0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
MSP430FR5994IZVW

MSP430FR5994IZVW

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    VFBGA87

  • 描述:

    IC MCU 16BIT 256KB FRAM 87NFBGA

  • 数据手册
  • 价格&库存
MSP430FR5994IZVW 数据手册
www.ti.com MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962 MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5962 SLASE54D –MSP430FR5964, MARCH 2016 – REVISED JANUARY 2021 SLASE54D – MARCH 2016 – REVISED JANUARY 2021 MSP430FR599x, MSP430FR596x Mixed-Signal Microcontrollers 1 Features • • • • • Embedded microcontroller – 16-bit RISC architecture up to 16‑MHz clock – Up to 256KB of ferroelectric random access memory (FRAM) • Ultra-low-power writes • Fast write at 125 ns per word (64KB in 4 ms) • Flexible allocation of data and application code in memory • 1015 write cycle endurance • Radiation resistant and nonmagnetic – Wide supply voltage range from 3.6 V down to 1.8 V (minimum supply voltage is restricted by SVS levels, see the SVS specifications) Optimized ultra-low-power modes – Active mode: 118 µA/MHz – Standby with VLO (LPM3): 500 nA – Standby with real-time clock (RTC) (LPM3.5): 350 nA (the RTC is clocked by a 3.7-pF crystal) – Shutdown (LPM4.5): 45 nA Low-energy accelerator (LEA) for signal processing (MSP430FR599x only) – Operation independent of CPU – 4KB of RAM shared with CPU – Efficient 256-point complex FFT: Up to 40x faster than Arm® Cortex®-M0+ core Intelligent digital peripherals – 32-bit hardware multiplier (MPY) – 6-channel internal DMA – RTC with calendar and alarm functions – Six 16-bit timers with up to seven capture/ compare registers each – 32- and 16-bit cyclic redundancy check (CRC) High-performance analog – 16-channel analog comparator – 12-bit analog-to-digital converter (ADC) featuring window comparator, internal reference and sample-and-hold, up to 20 external input channels • • • • • • Multifunction input/output ports – All pins support capacitive-touch capability with no need for external components – Accessible bit-, byte-, and word-wise (in pairs) – Edge-selectable wake from LPM on all ports – Programmable pullup and pulldown on all ports Code security and encryption – 128- or 256-bit AES security encryption and decryption coprocessor – Random number seed for random number generation algorithms – IP encapsulation protects memory from external access Enhanced serial communication – Up to four eUSCI_A serial communication ports • UART with automatic baud-rate detection • IrDA encode and decode – Up to four eUSCI_B serial communication ports • I2C with multiple-slave addressing – Hardware UART or I2C bootloader (BSL) Flexible clock system – Fixed-frequency DCO with 10 selectable factory-trimmed frequencies – Low-power low-frequency internal clock source (VLO) – 32-kHz crystals (LFXT) – High-frequency crystals (HFXT) Development tools and software (also see Tools and Software) – Development kits (MSP-EXP430FR5994 LaunchPad™ development kit and MSP‑TS430PN80B target socket board) – MSP430Ware™ software for MSP430™ microcontrollers Device Comparison summarizes the available devices 2 Applications • • • • • Grid infrastructure Factory automation & control Building automation Wearable fitness & activity monitor Wearable electronics An©IMPORTANT NOTICEIncorporated at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, Copyright 2021 Texas Instruments Submit Document Feedback intellectual property matters and other important disclaimers. PRODUCTION DATA. Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962 1 MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962 SLASE54D – MARCH 2016 – REVISED JANUARY 2021 www.ti.com 3 Description The MSP430FR599x microcontrollers (MCUs) take low power and performance to the next level with the unique low-energy accelerator (LEA) for digital signal processing. This accelerator delivers 40x the performance of Arm® Cortex®-M0+ MCUs to help developers efficiently process data using complex functions such as FFT, FIR, and matrix multiplication. Implementation requires no DSP expertise with a free optimized DSP Library available. Additionally, with up to 256KB of unified memory with FRAM, these devices offer more space for advanced applications and flexibility for effortless implementation of over-the-air firmware updates. The MSP ultra-low-power (ULP) FRAM microcontroller platform combines uniquely embedded FRAM and a holistic ultra-low-power system architecture, allowing system designers to increase performance while lowering energy consumption. FRAM technology combines the low-energy fast writes, flexibility, and endurance of RAM with the nonvolatile behavior of flash. MSP430FR599x MCUs are supported by an extensive hardware and software ecosystem with reference designs and code examples to get your design started quickly. Development kits for the MSP430FR599x include the MSP-EXP430FR5994 LaunchPad™ development kit and the MSP-TS430PN80B 80-pin target development board. TI also provides free MSP430Ware™ software, which is available as a component of Code Composer Studio™ IDE desktop and cloud versions within TI Resource Explorer. For complete module descriptions, see the MSP430FR58xx, MSP430FR59xx, and MSP430FR6xx Family User's Guide. Device Information PART NUMBER (1) (2) MSP430FR5994IZVW BODY SIZE(3) NFBGA (87) 6 mm × 6 mm MSP430FR5994IPN LQFP (80) 12 mm × 12 mm MSP430FR5994IPM LQFP (64) 10 mm × 10 mm MSP430FR5994IRGZ VQFN (48) 7 mm × 7 mm (1) (2) (3) 2 PACKAGE For the most current part, package, and ordering information for all available devices, see the Package Option Addendum in Section 12, or see the TI website at www.ti.com. For a comparison of all available device variants, see Section 6. The sizes shown here are approximations. For the package dimensions with tolerances, see the Mechanical Data in Section 12. Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962 MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962 www.ti.com SLASE54D – MARCH 2016 – REVISED JANUARY 2021 4 Functional Block Diagram Figure 4-1 shows the functional block diagram of the devices. P1.x, P2.x LFXIN, HFXIN 2x8 LFXOUT, HFXOUT P3.x, P4.x P5.x, P6.x 2x8 2x8 P7.x, P8.x 2x8 PJ.x 1x8 Capacitive Touch I/O 0, Capacitive Touch I/O 1 ADC12_B MCLK ACLK Comp_E SMCLK (up to 16 inputs) Clock System (up to 16 standard inputs, up to 8 differential inputs) DMA Controller REF_A Voltage Reference I/O Ports P1, P2 2x8 I/Os I/O Ports P3, P4 2x8 I/Os I/O Ports P5, P6 2x8 I/Os I/O Ports P7, P8 2x8 I/Os PA 1x16 I/Os PB 1x16 I/Os PC 1x16 I/Os PD 1x16 I/Os I/O Port PJ 1x8 I/Os 6 channels Bus Control Logic MAB MDB CPUXV2 with 16 registers MPU IP Encap FRCTL_A 256KB 128KB EEM (S3+1) : RAM 4KB + 4KB Tiny RAM 22B CRC16 Power Management LDO SVS Brownout CRC-16CCITT TA2(int) TA3(int) Timer_A 2 CC Registers AES256 MPY32 CRC32 CRC-32ISO-3309 Security Encryption, Decryption (128, 256) Watchdog MDB JTAG Interface MAB Spy-Bi-Wire LEA Subsystem TB0 TA0 TA1 TA4 Timer_B 7 CC Registers (int, ext) Timer_A 3 CC Registers (int, ext) Timer_A 3 CC Registers (int, ext) Timer_A 2 CC Registers (int, ext) eUSCI_A0 eUSCI_A1 eUSCI_A2 eUSCI_A3 (UART, IrDA, SPI) eUSCI_B0 eUSCI_B1 eUSCI_B2 eUSCI_B3 RTC_C 2 (I C, SPI) LPM3.5 Domain A. The device has 8KB of RAM, and 4KB of the RAM is shared with the LEA subsystem. The CPU has priority over the LEA subsystem. B. The LEA subsystem is available on the MSP430FR599x MCUs only. Figure 4-1. Functional Block Diagram Copyright © 2021 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962 3 MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962 SLASE54D – MARCH 2016 – REVISED JANUARY 2021 www.ti.com Table of Contents 1 Features............................................................................1 2 Applications..................................................................... 1 3 Description.......................................................................2 4 Functional Block Diagram.............................................. 3 5 Revision History.............................................................. 5 6 Device Comparison......................................................... 7 6.1 Related Products........................................................ 8 7 Terminal Configuration and Functions..........................9 7.1 Pin Diagrams.............................................................. 9 7.2 Pin Attributes.............................................................14 7.3 Signal Descriptions................................................... 20 7.4 Pin Multiplexing.........................................................28 7.5 Buffer Types..............................................................28 7.6 Connection of Unused Pins...................................... 28 8 Specifications................................................................ 29 8.1 Absolute Maximum Ratings...................................... 29 8.2 ESD Ratings............................................................. 29 8.3 Recommended Operating Conditions.......................30 8.4 Active Mode Supply Current Into VCC Excluding External Current.......................................................... 31 8.5 Typical Characteristics, Active Mode Supply Currents.......................................................................32 8.6 Low-Power Mode (LPM0, LPM1) Supply Currents Into VCC Excluding External Current............ 32 8.7 Low-Power Mode (LPM2, LPM3, LPM4) Supply Currents (Into VCC) Excluding External Current.......... 33 8.8 Low-Power Mode (LPMx.5) Supply Currents (Into VCC) Excluding External Current......................... 35 8.9 Typical Characteristics, Low-Power Mode Supply Currents...........................................................36 8.10 Typical Characteristics, Current Consumption per Module.................................................................. 37 8.11 Thermal Packaging Characteristics........................ 37 8.12 Timing and Switching Characteristics..................... 38 9 Detailed Description......................................................66 4 Submit Document Feedback 9.1 Overview................................................................... 66 9.2 CPU.......................................................................... 66 9.3 Low-Energy Accelerator (LEA) for Signal Processing (MSP430FR599x Only)............................ 66 9.4 Operating Modes...................................................... 67 9.5 Interrupt Vector Table and Signatures.......................70 9.6 Bootloader (BSL)...................................................... 73 9.7 JTAG Operation........................................................ 74 9.8 FRAM Controller A (FRCTL_A)................................ 75 9.9 RAM.......................................................................... 75 9.10 Tiny RAM................................................................ 75 9.11 Memory Protection Unit (MPU) Including IP Encapsulation..............................................................75 9.12 Peripherals..............................................................76 9.13 Input/Output Diagrams............................................86 9.14 Device Descriptors (TLV)...................................... 124 9.15 Memory Map......................................................... 127 9.16 Identification..........................................................147 10 Applications, Implementation, and Layout............. 148 10.1 Device Connection and Layout Fundamentals..... 148 10.2 Peripheral- and Interface-Specific Design Information................................................................ 151 11 Device and Documentation Support........................153 11.1 Getting Started...................................................... 153 11.2 Device Nomenclature............................................153 11.3 Tools and Software................................................154 11.4 Documentation Support........................................ 156 11.5 Related Links........................................................ 157 11.6 Support Resources............................................... 157 11.7 Trademarks........................................................... 157 11.8 Electrostatic Discharge Caution............................ 158 11.9 Export Control Notice............................................ 158 11.10 Glossary.............................................................. 158 12 Mechanical, Packaging, and Orderable Information.................................................................. 159 Copyright © 2021 Texas Instruments Incorporated Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962 MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962 www.ti.com SLASE54D – MARCH 2016 – REVISED JANUARY 2021 5 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. Changes from revision C to revision D Changes from August 31, 2018 to January 15, 2021 Page • Updated the numbering format for tables, figures, and cross references throughout the document..................1 • Format updates and corrections to external links as needed............................................................................. 1 • Changed the column "FRAM Program + Information (KB)" in Section 6, Device Comparison ..........................7 • Added ball L5 to the COUT signal on the ZVW package in Section 7.3, Signal Descriptions ......................... 20 • Added the note that begins "XT1CLK and VLOCLK can be active during LPM4..." ........................................67 • Added the INTERRUPT VECTOR REGISTER column, moved register names from the INTERRUPT FLAG column, and corrected interrupt flag names as necessary in Table 9-4, Interrupt Sources, Flags, Vectors, and Signatures ........................................................................................................................................................70 • Corrected the interrupt flags for Port 4 to Port 8 in Table 9-4, Interrupt Sources, Flags, and Vectors .............70 • Corrected the note on the P1DIR.x column for the UCB0SOMI/UCB0SCL row (changed eUSCI_A0 to eUSCI_B0) in Table 9-22, Port P1 (P1.6 and P1.7) Pin Functions .................................................................. 91 • Corrected the value of P5SEL1.5 (changed from 0 to 1) and P5SEL0.5 (from 1 to 0) for the N/A and DVSS rows on P5.5 in Table 9-31, Port P5 (P5.0 to P5.7) Pin Functions ................................................................ 106 • Corrected eUSCI module in the note "Direction controlled by eUSCI_B1 module" (changed from eUSCI_B0 to eUSCI_B1) .....................................................................................................................................................106 Changes from revision B to revision C Changes from February 1, 2017 to August 30, 2018 Page • Updated Section 6.1, Related Products .............................................................................................................8 • Added note (1) to Section 8.12.1.2, SVS .........................................................................................................38 • Corrected the value of P6SEL1.x (changed from 0 to 1) for the N/A and DVSS rows on P6.5, P6.6, and P6.7 in Table 9-32, Port P6 (P6.0 to P6.7) Pin Functions ...................................................................................... 108 • Changed capacitor value from 4.7 µF to 470 nF in Figure 10-5, ADC12_B Grounding and Noise Considerations ...............................................................................................................................................151 • Changed capacitor value from 4.7 µF to 470 nF in the last paragraph of Section 10.2.1.2, Design Requirements ................................................................................................................................................ 151 • Updated text and figure in Section 11.2, Device Nomenclature .................................................................... 153 Changes from revision A to revision B Changes from October 18, 2016 to January 31, 2017 Page • Changed document status from Advance Information to Production Data.........................................................1 • Updated all electrical and timing specifications and typical characteristics graphs with production data.........29 Changes from initial release to revision A Changes from March 17, 2016 to October 17, 2016 Page • Changed from 35x Faster to Up to 40x Faster in the list item that starts "Efficient 256-Point Complex FFT..." in Section 1, Features ............................................................................................................................................1 • Added Section 6.1, Related Products ................................................................................................................8 • Added second row to tSample parameter in Section 8.12.9.2, 12-Bit ADC, Timing Parameters ....................... 58 • Removed ADC12DIV from equation for the tCONVERT TYP time, because ADC12CLK is after division...........58 • Added "RS < 10 kΩ" to the note that starts "Approximately 10 Tau (τ) are needed..." on Section 8.12.9.2, 12Bit ADC, Timing Parameters ............................................................................................................................58 Copyright © 2021 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962 5 MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962 SLASE54D – MARCH 2016 – REVISED JANUARY 2021 • 6 www.ti.com Changed from "If the RST/NMI pin is unused...with a 2.2-nF pulldown capacitor" to "If the RST/NMI pin is unused...with a 10-nF pulldown capacitor" in Section 10.1.4, Reset ............................................................. 150 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962 MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962 www.ti.com SLASE54D – MARCH 2016 – REVISED JANUARY 2021 6 Device Comparison Table 6-1 summarizes the available family members. Table 6-1. Device Comparison DEVICE (1) (2) FRAM Program + Information (KB) SRAM (KB) CLOCK SYSTEM LEA ADC12_B (Channels) eUSCI_A(5) eUSCI_B (6) 4 4 3 3 16 external, 2 internal 2 20 external, 2 internal Comp_E Timer_A (3) Timer_B (4) I/Os PACKAGE 68 80 PN (LQFP) 87 ZVW (NFBGA) 54 64 PM (LQFP) 1 40 48 RGZ (VQFN) 4 4 68 80 PN (LQFP) 87 ZVW (NFBGA) 3 3 54 64 PM (LQFP) 16 external, 2 internal 2 1 40 48 RGZ (VQFN) 20 external, 2 internal 4 4 68 80 PN (LQFP) 87 ZVW (NFBGA) 3 3 54 64 PM (LQFP) 16 external, 2 internal 2 1 40 48 RGZ (VQFN) 20 external, 2 internal 4 4 68 80 PN (LQFP) 87 ZVW (NFBGA) 3 3 54 64 PM (LQFP) 16 external, 2 internal 2 1 40 48 RGZ (VQFN) 20 external, 2 internal 4 4 68 80 PN (LQFP) 87 ZVW (NFBGA) 3 3 54 64 PM (LQFP) 2 1 40 48 RGZ (VQFN) 20 external, 2 internal MSP430FR5994 MSP430FR5992 MSP430FR5964 MSP430FR5962 MSP430FR59941 256 + 0.5 128 + 0.5 256 + 0.5 128 + 0.5 256 + 0.5 DCO HFXT LFXT 8 DCO HFXT LFXT 8 DCO HFXT LFXT 8 DCO HFXT LFXT 8 DCO HFXT LFXT 8 Yes Yes No No Yes 17 external, 2 internal 17 external, 2 internal 17 external, 2 internal 17 external, 2 internal 17 external, 2 internal 16 external, 2 internal (1) (2) (3) 16 ch. 16 ch. 16 ch. 16 ch. 16 ch. 3, 3 (7) 2, 2,2 (8) 3, 3 (7) 2, 2,2 (8) 3, 3 (7) 2, 2,2 (8) 3, 3 (7) 2, 2,2 (8) 3, 3 (7) 2, 2,2 (8) 7 7 7 7 7 AES Yes Yes Yes Yes Yes BSL UART UART UART UART I2C For the most current package and ordering information, see the Package Option Addendum in Section 12, or see the TI website at www.ti.com. Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/packaging. Each number in the sequence represents an instantiation of Timer_A with its associated number of capture/compare registers and PWM output generators available. For example, a number sequence of 3, 5 would represent two instantiations of Timer_A, the first instantiation having 3 capture/compare registers and PWM output generators and the second instantiation having 5 capture/compare registers and PWM output generators, respectively. Copyright © 2021 Texas Instruments Incorporated Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962 Submit Document Feedback 7 MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962 www.ti.com SLASE54D – MARCH 2016 – REVISED JANUARY 2021 (4) (5) (6) (7) (8) Each number in the sequence represents an instantiation of Timer_B with its associated number of capture/compare registers and PWM output generators available. For example, a number sequence of 3, 5 would represent two instantiations of Timer_B, the first instantiation having 3 capture/compare registers and PWM output generators and the second instantiation having 5 capture/compare registers and PWM output generators, respectively. eUSCI_A supports UART with automatic baud-rate detection, IrDA encode and decode, and SPI. eUSCI_B supports I2C with multiple slave addresses and SPI. Timers TA0 and TA1 provide internal and external capture/compare inputs and internal and external PWM outputs. Timers TA2 and TA3 provide only internal capture/compare inputs and only internal PWM outputs (if any). Timer TA4 provides internal and external capture/compare inputs and internal and external PWM outputs. Note: TA4 in the RGZ package provides only internal capture/compare inputs and only internal PWM outputs. 6.1 Related Products For information about other devices in this family of products or related products, see the following links. 16-bit and 32-bit microcontrollers High-performance, low-power solutions to enable the autonomous future Products for MSP430 ultra-low-power sensing & measurement MCUs One platform. One ecosystem. Endless possibilities. Reference designs for MSP430FR5994 Find reference designs leveraging the best in TI technology – from analog and power management to embedded processors. 8 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962 MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962 www.ti.com SLASE54D – MARCH 2016 – REVISED JANUARY 2021 7 Terminal Configuration and Functions 7.1 Pin Diagrams Figure 7-1 shows the bottom view of the pinout of the 87-pin ZVW package, and Figure 7-2 shows the top view of the pinout. DVSS1 DVCC1 DGND DGND P2.0 P2.1 P8.1 P3.5 P1.6 P5.0 P5.3 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 P2.2 P8.2 P3.4 P1.7 P5.1 P5.2 P4.6 DGND P2.4 K3 K4 K5 K6 K7 K8 K9 K10 K11 P5.4 P2.3 DVCC3 DGND K1 K2 DVSS3 RST J1 J2 P2.6 TST J10 J11 P8.3 P3.6 P3.7 P4.4 P4.5 P5.5 HFIN H5 H6 H7 H8 H10 H11 H1 H2 H4 P4.2 P4.3 P2.5 P5.7 G1 G2 G4 G8 G10 G11 P4.0 P7.7 P4.1 P6.4 P6.5 F1 F2 F4 F8 F10 P2.7 F11 P7.4 P7.5 P7.6 P6.6 E1 E2 E4 E8 AVSS3 LFIN E11 E10 P7.2 PJ.3 P7.3 P8.0 P4.7 P6.1 P6.0 AVSS2 LFOUT D1 D2 D4 D5 D6 D7 D8 PJ.1 PJ.2 C1 C2 P5.6 HFOUT D10 D11 P6.7 AVSS1 C10 C11 PJ.0 P1.4 P1.5 P7.1 P6.3 P3.2 P3.1 P1.2 B1 B3 B4 B5 B6 B7 B8 B9 B10 B11 P7.0 P6.2 P3.3 P3.0 P1.1 P1.0 AGND A5 A6 A7 A8 A9 A10 A11 DGND DVSS2 DVCC2 P1.3 A1 A2 A3 A4 AGND AVCC1 On devices with UART BSL: P2.0 is BSLTX, P2.1 is BSLRX On devices with I2C BSL: P1.6 is BSLSDA, P1.7 is BSLSCL Figure 7-1. 87-Pin ZVW Package (Bottom View) Copyright © 2021 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962 9 MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962 www.ti.com SLASE54D – MARCH 2016 – REVISED JANUARY 2021 DGND DVCC1 DVSS1 P5.3 L11 L10 L9 L8 P5.0 P1.6 P3.5 P8.1 P2.1 P2.0 DGND L7 L6 L5 L4 L3 L2 L1 P8.2 P2.2 K4 K3 P2.4 DGND P4.6 P5.2 P5.1 P1.7 P3.4 K11 K10 K9 K8 K7 K6 K5 P2.3 J11 HFIN P5.5 H11 H10 DGND DVCC3 K2 K1 P5.4 RST DVSS3 J10 J2 J1 TST P2.6 HFOUT P5.6 P4.5 P4.4 P3.7 P3.6 H8 H7 H6 H5 P8.3 H4 H2 H1 P5.7 P2.5 P4.3 P4.2 G11 G10 G8 G4 G2 G1 P2.7 F11 P6.5 P6.4 P4.1 P7.7 P4.0 F10 F8 F4 F2 F1 LFIN AVSS3 E11 E10 P6.6 P7.6 P7.5 P7.4 E8 E4 E2 E1 LFOUT AVSS2 P6.0 P6.1 P4.7 P8.0 P7.3 PJ.3 P7.2 D8 D7 D6 D5 D4 D2 D1 D11 D10 AVSS1 C11 P6.7 PJ.2 PJ.1 C10 C2 C1 P1.2 P3.1 P3.2 P6.3 P7.1 P1.5 P1.4 PJ.0 B11 B10 B9 B8 B7 B6 B5 B4 B3 B1 L1 AGND P1.0 P1.1 P3.0 P3.3 P6.2 P7.0 A11 A10 A9 A8 A7 A6 A5 AVCC1 AGND P1.3 DVCC2 DVSS2 DGND A4 A3 A2 A1 Figure 7-2. 87-Pin ZVW Package (Top View) 10 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962 MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962 www.ti.com SLASE54D – MARCH 2016 – REVISED JANUARY 2021 DVCC1 P2.7 P2.3/TA0.0/UCA1STE/A6/C10 P5.4/UCA2TXD/UCA2SIMO/TB0OUTH P2.4/TA1.0/UCA1CLK/A7/C11 P5.5/UCA2RXD/UCA2SOMI/ACLK P5.6/UCA2CLK/TA4.0/SMCLK P6.4/UCB3SIMO/UCB3SDA P5.7/UCA2STE/TA4.1/MCLK P6.6/UCB3CLK P6.5/UCB3SOMI/UCB3SCL AVSS3 P6.7/UCB3STE PJ.6/HFXIN AVSS2 PJ.7/HFXOUT PJ.4/LFXIN AVSS1 PJ.5/LFXOUT AVCC1 Figure 7-3 shows the pinout of the 80-pin PN package. 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 1 53 P5.0/UCB1SIMO/UCB1SDA 9 52 P1.7/TB0.4/UCB0SOMI/UCB0SCL/TA1.0 P6.2/UCA3CLK 10 51 P1.6/TB0.3/UCB0SIMO/UCB0SDA/TA0.0 P6.3/UCA3STE 11 50 P3.7/TB0.6 P4.7 12 49 P3.6/TB0.5 P7.0/UCB2SIMO/UCB2SDA 13 48 P3.5/TB0.4/COUT P7.1/UCB2SOMI/UCB2SCL 14 47 P3.4/TB0.3/SMCLK P8.0 15 46 P8.3 P1.3/TA1.2/UCB0STE/A3/C3 16 45 P8.2 P1.4/TB0.1/UCA0STE/A4/C4 17 44 P8.1 P1.5/TB0.2/UCA0CLK/A5/C5 18 43 P2.2/TB0.2/UCB0CLK DVSS2 19 42 P2.1/TB0.0/UCA0RXD/UCA0SOMI DVCC2 20 41 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 P2.0/TB0.6/UCA0TXD/UCA0SIMO/TB0CLK/ACLK DVCC3 PJ.0/TDO/TB0OUTH/SMCLK/SRSCG1/C6 DVSS3 8 P6.1/UCA3RXD/UCA3SOMI RST/NMI/SBWTDIO P5.2/UCB1CLK/TA4CLK P5.1/UCB1SOMI/UCB1SCL TEST/SBWTCK 54 P2.6/TB0.1/UCA1RXD/UCA1SOMI 55 7 P4.3/A11 6 P3.3/A15/C15 P6.0/UCA3TXD/UCA3SIMO P2.5/TB0.0/UCA1TXD/UCA1SIMO P3.2/A14/C14 P4.1/A9 P5.3/UCB1STE P4.2/A10 56 P4.0/A8 5 P7.7/A19 P4.4/TB0.5 P3.1/A13/C13 P7.6/A18 P4.5 57 P7.5/A17 58 4 P7.4/TA4.0/A16 3 P3.0/A12/C12 P7.3/UCB2STE/TA4.1 P1.2/TA1.1/TA0CLK/COUT/A2/C2 P7.2/UCB2CLK DVSS1 P4.6 PJ.3/TCK/SRCPUOFF/C9 59 PJ.2/TMS/ACLK/SROSCOFF/C8 2 PJ.1/TDI/TCLK/MCLK/SRSCG0/C7 P1.1/TA0.2/TA1CLK/COUT/A1/C1/VREF+/VeREF+ P1.0/TA0.1/DMAE0/RTCCLK/A0/C0/VREF-/VeREF- On devices with UART BSL: P2.0 is BSLTX, P2.1 is BSLRX On devices with I2C BSL: P1.6 is BSLSDA, P1.7 is BSLSCL Figure 7-3. 80-Pin PN Package (Top View) Copyright © 2021 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962 11 MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962 www.ti.com SLASE54D – MARCH 2016 – REVISED JANUARY 2021 DVCC1 P2.7 P2.3/TA0.0/UCA1STE/A6/C10 P5.4/UCA2TXD/UCA2SIMO/TB0OUTH P2.4/TA1.0/UCA1CLK/A7/C11 P5.5/UCA2RXD/UCA2SOMI/ACLK P5.6/UCA2CLK/TA4.0/SMCLK AVSS3 P5.7/UCA2STE/TA4.1/MCLK PJ.6/HFXIN AVSS2 PJ.7/HFXOUT PJ.4/LFXIN AVSS1 PJ.5/LFXOUT AVCC1 Figure 7-4 shows the pinout of the 64-pin PM package. 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 P1.0/TA0.1/DMAE0/RTCCLK/A0/C0/VREF-/VeREF- 1 48 DVSS1 P1.1/TA0.2/TA1CLK/COUT/A1/C1/VREF+/VeREF+ 2 47 P4.6 P1.2/TA1.1/TA0CLK/COUT/A2/C2 3 46 P4.5 P3.0/A12/C12 4 45 P4.4/TB0.5 P3.1/A13/C13 5 44 P5.3/UCB1STE P3.2/A14/C14 6 43 P5.2/UCB1CLK/TA4CLK P3.3/A15/C15 7 42 P5.1/UCB1SOMI/UCB1SCL 36 P3.5/TB0.4/COUT P1.5/TB0.2/UCA0CLK/A5/C5 14 35 P3.4/TB0.3/SMCLK DVSS2 15 34 P2.2/TB0.2/UCB0CLK DVCC2 16 33 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 P2.1/TB0.0/UCA0RXD/UCA0SOMI P2.0/TB0.6/UCA0TXD/UCA0SIMO/TB0CLK/ACLK TEST/SBWTCK 13 RST/NMI/SBWTDIO P3.6/TB0.5 P1.4/TB0.1/UCA0STE/A4/C4 P2.6/TB0.1/UCA1RXD/UCA1SOMI 37 P2.5/TB0.0/UCA1TXD/UCA1SIMO 12 P4.3/A11 P3.7/TB0.6 P1.3/TA1.2/UCB0STE/A3/C3 P4.2/A10 38 P4.1/A9 11 P4.0/A8 P1.6/TB0.3/UCB0SIMO/UCB0SDA/TA0.0 P8.0 P7.4//TA4.0/A16 39 P7.3/UCB2STE/TA4.1 10 P7.2/UCB2CLK P1.7/TB0.4/UCB0SOMI/UCB0SCL/TA1.0 P7.1/UCB2SOMI/UCB2SCL PJ.3/TCK/SRCPUOFF/C9 P5.0/UCB1SIMO/UCB1SDA 40 PJ.2/TMS/ACLK/SROSCOFF/C8 41 9 PJ.1/TDI/TCLK/MCLK/SRSCG0/C7 8 PJ.0/TDO/TB0OUTH/SMCLK/SRSCG1/C6 P4.7 P7.0/UCB2SIMO/UCB2SDA On devices with UART BSL: P2.0 is BSLTX, P2.1 is BSLRX On devices with I2C BSL: P1.6 is BSLSDA, P1.7 is BSLSCL Figure 7-4. 64-Pin PM Package (Top View) 12 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962 www.ti.com MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962 SLASE54D – MARCH 2016 – REVISED JANUARY 2021 DVCC1 P2.7 P2.3/TA0.0/UCA1STE/A6/C10 P2.4/TA1.0/UCA1CLK/A7/C11 AVSS PJ.6/HFXIN PJ.7/HFXOUT AVSS PJ.4/LFXIN PJ.5/LFXOUT AVSS1 AVCC1 Figure 7-5 shows the pinout of the 48-pin RGZ package. 48 47 46 45 44 43 42 41 40 39 38 37 P1.0/TA0.1/DMAE0/RTCCLK/A0/C0/VREF-/VeREF- 1 36 DVSS1 P1.1/TA0.2/TA1CLK/COUT/A1/C1/VREF+/VeREF+ 2 35 P4.6 P1.2/TA1.1/TA0CLK/COUT/A2/C2 3 34 P4.5 P3.0/A12/C12 4 33 P4.4/TB0.5 P3.1/A13/C13 5 32 P1.7/TB0.4/UCB0SOMI/UCB0SCL/TA1.0 P3.2/A14/C14 6 31 P1.6/TB0.3/UCB0SIMO/UCB0SDA/TA0.0 P3.3/A15/C15 7 30 P3.7/TB0.6 P4.7 8 29 P3.6/TB0.5 P1.3/TA1.2/UCB0STE/A3/C3 9 28 P3.5/TB0.4/COUT P1.4/TB0.1/UCA0STE/A4/C4 10 27 P3.4/TB0.3/SMCLK P1.5/TB0.2/UCA0CLK/A5/C5 11 26 P2.2/TB0.2/UCB0CLK P2.1/TB0.0/UCA0RXD/UCA0SOMI P2.0/TB0.6/UCA0TXD/UCA0SIMO/TB0CLK/ACLK RST/NMI/SBWTDIO TEST/SBWTCK P2.6/TB0.1/UCA1RXD/UCA1SOMI P2.5/TB0.0/UCA1TXD/UCA1SIMO P4.3/A11 P4.2/A10 P4.1/A9 P4.0/A8 PJ.3/TCK/SRCPUOFF/C9 PJ.2/TMS/ACLK/SROSCOFF/C8 12 25 13 14 15 16 17 18 19 20 21 22 23 24 PJ.1/TDI/TCLK/MCLK/SRSCG0/C7 PJ.0/TDO/TB0OUTH/SMCLK/SRSCG1/C6 TI recommends connecting the QFN thermal pad to VSS. On devices with UART BSL: P2.0 is BSLTX, P2.1 is BSLRX On devices with I2C BSL: P1.6 is BSLSDA, P1.7 is BSLSCL Figure 7-5. 48-Pin RGZ Package (Top View) Copyright © 2021 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962 13 MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962 www.ti.com SLASE54D – MARCH 2016 – REVISED JANUARY 2021 7.2 Pin Attributes Table 7-1 summarizes the attributes of the pins. Table 7-1. Pin Attributes PIN NUMBER (1) PN 1 2 3 4 5 6 7 8 9 14 PM 1 2 3 4 5 6 7 – – RGZ 1 2 3 4 5 6 7 – – ZVW A10 A9 B9 A8 B8 B7 A7 D8 D7 Submit Document Feedback SIGNAL TYPE (4) BUFFER TYPE (5) POWER SOURCE (6) RESET STATE AFTER BOR (7) P1.0 I/O LVCMOS DVCC OFF TA0.1 I/O LVCMOS DVCC – DMAE0 I LVCMOS DVCC – RTCCLK O LVCMOS DVCC – A0 I Analog DVCC – C0 I Analog DVCC – VREF- O Analog DVCC – VeREF- I Analog DVCC – SIGNAL NAME (2) (3) P1.1 I/O LVCMOS DVCC OFF TA0.2 I/O LVCMOS DVCC – TA1CLK I LVCMOS DVCC – COUT O LVCMOS DVCC – A1 I Analog DVCC – C1 I Analog DVCC – VREF+ O Analog DVCC – VeREF+ I Analog DVCC – P1.2 I/O LVCMOS DVCC OFF TA1.1 I/O LVCMOS DVCC – TA0CLK I LVCMOS DVCC – COUT O LVCMOS DVCC – A2 I Analog DVCC – C2 I Analog DVCC – P3.0 I/O LVCMOS DVCC OFF A12 I Analog DVCC – C12 I Analog DVCC – P3.1 I/O LVCMOS DVCC – A13 I Analog DVCC – C13 I Analog DVCC – P3.2 I/O LVCMOS DVCC OFF A14 I Analog DVCC – C14 I Analog DVCC – P3.3 I/O LVCMOS DVCC OFF A15 I Analog DVCC – C15 I Analog DVCC – P6.0 I/O LVCMOS DVCC OFF UCA3TXD O LVCMOS DVCC – UCA3SIMO I/O LVCMOS DVCC – P6.1 I/O LVCMOS DVCC OFF UCA3RXD I LVCMOS DVCC – UCA3SOMI I/O LVCMOS DVCC – Copyright © 2021 Texas Instruments Incorporated Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962 MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962 www.ti.com SLASE54D – MARCH 2016 – REVISED JANUARY 2021 Table 7-1. Pin Attributes (continued) PIN NUMBER (1) PN PM RGZ ZVW 10 – – A6 11 – – B6 12 8 8 D6 13 9 – A5 14 10 – B5 15 11 – D5 16 12 9 A4 SIGNAL TYPE (4) BUFFER TYPE (5) POWER SOURCE (6) RESET STATE AFTER BOR (7) P6.2 I/O LVCMOS DVCC OFF UCA3CLK I/O LVCMOS DVCC – P6.3 I/O LVCMOS DVCC OFF UCA3STE I/O LVCMOS DVCC – P4.7 I/O LVCMOS DVCC OFF P7.0 I/O LVCMOS DVCC OFF UCB2SIMO I/O LVCMOS DVCC – UCB2SDA I/O LVCMOS DVCC – P7.1 I/O LVCMOS DVCC OFF UCB2SOMI I/O LVCMOS DVCC – UCB2SCL I/O LVCMOS DVCC – P8.0 I/O LVCMOS DVCC OFF P1.3 I/O LVCMOS DVCC OFF TA1.2 I/O LVCMOS DVCC – UCB0STE I/O LVCMOS DVCC – I Analog DVCC – SIGNAL NAME (2) (3) A3 C3 17 18 13 14 10 11 B3 B4 I Analog DVCC – P1.4 I/O LVCMOS DVCC OFF TB0.1 I/O LVCMOS DVCC – UCA0STE I/O LVCMOS DVCC – A4 I Analog DVCC – C4 I Analog DVCC – P1.5 I/O LVCMOS DVCC OFF TB0.2 I/O LVCMOS DVCC – UCA0CLK I/O LVCMOS DVCC – I Analog DVCC – A5 C5 I Analog DVCC – 19 15 – A2 DVSS2 P Power – N/A 20 16 – A3 DVCC2 P Power – N/A PJ.0 I/O LVCMOS DVCC OFF TDO O LVCMOS DVCC – 21 22 17 18 12 13 B1 C1 TB0OUTH I LVCMOS DVCC – SMCLK O LVCMOS DVCC – SRSCG1 O LVCMOS DVCC – C6 I Analog DVCC – PJ.1 I/O LVCMOS DVCC OFF TDI I LVCMOS DVCC – TCLK I LVCMOS DVCC – MCLK O LVCMOS DVCC – SRSCG0 O LVCMOS DVCC – C7 I Analog DVCC – Copyright © 2021 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962 15 MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962 www.ti.com SLASE54D – MARCH 2016 – REVISED JANUARY 2021 Table 7-1. Pin Attributes (continued) PIN NUMBER (1) PN 23 PM 19 RGZ 14 ZVW C2 SIGNAL TYPE (4) BUFFER TYPE (5) POWER SOURCE (6) RESET STATE AFTER BOR (7) PJ.2 I/O LVCMOS DVCC OFF TMS I LVCMOS DVCC – ACLK O LVCMOS DVCC – SROSCOFF O LVCMOS DVCC – SIGNAL NAME (2) (3) C8 I Analog DVCC – I/O LVCMOS DVCC OFF TCK I LVCMOS DVCC – SRCPUOFF O LVCMOS DVCC – PJ.3 24 20 15 D2 C9 25 26 27 28 29 30 31 32 21 22 23 – – – 24 25 – – – – – – 16 17 D1 D4 E1 E2 E4 F2 F1 F4 33 26 18 G1 34 27 19 G2 35 36 28 29 20 21 G4 H1 37 30 22 H2 38 31 23 J2 I Analog DVCC – P7.2 I/O LVCMOS DVCC OFF UCB2CLK I/O LVCMOS DVCC – P7.3 I/O LVCMOS DVCC OFF UCB2STE I/O LVCMOS DVCC – TA4.1 I/O LVCMOS DVCC – P7.4 I/O LVCMOS DVCC OFF TA4.0 I/O LVCMOS DVCC – A16 I Analog DVCC – P7.5 I/O LVCMOS DVCC OFF A17 I Analog DVCC – P7.6 I/O LVCMOS DVCC OFF A18 I Analog DVCC – P7.7 I/O LVCMOS DVCC OFF A19 I Analog DVCC – P4.0 I/O LVCMOS DVCC OFF A8 P4.1 A9 Submit Document Feedback Analog DVCC – LVCMOS DVCC OFF I Analog DVCC – P4.2 I/O LVCMOS DVCC OFF A10 I Analog DVCC – P4.3 I/O LVCMOS DVCC OFF A11 I Analog DVCC – P2.5 I/O LVCMOS DVCC OFF TB0.0 I/O LVCMOS DVCC – UCA1TXD O LVCMOS DVCC – UCA1SIMO I/O LVCMOS DVCC – P2.6 I/O LVCMOS DVCC OFF TB0.1 O LVCMOS DVCC – UCA1RXD I LVCMOS DVCC – UCA1SOMI I/O LVCMOS DVCC – TEST I LVCMOS DVCC OFF SBWTCK I LVCMOS DVCC – RST I LVCMOS DVCC OFF NMI I LVCMOS DVCC – I/O LVCMOS DVCC – SBWTDIO 16 I I/O Copyright © 2021 Texas Instruments Incorporated Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962 MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962 www.ti.com SLASE54D – MARCH 2016 – REVISED JANUARY 2021 Table 7-1. Pin Attributes (continued) PIN NUMBER (1) PN PM RGZ 39 – – J1 40 – – K1 41 32 24 ZVW L2 SIGNAL TYPE (4) BUFFER TYPE (5) POWER SOURCE (6) RESET STATE AFTER BOR (7) DVSS3 P Power – N/A DVCC3 P Power – N/A P2.0 I/O LVCMOS DVCC OFF TB0.6 I/O LVCMOS DVCC – UCA0TXD O LVCMOS DVCC – BSLTX O LVCMOS DVCC – UCA0SIMO I/O LVCMOS DVCC – I LVCMOS DVCC – ACLK O LVCMOS DVCC – P2.1 I/O LVCMOS DVCC OFF TB0.0 I/O LVCMOS DVCC – I LVCMOS DVCC – SIGNAL NAME (2) (3) TB0CLK 42 33 25 L3 UCA0RXD BSLRX I LVCMOS DVCC – UCA0SOMI I/O LVCMOS DVCC – P2.2 I/O LVCMOS DVCC OFF TB0.2 O LVCMOS DVCC – 43 34 26 K3 UCB0CLK I/O LVCMOS DVCC – 44 – – L4 P8.1 I/O LVCMOS DVCC OFF 45 – – K4 P8.2 I/O LVCMOS DVCC OFF 46 – – H4 P8.3 I/O LVCMOS DVCC OFF P3.4 I/O LVCMOS DVCC OFF 47 35 27 K5 TB0.3 I/O LVCMOS DVCC – 48 49 50 51 52 36 37 38 39 40 28 29 30 31 32 L5 H5 H6 L6 K6 SMCLK O LVCMOS DVCC – P3.5 I/O LVCMOS DVCC OFF TB0.4 I/O LVCMOS DVCC – COUT O LVCMOS DVCC – P3.6 I/O LVCMOS DVCC OFF TB0.5 I/O LVCMOS DVCC – P3.7 I/O LVCMOS DVCC OFF TB0.6 I/O LVCMOS DVCC – P1.6 I/O LVCMOS DVCC OFF TB0.3 I/O LVCMOS DVCC – UCB0SIMO I/O LVCMOS DVCC – UCB0SDA I/O LVCMOS DVCC – BSLSDA I/O LVCMOS DVCC – TA0.0 I/O LVCMOS DVCC – P1.7 I/O LVCMOS DVCC OFF TB0.4 I/O LVCMOS DVCC – UCB0SOMI I/O LVCMOS DVCC – UCB0SCL I/O LVCMOS DVCC – BSLSCL I/O LVCMOS DVCC – TA1.0 I/O LVCMOS DVCC – Copyright © 2021 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962 17 MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962 www.ti.com SLASE54D – MARCH 2016 – REVISED JANUARY 2021 Table 7-1. Pin Attributes (continued) PIN NUMBER (1) PN PM RGZ ZVW 53 41 – L7 54 55 42 43 – – K7 K8 SIGNAL TYPE (4) BUFFER TYPE (5) POWER SOURCE (6) RESET STATE AFTER BOR (7) P5.0 I/O LVCMOS DVCC OFF UCB1SIMO I/O LVCMOS DVCC – UCB1SDA I/O LVCMOS DVCC – P5.1 I/O LVCMOS DVCC OFF UCB1SOMI I/O LVCMOS DVCC – UCB1SCL I/O LVCMOS DVCC – P5.2 I/O LVCMOS DVCC OFF UCB1CLK I/O LVCMOS DVCC – SIGNAL NAME (2) (3) TA4CLK 56 44 – L8 I LVCMOS DVCC – P5.3 I/O LVCMOS DVCC OFF UCB1STE I/O LVCMOS DVCC – P4.4 I/O LVCMOS DVCC OFF 57 45 33 H7 TB0.5 I/O LVCMOS DVCC – 58 46 34 H8 P4.5 I/O LVCMOS DVCC OFF 59 47 35 K9 P4.6 I/O LVCMOS DVCC OFF 60 48 36 L9 DVSS1 P Power – N/A 61 49 37 L10 DVCC1 P Power – N/A 62 50 38 F11 P2.7 I/O LVCMOS DVCC OFF P2.3 I/O LVCMOS DVCC OFF TA0.0 I/O LVCMOS DVCC – UCA1STE I/O LVCMOS DVCC – I Analog DVCC – 63 51 39 J11 A6 64 65 52 53 40 – K11 J10 C10 I Analog DVCC – P2.4 I/O LVCMOS DVCC OFF TA1.0 I/O LVCMOS DVCC – UCA1CLK I/O LVCMOS DVCC – – A7 I Analog DVCC C11 I Analog DVCC – P5.4 I/O LVCMOS DVCC OFF UCA2TXD O LVCMOS DVCC – UCA2SIMO I/O LVCMOS DVCC – TB0OUTH I LVCMOS DVCC – I/O LVCMOS DVCC OFF UCA2RXD I LVCMOS DVCC – UCA2SOMI I/O LVCMOS DVCC – ACLK O LVCMOS DVCC – P5.6 I/O LVCMOS DVCC OFF UCA2CLK I/O LVCMOS DVCC – TA4.0 I/O LVCMOS DVCC – SMCLK O LVCMOS DVCC – P5.7 I/O LVCMOS DVCC OFF UCA2STE I/O LVCMOS DVCC – TA4.1 I/O LVCMOS DVCC – MCLK O LVCMOS DVCC – P5.5 66 67 68 18 54 55 56 – – – H10 G10 G8 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962 MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962 www.ti.com SLASE54D – MARCH 2016 – REVISED JANUARY 2021 Table 7-1. Pin Attributes (continued) PIN NUMBER (1) PN PM RGZ ZVW 69 – – F8 70 – F10 71 – – E8 72 – – C10 73 57 41 E10 74 (1) (2) (3) (4) (5) (6) (7) – 58 42 H11 SIGNAL TYPE (4) BUFFER TYPE (5) POWER SOURCE (6) RESET STATE AFTER BOR (7) P6.4 I/O LVCMOS DVCC OFF UCB3SIMO I/O LVCMOS DVCC – UCB3SDA I/O LVCMOS DVCC – P6.5 I/O LVCMOS DVCC OFF UCB3SOMI I/O LVCMOS DVCC – UCB3SCL I/O LVCMOS DVCC – P6.6 I/O LVCMOS DVCC OFF UCB3CLK I/O LVCMOS DVCC – P6.7 I/O LVCMOS DVCC OFF UCB3STE I/O LVCMOS DVCC – SIGNAL NAME (2) (3) AVSS3 PJ.6 HFXIN P Power – N/A I/O LVCMOS DVCC – I Analog DVCC – PJ.7 I/O LVCMOS DVCC OFF HFXOUT O Analog DVCC – AVSS2 P Power – N/A I/O LVCMOS DVCC OFF I Analog DVCC – PJ.5 I/O LVCMOS DVCC OFF LFXOUT O Analog DVCC – 75 59 43 G11 76 60 44 D10 77 61 45 E11 78 62 46 D11 79 63 47 C11 AVSS1 P Power – N/A 80 64 48 B11 AVCC1 P Power – N/A – – – A1 DGND P Power – N/A – – – A11 AGND P Power – N/A – – – B10 AGND P Power – N/A – – – K2 DGND P Power – N/A – – – K10 DGND P Power – N/A – – – L1 DGND P Power – N/A – – – L11 DGND P Power – N/A – – Pad – QFN Pad P Power – N/A PJ.4 LFXIN N/A = not available The signal that is listed first for each pin is the reset default pin name. Signal Types: I = Input, O = Output, I/O = Input or Output. Buffer Types: LVCMOS, Analog, or Power (see Table 7-3 for details) To determine the pin mux encodings for each pin, see Section 9.13. The power source shown in this table is the I/O power source, which may differ from the module power source. Reset States: OFF = High impedance with Schmitt-trigger input and pullup or pulldown (if available) disabled N/A = Not applicable Copyright © 2021 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962 19 MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962 www.ti.com SLASE54D – MARCH 2016 – REVISED JANUARY 2021 7.3 Signal Descriptions Section 7.3 describes the signals for all device variants and package options. Table 7-2. Signal Descriptions FUNCTION ADC BSL (I2C) BSL (UART) Clock 20 SIGNAL NAME PIN NO.(1) ZVW PN PM RGZ PIN TYPE(2) DESCRIPTION A0 A10 1 1 1 I ADC analog input A0 A1 A9 2 2 2 I ADC analog input A1 A2 B9 3 3 3 I ADC analog input A2 A3 A4 16 12 9 I ADC analog input A3 A4 B3 17 13 10 I ADC analog input A4 A5 B4 18 14 11 I ADC analog input A5 A6 J11 63 51 39 I ADC analog input A6 A7 K11 64 52 40 I ADC analog input A7 A8 F1 31 24 16 I ADC analog input A8 A9 F4 32 25 17 I ADC analog input A9 A10 G1 33 26 18 I ADC analog input A10 A11 G2 34 27 19 I ADC analog input A11 A12 A8 4 4 4 I ADC analog input A12 A13 B8 5 5 5 I ADC analog input A13 A14 B7 6 6 6 I ADC analog input A14 A15 A7 7 7 7 I ADC analog input A15 A16 E1 27 23 – I ADC analog input A16 A17 E2 28 – – I ADC analog input A17 A18 E4 29 – – I ADC analog input A18 A19 F2 30 – – I ADC analog input A19 VREF+ A9 2 2 2 O Output of positive reference voltage VREF- A10 1 1 1 O Output of negative reference voltage VeREF+ A9 2 2 2 I Input for an external positive reference voltage to the ADC VeREF- A10 1 1 1 I Input for an external negative reference voltage to the ADC BSLSCL K6 52 40 32 I/O I2C BSL clock BSLSDA L6 51 39 31 I/O I2C BSL data BSLRX L3 42 33 25 I UART BSL receive BSLTX L2 41 32 24 O UART BSL transmit ACLK C2 H10 23 41 66 19 32 54 14 24 O ACLK output HFXIN H11 74 58 42 I Input for high-frequency crystal oscillator HFXT HFXOUT G11 75 59 43 O Output for high-frequency crystal oscillator HFXT LFXIN E11 77 61 45 I Input for low-frequency crystal oscillator LFXT LFXOUT D11 78 62 46 O Output of low-frequency crystal oscillator LFXT MCLK C1 G8 22 68 18 56 13 O MCLK output SMCLK B1 G10 21 47 67 17 35 55 12 27 O SMCLK output Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962 MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962 www.ti.com SLASE54D – MARCH 2016 – REVISED JANUARY 2021 Table 7-2. Signal Descriptions (continued) FUNCTION Comparator DMA Debug SIGNAL NAME PIN NO.(1) ZVW PN PM RGZ PIN TYPE(2) DESCRIPTION C0 A10 1 1 1 I Comparator input C0 C1 A9 2 2 2 I Comparator input C1 C2 B9 3 3 3 I Comparator input C2 C3 A4 16 12 9 I Comparator input C3 C4 B3 17 13 10 I Comparator input C4 C5 B4 18 14 11 I Comparator input C5 C6 B1 21 17 12 I Comparator input C6 C7 C1 22 18 13 I Comparator input C7 C8 C2 23 19 14 I Comparator input C8 C9 D2 24 20 15 I Comparator input C9 C10 J11 63 51 39 I Comparator input C10 C11 K11 64 52 40 I Comparator input C11 C12 A8 4 4 4 I Comparator input C12 C13 B8 5 5 5 I Comparator input C13 C14 B7 6 6 6 I Comparator input C14 C15 A7 7 7 7 I Comparator input C15 COUT A9 B9 L5 2 3 48 2 3 36 2 3 28 O Comparator output DMAE0 A10 1 1 1 I External DMA trigger SBWTCK H2 37 30 22 I Spy-Bi-Wire input clock SBWTDIO J2 38 31 23 I/O Spy-Bi-Wire data input/output SRCPUOFF D2 24 20 15 O Low-power debug: CPU Status register bit CPUOFF SROSCOFF C2 23 19 14 O Low-power debug: CPU Status register bit OSCOFF SRSCG0 C1 22 18 13 O Low-power debug: CPU Status register bit SCG0 SRSCG1 B1 21 17 12 O Low-power debug: CPU Status register bit SCG1 TCK D2 24 20 15 I Test clock TCLK C1 22 18 13 I Test clock input TDI C1 22 18 13 I Test data input TDO B1 21 17 12 O Test data output port TEST H2 37 30 22 I Test mode pin – select digital I/O on JTAG pins TMS C2 23 19 14 I Test mode select Copyright © 2021 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962 21 MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962 www.ti.com SLASE54D – MARCH 2016 – REVISED JANUARY 2021 Table 7-2. Signal Descriptions (continued) FUNCTION PIN NO.(1) ZVW PN PM RGZ PIN TYPE(2) P1.0 A10 1 1 1 I/O General-purpose digital I/O with port interrupt and wake up from LPMx.5 P1.1 A9 2 2 2 I/O General-purpose digital I/O with port interrupt and wake up from LPMx.5 P1.2 B9 3 3 3 I/O General-purpose digital I/O with port interrupt and wake up from LPMx.5 P1.3 A4 16 12 9 I/O General-purpose digital I/O with port interrupt and wake up from LPMx.5 P1.4 B3 17 13 10 I/O General-purpose digital I/O with port interrupt and wake up from LPMx.5 P1.5 B4 18 14 11 I/O General-purpose digital I/O with port interrupt and wake up from LPMx.5 P1.6 L6 51 39 31 I/O General-purpose digital I/O with port interrupt and wake up from LPMx.5 P1.7 K6 52 40 32 I/O General-purpose digital I/O with port interrupt and wake up from LPMx.5 P2.0 L2 41 32 24 I/O General-purpose digital I/O with port interrupt and wake up from LPMx.5 P2.1 L3 42 33 25 I/O General-purpose digital I/O with port interrupt and wake up from LPMx.5 P2.2 K3 43 34 26 I/O General-purpose digital I/O with port interrupt and wake up from LPMx.5 P2.3 J11 63 51 39 I/O General-purpose digital I/O with port interrupt and wake up from LPMx.5 P2.4 K11 64 52 40 I/O General-purpose digital I/O with port interrupt and wake up from LPMx.5 P2.5 G4 35 28 20 I/O General-purpose digital I/O with port interrupt and wake up from LPMx.5 P2.6 H1 36 29 21 I/O General-purpose digital I/O with port interrupt and wake up from LPMx.5 P2.7 F11 62 50 38 I/O General-purpose digital I/O with port interrupt and wake up from LPMx.5 P3.0 A8 4 4 4 I/O General-purpose digital I/O with port interrupt and wake up from LPMx.5 P3.1 B8 5 5 5 I/O General-purpose digital I/O with port interrupt and wake up from LPMx.5 P3.2 B7 6 6 6 I/O General-purpose digital I/O with port interrupt and wake up from LPMx.5 P3.3 A7 7 7 7 I/O General-purpose digital I/O with port interrupt and wake up from LPMx.5 P3.4 K5 47 35 27 I/O General-purpose digital I/O with port interrupt and wake up from LPMx.5 P3.5 L5 48 36 28 I/O General-purpose digital I/O with port interrupt and wake up from LPMx.5 P3.6 H5 49 37 29 I/O General-purpose digital I/O with port interrupt and wake up from LPMx.5 P3.7 H6 50 38 30 I/O General-purpose digital I/O with port interrupt and wake up from LPMx.5 SIGNAL NAME GPIO GPIO GPIO 22 Submit Document Feedback DESCRIPTION Copyright © 2021 Texas Instruments Incorporated Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962 MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962 www.ti.com SLASE54D – MARCH 2016 – REVISED JANUARY 2021 Table 7-2. Signal Descriptions (continued) FUNCTION PIN NO.(1) ZVW PN PM RGZ PIN TYPE(2) P4.0 F1 31 24 16 I/O General-purpose digital I/O with port interrupt and wake up from LPMx.5 P4.1 F4 32 25 17 I/O General-purpose digital I/O with port interrupt and wake up from LPMx.5 P4.2 G1 33 26 18 I/O General-purpose digital I/O with port interrupt and wake up from LPMx.5 P4.3 G2 34 27 19 I/O General-purpose digital I/O with port interrupt and wake up from LPMx.5 P4.4 H7 57 45 33 I/O General-purpose digital I/O with port interrupt and wake up from LPMx.5 P4.5 H8 58 46 34 I/O General-purpose digital I/O with port interrupt and wake up from LPMx.5 P4.6 K9 59 47 35 I/O General-purpose digital I/O with port interrupt and wake up from LPMx.5 P4.7 D6 12 8 8 I/O General-purpose digital I/O with port interrupt and wake up from LPMx.5 P5.0 L7 53 41 – I/O General-purpose digital I/O with port interrupt and wake up from LPMx.5 P5.1 K7 54 42 – I/O General-purpose digital I/O with port interrupt and wake up from LPMx.5 P5.2 K8 55 43 – I/O General-purpose digital I/O with port interrupt and wake up from LPMx.5 P5.3 L8 56 44 – I/O General-purpose digital I/O with port interrupt and wake up from LPMx.5 P5.4 J10 65 53 – I/O General-purpose digital I/O with port interrupt and wake up from LPMx.5 P5.5 H10 66 54 – I/O General-purpose digital I/O with port interrupt and wake up from LPMx.5 P5.6 G10 67 55 – I/O General-purpose digital I/O with port interrupt and wake up from LPMx.5 P5.7 G8 68 56 – I/O General-purpose digital I/O with port interrupt and wake up from LPMx.5 P6.0 D8 8 – – I/O General-purpose digital I/O with port interrupt and wake up from LPMx.5 P6.1 D7 9 – – I/O General-purpose digital I/O with port interrupt and wake up from LPMx.5 P6.2 A6 10 – – I/O General-purpose digital I/O with port interrupt and wake up from LPMx.5 P6.3 B6 11 – – I/O General-purpose digital I/O with port interrupt and wake up from LPMx.5 P6.4 F8 69 – – I/O General-purpose digital I/O with port interrupt and wake up from LPMx.5 P6.5 F10 70 – – I/O General-purpose digital I/O with port interrupt and wake up from LPMx.5 P6.6 E8 71 – – I/O General-purpose digital I/O with port interrupt and wake up from LPMx.5 P6.7 C10 72 – – I/O General-purpose digital I/O with port interrupt and wake up from LPMx.5 SIGNAL NAME GPIO GPIO GPIO Copyright © 2021 Texas Instruments Incorporated DESCRIPTION Submit Document Feedback Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962 23 MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962 www.ti.com SLASE54D – MARCH 2016 – REVISED JANUARY 2021 Table 7-2. Signal Descriptions (continued) FUNCTION PIN NO.(1) ZVW PN PM RGZ PIN TYPE(2) P7.0 A5 13 9 – I/O General-purpose digital I/O with port interrupt and wake up from LPMx.5 P7.1 B5 14 10 – I/O General-purpose digital I/O with port interrupt and wake up from LPMx.5 P7.2 D1 25 21 – I/O General-purpose digital I/O with port interrupt and wake up from LPMx.5 P7.3 D4 26 22 – I/O General-purpose digital I/O with port interrupt and wake up from LPMx.5 P7.4 E1 27 23 – I/O General-purpose digital I/O with port interrupt and wake up from LPMx.5 P7.5 E2 28 – – I/O General-purpose digital I/O with port interrupt and wake up from LPMx.5 P7.6 E4 29 – – I/O General-purpose digital I/O with port interrupt and wake up from LPMx.5 P7.7 F2 30 – – I/O General-purpose digital I/O with port interrupt and wake up from LPMx.5 P8.0 D5 15 11 – I/O General-purpose digital I/O with port interrupt and wake up from LPMx.5 P8.1 L4 44 – – I/O General-purpose digital I/O with port interrupt and wake up from LPMx.5 P8.2 K4 45 – – I/O General-purpose digital I/O with port interrupt and wake up from LPMx.5 P8.3 H4 46 – – I/O General-purpose digital I/O with port interrupt and wake up from LPMx.5 PJ.0 B1 21 17 12 I/O General-purpose digital I/O PJ.1 C1 22 18 13 I/O General-purpose digital I/O PJ.2 C2 23 19 14 I/O General-purpose digital I/O PJ.3 D2 24 20 15 I/O General-purpose digital I/O PJ.4 E11 77 61 45 I/O General-purpose digital I/O PJ.5 D11 78 62 46 I/O General-purpose digital I/O PJ.6 H11 74 58 42 I/O General-purpose digital I/O PJ.7 G11 75 59 43 I/O General-purpose digital I/O UCB0SCL K6 52 40 32 I/O I2C clock – eUSCI_B0 I2C mode UCB0SDA L6 51 39 31 I/O I2C data – eUSCI_B0 I2C mode UCB1SCL K7 54 42 – I/O I2C clock – eUSCI_B1 I2C mode UCB1SDA L7 53 41 – I/O I2C data – eUSCI_B1 I2C mode UCB2SCL B5 14 10 – I/O I2C clock – eUSCI_B2 I2C mode UCB2SDA A5 13 9 – I/O I2C data – eUSCI_B2 I2C mode UCB3SCL F10 70 – – I/O I2C clock – eUSCI_B3 I2C mode UCB3SDA F8 69 – – I/O I2C data – eUSCI_B3 I2C mode SIGNAL NAME GPIO GPIO GPIO I2C 24 Submit Document Feedback DESCRIPTION Copyright © 2021 Texas Instruments Incorporated Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962 MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962 www.ti.com SLASE54D – MARCH 2016 – REVISED JANUARY 2021 Table 7-2. Signal Descriptions (continued) FUNCTION PN PM RGZ PIN TYPE(2) B10 A11 – – – P Analog ground AVCC1 B11 80 64 48 P Analog power supply AVSS1 C11 79 63 47 P Analog ground supply AVSS2 D10 76 60 44 P Analog ground supply AVSS3 E10 73 57 41 P Analog ground supply DGND A1 K2 K10 L1 L11 – – – P Digital ground AGND Power RTC PIN NO.(1) ZVW SIGNAL NAME DESCRIPTION DVCC1 L10 61 49 37 P Digital power supply DVCC2 A3 20 16 – P Digital power supply DVCC3 K1 40 – – P Digital power supply DVSS1 L9 60 48 36 P Digital ground supply DVSS2 A2 19 15 – P Digital ground supply DVSS3 J1 39 – – P Digital ground supply QFN Pad – – – Pad P QFN package exposed thermal pad. TI recommends connection to VSS. RTCCLK A10 1 1 1 O RTC clock calibration output (not available on MSP430FR5x5x devices) Copyright © 2021 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962 25 MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962 www.ti.com SLASE54D – MARCH 2016 – REVISED JANUARY 2021 Table 7-2. Signal Descriptions (continued) FUNCTION SPI System 26 PIN NO.(1) ZVW PN PM RGZ PIN TYPE(2) UCA0CLK B4 18 14 11 I/O Clock signal input – eUSCI_A0 SPI slave mode Clock signal output – eUSCI_A0 SPI master mode UCA0SIMO L2 41 32 24 I/O Slave in/master out – eUSCI_A0 SPI mode UCA0SOMI L3 42 33 25 I/O Slave out/master in – eUSCI_A0 SPI mode UCA0STE B3 17 13 10 I/O Slave transmit enable – eUSCI_A0 SPI mode UCA1CLK K11 64 52 40 I/O Clock signal input – eUSCI_A1 SPI slave mode Clock signal output – eUSCI_A1 SPI master mode UCA1SIMO G4 35 28 20 I/O Slave in/master out – eUSCI_A1 SPI mode UCA1SOMI H1 36 29 21 I/O Slave out/master in – eUSCI_A1 SPI mode UCA1STE J11 63 51 39 I/O Slave transmit enable – eUSCI_A1 SPI mode UCA2CLK G10 67 55 – I/O Clock signal input – eUSCI_A2 SPI slave mode Clock signal output – eUSCI_A2 SPI master mode UCA2SIMO J10 65 53 – I/O Slave in/master out – eUSCI_A2 SPI mode UCA2SOMI H10 66 54 – I/O Slave out/master in – eUSCI_A2 SPI mode UCA2STE G8 68 56 – I/O Slave transmit enable – eUSCI_A2 SPI mode UCA3CLK A6 10 – – I/O Clock signal input – eUSCI_A3 SPI slave mode Clock signal output – eUSCI_A3 SPI master mode UCA3SIMO D8 8 – – I/O Slave in/master out – eUSCI_A3 SPI mode UCA3SOMI D7 9 – – I/O Slave out/master in – eUSCI_A3 SPI mode UCA3STE B6 11 – – I/O Slave transmit enable – eUSCI_A3 SPI mode UCB0CLK K3 43 34 26 I/O Clock signal input – eUSCI_B0 SPI slave mode Clock signal output – eUSCI_B0 SPI master mode UCB0SIMO L6 51 39 31 I/O Slave in/master out – eUSCI_B0 SPI mode UCB0SOMI K6 52 40 32 I/O Slave out/master in – eUSCI_B0 SPI mode UCB0STE A4 16 12 9 I/O Slave transmit enable – eUSCI_B0 SPI mode UCB1CLK K8 55 43 – I/O Clock signal input – eUSCI_B1 SPI slave mode Clock signal output – eUSCI_B1 SPI master mode UCB1SIMO L7 53 41 – I/O Slave in/master out – eUSCI_B1 SPI mode UCB1SOMI K7 54 42 – I/O Slave out/master in – eUSCI_B1 SPI mode UCB1STE L8 56 44 – I/O Slave transmit enable – eUSCI_B1 SPI mode UCB2CLK D1 25 21 – I/O Clock signal input – eUSCI_B2 SPI slave mode Clock signal output – eUSCI_B2 SPI master mode UCB2SIMO A5 13 9 – I/O Slave in/master out – eUSCI_B2 SPI mode UCB2SOMI B5 14 10 – I/O Slave out/master in – eUSCI_B2 SPI mode UCB2STE D4 26 22 – I/O Slave transmit enable – eUSCI_B2 SPI mode UCB3CLK E8 71 – – I/O Clock signal input – eUSCI_B3 SPI slave mode Clock signal output – eUSCI_B3 SPI master mode UCB3SIMO F8 69 – – I/O Slave in/master out – eUSCI_B3 SPI mode UCB3SOMI F10 70 – – I/O Slave out/master in – eUSCI_B3 SPI mode UCB3STE C10 72 – – I/O Slave transmit enable – eUSCI_B3 SPI mode NMI J2 38 31 23 I Nonmaskable interrupt input RST J2 38 31 23 I Reset input active low SIGNAL NAME Submit Document Feedback DESCRIPTION Copyright © 2021 Texas Instruments Incorporated Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962 MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962 www.ti.com SLASE54D – MARCH 2016 – REVISED JANUARY 2021 Table 7-2. Signal Descriptions (continued) FUNCTION Timer UART (1) (2) PIN NO.(1) ZVW PN PM RGZ PIN TYPE(2) TA0.0 L6 51 39 31 I/O TA0 CCR0 capture: CCI0A input, compare: Out0 TA0.0 J11 63 51 39 I/O TA0 CCR0 capture: CCI0B input, compare: Out0 TA0.1 A10 1 1 1 I/O TA0 CCR1 capture: CCI1A input, compare: Out1 TA0.2 A9 2 2 2 I/O TA0 CCR2 capture: CCI2A input, compare: Out2 SIGNAL NAME DESCRIPTION TA0CLK B9 3 3 3 I TA1.0 K6 52 40 32 I/O TA0 input clock TA1.0 K11 64 52 40 I/O TA1 CCR0 capture: CCI0B input, compare: Out0 TA1.1 B9 3 3 3 I/O TA1 CCR1 capture: CCI1A input, compare: Out1 TA1.2 A4 16 12 9 I/O TA1CLK A9 2 2 2 I TA4.0 E1 27 23 – I/O TA4 CCR0 capture: CCI0B input, compare: Out0 TA4.0 G10 67 55 – I/O TA4 CCR0 capture: CCI0A input, compare: Out0 TA4.1 D4 26 22 – I/O TA4CCR1 capture: CCI1B input, compare: Out1 TA4.1 G8 68 56 – I/O TA4 CCR1 capture: CCI1A input, compare: Out1 TA4CLK K8 55 43 – I TB0.0 G4 35 28 20 I/O TB0 CCR0 capture: CCI0B input, compare: Out0 TB0.0 L3 42 33 25 I/O TB0 CCR0 capture: CCI0A input, compare: Out0 TB0.1 B3 17 13 10 I/O TB0 CCR1 capture: CCI1A input, compare: Out1 TB0.1 H1 36 29 21 O TB0 CCR1 compare: Out1 TB0.2 B4 18 14 11 I/O TB0 CCR2 capture: CCI2A input, compare: Out2 TB0.2 K3 43 34 26 O TB0 CCR2 compare: Out2 TB0.3 K5 47 35 27 I/O TB0 CCR3 capture: CCI3A input, compare: Out3 TB0.3 L6 51 39 31 I/O TB0 CCR3 capture: CCI3B input, compare: Out3 TB0.4 L5 48 36 28 I/O TB0 CCR4 capture: CCI4A input, compare: Out4 TA1 CCR0 capture: CCI0A input, compare: Out0 TA1 CCR2 capture: CCI2A input, compare: Out2 TA1 input clock TA4 input clock TB0.4 K6 52 40 32 I/O TB0 CCR4 capture: CCI4B input, compare: Out4 TB0.5 H5 49 37 29 I/O TB0 CCR5 capture: CCI5A input, compare: Out5 TB0.5 H7 57 45 33 I/O TB0CCR5 capture: CCI5B input, compare: Out5 TB0.6 L2 41 32 24 I/O TB0 CCR6 capture: CCI6B input, compare: Out6 TB0.6 H6 50 38 30 I/O TB0 CCR6 capture: CCI6A input, compare: Out6 TB0CLK L2 41 32 24 I TB0 clock input TB0OUTH B1 J10 21 65 17 53 12 I Switch all PWM outputs high impedance input – TB0 UCA0RXD L3 42 33 25 I Receive data – eUSCI_A0 UART mode UCA0TXD L2 41 32 24 O Transmit data – eUSCI_A0 UART mode UCA1RXD H1 36 29 21 I Receive data – eUSCI_A1 UART mode UCA1TXD G4 35 28 20 O Transmit data – eUSCI_A1 UART mode UCA2RXD H10 66 54 – I Receive data – eUSCI_A2 UART mode UCA2TXD J10 65 53 – O Transmit data – eUSCI_A2 UART mode UCA3RXD D7 9 – – I Receive data – eUSCI_A3 UART mode UCA3TXD D8 8 – – O Transmit data – eUSCI_A3 UART mode N/A = not available I = input, O = output, P = power Copyright © 2021 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962 27 MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962 www.ti.com SLASE54D – MARCH 2016 – REVISED JANUARY 2021 7.4 Pin Multiplexing Pin multiplexing for these devices is controlled by both register settings and operating modes (for example, if the device is in test mode). For details of the settings for each pin and schematics of the multiplexed ports, see Section 9.13. 7.5 Buffer Types Table 7-3 describes the buffer types that are referenced in Table 7-1. Table 7-3. Buffer Type BUFFER TYPE (STANDARD) NOMINAL PU OR PD STRENGTH (µA)(1) OUTPUT DRIVE STRENGTH (mA)(1) N/A N/A N/A Yes(3) Programmable See Section 8.12.5 See Section 8.12.5.3 3.0 V No N/A N/A N/A 3.0 V No N/A N/A N/A 0V No N/A N/A N/A NOMINAL VOLTAGE HYSTERESIS Analog(2) 3.0 V No LVCMOS 3.0 V Power (DVCC)(4) Power (AVCC)(4) Power (DVSS and AVSS)(4) (1) (2) (3) (4) PU OR PD(1) COMMENTS See analog modules in Section 8 for details SVS enables hysteresis on DVCC N/A = not applicable This is a switch, not a buffer. Only for input pins This is supply input, not a buffer. 7.6 Connection of Unused Pins Table 7-4 lists the correct termination of all unused pins. Table 7-4. Connection of Unused Pins PIN (1) POTENTIAL AVCC DVCC AVSS DVSS Px.0 to Px.7 Open Switched to port function, output direction (PxDIR.n = 1) RST/NMI DVCC or VCC 47-kΩ pullup or internal pullup selected with 10-nF (2.2 nF(2)) pulldown PJ.0/TDO PJ.1/TDI PJ.2/TMS PJ.3/TCK Open The JTAG pins are shared with general-purpose I/O function (PJ.x). If not being used, these should be switched to port function, output direction. When used as JTAG pins, these pins should remain open. TEST Open This pin always has an internal pulldown enabled. (1) (2) 28 COMMENT For any unused pin with a secondary function that is shared with general-purpose I/O, follow the guidelines for the Px.0 to Px.7 pins. The pulldown capacitor should not exceed 2.2 nF when using devices with Spy-Bi-Wire interface in Spy-Bi-Wire mode or in 4-wire JTAG mode with TI tools like FET interfaces or GANG programmers. Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962 MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962 www.ti.com SLASE54D – MARCH 2016 – REVISED JANUARY 2021 8 Specifications 8.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted)(1) MIN Voltage applied at DVCC and AVCC pins to VSS –0.3 Voltage difference between DVCC and AVCC pins(1) Voltage applied to any pin (2) –0.3 Diode current at any device pin Storage temperature, Tstg (1) (2) (3) (3) –40 MAX UNIT 4.1 V ±0.3 V VCC + 0.3 V (4.1 V Max) V ±2 mA 125 °C Voltage differences between DVCC and AVCC exceeding the specified limits may cause malfunction of the device including erroneous writes to RAM and FRAM. All voltages referenced to VSS. Higher temperature may be applied during board soldering according to the current JEDEC J-STD-020 specification with peak reflow temperatures not higher than classified on the device label on the shipping boxes or reels. 8.2 ESD Ratings VALUE V(ESD) (1) (2) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±1000 ±250 UNIT V JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Pins listed as ±1000 V may actually have higher performance. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Pins listed as ±250 V may actually have higher performance. Copyright © 2021 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962 29 MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962 www.ti.com SLASE54D – MARCH 2016 – REVISED JANUARY 2021 8.3 Recommended Operating Conditions TYP data are based on VCC = 3.0 V and TA = 25°C, unless otherwise noted MIN pins(1) (2) (3) NOM 1.8(6) MAX VCC Supply voltage range applied at all DVCC and AVCC VSS Supply voltage applied at all DVSS and AVSS pins. TA Operating free-air temperature –40 85 °C TJ Operating junction temperature –40 85 °C CDVCC fSYSTEM Capacitor value at fACLK Maximum ACLK frequency fSMCLK Maximum SMCLK frequency (1) (2) (3) (4) (5) (6) (7) (8) (9) 30 0 DVCC(4) Processor frequency (maximum MCLK frequency)(5) 3.6 UNIT V V 1–20% µF No FRAM wait states (NWAITSx = 0) 0 8(8) With FRAM wait states (NWAITSx = 1)(7) 0 16(9) MHz 50 kHz 16(9) MHz TI recommends powering AVCC and DVCC pins from the same source. At a minimum, during power up, power down, and device operation, the voltage difference between AVCC and DVCC must not exceed the limits specified under Absolute Maximum Ratings. Exceeding the specified limits may cause malfunction of the device including erroneous writes to RAM and FRAM. Fast supply voltage changes can trigger a BOR reset even within the recommended supply voltage range. To avoid unwanted BOR resets, the supply voltage must change by less than 0.05 V per microsecond (±0.05 V/µs). Following the data sheet recommendation for capacitor CDVCC should limit the slopes accordingly. Modules may have a different supply voltage range specification. See the specification of the respective module in this data sheet. For each supply pin pair (DVCC and DVSS, AVCC and AVSS), place a low-ESR ceramic capacitor of 100 nF (minimum) as close as possible (within a few millimeters) to the respective pin pairs. Modules may have a different maximum input clock specification. See the specification of the respective module in this data sheet. The minimum supply voltage is defined by the supervisor SVS levels. See the PMM SVS threshold parameters for the exact values. Wait states only occur on actual FRAM accesses; that is, on FRAM cache misses. RAM and peripheral accesses are always excecuted without wait states. DCO settings and HF cyrstals with a typical value less than or equal to the specified MAX value are permitted. DCO settings and HF cyrstals with a typical value less than or equal to the specified MAX value are permitted. If a clock sources with a higher typical value is used, the clock must be divided in the clock system. Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962 MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962 www.ti.com SLASE54D – MARCH 2016 – REVISED JANUARY 2021 8.4 Active Mode Supply Current Into VCC Excluding External Current over recommended operating free-air temperature (unless otherwise noted)(1) (2) (see Figure 8-1) FREQUENCY (fMCLK = fSMCLK) PARAMETER EXECUTION MEMORY VCC 1 MHz 4 MHz 8 MHz 0 WAIT STATES 0 WAIT STATES 0 WAIT STATES (NWAITSx = 0) (NWAITSx = 0) (NWAITSx = 0) TYP MAX TYP MAX TYP MAX 12 MHz 1 WAIT STATE (NWAITSx = 1) TYP MAX 16 MHz 1 WAIT STATE (NWAITSx = 1) TYP UNIT MAX IAM, FRAM_UNI (Unified memory)(3) FRAM 3.0 V 225 665 1275 1550 1970 µA IAM, FRAM(0%)(4) (5) FRAM 0% cache hit ratio 3.0 V 420 1455 2850 2330 3000 µA IAM, FRAM(50%)(4) (5) FRAM 50% cache hit ratio 3.0 V 275 855 1650 1770 2265 µA IAM, FRAM(66%)(4) (5) FRAM 66% cache hit ratio 3.0 V 220 650 1240 1490 1880 µA IAM, FRAM(75%)(4) (5) FRAM 75% cache hit ratio 3.0 V 192 535 1015 IAM, FRAM(100%(4) (5) FRAM 100% cache hit ratio 3.0 V 125 255 450 670 790 IAM, RAM (6) (5) RAM 3.0 V 140 325 590 880 1070 IAM, RAM only (7) (5) RAM 3.0 V 90 280 540 830 1020 (1) (2) (3) (4) (5) (6) (7) 261 182 1170 1290 1490 1620 1870 µA µA µA 1313 µA All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current. Characterized with program executing typical data processing. fACLK = 32768 Hz, fMCLK = fSMCLK = fDCO at specified frequency, except for 12 MHz. For 12 MHz, fDCO= 24 MHz and fMCLK = fSMCLK = fDCO / 2. At MCLK frequencies above 8 MHz, the FRAM requires wait states. When wait states are required, the effective MCLK frequency (fMCLK,eff) decreases. The effective MCLK frequency also depends on the cache hit ratio. SMCLK is not affected by the number of wait states or the cache hit ratio. The following equation can be used to compute fMCLK,eff: fMCLK,eff = fMCLK / [wait states × (1 – cache hit ratio) + 1] For example, with 1 wait state and 75% cache hit ratio fMCKL,eff = fMCLK / [1 × (1 – 0.75) + 1] = fMCLK / 1.25. Represents typical program execution. Program and data reside entirely in FRAM. All execution is from FRAM. Program resides in FRAM. Data resides in SRAM. Average current dissipation varies with cache hit-to-miss ratio as specified. Cache hit ratio represents number cache accesess divided by the total number of FRAM accesses. For example, a 75% ratio implies three of every four accesses is from cache, and the remaining are FRAM accesses. See Figure 8-1 for typical curves. The characteristic equation shown in the graph is computed using the least squares method for best linear fit using the typical data shown in Section 8.4. Program and data reside entirely in RAM. All execution is from RAM. Program and data reside entirely in RAM. All execution is from RAM. FRAM is off. Copyright © 2021 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962 31 MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962 www.ti.com SLASE54D – MARCH 2016 – REVISED JANUARY 2021 8.5 Typical Characteristics, Active Mode Supply Currents 3000 I(AM,0%) I(AM,50%) I(AM,66%) I(AM,75%) I(AM,100%) I(AM,RAM) IAM, Active Mode Current (µA) 2500 2000 I(AM,75%) [µA] = 118 × f [MHz] + 74 1500 1000 500 0 1 2 3 4 5 fMCLK, MCLK Frequency (MHz) 6 7 8 Figure 8-1. Typical Active Mode Supply Currents, No Wait States 8.6 Low-Power Mode (LPM0, LPM1) Supply Currents Into VCC Excluding External Current over recommended operating free-air temperature (unless otherwise noted)(1) (2) FREQUENCY (fSMCLK) PARAMETER VCC 1 MHz TYP ILPM0 ILPM1 (1) (2) 32 2.2 V 75 3.0 V 85 2.2 V 40 3.0 V 40 4 MHz MAX TYP 8 MHz MAX TYP 12 MHz MAX TYP 16 MHz MAX TYP 105 165 240 220 135 115 175 250 240 65 130 215 195 67 65 130 215 195 UNIT MAX 290 222 µA µA All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current. Current for watchdog timer clocked by SMCLK included. fACLK = 32768 Hz, fMCLK = 0 MHz, fSMCLK = fDCO at specified frequency - except for 12 MHz: here fDCO=24MHz and fSMCLK = fDCO / 2. Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962 MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962 www.ti.com SLASE54D – MARCH 2016 – REVISED JANUARY 2021 8.7 Low-Power Mode (LPM2, LPM3, LPM4) Supply Currents (Into VCC) Excluding External Current over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1) (see Figure 8-2 and Figure 8-3) PARAMETER ILPM2,XT12 ILPM2,XT3.7 Low-power mode 2, 12-pF crystal(2) (3) (4) Low-power mode 2, 3.7-pF crystal(2) (5) (4) VCC –40°C TYP MAX 25°C TYP 60°C MAX TYP 85°C MAX TYP 2.2 V 0.8 1.3 4.1 10.8 3.0 V 0.8 1.3 4.1 10.8 2.2 V 0.6 1.2 4.0 10.7 3.0 V 0.6 1.2 4.0 10.7 MAX UNIT μA μA ILPM2,VLO Low-power mode 2, VLO, includes SVS(6) 2.2 V 0.5 1.0 3.8 10.5 3.0 V 0.5 1.0 3.8 10.5 ILPM3,XT12 Low-power mode 3, 12-pF crystal, includes SVS(2) (3) (7) 2.2 V 0.8 1.0 2.2 4.5 3.0 V 0.8 1.0 2.2 4.5 Low-power mode 3, 3.7-pF crystal, excludes SVS(2) (5) (8) (also see Figure 8-2) 2.2 V 0.5 0.7 2.1 4.4 ILPM3,XT3.7 3.0 V 0.5 0.7 2.1 4.4 ILPM3,VLO Low-power mode 3, VLO, excludes SVS(9) 2.2 V 0.4 0.5 1.9 4.2 3.0 V 0.4 0.5 1.9 4.2 Low-power mode 3, VLO, excludes SVS, RAM powered down completely(9) 2.2 V 0.36 0.47 1.4 2.6 3.0 V 0.36 0.47 1.4 2.6 ILPM4,SVS Low-power mode 4, includes SVS(10) 2.2 V 0.5 0.6 1.9 4.3 3.0 V 0.5 0.6 1.9 4.3 ILPM4 Low-power mode 4, excludes SVS(11) 2.2 V 0.3 0.4 1.7 4.0 3.0 V 0.3 0.4 1.7 4.0 ILPM4,RAMoff Low-power mode 4, excludes SVS, RAM powered down completely(11) 2.2 V 0.3 0.37 1.2 2.5 3.0 V 0.3 0.37 1.2 2.5 IIDLE,GroupA Additional idle current if one or more modules from Group A (see Table 9-3) are activated in LPM3 or LPM4 3.0 V 0.02 0.3 μA IIDLE,GroupB Additional idle current if one or more modules from Group B (see Table 9-3) are activated in LPM3 or LPM4 3.0 V 0.02 0.35 μA IIDLE,GroupC Additional idle current if one or more modules from Group C (see Table 9-3) are activated in LPM3 or LPM4 3.0 V 0.02 0.38 μA ILPM3,VLO, RAMoff (1) (2) (3) (4) (5) (6) (7) μA μA μA μA μA μA μA μA All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current. Not applicable for devices with HF crystal oscillator only. Characterized with a Micro Crystal MS1V-T1K crystal with a load capacitance of 12.5 pF. The internal and external load capacitance are chosen to closely match the required 12.5 pF load. Low-power mode 2, crystal oscillator test conditions: Current for watchdog timer clocked by ACLK and RTC clocked by XT1 included. Current for brownout and SVS included. CPUOFF = 1, SCG0 = 0 SCG1 = 1, OSCOFF = 0 (LPM2), fXT1 = 32768 Hz, fACLK = fXT1, fMCLK = fSMCLK = 0 MHz Characterized with a Seiko SSP-T7-FL (SMD) crystal with a load capacitance of 3.7 pF. The internal and external load capacitance are chosen to closely match the required 3.7-pF load. Low-power mode 2, VLO test conditions: Current for watchdog timer clocked by ACLK included. RTC disabled (RTCHOLD = 1). Current for brownout and SVS included. CPUOFF = 1, SCG0 = 0 SCG1 = 1, OSCOFF = 0 (LPM2), fXT1 = 0 Hz, fACLK = fVLO, fMCLK = fSMCLK = 0 MHz Low-power mode 3, 12-pF crystal including SVS test conditions: Current for watchdog timer clocked by ACLK and RTC clocked by XT1 included. Current for brownout and SVS included (SVSHE = 1). CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 0 (LPM3), Copyright © 2021 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962 33 MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962 SLASE54D – MARCH 2016 – REVISED JANUARY 2021 www.ti.com fXT1 = 32768 Hz, fACLK = fXT1, fMCLK = fSMCLK = 0 MHz Activating additional peripherals increases the current consumption due to active supply current contribution and due to additional idle current. See the idle currents specified for the respective peripheral groups. (8) Low-power mode 3, 3.7-pF crystal excluding SVS test conditions: Current for watchdog timer clocked by ACLK and RTC clocked by XT1 included. Current for brownout included. SVS disabled (SVSHE = 0). CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 0 (LPM3), fXT1 = 32768 Hz, fACLK = fXT1, fMCLK = fSMCLK = 0 MHz Activating additional peripherals increases the current consumption due to active supply current contribution and due to additional idle current. See the idle currents specified for the respective peripheral groups. (9) Low-power mode 3, VLO excluding SVS test conditions: Current for watchdog timer clocked by ACLK included. RTC disabled (RTCHOLD = 1). RAM disabled (RCCTL0 = 5A55h). Current for brownout included. SVS disabled (SVSHE = 0). CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 0 (LPM3), fXT1 = 0 Hz, fACLK = fVLO, fMCLK = fSMCLK = 0 MHz Activating additional peripherals increases the current consumption due to active supply current contribution and due to additional idle current. See the idle currents specified for the respective peripheral groups. (10) Low-power mode 4 including SVS test conditions: Current for brownout and SVS included (SVSHE = 1). CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPM4), fXT1 = 0 Hz, fACLK = 0 Hz, fMCLK = fSMCLK = 0 MHz Activating additional peripherals increases the current consumption due to active supply current contribution and due to additional idle current. See the idle currents specified for the respective peripheral groups. (11) Low-power mode 4 excluding SVS test conditions: Current for brownout included. SVS disabled (SVSHE = 0). RAM disabled (RCCTL0 = 5A55h). CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPM4), fXT1 = 0 Hz, fACLK = 0 Hz, fMCLK = fSMCLK = 0 MHz Activating additional peripherals increases the current consumption due to active supply current contribution and due to additional idle current. See the idle currents specified for the respective peripheral groups. 34 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962 MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962 www.ti.com SLASE54D – MARCH 2016 – REVISED JANUARY 2021 8.8 Low-Power Mode (LPMx.5) Supply Currents (Into VCC) Excluding External Current over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1)(see Figure 8-4 and Figure 8-5) PARAMETER VCC –40°C TYP MAX 25°C TYP 60°C MAX TYP 85°C MAX TYP ILPM3.5,XT12 Low-power mode 3.5, 12-pF crystal including SVS (2) (3) (4) 2.2 V 0.45 0.5 0.55 0.75 3.0 V 0.45 0.5 0.55 0.75 ILPM3.5,XT3.7 Low-power mode 3.5, 3.7-pF crystal excluding SVS (2) (5) (6) 2.2 V 0.3 0.35 0.4 0.65 3.0 V 0.3 0.35 0.4 0.65 ILPM4.5,SVS Low-power mode 4.5, including SVS(7) 2.2 V 0.23 0.25 0.28 0.4 3.0 V 0.23 0.25 0.28 0.4 ILPM4.5 Low-power mode 4.5, excluding SVS(8) 2.2 V 0.035 0.045 0.075 0.15 3.0 V 0.035 0.045 0.075 0.15 (1) (2) (3) (4) (5) (6) (7) (8) MAX UNIT μA μA μA μA All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current Not applicable for devices with HF crystal oscillator only. Characterized with a Micro Crystal MS1V-T1K crystal with a load capacitance of 12.5 pF. The internal and external load capacitance are chosen to closely match the required 12.5 pF load. Low-power mode 3.5, 1-pF crystal including SVS test conditions: Current for RTC clocked by XT1 included. Current for brownout and SVS included (SVSHE = 1). Core regulator disabled. PMMREGOFF = 1; CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPMx.5), fXT1 = 32768 Hz, fACLK = fXT1, fMCLK = fSMCLK = 0 MHz Characterized with a Seiko SSP-T7-FL (SMD) crystal with a load capacitance of 3.7 pF. The internal and external load capacitance are chosen to closely match the required 3.7-pF load. Low-power mode 3.5, 3.7-pF crystal excluding SVS test conditions: Current for RTC clocked by XT1 included.Current for brownout included. SVS disabled (SVSHE = 0). Core regulator disabled. PMMREGOFF = 1; CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPMx.5), fXT1 = 32768 Hz, fACLK = fXT1, fMCLK = fSMCLK = 0 MHz Low-power mode 4.5 including SVS test conditions: Current for brownout and SVS included (SVSHE = 1). Core regulator disabled. PMMREGOFF = 1; CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPMx.5), fXT1 = 0 Hz, fACLK = 0 Hz, fMCLK = fSMCLK = 0 MHz Low-power mode 4.5 excluding SVS test conditions: Current for brownout included. SVS disabled (SVSHE = 0). Core regulator disabled. PMMREGOFF = 1; CPUOFF = 1, SCG0 = 1 SCG1 = 1, OSCOFF = 1 (LPMx.5), fXT1 = 0 Hz, fACLK = 0 Hz, fMCLK = fSMCLK = 0 MHz Copyright © 2021 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962 35 MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962 www.ti.com SLASE54D – MARCH 2016 – REVISED JANUARY 2021 8.9 Typical Characteristics, Low-Power Mode Supply Currents 3.5 2.5 ILPM4, LPM4 Supply Current (µA) ILPM3, LPM3 Supply Current (µA) 3 3 3.0 V, SVS off 2.2 V, SVS off 3.0 V, SVS on 2.2 V, SVS on 2.5 2 1.5 1 0.5 -40 -20 0 20 40 Temperature (°C) 60 80 -20 0 20 40 Temperature (°C) 60 80 100 Figure 8-3. LPM4 Supply Current vs Temperature 2.2 V, SVS Off 3.0 V, SVS Off 0.45 0.55 ILPM4.5, LPM4.5 Supply Current (µA) ILPM3.5, LPM3.5 Supply Current (µA) 1 0.5 0.5 0.45 0.4 0.35 0.3 0.25 0.4 2.2 V, SVS off 3.0 V, SVS off 2.2 V, SVS on 3.0 V, SVS on 0.35 0.3 0.25 0.2 0.15 0.1 0.05 -20 0 20 40 Temperature (°C) 60 80 Figure 8-4. LPM3.5 Supply Current vs Temperature 36 1.5 0 -40 100 Figure 8-2. LPM3 Supply Current vs Temperature 0.2 -40 2 0.5 0.65 0.6 3.0 V, SVS off 2.2 V, SVS off 3.0 V, SVS on 2.2 V, SVS on Submit Document Feedback 100 0 -40 -20 0 20 40 Temperature (°C) 60 80 100 Figure 8-5. LPM4.5 Supply Current vs Temperature Copyright © 2021 Texas Instruments Incorporated Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962 MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962 www.ti.com SLASE54D – MARCH 2016 – REVISED JANUARY 2021 8.10 Typical Characteristics, Current Consumption per Module MODULE TEST CONDITIONS (1) REFERENCE CLOCK MIN TYP MAX UNIT Timer_A Module input clock 3 μA/MHz Timer_B Module input clock 5 μA/MHz eUSCI_A UART mode Module input clock 6.3 μA/MHz eUSCI_A SPI mode Module input clock 4 μA/MHz eUSCI_B SPI mode Module input clock 4 μA/MHz eUSCI_B I2C mode, 100 kbaud Module input clock 4 μA/MHz RTC_C 32 kHz 100 nA MPY Only from start to end of operation MCLK 28 μA/MHz CRC16 Only from start to end of operation MCLK 3.3 μA/MHz CRC32 Only from start to end of operation MCLK 3.3 μA/MHz 256 Point Complex FFT, Data = nonzero LEA (1) 256 Point Complex FFT, Data = zero 86 MCLK 66 µA/MHz For other module currents not listed here, see the module-specific parameter sections. 8.11 Thermal Packaging Characteristics THERMAL METRIC(1) (2) PACKAGE VALUE UNIT RθJA Junction-to-ambient thermal resistance, still air 27.5 °C/W RθJC(TOP) Junction-to-case (top) thermal resistance 12.5 °C/W RθJB Junction-to-board thermal resistance 4.4 °C/W ΨJB Junction-to-board thermal characterization parameter ΨJT Junction-to-top thermal characterization parameter QFN-48 (RGZ) 4.4 °C/W 0.2 °C/W RθJC(BOTTOM) Junction-to-case (bottom) thermal resistance 0.8 °C/W RθJA Junction-to-ambient thermal resistance, still air 53.2 °C/W RθJC(TOP) Junction-to-case (top) thermal resistance 14.3 °C/W RθJB Junction-to-board thermal resistance 24.7 °C/W QFP-64 (PM) ΨJB Junction-to-board thermal characterization parameter 24.4 °C/W ΨJT Junction-to-top thermal characterization parameter 0.6 °C/W RθJA Junction-to-ambient thermal resistance, still air 47.9 °C/W RθJC(TOP) Junction-to-case (top) thermal resistance 13.0 °C/W RθJB Junction-to-board thermal resistance 22.5 °C/W ΨJB Junction-to-board thermal characterization parameter 22.2 °C/W QFP-80 (PN) ΨJT Junction-to-top thermal characterization parameter 0.6 °C/W RθJA Junction-to-ambient thermal resistance, still air 60.6 °C/W RθJC(TOP) Junction-to-case (top) thermal resistance 18.1 °C/W RθJB Junction-to-board thermal resistance 31.8 °C/W BGA-87 (ZVW) ΨJB Junction-to-board thermal characterization parameter 30.1 °C/W ΨJT Junction-to-top thermal characterization parameter 0.7 °C/W (1) (2) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics. These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC (RθJC) value, which is based on a JEDEC-defined 1S0P system) and will change based on environment and application. For more information, see these EIA/JEDEC standards: • JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air) • JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages • JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages • JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements Copyright © 2021 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962 37 MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962 www.ti.com SLASE54D – MARCH 2016 – REVISED JANUARY 2021 8.12 Timing and Switching Characteristics 8.12.1 Power Supply Sequencing TI recommends powering AVCC and DVCC pins from the same source. At a minimum, during power up, power down, and device operation, the voltage difference between AVCC and DVCC must not exceed the limits specified in Section 8.1. Exceeding the specified limits may cause malfunction of the device including erroneous writes to RAM and FRAM. Section 8.12.1.1 lists the power ramp requirements. 8.12.1.1 Brownout and Device Reset Power Ramp Requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER VVCC_BOR– Brownout power-down level VVCC_BOR+ Brownout power-up level(1) (1) (2) TEST CONDITIONS (1) MIN MAX UNIT | dDVCC/dt | < 3 V/s 0.73 1.66 V | dDVCC/dt | < 3 V/s(2) 0.79 1.75 V Fast supply voltage changes can trigger a BOR reset even within the recommended supply voltage range. To avoid unwanted BOR resets, the supply voltage must change by less than 0.05 volts per microsecond (±0.05 V/µs). Following the data sheet recommendation for capacitor CDVCC should limit the slopes accordingly. The brownout levels are measured with a slowly changing supply. Section 8.12.1.2 lists the supply voltage supervisor characteristics. 8.12.1.2 SVS over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER ISVSH,LPM level(1) VSVSH- SVSH power-down VSVSH+ SVSH power-up level(1) VSVSH_hys SVSH hysteresis tPD,SVSH, AM SVSH propagation delay, active mode (1) TEST CONDITIONS MIN TYP MAX UNIT 170 300 nA 1.75 1.80 1.85 V 1.77 1.88 1.99 V 150 mV 10 µs SVSH current consumption, low power modes 40 dVVcc/dt = –10 mV/µs For additional information, see the Dynamic Voltage Scaling Power Solution for MSP430 Devices With Single-Channel LDO Reference Design. 8.12.2 Reset Timing Section 8.12.2.1 lists the input requirements of the reset pin. 8.12.2.1 Reset Input over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) VCC t(RST) (1) 38 External reset pulse duration on RST (1) 2.2 V, 3.0 V MIN 2 MAX UNIT µs Not applicable if RST/NMI pin configured as NMI . Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962 MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962 www.ti.com SLASE54D – MARCH 2016 – REVISED JANUARY 2021 8.12.3 Clock Specifications LFXTCLK (see Section 8.12.3.1) is a low-frequency oscillator that can be used either with low-frequency 32768Hz watch crystals, standard crystals, resonators, or external clock sources in the 50 kHz or below range. When in bypass mode, LFXTCLK can be driven with an external square-wave signal. 8.12.3.1 Low-Frequency Crystal Oscillator, LFXT over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER (1) IVCC.LFXT Current consumption TEST CONDITIONS VCC MIN TYP fOSC = 32768 Hz, LFXTBYPASS = 0, LFXTDRIVE = {0}, TA = 25°C, CL,eff = 3.7 pF, ESR ≈ 44 kΩ 180 fOSC = 32768 Hz, LFXTBYPASS = 0, LFXTDRIVE = {1}, TA = 25°C, CL,eff = 6 pF, ESR ≈ 40 kΩ 185 fOSC = 32768 Hz, LFXTBYPASS = 0, LFXTDRIVE = {2}, TA = 25°C, CL,eff = 9 pF, ESR ≈ 40 kΩ MAX UNIT 3.0 V nA 225 fOSC = 32768 Hz, LFXTBYPASS = 0, LFXTDRIVE = {3}, TA = 25°C, CL,eff = 12.5 pF, ESR ≈ 40 kΩ 330 fLFXT LFXT oscillator crystal frequency LFXTBYPASS = 0 DCLFXT LFXT oscillator duty cycle Measured at ACLK, fLFXT = 32768 Hz 30% fLFXT,SW LFXT oscillator logic-level square-wave input frequency LFXTBYPASS = 1 (2) (3) 10.5 DCLFXT, SW LFXT oscillator logic-level square-wave input duty cycle LFXTBYPASS = 1 30% OALFXT Oscillation allowance for LF crystals (4) 32768 Hz 70% 32.768 50 kHz 70% LFXTBYPASS = 0, LFXTDRIVE = {1}, fLFXT = 32768 Hz, CL,eff = 6 pF 210 LFXTBYPASS = 0, LFXTDRIVE = {3}, fLFXT = 32768 Hz, CL,eff = 12.5 pF 300 kΩ CLFXIN Integrated load capacitance at LFXIN terminal (5) (6) 2 pF CLFXOUT Integrated load capacitance at LFXOUT terminal (5) (6) 2 pF tSTART,LFXT fFault,LFXT (1) (2) (3) (4) Start-up time (7) Oscillator fault frequency (8) (9) fOSC = 32768 Hz LFXTBYPASS = 0, LFXTDRIVE = {0}, TA = 25°C, CL,eff = 3.7 pF, 3.0 V fOSC = 32768 Hz LFXTBYPASS = 0, LFXTDRIVE = {3}, TA = 25°C, CL,eff = 12.5 pF 3.0 V 800 ms 1000 0 3500 Hz To improve EMI on the LFXT oscillator, the following guidelines should be observed. • Keep the trace between the device and the crystal as short as possible. • Design a good ground plane around the oscillator pins. • Prevent crosstalk from other clock or data lines into oscillator pins LFXIN and LFXOUT. • Avoid running PCB traces underneath or adjacent to the LFXIN and LFXOUT pins. • Use assembly materials and processes that avoid any parasitic load on the oscillator LFXIN and LFXOUT pins. • If conformal coating is used, ensure that it does not induce capacitive or resistive leakage between the oscillator pins. When LFXTBYPASS is set, LFXT circuits are automatically powered down. Input signal is a digital square wave with parametrics defined in the Schmitt-trigger Inputs section of this datasheet. Duty cycle requirements are defined by DCLFXT, SW. Maximum frequency of operation of the entire device cannot be exceeded. Oscillation allowance is based on a safety factor of 5 for recommended crystals. The oscillation allowance is a function of the LFXTDRIVE settings and the effective load. In general, comparable oscillator allowance can be achieved based on the following guidelines, but should be evaluated based on the actual crystal selected for the application: Copyright © 2021 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962 39 MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962 www.ti.com SLASE54D – MARCH 2016 – REVISED JANUARY 2021 (5) (6) (7) (8) (9) • For LFXTDRIVE = {0}, CL,eff = 3.7 pF • For LFXTDRIVE = {1}, CL,eff = 6 pF • For LFXTDRIVE = {2}, 6 pF ≤ CL,eff ≤ 9 pF • For LFXTDRIVE = {3}, 9 pF ≤ CL,eff ≤ 12.5 pF This represents all the parasitic capacitance present at the LFXIN and LFXOUT terminals, respectively, including parasitic bond and package capacitance. The effective load capacitance, CL,eff can be computed as CIN × COUT / (CIN + COUT), where CIN and COUT are the total capacitance at the LFXIN and LFXOUT terminals, respectively. Requires external capacitors at both terminals to meet the effective load capacitance specified by crystal manufacturers. Recommended effective load capacitance values supported are 3.7 pF, 6 pF, 9 pF, and 12.5 pF. Maximum shunt capacitance of 1.6 pF. The PCB adds additional capacitance, so it must also be considered in the overall capacitance. Verify that the recommended effective load capacitance of the selected crystal is met. Includes startup counter of 1024 clock cycles. Frequencies above the MAX specification do not set the fault flag. Frequencies between the MIN and MAX specification may set the flag. A static condition or stuck at fault condition will set the flag. Measured with logic-level input frequency but also applies to operation with crystals. HFXTCLK (see Section 8.12.3.2) is a high-frequency oscillator that can be used with standard crystals or resonators in the 4‑MHz to 24-MHz range. When in bypass mode, HFXTCLK can be driven with an external square-wave signal. 8.12.3.2 High-Frequency Crystal Oscillator, HFXT over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER (1) IDVCC.HFXT HFXT oscillator crystal current HF mode at typical ESR TEST CONDITIONS VCC MIN fOSC = 4 MHz, HFXTBYPASS = 0, HFXTDRIVE = 0, HFFREQ = 1 (2), TA = 25°C, CL,eff = 18 pF, typical ESR, Cshunt 75 fOSC = 8 MHz, HFXTBYPASS = 0, HFXTDRIVE = 1, HFFREQ = 1, TA = 25°C, CL,eff = 18 pF, typical ESR, Cshunt 120 fOSC = 16 MHz, HFXTBYPASS = 0, HFXTDRIVE = 2, HFFREQ = 2, TA = 25°C CL,eff = 18 pF, typical ESR, Cshunt HFXTBYPASS = 0, HFFREQ = 1 (2) (3) fHFXT DCHFXT HFXT oscillator duty cycle. 190 fHFXT,SW 8 8.01 16 HFXTBYPASS = 0, HFFREQ = 3 (3) 16.01 24 Measured at SMCLK, fHFXT = 16 MHz 40% HFXTBYPASS = 1, HFFREQ = 1 0 (4) (3) HFXTBYPASS = 1, HFFREQ = 20 (4) (3) HFXTBYPASS = 1, HFFREQ = 3 0 (4) (3) DCHFXT, SW 40 HFXT oscillator logic-level square-wave input duty cycle Submit Document Feedback 250 4 HFXTBYPASS = 0, HFFREQ = 2 HFXTBYPASS = 1 UNIT μA (3) HFXTBYPASS = 1, HFFREQ = 0 (4) (3) HFXT oscillator logic-level square-wave input frequency, bypass mode MAX 3.0 V fOSC = 24 MHz HFXTBYPASS = 0, HFXTDRIVE = 3, HFFREQ = 3, TA = 25°C CL,eff = 18 pF, typical ESR, Cshunt HFXT oscillator crystal frequency, crystal mode TYP 50% MHz 60% 0.9 4 4.01 8 8.01 16 16.01 24 40% 60% MHz Copyright © 2021 Texas Instruments Incorporated Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962 MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962 www.ti.com SLASE54D – MARCH 2016 – REVISED JANUARY 2021 8.12.3.2 High-Frequency Crystal Oscillator, HFXT (continued) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER (1) OAHFXT tSTART,HFXT Oscillation allowance for HFXT crystals(5) Startup time (6) TEST CONDITIONS VCC MIN TYP HFXTBYPASS = 0, HFXTDRIVE = 0, HFFREQ = 1 (2), fHFXT,HF = 4 MHz, CL,eff = 16 pF 450 HFXTBYPASS = 0, HFXTDRIVE = 1, HFFREQ = 1 fHFXT,HF = 8 MHz, CL,eff = 16 pF 320 HFXTBYPASS = 0, HFXTDRIVE = 2, HFFREQ = 2 fHFXT,HF = 16 MHz, CL,eff = 16 pF 200 HFXTBYPASS = 0, HFXTDRIVE = 3, HFFREQ = 3 fHFXT,HF = 24 MHz, CL,eff = 16 pF 200 fOSC = 4 MHz, HFXTBYPASS = 0, HFXTDRIVE = 0, HFFREQ = 1, TA = 25°C, CL,eff = 16 pF 1.6 fOSC = 24 MHz, HFXTBYPASS = 0, HFXTDRIVE = 3, HFFREQ = 3, TA = 25°C, CL,eff = 16 pF MAX UNIT Ω 3.0 V ms 0.6 CHFXIN Integrated load capacitance at HFXIN terminaI (7) (8) 2 pF CHFXOUT Integrated load capacitance at HFXOUT terminaI (7) (8) 2 pF fFault,HFXT Oscillator fault frequency (9) (10) 0 800 kHz (1) To improve EMI on the HFXT oscillator the following guidelines should be observed. • Keep the traces between the device and the crystal as short as possible. • Design a good ground plane around the oscillator pins. • Prevent crosstalk from other clock or data lines into oscillator pins HFXIN and HFXOUT. • Avoid running PCB traces underneath or adjacent to the HFXIN and HFXOUT pins. • Use assembly materials and processes that avoid any parasitic load on the oscillator HFXIN and HFXOUT pins. • If conformal coating is used, ensure that it does not induce capacitive or resistive leakage between the oscillator pins. (2) HFFREQ = {0} is not supported for HFXT crystal mode of operation. (3) Maximum frequency of operation of the entire device cannot be exceeded. (4) When HFXTBYPASS is set, HFXT circuits are automatically powered down. Input signal is a digital square wave with parametrics defined in the Schmitt-trigger Inputs section of this datasheet. Duty cycle requirements are defined by DCHFXT, SW. (5) Oscillation allowance is based on a safety factor of 5 for recommended crystals. (6) Includes startup counter of 1024 clock cycles. (7) This represents all the parasitic capacitance present at the HFXIN and HFXOUT terminals, respectively, including parasitic bond and package capacitance. The effective load capacitance, CL,eff can be computed as CIN × COUT / (CIN + COUT), where CIN and COUT is the total capacitance at the HFXIN and HFXOUT terminals, respectively. (8) Requires external capacitors at both terminals to meet the effective load capacitance specified by crystal manufacturers. Recommended effective load capacitance values supported are 14 pF, 16 pF, and 18 pF. Maximum shunt capacitance of 7 pF. The PCB adds additional capacitance, so it must also be considered in the overall capacitance. Verify that the recommended effective load capacitance of the selected crystal is met. (9) Frequencies above the MAX specification do not set the fault flag. Frequencies between the MIN and MAX might set the flag. A static condition or stuck at fault condition will set the flag. (10) Measured with logic-level input frequency but also applies to operation with crystals. Copyright © 2021 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962 41 MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962 www.ti.com SLASE54D – MARCH 2016 – REVISED JANUARY 2021 The DCO (see Section 8.12.3.3) is an internal digitally controlled oscillator (DCO) with selectable frequencies. 8.12.3.3 DCO over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT 1 ±3.5% MHz fDCO1 DCO frequency range 1 MHz, trimmed Measured at SMCLK, divide by 1, DCORSEL = 0, DCOFSEL = 0, DCORSEL = 1, DCOFSEL = 0 fDCO2.7 DCO frequency range 2.7 MHz, trimmed Measured at SMCLK, divide by 1, DCORSEL = 0, DCOFSEL = 1 2.667 ±3.5% MHz fDCO3.5 DCO frequency range 3.5 MHz, trimmed Measured at SMCLK, divide by 1, DCORSEL = 0, DCOFSEL = 2 3.5 ±3.5% MHz fDCO4 DCO frequency range 4 MHz, trimmed Measured at SMCLK, divide by 1 DCORSEL = 0, DCOFSEL = 3 4 ±3.5% MHz fDCO5.3 DCO frequency range 5.3 MHz, trimmed Measured at SMCLK, divide by 1, DCORSEL = 0, DCOFSEL = 4, DCORSEL = 1, DCOFSEL = 1 5.333 ±3.5% MHz fDCO7 DCO frequency range 7 MHz, trimmed Measured at SMCLK, divide by 1, DCORSEL = 0, DCOFSEL = 5, DCORSEL = 1, DCOFSEL = 2 7 ±3.5% MHz fDCO8 DCO frequency range 8 MHz, trimmed Measured at SMCLK, divide by 1, DCORSEL = 0, DCOFSEL = 6, DCORSEL = 1, DCOFSEL = 3 8 ±3.5% MHz fDCO16 DCO frequency range 16 MHz, trimmed Measured at SMCLK, divide by 1, DCORSEL = 1, DCOFSEL = 4 16 ±3.5% MHz fDCO21 DCO frequency range 21 MHz, trimmed Measured at SMCLK, divide by 2, DCORSEL = 1, DCOFSEL = 5 21 ±3.5% MHz fDCO24 DCO frequency range 24 MHz, trimmed Measured at SMCLK, divide by 2, DCORSEL = 1, DCOFSEL = 6 24 ±3.5% MHz fDCO,DC Duty cycle Measured at SMCLK, divide by 1, No external divide, all DCORSEL and DCOFSEL settings except DCORSEL = 1 with DCOFSEL = 5, and DCORSEL = 1 with DCOFSEL = 6 tDCO, JITTER DCO jitter Based on fsignal = 10 kHz and DCO used for 12-bit SAR ADC sampling source. This achieves greather than 74-dB SNR due to jitter (that is, limited by ADC performance). dfDCO/dT DCO temperature drift(1) (1) 48% 3.0 V 50% 52% 2 3 0.01 ns %/°C Calculated using the box method: (MAX(–40°C to 85°C) - MIN(–40°C to 85°C)) / MIN(–40°C to 85°C) / (85°C - (-40°C)) 8.12.3.4 Internal Very-Low-Power Low-Frequency Oscillator (VLO) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER IVLO TEST CONDITIONS (1) VLO frequency dfVLO/dT VLO frequency temperature drift Measured at ACLK(2) dfVLO/dVCC VLO frequency supply voltage drift Measured at ACLK(3) fVLO,DC Duty cycle Measured at ACLK 42 MIN TYP MAX 100 fVLO (1) (2) (3) VCC Current consumption Measured at ACLK 6 9.4 nA 14 0.2 50% kHz %/°C 0.7 40% UNIT %/V 60% VLO frequency may decrease in LPM3 or LPM4 mode. The typical ratio of VLO freuqencies (LPM3/4 to AM) is 85%. Calculated using the box method: (MAX(–40°C to 85°C) – MIN(–40°C to 85°C)) / MIN(–40°C to 85°C) / (85°C – (–40°C)) Calculated using the box method: (MAX(1.8 V to 3.6 V) – MIN(1.8 V to 3.6 V)) / MIN(1.8 V to 3.6 V) / (3.6 V – 1.8 V) Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962 MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962 www.ti.com SLASE54D – MARCH 2016 – REVISED JANUARY 2021 The module oscillator (MODOSC) is an internal low-power oscillator with 5-MHz typical frequency (see Section 8.12.3.5). 8.12.3.5 Module Oscillator (MODOSC) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS IMODOSC Current consumption fMODOSC MODOSC frequency fMODOSC/dT MODOSC frequency temperature drift(1) fMODOSC/dVCC MODOSC frequency supply voltage drift(2) DCMODOSC Duty cycle (1) (2) MIN Enabled TYP MAX UNIT 25 4.0 μA 4.8 5.4 MHz 0.08 %/℃ 1.4 Measured at SMCLK, divide by 1 40% %/V 50% 60% Calculated using the box method: (MAX(–40°C to 85°C) – MIN(–40°C to 85°C)) / MIN(–40°C to 85°C) / (85°C – (–40°C)) Calculated using the box method: (MAX(1.8 V to 3.6 V) – MIN(1.8 V to 3.6 V)) / MIN(1.8 V to 3.6 V) / (3.6 V – 1.8 V) 8.12.4 Wake-up Characteristics Section 8.12.4.1 lists the wake-up times. 8.12.4.1 Wake-up Times From Low-Power Modes and Reset over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 8-6 and Figure 8-7) TEST CONDITIONS PARAMETER VCC MIN TYP MAX 6 10 UNIT tWAKE-UP FRAM (Additional) wake-up time to activate the FRAM in AM if previously disabled by the FRAM controller or from an LPM if immediate activation is selected for wakeup tWAKE-UP LPM0 Wake-up time from LPM0 to active mode(1) 2.2 V, 3.0 V tWAKE-UP LPM1 Wake-up time from LPM1 to active mode(1) 2.2 V, 3.0 V tWAKE-UP LPM2 mode(1) 2.2 V, 3.0 V 6 9.6 + 2.5 / fDCO μs 9.6 + 2.5 / fDCO μs Wake-up time from LPM2 to active μs 400 ns + 1.5 / fDCO 6 tWAKE-UP LPM3 Wake-up time from LPM3 to active mode(1) 2.2 V, 3.0 V 6.6 + 2.0 / fDCO tWAKE-UP LPM4 Wake-up time from LPM4 to active mode(1) 2.2 V, 3.0 V 6.6 + 2.0 / fDCO tWAKE-UP LPM3.5 Wake-up time from LPM3.5 to active mode(2) μs μs 2.2 V, 3.0 V 250 350 μs SVSHE = 1 2.2 V, 3.0 V 250 350 μs SVSHE = 0 tWAKE-UP LPM4.5 Wake-up time from LPM4.5 to active mode(2) 2.2 V, 3.0 V 0.4 0.8 ms tWAKE-UP-RST Wake-up time from a RST pin triggered reset to active mode(2) 2.2 V, 3.0 V 300 403 μs tWAKE-UP-BOR Wake-up time from power-up to active mode (2) 2.2 V, 3.0 V 0.5 1 ms (1) (2) The wake-up time is measured from the edge of an external wake-up signal (for example, port interrupt or wake-up event) to the first externally observable MCLK clock edge with MCLKREQEN = 1. This time includes the activation of the FRAM during wake up. With MCLKREQEN = 0, the externally observable MCLK clock is gated one additional cycle. The wake-up time is measured from the edge of an external wake-up signal (for example, port interrupt or wake-up event) until the first instruction of the user program is executed. Copyright © 2021 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962 43 MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962 www.ti.com SLASE54D – MARCH 2016 – REVISED JANUARY 2021 8.12.4.2 Typical Characteristics, Average LPM Currents vs Wake-up Frequency 5000 LPM0 LPM1 LPM2,XT12 LPM3,XT12 LPM3.5,XT12 Average Wake-up Current (µA) 1000 100 10 1 0.1 0.001 0.01 0.1 1 10 100 Wake-up Frequency (Hz) 1000 10000 100000 The average wake-up current does not include the energy required in active mode; for example, for an interrupt service routine (ISR) or to reconfigure the device. Figure 8-6. Average LPM Currents vs Wake-up Frequency at 25°C 5000 LPM0 LPM1 LPM2,XT12 LPM3,XT12 LPM3.5,XT12 Average Wake-up Current (µA) 1000 100 10 1 0.1 0.001 0.01 0.1 1 10 100 Wake-up Frequency (Hz) 1000 10000 100000 The average wake-up current does not include the energy required in active mode; for example, for an ISR or to reconfigure the device. Figure 8-7. Average LPM Currents vs Wake-up Frequency at 85°C 44 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962 MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962 www.ti.com SLASE54D – MARCH 2016 – REVISED JANUARY 2021 8.12.4.3 Typical Wake-up Charge Section 8.12.4.3 lists the typical charge required to wake up from LPM or reset. PARAMETER (1) QWAKE-UP FRAM Charge used for activating the FRAM in AM or during wake-up from LPM0 if previously disabled by the FRAM controller. QWAKE-UP LPM0 TEST CONDITIONS MIN TYP MAX UNIT 16.5 nAs Charge used for wake-up from LPM0 to active mode (with FRAM active) 3.8 nAs QWAKE-UP LPM1 Charge used for wake-up from LPM1 to active mode (with FRAM active) 21 nAs QWAKE-UP LPM2 Charge used for wake-up from LPM2 to active mode (with FRAM active) 22 nAs QWAKE-UP LPM3 Charge used for wake-up from LPM3 to active mode (with FRAM active) 25 nAs QWAKE-UP LPM4 Charge used for wake-up from LPM4 to active mode (with FRAM active) 25 nAs QWAKE-UP LPM3.5 Charge used for wake-up from LPM3.5 to active mode(2) 121 nAs QWAKE-UP LPM4.5 Charge used for wake-up from LPM4.5 to active mode(2) QWAKE-UP-RESET Charge used for reset from RST or BOR event to active mode(2) (1) (2) SVSHE = 1 123 SVSHE = 0 121 102 nAs nAs Charge used during the wake-up time from a given low-power mode to active mode. This does not include the energy required in active mode (for example, for an ISR). Charge required until start of user code. This does not include the energy required to reconfigure the device. Copyright © 2021 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962 45 MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962 www.ti.com SLASE54D – MARCH 2016 – REVISED JANUARY 2021 8.12.5 Digital I/Os Section 8.12.5.1 lists the characteristics of the digital inputs. 8.12.5.1 Digital Inputs over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VCC MIN 2.2 V 1.2 TYP MAX 1.65 3.0 V 1.65 2.25 2.2 V 0.55 1.00 3.0 V 0.75 1.35 2.2 V 0.44 0.98 3.0 V 0.60 1.30 UNIT VIT+ Positive-going input threshold voltage VIT– Negative-going input threshold voltage Vhys Input voltage hysteresis (VIT+ – VIT–) RPull Pullup or pulldown resistor For pullup: VIN = VSS, For pulldown: VIN = VCC CI,dig Input capacitance, digital only port pins VIN = VSS or VCC 3 pF CI,ana Input capacitance, port pins with shared analog functions(1) VIN = VSS or VCC 5 pF Ilkg(Px.y) High-impedance input leakage current See (2) (3) 2.2 V, 3.0 V –20 t(int) External interrupt timing (external trigger pulse duration to set interrupt flag)(4) Ports with interrupt capability (see the Functional Block Diagram and Signal Descriptions) 2.2 V, 3.0 V 20 ns t(RST) External reset pulse duration on RST (5) 2.2 V, 3.0 V 2 µs (1) (2) (3) (4) (5) 46 20 35 50 +20 V V V kΩ nA If the port pins PJ.4/LFXIN and PJ.5/LFXOUT are used as digital I/Os, they are connected by a 4-pF capacitor and a 35-MΩ resistor in series. At frequencies of approximately 1 kHz and lower, the 4-pF capacitor can add to the pin capacitance of PJ.4/LFXIN and/or PJ.5/ LFXOUT. The input leakage current is measured with VSS or VCC applied to the corresponding pins, unless otherwise noted. The input leakage of the digital port pins is measured individually. The port pin is selected for input and the pullup or pulldown resistor is disabled. An external signal sets the interrupt flag every time the minimum interrupt pulse duration t(int) is met. It may be set by trigger signals shorter than t(int). Not applicable if RST/NMI pin configured as NMI . Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962 MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962 www.ti.com SLASE54D – MARCH 2016 – REVISED JANUARY 2021 Section 8.12.5.2 lists the characteristics of the digital outputs. 8.12.5.2 Digital Outputs over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS I(OHmax) = –1 mA(1) High-level output voltage (see Figure 8-10 and Figure 8-11) VOH I(OHmax) = –3 mA(2) I(OHmax) = –2 mA(1) I(OHmax) = –6 mA(2) I(OLmax) = 1 mA(1) Low-level output voltage (see Figure 8-8 and Figure 8-9) VOL I(OLmax) = 3 mA(2) I(OLmax) = 2 mA(1) I(OLmax) = 6 mA(2) VCC 2.2 V 3.0 V 2.2 V 3.0 V MIN TYP MAX VCC – 0.25 VCC VCC – 0.60 VCC VCC – 0.25 VCC VCC – 0.60 VCC VSS VSS + 0.25 VSS VSS + 0.60 VSS VSS + 0.25 VSS VSS + 0.60 2.2 V 16 3.0 V 16 2.2 V 16 3.0 V 16 fPx.y Port output frequency (with load)(3) CL = 20 pF, RL (4) (5) fPort_CLK Clock output frequency(3) ACLK, MCLK, or SMCLK at configured output port, CL = 20 pF(5) trise,dig Port output rise time, digital only port CL = 20 pF pins 2.2 V 4 15 3.0 V 3 15 tfall,dig Port output fall time, digital only port CL = 20 pF pins 2.2 V 4 15 3.0 V 3 15 trise,ana Port output rise time, port pins with shared analog functions CL = 20 pF 2.2 V 6 15 3.0 V 4 15 tfall,ana Port output fall time, port pins with shared analog functions CL = 20 pF 2.2 V 6 15 3.0 V 4 15 (1) (2) (3) (4) (5) UNIT V V MHz MHz ns ns ns ns The maximum total current, I(OHmax) and I(OLmax), for all outputs combined should not exceed ±48 mA to hold the maximum voltage drop specified. The maximum total current, I(OHmax) and I(OLmax), for all outputs combined should not exceed ±100 mA to hold the maximum voltage drop specified. The port can output frequencies at least up to the specified limit, and it might support higher frequencies. A resistive divider with 2 × R1 and R1 = 1.6 kΩ between VCC and VSS is used as load. The output is connected to the center tap of the divider. CL = 20 pF is connected from the output to VSS. The output voltage reaches at least 10% and 90% VCC at the specified toggle frequency. Copyright © 2021 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962 47 MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962 www.ti.com SLASE54D – MARCH 2016 – REVISED JANUARY 2021 8.12.5.3 Typical Characteristics, Digital Outputs at 3.0 V and 2.2 V 30 25°C 85°C Low-Level Output Current (mA) Low-Level Output Current (mA) 15 10 5 25°C 85°C 20 10 P1.1 P1.1 0 0 0 0.5 1 1.5 2 0 0.5 1 Low-Level Output Voltage (V) 1.5 2 2.5 3 Low-Level Output Voltage (V) C001 VCC = 2.2 V VCC = 3.0 V Figure 8-8. Typical Low-Level Output Current vs Low-Level Output Voltage Figure 8-9. Typical Low-Level Output Current vs Low-Level Output Voltage 0 0 25°C 85°C High-Level Output Current (mA) High-Level Output Current (mA) C001 -5 -10 25°C 85°C -10 -20 P1.1 P1.1 -15 -30 0 0.5 1 1.5 2 0 0.5 High-Level Output Voltage (V) 1 1.5 2 2.5 3 High-Level Output Voltage (V) C001 VCC = 2.2 V C001 VCC = 3.0 V Figure 8-10. Typical High-Level Output Current vs High-Level Output Voltage Figure 8-11. Typical High-Level Output Current vs High-Level Output Voltage 8.12.5.4 Pin-Oscillator Frequency, Ports Px over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER foPx.y (1) 48 Pin-oscillator frequency (see Figure 8-12 and Figure 8-13) TEST CONDITIONS VCC MIN TYP MAX UNIT pF(1) 3.0 V 1200 kHz Px.y, CL = 20 pF(1) 3.0 V 650 kHz Px.y, CL = 10 CL is the external load capacitance connected from the output to VSS and includes all parasitic effects such as PCB traces. Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962 MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962 www.ti.com SLASE54D – MARCH 2016 – REVISED JANUARY 2021 8.12.5.5 Typical Characteristics, Pin-Oscillator Frequency 2000 2000 Best Fit 25°C 85°C Best Fit 25°C 85°C 1000 Pin Oscillator Frequency (kHz) Pin Oscillator Frequency (kHz) 1000 800 700 600 500 400 300 200 800 700 600 500 400 300 200 100 10 20 VCC = 2.2 V 30 40 50 60 7080 100 CL, Load Capacitance (pF) 200 One output active at a time. Figure 8-12. Typical Oscillation Frequency vs Load Capacitance Copyright © 2021 Texas Instruments Incorporated 100 10 VCC = 3.0 V 20 30 40 50 60 7080 100 CL, Load Capacitance (pF) 200 One output active at a time. Figure 8-13. Typical Oscillation Frequency vs Load Capacitance Submit Document Feedback Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962 49 MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962 www.ti.com SLASE54D – MARCH 2016 – REVISED JANUARY 2021 8.12.6 LEA (Low-Energy Accelerator) (MSP430FR599x Only) The LEA module is a hardware engine designed for operations that involve vector-based signal processing. Section 8.12.6.1 lists the performance characteristics of the LEA module. 8.12.6.1 Low Energy Accelerator Performance over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS fLEA Frequency for specified performance MCLK W_LEA_FFT LEA subsystem energy on fast Fourier transform Complex FFT 128-point Q.15 with random data in LEA-RAM W_LEA_FIR LEA subsystem energy on finite impulse response W_LEA_ADD LEA subsystem energy on additions MIN TYP MAX UNIT 16 MHz VCore = 3 V, MCLK = 16 MHz 350 nJ Real FIR on random Q.31 data with 128 taps on 24 points VCore = 3 V, MCLK = 16 MHz 2.6 µJ On 32 Q.31 elements with random value out of LEA-RAM with linear address increment VCore = 3 V, MCLK = 16 MHz 6.6 nJ 8.12.7 Timer_A and Timer_B Timer_A and Timer_B are 16-bit timers and counters with multiple capture/compare registers. Section 8.12.7.1 lists the Timer_A characteristics, and Section 8.12.7.2 lists the Timer_B characteristics. 8.12.7.1 Timer_A over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VCC fTA Timer_A input clock frequency Internal: SMCLK or ACLK, External: TACLK, Duty cycle = 50% ±10% 2.2 V, 3.0 V tTA,cap Timer_A capture timing All capture inputs, minimum pulse duration required for capture 2.2 V, 3.0 V MIN MAX UNIT 16 MHz 20 ns 8.12.7.2 Timer_B over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VCC fTB Timer_B input clock frequency Internal: SMCLK or ACLK, External: TBCLK, Duty cycle = 50% ±10% 2.2 V, 3.0 V tTB,cap Timer_B capture timing All capture inputs, minimum pulse duration required for capture 2.2 V, 3.0 V 50 Submit Document Feedback MIN 20 MAX UNIT 16 MHz ns Copyright © 2021 Texas Instruments Incorporated Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962 MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962 www.ti.com SLASE54D – MARCH 2016 – REVISED JANUARY 2021 8.12.8 eUSCI The enhanced universal serial communication interface (eUSCI) supports multiple serial communication modes with one hardware module. The eUSCI_A module supports UART and SPI modes. The eUSCI_B module supports I2C and SPI modes. Section 8.12.8.1 lists the UART clock frequencies. 8.12.8.1 eUSCI (UART Mode) Clock Frequency over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS MIN MAX UNIT 16 MHz 4 MHz MIN MAX UNIT UCGLITx = 0 5 30 UCGLITx = 1 20 90 35 160 50 220 Internal: SMCLK or ACLK, External: UCLK, Duty cycle = 50% ±10% feUSCI eUSCI input clock frequency fBITCLK BITCLK clock frequency (equals baud rate in MBaud) Section 8.12.8.2 lists the UART operating characteristics. 8.12.8.2 eUSCI (UART Mode) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER tt UART receive deglitch time(1) TEST CONDITIONS UCGLITx = 2 UCGLITx = 3 (1) VCC 2.2 V, 3.0 V ns Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. Thus the selected deglitch time can limit the maximum useable baud rate. To ensure that pulses are correctly recognized, their duration should exceed the maximum specification of the deglitch time. Copyright © 2021 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962 51 MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962 www.ti.com SLASE54D – MARCH 2016 – REVISED JANUARY 2021 Section 8.12.8.3 lists the SPI master mode clock frequencies. 8.12.8.3 eUSCI (SPI Master Mode) Clock Frequency over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER feUSCI TEST CONDITIONS MIN Internal: SMCLK or ACLK, Duty cycle = 50% ±10% eUSCI input clock frequency MAX UNIT 16 MHz Section 8.12.8.4 lists the SPI master mode operating characteristics. 8.12.8.4 eUSCI (SPI Master Mode) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1) PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT tSTE,LEAD STE lead time, STE active to clock UCSTEM = 1, UCMODEx = 01 or 10 1 tSTE,LAG STE lag time, Last clock to STE inactive UCSTEM = 1, UCMODEx = 01 or 10 1 tSTE,ACC STE access time, STE active to SIMO data out UCSTEM = 0, UCMODEx = 01 or 10 2.2 V, 3.0 V 60 ns tSTE,DIS STE disable time, STE inactive to SOMI high impedance UCSTEM = 0, UCMODEx = 01 or 10 2.2 V, 3.0 V 80 ns tSU,MI SOMI input data setup time tHD,MI SOMI input data hold time tVALID,MO SIMO output data valid time(2) UCLK edge to SIMO valid, CL = 20 pF tHD,MO SIMO output data hold time(3) CL = 20 pF (1) (2) (3) 52 2.2 V 40 3.0 V 40 2.2 V 0 3.0 V 0 UCxCLK cycles ns ns 2.2 V 11 3.0 V 10 2.2 V 0 3.0 V 0 ns ns fUCxCLK = 1/2 tLO/HI with tLO/HI = max(tVALID,MO(eUSCI) + tSU,SI(Slave), tSU,MI(eUSCI) + tVALID,SO(Slave)) For the slave parameters tSU,SI(Slave) and tVALID,SO(Slave), see the SPI parameters of the attached slave. Specifies the time to drive the next valid data to the SIMO output after the output changing UCLK clock edge. See the timing diagrams in Figure 8-14 and Figure 8-15. Specifies how long data on the SIMO output is valid after the output changing UCLK clock edge. Negative values indicate that the data on the SIMO output can become invalid before the output changing clock edge observed on UCLK. See the timing diagrams in Figure 8-14 and Figure 8-15. Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962 MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962 www.ti.com SLASE54D – MARCH 2016 – REVISED JANUARY 2021 UCMODEx = 01 tSTE,LEAD STE tSTE,LAG UCMODEx = 10 1/fUCxCLK CKPL = 0 UCLK CKPL = 1 tLOW/HIGH tLOW/HIGH tSU,MI tHD,MI SOMI tHD,MO tSTE,ACC tSTE,DIS tVALID,MO SIMO Figure 8-14. SPI Master Mode, CKPH = 0 UCMODEx = 01 tSTE,LEAD STE tSTE,LAG UCMODEx = 10 1/fUCxCLK CKPL = 0 UCLK CKPL = 1 tLOW/HIGH tLOW/HIGH tSU,MI tHD,MI SOMI tHD,MO tSTE,ACC tVALID,MO tSTE,DIS SIMO Figure 8-15. SPI Master Mode, CKPH = 1 Copyright © 2021 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962 53 MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962 www.ti.com SLASE54D – MARCH 2016 – REVISED JANUARY 2021 Section 8.12.8.5 lists the SPI slave mode operating characteristics. 8.12.8.5 eUSCI (SPI Slave Mode) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1) PARAMETER TEST CONDITIONS tSTE,LEAD STE lead time, STE active to clock tSTE,LAG STE lag time, Last clock to STE inactive tSTE,ACC STE access time, STE active to SOMI data out tSTE,DIS STE disable time, STE inactive to SOMI high impedance tSU,SI SIMO input data setup time tHD,SI SIMO input data hold time tVALID,SO SOMI output data valid time(2) UCLK edge to SOMI valid, CL = 20 pF tHD,SO SOMI output data hold time(3) CL = 20 pF (1) (2) (3) 54 VCC MIN 2.2 V 45 3.0 V 40 2.2 V 2 3.0 V 3 MAX ns ns 2.2 V 45 3.0 V 40 2.2 V 50 3.0 V 45 2.2 V 4 3.0 V 4 2.2 V 7 3.0 V 7 35 35 0 0 ns ns 2.2 V 2.2 V ns ns 3.0 V 3.0 V UNIT ns ns fUCxCLK = 1/2 tLO/HI with tLO/HI ≥ max(tVALID,MO(Master) + tSU,SI(eUSCI), tSU,MI(Master) + tVALID,SO(eUSCI)) For the master parameters tSU,MI(Master) and tVALID,MO(Master), see the SPI parameters of the attached master. Specifies the time to drive the next valid data to the SOMI output after the output changing UCLK clock edge. See the timing diagrams in Figure 8-16 and Figure 8-17. Specifies how long data on the SOMI output is valid after the output changing UCLK clock edge. See the timing diagrams in Figure 8-16 and Figure 8-17. Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962 MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962 www.ti.com SLASE54D – MARCH 2016 – REVISED JANUARY 2021 UCMODEx = 01 tSTE,LEAD STE tSTE,LAG UCMODEx = 10 1/fUCxCLK CKPL = 0 UCLK CKPL = 1 tLOW/HIGH tSU,SI tLOW/HIGH tHD,SI SIMO tHD,SO tSTE,ACC tSTE,DIS tVALID,SO SOMI Figure 8-16. SPI Slave Mode, CKPH = 0 UCMODEx = 01 tSTE,LEAD STE tSTE,LAG UCMODEx = 10 1/fUCxCLK CKPL = 0 UCLK CKPL = 1 tLOW/HIGH tLOW/HIGH tHD,SI tSU,SI SIMO tHD,SO tSTE,ACC tVALID,SO tSTE,DIS SOMI Figure 8-17. SPI Slave Mode, CKPH = 1 Copyright © 2021 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962 55 MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962 www.ti.com SLASE54D – MARCH 2016 – REVISED JANUARY 2021 Section 8.12.8.6 lists the I2C mode operating characteristics. 8.12.8.6 eUSCI (I2C Mode) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 8-18) PARAMETER TEST CONDITIONS VCC MIN TYP Internal: SMCLK or ACLK, External: UCLK, Duty cycle = 50% ±10% MAX UNIT 16 MHz 400 kHz feUSCI eUSCI input clock frequency fSCL SCL clock frequency tHD,STA Hold time (repeated) START tSU,STA Setup time for a repeated START tHD,DAT Data hold time 2.2 V, 3.0 V 0 ns tSU,DAT Data setup time 2.2 V, 3.0 V 100 ns tSU,STO Setup time for STOP 2.2 V, 3.0 V fSCL = 100 kHz fSCL > 100 kHz fSCL = 100 kHz fSCL > 100 kHz fSCL = 100 kHz fSCL > 100 kHz Pulse duration of spikes suppressed by input filter tSP 2.2 V, 3.0 V 2.2 V, 3.0 V 2.2 V, 3.0 V 0 4.0 4.7 4.0 µs 0.6 50 250 UCGLITx = 1 25 125 12.5 62.5 6.3 31.5 UCGLITx = 2 2.2 V, 3.0 V UCCLTOx = 1 UCCLTOx = 2 Clock low time-out µs 0.6 UCGLITx = 0 UCGLITx = 3 tTIMEOUT µs 0.6 27 30 2.2 V, 3.0 V UCCLTOx = 3 tSU,STA tHD,STA ns ms 33 tHD,STA tBUF SDA tLOW tHIGH tSP SCL tSU,DAT tSU,STO tHD,DAT Figure 8-18. I2C Mode Timing 56 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962 MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962 www.ti.com SLASE54D – MARCH 2016 – REVISED JANUARY 2021 8.12.9 ADC12_B The ADC12_B module supports fast 12-bit analog-to-digital conversions. The module implements a 12-bit SAR core, sample select control, and up to 32 independent conversion-and-control buffers. The conversion-andcontrol buffer allows up to 32 independent analog-to-digital converter (ADC) samples to be converted and stored without any CPU intervention. Section 8.12.9.1 lists the power supply and input range conditions. 8.12.9.1 12-Bit ADC, Power Supply and Input Range Conditions over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER V(Ax) Analog input voltage TEST CONDITIONS range(1) VCC All ADC12 analog input pins Ax MIN NOM 0 MAX UNIT AVCC 3.0 V 145 199 Operating supply current into AVCC plus DVCC terminals(2) (3) fADC12CLK = MODCLK, ADC12ON = 1, ADC12PWRMD = 0, ADC12DIF = 0, REFON = 0, ADC12SHTx = 0, ADC12DIV = 0 2.2 V 140 190 fADC12CLK = MODCLK, ADC12ON = 1, ADC12PWRMD = 0, ADC12DIF = 1, REFON = 0, ADC12SHTx= 0, ADC12DIV = 0 3.0 V 175 245 Operating supply current into AVCC plus DVCC terminals(2) (3) 2.2 V 170 230 fADC12CLK = MODCLK / 4, ADC12ON = 1, ADC12PWRMD = 1, ADC12DIF = 0, REFON = 0, ADC12SHTx = 0, ADC12DIV = 0 3.0 V 85 125 Operating supply current into AVCC plus DVCC terminals(2) (3) 2.2 V 83 120 fADC12CLK = MODCLK / 4, ADC12ON = 1, ADC12PWRMD = 1, ADC12DIF = 1, REFON = 0, ADC12SHTx= 0, ADC12DIV = 0 3.0 V 110 165 Operating supply current into AVCC plus DVCC terminals(2) (3) 2.2 V 109 160 CI Input capacitance Only one terminal Ax can be selected at one time 2.2 V 10 15 RI Input MUX ON-resistance 0 V ≤ V(Ax) ≤ AVCC >2 V 0.5 4 50 kHz Clocked by ACLK or clocked by external clock ≤50 kHz Clocked by external clock ≤50 kHz Timer_B TBx Clocked by SMCLK or clocked by external clock >50 kHz Clocked by ACLK or clocked by external clock ≤50 kHz Clocked by external clock ≤50 kHz eUSCI_Ax in UART mode Clocked by SMCLK Clocked by ACLK Waiting for first edge of START bit. eUSCI_Ax in SPI master mode Clocked by SMCLK Clocked by ACLK Not applicable eUSCI_Ax in SPI slave mode Clocked by external clock >50 kHz Clocked by external clock ≤50 kHz Clocked by external clock ≤50 kHz eUSCI_Bx in I2C master mode Clocked by SMCLK or clocked by external clock >50 kHz Clocked by ACLK or clocked by external clock ≤50 kHz Not applicable eUSCI_Bx in I2C slave mode Clocked by external clock >50 kHz Clocked by external clock ≤50 kHz Waiting for START condition or clocked by external clock ≤50 kHz eUSCI_Bx in SPI master mode Clocked by SMCLK Clocked by ACLK Not applicable eUSCI_Bx in SPI slave mode Clocked by external clock >50 kHz Clocked by external clock ≤50 kHz Clocked by external clock ≤50 kHz Clocked by SMCLK or by MODOSC Clocked by ACLK Waiting for a trigger REF_A Not applicable Not applicable Always COMP_E Not applicable Not applicable Always CRC(5) Not applicable Not applicable Not applicable MPY(5) Not applicable Not applicable Not applicable AES(5) Not applicable Not applicable Not applicable ADC12_B (1) (2) (3) (4) (5) Peripherals are in a state that requires or uses a clock with a "high" frequency of more than 50 kHz Peripherals are in a state that requires or uses a clock with a "low" frequency of 50 kHz or less. Peripherals are in a state that does not require or does not use an internal clock. The DMA always transfers data in active mode but can wait for a trigger in any low-power mode. A DMA trigger during a low-power mode causes a temporary transition into active mode for the time of the transfer. This peripheral operates during active mode only and will delay the transition into a low-power mode until its operation is completed. Copyright © 2021 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962 69 MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962 SLASE54D – MARCH 2016 – REVISED JANUARY 2021 www.ti.com 9.4.2 Idle Currents of Peripherals in LPM3 and LPM4 Most peripherals can be operational in LPM3 if clocked by ACLK. Some modules are operational in LPM4, because they do not require a clock to operate (for example, the comparator). Activating a peripheral in LPM3 or LPM4 increases the current consumption due to its active supply current contribution but also due to an additional idle current. To reduce the idle current adder, certain peripherals are grouped together (see Table 9-3). To achieve optimal current consumption, use modules within one group and limit the number of groups with active modules. Modules not listed in Table 9-3 are either already included in the standard LPM3 current consumption or cannot be used in LPM3 or LPM4. The idle current adder is very small at room temperature (25°C) but increases at high temperatures (85°C). See the IIDLE current parameters in Section 8 for details. Table 9-3. Peripheral Groups GROUP A GROUP B GROUP C Timer TA1 Timer TA0 Timer TA4 Timer TA2 Timer TA3 eUSCI_A2 Timer TB0 Comparator eUSCI_A3 eUSCI_A0 ADC12_B eUSCI_B1 eUSCI_A1 REF_A eUSCI_B2 eUSCI_B0 eUSCI_B3 9.5 Interrupt Vector Table and Signatures The interrupt vectors, the power-up start address and signatures are in the address range 0FFFFh to 0FF80h. Figure 9-1 summarizes the content of this address range. Reset Vector 0FFFFh BSL Password Interrupt Vectors 0FFE0h JTAG Password Reserved Signatures 0FF88h 0FF80h Figure 9-1. Interrupt Vectors, Signatures and Passwords The power-up start address or reset vector is at 0FFFFh to 0FFFEh. This location contains a 16-bit address pointing to the start address of the application program. The interrupt vectors start at 0FFFDh and extend to lower addresses. Each vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence. Table 9-4 shows the device specific interrupt vector locations. The vectors programmed into the address range from 0FFFFh to 0FFE0h are used as BSL password (if enabled by the corresponding signature). The signatures are at 0FF80h and extend to higher addresses. Signatures are evaluated during device start-up. Table 9-5 lists the device-specific signature locations. 70 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962 MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962 www.ti.com SLASE54D – MARCH 2016 – REVISED JANUARY 2021 A JTAG password can be programmed starting at address 0FF88h and extending to higher addresses. The password can extend into the interrupt vector locations using the interrupt vector addresses as additional bits for the password. The length of the JTAG password depends on the JTAG signature. See the System Resets, Interrupts, and Operating Modes, System Control Module (SYS) chapter in the MSP430FR58xx, MSP430FR59xx, and MSP430FR6xx Family User's Guide for details. Table 9-4. Interrupt Sources, Flags, and Vectors INTERRUPT SOURCE INTERRUPT FLAG INTERRUPT VECTOR REGISTER SYSTEM INTERRUPT WORD ADDRESS PRIORITY SYSRSTIV(1) Reset 0FFFEh Highest SYSSNIV(1) (Non)maskable(3) 0FFFCh SYSUNIV(1) (Non)maskable(3) 0FFFAh System Reset Power up, brownout, supply supervisor SVSHIFG External reset, RST PMMRSTIFG Watchdog time-out (watchdog mode) WDTIFG WDT, FRCTL MPU, CS, PMM password violation WDTPW, FRCTLPW, MPUPW, CSPW, PMMPW FRAM uncorrectable bit error detection UBDIFG MPU segment violation MPUSEGIIFG, MPUSEG1IFG, MPUSEG2IFG, MPUSEG3IFG Software POR, BOR PMMPORIFG, PMMBORIFG System NMI Vacant memory access(2) VMAIFG JTAG mailbox JMBINIFG, JMBOUTIFG FRAM access time error ACCTEIFG FRAM write protection error WPIFG FRAM bit error detection CBDIFG, UBDIFG MPU segment violation MPUSEGIIFG, MPUSEG1IFG, MPUSEG2IFG, MPUSEG3IFG User NMI External NMI NMIIFG Oscillator fault OFIFG Comparator_E CEIFG, CEIIFG TB0 TB0CCR0 CCIFG TB0 TB0CCR1 CCIFG to TB0CCR6 CCIFG, TB0CTL.TBIFG Watchdog timer (interval timer mode) WDTIFG eUSCI_A0 receive or transmit CEIV(1) Maskable 0FFF8h Maskable 0FFF6h Maskable 0FFF4h Maskable 0FFF2h UCA0IV(1) Maskable 0FFF0h UCB0IV(1) Maskable 0FFEEh ADC12IV(1) Maskable 0FFECh TB0IV(1) UCRXIFG, UCTXIFG (SPI mode) UCSTTIFG, UCTXCPTIFG, UCRXIFG, UCTXIFG (UART mode) UCRXIFG, UCTXIFG (SPI mode) eUSCI_B0 receive or transmit ADC12_B(4) UCALIFG, UCNACKIFG, UCSTTIFG, UCSTPIFG, UCRXIFG0, UCTXIFG0, UCRXIFG1, UCTXIFG1, UCRXIFG2, UCTXIFG2, UCRXIFG3, UCTXIFG3, UCCNTIFG, UCBIT9IFG (I2C mode) ADC12IFG0 to ADC12IFG31, ADC12LOIFG, ADC12INIFG, ADC12HIIFG, ADC12RDYIFG, ADC21OVIFG, ADC12TOVIFG Copyright © 2021 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962 71 MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962 www.ti.com SLASE54D – MARCH 2016 – REVISED JANUARY 2021 Table 9-4. Interrupt Sources, Flags, and Vectors (continued) WORD ADDRESS Maskable 0FFEAh TA0IV(1) Maskable 0FFE8h UCSTTIFG, UCTXCPTIFG, UCRXIFG, UCTXIFG (UART mode) UCA1IV(1) Maskable 0FFE6h DMA0CTL.DMAIFG, DMA1CTL.DMAIFG, DMA2CTL.DMAIFG DMAIV(1) Maskable 0FFE4h Maskable 0FFE2h INTERRUPT FLAG TA0 TA0CCR0 CCIFG TA0 TA0CCR1 CCIFG, TA0CCR2 CCIFG, TA0CTL.TAIFG eUSCI_A1 receive or transmit DMA INTERRUPT VECTOR REGISTER SYSTEM INTERRUPT INTERRUPT SOURCE UCRXIFG, UCTXIFG (SPI mode) TA1 TA1CCR0 CCIFG TA1 TA1CCR1 CCIFG, TA1CCR2 CCIFG, TA1CTL.TAIFG TA1IV(1) Maskable 0FFE0h I/O port P1 P1IFG.0 to P1IFG.7 P1IV(1) Maskable 0FFDEh Maskable 0FFDCh Maskable 0FFDAh TA2 TA2CCR0 CCIFG TA2 TA2CCR1 CCIFG, TA2CTL.TAIFG TA2IV(1) I/O port P2 P2IFG.0 to P2IFG.7 P2IV(1) TA3 TA3CCR0 CCIFG Maskable 0FFD8h Maskable 0FFD6h TA3 TA3CCR1 CCIFG, TA3CTL.TAIFG TA3IV(1) Maskable 0FFD4h I/O port P3 P3IFG.0 to P3IFG.7 P3IV(1) Maskable 0FFD2h I/O port P4 P4IFG.0 to P4IFG.7 P4IV(1) Maskable 0FFD0h RTC_C RTCRDYIFG, RTCTEVIFG, RTCAIFG, RT0PSIFG, RT1PSIFG, RTCOFIFG RTCIV(1) Maskable 0FFCEh AES AESRDYIFG Maskable 0FFCCh TA4 TA4CCR0 CCIFG Maskable 0FFCAh TA4 TA4CCR1 CCIFG, TA4CTL.TAIFG TA4IV(1) Maskable 0FFC8h I/O port P5 P5IFG.0 to P5IFG.7 P5IV(1) Maskable 0FFC6h P6IFG.0 to P6IFG.7 P6IV(1) Maskable 0FFC4h UCA2IV(1) Maskable 0FFC2h UCA3IV(1) Maskable 0FFC0h UCB1IV(1) Maskable 0FFBEh UCB2IV(1) Maskable 0FFBCh UCB3IV(1) Maskable 0FFBAh I/O port P6 eUSCI_A2 receive or transmit eUSCI_A3 receive or transmit PRIORITY UCRXIFG, UCTXIFG (SPI mode) UCSTTIFG, UCTXCPTIFG, UCRXIFG, UCTXIFG (UART mode) UCRXIFG, UCTXIFG (SPI mode) UCSTTIFG, UCTXCPTIFG, UCRXIFG, UCTXIFG (UART mode) UCRXIFG, UCTXIFG (SPI mode) eUSCI_B1 receive or transmit UCALIFG, UCNACKIFG, UCSTTIFG, UCSTPIFG, UCRXIFG0, UCTXIFG0, UCRXIFG1, UCTXIFG1, UCRXIFG2, UCTXIFG2, UCRXIFG3, UCTXIFG3, UCCNTIFG, UCBIT9IFG (I2C mode) UCRXIFG, UCTXIFG (SPI mode) eUSCI_B2 receive or transmit UCALIFG, UCNACKIFG, UCSTTIFG, UCSTPIFG, UCRXIFG0, UCTXIFG0, UCRXIFG1, UCTXIFG1, UCRXIFG2, UCTXIFG2, UCRXIFG3, UCTXIFG3, UCCNTIFG, UCBIT9IFG (I2C mode) UCRXIFG, UCTXIFG (SPI mode) eUSCI_B3 receive or transmit 72 UCALIFG, UCNACKIFG, UCSTTIFG, UCSTPIFG, UCRXIFG0, UCTXIFG0, UCRXIFG1, UCTXIFG1, UCRXIFG2, UCTXIFG2, UCRXIFG3, UCTXIFG3, UCCNTIFG, UCBIT9IFG (I2C mode) Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962 MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962 www.ti.com SLASE54D – MARCH 2016 – REVISED JANUARY 2021 Table 9-4. Interrupt Sources, Flags, and Vectors (continued) (1) (2) (3) (4) INTERRUPT SOURCE INTERRUPT FLAG INTERRUPT VECTOR REGISTER SYSTEM INTERRUPT WORD ADDRESS I/O port P7 P7IFG.0 to P7IFG.7 P7IV(1) Maskable 0FFB8h I/O port P8 P8IFG.0 to P8IFG.7 P8IV(1) Maskable 0FFB6h LEA (MSP430FR599x only) CMDIFG, SDIIFG, OORIFG,TIFG, COVLIFG LEAIV(1) Maskable 0FFB4h PRIORITY Lowest Multiple source flags A reset is generated if the CPU tries to fetch instructions from peripheral space. (Non)maskable: the individual interrupt enable bit can disable an interrupt event, but the general interrupt enable bit cannot disable it. Only on devices with ADC, otherwise reserved. Table 9-5. Signatures SIGNATURE WORD ADDRESS IP Encapsulation Signature 2 IP Encapsulation Signature 0FF8Ah 1(1) 0FF88h BSL Signature 2 (1) 0FF86h BSL Signature 1 0FF84h JTAG Signature 2 0FF82h JTAG Signature 1 0FF80h Must not contain 0AAAAh if used as the JTAG password. 9.6 Bootloader (BSL) The BSL can program the FRAM or RAM using a UART serial interface (FRxxxx devices) or an I2C interface (FRxxxx1 devices). Access to the device memory through the BSL is protected by an user-defined password. Table 9-6 lists the pins that are required to use the BSL. BSL entry requires a specific entry sequence on the RST/NMI/SBWTDIO and TEST/SBWTCK pins. For a complete description of the features of the BSL and its implementation, see the MSP430 FRAM Devices Bootloader (BSL) User's Guide. Visit Bootloader (BSL) for MSP low-power microcontrollers for more information. Table 9-6. BSL Pin Requirements and Functions DEVICE SIGNAL BSL FUNCTION RST/NMI/SBWTDIO Entry sequence signal TEST/SBWTCK Entry sequence signal P2.0 Devices with UART BSL (FRxxxx): Data transmit P2.1 Devices with UART BSL (FRxxxx): Data receive P1.6 Devices with I2C BSL (FRxxxx1): Data P1.7 Devices with I2C BSL (FRxxxx1): Clock DVCC Power supply DVSS Ground supply Copyright © 2021 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962 73 MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962 SLASE54D – MARCH 2016 – REVISED JANUARY 2021 www.ti.com 9.7 JTAG Operation 9.7.1 JTAG Standard Interface The MSP family supports the standard JTAG interface, which requires four signals for sending and receiving data. The JTAG signals are shared with general-purpose I/O. The TEST/SBWTCK pin is used to enable the JTAG signals. In addition to these signals, the RST/NMI/SBWTDIO is required to interface with MSP development tools and device programmers. Table 9-7 lists the JTAG pin requirements. For further details on interfacing to development tools and device programmers, see the MSP430 Hardware Tools User's Guide. For a complete description of the features of the JTAG interface and its implementation, see MSP430 Programming With the JTAG Interface. Table 9-7. JTAG Pin Requirements and Functions DEVICE SIGNAL DIRECTION FUNCTION PJ.3/TCK IN JTAG clock input PJ.2/TMS IN JTAG state control PJ.1/TDI/TCLK IN JTAG data input, TCLK input PJ.0/TDO OUT JTAG data output TEST/SBWTCK IN Enable JTAG pins RST/NMI/SBWTDIO IN External reset DVCC Power supply DVSS Ground supply 9.7.2 Spy-Bi-Wire Interface In addition to the standard JTAG interface, the MSP family supports the two wire Spy-Bi-Wire interface. Spy-BiWire can be used to interface with MSP development tools and device programmers. The Spy-Bi-Wire interface pin requirements are shown in Table 9-8. For further details on interfacing to development tools and device programmers, see the MSP430 Hardware Tools User's Guide. For a complete description of the features of the JTAG interface and its implementation, see MSP430 Programming With the JTAG Interface. Table 9-8. Spy-Bi-Wire Pin Requirements and Functions DEVICE SIGNAL 74 DIRECTION FUNCTION TEST/SBWTCK IN Spy-Bi-Wire clock input RST/NMI/SBWTDIO IN, OUT Spy-Bi-Wire data input and output Submit Document Feedback DVCC Power supply DVSS Ground supply Copyright © 2021 Texas Instruments Incorporated Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962 MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962 www.ti.com SLASE54D – MARCH 2016 – REVISED JANUARY 2021 9.8 FRAM Controller A (FRCTL_A) The FRAM can be programmed through the JTAG port, Spy-Bi-Wire (SBW), the BSL, or in system by the CPU (also see Table 9-45 for control and configuration registers). Features of the FRAM include: • • • • Ultra-low-power ultra-fast-write nonvolatile memory Byte and word access capability Programmable wait state generation Error correction coding (ECC) Note Wait States For MCLK frequencies > 8 MHz, wait states must be configured following the flow described in the "Wait State Control" section of the FRAM Controller A (FRCTRL_A) chapter in the MSP430FR58xx, MSP430FR59xx, and MSP430FR6xx Family User's Guide. For important software design information regarding FRAM including but not limited to partitioning the memory layout according to application-specific code, constant, and data space requirements, the use of FRAM to optimize application energy consumption, and the use of the Memory Protection Unit (MPU) to maximize application robustness by protecting the program code against unintended write accesses, see MSP430™ FRAM Technology – How To and Best Practices. 9.9 RAM The RAM is made up of three sectors: Sector 0 = 2KB, Sector 1 = 2KB, and Sector 2 = 4KB (shared with the LEA module). Each sector can be individually powered down in LPM3 and LPM4 to save leakage. Data is lost when sectors are powered down in LPM3 and LPM4. See Table 9-47 for control and configuration registers. 9.10 Tiny RAM Tiny RAM provides 22 bytes of RAM in addition to the complete RAM (see Table 9-41). This memory is always available, even in LPM3 and LPM4, while the complete RAM can be powered down in LPM3 and LPM4. Tiny RAM can be used to hold data or a very small stack when the complete RAM is powered down in LPM3 and LPM4. No memory is available in LPMx.5. 9.11 Memory Protection Unit (MPU) Including IP Encapsulation The FRAM can be protected by the MPU from inadvertent CPU execution, read access, or write access. See Table 9-67 for control and configuration registers. Features of the MPU include: • • • • IP encapsulation with programmable boundaries in steps of 1KB (prevents reads from "outside"; for example, through JTAG or by non-IP software). Main memory partitioning is programmable up to three segments in steps of 1KB. Access rights of each segment can be individually selected (main and information memory). Access violation flags with interrupt capability for easy servicing of access violations. Copyright © 2021 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: MSP430FR5994 MSP430FR59941 MSP430FR5992 MSP430FR5964 MSP430FR5962 75 MSP430FR5994, MSP430FR59941, MSP430FR5992, MSP430FR5964, MSP430FR5962 SLASE54D – MARCH 2016 – REVISED JANUARY 2021 www.ti.com 9.12 Peripherals Peripherals are connected to the CPU through data, address, and control buses. The peripherals can be managed using all instructions. For complete module descriptions, see the MSP430FR58xx, MSP430FR59xx, and MSP430FR6xx Family User's Guide. 9.12.1 Digital I/O Up to nine 8-bit I/O ports are implemented (see Table 9-52 through Table 9-56 for control and configuration registers): • • • • • • • • All individual I/O bits are independently programmable. Any combination of input, output, and interrupt conditions is possible. Programmable pullup or pulldown on all ports. Edge-selectable interrupt and LPM3.5 and LPM4.5 wake-up input capability is available for all pins of ports P1 to P8. Read and write access to port control registers is supported by all instructions. Ports can be accessed byte-wise or word-wise in pairs. All pins of ports P1 to P8, and PJ support capacitive touch functionality. No cross-currents during start-up. Note Configuration of Digital I/Os After BOR Reset To prevent any cross currents during start-up of the device, all port pins are high-impedance with Schmitt triggers and their module functions disabled. To enable the I/O functionality after a BOR reset, first configure the ports and then clear the LOCKLPM5 bit. For details, see the Configuration After Reset section of the Digital I/O chapter in the MSP430FR58xx, MSP430FR59xx, and MSP430FR6xx Family User's Guide. 9.12.2 Oscillator and Clock System (CS) The clock system includes support for a 32-kHz watch-crystal oscillator XT1 (LF), an internal very-low-power low-frequency oscillator (VLO), an integrated internal digitally controlled oscillator (DCO), and a high-frequency crystal oscillator XT2 (HF). The clock system module is designed to meet the requirements of both low system cost and low power consumption. A fail-safe mechanism exists for all crystal sources. See Table 9-49 for control and configuration registers. The clock system module provides the following clock signals: • • • Auxiliary clock (ACLK). ACLK can be sourced from a 32-kHz watch crystal (LFXT1), the internal VLO, or a digital external low-frequency (
MSP430FR5994IZVW 价格&库存

很抱歉,暂时无法提供与“MSP430FR5994IZVW”相匹配的价格&库存,您可以联系我们找货

免费人工找货