Product
Folder
Order
Now
Technical
Documents
Tools &
Software
Support &
Community
MSP432E401Y
SLASEN5 – OCTOBER 2017
MSP432E401Y SimpleLink™ Ethernet Microcontroller
1 Device Overview
1.1
Features
1
• Core
– 120-MHz Arm® Cortex®-M4F Processor Core
With Floating-Point Unit (FPU)
• Connectivity
– Ethernet MAC: 10/100 Ethernet MAC With
Integrated Ethernet PHY
– Ethernet PHY: PHY With IEEE 1588 PTP
Hardware Support
– Universal Serial Bus (USB): USB 2.0 OTG,
Host, or Device With ULPI Interface Option and
Link Power Management (LPM)
– Eight Universal Asynchronous
Receivers/Transmitters (UARTs), Each With
Independently Clocked Transmitter and
Receiver
– Four Quad Synchronous Serial Interface (QSSI):
With Bi-, Quad-, and Advanced-SSI Support
– Ten Inter-Integrated Circuit (I2C) Modules With
High-Speed Mode Support
– Two CAN 2.0 A and B Controllers: Multicast
Shared Serial-Bus Standard
• Memories
– 1024KB of Flash Memory With 4-Bank
Configuration Supports an Independent Code
Protection for Each Bank
– 256KB of SRAM With Single-Cycle Access,
Provides Nearly 2-GB/s Memory Bandwidth at
120-MHz Clock Frequency
– 6KB EEPROM: 500-kwrite per 2 Page Block,
Leveling, Lock Protection
– Internal ROM: Loaded With SimpleLink™ SDK
Software
– Peripheral Driver Library
– Bootloader
– External Peripheral Interface (EPI): 8-, 16-, or
32-Bit Dedicated Parallel Interface to Access
External Devices and Memory (SDRAM, Flash,
or SRAM)
• Security
– Advanced Encryption Standard (AES):
Hardware Accelerated Data Encryption and
Decryption Based on 128-, 192-, and 256-Bit
Keys
– Data Encryption Standard (DES): Hardware
Accelerated Data Encryption and Decryption
Supported by Block Cipher Implementation With
168-Bit Effective Key Length
– Secure Hash Algorithm/Message Digest
Algorithm (SHA/MD5): Advanced Hash Engine
That Supports SHA-1, SHA-2, and MD5 Hash
Computation
– Cyclical Redundancy Check (CRC) Hardware
– Tamper: Support for Four Tamper Inputs and
Configurable Tamper Event Response
• Analog
– Two 12-Bit SAR-Based ADC Modules, Each
Supports Up to 2 Million Samples per Second
(2 Msps)
– Three Independent Analog Comparator
Controllers
– 16 Digital Comparators
• System Management
– JTAG and Serial Wire Debug (SWD): One JTAG
Module With Integrated Arm SWD Provides a
Means of Accessing and Controlling Design-forTest Features Such as I/O Pin Observation and
Control, Scan Testing, and Debugging.
• Development Kits and Software (See Tools and
Software)
– SimpleLink™ MSP-EXP432E401Y
LaunchPad™ Development Kit
– SimpleLink MSP432E4 Software Development
Kit (SDK)
• Package Information
– Package: 128-Pin TQFP (PDT)
– Extended Operating Temperature (Ambient)
Range: –40°C to 105°C
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,
intellectual property matters and other important disclaimers. PRODUCTION DATA.
MSP432E401Y
SLASEN5 – OCTOBER 2017
1.2
•
•
•
•
•
•
www.ti.com
Applications
Industrial Ethernet Gateway
Industrial Smart Gateway
Zone Controllers for Building Automation
Factory Automation Data Collectors and Gateway
Data Concentrators for Grid Infrastructure
Wireless to Ethernet Gateway
1.3
Description
The SimpleLink MSP432E401Y Arm® Cortex®-M4F microcontrollers provide top performance and
advanced integration. The product family is positioned for cost-effective applications requiring significant
control processing and connectivity capabilities.
The MSP432E401Y microcontrollers integrate a large variety of rich communication features to enable a
new class of highly connected designs with the ability to allow critical real-time control between
performance and power. The microcontrollers feature integrated communication peripherals along with
other high-performance analog and digital functions to offer a strong foundation for many different target
uses, spanning from human-machine interface (HMI) to networked system management controllers.
In addition, the MSP432E401Y microcontrollers offer the advantages of widely available development
tools, system-on-chip (SoC) infrastructure, and a large user community for Arm-based microcontrollers.
Additionally, these microcontrollers use the Arm Thumb®-compatible Thumb-2® instruction set to reduce
memory requirements and, thereby, cost. When using the SimpleLink MSP432™ SDK, the MSP432E401Y
microcontroller is code compatible with all members of the extensive SimpleLink family, providing flexibility
to fit precise needs.
The MSP432E401Y device is part of the SimpleLink microcontroller (MCU) platform, which consists of WiFi®, Bluetooth® low energy, Sub-1 GHz, Ethernet, Zigbee, Thread, and host MCUs, which all share a
common, easy-to-use development environment with a single core software development kit (SDK) and
rich tool set. A one-time integration of the SimpleLink platform enables you to add any combination of the
portfolio's devices into your design, allowing 100 percent code reuse when your design requirements
change. For more information, visit www.ti.com/simplelink.
Device Information (1)
PART NUMBER
MSP432E401YTPDT
(1)
2
PACKAGE
BODY SIZE
TQFP (128)
14 mm × 14 mm
For more information, see Section 9, Mechanical, Packaging, and Orderable Information.
Device Overview
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP432E401Y
MSP432E401Y
www.ti.com
1.4
SLASEN5 – OCTOBER 2017
Functional Block Diagram
Figure 1-1 shows the functional block diagram.
JTAG, SWD
Arm
Cortex-M4F
ROM
(120 MHz)
System
Control and
Clocks
(with Precision
Oscillator)
ETM
FPU
Flash
Bootloader
DriverLib
AES and CRC
Ethernet Bootloater
DCode bus
(1024KB)
NVIC
MPU
ICode bus
System Bus
Bus Matrix
SRAM
(256KB)
SYSTEM PERIPHERALS
DMA
Watchdog
Timer
(2 Units)
EEPROM
(6K)
Hibernation
Module
GPIOs
(90)
GeneralPurpose
Timer (8 Units)
CRC
Module
External
Peripheral
Interface
DES
Module
AES
Module
SSI
(4 Units)
Ethernet
MAC, PHY, MII
SHA/MD5
Module
Advanced Peripheral Bus (APB)
USB OTG
(FS PHY
or ULPI)
Advanced High-Performance Bus (AHB)
Tamper
SERIAL PERIPHERALS
UART
(8 Units)
I2C
(10 Units)
CAN
Controller
(2 Units)
ANALOG PERIPHERALS
Analog
Comparator
(3 Units)
12-Bit ADC
(2 Units,
20 Channels)
MOTION CONTROL PERIPHERALS
PWM
(1 Unit,
8 Signals)
QEI
(1 Unit)
Copyright © 2017, Texas Instruments Incorporated
Figure 1-1. MSP432E401Y Functional Block Diagram
Device Overview
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP432E401Y
3
MSP432E401Y
SLASEN5 – OCTOBER 2017
www.ti.com
Table of Contents
1
2
3
Device Overview ......................................... 1
5.11
Peripheral Current Consumption .................... 41
1.1
Features .............................................. 1
5.12
LDO Regulator Characteristics...................... 41
1.2
Applications ........................................... 2
1.3
Description ............................................ 2
5.13
5.14
1.4
Functional Block Diagram ............................ 3
Power Dissipation ................................... 42
Thermal Resistance Characteristics, 128-Pin PDT
(TQFP) Package .................................... 42
5.15
Timing and Switching Characteristics ............... 43
Revision History ......................................... 5
Device Characteristics .................................. 6
Overview
Terminal Configuration and Functions .............. 8
6.2
Functional Block Diagram ........................... 95
.......................................... 8
4.2
Pin Attributes ......................................... 9
4.3
Signal Descriptions .................................. 19
4.4
GPIO Pin Multiplexing ............................... 30
4.5
Buffer Type .......................................... 33
4.6
Connections for Unused Pins ....................... 33
Specifications ........................................... 35
5.1
Absolute Maximum Ratings ......................... 35
5.2
ESD Ratings ........................................ 35
5.3
Recommended Operating Conditions ............... 35
5.4
Recommended DC Operating Conditions .......... 35
5.5
Recommended GPIO Operating Characteristics ... 35
6.3
Arm Cortex-M4F Processor Core ................... 96
6.4
On-Chip Memory ................................... 100
6.5
Peripherals ......................................... 102
6.6
Identification........................................ 144
6.7
Boot Modes ........................................ 144
Pin Diagram
5.6
..........................
5.8
GPIO Current Restrictions
5.9
I/O Reliability ........................................ 37
5.10
Current Consumption
...............................
Applications, Implementation, and Layout ...... 146
8
Device and Documentation Support .............. 147
7.1
37
38
94
7
Recommended Fast GPIO Pad Operating
Conditions ........................................... 36
Recommended Slow GPIO Pad Operating
Conditions ........................................... 36
5.7
4
............................................
6.1
4.1
5
Detailed Description ................................... 94
Related Products ..................................... 7
3.1
4
6
9
System Design Guidelines ......................... 146
...................
8.1
Getting Started and Next Steps
8.2
Device Nomenclature .............................. 147
8.3
Tools and Software ................................ 149
8.4
Documentation Support ............................ 150
8.5
Community Resources............................. 151
8.6
Trademarks ........................................ 151
8.7
Electrostatic Discharge Caution
8.8
Export Control Notice .............................. 151
8.9
Glossary............................................ 151
...................
147
151
Mechanical, Packaging, and Orderable
Information ............................................. 152
Table of Contents
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP432E401Y
MSP432E401Y
www.ti.com
SLASEN5 – OCTOBER 2017
2 Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.
DATE
REVISION
NOTES
October 2017
*
Initial Release
Revision History
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP432E401Y
5
MSP432E401Y
SLASEN5 – OCTOBER 2017
www.ti.com
3 Device Characteristics
Table 3-1 lists the characteristics of the MSP432E401Y MCU.
Table 3-1. Device Characteristics
Feature
Description
Performance
Core
Arm Cortex-M4F processor core
Performance
120-MHz operation, 150-DMIPS performance
Flash
1024KB of flash memory
System SRAM
256KB of single-cycle system SRAM
EEPROM
6KB of EEPROM
Internal ROM
Internal ROM loaded with SimpleLink SDK software
External Peripheral Interface (EPI)
8-, 16-, or 32-bit dedicated interface for peripherals and memory
Security
Cyclical Redundancy Check (CRC)
16- or 32-bit hash function that supports four CRC forms
Advanced Encryption Standard (AES)
Hardware accelerated data encryption and decryption based on 128-, 192-, and 256-bit
keys
Data Encryption Standard (DES)
Block cipher implementation with 168-bit effective key length
Hardware Accelerated Hash (SHA/MD5)
Advanced hash engine that supports SHA-1, SHA-2, or MD5 hash computation
Tamper
Support for four tamper inputs and configurable tamper event response
Communication Interfaces
Universal Asynchronous Receiver/Transmitter
(UART)
Eight UARTs
Quad Synchronous Serial Interface (QSSI)
Four SSI modules with bi-, quad-, and advanced-SSI support
2
Inter-Integrated Circuit (I C)
Ten I2C modules with four transmission speeds including high-speed mode
Controller Area Network (CAN)
Two CAN 2.0 A/B controllers
Ethernet MAC
10/100 Ethernet MAC
Ethernet PHY
PHY with IEEE 1588 PTP hardware support
Universal Serial Bus (USB)
USB 2.0 OTG, Host, and Device with ULPI interface option and Link Power
Management (LPM) support
System Integration
Micro Direct Memory Access (µDMA)
Arm PrimeCell® 32-channel configurable µDMA controller
General-Purpose Timer (GPTM)
Eight 16- or 32-bit GPTM blocks
Watchdog Timer (WDT)
Two watchdog timers
Hibernation Module (HIB)
Low-power battery-backed Hibernation module
General-Purpose Input/Output (GPIO)
15 physical GPIO blocks
Advanced Motion Control
Pulse Width Modulator (PWM)
One PWM module, with four PWM generator blocks and a control block, for a total of 8
PWM outputs
Quadrature Encoder Interface (QEI)
One QEI module
Analog Support
Analog-to-Digital Converter (ADC)
Two 12-bit ADC modules, each with a maximum sample rate of 2 Msps
Analog Comparator Controller
Three independent integrated analog comparators
Digital Comparator
16 digital comparators
System Management
JTAG and Serial Wire Debug (SWD)
One JTAG module with integrated Arm SWD
Package Information
Package
128-pin TQFP (PDT)
Operating Range (Ambient)
Extended temperature range (–40°C to 105°C)
6
Device Characteristics
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP432E401Y
MSP432E401Y
www.ti.com
3.1
SLASEN5 – OCTOBER 2017
Related Products
For information about other devices in this family of products or related products, see the following links.
Products for TI Microcontrollers
connectivity options.
Low-power and high-performance MCUs, with wired and wireless
Products for SimpleLink MSP432 MCUs SimpleLink MSP432 MCUs with an ultra-low-power Arm
Cortex-M4 core are optimized for Internet-of-Things sensor node applications. With an
integrated ADC, the family enables acquisition and processing of high-precision signals
without sacrificing power and is an optimal host MCU for TI's SimpleLink wireless
connectivity solutions.
Companion Products for MSP432E401Y Review products that are frequently purchased or used with
this product.
Reference Designs The TI Designs Reference Design Library is a robust reference design library that
spans analog, embedded processor, and connectivity. Created by TI experts to help you
jump start your system design, all TI Designs include schematic or block diagrams, BOMs,
and design files to speed your time to market.
Device Characteristics
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP432E401Y
7
MSP432E401Y
SLASEN5 – OCTOBER 2017
www.ti.com
4 Terminal Configuration and Functions
4.1
Pin Diagram
Figure 4-1 shows the pinout of the 128-pin TQFP (PDT) package.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
PB1
PB0
PL6
PL7
PB3
PB2
VDD
OSC1
OSC0
VDDC
PL5
PL4
PL3
PL2
PL1
PL0
GND
VDD
PM0
PM1
PM2
PM3
PM4
PM5
PM6
PM7
RST
VDD
VBAT
XOSC1
XOSC0
HIB
PA0
PA1
PA2
PA3
PA4
PA5
VDD
PA6
PA7
PF0
PF1
PF2
PF3
PF4
VDD
GND
PG0
PG1
VDD
VDD
EN0RXIN
EN0RXIP
GND
EN0TXON
EN0TXOP
GND
RBIAS
PK7
PK6
PK5
PK4
WAKE
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
PD0
PD1
PD2
PD3
PQ0
PQ1
VDD
VDDA
VREFA+
GNDA
PQ2
PE3
PE2
PE1
PE0
VDD
GND
PK0
PK1
PK2
PK3
PC7
PC6
PC5
PC4
VDD
PQ3
VDD
PH0
PH1
PH2
PH3
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105
104
103
102
101
100
99
98
97
PD7
PD6
PD5
PD4
PE5
PE4
VDD
PB4
PB5
PP1
PP0
PJ1
PJ0
VDDC
GND
VDD
PN5
PN4
PN3
PN2
PN1
PN0
PP5
PP4
PP3
PP2
PQ4
VDD
PC0/TCK/SWCLK
PC1/TMS/SWDIO
PC2/TDI
PC3/TDO/SWO
Each GPIO signal is identified by its GPIO port unless it defaults to an alternate function on reset. In this
case, the GPIO port name is followed by the default alternate function. For a complete list of functions for
each pin, see Table 4-2.
Figure 4-1. 128-Pin PDT Package (Top View)
8
Terminal Configuration and Functions
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP432E401Y
MSP432E401Y
www.ti.com
4.2
SLASEN5 – OCTOBER 2017
Pin Attributes
Table 4-1 lists GPIO pins with special considerations. Most GPIO pins are configured as GPIOs and are
high-impedance by default (GPIOAFSEL = 0, GPIODEN = 0, GPIOPDR = 0, GPIOPUR = 0, and
GPIOPCTL = 0). Special consideration pins may be programed to a non-GPIO function or may have
special commit controls out of reset. In addition, a POR returns these GPIOs to their original special
consideration state.
Table 4-1. GPIO Pins With Special Considerations
(1)
GPIO PINS
DEFAULT
RESET STATE
GPIOAFSEL
GPIODEN
GPIOPDR
GPIOPUR
GPIOPCTL
GPIOCR
PC[3:0]
JTAG/SWD
1
1
0
1
0x1
0
PD[7]
GPIO
(1)
0
0
0
0
0x0
0
PE[7]
GPIO (1)
0
0
0
0
0x0
0
This pin is configured as a GPIO by default but is locked and can only be reprogrammed by unlocking the pin in the GPIOLOCK register
and uncommitting it by setting the GPIOCR register.
Table 4-2 describes the pin attributes.
Table 4-2. Pin Attributes
BUFFER
TYPE (2)
I/O
LVCMOS
–
OFF
I
Analog
PD0
N/A
C0o
O
LVCMOS
PD0 (5)
I2C7SCL
I/O
LVCMOS
PD0 (2)
SSI2XDAT1
I/O
LVCMOS
PD0 (15)
T0CCP0
I/O
LVCMOS
PD0 (3)
N/A
PD1
I/O
LVCMOS
–
OFF
I
Analog
PD1
N/A
C1o
O
LVCMOS
PD1 (5)
I2C7SDA
I/O
LVCMOS
PD1 (2)
SSI2XDAT0
I/O
LVCMOS
PD1 (15)
N/A
T0CCP1
I/O
LVCMOS
PD1 (3)
N/A
PD2
SIGNAL NAME
PD0
AIN15
1
AIN14
2
3
5
(1)
(2)
(3)
(4)
POWER
SOURCE (3)
VDD
N/A
N/A
N/A
VDD
N/A
N/A
I/O
LVCMOS
–
OFF
AIN13
I
Analog
PD2
N/A
C2o
O
LVCMOS
PD2 (5)
I2C8SCL
I/O
LVCMOS
PD2 (2)
SSI2Fss
I/O
LVCMOS
PD2 (15)
N/A
T1CCP0
I/O
LVCMOS
PD2 (3)
N/A
PD3
I/O
LVCMOS
–
OFF
I
Analog
PD3
I2C8SDA
I/O
LVCMOS
PD3 (2)
SSI2Clk
I/O
LVCMOS
PD3 (15)
T1CCP1
I/O
LVCMOS
PD3 (3)
N/A
PQ0
I/O
LVCMOS
–
OFF
EPI0S20
I/O
LVCMOS
PQ0 (15)
SSI3Clk
I/O
LVCMOS
PQ0 (14)
AIN12
4
PIN MUX
ENCODING
STATE AFTER
RESET
RELEASE (4)
SIGNAL
TYPE (1)
PIN NUMBER
VDD
N/A
N/A
N/A
VDD
N/A
N/A
VDD
N/A
N/A
Signal Types: I = Input, O = Output, I/O = Input or Output.
For details on buffer types, see Table 4-5.
N/A = Not applicable
State after reset release: PU = High impedance with an active pullup resistor, OFF = High impedance, N/A = not applicable
Terminal Configuration and Functions
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP432E401Y
9
MSP432E401Y
SLASEN5 – OCTOBER 2017
www.ti.com
Table 4-2. Pin Attributes (continued)
SIGNAL
TYPE (1)
BUFFER
TYPE (2)
PQ1
I/O
LVCMOS
–
EPI0S21
I/O
LVCMOS
PQ1 (15)
SSI3Fss
PIN NUMBER
6
SIGNAL NAME
POWER
SOURCE (3)
STATE AFTER
RESET
RELEASE (4)
OFF
VDD
N/A
I/O
LVCMOS
PQ1 (14)
7
VDD
–
Power
Fixed
N/A
N/A
8
VDDA
–
Power
Fixed
N/A
N/A
9
VREFA+
–
Analog
Fixed
N/A
N/A
10
GNDA
N/A
N/A
–
Power
Fixed
PQ2
I/O
LVCMOS
–
EPI0S22
I/O
LVCMOS
PQ2 (15)
SSI3XDAT0
I/O
LVCMOS
PQ2 (14)
N/A
PE3
I/O
LVCMOS
–
OFF
AIN0
I
Analog
PE3
U1DTR
O
LVCMOS
PE3 (1)
N/A
PE2
I/O
LVCMOS
–
OFF
AIN1
I
Analog
PE2
U1DCD
I
LVCMOS
PE2 (1)
PE1
I/O
LVCMOS
–
AIN2
I
Analog
PE1
U1DSR
I
LVCMOS
PE1 (1)
PE0
I/O
LVCMOS
–
AIN3
I
Analog
PE0
U1RTS
O
LVCMOS
PE0 (1)
16
VDD
–
Power
Fixed
N/A
17
GND
–
Power
Fixed
N/A
PK0
I/O
LVCMOS
–
I
Analog
PK0
I/O
LVCMOS
PK0 (15)
I
LVCMOS
PK0 (1)
N/A
I/O
LVCMOS
–
OFF
11
12
13
14
15
18
AIN16
EPI0S0
U4Rx
PK1
19
20
21
AIN17
22
N/A
OFF
VDD
VDD
VDD
N/A
N/A
N/A
N/A
OFF
VDD
N/A
N/A
OFF
VDD
N/A
N/A
N/A
N/A
OFF
VDD
N/A
N/A
I
Analog
PK1
EPI0S1
I/O
LVCMOS
PK1 (15)
U4Tx
O
LVCMOS
PK1 (1)
N/A
PK2
I/O
LVCMOS
–
OFF
I
Analog
PK2
EPI0S2
I/O
LVCMOS
PK2 (15)
U4RTS
O
LVCMOS
PK2 (1)
N/A
PK3
I/O
LVCMOS
–
OFF
I
Analog
PK3
I/O
LVCMOS
PK3 (15)
AIN18
AIN19
EPI0S3
U4CTS
10
PIN MUX
ENCODING
VDD
VDD
VDD
N/A
N/A
N/A
N/A
N/A
N/A
I
LVCMOS
PK3 (1)
N/A
PC7
I/O
LVCMOS
–
OFF
C0-
I
Analog
PC7
EPI0S4
I/O
LVCMOS
PC7 (15)
U5Tx
O
LVCMOS
PC7 (1)
Terminal Configuration and Functions
VDD
N/A
N/A
N/A
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP432E401Y
MSP432E401Y
www.ti.com
SLASEN5 – OCTOBER 2017
Table 4-2. Pin Attributes (continued)
SIGNAL
TYPE (1)
BUFFER
TYPE (2)
PC6
I/O
LVCMOS
–
C0+
I
Analog
PC6
PIN NUMBER
23
24
25
26
27
28
29
30
31
SIGNAL NAME
EPI0S5
VDD
N/A
LVCMOS
PC6 (15)
LVCMOS
PC6 (1)
N/A
PC5
I/O
LVCMOS
–
OFF
C1+
I
Analog
PC5
N/A
EPI0S6
I/O
LVCMOS
PC5 (15)
RTCCLK
O
LVCMOS
PC5 (7)
N/A
U7Tx
O
LVCMOS
PC5 (1)
N/A
PC4
I/O
LVCMOS
–
OFF
C1-
I
Analog
PC4
I/O
LVCMOS
PC4 (15)
U7Rx
I
LVCMOS
PC4 (1)
VDD
–
Power
Fixed
PQ3
I/O
LVCMOS
–
EPI0S23
I/O
LVCMOS
PQ3 (15)
SSI3XDAT1
EPI0S7
VDD
VDD
N/A
N/A
N/A
N/A
N/A
N/A
N/A
OFF
VDD
N/A
I/O
LVCMOS
PQ3 (14)
VDD
–
Power
Fixed
PH0
I/O
LVCMOS
–
EPI0S0
I/O
LVCMOS
PH0 (15)
U0RTS
O
LVCMOS
PH0 (1)
N/A
PH1
I/O
LVCMOS
–
OFF
EPI0S1
I/O
LVCMOS
PH1 (15)
U0CTS
I
LVCMOS
PH1 (1)
N/A
PH2
I/O
LVCMOS
–
OFF
EPI0S2
I/O
LVCMOS
PH2 (15)
N/A
N/A
N/A
OFF
VDD
VDD
VDD
N/A
N/A
N/A
I
LVCMOS
PH2 (1)
N/A
PH3
I/O
LVCMOS
–
OFF
EPI0S3
I/O
LVCMOS
PH3 (15)
VDD
N/A
I
LVCMOS
PH3 (1)
N/A
I/O
LVCMOS
–
OFF
CAN0Rx
I
LVCMOS
PA0 (7)
N/A
I2C9SCL
I/O
LVCMOS
PA0 (2)
T0CCP0
I/O
LVCMOS
PA0 (3)
I
LVCMOS
PA0 (1)
N/A
I/O
LVCMOS
–
OFF
CAN0Tx
O
LVCMOS
PA1 (7)
I2C9SDA
I/O
LVCMOS
PA1 (2)
T0CCP1
I/O
LVCMOS
PA1 (3)
U0Tx
O
LVCMOS
PA1 (1)
N/A
PA2
I/O
LVCMOS
–
OFF
I2C8SCL
I/O
LVCMOS
PA2 (2)
N/A
SSI0Clk
I/O
LVCMOS
PA2 (15)
T1CCP0
I/O
LVCMOS
PA2 (3)
N/A
I
LVCMOS
PA2 (1)
N/A
U0Rx
PA1
35
OFF
I
PA0
34
STATE AFTER
RESET
RELEASE (4)
I/O
U0DSR
33
POWER
SOURCE (3)
U5Rx
U0DCD
32
PIN MUX
ENCODING
U4Rx
VDD
N/A
N/A
N/A
VDD
N/A
N/A
VDD
N/A
Terminal Configuration and Functions
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP432E401Y
11
MSP432E401Y
SLASEN5 – OCTOBER 2017
www.ti.com
Table 4-2. Pin Attributes (continued)
BUFFER
TYPE (2)
PA3
I/O
LVCMOS
–
OFF
I2C8SDA
I/O
LVCMOS
PA3 (2)
N/A
36
SSI0Fss
I/O
LVCMOS
PA3 (15)
T1CCP1
I/O
LVCMOS
PA3 (3)
U4Tx
O
LVCMOS
PA3 (1)
N/A
PA4
I/O
LVCMOS
–
OFF
37
I2C7SCL
I/O
LVCMOS
PA4 (2)
SSI0XDAT0
I/O
LVCMOS
PA4 (15)
T2CCP0
I/O
LVCMOS
PA4 (3)
SIGNAL NAME
U3Rx
38
39
40
42
43
44
12
POWER
SOURCE (3)
VDD
N/A
N/A
N/A
VDD
N/A
N/A
I
LVCMOS
PA4 (1)
N/A
PA5
I/O
LVCMOS
–
OFF
I2C7SDA
I/O
LVCMOS
PA5 (2)
N/A
SSI0XDAT1
I/O
LVCMOS
PA5 (15)
T2CCP1
I/O
LVCMOS
PA5 (3)
U3Tx
O
LVCMOS
PA5 (1)
VDD
–
Power
Fixed
PA6
I/O
LVCMOS
–
OFF
EPI0S8
I/O
LVCMOS
PA6 (15)
N/A
I2C6SCL
I/O
LVCMOS
PA6 (2)
N/A
SSI0XDAT2
I/O
LVCMOS
PA6 (13)
T3CCP0
I/O
LVCMOS
PA6 (3)
N/A
I
LVCMOS
PA6 (1)
N/A
USB0EPEN
O
LVCMOS
PA6 (5)
N/A
PA7
I/O
LVCMOS
–
OFF
EPI0S9
I/O
LVCMOS
PA7 (15)
N/A
I2C6SDA
I/O
LVCMOS
PA7 (2)
N/A
SSI0XDAT3
I/O
LVCMOS
PA7 (13)
T3CCP1
I/O
LVCMOS
PA7 (3)
U2Tx
O
LVCMOS
PA7 (1)
N/A
USB0EPEN
O
LVCMOS
PA7 (11)
N/A
USB0PFLT
I
LVCMOS
PA7 (5)
N/A
PF0
I/O
LVCMOS
–
OFF
EN0LED0
O
LVCMOS
PF0 (5)
M0PWM0
O
LVCMOS
PF0 (6)
SSI3XDAT1
I/O
LVCMOS
PF0 (14)
N/A
TRD2
O
LVCMOS
PF0 (15)
N/A
PF1
I/O
LVCMOS
–
OFF
EN0LED2
O
LVCMOS
PF1 (5)
M0PWM1
O
LVCMOS
PF1 (6)
SSI3XDAT0
I/O
LVCMOS
PF1 (14)
TRD1
O
LVCMOS
PF1 (15)
N/A
PF2
I/O
LVCMOS
–
OFF
M0PWM2
O
LVCMOS
PF2 (6)
SSI3Fss
I/O
LVCMOS
PF2 (14)
TRD0
O
LVCMOS
PF2 (15)
U2Rx
41
PIN MUX
ENCODING
STATE AFTER
RESET
RELEASE (4)
SIGNAL
TYPE (1)
PIN NUMBER
Terminal Configuration and Functions
VDD
N/A
N/A
N/A
N/A
VDD
VDD
N/A
N/A
N/A
N/A
N/A
VDD
N/A
N/A
VDD
N/A
N/A
VDD
N/A
N/A
N/A
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP432E401Y
MSP432E401Y
www.ti.com
SLASEN5 – OCTOBER 2017
Table 4-2. Pin Attributes (continued)
BUFFER
TYPE (2)
PF3
I/O
LVCMOS
–
M0PWM3
O
LVCMOS
PF3 (6)
SSI3Clk
I/O
LVCMOS
PF3 (14)
TRCLK
O
LVCMOS
PF3 (15)
N/A
PF4
I/O
LVCMOS
–
OFF
EN0LED1
O
LVCMOS
PF4 (5)
N/A
M0FAULT0
I
LVCMOS
PF4 (6)
SSI3XDAT2
I/O
LVCMOS
PF4 (14)
N/A
TRD3
O
LVCMOS
PF4 (15)
N/A
47
VDD
–
Power
Fixed
N/A
48
GND
–
Power
Fixed
N/A
PG0
I/O
LVCMOS
–
EN0PPS
O
LVCMOS
PG0 (5)
EPI0S11
I/O
LVCMOS
PG0 (15)
I2C1SCL
I/O
LVCMOS
PG0 (2)
N/A
M0PWM4
O
LVCMOS
PG0 (6)
N/A
PG1
I/O
LVCMOS
–
OFF
EPI0S10
I/O
LVCMOS
PG1 (15)
I2C1SDA
I/O
LVCMOS
PG1 (2)
45
46
49
50
SIGNAL NAME
PIN MUX
ENCODING
POWER
SOURCE (3)
STATE AFTER
RESET
RELEASE (4)
SIGNAL
TYPE (1)
PIN NUMBER
OFF
VDD
VDD
N/A
N/A
N/A
N/A
N/A
OFF
N/A
VDD
VDD
N/A
N/A
N/A
M0PWM5
O
LVCMOS
PG1 (6)
51
VDD
–
Power
Fixed
N/A
N/A
52
VDD
–
Power
Fixed
N/A
N/A
53
EN0RXIN
I/O
LVCMOS
Fixed
VDD
N/A
54
EN0RXIP
I/O
LVCMOS
Fixed
VDD
N/A
55
GND
–
Power
Fixed
N/A
N/A
56
EN0TXON
I/O
LVCMOS
Fixed
VDD
N/A
57
EN0TXOP
I/O
LVCMOS
Fixed
VDD
N/A
58
GND
–
Power
Fixed
N/A
N/A
59
RBIAS
O
Analog
Fixed
VDD
N/A
PK7
I/O
LVCMOS
–
OFF
EPI0S24
I/O
LVCMOS
PK7 (15)
N/A
I2C4SDA
I/O
LVCMOS
PK7 (2)
M0FAULT2
I
LVCMOS
PK7 (6)
RTCCLK
O
LVCMOS
PK7 (5)
U0RI
I
LVCMOS
PK7 (1)
N/A
PK6
I/O
LVCMOS
–
OFF
EN0LED1
O
LVCMOS
PK6 (5)
EPI0S25
I/O
LVCMOS
PK6 (15)
I2C4SCL
I/O
LVCMOS
PK6 (2)
60
61
M0FAULT1
62
N/A
VDD
N/A
N/A
N/A
N/A
VDD
N/A
N/A
I
LVCMOS
PK6 (6)
N/A
PK5
I/O
LVCMOS
–
OFF
EN0LED2
O
LVCMOS
PK5 (5)
N/A
EPI0S31
I/O
LVCMOS
PK5 (15)
I2C3SDA
I/O
LVCMOS
PK5 (2)
N/A
M0PWM7
O
LVCMOS
PK5 (6)
N/A
VDD
N/A
Terminal Configuration and Functions
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP432E401Y
13
MSP432E401Y
SLASEN5 – OCTOBER 2017
www.ti.com
Table 4-2. Pin Attributes (continued)
BUFFER
TYPE (2)
PK4
I/O
LVCMOS
–
OFF
EN0LED0
O
LVCMOS
PK4 (5)
N/A
EPI0S32
I/O
LVCMOS
PK4 (15)
I2C3SCL
I/O
LVCMOS
PK4 (2)
M0PWM6
O
LVCMOS
PK4 (6)
64
WAKE
I
LVCMOS
Fixed
VBAT
N/A
65
HIB
O
LVCMOS
Fixed
VBAT
N/A
66
XOSC0
I
Analog
Fixed
VBAT
N/A
67
XOSC1
O
Analog
Fixed
VBAT
N/A
68
VBAT
–
Power
Fixed
N/A
N/A
69
VDD
–
Power
Fixed
N/A
N/A
70
RST
I
LVCMOS
Fixed
VDD
N/A
PM7
I/O
LVCMOS
–
T5CCP1
I/O
LVCMOS
PM7 (3)
TMPR0
I/O
LVCMOS
PM7
U0RI
I
LVCMOS
PM7 (1)
N/A
PM6
I/O
LVCMOS
–
OFF
T5CCP0
I/O
LVCMOS
PM6 (3)
TMPR1
I/O
LVCMOS
PM6
63
71
72
SIGNAL NAME
U0DSR
73
74
75
76
77
78
14
PIN MUX
ENCODING
POWER
SOURCE (3)
STATE AFTER
RESET
RELEASE (4)
SIGNAL
TYPE (1)
PIN NUMBER
VDD
N/A
N/A
N/A
OFF
VDD
VDD
N/A
N/A
N/A
N/A
I
LVCMOS
PM6 (1)
N/A
PM5
I/O
LVCMOS
–
OFF
T4CCP1
I/O
LVCMOS
PM5 (3)
TMPR2
I/O
LVCMOS
PM5
U0DCD
I
LVCMOS
PM5 (1)
N/A
PM4
I/O
LVCMOS
–
OFF
T4CCP0
I/O
LVCMOS
PM4 (3)
TMPR3
I/O
LVCMOS
PM4
U0CTS
I
LVCMOS
PM4 (1)
N/A
PM3
I/O
LVCMOS
–
OFF
EPI0S12
I/O
LVCMOS
PM3 (15)
T3CCP1
I/O
LVCMOS
PM3 (3)
N/A
PM2
I/O
LVCMOS
–
OFF
EPI0S13
I/O
LVCMOS
PM2 (15)
T3CCP0
I/O
LVCMOS
PM2 (3)
N/A
PM1
I/O
LVCMOS
–
OFF
EPI0S14
I/O
LVCMOS
PM1 (15)
T2CCP1
I/O
LVCMOS
PM1 (3)
N/A
PM0
I/O
LVCMOS
–
OFF
EPI0S15
I/O
LVCMOS
PM0 (15)
T2CCP0
VDD
VDD
VDD
VDD
VDD
VDD
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
I/O
LVCMOS
PM0 (3)
79
VDD
–
Power
Fixed
N/A
N/A
80
GND
–
Power
Fixed
N/A
N/A
Terminal Configuration and Functions
N/A
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP432E401Y
MSP432E401Y
www.ti.com
SLASEN5 – OCTOBER 2017
Table 4-2. Pin Attributes (continued)
BUFFER
TYPE (2)
PL0
I/O
LVCMOS
–
OFF
EPI0S16
I/O
LVCMOS
PL0 (15)
N/A
81
I2C2SDA
I/O
LVCMOS
PL0 (2)
I
LVCMOS
PL0 (6)
USB0D0
I/O
LVCMOS
PL0 (14)
N/A
PL1
I/O
LVCMOS
–
OFF
EPI0S17
I/O
LVCMOS
PL1 (15)
I2C2SCL
I/O
LVCMOS
PL1 (2)
I
LVCMOS
PL1 (6)
USB0D1
I/O
LVCMOS
PL1 (14)
N/A
PL2
I/O
LVCMOS
–
OFF
C0o
O
LVCMOS
PL2 (5)
N/A
EPI0S18
I/O
LVCMOS
PL2 (15)
I
LVCMOS
PL2 (6)
USB0D2
I/O
LVCMOS
PL2 (14)
N/A
PL3
I/O
LVCMOS
–
OFF
C1o
O
LVCMOS
PL3 (5)
EPI0S19
I/O
LVCMOS
PL3 (15)
I
LVCMOS
PL3 (6)
USB0D3
I/O
LVCMOS
PL3 (14)
N/A
PL4
I/O
LVCMOS
–
OFF
EPI0S26
I/O
LVCMOS
PL4 (15)
T0CCP0
I/O
LVCMOS
PL4 (3)
USB0D4
I/O
LVCMOS
PL4 (14)
N/A
PL5
I/O
LVCMOS
–
OFF
EPI0S33
I/O
LVCMOS
PL5 (15)
T0CCP1
I/O
LVCMOS
PL5 (3)
USB0D5
I/O
LVCMOS
PL5 (14)
–
Power
Fixed
N/A
N/A
SIGNAL NAME
M0FAULT3
82
PhA0
83
PhB0
84
IDX0
85
86
PIN MUX
ENCODING
POWER
SOURCE (3)
STATE AFTER
RESET
RELEASE (4)
SIGNAL
TYPE (1)
PIN NUMBER
VDD
N/A
N/A
N/A
VDD
N/A
N/A
VDD
N/A
N/A
N/A
VDD
N/A
N/A
VDD
VDD
N/A
N/A
N/A
N/A
N/A
87
VDDC
88
OSC0
I
Analog
Fixed
VDD
N/A
89
OSC1
O
Analog
Fixed
VDD
N/A
90
VDD
–
Power
Fixed
N/A
N/A
PB2
I/O
LVCMOS
–
EPI0S27
I/O
LVCMOS
PB2 (15)
I2C0SCL
I/O
LVCMOS
PB2 (2)
T5CCP0
I/O
LVCMOS
PB2 (3)
USB0STP
O
LVCMOS
PB2 (14)
N/A
PB3
I/O
LVCMOS
–
OFF
EPI0S28
I/O
LVCMOS
PB3 (15)
N/A
I2C0SDA
I/O
LVCMOS
PB3 (2)
T5CCP1
I/O
LVCMOS
PB3 (3)
N/A
USB0CLK
O
LVCMOS
PB3 (14)
N/A
PL7
I/O
LVCMOS
–
T1CCP1
I/O
LVCMOS
PL7 (3)
USB0DM
I/O
Analog
PL7
91
92
93
OFF
N/A
VDD
N/A
N/A
VDD
N/A
OFF
VDD
N/A
N/A
Terminal Configuration and Functions
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP432E401Y
15
MSP432E401Y
SLASEN5 – OCTOBER 2017
www.ti.com
Table 4-2. Pin Attributes (continued)
BUFFER
TYPE (2)
94
PL6
I/O
LVCMOS
–
T1CCP0
I/O
LVCMOS
PL6 (3)
USB0DP
I/O
Analog
PL6
N/A
PB0
I/O
LVCMOS
–
OFF
CAN1Rx
I
LVCMOS
PB0 (7)
N/A
I2C5SCL
I/O
LVCMOS
PB0 (2)
95
T4CCP0
96
97
98
99
100
101
102
SIGNAL NAME
104
105
106
OFF
VDD
VDD
N/A
N/A
I/O
LVCMOS
PB0 (3)
I
LVCMOS
PB0 (1)
N/A
USB0ID
I
Analog
PB0
N/A
PB1
I/O
LVCMOS
–
OFF
CAN1Tx
O
LVCMOS
PB1 (7)
N/A
I2C5SDA
I/O
LVCMOS
PB1 (2)
T4CCP1
I/O
LVCMOS
PB1 (3)
U1Tx
O
LVCMOS
PB1 (1)
USB0VBUS
I/O
Analog
PB1
N/A
PC3
I/O
LVCMOS
–
OFF
TDO/SWO
O
LVCMOS
PC3 (1)
PC2
I/O
LVCMOS
–
TDI
I
LVCMOS
PC2 (1)
PC1
I/O
LVCMOS
–
TMS/SWDIO
I/O
LVCMOS
PC1 (1)
PC0
I/O
LVCMOS
–
TCK/SWCLK
I
LVCMOS
PC0 (1)
VDD
–
Power
Fixed
PQ4
I/O
LVCMOS
–
DIVSCLK
O
LVCMOS
PQ4 (7)
VDD
N/A
N/A
N/A
N/A
VDD
VDD
VDD
VDD
N/A
PU
N/A
PU
OFF
PU
OFF
PU
N/A
OFF
VDD
N/A
I
LVCMOS
PQ4 (1)
N/A
PP2
I/O
LVCMOS
–
OFF
EPI0S29
I/O
LVCMOS
PP2 (15)
U0DTR
O
LVCMOS
PP2 (1)
USB0NXT
O
LVCMOS
PP2 (14)
N/A
PP3
I/O
LVCMOS
–
OFF
EPI0S30
I/O
LVCMOS
PP3 (15)
N/A
RTCCLK
O
LVCMOS
PP3 (7)
U0DCD
I
LVCMOS
PP3 (2)
U1CTS
I
LVCMOS
PP3 (1)
USB0DIR
O
LVCMOS
PP3 (14)
N/A
PP4
I/O
LVCMOS
–
OFF
I
LVCMOS
PP4 (2)
U3RTS
O
LVCMOS
PP4 (1)
USB0D7
I/O
LVCMOS
PP4 (14)
N/A
PP5
I/O
LVCMOS
–
OFF
I2C2SCL
I/O
LVCMOS
PP5 (2)
I
LVCMOS
PP5 (1)
I/O
LVCMOS
PP5 (14)
U0DSR
U3CTS
USB0D6
16
POWER
SOURCE (3)
U1Rx
U1Rx
103
PIN MUX
ENCODING
STATE AFTER
RESET
RELEASE (4)
SIGNAL
TYPE (1)
PIN NUMBER
Terminal Configuration and Functions
VDD
VDD
N/A
N/A
N/A
N/A
N/A
VDD
VDD
N/A
N/A
N/A
N/A
N/A
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP432E401Y
MSP432E401Y
www.ti.com
SLASEN5 – OCTOBER 2017
Table 4-2. Pin Attributes (continued)
BUFFER
TYPE (2)
107
PN0
I/O
LVCMOS
–
U1RTS
O
LVCMOS
PN0 (1)
108
PN1
I/O
LVCMOS
–
I
LVCMOS
PN1 (1)
PN2
I/O
LVCMOS
–
109
EPI0S29
I/O
LVCMOS
PN2 (15)
U1DCD
I
LVCMOS
PN2 (1)
U2RTS
O
LVCMOS
PN2 (2)
N/A
PN3
I/O
LVCMOS
–
OFF
110
EPI0S30
I/O
LVCMOS
PN3 (15)
U1DSR
I
LVCMOS
PN3 (1)
U2CTS
I
LVCMOS
PN3 (2)
N/A
PN4
I/O
LVCMOS
–
OFF
EPI0S34
I/O
LVCMOS
PN4 (15)
111
I2C2SDA
I/O
LVCMOS
PN4 (3)
U1DTR
O
LVCMOS
PN4 (1)
U3RTS
O
LVCMOS
PN4 (2)
N/A
PN5
I/O
LVCMOS
–
OFF
EPI0S35
I/O
LVCMOS
PN5 (15)
N/A
112
I2C2SCL
SIGNAL NAME
U1CTS
PIN MUX
ENCODING
POWER
SOURCE (3)
STATE AFTER
RESET
RELEASE (4)
SIGNAL
TYPE (1)
PIN NUMBER
VDD
VDD
OFF
N/A
OFF
N/A
OFF
VDD
VDD
N/A
N/A
N/A
N/A
N/A
VDD
N/A
N/A
I/O
LVCMOS
PN5 (3)
U1RI
I
LVCMOS
PN5 (1)
N/A
U3CTS
I
LVCMOS
PN5 (2)
N/A
113
VDD
–
Power
Fixed
N/A
N/A
114
GND
–
Power
Fixed
N/A
N/A
115
VDDC
–
Power
Fixed
N/A
PJ0
I/O
LVCMOS
–
EN0PPS
O
LVCMOS
PJ0 (5)
U3Rx
I
LVCMOS
PJ0 (1)
N/A
PJ1
I/O
LVCMOS
–
OFF
U3Tx
O
LVCMOS
PJ1 (1)
PP0
I/O
LVCMOS
–
C2+
I
Analog
PP0
I/O
LVCMOS
PP0 (15)
I
LVCMOS
PP0 (1)
N/A
PP1
I/O
LVCMOS
–
OFF
C2-
I
Analog
PP1
SSI3XDAT3
I/O
LVCMOS
PP1 (15)
U6Tx
O
LVCMOS
PP1 (1)
N/A
PB5
I/O
LVCMOS
–
OFF
116
117
118
SSI3XDAT2
U6Rx
119
AIN11
120
VDD
N/A
N/A
OFF
VDD
VDD
N/A
N/A
OFF
VDD
VDD
N/A
N/A
N/A
N/A
I
Analog
PB5
I2C5SDA
I/O
LVCMOS
PB5 (2)
N/A
SSI1Clk
I/O
LVCMOS
PB5 (15)
N/A
U0RTS
O
LVCMOS
PB5 (1)
N/A
VDD
N/A
Terminal Configuration and Functions
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP432E401Y
17
MSP432E401Y
SLASEN5 – OCTOBER 2017
www.ti.com
Table 4-2. Pin Attributes (continued)
BUFFER
TYPE (2)
I/O
LVCMOS
–
OFF
I
Analog
PB4
N/A
I2C5SCL
I/O
LVCMOS
PB4 (2)
SSI1Fss
I/O
LVCMOS
PB4 (15)
U0CTS
I
LVCMOS
PB4 (1)
VDD
–
Power
Fixed
PE4
I/O
LVCMOS
–
AIN9
I
Analog
PE4
I/O
LVCMOS
PE4 (15)
U1RI
I
LVCMOS
PE4 (1)
N/A
PE5
I/O
LVCMOS
–
OFF
AIN8
I
Analog
PE5
SSI1XDAT1
I/O
LVCMOS
PE5 (15)
N/A
PD4
I/O
LVCMOS
–
OFF
SIGNAL NAME
PB4
AIN10
121
122
123
124
SSI1XDAT0
AIN7
125
128
18
VDD
N/A
N/A
N/A
N/A
VDD
VDD
I
Analog
PD4
I/O
LVCMOS
PD4 (15)
T3CCP0
N/A
N/A
N/A
N/A
N/A
VDD
N/A
I/O
LVCMOS
PD4 (3)
U2Rx
I
LVCMOS
PD4 (1)
N/A
PD5
I/O
LVCMOS
–
OFF
N/A
I
Analog
PD5
SSI1XDAT3
I/O
LVCMOS
PD5 (15)
T3CCP1
I/O
LVCMOS
PD5 (3)
U2Tx
O
LVCMOS
PD5 (1)
N/A
PD6
I/O
LVCMOS
–
OFF
N/A
AIN5
127
POWER
SOURCE (3)
OFF
SSI1XDAT2
AIN6
126
PIN MUX
ENCODING
STATE AFTER
RESET
RELEASE (4)
SIGNAL
TYPE (1)
PIN NUMBER
N/A
VDD
N/A
N/A
I
Analog
PD6
SSI2XDAT3
I/O
LVCMOS
PD6 (15)
T4CCP0
I/O
LVCMOS
PD6 (3)
U2RTS
O
LVCMOS
PD6 (1)
N/A
USB0EPEN
O
LVCMOS
PD6 (5)
N/A
PD7
I/O
LVCMOS
–
OFF
AIN4
I
Analog
PD7
N/A
NMI
I
LVCMOS
PD7 (8)
N/A
SSI2XDAT2
I/O
LVCMOS
PD7 (15)
T4CCP1
I/O
LVCMOS
PD7 (3)
N/A
U2CTS
I
LVCMOS
PD7 (1)
N/A
USB0PFLT
I
LVCMOS
PD7 (5)
N/A
Terminal Configuration and Functions
VDD
VDD
N/A
N/A
N/A
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP432E401Y
MSP432E401Y
www.ti.com
4.3
SLASEN5 – OCTOBER 2017
Signal Descriptions
Table 4-3 describes the signals. The signals are sorted by function.
Table 4-3. Signal Descriptions
FUNCTION
ADC
Analog Comparators
Controller Area
Network
SIGNAL NAME
PIN NO.
PIN TYPE
DESCRIPTION
AIN0
12
I
Analog-to-digital converter input 0.
AIN1
13
I
Analog-to-digital converter input 1
AIN2
14
I
Analog-to-digital converter input 2
AIN3
15
I
Analog-to-digital converter input 3
AIN4
128
I
Analog-to-digital converter input 4
AIN5
127
I
Analog-to-digital converter input 5
AIN6
126
I
Analog-to-digital converter input 6
AIN7
125
I
Analog-to-digital converter input 7
AIN8
124
I
Analog-to-digital converter input 8
AIN9
123
I
Analog-to-digital converter input 9
AIN10
121
I
Analog-to-digital converter input 10
AIN11
120
I
Analog-to-digital converter input 11
AIN12
4
I
Analog-to-digital converter input 12
AIN13
3
I
Analog-to-digital converter input 13
AIN14
2
I
Analog-to-digital converter input 14
AIN15
1
I
Analog-to-digital converter input 15
AIN16
18
I
Analog-to-digital converter input 16
AIN17
19
I
Analog-to-digital converter input 17
AIN18
20
I
Analog-to-digital converter input 18
AIN19
21
I
Analog-to-digital converter input 19
VREFA+
9
-
A reference voltage used to specify the voltage at which the
ADC converts to a maximum value. This pin is used in
conjunction with GNDA. The voltage that is applied to
VREFA+ is the voltage with which an AINn signal is
converted to 4095. The VREFA+ voltage is limited to the
range specified in the ADC electrical specifications.
C0+
23
I
Analog comparator 0 positive input
C0-
22
I
Analog comparator 0 negative input
C0o
1
83
O
Analog comparator 0 output
C1+
24
I
Analog comparator 1 positive input
C1-
25
I
Analog comparator 1 negative input
C1o
2
84
O
Analog comparator 1 output
C2+
118
I
Analog comparator 2 positive input
C2-
119
I
Analog comparator 2 negative input
C2o
3
O
Analog comparator 2 output
CAN0Rx
33
I
CAN module 0 receive
CAN0Tx
34
O
CAN module 0 transmit
CAN1Rx
95
I
CAN module 1 receive
CAN1Tx
96
O
CAN module 1 transmit
Terminal Configuration and Functions
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP432E401Y
19
MSP432E401Y
SLASEN5 – OCTOBER 2017
www.ti.com
Table 4-3. Signal Descriptions (continued)
FUNCTION
Core
Ethernet
20
SIGNAL NAME
PIN NO.
PIN TYPE
DESCRIPTION
TRCLK
45
O
Trace clock.
TRD0
44
O
Trace data 0.
TRD1
43
O
Trace data 1.
TRD2
42
O
Trace data 2.
TRD3
46
O
Trace data 3.
EN0LED0
42
63
O
Ethernet 0 LED 0
EN0LED1
46
61
O
Ethernet 0 LED 1
EN0LED2
43
62
O
Ethernet 0 LED 2
EN0PPS
49
116
O
Ethernet 0 pulse-per-second (PPS) output
EN0RXIN
53
I/O
Ethernet PHY negative receive differential input
EN0RXIP
54
I/O
Ethernet PHY positive receive differential input
EN0TXON
56
I/O
Ethernet PHY negative transmit differential output
EN0TXOP
57
I/O
Ethernet PHY positive transmit differential output
RBIAS
59
O
4.87-kΩ resistor (1% precision) for Ethernet PHY
Terminal Configuration and Functions
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP432E401Y
MSP432E401Y
www.ti.com
SLASEN5 – OCTOBER 2017
Table 4-3. Signal Descriptions (continued)
FUNCTION
External Peripheral
Interface
SIGNAL NAME
PIN NO.
PIN TYPE
EPI0S0
18
29
DESCRIPTION
I/O
EPI module 0 signal 0
EPI0S1
19
30
I/O
EPI module 0 signal 1
EPI0S2
20
31
I/O
EPI module 0 signal 2
EPI0S3
21
32
I/O
EPI module 0 signal 3
EPI0S4
22
I/O
EPI module 0 signal 4
EPI0S5
23
I/O
EPI module 0 signal 5
EPI0S6
24
I/O
EPI module 0 signal 6
EPI0S7
25
I/O
EPI module 0 signal 7
EPI0S8
40
I/O
EPI module 0 signal 8
EPI0S9
41
I/O
EPI module 0 signal 9
EPI0S10
50
I/O
EPI module 0 signal 10
EPI0S11
49
I/O
EPI module 0 signal 11
EPI0S12
75
I/O
EPI module 0 signal 12
EPI0S13
76
I/O
EPI module 0 signal 13
EPI0S14
77
I/O
EPI module 0 signal 14
EPI0S15
78
I/O
EPI module 0 signal 15
EPI0S16
81
I/O
EPI module 0 signal 16
EPI0S17
82
I/O
EPI module 0 signal 17
EPI0S18
83
I/O
EPI module 0 signal 18
EPI0S19
84
I/O
EPI module 0 signal 19
EPI0S20
5
I/O
EPI module 0 signal 20
EPI0S21
6
I/O
EPI module 0 signal 21
EPI0S22
11
I/O
EPI module 0 signal 22
EPI0S23
27
I/O
EPI module 0 signal 23
EPI0S24
60
I/O
EPI module 0 signal 24
EPI0S25
61
I/O
EPI module 0 signal 25
EPI0S26
85
I/O
EPI module 0 signal 26
EPI0S27
91
I/O
EPI module 0 signal 27
EPI0S28
92
I/O
EPI module 0 signal 28
EPI0S29
103
109
I/O
EPI module 0 signal 29
EPI0S30
104
110
I/O
EPI module 0 signal 30
EPI0S31
62
I/O
EPI module 0 signal 31
EPI0S32
63
I/O
EPI module 0 signal 32
EPI0S33
86
I/O
EPI module 0 signal 33
EPI0S34
111
I/O
EPI module 0 signal 34
EPI0S35
112
I/O
EPI module 0 signal 35
Terminal Configuration and Functions
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP432E401Y
21
MSP432E401Y
SLASEN5 – OCTOBER 2017
www.ti.com
Table 4-3. Signal Descriptions (continued)
FUNCTION
General-Purpose
Timers
GPIO, Port A
GPIO, Port B
GPIO, Port C
22
SIGNAL NAME
PIN NO.
PIN TYPE
T0CCP0
1
33
85
DESCRIPTION
I/O
16/32-Bit Timer 0 Capture/Compare/PWM 0
T0CCP1
2
34
86
I/O
16/32-Bit Timer 0 Capture/Compare/PWM 1
T1CCP0
3
35
94
I/O
16/32-Bit Timer 1 Capture/Compare/PWM 0
T1CCP1
4
36
93
I/O
16/32-Bit Timer 1 Capture/Compare/PWM 1
T2CCP0
37
78
I/O
16/32-Bit Timer 2 Capture/Compare/PWM 0
T2CCP1
38
77
I/O
16/32-Bit Timer 2 Capture/Compare/PWM 1
T3CCP0
40
76
125
I/O
16/32-Bit Timer 3 Capture/Compare/PWM 0
T3CCP1
41
75
126
I/O
16/32-Bit Timer 3 Capture/Compare/PWM 1
T4CCP0
74
95
127
I/O
16/32-Bit Timer 4 Capture/Compare/PWM 0
T4CCP1
73
96
128
I/O
16/32-Bit Timer 4 Capture/Compare/PWM 1
T5CCP0
72
91
I/O
16/32-Bit Timer 5 Capture/Compare/PWM 0
T5CCP1
71
92
I/O
16/32-Bit Timer 5 Capture/Compare/PWM 1
PA0
33
I/O
GPIO port A bit 0
PA1
34
I/O
GPIO port A bit 1
PA2
35
I/O
GPIO port A bit 2
PA3
36
I/O
GPIO port A bit 3
PA4
37
I/O
GPIO port A bit 4
PA5
38
I/O
GPIO port A bit 5
PA6
40
I/O
GPIO port A bit 6
PA7
41
I/O
GPIO port A bit 7
PB0
95
I/O
GPIO port B bit 0
PB1
96
I/O
GPIO port B bit 1
PB2
91
I/O
GPIO port B bit 2
PB3
92
I/O
GPIO port B bit 3
PB4
121
I/O
GPIO port B bit 4
PB5
120
I/O
GPIO port B bit 5
PC0
100
I/O
GPIO port C bit 0
PC1
99
I/O
GPIO port C bit 1
PC2
98
I/O
GPIO port C bit 2
PC3
97
I/O
GPIO port C bit 3
PC4
25
I/O
GPIO port C bit 4
PC5
24
I/O
GPIO port C bit 5
PC6
23
I/O
GPIO port C bit 6
PC7
22
I/O
GPIO port C bit 7
Terminal Configuration and Functions
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP432E401Y
MSP432E401Y
www.ti.com
SLASEN5 – OCTOBER 2017
Table 4-3. Signal Descriptions (continued)
FUNCTION
GPIO, Port D
GPIO, Port E
GPIO, Port F
GPIO, Port G
GPIO, Port H
GPIO, Port J
GPIO, Port K
GPIO, Port L
PIN NO.
PIN TYPE
PD0
SIGNAL NAME
1
I/O
GPIO port D bit 0
DESCRIPTION
PD1
2
I/O
GPIO port D bit 1
PD2
3
I/O
GPIO port D bit 2
PD3
4
I/O
GPIO port D bit 3
PD4
125
I/O
GPIO port D bit 4
PD5
126
I/O
GPIO port D bit 5
PD6
127
I/O
GPIO port D bit 6
PD7
128
I/O
GPIO port D bit 7
PE0
15
I/O
GPIO port E bit 0
PE1
14
I/O
GPIO port E bit 1
PE2
13
I/O
GPIO port E bit 2
PE3
12
I/O
GPIO port E bit 3
PE4
123
I/O
GPIO port E bit 4
PE5
124
I/O
GPIO port E bit 5
PF0
42
I/O
GPIO port F bit 0
PF1
43
I/O
GPIO port F bit 1
PF2
44
I/O
GPIO port F bit 2
PF3
45
I/O
GPIO port F bit 3
PF4
46
I/O
GPIO port F bit 4
PG0
49
I/O
GPIO port G bit 0
PG1
50
I/O
GPIO port G bit 1
PH0
29
I/O
GPIO port H bit 0
PH1
30
I/O
GPIO port H bit 1
PH2
31
I/O
GPIO port H bit 2
PH3
32
I/O
GPIO port H bit 3
PJ0
116
I/O
GPIO port J bit 0
PJ1
117
I/O
GPIO port J bit 1
PK0
18
I/O
GPIO port K bit 0
PK1
19
I/O
GPIO port K bit 1
PK2
20
I/O
GPIO port K bit 2
PK3
21
I/O
GPIO port K bit 3
PK4
63
I/O
GPIO port K bit 4
PK5
62
I/O
GPIO port K bit 5
PK6
61
I/O
GPIO port K bit 6
PK7
60
I/O
GPIO port K bit 7
PL0
81
I/O
GPIO port L bit 0
PL1
82
I/O
GPIO port L bit 1
PL2
83
I/O
GPIO port L bit 2
PL3
84
I/O
GPIO port L bit 3
PL4
85
I/O
GPIO port L bit 4
PL5
86
I/O
GPIO port L bit 5
PL6
94
I/O
GPIO port L bit 6
PL7
93
I/O
GPIO port L bit 7
Terminal Configuration and Functions
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP432E401Y
23
MSP432E401Y
SLASEN5 – OCTOBER 2017
www.ti.com
Table 4-3. Signal Descriptions (continued)
FUNCTION
GPIO, Port M
GPIO, Port N
GPIO, Port P
GPIO, Port Q
PIN NO.
PIN TYPE
PM0
SIGNAL NAME
78
I/O
GPIO port M bit 0
PM1
77
I/O
GPIO port M bit 1
PM2
76
I/O
GPIO port M bit 2
PM3
75
I/O
GPIO port M bit 3
PM4
74
I/O
GPIO port M bit 4
PM5
73
I/O
GPIO port M bit 5
PM6
72
I/O
GPIO port M bit 6
PM7
71
I/O
GPIO port M bit 7
PN0
107
I/O
GPIO port N bit 0
PN1
108
I/O
GPIO port N bit 1
PN2
109
I/O
GPIO port N bit 2
PN3
110
I/O
GPIO port N bit 3
PN4
111
I/O
GPIO port N bit 4
PN5
112
I/O
GPIO port N bit 5
PP0
118
I/O
GPIO port P bit 0
PP1
119
I/O
GPIO port P bit 1
PP2
103
I/O
GPIO port P bit 2
PP3
104
I/O
GPIO port P bit 3
PP4
105
I/O
GPIO port P bit 4
PP5
106
I/O
GPIO port P bit 5
PQ0
5
I/O
GPIO port Q bit 0
PQ1
6
I/O
GPIO port Q bit 1
PQ2
11
I/O
GPIO port Q bit 2
PQ3
27
I/O
GPIO port Q bit 3
PQ4
102
I/O
GPIO port Q bit 4
HIB
65
O
An output that indicates the processor is in Hibernate mode
RTCCLK
24
60
104
O
Buffered version of the Hibernation module's 32.768-kHz
clock. This signal is not output when the part is in Hibernate
mode and before being configured after power-on reset.
TMPR0
71
I/O
Tamper signal 0
TMPR1
72
I/O
Tamper signal 1
TMPR2
73
I/O
Tamper signal 2
TMPR3
74
I/O
Tamper signal 3
VBAT
68
-
Power source for the Hibernation module. It is normally
connected to the positive terminal of a battery and serves as
the battery backup and Hibernation module power-source
supply.
WAKE
64
I
An external input that brings the processor out of Hibernate
mode when asserted
XOSC0
66
I
Hibernation module oscillator crystal input or an external
clock reference input. This is either a crystal or a 32.768kHz oscillator for the Hibernation module RTC.
XOSC1
67
O
Hibernation module oscillator crystal output. Leave
unconnected when using a single-ended clock source.
Hibernate
24
DESCRIPTION
Terminal Configuration and Functions
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP432E401Y
MSP432E401Y
www.ti.com
SLASEN5 – OCTOBER 2017
Table 4-3. Signal Descriptions (continued)
FUNCTION
I2C
JTAG, SWD, SWO
SIGNAL NAME
PIN NO.
PIN TYPE
DESCRIPTION
I2C0SCL
91
I/O
I2C module 0 clock. This signal has an active pullup. The
corresponding port pin should not be configured as open
drain.
I2C0SDA
92
I/O
I2C module 0 data
I2C1SCL
49
I/O
I2C module 1 clock. This signal has an active pullup. The
corresponding port pin should not be configured as open
drain.
I2C1SDA
50
I/O
I2C module 1 data
I2C2SCL
82
106
112
I/O
I2C module 2 clock. This signal has an active pullup. The
corresponding port pin should not be configured as open
drain.
I2C2SDA
81
111
I/O
I2C module 2 data
I2C3SCL
63
I/O
I2C module 3 clock. This signal has an active pullup. The
corresponding port pin should not be configured as open
drain.
I2C3SDA
62
I/O
I2C module 3 data
I2C4SCL
61
I/O
I2C module 4 clock. This signal has an active pullup. The
corresponding port pin should not be configured as open
drain.
I2C4SDA
60
I/O
I2C module 4 data
I2C5SCL
95
121
I/O
I2C module 5 clock. This signal has an active pullup. The
corresponding port pin should not be configured as open
drain.
I2C5SDA
96
120
I/O
I2C module 5 data
I2C6SCL
40
I/O
I2C module 6 clock. This signal has an active pullup. The
corresponding port pin should not be configured as open
drain.
I2C6SDA
41
I/O
I2C module 6 data
I2C7SCL
1
37
I/O
I2C module 7 clock. This signal has an active pullup. The
corresponding port pin should not be configured as open
drain.
I2C7SDA
2
38
I/O
I2C module 7 data
I2C8SCL
3
35
I/O
I2C module 8 clock. This signal has an active pullup. The
corresponding port pin should not be configured as open
drain.
I2C8SDA
4
36
I/O
I2C module 8 data
I2C9SCL
33
I/O
I2C module 9 clock. This signal has an active pullup. The
corresponding port pin should not be configured as open
drain
I2C9SDA
34
I/O
I2C module 9 data
TCK/SWCLK
100
I
JTAG/SWD clock
TDI
98
I
JTAG TDI
TDO/SWO
97
O
JTAG TDO and SWO
TMS/SWDIO
99
I
JTAG TMS and SWDIO
Terminal Configuration and Functions
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP432E401Y
25
MSP432E401Y
SLASEN5 – OCTOBER 2017
www.ti.com
Table 4-3. Signal Descriptions (continued)
FUNCTION
PWM
PIN NO.
PIN TYPE
M0FAULT0
SIGNAL NAME
46
I
Motion Control module 0 PWM fault 0
M0FAULT1
61
I
Motion Control module 0 PWM fault 1
M0FAULT2
60
I
Motion Control module 0 PWM fault 2
M0FAULT3
81
I
Motion Control module 0 PWM fault 3
M0PWM0
42
O
Motion Control module 0 PWM 0. This signal is controlled by
module 0 PWM generator 0.
M0PWM1
43
O
Motion Control module 0 PWM 1. This signal is controlled by
module 0 PWM generator 0.
M0PWM2
44
O
Motion Control module 0 PWM 2. This signal is controlled by
module 0 PWM generator 1.
M0PWM3
45
O
Motion Control module 0 PWM 3. This signal is controlled by
module 0 PWM generator 1.
M0PWM4
49
O
Motion Control module 0 PWM 4. This signal is controlled by
module 0 PWM generator 2.
M0PWM5
50
O
Motion Control module 0 PWM 5. This signal is controlled by
module 0 PWM generator 2.
M0PWM6
63
O
Motion Control module 0 PWM 6. This signal is controlled by
module 0 PWM generator 3.
M0PWM7
62
O
Motion Control module 0 PWM 7. This signal is controlled by
module 0 PWM generator 3.
GND
17
48
55
58
80
114
-
Ground reference for logic and I/O pins
GNDA
10
-
The ground reference for the analog circuits (ADC, Analog
Comparators, etc.). These are separated from GND to
minimize the electrical noise contained on VDD from
affecting the analog functions
VDD
7
16
26
28
39
47
51
52
69
79
90
101
113
122
-
Positive supply for I/O and some logic
-
The positive supply for the analog circuits (for example,
ADC and Analog Comparators). These are separated from
VDD to minimize the electrical noise contained on VDD from
affecting the analog functions. VDDA pins must be supplied
with a voltage that meets the specification in, regardless of
system implementation
Power
QEI
26
DESCRIPTION
VDDA
8
VDDC
87
115
-
Positive supply for most of the logic function, including the
processor core and most peripherals. The voltage on this
pin is 1.2 V and is supplied by the on-chip LDO. The VDDC
pins should only be connected to each other and an external
capacitor as specified in the LDO electrical specifications.
IDX0
84
I
QEI module 0 index
PhA0
82
I
QEI module 0 phase A
PhB0
83
I
QEI module 0 phase B
Terminal Configuration and Functions
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP432E401Y
MSP432E401Y
www.ti.com
SLASEN5 – OCTOBER 2017
Table 4-3. Signal Descriptions (continued)
FUNCTION
SSI
System Control and
Clocks
PIN NO.
PIN TYPE
SSI0Clk
SIGNAL NAME
35
I/O
SSI module 0 clock
DESCRIPTION
SSI0Fss
36
I/O
SSI module 0 frame signal
SSI0XDAT0
37
I/O
SSI module 0 bidirectional data pin 0 (SSI0TX in Legacy
SSI mode)
SSI0XDAT1
38
I/O
SSI module 0 bidirectional data pin 1 (SSI0RX in Legacy
SSI mode)
SSI0XDAT2
40
I/O
SSI module 0 bidirectional data pin 2
SSI0XDAT3
41
I/O
SSI module 0 bidirectional data pin 3
SSI1Clk
120
I/O
SSI module 1 clock
SSI1Fss
121
I/O
SSI module 1 frame signal
SSI1XDAT0
123
I/O
SSI module 1 bidirectional data pin 0 (SSI1TX in Legacy
SSI mode)
SSI1XDAT1
124
I/O
SSI module 1 bidirectional data pin 1 (SSI1RX in Legacy
SSI mode)
SSI1XDAT2
125
I/O
SSI module 1 bidirectional data pin 2
SSI1XDAT3
126
I/O
SSI module 1 bidirectional data pin 3
SSI2Clk
4
I/O
SSI module 2 clock
SSI2Fss
3
I/O
SSI module 2 frame signal
SSI2XDAT0
2
I/O
SSI module 2 bidirectional data pin 0 (SSI2TX in Legacy
SSI mode)
SSI2XDAT1
1
I/O
SSI module 2 bidirectional data pin 1 (SSI2RX in Legacy
SSI mode)
SSI2XDAT2
128
I/O
SSI module 2 bidirectional data pin 2
SSI2XDAT3
127
I/O
SSI module 2 bidirectional data pin 3
SSI3Clk
5
45
I/O
SSI module 3 clock
SSI3Fss
6
44
I/O
SSI module 3 frame signal
SSI3XDAT0
11
43
I/O
SSI module 3 bidirectional data pin 0 (SSI3TX in Legacy
SSI mode)
SSI3XDAT1
27
42
I/O
SSI module 3 bidirectional data pin 1 (SSI3RX in Legacy
SSI mode)
SSI3XDAT2
46
118
I/O
SSI module 3 bidirectional data pin 2
SSI3XDAT3
119
I/O
SSI module 3 bidirectional data pin 3
DIVSCLK
102
O
An optionally divided reference clock output based on a
selected clock source. This signal is not synchronized to the
system clock.
NMI
128
I
Nonmaskable interrupt
OSC0
88
I
Main oscillator crystal input or an external clock reference
input
OSC1
89
O
Main oscillator crystal output. Leave unconnected when
using a single-ended clock source.
RST
70
I
System reset input
Terminal Configuration and Functions
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP432E401Y
27
MSP432E401Y
SLASEN5 – OCTOBER 2017
www.ti.com
Table 4-3. Signal Descriptions (continued)
FUNCTION
SIGNAL NAME
PIN NO.
PIN TYPE
U0CTS
30
74
121
I
UART module 0 Clear To Send modem flow control input
signal
U0DCD
31
73
104
I
UART module 0 Data Carrier Detect modem status input
signal
U0DSR
32
72
105
I
UART module 0 Data Set Ready modem output control line
U0DTR
103
O
UART module 0 Data Terminal Ready modem status input
signal
U0RI
60
71
I
UART module 0 Ring Indicator modem status input signal
U0RTS
29
120
O
UART module 0 Request to Send modem flow control
output signal
U0Rx
33
I
UART module 0 receive
U0Tx
34
O
UART module 0 transmit
U1CTS
104
108
I
UART module 1 Clear To Send modem flow control input
signal
U1DCD
13
109
I
UART module 1 Data Carrier Detect modem status input
signal
U1DSR
14
110
I
UART module 1 Data Set Ready modem output control line
U1DTR
12
111
O
UART module 1 Data Terminal Ready modem status input
signal
U1RI
112
123
I
UART module 1 Ring Indicator modem status input signal
U1RTS
15
107
O
UART module 1 Request to Send modem flow control
output line
U1Rx
95
102
I
UART module 1 receive.
U1Tx
96
O
UART module 1 transmit
U2CTS
110
128
I
UART module 2 Clear To Send modem flow control input
signal
U2RTS
109
127
O
UART module 2 Request to Send modem flow control
output line
U2Rx
40
125
I
UART module 2 receive
U2Tx
41
126
O
UART module 2 transmit
U3CTS
106
112
I
UART module 3 Clear To Send modem flow control input
signal
U3RTS
105
111
O
UART module 3 Request to Send modem flow control
output line
U3Rx
37
116
I
UART module 3 receive
U3Tx
38
117
O
UART module 3 transmit
U4CTS
21
I
UART module 4 Clear To Send modem flow control input
signal
U4RTS
20
O
UART module 4 Request to Send modem flow control
output line
U4Rx
18
35
I
UART module 4 receive
U4Tx
19
36
O
UART module 4 transmit
UART Module 0
UART Module 1
UART Module 2
UART Module 3
UART Module 4
28
DESCRIPTION
Terminal Configuration and Functions
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP432E401Y
MSP432E401Y
www.ti.com
SLASEN5 – OCTOBER 2017
Table 4-3. Signal Descriptions (continued)
FUNCTION
UART Module 5
UART Module 6
UART Module 7
SIGNAL NAME
PIN NO.
PIN TYPE
23
I
UART module 5 receive
U5Tx
22
O
UART module 5 transmit
U6Rx
118
I
UART module 6 receive
U6Tx
119
O
UART module 6 transmit
U7Rx
25
I
UART module 7 receive
U7Tx
24
O
UART module 7 transmit
USB0CLK
92
O
60-MHz clock to the external PHY
USB0D0
81
I/O
USB data 0
USB0D1
82
I/O
USB data 1
USB0D2
83
I/O
USB data 2
USB0D3
84
I/O
USB data 3
USB0D4
85
I/O
USB data 4
USB0D5
86
I/O
USB data 5
USB0D6
106
I/O
USB data 6
USB0D7
105
I/O
USB data 7
USB0DIR
104
O
Indicates that the external PHY is able to accept data from
the USB controller
USB0DM
93
I/O
Bidirectional differential data pin (D– per USB specification)
for USB0
USB0DP
94
I/O
Bidirectional differential data pin (D+ per USB specification)
for USB0
USB0EPEN
40
41
127
O
Optionally used in Host mode to control an external power
source to supply power to the USB bus
U5Rx
USB
DESCRIPTION
USB0ID
95
I
This signal senses the state of the USB ID signal. The USB
PHY enables an integrated pull-up, and an external element
(USB connector) indicates the initial state of the USB
controller (pulled down is the A side of the cable and pulled
up is the B side).
USB0NXT
103
O
Asserted by the external PHY to throttle all data types
USB0PFLT
41
128
I
Optionally used in Host mode by an external power source
to indicate an error state by that power source
USB0STP
91
O
Asserted by the USB controller to signal the end of a USB
transmit packet or register write operation
USB0VBUS
96
I/O
This signal is used during the session request protocol. This
signal allows the USB PHY to both sense the voltage level
of VBUS, and pull up VBUS momentarily during VBUS
pulsing.
Terminal Configuration and Functions
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP432E401Y
29
MSP432E401Y
SLASEN5 – OCTOBER 2017
4.4
www.ti.com
GPIO Pin Multiplexing
Table 4-4 lists the GPIO pins and their analog and digital alternate functions. The AINx analog signals go through an isolation circuit before
reaching their circuitry. These signals are configured by clearing the corresponding DEN bit in the GPIO Digital Enable (GPIODEN) register and
setting the corresponding AMSEL bit in the GPIO Analog Mode Select (GPIOAMSEL) register. Other analog signals are 3.3-V tolerant and are
connected directly to their circuitry (C0-, C0+, C1 -, C1+, C2-, C2+, USB0VBUS, USB0ID). These signals are configured by clearing the DEN bit in
the GPIODEN register. The digital signals are enabled by setting the appropriate bit in the GPIO Alternate Function Select (GPIOAFSEL) and
GPIODEN registers and configuring the PMCx bit field in the GPIO Port Control (GPIOPCTL) register to the numeric encoding shown in Table 4-4.
Table 4-4. GPIO Pins and Alternate Functions
I/O
PIN
ANALOG
OR
SPECIAL
FUNCTION
DIGITAL FUNCTION (GPIOPCTL PMCx BIT FIELD ENCODING)
1
2
3
4
5
6
7
8
11
13
14
15
–
(1)
(1)
30
PA0
33
–
U0Rx
I2C9SCL
T0CCP0
–
–
–
CAN0Rx
–
–
–
–
PA1
34
–
U0Tx
I2C9SDA
T0CCP1
–
–
–
CAN0Tx
–
–
–
–
–
PA2
35
–
U4Rx
I2C8SCL
T1CCP0
–
–
–
–
–
–
–
–
SSI0Clk
PA3
36
–
U4Tx
I2C8SDA
T1CCP1
–
–
–
–
–
–
–
–
SSI0Fss
PA4
37
–
U3Rx
I2C7SCL
T2CCP0
–
–
–
–
–
–
–
–
SSI0XDAT0
PA5
38
–
U3Tx
I2C7SDA
T2CCP1
–
–
–
–
–
–
–
–
SSI0XDAT1
PA6
40
–
U2Rx
I2C6SCL
T3CCP0
–
USB0EPEN
–
–
–
–
SSI0XDAT2
–
EPI0S8
PA7
41
–
U2Tx
I2C6SDA
T3CCP1
–
USB0PFLT
–
–
–
USB0EPEN
SSI0XDAT3
–
EPI0S9
PB0
95
USB0ID
U1Rx
I2C5SCL
T4CCP0
–
–
–
CAN1Rx
–
–
–
–
–
PB1
96
USB0VBUS
U1Tx
I2C5SDA
T4CCP1
–
–
–
CAN1Tx
–
–
–
–
–
PB2
91
–
–
I2C0SCL
T5CCP0
–
–
–
–
–
–
–
USB0STP
EPI0S27
PB3
92
–
–
I2C0SDA
T5CCP1
–
–
–
–
–
–
–
USB0CLK
EPI0S28
PB4
121
AIN10
U0CTS
I2C5SCL
–
–
–
–
–
–
–
–
–
SSI1Fss
PB5
120
AIN11
U0RTS
I2C5SDA
–
–
–
–
–
–
–
–
–
SSI1Clk
PC0
100
–
TCK SWCLK
–
–
–
–
–
–
–
–
–
–
–
PC1
99
–
TMS SWDIO
–
–
–
–
–
–
–
–
–
–
–
PC2
98
–
TDI
–
–
–
–
–
–
–
–
–
–
–
PC3
97
–
TDO SWO
–
–
–
–
–
–
–
–
–
–
–
PC4
25
C1-
U7Rx
–
–
–
–
–
–
–
–
–
–
EPI0S7
PC5
24
C1+
U7Tx
–
–
–
–
–
RTCCLK
–
–
–
–
EPI0S6
PC6
23
C0+
U5Rx
–
–
–
–
–
–
–
–
–
–
EPI0S5
PC7
22
C0-
U5Tx
–
–
–
–
–
–
–
–
–
–
EPI0S4
PD0
1
AIN15
–
I2C7SCL
T0CCP0
–
C0o
–
–
–
–
–
–
SSI2XDAT1
PD1
2
AIN14
–
I2C7SDA
T0CCP1
–
C1o
–
–
–
–
–
–
SSI2XDAT0
The TMPRn signals are digital signals enabled and configured by the Hibernation module. All other signals listed in this column are analog signals.
Terminal Configuration and Functions
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP432E401Y
MSP432E401Y
www.ti.com
SLASEN5 – OCTOBER 2017
Table 4-4. GPIO Pins and Alternate Functions (continued)
I/O
PIN
ANALOG
OR
SPECIAL
FUNCTION
DIGITAL FUNCTION (GPIOPCTL PMCx BIT FIELD ENCODING)
1
2
3
4
5
6
7
8
11
13
14
15
SSI2Fss
(1)
PD2
3
AIN13
–
I2C8SCL
T1CCP0
–
C2o
–
–
–
–
–
–
PD3
4
AIN12
–
I2C8SDA
T1CCP1
–
–
–
–
–
–
–
–
SSI2Clk
PD4
125
AIN7
U2Rx
–
T3CCP0
–
–
–
–
–
–
–
–
SSI1XDAT2
PD5
126
AIN6
U2Tx
–
T3CCP1
–
–
–
–
–
–
–
–
SSI1XDAT3
PD6
127
AIN5
U2RTS
–
T4CCP0
–
USB0EPEN
–
–
–
–
–
–
SSI2XDAT3
PD7
128
AIN4
U2CTS
–
T4CCP1
–
USB0PFLT
–
–
NMI
–
–
–
SSI2XDAT2
PE0
15
AIN3
U1RTS
–
–
–
–
–
–
–
–
–
–
–
PE1
14
AIN2
U1DSR
–
–
–
–
–
–
–
–
–
–
–
PE2
13
AIN1
U1DCD
–
–
–
–
–
–
–
–
–
–
–
PE3
12
AIN0
U1DTR
–
–
–
–
–
–
–
–
–
–
–
PE4
123
AIN9
U1RI
–
–
–
–
–
–
–
–
–
–
SSI1XDAT0
PE5
124
AIN8
–
–
–
–
–
–
–
–
–
–
–
SSI1XDAT1
PF0
42
–
–
–
–
–
EN0LED0
M0PWM0
–
–
–
–
SSI3XDAT1
TRD2
PF1
43
–
–
–
–
–
EN0LED2
M0PWM1
–
–
–
–
SSI3XDAT0
TRD1
PF2
44
–
–
–
–
–
–
M0PWM2
–
–
–
–
SSI3Fss
TRD0
PF3
45
–
–
–
–
–
–
M0PWM3
–
–
–
–
SSI3Clk
TRCLK
PF4
46
–
–
–
–
–
EN0LED1
M0FAULT0
–
–
–
–
SSI3XDAT2
TRD3
PG0
49
–
–
I2C1SCL
–
–
EN0PPS
M0PWM4
–
–
–
–
–
EPI0S11
PG1
50
–
–
I2C1SDA
–
–
–
M0PWM5
–
–
–
–
–
EPI0S10
PH0
29
–
U0RTS
–
–
–
–
–
–
–
–
–
–
EPI0S0
PH1
30
–
U0CTS
–
–
–
–
–
–
–
–
–
–
EPI0S1
PH2
31
–
U0DCD
–
–
–
–
–
–
–
–
–
–
EPI0S2
PH3
32
–
U0DSR
–
–
–
–
–
–
–
–
–
–
EPI0S3
PJ0
116
–
U3Rx
–
–
–
EN0PPS
–
–
–
–
–
–
–
PJ1
117
–
U3Tx
–
–
–
–
–
–
–
–
–
–
–
PK0
18
AIN16
U4Rx
–
–
–
–
–
–
–
–
–
–
EPI0S0
PK1
19
AIN17
U4Tx
–
–
–
–
–
–
–
–
–
–
EPI0S1
PK2
20
AIN18
U4RTS
–
–
–
–
–
–
–
–
–
–
EPI0S2
PK3
21
AIN19
U4CTS
–
–
–
–
–
–
–
–
–
–
EPI0S3
PK4
63
–
–
I2C3SCL
–
–
EN0LED0
M0PWM6
–
–
–
–
–
EPI0S32
PK5
62
–
–
I2C3SDA
–
–
EN0LED2
M0PWM7
–
–
–
–
–
EPI0S31
PK6
61
–
–
I2C4SCL
–
–
EN0LED1
M0FAULT1
–
–
–
–
–
EPI0S25
PK7
60
–
U0RI
I2C4SDA
–
–
RTCCLK
M0FAULT2
–
–
–
–
–
EPI0S24
PL0
81
–
–
I2C2SDA
–
–
–
M0FAULT3
–
–
–
–
USB0D0
EPI0S16
Terminal Configuration and Functions
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP432E401Y
31
MSP432E401Y
SLASEN5 – OCTOBER 2017
www.ti.com
Table 4-4. GPIO Pins and Alternate Functions (continued)
I/O
PIN
ANALOG
OR
SPECIAL
FUNCTION
DIGITAL FUNCTION (GPIOPCTL PMCx BIT FIELD ENCODING)
1
2
3
4
5
6
7
8
11
13
14
15
(1)
32
PL1
82
–
–
I2C2SCL
–
–
–
PhA0
–
–
–
–
USB0D1
EPI0S17
PL2
83
–
–
–
–
–
C0o
PhB0
–
–
–
–
USB0D2
EPI0S18
PL3
84
–
–
–
–
–
C1o
IDX0
–
–
–
–
USB0D3
EPI0S19
PL4
85
–
–
–
T0CCP0
–
–
–
–
–
–
–
USB0D4
EPI0S26
PL5
86
–
–
–
T0CCP1
–
–
–
–
–
–
–
USB0D5
EPI0S33
PL6
94
USB0DP
–
–
T1CCP0
–
–
–
–
–
–
–
–
–
PL7
93
USB0DM
–
–
T1CCP1
–
–
–
–
–
–
–
–
–
PM0
78
–
–
–
T2CCP0
–
–
–
–
–
–
–
–
EPI0S15
PM1
77
–
–
–
T2CCP1
–
–
–
–
–
–
–
–
EPI0S14
PM2
76
–
–
–
T3CCP0
–
–
–
–
–
–
–
–
EPI0S13
PM3
75
–
–
–
T3CCP1
–
–
–
–
–
–
–
–
EPI0S12
PM4
74
TMPR3
U0CTS
–
T4CCP0
–
–
–
–
–
–
–
–
–
PM5
73
TMPR2
U0DCD
–
T4CCP1
–
–
–
–
–
–
–
–
–
PM6
72
TMPR1
U0DSR
–
T5CCP0
–
–
–
–
–
–
–
–
–
PM7
71
TMPR0
U0RI
–
T5CCP1
–
–
–
–
–
–
–
–
–
PN0
107
–
U1RTS
–
–
–
–
–
–
–
–
–
–
–
PN1
108
–
U1CTS
–
–
–
–
–
–
–
–
–
–
–
PN2
109
–
U1DCD
U2RTS
–
–
–
–
–
–
–
–
–
EPI0S29
PN3
110
–
U1DSR
U2CTS
–
–
–
–
–
–
–
–
–
EPI0S30
PN4
111
–
U1DTR
U3RTS
I2C2SDA
–
–
–
–
–
–
–
–
EPI0S34
PN5
112
–
U1RI
U3CTS
I2C2SCL
–
–
–
–
–
–
–
–
EPI0S35
PP0
118
C2+
U6Rx
–
–
–
–
–
–
–
–
–
–
SSI3XDAT2
PP1
119
C2-
U6Tx
–
–
–
–
–
–
–
–
–
–
SSI3XDAT3
PP2
103
–
U0DTR
–
–
–
–
–
–
–
–
–
USB0NXT
EPI0S29
PP3
104
–
U1CTS
U0DCD
–
–
–
–
RTCCLK
–
–
–
USB0DIR
EPI0S30
PP4
105
–
U3RTS
U0DSR
–
–
–
–
–
–
–
–
USB0D7
–
PP5
106
–
U3CTS
I2C2SCL
–
–
–
–
–
–
–
–
USB0D6
–
PQ0
5
–
–
–
–
–
–
–
–
–
–
–
SSI3Clk
EPI0S20
PQ1
6
–
–
–
–
–
–
–
–
–
–
–
SSI3Fss
EPI0S21
PQ2
11
–
–
–
–
–
–
–
–
–
–
–
SSI3XDAT0
EPI0S22
PQ3
27
–
–
–
–
–
–
–
–
–
–
–
SSI3XDAT1
EPI0S23
PQ4
102
–
U1Rx
–
–
–
–
–
DIVSCLK
–
–
–
–
–
Terminal Configuration and Functions
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP432E401Y
MSP432E401Y
www.ti.com
4.5
SLASEN5 – OCTOBER 2017
Buffer Type
Table 4-5 describes the buffer types that are referenced in Section 4.2.
Table 4-5. Buffer Type
BUFFER TYPE
(STANDARD)
Analog (1)
NOMINAL
VOLTAGE
HYSTERESIS
PU OR PD
NOMINAL
PU OR PD
STRENGTH
(µA)
OUTPUT
DRIVE
STRENGTH
(mA)
3.3 V
N
N/A
N/A
N/A
See
Input/Output
Programmable
Pin
Characteristics
.
See analog modules in
Section 5 for details.
See Typical
Characteristics.
LVCMOS
3.3 V
Y (2)
Power (VDD) (3)
3.3 V
N
N/A
N/A
N/A
Power (VDDA) (3)
3.3 V
N
N/A
N/A
N/A
Power (GND and
GNDA) (3)
0V
N
N/A
N/A
N/A
(1)
(2)
(3)
OTHER
CHARACTERISTICS
This is a switch, not a buffer.
Only for input pins
This is supply input, not a buffer.
4.6
Connections for Unused Pins
Table 4-6 lists the recommended connections for unused pins.
Table 4-6 lists two options: an acceptable practice and a preferred practice for reduced power
consumption and improved EMC characteristics. If a module is not used in a system, and its inputs are
grounded, it is important that the clock to the module is never enabled by setting the corresponding bit in
the RCGCx register.
Table 4-6. Connections for Unused Pins
PIN NUMBER
ACCEPTABLE
PRACTICE
PREFERRED
PRACTICE
VREFA+
9
VDDA
VDDA
EN0RXIN
53
NC
NC
EN0RXIP
54
NC
NC
EN0TXON
56
NC
NC
EN0TXOP
57
NC
NC
RBIAS
59
Connect to ground
through 4.87-kΩ
resistor.
Connect to ground
through 4.87-kΩ
resistor.
PA1 (U0Tx)
34
NC
GND (1)
PA4 (SSI0XDAT0)
37
NC
GND (2)
NC
GND
FUNCTION
ADC
Ethernet
GPIO
SIGNAL NAME
All unused GPIOs
Hibernate
HIB
65
NC
NC
VBAT
68
NC
VDD
WAKE
64
NC
GND
XOSC0
66
NC
GND
NC
NC
XOSC1
(1)
(2)
67
PA1 (U0Tx) may be enabled as an output by the ROM bootloader if no code is present in the flash and PA0 (U0Rx) receives a valid
boot signature. Ensure that this condition will not occur if PA1 is to be connected directly to GND.
PA4 (SSI0XDAT0) may be enabled as an output by the ROM bootloader if no code is present in the flash and the SSI0x (PA2, PA3,
PA5) receives a valid boot signature. Ensure that this condition will not occur if PA4 is to be connected directly to GND.
Terminal Configuration and Functions
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP432E401Y
33
MSP432E401Y
SLASEN5 – OCTOBER 2017
www.ti.com
Table 4-6. Connections for Unused Pins (continued)
FUNCTION
System Control
SIGNAL NAME
PIN NUMBER
ACCEPTABLE
PRACTICE
PREFERRED
PRACTICE
OSC0
88
NC
GND
OSC1
89
NC
NC
RST
70
VDD
Pull up to VDD with 0 to
100-kΩ resistor. (3)
USB0DM / PL7
93
NC
Pull down to GND with
1-kΩ resistor. (4)
USB0DP / PL6
94
NC
Pull down to GND with
1-kΩ resistor. (4)
USB
(3)
(4)
34
For details, see the System Control chapter of the SimpleLink™ MSP432E4 Microcontrollers Technical Reference Manual
The ROM bootloader may configure these pins as USB pins if no code is present in the flash. Therefore, they should not be connected
directly to ground.
Terminal Configuration and Functions
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP432E401Y
MSP432E401Y
www.ti.com
SLASEN5 – OCTOBER 2017
5 Specifications
5.1
Absolute Maximum Ratings
over operating free-air temperature range (unless otherwise noted)
(1) (2)
MIN
MAX
VDD
VDD supply voltage
0
4
V
VDDA
VDDA supply voltage
0
4
V
VBAT
VBAT battery supply voltage
0
4
VBATRMP
VBAT battery supply voltage ramp time
0
0.7
VIN_GPIO
Input voltage
–0.3
4
V
IGPIOMAX
Maximum current per output pin
64
mA
TS
Unpowered storage temperature range
–65
150
°C
TJMAX
Maximum junction temperature
125
°C
(1)
(2)
(3)
(3)
UNIT
V
V/µs
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
Voltages are measured with respect to GND.
Applies to static and dynamic signals including overshoot.
5.2
ESD Ratings
over operating free-air temperature range (unless otherwise noted)
VALUE
V(ESD)
(1)
(2)
(3)
Electrostatic discharge
Human-body model (HBM), per ANSI/ESDA/JEDEC JS‑001
(1) (2)
UNIT
±2000
Charged-device model (CDM), per JEDEC specification JESD22‑C101
(3)
V
±500
JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Pins listed as
±2000 V may actually have higher performance.
All pins are HBM compliant to ±2000 V for all combinations as per JESD22-A114F, except for the following stress combinations:
• The Ethernet EN0RXIN, EN0TXON, EN0RXIP, and EN0TXOP pins to each other.
• The GPIO pins PM4, PM5, PM6, and PM7 to other pins.
These exceptions are compliant to 500 V and do not require any special handling beyond typical ESD control procedures during
assembly operations per JEDEC publication JEP155. These pins do meet the 500-V CDM specification.
JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Pins listed as ±500 V
may actually have higher performance.
5.3
Recommended Operating Conditions
over operating free-air temperature range (unless otherwise noted)
MIN
MAX
UNIT
TA
Ambient operating temperature range
Extended temperature
–40
105
°C
TJ
Junction operating temperature range
Extended temperature
–40
125
°C
5.4
Recommended DC Operating Conditions
over operating free-air temperature (unless otherwise noted)
MIN
NOM
MAX
UNIT
2.97
3.3
3.63
V
2.97
3.3
3.63
V
VDDC supply voltage, run mode
1.14
1.2
1.32
V
VDDC supply voltage, deep-sleep mode
0.85
0.95
V
VDD
VDD supply voltage
VDDA
VDDA supply voltage
VDDC
VDDCDS
(1)
5.5
(1)
To ensure proper operation, power on VDDA before VDD if sourced from different supplies, or connect VDDA to the same supply as VDD.
No restriction exists for powering off.
Recommended GPIO Operating Characteristics
The following sections describe the recommended GPIO operating characteristics for the device.
Two types of pads are provided on the device:
Specifications
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP432E401Y
35
MSP432E401Y
SLASEN5 – OCTOBER 2017
•
•
www.ti.com
Fast GPIO pads: These pads provide variable, programmable drive strength and optimized voltage
output levels.
Slow GPIO pads: These pads provide 2-mA drive strength and are designed to be sensitive to voltage
inputs. The PJ1 GPIOs port pins are slow GPIO pads. All other GPIOs have a fast GPIO pad type.
NOTE
Port pins PL6 and PL7 operate as fast GPIO pads, but have 4-mA drive capability only.
GPIO register controls for drive strength, slew rate and open drain have no effect on these
pins. The registers which have no effect are as follows: GPIODR2R, GPIODR4R,
GPIODR8R, GPIODR12R, GPIOSLR, and GPIOODR.
NOTE
Port pins PM[7:4] operate as fast GPIO pads but support only 2-, 4-, 6-, and 8-mA drive
capability. 10- and 12-mA drive are not supported. All standard GPIO register controls,
except for the GPIODR12R register, apply to these port pins.
5.6
Recommended Fast GPIO Pad Operating Conditions
over operating free-air temperature range (unless otherwise noted)
MIN
NOM
MAX
UNIT
0.65 ×
VDD
4
V
0
VIH
Fast GPIO high-level input voltage
IIH
Fast GPIO high-level input current
300
nA
VIL
Fast GPIO low-level input voltage
0.35 ×
VDD
V
IIL
Fast GPIO low-level input current
–200
nA
VHYS
Fast GPIO input hysteresis
VOH
Fast GPIO high-level output voltage
VOL
Fast GPIO low-level output voltage
IOH
IOL
(1)
(2)
5.7
(1)
0.49
V
2.4
V
0.40
Fast GPIO high-level source current, VOH = 2.4 V
Fast GPIO low-level sink current, VOL = 0.4 V
(2)
(2)
2-mA drive
2.0
4-mA drive
4.0
8-mA drive
8.0
10-mA drive
10.0
12-mA drive
12.0
2-mA drive
2.0
4-mA drive
4.0
8-mA drive
8.0
10-mA drive
10.0
12-mA drive
12.0
12-mA drive
overdriven to
18 mA
18.0
V
mA
mA
Output, pullup, and pulldown are disabled; only input is enabled.
IO specifications reflect the maximum current where the corresponding output voltage meets the VOH or VOL thresholds. IO current can
exceed these limits (subject to absolute maximum ratings).
Recommended Slow GPIO Pad Operating Conditions
over operating free-air temperature range (unless otherwise noted)
MIN
VIH
Slow GPIO high-level input voltage
IIH
Slow GPIO high-level input current
36
0.65 ×
VDD
Specifications
NOM
MAX
UNIT
4
V
4.1
nA
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP432E401Y
MSP432E401Y
www.ti.com
SLASEN5 – OCTOBER 2017
Recommended Slow GPIO Pad Operating Conditions (continued)
over operating free-air temperature range (unless otherwise noted)
MIN
VIL
Slow GPIO low-level input voltage
IIL
Slow GPIO low-level input current
VHYS
Slow GPIO input hysteresis
VOH
Slow GPIO high-level output voltage
VOL
Slow GPIO low-level output voltage
IOH
Slow GPIO high-level source current, VOH = 2.4 V, 2-mA drive
IOL
Slow GPIO low-level sink current, VOL = 0.4 V
(1)
(2)
NOM
0
(1)
MAX
V
–1
nA
0.49
V
2.4
V
0.4
(2)
, 2-mA drive
UNIT
0.35 ×
VDD
V
2.0
mA
2.0
mA
Output, pullup, and pulldown are disabled; only input is enabled.
IO specifications reflect the maximum current where the corresponding output voltage meets the VOH or VOL thresholds. IO current can
exceed these limits (subject to absolute maximum ratings).
5.8
GPIO Current Restrictions
over operating free-air temperature range (unless otherwise noted)
(1)
MIN
IMAXL
Cumulative maximum GPIO current per side, left
IMAXB
Cumulative maximum GPIO current per side, bottom
IMAXR
Cumulative maximum GPIO current per side, right
IMAXT
Cumulative maximum GPIO current per side, top
(1)
(2)
(2)
(2)
(2)
NOM
MAX
UNIT
112
mA
97.6
mA
112
mA
80
mA
Based on design simulations, not tested in production.
Sum of sink and source current for GPIOs as listed in Table 5-1.
Table 5-1. Maximum GPIO Package Side Assignments
SIDE
GPIOs
Left
PC[4-7], PD[0-3], PQ[0-3], PE[0-3], PK[0-3], PN[4-5], PH[0-3]
Bottom
PA[0-7], PF[0-4],PG[0-1], PK[4-7]
Right
PM[0-7], PL[0-7], PB[0-3]
Top
PC[0-3], PQ[4], PP[0-5], PN[0-5], PJ[0-1], PB[4-5], PE[4-5], PD[4-7]
5.9
I/O Reliability
For typical continuous drive applications, I/O pins configured in the range from 2 mA to 12 mA and
operating at –40°C to 85°C meet the standard 10-year lifetime reliability. If a continuous current sink of 18
mA is required, then operation is limited to 0 to 75°C to meet the standard 10-year reliability.
At 105°C, I/O pins configured for continuous drive meet the standard 2.5-year lifetime reliability.
In typical switching applications (40% switch rate) operating at –40°C to 85°C, all I/O configurations except
2 mA meet the standard 10-year lifetime reliability with 50-pF loading. By limiting the capacitive loading to
20 pF for an I/O configured to 2 mA, the 10-year lifetime reliability can be met at –40°C to 85°C.
In typical switching applications (40% switch rate) operating at 105°C, all I/O configurations except 2 mA
meet the standard 2.5-year lifetime reliability. By reducing the capacitive loading to 20 pF with a typical
switching rate at 105°C, a 2-mA I/O configuration meets a 2.5-year lifetime reliability.
Specifications
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP432E401Y
37
MSP432E401Y
SLASEN5 – OCTOBER 2017
www.ti.com
5.10 Current Consumption
over operating free-air temperature (unless otherwise noted)
(1)
SYSTEM CLOCK
PARAMETER
TEST CONDITIONS
VDD = 3.3 V,
VDDA = 3.3 V,
Peripherals = All on
including MAC and PHY
VDD = 3.3 V,
VDDA = 3.3 V,
Peripherals = All on
including MAC but not
PHY
Run mode
(flash loop)
VDD = 3.3 V,
VDDA = 3.3 V,
Peripherals = All on
except MAC and PHY
VDD = 3.3 V,
VDDA = 3.3 V,
Peripherals = All off
IDD_RUN
VDD = 3.3 V,
VDDA = 3.3 V,
Peripherals = All on
including MAC and PHY
VDD = 3.3 V,
VDDA = 3.3 V,
Peripherals = All on
including MAC but not
PHY
Run mode
(SRAM loop)
VDD = 3.3 V,
VDDA = 3.3 V,
Peripherals =All on
except MAC and PHY
VDD = 3.3 V,
VDDA = 3.3 V,
Peripherals = All off
(1)
(2)
38
TYP
MAX
FREQ
CLOCK
SOURCE
–40°C
25°C
85°C
105°C
85°C
105°C
120 MHz
MOSC with
PLL
96.4
105.3
107.2
108.7
129.9
140.0
60 MHz
MOSC with
PLL
67.4
76.6
78.6
79.9
100.3
112.5
16 MHz
PIOSC
11.9
24.4
25.5
26.7
45.0
56.4
1 MHz
PIOSC
5.75
10.9
12.1
13.3
31.3
42.6
120 MHz
MOSC with
PLL
69.9
77.8
79.6
80.8
98.8
108.4
60 MHz
MOSC with
PLL
40.9
49.2
50.9
52.1
69.2
80.8
16 MHz
PIOSC
11.3
23.6
25.0
26.2
43.1
54.3
1 MHz
PIOSC
5.10
10.1
11.5
12.7
29.3
40.5
120 MHz
MOSC with
PLL
68.1
76.0
77.6
78.6
96.6
106.0
60 MHz
MOSC with
PLL
40.0
48.2
49.8
50.8
67.9
79.2
16 MHz
PIOSC
11.1
23.3
24.6
25.6
42.5
53.3
1 MHz
PIOSC
5.07
10.1
11.3
12.3
29.0
39.8
120 MHz
MOSC with
PLL
35.2
39.1
40.4
41.5
55.8
65.3
60 MHz
MOSC with
PLL
23.2
29.4
30.7
31.7
45.8
55.5
16 MHz
PIOSC
7.38
17.9
19.0
20.0
34.5
44.1
1 MHz
PIOSC
4.12
9.13
10.3
11.4
25.7
35.5
120 MHz
MOSC with
PLL
93.8
103.6
111.6
113.2
133.4
144.6
60 MHz
MOSC with
PLL
66.9
76.7
78.7
80.0
100.0
111.9
16 MHz
PIOSC
12.6
19.0
20.1
21.3
39.1
50.3
1 MHz
PIOSC
5.73
10.6
11.7
12.8
30.9
42.2
120 MHz
MOSC with
PLL
67.2
76.1
84.0
85.4
102.3
113.0
60 MHz
MOSC with
PLL
40.3
49.2
50.9
52.2
68.9
80.2
16 MHz
PIOSC
11.9
18.2
19.6
20.8
37.2
48.2
1 MHz
PIOSC
5.08
9.79
11.2
12.3
28.9
40.1
120 MHz
MOSC with
PLL
65.4
74.3
82.0
83.2
100.1
110.6
60 MHz
MOSC with
PLL
39.4
48.2
49.8
50.9
67.6
78.6
16 MHz
PIOSC
11.7
17.9
19.2
20.2
36.6
47.2
1 MHz
PIOSC
5.05
9.75
11.0
11.9
28.6
39.4
120 MHz
MOSC with
PLL
35.4
43.3
44.7
45.8
59.8
69.0
60 MHz
MOSC with
PLL
23.4
29.4
30.7
31.7
45.5
54.9
16 MHz
PIOSC
7.08
12.4
13.6
14.6
28.7
38.0
1 MHz
PIOSC
4.60
8.78
10.0
11.0
25.3
34.9
UNIT
(2)
mA
Section 5.11 lists the current consumption that specific peripherals contribute to the run mode current consumption in Section 5.10. If
these peripherals are not powered, then the peripheral current consumption can be subtracted from the run mode consumption in
Section 5.10.
Applicable to extended temperature devices only.
Specifications
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP432E401Y
MSP432E401Y
www.ti.com
SLASEN5 – OCTOBER 2017
Current Consumption (continued)
over operating free-air temperature (unless otherwise noted)
(1)
SYSTEM CLOCK
PARAMETER
TEST CONDITIONS
VDD = 3.3 V,
VDDA = 3.3 V,
Peripherals = All on
including MAC and PHY,
LDO = 1.2 V
Sleep mode
(FLASHPM =
0x0)
VDD = 3.3 V,
VDDA = 3.3 V,
Peripherals = All on
except MAC and PHY,
LDO = 1.2 V
VDD = 3.3 V,
VDDA = 3.3 V,
Peripherals = All off,
LDO = 1.2 V
IDD_SLEEP
VDD = 3.3 V,
VDDA = 3.3 V,
Peripherals = All on
including MAC and PHY,
LDO = 1.2 V
Sleep mode
(FLASHPM =
0x2)
VDD = 3.3 V,
VDDA = 3.3 V,
Peripherals = All on
including MAC but not
PHY,
LDO = 1.2 V
VDD = 3.3 V,
VDDA = 3.3 V,
Peripherals = All on
except MAC and PHY,
LDO = 1.2 V
VDD = 3.3 V,
VDDA = 3.3 V,
Peripherals = All off,
LDO = 1.2 V
(3)
MAX
FREQ
–40°C
25°C
85°C
105°C
85°C
120 MHz
MOSC with
PLL
82.8
94.8
96.8
98.1
117.9
129.1
60 MHz
MOSC with
PLL
60.8
69.2
71.2
72.3
91.8
102.9
PIOSC
11.2
16.8
18.1
19.1
35.4
45.9
5.10
10.3
11.5
12.6
28.9
39.6
120 MHz
MOSC with
PLL
56.2
67.4
69.1
70.3
87.1
97.8
60 MHz
MOSC with
PLL
16 MHz
1 MHz
VDD = 3.3 V,
VDDA = 3.3 V,
Peripherals = All on
including MAC but not
PHY,
LDO = 1.2 V
TYP
CLOCK
SOURCE
PIOSC
(3)
105°C
34.4
41.9
43.4
44.5
60.7
71.6
10.6
16.2
17.5
18.5
34.5
45.1
4.47
9.60
10.9
12.0
28.0
38.7
120 MHz
MOSC with
PLL
54.4
65.6
67.1
68.1
84.9
95.4
60 MHz
MOSC with
PLL
16 MHz
PIOSC
(3)
1 MHz
PIOSC
(3)
33.5
40.9
42.3
43.2
59.4
70.0
10.4
15.9
17.1
17.9
33.9
44.1
4.44
9.56
10.7
11.6
27.7
38.0
120 MHz
MOSC with
PLL
22.0
28.6
29.8
30.7
44.1
53.1
60 MHz
MOSC with
PLL
16.3
22.0
23.2
24.1
37.5
46.6
16 MHz
PIOSC
(3)
1 MHz
PIOSC
(3)
16 MHz
PIOSC
(3)
5.37
10.4
11.5
12.4
26.1
35.1
1 MHz
PIOSC
(3)
4.37
8.60
9.71
10.6
24.6
33.9
120 MHz
MOSC with
PLL
86.5
89.0
91.2
92.5
112.1
123.5
60 MHz
MOSC with
PLL
61.6
63.4
65.6
66.7
86.0
97.2
16 MHz
PIOSC
(3)
10.4
11.1
12.4
13.5
29.8
40.4
1 MHz
PIOSC
(3)
4.45
4.49
5.83
6.98
23.4
34.2
120 MHz
MOSC with
PLL
59.9
61.7
63.4
64.7
81.3
92.1
60 MHz
MOSC with
PLL
35.1
36.1
37.8
38.9
54.9
66.0
9.75
10.4
11.8
12.9
28.9
39.6
3.82
3.82
5.25
6.38
22.5
33.4
120 MHz
MOSC with
PLL
58.1
59.9
61.4
62.5
79.1
89.7
60 MHz
MOSC with
PLL
16 MHz
PIOSC
(3)
1 MHz
PIOSC
(3)
34.2
35.1
36.7
37.6
53.6
64.4
9.50
10.1
11.4
12.3
28.3
38.6
3.79
3.78
5.06
5.96
22.2
32.7
120 MHz
MOSC with
PLL
22.0
22.8
24.1
25.1
38.2
47.4
60 MHz
MOSC with
PLL
16 MHz
PIOSC
(3)
1 MHz
PIOSC
(3)
16 MHz
PIOSC
(3)
1 MHz
PIOSC
(3)
UNIT
(2)
15.7
16.2
17.5
18.5
31.7
40.9
4.50
4.60
5.80
6.80
20.5
29.8
3.00
2.80
4.10
5.20
19.1
28.7
mA
If the MOSC is the source of the run-mode system clock and is powered down in sleep mode, wake time is increased by tMOSC_SETTLE.
Specifications
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP432E401Y
39
MSP432E401Y
SLASEN5 – OCTOBER 2017
www.ti.com
Current Consumption (continued)
over operating free-air temperature (unless otherwise noted)
(1)
SYSTEM CLOCK
PARAMETER
IDD_DEEPSLEEP
Deep-sleep
mode
(FLASHPM =
0x2)
All run modes
TEST CONDITIONS
IDDA_DEEPSLEEP
Deep-sleep
mode
(FLASHPM =
0x2)
MAX
FREQ
–40°C
25°C
85°C
105°C
85°C
VDD = 3.3 V,
VDDA = 3.3 V,
Peripherals = All on,
LDO = 1.2 V
16 MHz
PIOSC
9.74
9.78
10.8
11.6
24.1
32.1
30 kHz
LFIOSC
2.60
2.83
3.83
4.60
17.1
25.3
VDD = 3.3 V,
VDDA = 3.3 V,
Peripherals = All off,
LDO = 1.2 V
16 MHz
PIOSC
4.53
4.05
4.88
5.53
15.9
22.7
30 kHz
LFIOSC
0.614
0.762
1.69
2.46
13.3
20.7
VDD = 3.3 V,
VDDA = 3.3 V,
Peripherals = All on,
LDO = 0.9 V
16 MHz
PIOSC
5.21
7.33
7.97
8.48
15.3
20.1
30 kHz
LFIOSC
2.02
2.16
2.79
3.29
10.0
14.9
VDD = 3.3 V,
VDDA = 3.3 V,
Peripherals = All off,
LDO = 0.9 V (4)
16 MHz
PIOSC
1.08
3.10
3.61
4.01
9.50
13.4
30 kHz
LFIOSC
0.367
0.454
0.954
1.36
6.86
10.8
120 MHz
MOSC with
PLL
2.61
2.66
2.68
2.66
3.03
3.35
60 MHz
MOSC with
PLL
2.61
2.66
2.68
2.66
3.04
3.10
16 MHz
PIOSC
2.45
2.49
2.50
2.48
2.85
2.95
1 MHz
PIOSC
2.45
2.48
2.50
2.48
2.84
2.90
120 MHz
MOSC with
PLL
0.227
0.229
0.270
0.250
0.559
0.650
60 MHz
MOSC with
PLL
0.229
0.232
0.267
0.250
0.579
0.600
16 MHz
PIOSC
0.228
0.229
0.265
0.251
0.545
0.575
1 MHz
PIOSC
0.227
0.227
0.267
0.247
0.549
0.555
VDD = 3.3 V,
VDDA = 3.3 V,
Peripherals = All on,
LDO = 1.2 V
16 MHz
PIOSC
2.45
2.48
2.50
2.48
2.84
2.90
30 kHz
LFIOSC
2.45
2.48
2.50
2.48
2.85
2.90
VDD = 3.3 V,
VDDA = 3.3 V,
Peripherals = All off,
LDO = 1.2 V
16 MHz
PIOSC
0.226
0.227
0.265
0.249
0.558
0.635
30 kHz
LFIOSC
0.228
0.227
0.272
0.247
0.558
0.600
VDD = 3.3 V,
VDDA = 3.3 V,
Peripherals = All on,
LDO = 0.9 V (4)
16 MHz
PIOSC
2.14
2.42
2.44
2.42
2.78
2.88
30 kHz
LFIOSC
2.44
2.42
2.44
2.42
2.86
2.88
VDD = 3.3 V,
VDDA = 3.3 V,
Peripherals = All off,
LDO = 0.9 V (4)
16 MHz
PIOSC
0.216
0.166
0.209
0.193
0.563
0.580
30 kHz
LFIOSC
0.223
0.167
0.209
0.189
0.508
0.580
VDD = 3.3 V,
VDDA = 3.3 V,
Peripherals = All on
IDDA_RUN, IDDA_SLEEP
All sleep
modes
TYP
CLOCK
SOURCE
VDD = 3.3 V,
VDDA = 3.3 V,
Peripherals = All off
105°C
UNIT
(2)
mA
mA
mA
IHIB_NORTC
Hibernate
mode (external
wake, RTC
disabled)
VBAT = 3.0 V VDD = 0 V,
VDDA = 0 V,
System clock = OFF,
Hibernate module =
32.768 kHz
1.04
1.20
1.44
1.69
1.62
2.14
µA
IHIB_RTC
Hibernate
mode (RTC
enabled)
VBAT = 3.0 V,
VDD = 0 V,
VDDA = 0 V,
System clock = OFF,
Hibernate module =
32.768 kHz
1.12
1.29
1.54
1.82
1.75
2.33
µA
(4)
40
See the System Control chapter of the MSP432E4 SimpleLink™ Microcontrollers Technical Reference Manual for information on
lowering the LDO voltage to 0.9 V.
Specifications
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP432E401Y
MSP432E401Y
www.ti.com
SLASEN5 – OCTOBER 2017
Current Consumption (continued)
over operating free-air temperature (unless otherwise noted)
(1)
SYSTEM CLOCK
PARAMETER
TEST CONDITIONS
FREQ
CLOCK
SOURCE
TYP
–40°C
25°C
85°C
105°C
85°C
7.99
17.0
22.1
31.0
Hibernate
mode
(VDD3ON
mode, tamper
enabled)
VBAT = 3.0 V,
VDD = 3.3 V,
VDDA = 3.3 V,
System clock = OFF,
Hibernate module =
32.768 kHz
6.78
Hibernate
mode
(VDD3ON
mode, tamper
disabled)
VBAT = 3.0 V,
VDD = 3.3 V,
VDDA = 3.3 V,
System clock = OFF,
Hibernate module =
32.768 kHz
5.42
IHIB_VDD3ON
MAX
105°C
UNIT
(2)
46.2
µA
6.39
15.4
17.8
28.9
32.0
5.11 Peripheral Current Consumption
over operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
SYSTEM CLOCK
TYP
UNIT
IDDUSB
USB (including USB PHY) run mode
current
VDD = 3.3 V,
VDDA = 3.3 V
120 MHz (MOSC with PLL)
4.0
mA
IDDEMAC
Ethernet MAC run mode current
VDD = 3.3 V,
VDDA = 3.3 V
120 MHz (MOSC with PLL)
1.9
mA
IDDEMACPHY
Ethernet MAC and PHY run mode current
VDD = 3.3 V,
VDDA = 3.3 V
120 MHz (MOSC with PLL)
30
mA
MAX
UNIT
5.12 LDO Regulator Characteristics
over operating free-air temperature (unless otherwise noted)
PARAMETER
CLDO
External filter capacitor size for internal power supply (1)
ESR
Filter capacitor equivalent series resistance
ESL
Filter capacitor equivalent series inductance
VLDO
LDO output voltage, run mode
IINRUSH
Inrush current
(1)
MIN
TYP
2.5
4.0
µF
0
100
mΩ
0.5
nH
1.13
50
1.2
1.27
V
250
mA
Connect the capacitor as close as possible to pin 115.
Specifications
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP432E401Y
41
MSP432E401Y
SLASEN5 – OCTOBER 2017
www.ti.com
5.13 Power Dissipation
over operating free-air temperature (unless otherwise noted)
PARAMETER
PDE
(1)
(2)
(1) (2)
TA
Extended temperature device power
dissipation
105°C (extended
temperature part)
TJ
MIN
125°C (extended
temperature part)
MAX
UNIT
452
mW
If the device exceeds the power dissipation value shown, then modifications such as heat sinks or fans must be used to conform to the
limits shown.
A larger power dissipation allowance can be achieved by lowering TA as long as TJMAX shown in Section 5.1 is not exceeded.
5.14 Thermal Resistance Characteristics, 128-Pin PDT (TQFP) Package
over operating free-air temperature range (unless otherwise noted)
THERMAL METRIC
θJA
Thermal resistance (junction to ambient)
θJB
Thermal resistance (junction to board)
(1)
(1)
(1)
VALUE
UNIT
44.2
°C/W
22.4
°C/W
θJC
Thermal resistance (junction to case)
6.8
°C/W
ΨJT
Thermal metric (junction to top of package)
0.2
°C/W
ΨJB
Thermal metric (junction to board)
22.1
°C/W
TC + (P × ΨJT) (2)
TPCB + (P × ΨJB) (3)
TA + (P × θJA) (4)
TB + (P × θJB) (5) (6)
°C
TJ
(1)
(2)
(3)
(4)
(5)
(6)
42
Junction temperature formula
Junction to ambient thermal resistance (θJA), junction to board thermal resistance (θJB), and junction to case thermal resistance (θJC)
numbers are determined by a package simulator.
TC is the case temperature and P is the device power consumption.
TPCB is the temperature of the board acquired by following the steps listed in the EAI/JESD 51-8 standard summarized in Semiconductor
and IC Package Thermal Metrics. P is the device power consumption.
Because θJA is highly variable and based on factors such as board design, chip size, pad size, altitude, and external ambient
temperature, TI recommends using the equations that contain ΨJT and ΨJB for best results.
TB is temperature of the board.
θJB is not a pure reflection of the internal resistance of the package because it includes the resistance of the testing board and
environment. TI recommends using equations that contain ΨJT and ΨJB for best results.
Specifications
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP432E401Y
MSP432E401Y
www.ti.com
SLASEN5 – OCTOBER 2017
5.15 Timing and Switching Characteristics
5.15.1 Load Conditions
Table 5-2 shows the load conditions used for timing measurements, and Table 5-2 lists the load values for
the specified signals.
Pin
CL
Figure 5-1. Load Conditions
Table 5-2. Load Conditions
SIGNALS
LOAD VALUE (CL)
EPI0S[35:0] SDRAM interface
EPI0S[35:0] general-purpose interface
30 pF
EPI0S[35:0] host-bus interface
EPI0S[35:0] PSRAM interface
40 pF
All other digital I/O signals
50 pF
5.15.2 Power Supply Sequencing
To ensure proper operation, power on VDDA before VDD if sourced from different supplies, or connect VDDA
to the same supply as VDD. No restriction exists for powering off.
5.15.2.1 Power and Brownout
Table 5-3. Power and Brownout Levels
over operating free-air temperature (unless otherwise noted)
NO.
PARAMETER
MIN
TYP
MAX
UNIT
P1
tVDDA_RISE
Analog supply voltage (VDDA) rise time
∞
µs
P2
tVDD_RISE
I/O supply voltage (VDD) rise time
∞
µs
P3
tVDDC_RISE
Core supply voltage (VDDC) rise time
150
µs
P4
VPOR
10
Power-on reset threshold (rising edge)
1.98
2.35
2.72
Power-on reset threshold (falling edge)
1.84
2.20
2.56
Power-on reset hysteresis
0.06
0.15
0.24
V
P5
VDDA_POK
VDDA power-OK threshold (rising edge)
2.67
2.82
2.97
V
P6
VDDA_BOR0
VDDA brownout reset threshold
2.71
2.80
2.89
V
VDD power-OK threshold (rising edge)
2.65
2.80
2.90
VDD power-OK threshold (falling edge)
2.67
2.76
2.85
VDD brownout reset threshold
2.77
2.86
2.95
VDDC power-OK threshold (rising edge)
0.85
0.95
1.10
VDDC power-OK threshold (falling edge)
0.71
0.80
0.85
P7
VDD_POK
P8
VDD_BOR0
P9
VDDC_POK
Specifications
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP432E401Y
V
V
V
43
MSP432E401Y
SLASEN5 – OCTOBER 2017
www.ti.com
5.15.2.1.1 VDDA Levels
The VDDA supply has three monitors:
• Power-on reset (POR)
• Power-OK (POK)
• Brownout reset (BOR)
The POR monitor is used to keep the analog circuitry in reset until the VDDA supply reaches the correct
range for the analog circuitry to begin operating. The POK monitor is used to keep the digital circuitry in
reset until the VDDA power supply is at an acceptable operational level. The digital reset is only released
when the Power-On Reset has deasserted and the Power-OK monitor for each supply indicates that
power levels are in operational ranges. The BOR monitor is used to generate a reset to the device or
assert an interrupt if the VDDA supply drops below its operational range.
NOTE
VDDA BOR and VDD BOR events are a combined BOR to the system logic, such that if either
BOR event occurs, the following bits are affected:
• The BORRIS bit in the Raw Interrupt Status (RIS) register, System Control offset 0x050
• The BORMIS bit in the Masked Interrupt Status and Clear (MISC) register, System
Control offset 0x058. This bit is set only if the BORIM bit in the Interrupt Mask Control
(IMC) register has been set.
• The BOR bit in the Reset Cause (RESC) register, System Control offset 0x05C. This bit
is set only if either of the BOR events have been configured to initiate a reset.
In addition, the following bits control both BOR events:
• The BORIM bit in the Interrupt Mask Control (IMC) register, System Control offset 0x054
• The VDDA_UBOR0 and VDD_UBOR0 bits in the Power-Temperature Cause (PWRTC)
register
See the System Control chapter of the MSP432E4 SimpleLink™ Microcontrollers Technical
Reference Manual for more information on how to configure these registers.
Figure 5-2 shows the relationship between VDDA, POK, POR, and a BOR event.
P1
VDDAMIN
VDDA
P5RISE
P6
P4
P4
BOR
POK
POR
1
0
1
0
1
0
Figure 5-2. Power and Brownout Assertions vs VDDA Levels
44
Specifications
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP432E401Y
MSP432E401Y
www.ti.com
SLASEN5 – OCTOBER 2017
5.15.2.1.2 VDD Levels
The VDD supply has two monitors:
• Power-OK (POK)
• Brownout reset (BOR)
The POK monitor is used to keep the digital circuitry in reset until the VDD power supply reaches an
acceptable operational level. The digital reset is only released when the POR has deasserted and the
POK monitor for each supply indicates that power levels are in operational ranges. The BOR monitor is
used to generate a reset to the device or assert an interrupt if the VDD supply drops below its operational
range.
NOTE
VDDA BOR and VDD BOR events are a combined BOR to the system logic, such that if either
BOR event occurs, the following bits are affected:
• The BORRIS bit in the Raw Interrupt Status (RIS) register, System Control offset 0x050
• The BORMIS bit in the Masked Interrupt Status and Clear (MISC) register, System
Control offset 0x058. This bit is set only if the BORIM bit in the Interrupt Mask Control
(IMC) register has been set.
• The BOR bit in the Reset Cause (RESC) register, System Control offset 0x05C. This bit
is set only if either of the BOR events have been configured to initiate a reset.
In addition, the following bits control both BOR events:
• The BORIM bit in the Interrupt Mask Control (IMC) register, System Control offset 0x054
• The VDDA_UBOR0 and VDD_UBOR0 bits in the Power-Temperature Cause (PWRTC)
register
See the System Control chapter of the MSP432E4 SimpleLink™ Microcontrollers Technical
Reference Manual for more information on how to configure these registers.
Figure 5-3 shows the relationship between VDD, POK, POR, and a BOR event.
P2
VDDMIN
P8
POK
1
BOR
VDD
P7RISE
1
P7FALL
0
0
Figure 5-3. Power and Brownout Assertions vs VDD Levels
Specifications
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP432E401Y
45
MSP432E401Y
SLASEN5 – OCTOBER 2017
www.ti.com
5.15.2.1.3 VDDC Levels
The VDDC supply has one monitor, the Power-OK (POK). The POK monitor is used to keep the digital
circuitry in reset until the VDDC power supply reaches an acceptable operational level. The digital reset is
only released when the power-on reset has deasserted and the POK monitor for each supply indicates
that power levels are in operational ranges. Figure 5-4 shows the relationship between POK and VDDC.
P3
1.2V
POK
VDDC
P9RISE
P9FALL
1
0
Figure 5-4. POK Assertion vs VDDC
5.15.2.1.4 VDD Glitch Response
Figure 5-5 shows the response of the BOR and the POR circuit to glitches on the VDD supply.
Figure 5-5. POR-BOR VDD Glitch Response
5.15.2.1.5 VDD Droop Response
Figure 5-6 shows the response of the BOR and the POR monitors to a drop on the VDD supply.
Figure 5-6. POR-BOR VDD Droop Response
5.15.3 Reset Timing
Table 5-4 lists the reset characteristics.
46
Specifications
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP432E401Y
MSP432E401Y
www.ti.com
SLASEN5 – OCTOBER 2017
Table 5-4. Reset Characteristics
over operating free-air temperature (unless otherwise noted)
NO.
tDPORDLY
R2
tIRTOUT
R3
tBOR0DLY
(4)
(5)
(6)
(7)
MIN
Digital POR to internal reset assertion delay (see Figure 5-7)
(1) (2)
Standard internal reset time
14
Internal reset time with recovery code repair (program or erase) (3)
(1)
BOR0 to internal reset assertion delay
TYP
0.44
(5)
(see Figure 5-8)
MAX
UNIT
126
µs
16
6400 (4)
24.4
0.44
125
ms
µs
0.25 (6) or
100 (7)
µs
R4
tRSTMIN
Minimum RST pulse duration
R5
tIRHWDLY
RST to internal reset assertion delay (see Figure 5-9)
0.85
µs
(1)
Internal reset time-out after software-initiated system reset (see
Figure 5-10)
2.44
µs
R6
tIRSWR
R7
tIRWDR
(1)
Internal reset time-out after watchdog reset (see Figure 5-11)
2.44
µs
tIRMFR
(1)
Internal reset time-out after MOSC failure reset (see Figure 5-12)
2.44
µs
R8
(1)
(2)
(3)
PARAMETER
R1
These values are based on simulation.
This is the delay from the time POR is released until the reset vector is fetched.
This parameter applies only in situations where a power-loss or brownout event occurs during an EEPROM program or erase operation,
and EEPROM must be repaired (which is a rare case). For all other sequences, there is no change to normal POR timing. This delay is
in addition to other POR delays.
This value represents the maximum internal reset time when the EEPROM reaches its endurance limit.
Timing values depend on the VDD power-down ramp rate.
Standard operation
Deep-sleep operation with PIOSC powered down
Digital POR
R1
R2
Reset
(Internal)
Figure 5-7. Digital Power-On Reset Timing
The digital power-on reset is released only when the analog power-on reset has deasserted and the
Power-OK monitor for each supply indicates that power levels are in operational ranges.
BOR
R3
R2
Reset
(Internal)
Figure 5-8. Brownout Reset Timing
Specifications
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP432E401Y
47
MSP432E401Y
SLASEN5 – OCTOBER 2017
www.ti.com
R4
RST
(Package Pin)
R5
R2
Reset
(Internal)
Figure 5-9. External Reset Timing (RST)
Software Reset
R6
Reset
(Internal)
Figure 5-10. Software Reset Timing
Watchdog Reset
R7
Reset
(Internal)
Figure 5-11. Watchdog Reset Timing
MOSC Fail Reset
R8
Reset
(Internal)
Figure 5-12. MOSC Failure Reset Timing
48
Specifications
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP432E401Y
MSP432E401Y
www.ti.com
SLASEN5 – OCTOBER 2017
5.15.4 Clock Specifications
The following sections provide specifications on the various clock sources and mode.
5.15.4.1 PLL Specifications
Table 5-5 lists the PLL characteristics.
NOTE
If the integrated Ethernet PHY is used, fREF_XTAL and fREF_EXT must be 25 MHz.
Table 5-5. Phase Locked Loop (PLL) Characteristics
over operating free-air temperature (unless otherwise noted)
PARAMETER
MIN
MAX
UNIT
fREF_XTAL
Crystal reference
5
25
MHz
fREF_EXT
External clock reference
5
25
MHz
fPLLR
PLL VCO frequency at 1.2 V (1)
100
480
MHz
fPLLS
PLL VCO frequency at 0.9 V (2)
100
480
MHz
tREADY
(1)
(2)
PLL lock time
Enabling the PLL, when PLL is transitioning from power down to
power up
512 ×
(reference
clock period)
When the PLL VCO frequency is changed (PLL is already
enabled)
128 ×
(reference
clock period)
Changing the OSCSRC between MOSC and PIOSC
128 ×
(reference
clock period)
µs
PLL frequency is manually calculated using the values in the PLLFREQ0 and PLLFREQ1 registers.
If the LDO is dropped to 0.9 V, the system must be run 1/4 of the maximum frequency at most. The Q value in the PLLFREQ1 register
must be set to 0x3 rather than using the PSYSDIV field in the RSCLKCFG register for the divisor.
5.15.4.1.1 PLL Configuration
The PLL is disabled by default during power-on reset and is enabled later by software if required. Software
specifies the output divisor to set the system clock frequency and enables the PLL to drive the output. The
PLL is controlled using the PLLFREQ0, PLLFREQ1, and PLLSTAT registers. Changes made to these
registers do not become active until after the NEWFREQ bit in the RSCLKCFG register is enabled. The
clock source for the main PLL is selected by configuring the PLLSRC field in the Run and Sleep Clock
Configuration (RSCLKCFG) register. The PLL allows for the generation of system clock frequencies in
excess of the reference clock provided. The reference clocks for the PLL are the PIOSC and the MOSC.
The PLL is controlled by two registers, PLLFREQ0 and PLLFREQ1. The PLL VCO frequency (fVCO) is
determined through Equation 1.
fVCO = fIN × MDIV
where
•
•
fIN = fXTAL / (Q+1)(N+1) or fPIOSC / (Q+1)(N+1)
MDIV = MINT + (MFRAC / 1024)
(1)
The Q and N values are programmed in the PLLFREQ1 register. To reduce jitter, program MFRAC to 0x0.
When the PLL is active, the system clock frequency (SysClk) is calculated using Equation 2.
SysClk = fVCO / (1 + 1)
(2)
The PLL system divisor factor (PSYSDIV) must be set as 1. Table 5-6 lists examples of the system clock
frequency.
Specifications
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP432E401Y
49
MSP432E401Y
SLASEN5 – OCTOBER 2017
www.ti.com
Table 5-6. Examples of System Clock Frequencies
fVCO (MHz)
Q
PSYSDIV + 1
System Clock
(SYSCLK) Frequency
(MHz)
480
2
2
120
480
3
2
80
480
4
2
60
480
5
2
48
320
2
2
80
320
3
2
53
320
4
2
40
If the main oscillator provides the clock reference to the PLL, the translation provided by hardware and
used to program the PLL is available for software in the PLL Frequency n (PLLFREQn) registers. The
internal translation provides a translation within ±1% of the targeted PLL VCO frequency. Table 5-7 shows
the actual PLL frequency and error for a given crystal choice.
Table 5-7 provides examples of the programming expected for the PLLFREQ0 and PLLFREQ1 registers.
The CRYSTAL FREQUENCY column specifies the input crystal frequency and the PLL FREQUENCY
column displays the PLL frequency given the values of MINT and N, when Q = 0.
Table 5-7. Actual PLL Frequency (1)
(1)
(2)
50
MINT
DECIMAL VALUE
HEXADECIMAL
VALUE
N
REFERENCE
FREQUENCY
(MHz) (2)
PLL FREQUENCY
(MHz)
5
64
0x40
0x0
5
320
6
160
0x35
0x2
2
320
8
40
0x28
0x0
8
320
10
32
0x20
0x0
10
320
12
80
0x50
0x2
4
320
16
20
0x14
0x0
16
320
18
160
0xA0
0x8
2
320
20
16
0x10
0x0
20
320
24
40
0x28
0x2
8
320
25
64
0x40
0x4
5
320
5
96
0x60
0x0
5
480
6
80
0x50
0x0
6
480
8
60
0x3C
0x0
8
480
10
48
0x30
0x0
10
480
12
40
0x28
0x0
12
480
16
30
0x1E
0x0
16
480
18
80
0x50
0x2
6
480
20
24
0x18
0x0
20
480
24
20
0x14
0x0
24
480
25
96
0x60
0x4
5
480
CRYSTAL
FREQUENCY (MHz)
For all examples listed, Q = 0.
For a given crystal frequency, N should be chosen such that the reference frequency is 4 to 30 MHz.
Specifications
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP432E401Y
MSP432E401Y
www.ti.com
SLASEN5 – OCTOBER 2017
5.15.4.2 PIOSC Specifications
Table 5-8 lists the PIOSC characteristics.
Table 5-8. PIOSC Clock Characteristics
PARAMETER
MIN
NOM
Factory calibration, 0°C to 105°C:
Internal 16-MHz precision oscillator frequency variance across voltage and
temperature range when factory calibration is used
fPIOSC
Factory calibration, –40°C to
3.3 V
VIH
(1)
(2)
(3)
(4)
(2)
Oscillator output drive level
tSTART
VIL
Total shunt capacitance
NOM
32.768
0.2 ×
VSupply
360
30%
960
1390
V
mV
70%
The Hibernation XOSC pins are not fail-safe and must follow the limits in Section 5.15.9.1.2.
See the additional information about the load capacitors following this table.
Crystal ESR specified by crystal manufacturer.
Oscillator start-up time is specified from the time the oscillator is enabled to when it reaches a stable point of oscillation such that the
internal clock is valid.
Only valid for recommended supply conditions. Measured with OSCDRV bit set (high drive strength enabled, 24 pF).
Specification is relative to the larger of VDD or VBAT.
Specifications
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP432E401Y
51
MSP432E401Y
SLASEN5 – OCTOBER 2017
www.ti.com
Choose the load capacitors added on the board, C1 and C2, such that Equation 3 is satisfied (see Table 510 for typical values).
CL = (C1 × C2) / (C1 + C2) + CSHUNT
where
•
•
•
•
•
•
CL = load capacitance specified by crystal manufacturer
CSHUNT = CPKG + CPCB + C0 (total shunt capacitance seen across XOSC0 and XOSC1)
CPKG, CPCB as measured across the XOSC0 and XOSC1 pins excluding the crystal
Clear the OSCDRV bit in the Hibernation Control (HIBCTL) register for C1,2 ≤ 18 pF
Set the OSCDRV bit for C1,2 > 18 pF
C0 = Shunt capacitance of crystal specified by the crystal manufacturer
(3)
Table 5-11 lists the characteristics of the Hibernation module low-frequency oscillator.
Table 5-11. Hibernation Internal Low-Frequency Oscillator Clock Characteristics
PARAMETER
fHIBLFIOSC
MIN
NOM
MAX
10
33
90
kHz
MIN
NOM
Internal low-frequency hibernation oscillator frequency
UNIT
5.15.4.5 Main Oscillator Specifications
Table 5-12 lists the required characteristics of the main oscillator input.
Table 5-12. Main Oscillator Input Characteristics
over operating free-air temperature (unless otherwise noted) (1)
PARAMETER
fMOSC
Parallel resonance frequency
fREF_XTAL_BYPASS
External clock reference (PLL in BYPASS mode)
4
C1, C2
External load capacitance on OSC0, OSC1 pins
CPKG
Device package stray shunt capacitance
CPCB
PCB stray shunt capacitance
CSHUNT
Total shunt capacitance
ESR
(3)
MHz
12
24
pF
0.5
pF
0.5
(3)
pF
4
4 MHz
(4) (5)
300
6 MHz
(4) (5)
200
8 MHz
(4) (5)
130
12 MHz
(4) (5)
120
16 MHz
(4) (5)
100
25 MHz
(4) (5)
Oscillator start-up time, when using a crystal
(7)
VIL
CMOS input low level, when using an external oscillator
VHYS
CMOS input buffer hysteresis, when using an external oscillator
DCOSC_EXT
External clock reference duty cycle
pF
Ω
50
OSCPWR
CMOS input high level, when using an external oscillator
52
MHz
120
(3)
VIH
(7)
25
0
Oscillator output drive level (6)
TSTART
(6)
UNIT
(3)
Crystal effective series resistance
DL
(1)
(2)
(3)
(4)
(5)
MAX
(2)
mW
18
ms
0.65 ×
VDD
VDD
V
GND
0.35 ×
VDD
V
150
45%
mV
55%
See Table 5-39 and Table 5-40 for additional Ethernet crystal requirements.
5 MHz is the minimum when using the PLL.
See the additional information about the load capacitors following this table.
Crystal ESR specified by crystal manufacturer.
Crystal vendors can be contacted to confirm these specifications are met for a specific crystal part number if the vendors generic crystal
datasheet show limits outside of these specifications.
OSCPWR = (2 × π × FP × CL × 2.5)2 × ESR / 2. An estimation of the typical power delivered to the crystal is based on the CL, FP and
ESR parameters of the crystal in the circuit as calculated by the OSCPWR equation. Ensure that the value calculated for OSCPWR does
not exceed the crystal's drive-level maximum.
Oscillator start-up time is specified from the time the oscillator is enabled to when it reaches a stable point of oscillation such that the
internal clock is valid.
Specifications
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP432E401Y
MSP432E401Y
www.ti.com
SLASEN5 – OCTOBER 2017
The load capacitors added on the board, C1 and C2, should be chosen such that Equation 4 is satisfied
(see Table 5-12 for typical values and Table 5-13 for detailed crystal parameter information).
CL = (C1 × C2) / (C1 + C2) + CSHUNT
where
•
•
•
•
CL = load capacitance specified by crystal manufacturer
CSHUNT = C0 + CPKG + CPCB (total shunt capacitance seen across OSC0 and OSC1 crystal inputs)
CPKG, CPCB = Mutual capacitance as measured across the OSC0 and OSC1 pins excluding the crystal
C0 = Shunt capacitance of crystal specified by the crystal manufacturer
(4)
Table 5-13 lists part numbers of crystals that have been simulated and confirmed to operate within the
specifications in Table 5-12. Other crystals that have nearly identical crystal parameters can be expected
to work as well.
In Table 5-13, the crystal parameters labeled C0, C1, and L1 are values that are obtained from the crystal
manufacturer. These numbers are usually a result of testing a relevant batch of crystals on a network
analyzer. The parameters labeled ESR, DL, and CL are maximum numbers usually available in the data
sheet for a crystal.
Table 5-13 also includes three columns of Recommended Component Values. These values apply to
system board components. C1 and C2 are the values in picofarads of the load capacitors that should be
put on each leg of the crystal pins to ensure oscillation at the correct frequency. Rs is the value in kΩ of a
resistor that is placed in series with the crystal between the OSC1 pin and the crystal pin. Rs dissipates
some of the power so the Max Dl crystal parameter is not exceeded. Only use the recommended C1, C2,
and Rs values with the associated crystal part. The values in the table were used in the simulation to
ensure crystal start-up and to determine the worst-case drive level (WC DL). The value in the WC DL
column should not be greater than the Max DL crystal parameter. The WC DL value can be used to
determine if a crystal with similar parameter values but a lower Max DL value is acceptable.
Specifications
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP432E401Y
53
MSP432E401Y
SLASEN5 – OCTOBER 2017
www.ti.com
Table 5-13. Crystal Parameters
Crystal Parameters
Manufacturer Part
Number
Manufacturer
54
Package Size
(mm × mm)
Frequency
(MHz)
Typical Values
Recommended
Component Values
Max Values
C0
(pF)
C1
(fF)
L1 (mH)
ESR
(Ω)
Max
DL
(µW)
CL (pf)
C1
(pF)
C2
(pF)
Rs
(kΩ)
WC
DL
(µW)
NX8045GB-4.000MSTD-CJL-5
NX8045GB
8 × 4.5
4
30 / 50 ppm
1.00
2.70
598.10
300
500
8
12
12
0
132
FOX
FQ1045A-4
2-SMD
10 × 4.5
4
30 / 30 ppm
1.18
4.05
396.00
150
500
10
14
14
0
103
NDK
NX8045GB-5.000MSTD-CSF-4
NX8045GB
8 × 4.5
5
30 / 50 ppm
1.00
2.80
356.50
250
500
8
12
12
0
164
NDK
NX8045GB-6.000MSTD-CSF-4
NX8045GB
8 × 4.5
6
30 / 50 ppm
1.30
4.10
173.20
250
500
8
12
12
0
214
FOX
FQ1045A-6
2-SMD
10 × 4.5
6
30 / 30 ppm
1.37
6.26
112.30
150
500
10
14
14
0
209
NDK
NX8045GB-8.000MSTD-CSF-6
NX8045GB
8 × 4.5
8
30 / 50 ppm
1.00
2.80
139.30
200
500
8
12
12
0
277
217
NDK
(1)
(2)
Holder
Crystal
Specification
(Tolerance /
Stability)
FOX
FQ7050B-8
4-SMD
7×5
8
30 / 30 ppm
1.95
6.69
59.10
80
500
10
14
14
0
ECS
ECS-80-16-28A-TR
HC49/US
12.5 × 4.85
8
50 / 30 ppm
1.82
4.90
85.70
80
500
16
24
24
0
Abracon
AABMM-12.0000MHz10-D-1-X-T
ABMM
7.2 × 5.2
12
10 / 20 ppm
2.37
8.85
20.5
50
500
10
12
12
NDK
NX3225GA-12.000MHZSTD-CRG-2
NX3225GA
3.2 × 2.5
12
20 / 30 ppm
0.70
2.20
81.00
100
200
8
12
12
2.5
147
NDK
NX5032GA-12.000MHZLN-CD-1
NX5032GA
5 × 3.2
12
30 / 50 ppm
0.93
3.12
56.40
120
500
8
12
12
0
362
FOX
FQ5032B-12
4-SMD
5 × 3.2
12
30 / 30 ppm
1.16
4.16
42.30
80
500
10
14
14
0
370
Abracon
AABMM-16.0000MHz10-D-1-X-T
ABMM
7.2 × 5.2
16
10 / 20 ppm
3.00
11.00
9.30
50
500
10
12
12
2.0
(1)
143
Ecliptek
ECX-6595-16.000M
HC-49/UP
13.3 × 4.85
16
15 / 30 ppm
3.00
12.7
8.1
50
1000
10
12
12
2.0
(1)
139
NDK
NX3225GA-16.000MHZSTD-CRG-2
NX3225GA
3.2 × 2.5
16
20 / 30 ppm
1.00
2.90
33.90
80
200
8
12
12
2
188
NDK
NX5032GA-16.000MHZLN-CD-1
NX5032GA
5 × 3.2
16
30 / 50 ppm
1.02
3.82
25.90
500
8
10
10
0
437
ECS
ECS-160-9-42-CKM-TR
ECX-42
4 × 2.5
16
10 / 10 ppm
1.47
3.90
25.84
300
9
12
12
0.5
Abracon
AABMM-25.0000MHz10-D-1-X-T
ABMM
7.2 × 5.2
25
10 / 20 ppm
3.00
11.00
3.70
120
60
50
(2)
500
10
12
12
2.0
298
(1)
124
289
2.0
(1)
158
(1)
159
Ecliptek
ECX-6593-25.000M
HC-49/UP
13.3 × 4.85
25
15 / 30 ppm
3.00
12.8
3.2
40
1000
10
12
12
1.5
NDK
NX3225GA-25.000MHZSTD-CRG-2
NX3225GA
3.2 × 2.5
25
20 / 30 ppm
1.10
4.70
8.70
50
200
8
12
12
2
181
RS values as low as 0 Ω can be used. Using a lower RS value causes the WC DL to increase toward the maximum DL of the crystal.
Although this ESR value is outside of the recommended crystal ESR maximum for this frequency, this crystal has been simulated to confirm proper operation and is valid for use with this
device.
Specifications
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP432E401Y
MSP432E401Y
www.ti.com
SLASEN5 – OCTOBER 2017
Table 5-13. Crystal Parameters (continued)
Crystal Parameters
Manufacturer
Holder
Package Size
(mm × mm)
Frequency
(MHz)
Typical Values
C0
(pF)
C1
(fF)
L1 (mH)
ESR
(Ω)
Max
DL
(µW)
1.3
5.1
7.1
70
500
NX5032GA
AURIS
Q-25.000M-HC3225/4F-30-30-E-12-TR
HC3225/4
3.2 × 2.5
25
30 / 30 ppm
1.58
5.01
8.34
50
500
FOX
FQ5032B-25
4-SMD
5 × 3.2
25
30 / 30 ppm
1.69
7.92
5.13
50
500
TXC
7A2570018
NX5032GA
5 × 3.2
5 × 3.2
25
25
30 / 50 ppm
20 / 25 ppm
2.0
6.7
Recommended
Component Values
Max Values
NX5032GA-25.000MHZLD-CD-1
NDK
(3)
Manufacturer Part
Number
Crystal
Specification
(Tolerance /
Stability)
6.1
30
350
CL (pf)
8
C1
(pF)
C2
(pF)
10
10
12
12
12
16
10
14
10
12
Rs
(kΩ)
1.0
(1)
0.75
WC
DL
(µW)
216
(3)
269
16
1
331
14
0.5
12
2.0
(3)
433
124
RS values as low as 500 Ω can be used. Using a lower RS value causes the WC DL to increase toward the maximum DL of the crystal.
Specifications
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP432E401Y
55
MSP432E401Y
SLASEN5 – OCTOBER 2017
www.ti.com
5.15.4.6 Main Oscillator Specification WIth ADC
Table 5-14 lists the system clock characteristics with ADC operation.
Table 5-14. System Clock Characteristics With ADC Operation
PARAMETER
fsysadc
MIN
NOM
System clock frequency when the ADC module is operating (when PLL is
bypassed)
MAX
16
UNIT
MHz
5.15.4.7 System Clock Characteristics With USB Operation
Table 5-15 lists the system clock characteristics with USB operation.
Table 5-15. System Clock Characteristics With USB Operation
PARAMETER
fsysusb
MIN
System clock frequency when the USB module is operating (MOSC must be the
clock source, either with or without using the PLL)
NOM
MAX
30
UNIT
MHz
5.15.5 Sleep Modes
The following tables can be used to calculate the maximum wake time from sleep or deep sleep mode,
depending on the specific application. Depending on the application configuration, each parameter, except
for tFLASH, adds sequential latency to the wake time. Flash restoration happens in parallel to the other
wake processes, and its wake time is normally absorbed by the other latencies. As an example, the wake
time for a device in deep sleep mode with the PIOSC and PLL turned off and the flash and SRAM in lowpower mode is calculated by Equation 5.
Wake Time = tPIOSCDS + tPLLDS + tSRAMLPDS
(5)
tFLASH does not contribute to this equation because the values of the other parameters are greater.
In sleep mode, the wake time due to a clock source is zero because the device uses the same clock
configuration in run mode; thus, there is no latency involved with respect to the clocks.
Table 5-16 lists the wake-up times from sleep mode.
Table 5-16. Wake From Sleep Characteristics
over operating free-air temperature (unless otherwise noted)
NO.
56
MAX
UNIT
D1
tPIOSC
Time to restore PIOSC as system clock in sleep mode
PARAMETER
N/A
µs
D2
tMOSC
Time to restore MOSC as system clock in sleep mode
N/A
µs
D3
tPLL
Time to restore PLL as system clock in sleep mode
N/A
µs
D4
tLDO
Time to restore LDO to 1.2 V in sleep mode
39
µs
D5
tFLASH
Time to restore flash to active state from low-power state in sleep mode
96
µs
D6
tSRAMLP
Time to restore SRAM to active state from low-power state in sleep mode
15
µs
D7
tSRAMSTBY
Time to restore SRAM to active state from standby state in sleep mode
15
µs
Specifications
MIN
TYP
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP432E401Y
MSP432E401Y
www.ti.com
SLASEN5 – OCTOBER 2017
Table 5-16 lists the wake-up times from deep sleep mode.
Table 5-17. Wake From Deep Sleep Characteristics
over operating free-air temperature (unless otherwise noted)
NO.
(1)
PARAMETER
MIN
TYP
MAX
UNIT
D8
tPIOSCDS
Time to restore PIOSC as system clock in deep sleep mode
14
deepsleep
clock
cycles
D9
tMOSCDS
Time to restore MOSC as system clock in deep sleep mode
18
ms
1 cycle of
deep sleep
clock + 512
cycles of PLL
reference
clock (1)
clock
cycles
D10
tPLLDS
Time to restore PLL as system clock in deep sleep mode
D11
tLDODS
Time to restore LDO to 1.2 V in deep sleep mode
39
µs
D12
tFLASHLPDS
Time to restore flash to active state from low-power state
96
µs
D13
tSRAMLPDS
Time to restore SRAM to active state from low-power state
15
µs
D14
tSRAMSTBYDS
Time to restore SRAM to active state from standby state
15
µs
Deep sleep clock can vary. See the System Control chapter of the MSP432E4 SimpleLink™ Microcontrollers Technical Reference
Manual for the deep sleep clock options.
5.15.6 Hibernation Module
The Hibernation module requires special system implementation considerations because it is intended to
power down all other sections of its host device. See the Hibernation Module chapter of the MSP432E4
SimpleLink™ Microcontrollers Technical Reference Manual.
Table 5-18 lists the required characteristics of the Hibernation module battery.
Table 5-18. Hibernation Module Battery Characteristics
over operating free-air temperature (unless otherwise noted)
PARAMETER
VBAT
Battery supply voltage
VBATRMP
VBAT battery supply voltage ramp time
VLOWBAT
Low-battery detect voltage
MIN
NOM
MAX
1.8
3.0
3.6
V
0.7
V/µs
0
VBATSEL = 0x0
1.8
1.9
2.0
VBATSEL = 0x1
2.0
2.1
2.2
VBATSEL = 0x2
2.2
2.3
2.4
VBATSEL = 0x3
2.4
2.5
2.6
Specifications
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP432E401Y
UNIT
V
57
MSP432E401Y
SLASEN5 – OCTOBER 2017
www.ti.com
Table 5-19 lists the timing characteristics of the HIB module.
Table 5-19. Hibernation Module Characteristics
over operating free-air temperature (unless otherwise noted) (see Figure 5-13)
NO.
MIN
tWAKE
WAKE assertion time
H2
tWAKE_TO_HIB
WAKE assert to HIB desassert (wake-up time)
H3
tVDD_RAMP
VDD ramp to 3.0 V
H4
tVDD_CODE
VDD at 3 V to internal POR deassert; first instruction executes
H5
(1)
PARAMETER
H1
DCRTCCLK
TYP
MAX
UNIT
100
ns
1
See
HIB module
clock period
(1)
µs
500
Duty cycle for RTCCLK output signal, when using a
32.768‑kHz crystal
40%
60%
Duty cycle for RTCCLK output signal, when using a
32.768‑kHz external single-ended (bypass) clock source
30%
70%
µs
Depends on characteristics of power supply.
H1
WAKE
H2
HIB
H3
VDD
H4
POR
Figure 5-13. Hibernation Module Timing
Table 5-20 lists the characteristics of the HIB module tamper detection.
Table 5-20. Hibernation Module Tamper I/O Characteristics
over operating free-air temperature (unless otherwise noted)
MIN
TYP
MAX
RTPU
TMPRn pullup resistor
PARAMETER
3.5
4.4
5.2
tSP
TMPRn pulse duration with short glitch filter
62
µs
tLP
TMPRn pulse duration with long glitch filter
94
ms
tNMIS
TMPRn assertion to NMI (short glitch filter)
tNMIL
TMPRn assertion to NMI (long glitch filter)
VIH
58
TMPRn high-level input voltage when operating from VBAT
Specifications
VBAT
× 0.8
UNIT
MΩ
95
µs
94
ms
V
Copyright © 2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: MSP432E401Y
MSP432E401Y
www.ti.com
SLASEN5 – OCTOBER 2017
5.15.7 Flash Memory
Table 5-21 lists the characteristics of the flash memory.
Table 5-21. Flash Memory Characteristics
over operating free-air temperature (unless otherwise noted)
PARAMETER
MIN
PECYC
Number of program and erase cycles
100000
cycles
tRET
Data retention with 100% power-on hours at TJ = 85°C
20
years
tRET_EXTEMP
Data retention with 10% power-on hours at TJ = 125°C and 90% power-on
hours at TJ = 100°C
11
years
tPROG64
Program time for double-word-aligned (64 bits) data
30
tERASE
Page erase time
tME
Mass erase time
TYP
MAX
100
300