 Digital I/Os Table 5-11 lists the characteristics of the digital inputs. Table 5-11. Digital Inputs over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VCC MIN 2.2 V 1.2 TYP MAX 1.65 3.0 V 1.65 2.25 2.2 V 0.55 1.00 3.0 V 0.75 1.35 2.2 V 0.44 0.98 3.0 V 0.60 1.30 UNIT VIT+ Positive-going input threshold voltage VIT– Negative-going input threshold voltage Vhys Input voltage hysteresis (VIT+ – VIT–) RPull Pullup or pulldown resistor For pullup: VIN = VSS For pulldown: VIN = VCC CI,dig Input capacitance, digital only port pins VIN = VSS or VCC 3 pF CI,ana Input capacitance, port pins with shared analog VIN = VSS or VCC functions (1) 5 pF Ilkg(Px.y) High-impedance input leakage current See t(int) External interrupt timing (external trigger pulse duration to set interrupt flag) (4) Ports with interrupt capability (see Section 1.4 and Section 4.2) t(RST) External reset pulse duration on RST (5) (1) (2) (3) (4) (5) 48 20 (2) (3) 35 50 V V V kΩ 2.2 V, 3.0 V –20 2.2 V, 3.0 V 20 ns 2.2 V, 3.0 V 2 µs +20 nA If the port pins PJ.4/LFXIN and PJ.5/LFXOUT are used as digital I/Os, they are connected by a 4-pF capacitor and a 35-MΩ resistor in series. At frequencies of approximately 1 kHz and lower, the 4-pF capacitor can add to the pin capacitance of PJ.4/LFXIN or PJ.5/LFXOUT. The input leakage current is measured with VSS or VCC applied to the corresponding pins, unless otherwise noted. The input leakage of the digital port pins is measured individually. The port pin is selected for input and the pullup or pulldown resistor is disabled. An external signal sets the interrupt flag every time the minimum interrupt pulse duration t(int) is met. It might be set by trigger signals shorter than t(int). Not applicable if RST/NMI pin configured as NMI. Specifications Copyright © 2014–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR6889 MSP430FR68891 MSP430FR6888 MSP430FR6887 MSP430FR5889 MSP430FR58891 MSP430FR5888 MSP430FR5887 MSP430FR6889, MSP430FR68891, MSP430FR6888, MSP430FR6887 MSP430FR5889, MSP430FR58891, MSP430FR5888, MSP430FR5887 www.ti.com SLASE32C – AUGUST 2014 – REVISED AUGUST 2018 Table 5-12 lists the characteristics of the digital outputs. Table 5-12. Digital Outputs over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5-9, Figure 5-10, Figure 5-11, and Figure 5-12) PARAMETER TEST CONDITIONS VCC TYP I(OHmax) = –3 mA (2) VCC – 0.60 VCC I(OHmax) = –2 mA (1) VCC – 0.25 VCC VCC – 0.60 VCC VSS VSS + 0.25 I(OLmax) = 3 mA (2) VSS VSS + 0.60 I(OLmax) = 2 mA (1) VSS VSS + 0.25 VSS VSS + 0.60 2.2 V High-level output voltage 3.0 V I(OHmax) = –6 mA (2) I(OLmax) = 1 mA (1) Low-level output voltage 3.0 V I(OLmax) = 6 mA (2) fPx.y Port output frequency (with load) (3) CL = 20 pF, RL fPort_CLK Clock output frequency (3) ACLK, MCLK, or SMCLK at configured output port, CL = 20 pF (5) trise,dig Port output rise time, digital only port pins CL = 20 pF tfall,dig Port output fall time, digital only port pins CL = 20 pF trise,ana Port output rise time, port pins with shared analog functions CL = 20 pF tfall,ana Port output fall time, port pins with shared analog functions CL = 20 pF (1) (2) (3) (4) (5) (4) (5) 2.2 V 16 3.0 V 16 2.2 V 16 3.0 V 16 UNIT V 2.2 V VOL MAX VCC I(OHmax) = –1 mA VOH MIN VCC – 0.25 (1) V MHz MHz 2.2 V 4 15 3.0 V 3 15 2.2 V 4 15 3.0 V 3 15 2.2 V 6 15 3.0 V 4 15 2.2 V 6 15 3.0 V 4 15 ns ns ns ns The maximum total current, I(OHmax) and I(OLmax), for all outputs combined should not exceed ±48 mA to hold the maximum voltage drop specified. The maximum total current, I(OHmax) and I(OLmax), for all outputs combined should not exceed ±100 mA to hold the maximum voltage drop specified. The port can output frequencies at least up to the specified limit - it might support higher frequencies. A resistive divider with 2 × R1 and R1 = 1.6 kΩ between VCC and VSS is used as load. The output is connected to the center tap of the divider. CL = 20 pF is connected from the output to VSS. The output voltage reaches at least 10% and 90% VCC at the specified toggle frequency. Specifications Submit Documentation Feedback Product Folder Links: MSP430FR6889 MSP430FR68891 MSP430FR6888 MSP430FR6887 MSP430FR5889 MSP430FR58891 MSP430FR5888 MSP430FR5887 Copyright © 2014–2018, Texas Instruments Incorporated 49 MSP430FR6889, MSP430FR68891, MSP430FR6888, MSP430FR6887 MSP430FR5889, MSP430FR58891, MSP430FR5888, MSP430FR5887 SLASE32C – AUGUST 2014 – REVISED AUGUST 2018 www.ti.com 5.13.5.1.1 Typical Characteristics, Digital Outputs at 3.0 V and 2.2 V 30 25°C 85°C Low-Level Output Current (mA) Low-Level Output Current (mA) 15 10 5 25°C 85°C 20 10 P1.1 P1.1 0 0 0 0.5 1 1.5 2 0 0.5 1 Low-Level Output Voltage (V) 1.5 2 2.5 3 Low-Level Output Voltage (V) C001 C001 VCC = 2.2 V VCC = 3.0 V Figure 5-9. Typical Low-Level Output Current vs Low-Level Output Voltage 0 25°C 85°C High-Level Output Current (mA) High-Level Output Current (mA) 0 Figure 5-10. Typical Low-Level Output Current vs Low-Level Output Voltage -5 -10 25°C 85°C -10 -20 P1.1 P1.1 -15 -30 0 0.5 1 1.5 2 0 0.5 1 High-Level Output Voltage (V) 1.5 2 C001 Figure 5-11. Typical High-Level Output Current vs High-Level Output Voltage Specifications 3 High-Level Output Voltage (V) VCC = 2.2 V 50 2.5 C001 VCC = 3.0 V Figure 5-12. Typical High-Level Output Current vs High-Level Output Voltage Copyright © 2014–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR6889 MSP430FR68891 MSP430FR6888 MSP430FR6887 MSP430FR5889 MSP430FR58891 MSP430FR5888 MSP430FR5887 MSP430FR6889, MSP430FR68891, MSP430FR6888, MSP430FR6887 MSP430FR5889, MSP430FR58891, MSP430FR5888, MSP430FR5887 www.ti.com SLASE32C – AUGUST 2014 – REVISED AUGUST 2018 Table 5-13 lists the frequencies of the pin oscillator. Table 5-13. Pin-Oscillator Frequency, Ports Px over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5-13 and Figure 5-14) PARAMETER foPx.y (1) TEST CONDITIONS VCC Px.y, CL = 10 pF (1) Pin-oscillator frequency 3.0 V Px.y, CL = 20 pF (1) MIN TYP MAX 1200 UNIT kHz 650 CL is the external load capacitance connected from the output to VSS and includes all parasitic effects such as PCB traces. 1000 fitted fitted 25°C 25°C 85°C Pin Oscillator Frequency (kHz) Pin Oscillator Frequency (kHz) 5.13.5.1.2 Typical Characteristics, Pin-Oscillator Frequency 1000 85°C 100 100 10 100 External Load Capacitance (pF) (Including Board) VCC = 2.2 V One output active at a time. Figure 5-13. Typical Oscillation Frequency vs Load Capacitance 10 100 External Load Capacitance (pF) (Including Board) VCC = 3.0 V One output active at a time. Figure 5-14. Typical Oscillation Frequency vs Load Capacitance Specifications Submit Documentation Feedback Product Folder Links: MSP430FR6889 MSP430FR68891 MSP430FR6888 MSP430FR6887 MSP430FR5889 MSP430FR58891 MSP430FR5888 MSP430FR5887 Copyright © 2014–2018, Texas Instruments Incorporated 51 MSP430FR6889, MSP430FR68891, MSP430FR6888, MSP430FR6887 MSP430FR5889, MSP430FR58891, MSP430FR5888, MSP430FR5887 SLASE32C – AUGUST 2014 – REVISED AUGUST 2018 www.ti.com 5.13.5.2 Timer_A and Timer_B Table 5-14 lists the characteristics of the Timer_A. Table 5-14. Timer_A over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS fTA Timer_A input clock frequency Internal: SMCLK or ACLK, External: TACLK, Duty cycle = 50% ±10% tTA,cap Timer_A capture timing All capture inputs, minimum pulse duration required for capture VCC 2.2 V, 3.0 V 2.2 V, 3.0 V MIN TYP MAX UNIT 16 MHz 20 ns Table 5-15 lists the characteristics of the Timer_B. Table 5-15. Timer_B over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS fTB Timer_B input clock frequency Internal: SMCLK or ACLK, External: TBCLK, Duty cycle = 50% ±10% tTB,cap Timer_B capture timing All capture inputs, minimum pulse duration required for capture 52 Specifications VCC 2.2 V, 3.0 V 2.2 V, 3.0 V MIN TYP 20 MAX UNIT 16 MHz ns Copyright © 2014–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR6889 MSP430FR68891 MSP430FR6888 MSP430FR6887 MSP430FR5889 MSP430FR58891 MSP430FR5888 MSP430FR5887 MSP430FR6889, MSP430FR68891, MSP430FR6888, MSP430FR6887 MSP430FR5889, MSP430FR58891, MSP430FR5888, MSP430FR5887 www.ti.com SLASE32C – AUGUST 2014 – REVISED AUGUST 2018 5.13.5.3 eUSCI Table 5-16 lists the supported clock frequencies of the eUSCI in UART mode. Table 5-16. eUSCI (UART Mode) Clock Frequency PARAMETER feUSCI eUSCI input clock frequency fBITCLK BITCLK clock frequency (equals baud rate in MBaud) TEST CONDITIONS MIN Internal: SMCLK or ACLK, External: UCLK, Duty cycle = 50% ±10% MAX UNIT 16 MHz 4 MHz Table 5-17 lists the characteristics of the eUSCI in UART mode. Table 5-17. eUSCI (UART Mode) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VCC MIN UCGLITx = 0 UART receive deglitch time (1) tt UCGLITx = 1 2.2 V, 3.0 V UCGLITx = 2 UCGLITx = 3 (1) TYP 5 MAX UNIT 30 20 90 35 160 50 220 ns Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. Thus the selected deglitch time can limit the maximum useable baud rate. To ensure that pulses are correctly recognized, their duration should exceed the maximum specification of the deglitch time. Table 5-18 lists the supported clock frequencies of the eUSCI in SPI master mode. Table 5-18. eUSCI (SPI Master Mode) Clock Frequency PARAMETER feUSCI eUSCI input clock frequency TEST CONDITIONS Internal: SMCLK or ACLK, Duty cycle = 50% ±10% MIN MAX UNIT 16 MHz Specifications Submit Documentation Feedback Product Folder Links: MSP430FR6889 MSP430FR68891 MSP430FR6888 MSP430FR6887 MSP430FR5889 MSP430FR58891 MSP430FR5888 MSP430FR5887 Copyright © 2014–2018, Texas Instruments Incorporated 53 MSP430FR6889, MSP430FR68891, MSP430FR6888, MSP430FR6887 MSP430FR5889, MSP430FR58891, MSP430FR5888, MSP430FR5887 SLASE32C – AUGUST 2014 – REVISED AUGUST 2018 www.ti.com Table 5-19 lists the characteristics of the eUSCI in SPI master mode. Table 5-19. eUSCI (SPI Master Mode) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1) PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT tSTE,LEAD STE lead time, STE active to clock UCSTEM = 1, UCMODEx = 01 or 10 tSTE,LAG STE lag time, last clock to STE inactive UCSTEM = 1, UCMODEx = 01 or 10 tSTE,ACC STE access time, STE active to SIMO data out UCSTEM = 0, UCMODEx = 01 or 10 2.2 V, 3.0 V 60 ns tSTE,DIS STE disable time, STE inactive to SOMI high UCSTEM = 0, impedance UCMODEx = 01 or 10 2.2 V, 3.0 V 80 ns tSU,MI SOMI input data setup time tHD,MI SOMI input data hold time tVALID,MO SIMO output data valid time (2) UCLK edge to SIMO valid, CL = 20 pF tHD,MO SIMO output data hold time (3) CL = 20 pF (1) (2) (3) 54 1 UCxCLK cycles 1 UCxCLK cycles 2.2 V 40 3.0 V 40 2.2 V 0 3.0 V 0 ns ns 2.2 V 10 3.0 V 10 2.2 V 0 3.0 V 0 ns ns fUCxCLK = 1/2tLO/HI with tLO/HI = max(tVALID,MO(eUSCI) + tSU,SI(Slave), tSU,MI(eUSCI) + tVALID,SO(Slave)) For the slave parameters tSU,SI(Slave) and tVALID,SO(Slave), see the SPI parameters of the attached slave. Specifies the time to drive the next valid data to the SIMO output after the output changing UCLK clock edge. See the timing diagrams in Figure 5-15 and Figure 5-16. Specifies how long data on the SIMO output is valid after the output changing UCLK clock edge. Negative values indicate that the data on the SIMO output can become invalid before the output changing clock edge observed on UCLK. See the timing diagrams in Figure 515 and Figure 5-16. Specifications Copyright © 2014–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR6889 MSP430FR68891 MSP430FR6888 MSP430FR6887 MSP430FR5889 MSP430FR58891 MSP430FR5888 MSP430FR5887 MSP430FR6889, MSP430FR68891, MSP430FR6888, MSP430FR6887 MSP430FR5889, MSP430FR58891, MSP430FR5888, MSP430FR5887 www.ti.com SLASE32C – AUGUST 2014 – REVISED AUGUST 2018 UCMODEx = 01 tSTE,LEAD STE tSTE,LAG UCMODEx = 10 1/fUCxCLK CKPL = 0 UCLK CKPL = 1 tLOW/HIGH tLOW/HIGH tSU,MI tHD,MI SOMI tHD,MO tSTE,ACC tSTE,DIS tVALID,MO SIMO Figure 5-15. SPI Master Mode, CKPH = 0 UCMODEx = 01 tSTE,LEAD STE tSTE,LAG UCMODEx = 10 1/fUCxCLK CKPL = 0 UCLK CKPL = 1 tLOW/HIGH tLOW/HIGH tSU,MI tHD,MI SOMI tHD,MO tSTE,ACC tVALID,MO tSTE,DIS SIMO Figure 5-16. SPI Master Mode, CKPH = 1 Specifications Submit Documentation Feedback Product Folder Links: MSP430FR6889 MSP430FR68891 MSP430FR6888 MSP430FR6887 MSP430FR5889 MSP430FR58891 MSP430FR5888 MSP430FR5887 Copyright © 2014–2018, Texas Instruments Incorporated 55 MSP430FR6889, MSP430FR68891, MSP430FR6888, MSP430FR6887 MSP430FR5889, MSP430FR58891, MSP430FR5888, MSP430FR5887 SLASE32C – AUGUST 2014 – REVISED AUGUST 2018 www.ti.com Table 5-20 lists the characteristics of the eUSCI in SPI slave mode. Table 5-20. eUSCI (SPI Slave Mode) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1) PARAMETER TEST CONDITIONS tSTE,LEAD STE lead time, STE active to clock tSTE,LAG STE lag time, Last clock to STE inactive tSTE,ACC STE access time, STE active to SOMI data out tSTE,DIS STE disable time, STE inactive to SOMI high impedance tSU,SI SIMO input data setup time tHD,SI SIMO input data hold time tVALID,SO SOMI output data valid time (2) UCLK edge to SOMI valid, CL = 20 pF tHD,SO SOMI output data hold time (3) CL = 20 pF (1) (2) (3) 56 VCC MIN 2.2 V 45 3.0 V 40 2.2 V 2 3.0 V 3 MAX ns ns 2.2 V 45 3.0 V 40 2.2 V 50 3.0 V 45 2.2 V 4 3.0 V 4 2.2 V 7 3.0 V 7 35 35 3.0 V 0 ns ns 3.0 V 0 ns ns 2.2 V 2.2 V UNIT ns ns fUCxCLK = 1/2tLO/HI with tLO/HI ≥ max(tVALID,MO(Master) + tSU,SI(eUSCI), tSU,MI(Master) + tVALID,SO(eUSCI)) For the master parameters tSU,MI(Master) and tVALID,MO(Master), see the SPI parameters of the attached master. Specifies the time to drive the next valid data to the SOMI output after the output changing UCLK clock edge. See the timing diagrams in Figure 5-17 and Figure 5-18. Specifies how long data on the SOMI output is valid after the output changing UCLK clock edge. See the timing diagrams inFigure 5-17 and Figure 5-18. Specifications Copyright © 2014–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR6889 MSP430FR68891 MSP430FR6888 MSP430FR6887 MSP430FR5889 MSP430FR58891 MSP430FR5888 MSP430FR5887 MSP430FR6889, MSP430FR68891, MSP430FR6888, MSP430FR6887 MSP430FR5889, MSP430FR58891, MSP430FR5888, MSP430FR5887 www.ti.com SLASE32C – AUGUST 2014 – REVISED AUGUST 2018 UCMODEx = 01 tSTE,LEAD STE tSTE,LAG UCMODEx = 10 1/fUCxCLK CKPL = 0 UCLK CKPL = 1 tLOW/HIGH tSU,SI tLOW/HIGH tHD,SI SIMO tHD,SO tSTE,ACC tSTE,DIS tVALID,SO SOMI Figure 5-17. SPI Slave Mode, CKPH = 0 UCMODEx = 01 tSTE,LEAD STE tSTE,LAG UCMODEx = 10 1/fUCxCLK CKPL = 0 UCLK CKPL = 1 tLOW/HIGH tLOW/HIGH tHD,SI tSU,SI SIMO tHD,SO tSTE,ACC tVALID,SO tSTE,DIS SOMI Figure 5-18. SPI Slave Mode, CKPH = 1 Specifications Submit Documentation Feedback Product Folder Links: MSP430FR6889 MSP430FR68891 MSP430FR6888 MSP430FR6887 MSP430FR5889 MSP430FR58891 MSP430FR5888 MSP430FR5887 Copyright © 2014–2018, Texas Instruments Incorporated 57 MSP430FR6889, MSP430FR68891, MSP430FR6888, MSP430FR6887 MSP430FR5889, MSP430FR58891, MSP430FR5888, MSP430FR5887 SLASE32C – AUGUST 2014 – REVISED AUGUST 2018 www.ti.com Table 5-21 lists the characteristics of the eUSCI in I2C mode. Table 5-21. eUSCI (I2C Mode) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5-19) PARAMETER TEST CONDITIONS feUSCI eUSCI input clock frequency fSCL SCL clock frequency VCC MIN TYP Internal: SMCLK or ACLK, External: UCLK, Duty cycle = 50% ±10% 2.2 V, 3.0 V fSCL = 100 kHz UNIT 16 MHz 400 kHz 4.0 tHD,STA Hold time (repeated) START tSU,STA Setup time for a repeated START tHD,DAT Data hold time 2.2 V, 3.0 V 0 ns tSU,DAT Data setup time 2.2 V, 3.0 V 100 ns fSCL > 100 kHz fSCL = 100 kHz fSCL > 100 kHz fSCL = 100 kHz tSU,STO Setup time for STOP tBUF Bus free time between STOP and START conditions fSCL > 100 kHz Pulse duration of spikes suppressed by input filter tSP 2.2 V, 3.0 V 0 MAX 2.2 V, 3.0 V 2.2 V, 3.0 V 4.7 4.0 4.7 1.3 UCGLITx = 0 50 2.2 V, 3.0 V UCGLITx = 3 µs 0.6 fSCL > 100 kHz UCGLITx = 2 µs 0.6 fSCL = 100 kHz UCGLITx = 1 µs 0.6 µs 250 25 125 12.5 62.5 6.3 31.5 UCCLTOx = 1 tTIMEOUT Clock low time-out UCCLTOx = 2 27 2.2 V, 3.0 V 30 UCCLTOx = 3 tSU,STA tHD,STA ns ms 33 tHD,STA tBUF SDA tLOW tHIGH tSP SCL tSU,DAT tSU,STO tHD,DAT Figure 5-19. I2C Mode Timing 58 Specifications Copyright © 2014–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR6889 MSP430FR68891 MSP430FR6888 MSP430FR6887 MSP430FR5889 MSP430FR58891 MSP430FR5888 MSP430FR5887 MSP430FR6889, MSP430FR68891, MSP430FR6888, MSP430FR6887 MSP430FR5889, MSP430FR58891, MSP430FR5888, MSP430FR5887 www.ti.com SLASE32C – AUGUST 2014 – REVISED AUGUST 2018 5.13.5.4 LCD Controller Table 5-22 lists the operating conditions of the LCD_C. Table 5-22. LCD_C, Recommended Operating Conditions MIN NOM MAX UNIT VCC,LCD_C,CP en,3.6 Supply voltage range, charge pump enabled, VLCD ≤ 3.6 V LCDCPEN = 1, 0000b < VLCDx ≤ 1111b (charge pump enabled, VLCD ≤ 3.6 V) 2.2 3.6 V VCC,LCD_C,CP en,3.3 Supply voltage range, charge pump enabled, VLCD ≤ 3.3 V LCDCPEN = 1, 0000b < VLCDx ≤ 1100b (charge pump enabled, VLCD ≤ 3.3 V) 2.0 3.6 V VCC,LCD_C,int. bias Supply voltage range, internal biasing, charge pump disabled LCDCPEN = 0, VLCDEXT = 0 2.4 3.6 V VCC,LCD_C,ext. bias Supply voltage range, external biasing, charge pump disabled LCDCPEN = 0, VLCDEXT = 0 2.4 3.6 V VCC,LCD_C,VLCDEXT Supply voltage range, external LCD voltage, internal or external biasing, charge pump disabled LCDCPEN = 0, VLCDEXT = 1 2.0 3.6 V VLCDCAP External LCD voltage at LCDCAP, internal or external biasing, charge pump disabled LCDCPEN = 0, VLCDEXT = 1 2.4 3.6 V CLCDCAP Capacitor value on LCDCAP when charge pump enabled LCDCPEN = 1, VLCDx > 0000b (charge pump enabled) fACLK,in ACLK input frequency range fLCD LCD frequency range fFRAME = 1/(2 × mux) × fLCD with mux = 1 (static) to 8 fFRAME,4mux LCD frame frequency range fFRAME,8mux 4.7-20% 4.7 10+20% µF 30 32.768 40 kHz 1024 Hz fFRAME,4mux(MAX) = 1/(2 × 4) × fLCD(MAX) = 1/(2 × 4) × 1024 Hz 128 Hz LCD frame frequency range fFRAME,8mux(MAX) = 1/(2 × 4) × fLCD(MAX) = 1/(2 × 8) × 1024 Hz 64 Hz CPanel Panel capacitance fLCD = 1024 Hz, all common lines equally loaded 10000 pF VR33 Analog input voltage at R33 LCDCPEN = 0, VLCDEXT = 1 VCC+0.2 V VR23,1/3bias Analog input voltage at R23 LCDREXT = 1, LCDEXTBIAS = 1, LCD2B = 0 VR13 VR03 + 2/3 × (VR33VR03) VR33 V VR13,1/3bias Analog input voltage at R13 with 1/3 biasing LCDREXT = 1, LCDEXTBIAS = 1, LCD2B = 0 VR03 VR03 + 1/3 × (VR33 – VR03) VR23 V VR13,1/2bias Analog input voltage at R13 with 1/2 biasing LCDREXT = 1, LCDEXTBIAS = 1, LCD2B = 1 VR03 VR03 + 1/2 × (VR33 – VR03) VR33 V VR03 Analog input voltage at R03 R0EXT = 1 VSS VLCD-VR03 Voltage difference between VLCD and R03 LCDCPEN = 0, R0EXT = 1 2.4 VLCDREF External LCD reference voltage applied at LCDREF VLCDREFx = 01 0.8 0 2.4 V 1.0 VCC+0.2 V 1.2 V Specifications Submit Documentation Feedback Product Folder Links: MSP430FR6889 MSP430FR68891 MSP430FR6888 MSP430FR6887 MSP430FR5889 MSP430FR58891 MSP430FR5888 MSP430FR5887 Copyright © 2014–2018, Texas Instruments Incorporated 59 MSP430FR6889, MSP430FR68891, MSP430FR6888, MSP430FR6887 MSP430FR5889, MSP430FR58891, MSP430FR5888, MSP430FR5887 SLASE32C – AUGUST 2014 – REVISED AUGUST 2018 www.ti.com Table 5-23 lists the characteristics of the LCD_C. Table 5-23. LCD_C Electrical Characteristics over operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS VCC MIN MAX UNIT VLCDx = 0000, VLCDEXT = 0 VLCD,1 LCDCPEN = 1, VLCDx = 0001b 2 V to 3.6 V VLCD,2 LCDCPEN = 1, VLCDx = 0010b 2 V to 3.6 V 2.66 VLCD,3 LCDCPEN = 1, VLCDx = 0011b 2 V to 3.6 V 2.72 VLCD,4 LCDCPEN = 1, VLCDx = 0100b 2 V to 3.6 V 2.78 VLCD,5 LCDCPEN = 1, VLCDx = 0101b 2 V to 3.6 V 2.84 VLCD,6 LCDCPEN = 1, VLCDx = 0110b 2 V to 3.6 V 2.90 VLCD,7 LCDCPEN = 1, VLCDx = 0111b 2 V to 3.6 V 2.96 LCDCPEN = 1, VLCDx = 1000b 2 V to 3.6 V 3.02 VLCD,9 LCDCPEN = 1, VLCDx = 1001b 2 V to 3.6 V 3.08 VLCD,10 LCDCPEN = 1, VLCDx = 1010b 2 V to 3.6 V 3.14 VLCD,11 LCDCPEN = 1, VLCDx = 1011b 2 V to 3.6 V 3.20 VLCD,12 LCDCPEN = 1, VLCDx = 1100b 2 V to 3.6 V 3.26 VLCD,13 LCDCPEN = 1, VLCDx = 1101b 2.2 V to 3.6 V 3.32 VLCD,14 LCDCPEN = 1, VLCDx = 1110b 2.2 V to 3.6 V 3.38 VLCD,15 LCDCPEN = 1, VLCDx = 1111b 2.2 V to 3.6 V VLCD,7,0.8 LCD voltage with external reference of 0.8 V LCDCPEN = 1, VLCDx = 0111b, VLCDREFx = 01b, VLCDREF = 0.8 V 2 V to 3.6 V 2.96 × 0.8 V V VLCD,7,1.0 LCD voltage with external reference of 1.0 V LCDCPEN = 1, VLCDx = 0111b, VLCDREFx = 01b, VLCDREF = 1.0 V 2 V to 3.6 V 2.96 × 1.0 V V VLCD,7,1.2 LCD voltage with external reference of 1.2 V LCDCPEN = 1, VLCDx = 0111b, VLCDREFx = 01b, VLCDREF = 1.2 V 2.2 V to 3.6 V 2.96 × 1.2 V V ΔVLCD Voltage difference between consecutive VLCDx settings ΔVLCD = VLCD,x - VLCD,x-1 with x = 0010b to 1111b ICC,Peak,CP Peak supply currents due to charge pump activities LCDCPEN = 1, VLCDx = 1111b external, with decoupling capacitor on DVCC supply ≥ 1 µF 2.2 V 600 tLCD,CP,on Time to charge CLCD when discharged CLCD = 4.7 µF, LCDCPEN = 0→1, VLCDx = 1111b 2.2 V 100 ICP,Load Maximum charge pump load current LCDCPEN = 1, VLCDx = 1111b 2.2 V RLCD,Seg LCD driver output impedance, segment lines LCDCPEN = 0, ILOAD = ±10 µA 2.2 V 10 kΩ RLCD,COM LCD driver output impedance, common lines LCDCPEN = 0, ILOAD = ±10 µA 2.2 V 10 kΩ LCD voltage VLCD,8 60 Specifications 2.4 V to 3.6 V TYP VLCD,0 VCC 2.49 3.32 40 2.60 3.44 2.72 V 3.6 60 80 mV µA 500 50 ms µA Copyright © 2014–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR6889 MSP430FR68891 MSP430FR6888 MSP430FR6887 MSP430FR5889 MSP430FR58891 MSP430FR5888 MSP430FR5887 MSP430FR6889, MSP430FR68891, MSP430FR6888, MSP430FR6887 MSP430FR5889, MSP430FR58891, MSP430FR5888, MSP430FR5887 www.ti.com SLASE32C – AUGUST 2014 – REVISED AUGUST 2018 5.13.5.5 ADC Table 5-24 lists the input requirements of the ADC. Table 5-24. 12-Bit ADC, Power Supply and Input Range Conditions over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER V(Ax) I(ADC12_B) single-ended mode I(ADC12_B) differential mode TEST CONDITIONS Analog input voltage range (1) MIN NOM 0 MAX UNIT AVCC V 145 199 (3) fADC12CLK = MODCLK, ADC12ON = 1, ADC12PWRMD = 0, ADC12DIF = 0, REFON = 0, ADC12SHTx = 0, ADC12DIV = 0 3.0 V Operating supply current into AVCC and DVCC terminals (2) 2.2 V 140 190 175 245 (3) fADC12CLK = MODCLK, ADC12ON = 1, ADC12PWRMD = 0, ADC12DIF = 1, REFON = 0, ADC12SHTx= 0, ADC12DIV = 0 3.0 V Operating supply current into AVCC and DVCC terminals (2) 2.2 V 170 230 2.2 V 10 15 >2 V 0.5 4 50 kHz Clocked by ACLK or clocked by external clock ≤50 kHz. Clocked by external clock ≤50 kHz. Timer_B, TBx Clocked by SMCLK or clocked by external clock >50 kHz Clocked by ACLK or clocked by external clock ≤50 kHz Clocked by external clock ≤50 kHz eUSCI_Ax in UART mode Clocked by SMCLK Clocked by ACLK Waiting for first edge of START bit eUSCI_Ax in SPI master mode Clocked by SMCLK Clocked by ACLK Not applicable eUSCI_Ax in SPI slave mode Clocked by external clock >50 kHz Clocked by external clock ≤50 kHz Clocked by external clock ≤50 kHz eUSCI_Bx in I2C master mode Clocked by SMCLK or clocked by external clock >50 kHz Clocked by ACLK or clocked by external clock ≤50 kHz Not applicable eUSCI_Bx in I2C slave mode Clocked by external clock >50 kHz Clocked by external clock ≤50 kHz Waiting for START condition or clocked by external clock ≤50 kHz eUSCI_Bx in SPI master mode Clocked by SMCLK Clocked by ACLK Not applicable eUSCI_Bx in SPI slave mode Clocked by external clock >50 kHz Clocked by external clock ≤50 kHz Clocked by external clock ≤50 kHz ESI Clocked by SMCLK Clocked by ACLK or ESIOSC Not applicable ADC12_B Clocked by SMCLK or by MODOSC Clocked by ACLK Waiting for a trigger REF_A Not applicable Not applicable Always COMP_E Not applicable Not applicable Always (5) Not applicable Not applicable Not applicable MPY (5) Not applicable Not applicable Not applicable DMA CRC (1) (2) (3) (4) (5) 76 Peripherals are in a state that requires or uses a clock with a "high" frequency of more than 50 kHz. Peripherals are in a state that requires or uses a clock with a "low" frequency of 50 kHz or less. Peripherals are in a state that does not require or does not use an internal clock. The DMA always transfers data in active mode but can wait for a trigger in any low-power mode. A DMA trigger during a low-power mode will cause a temporary transition into active mode for the time of the transfer. Operates only during active mode and will delay the transition into a low-power mode until its operation is completed. Detailed Description Copyright © 2014–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR6889 MSP430FR68891 MSP430FR6888 MSP430FR6887 MSP430FR5889 MSP430FR58891 MSP430FR5888 MSP430FR5887 MSP430FR6889, MSP430FR68891, MSP430FR6888, MSP430FR6887 MSP430FR5889, MSP430FR58891, MSP430FR5888, MSP430FR5887 www.ti.com 6.3.1.1 SLASE32C – AUGUST 2014 – REVISED AUGUST 2018 Idle Currents of Peripherals in LPM3 and LPM4 Most peripherals can be activated to be operational in LPM3 if clocked by ACLK. Some modules are even operational in LPM4 because they do not require a clock to operate (for example, the comparator). Activating a peripheral in LPM3 or LPM4 increases the current consumption due to its active supply current contribution but also due to an additional idle current. To limit the idle current adder certain peripherals are group together. To achieve optimal current consumption try to use modules within one group and to limit the number of groups with active modules. Table 6-3 lists the group for each peripheral. Modules not listed in this table are either already included in the standard LPM3 current consumption specifications or cannot be used in LPM3 or LPM4. The idle current adder is very small at room temperature (25°C) but increases at high temperatures (85°C). See the IIDLE parameters in Section 5.7 for details. Table 6-3. Peripheral Groups GROUP A GROUP B GROUP C GROUP D Timer TA0 Timer TA1 Timer TA2 Timer TA3 Comparator Extended Scan Interface (ESI) Timer B0 LCD_C ADC12_B eUSCI_A0 eUSCI_A1 REF_A eUSCI_B0 eUSCI_B1 Detailed Description Submit Documentation Feedback Product Folder Links: MSP430FR6889 MSP430FR68891 MSP430FR6888 MSP430FR6887 MSP430FR5889 MSP430FR58891 MSP430FR5888 MSP430FR5887 Copyright © 2014–2018, Texas Instruments Incorporated 77 MSP430FR6889, MSP430FR68891, MSP430FR6888, MSP430FR6887 MSP430FR5889, MSP430FR58891, MSP430FR5888, MSP430FR5887 SLASE32C – AUGUST 2014 – REVISED AUGUST 2018 6.4 www.ti.com Interrupt Vector Table and Signatures The interrupt vectors, the power-up start address and signatures are in the address range 0FFFFh to 0FF80h. Figure 6-1 summarizes the content of this address range. Reset Vector 0FFFFh BSL Password Interrupt Vectors 0FFE0h JTAG Password Reserved Signatures 0FF88h 0FF80h Figure 6-1. Interrupt Vectors, Signatures, and Passwords The power-up start address or reset vector is located at 0FFFFh to 0FFFEh. It contains the 16-bit address pointing to the start address of the application program. The interrupt vectors start at 0FFFDh and extend to lower addresses. Each vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence. Table 6-4 shows the device-specific interrupt vector locations. The vectors programmed into the address range from 0FFFFh to 0FFE0h are used as the BSL password (if enabled by the corresponding signature). The signatures are located at 0FF80h and extend to higher addresses. Signatures are evaluated during device start-up. Table 6-5 shows the device-specific signature locations. A JTAG password can be programmed starting at address 0FF88h and extending to higher addresses. The password can extend into the interrupt vector locations using the interrupt vector addresses as additional bits for the password. The length of the JTAG password depends on the JTAG signature. See the System Resets, Interrupts, and Operating Modes, System Control Module (SYS) chapter in the MSP430FR58xx, MSP430FR59xx, MSP430FR68xx, MSP430FR69xx Family User's Guide for details. 78 Detailed Description Copyright © 2014–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR6889 MSP430FR68891 MSP430FR6888 MSP430FR6887 MSP430FR5889 MSP430FR58891 MSP430FR5888 MSP430FR5887 MSP430FR6889, MSP430FR68891, MSP430FR6888, MSP430FR6887 MSP430FR5889, MSP430FR58891, MSP430FR5888, MSP430FR5887 www.ti.com SLASE32C – AUGUST 2014 – REVISED AUGUST 2018 Table 6-4. Interrupt Sources, Flags, and Vectors INTERRUPT SOURCE INTERRUPT FLAG SYSTEM INTERRUPT WORD ADDRESS PRIORITY System Reset Power up, Brownout, Supply Supervisor External Reset RST Watchdog time-out (watchdog mode) WDT, FRCTL MPU, CS, PMM password violation FRAM uncorrectable bit error detection MPU segment violation FRAM access time error Software POR, BOR SVSHIFG PMMRSTIFG WDTIFG WDTPW, FRCTLPW, MPUPW, CSPW, PMMPW UBDIFG MPUSEGIIFG, MPUSEG1IFG, MPUSEG2IFG, MPUSEG3IFG ACCTEIFG PMMPORIFG, PMMBORIFG (SYSRSTIV) (1) (2) Reset 0FFFEh Highest (Non)maskable 0FFFCh System NMI Vacant memory access JTAG mailbox FRAM bit error detection MPU segment violation (1) (2) (3) VMAIFG JMBINIFG, JMBOUTIFG CBDIFG, UBDIFG MPUSEGIIFG, MPUSEG1IFG, MPUSEG2IFG, MPUSEG3IFG (SYSSNIV) (1) (3) User NMI External NMI Oscillator fault NMIIFG, OFIFG (SYSUNIV) (1) (3) (Non)maskable 0FFFAh Comparator_E Comparator_E interrupt flags (CEIV) (1) Maskable 0FFF8h Timer_B TB0 TB0CCR0.CCIFG Maskable 0FFF6h Timer_B TB0 TB0CCR1.CCIFG to TB0CCR6.CCIFG, TB0CTL.TBIFG (TB0IV) (1) Maskable 0FFF4h Watchdog timer (interval timer mode) WDTIFG Maskable 0FFF2h Extended Scan IF ESIIFG0 to ESIIFG8 (ESIIV) (1) Maskable 0FFF0h eUSCI_A0 receive or transmit UCA0IFG: UCRXIFG, UCTXIFG (SPI mode) UCA0IFG:UCSTTIFG, UCTXCPTIFG, UCRXIFG, UCTXIFG (UART mode) (UCA0IV) (1) Maskable 0FFEEh eUSCI_B0 receive or transmit UCB0IFG: UCRXIFG, UCTXIFG (SPI mode) UCB0IFG: UCALIFG, UCNACKIFG, UCSTTIFG, UCSTPIFG, UCRXIFG0, UCTXIFG0, UCRXIFG1, UCTXIFG1, UCRXIFG2, UCTXIFG2, UCRXIFG3, UCTXIFG3, UCCNTIFG, UCBIT9IFG (I2C mode) (UCB0IV) (1) Maskable 0FFECh ADC12_B ADC12IFG0 to ADC12IFG31 ADC12LOIFG, ADC12INIFG, ADC12HIIFG, ADC12RDYIFG, ADC12OVIFG, ADC12TOVIFG (ADC12IV) (1) Maskable 0FFEAh Timer_A TA0 TA0CCR0.CCIFG Maskable 0FFE8h Timer_A TA0 TA0CCR1.CCIFG to TA0CCR2.CCIFG, TA0CTL.TAIFG (TA0IV) (1) Maskable 0FFE6h eUSCI_A1 receive or transmit UCA1IFG:UCRXIFG, UCTXIFG (SPI mode) UCA1IFG:UCSTTIFG, UCTXCPTIFG, UCRXIFG, UCTXIFG (UART mode) (UCA1IV) (1) Maskable 0FFE4h Multiple source flags A reset is generated if the CPU tries to fetch instructions from within peripheral space (Non)maskable: the individual interrupt-enable bit can disable an interrupt event, but the general-interrupt enable cannot disable it. Detailed Description Submit Documentation Feedback Product Folder Links: MSP430FR6889 MSP430FR68891 MSP430FR6888 MSP430FR6887 MSP430FR5889 MSP430FR58891 MSP430FR5888 MSP430FR5887 Copyright © 2014–2018, Texas Instruments Incorporated 79 MSP430FR6889, MSP430FR68891, MSP430FR6888, MSP430FR6887 MSP430FR5889, MSP430FR58891, MSP430FR5888, MSP430FR5887 SLASE32C – AUGUST 2014 – REVISED AUGUST 2018 www.ti.com Table 6-4. Interrupt Sources, Flags, and Vectors (continued) INTERRUPT SOURCE INTERRUPT FLAG SYSTEM INTERRUPT WORD ADDRESS eUSCI_B1 receive or transmit) UCB1IFG: UCRXIFG, UCTXIFG (SPI mode) UCB1IFG: UCALIFG, UCNACKIFG, UCSTTIFG, UCSTPIFG, UCRXIFG0, UCTXIFG0, UCRXIFG1, UCTXIFG1, UCRXIFG2, UCTXIFG2, UCRXIFG3, UCTXIFG3, UCCNTIFG, UCBIT9IFG (I2C mode) (UCB1IV) (1) Maskable 0FFE2h DMA DMA0CTL.DMAIFG, DMA1CTL.DMAIFG, DMA2CTL.DMAIFG (DMAIV) (1) Maskable 0FFE0h Timer_A TA1 TA1CCR0.CCIFG Maskable 0FFDEh Timer_A TA1 TA1CCR1.CCIFG to TA1CCR2.CCIFG, TA1CTL.TAIFG (TA1IV) (1) Maskable 0FFDCh I/O Port P1 P1IFG.0 to P1IFG.7 (P1IV) (1) Maskable 0FFDAh Timer_A TA2 TA2CCR0.CCIFG Maskable 0FFD8h Timer_A TA2 TA2CCR1.CCIFG TA2CTL.TAIFG (TA2IV) (1) Maskable 0FFD6h I/O Port P2 P2IFG.0 to P2IFG.7 (P2IV) (1) Maskable 0FFD4h Timer_A TA3 TA3CCR0.CCIFG Maskable 0FFD2h Timer_A TA3 TA3CCR1.CCIFG TA3CTL.TAIFG (TA3IV) (1) Maskable 0FFD0h I/O Port P3 P3IFG.0 to P3IFG.7 (P3IV) (1) Maskable 0FFCEh I/O Port P4 P4IFG.0 to P4IFG.7 (P4IV) (1) Maskable 0FFCCh Maskable 0FFCAh Maskable 0FFC8h LCD_C (Reserved on MSP430FR5xxx) RTC_C LCD_C interrupt flags (LCDCIV) (1) RTCRDYIFG, RTCTEVIFG, RTCAIFG, RT0PSIFG, RT1PSIFG, RTCOFIFG (RTCIV) (1) PRIORITY Lowest Table 6-5. Signatures SIGNATURE WORD ADDRESS IP Encapsulation Signature2 IP Encapsulation Signature1 (1) 80 (1) 0FF8Ah 0FF88h BSL Signature2 0FF86h BSL Signature1 0FF84h JTAG Signature2 0FF82h JTAG Signature1 0FF80h Must not contain 0AAAAh if used as JTAG password and IP encapsulation functionality is not desired. Detailed Description Copyright © 2014–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR6889 MSP430FR68891 MSP430FR6888 MSP430FR6887 MSP430FR5889 MSP430FR58891 MSP430FR5888 MSP430FR5887 MSP430FR6889, MSP430FR68891, MSP430FR6888, MSP430FR6887 MSP430FR5889, MSP430FR58891, MSP430FR5888, MSP430FR5887 www.ti.com 6.5 SLASE32C – AUGUST 2014 – REVISED AUGUST 2018 Bootloader (BSL) The BSL enables programming of the FRAM or RAM using a UART serial interface (FRxxxx devices) or an I2C interface (FRxxxx1 devices). Access to the device memory through the BSL is protected by an user-defined password. Table 6-6 lists the BSL pin requirements. BSL entry requires a specific entry sequence on the RST/NMI/SBWTDIO and TEST/SBWTCK pins. For complete description of the features of the BSL and its implementation, see MSP430 Programming With the Bootloader (BSL). Table 6-6. BSL Pin Requirements and Functions 6.6 6.6.1 DEVICE SIGNAL BSL FUNCTION RST/NMI/SBWTDIO Entry sequence signal TEST/SBWTCK Entry sequence signal P2.0 Devices with UART BSL (FRxxxx): Data transmit P2.1 Devices with UART BSL (FRxxxx): Data receive P1.6 Devices with I2C BSL (FRxxxx1): Data P1.7 Devices with I2C BSL (FRxxxx1): Clock VCC Power supply VSS Ground supply JTAG Operation JTAG Standard Interface The MSP430 family supports the standard JTAG interface, which requires four signals for sending and receiving data. The JTAG signals are shared with general-purpose I/Os. The TEST/SBWTCK pin is used to enable the JTAG signals. In addition to these signals, the RST/NMI/SBWTDIO signal is required to interface with MSP430 development tools and device programmers. Table 6-7 lists the JTAG pin requirements. For details on interfacing to development tools and device programmers, see the MSP430 Hardware Tools User's Guide. For details on the JTAG implementation in MSP MCUs, see MSP430 Programming With the JTAG Interface. Table 6-7. JTAG Pin Requirements and Functions 6.6.2 DEVICE SIGNAL DIRECTION FUNCTION PJ.3/TCK IN JTAG clock input PJ.2/TMS IN JTAG state control PJ.1/TDI/TCLK IN JTAG data input, TCLK input PJ.0/TDO OUT JTAG data output TEST/SBWTCK IN Enable JTAG pins RST/NMI/SBWTDIO IN External reset VCC Power supply VSS Ground supply Spy-Bi-Wire Interface In addition to the standard JTAG interface, the MSP430 family supports the 2-wire Spy-Bi-Wire interface. Spy-Bi-Wire can be used to interface with MSP430 development tools and device programmers. Table 6-8 lists the Spy-Bi-Wire interface pin requirements. For details on interfacing to development tools and device programmers, see the MSP430 Hardware Tools User's Guide. For details on the SBW implementation in MSP MCUs, see MSP430 Programming With the JTAG Interface. Detailed Description Submit Documentation Feedback Product Folder Links: MSP430FR6889 MSP430FR68891 MSP430FR6888 MSP430FR6887 MSP430FR5889 MSP430FR58891 MSP430FR5888 MSP430FR5887 Copyright © 2014–2018, Texas Instruments Incorporated 81 MSP430FR6889, MSP430FR68891, MSP430FR6888, MSP430FR6887 MSP430FR5889, MSP430FR58891, MSP430FR5888, MSP430FR5887 SLASE32C – AUGUST 2014 – REVISED AUGUST 2018 www.ti.com Table 6-8. Spy-Bi-Wire Pin Requirements and Functions 6.7 DEVICE SIGNAL DIRECTION FUNCTION TEST/SBWTCK IN Spy-Bi-Wire clock input RST/NMI/SBWTDIO IN, OUT Spy-Bi-Wire data input/output VCC Power supply VSS Ground supply FRAM The FRAM can be programmed through the JTAG port, Spy-Bi-Wire (SBW), the BSL, or in system by the CPU. Features of the FRAM include: • Ultra-low-power ultra-fast-write nonvolatile memory • Byte and word access capability • Programmable wait state generation • Error correction coding (ECC) NOTE Wait States For MCLK frequencies > 8 MHz, wait states must be configured following the flow described in the "FRAM Controller (FRCTRL)" chapter, section "Wait State Control" of the MSP430FR58xx, MSP430FR59xx, MSP430FR68xx, MSP430FR69xx Family User's Guide. For important software design information regarding FRAM including but not limited to partitioning the memory layout according to application-specific code, constant, and data space requirements, the use of FRAM to optimize application energy consumption, and the use of the memory protection unit (MPU) to maximize application robustness by protecting the program code against unintended write accesses, see MSP430 FRAM Technology – How To and Best Practices. 6.8 RAM The RAM is made up of one sector. The sector can be completely powered down in LPM3 and LPM4 to save leakage; however, all data is lost during shutdown. 6.9 Tiny RAM The Tiny RAM can be used to hold data or a very small stack if the complete RAM is powered down in LPM3 and LPM4. 6.10 Memory Protection Unit Including IP Encapsulation The FRAM can be protected from inadvertent CPU execution, read or write access by the MPU. Features of the MPU include: • IP Encapsulation with programmable boundaries (prevents reads from "outside" like JTAG or non-IP software) in steps of 1KB. • Main memory partitioning programmable up to three segments in steps of 1KB. • The access rights of each segment (main and information memory) can be individually selected. • Access violation flags with interrupt capability for easy servicing of access violations. 82 Detailed Description Copyright © 2014–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430FR6889 MSP430FR68891 MSP430FR6888 MSP430FR6887 MSP430FR5889 MSP430FR58891 MSP430FR5888 MSP430FR5887 MSP430FR6889, MSP430FR68891, MSP430FR6888, MSP430FR6887 MSP430FR5889, MSP430FR58891, MSP430FR5888, MSP430FR5887 www.ti.com SLASE32C – AUGUST 2014 – REVISED AUGUST 2018 6.11 Peripherals Peripherals are connected to the CPU through data, address, and control buses. Peripherals can be managed using all instructions. For complete module descriptions, see the MSP430FR58xx, MSP430FR59xx, MSP430FR68xx, MSP430FR69xx Family User's Guide. 6.11.1 Digital I/O Up to eleven 8-bit I/O ports are implemented: • All individual I/O bits are independently programmable. • Any combination of input, output, and interrupt conditions is possible. • Programmable pullup or pulldown on all ports. • Edge-selectable interrupt and LPM3.5 and LPM4.5 wake-up input capability is available for all pins of ports P1, P2, P3, and P4. • Read and write access to port-control registers is supported by all instructions. • Ports can be accessed byte-wise or word-wise in pairs. • Capacitive touch functionality is supported on all pins of ports P1 to P10 and PJ. • No cross-currents during start-up NOTE Configuration of Digital I/Os After BOR Reset To prevent any cross-currents during start-up of the device all port pins are high-impedance with Schmitt triggers and their module functions disabled. To enable the I/O functionality after a BOR reset the ports must be configured first and then the LOCKLPM5 bit must be cleared. For details, see the Configuration After Reset section of the Digital I/O chapter in the MSP430FR58xx, MSP430FR59xx, MSP430FR68xx, MSP430FR69xx Family User's Guide. 6.11.2 Oscillator and Clock System (CS) The clock system includes support for a 32-kHz watch crystal oscillator XT1 (LF), an internal very-lowpower low-frequency oscillator (VLO), an integrated internal digitally controlled oscillator (DCO), and a high-frequency crystal oscillator XT2 (HF). The clock system module is designed to meet the requirements of both low system cost and low power consumption. A fail-safe mechanism exists for all crystal sources. The clock system module provides the following clock signals: • Auxiliary clock (ACLK), sourced from a 32-kHz watch crystal (LFXT1), the internal low-frequency oscillator (VLO), or a digital external low frequency (
MSP430FR5887IPM 价格&库存

很抱歉,暂时无法提供与“MSP430FR5887IPM”相匹配的价格&库存,您可以联系我们找货

免费人工找货
MSP430FR5887IPM
    •  国内价格
    • 1000+37.95000

    库存:0