0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
OMAPL137BPTPH

OMAPL137BPTPH

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    HLQFP-176_24X24MM-EP

  • 描述:

    IC MPU OMAP-L1X 300MHZ 176HLQFP

  • 数据手册
  • 价格&库存
OMAPL137BPTPH 数据手册
OMAPL137-HT www.ti.com SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 Low-Power Applications Processor Check for Samples: OMAPL137-HT 1 Low-Power Applications Processor 1.1 Features 12345 • Highlights – Dual Core SoC • 300-MHz ARM926EJ-S™ RISC MPU • 300-MHz C674x™ VLIW DSP – TMS320C674x Fixed/Floating-Point VLIW DSP Core – Enhanced Direct-Memory-Access Controller 3 (EDMA3) – 128K-Byte RAM Shared Memory – Two External Memory Interfaces – Two External Memory Interfaces Modules – LCD Controller – Two Serial Peripheral Interfaces (SPI) – Multimedia Card (MMC)/Secure Digital (SD) – Two Master/Slave Inter-Integrated Circuit – One Host-Port Interface (HPI) – USB 1.1 OHCI (Host) With Integrated PHY (USB1) • Applications – Industrial Diagnostics – Test and measurement – Military Sonar/Radar – Medical measurement – Professional Audio – Down Hole Industry • Software Support – TI DSP/BIOS™ – Chip Support Library and DSP Library • ARM926EJ-S Core – 32-Bit and 16-Bit (Thumb®) Instructions – DSP Instruction Extensions – Single Cycle MAC – ARM® Jazelle® Technology – EmbeddedICE-RT™ for Real-Time Debug • ARM9 Memory Architecture • C674x Instruction Set Features – Superset of the C67x+™ and C64x+™ ISAs – Up to 3648/2736 C674x MIPS/MFLOPS – Byte-Addressable (8-/16-/32-/64-Bit Data) – 8-Bit Overflow Protection – Bit-Field Extract, Set, Clear – Normalization, Saturation, Bit-Counting – Compact 16-Bit Instructions • C674x Two Level Cache Memory Architecture – 32K-Byte L1P Program RAM/Cache – 32K-Byte L1D Data RAM/Cache – 256K-Byte L2 Unified Mapped RAM/Cache – Flexible RAM/Cache Partition (L1 and L2) – 1024KB L2 ROM • Enhanced Direct-Memory-Access Controller 3 (EDMA3): – 2 Transfer Controllers – 32 Independent DMA Channels – 8 Quick DMA Channels – Programmable Transfer Burst Size • TMS320C674x™ Fixed/Floating-Point VLIW DSP Core – Load-Store Architecture With Non-Aligned Support – 64 General-Purpose Registers (32 Bit) – Six ALU (32-/40-Bit) Functional Units • Supports 32-Bit Integer, SP (IEEE Single Precision/32-Bit) and DP (IEEE Double Precision/64-Bit) Floating Point • Supports up to Four SP Additions Per Clock, Four DP Additions Every 2 Clocks • Supports up to Two Floating Point (SP or DP) Approximate Reciprocal or Square Root Operations Per Cycle – Two Multiply Functional Units • Mixed-Precision IEEE Floating Point Multiply Supported up to: – 2 SP x SP -> SP Per Clock – 2 SP x SP -> DP Every Two Clocks – 2 SP x DP -> DP Every Three Clocks – 2 DP x DP -> DP Every Four Clocks • Fixed Point Multiply Supports Two 32 x 32-Bit Multiplies, Four 16 x 16-Bit Multiplies, or Eight 8 x 8-Bit Multiplies per Clock Cycle, and Complex Multiples – Instruction Packing Reduces Code Size 1 2 3 4 5 Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. DSP/BIOS, C67x+, C64x+, TMS320C6000, C6000 are trademarks of Texas Instruments. ARM926EJ-S, EmbeddedICE-RT, ETM9, CoreSight are trademarks of ARM Limited. ARM, Jazelle are registered trademarks of ARM Limited. Windows is a registered trademark of Microsoft Corporation. PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. Copyright © 2012–2013, Texas Instruments Incorporated OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 • • • • • • • • • • • • 2 – All Instructions Conditional – Hardware Support for Modulo Loop Operation – Protected Mode Operation – Exceptions Support for Error Detection and Program Redirection 128K-Byte RAM Shared Memory 3.3V LVCMOS IOs (except for USB interfaces) Two External Memory Interfaces: – EMIFA • NOR (8-/16-Bit-Wide Data) • NAND (8-/16-Bit-Wide Data) • 16-Bit SDRAM With 128MB Address Space – EMIFB • 32-Bit or 16-Bit SDRAM With 256MB Address Space Three Configurable 16550 type UART Modules: – UART0 With Modem Control Signals – Autoflow control signals (CTS, RTS) on UART0 only – 16-byte FIFO – 16x or 13x Oversampling Option LCD Controller Two Serial Peripheral Interfaces (SPI) Each With One Chip-Select Multimedia Card (MMC)/Secure Digital (SD) Card Interface with Secure Data I/O (SDIO) Two Master/Slave Inter-Integrated Circuit (I2C Bus™) One Host-Port Interface (HPI) With 16-Bit-Wide Muxed Address/Data Bus For High Bandwidth Programmable Real-Time Unit Subsystem (PRUSS) – Two Independent Programmable Realtime Unit (PRU) Cores • 32-Bit Load/Store RISC architecture • 4K Byte instruction RAM per core • 512 Bytes data RAM per core • PRU Subsystem (PRUSS) can be disabled via software to save power – Standard Power Management Mechanism • Clock Gating • Entire Subsystem Under a Single PSC Clock Gating Domain – Dedicated Interrupt Controller – Dedicated Switched Central Resource USB 1.1 OHCI (Host) With Integrated PHY (USB1) USB 2.0 OTG Port With Integrated PHY (USB0): – USB 2.0 High-/Full-Speed Client – USB 2.0 High-/Full-/Low-Speed Host – End Point 0 (Control) www.ti.com • • • • • • • • • • • • • – End Points 1,2,3,4 (Control, Bulk, Interrupt or ISOC) Rx and Tx Three Multichannel Audio Serial Ports: – Six Clock Zones and 28 Serial Data Pins – Supports TDM, I2S, and Similar Formats – DIT-Capable (McASP2) – FIFO buffers for Transmit and Receive 10/100 Mb/s Ethernet MAC (EMAC): – IEEE 802.3 Compliant (3.3-V I/O Only) – RMII Media Independent Interface – Management Data I/O (MDIO) Module Real-Time Clock With 32 KHz Oscillator and Separate Power Rail Crystal oscillators not validated beyond 125°C. Recommend use of external oscillator. One 64-Bit General-Purpose Timer (Configurable as Two 32-Bit Timers) One 64-Bit General-Purpose Timer/Watchdog Timer (Configurable as Two 32-bit GeneralPurpose Timers) Three Enhanced Pulse Width Modulators (eHRPWM): – Dedicated 16-Bit Time-Base Counter With Period And Frequency Control – 6 Single Edge, 6 Dual Edge Symmetric or 3 Dual Edge Asymmetric Outputs – Dead-Band Generation – PWM Chopping by High-Frequency Carrier – Trip Zone Input Three 32-Bit Enhanced Capture Modules (eCAP): – Configurable as 3 Capture Inputs or 3 Auxiliary Pulse Width Modulator (APWM) outputs – Single Shot Capture of up to Four Event Time-Stamps Two 32-Bit Enhanced Quadrature Encoder Pulse Modules (eQEP) 176-pin PowerPADTM Plastic Quad Flat Pack [PTP suffix], 0.5-mm Pin Pitch High Temperature (175°C) Application Texas Instruments High Temperature Products Use Highly Optimized Silicon Solutions with Design and Process Enhancements to Maximize Performance over Extended Temperatures. All Devices are Characterized and Qualified for 1000 Hours Continuous Operating Life at Maximum Rated Temperature Community Resources – TI E2E Community – TI Embedded Processors Wiki Low-Power Applications Processor Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com 1.2 SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 Trademarks DSP/BIOS, TMS320C6000™, C6000, TMS320, TMS320C62x, and TMS320C67x are trademarks of Texas Instruments. All trademarks are the property of their respective owners. Low-Power Applications Processor Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT 3 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 1.3 www.ti.com Description The OMAPL137 is a low-power applications processor based on an ARM926EJ-S and a C674x DSP core. It consumes significantly lower power than other members of the TMS320C6000 platform of DSPs. The OMAPL137 enables OEMs and ODMs to quickly bring to market devices featuring robust operating systems support, rich user interfaces, and high processing performance life through the maximum flexibility of a fully integrated mixed processor solution. The dual-core architecture of the OMAPL137 provides benefits of both DSP and Reduced Instruction Set Computer (RISC) technologies, incorporating a high-performance TMS320C674x DSP core and an ARM926EJ-S core. The ARM926EJ-S is a 32-bit RISC processor core that performs 32-bit or 16-bit instructions and processes 32-bit, 16-bit, or 8-bit data. The core uses pipelining so that all parts of the processor and memory system can operate continuously. The ARM core has a coprocessor 15 (CP15), protection module, and Data and program Memory Management Units (MMUs) with table look-aside buffers. It has separate 16K-byte instruction and 16Kbyte data caches. Both are four-way associative with virtual index virtual tag (VIVT). The ARM core also has a 8KB RAM (Vector Table) and 64KB ROM. The OMAPL137 DSP core uses a two-level cache-based architecture. The Level 1 program cache (L1P) is a 32KB direct mapped cache and the Level 1 data cache (L1D) is a 32KB 2-way set-associative cache. The Level 2 program cache (L2P) consists of a 256KB memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or combinations of the two. Although the DSP L2 is accessible by ARM and other hosts in the system, an additional 128KB RAM shared memory is available for use by other hosts without affecting DSP performance. The peripheral set includes: a 10/100 Mb/s Ethernet MAC (EMAC) with a Management Data Input/Output (MDIO) module; two inter-integrated circuit (I2C) bus interfaces; 3 multichannel audio serial ports (McASP) with 16/12/4 serializers and FIFO buffers; 2 64-bit general-purpose timers each configurable (one configurable as watchdog); a configurable 16-bit host port interface (HPI) ; up to 8 banks of 16 pins of general-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexed with other peripherals; 3 UART interfaces (one with RTS and CTS); 3 enhanced high-resolution pulse width modulator (eHRPWM) peripherals; 3 32-bit enhanced capture (eCAP) module peripherals which can be configured as 3 capture inputs or 3 auxiliary pulse width modulator (APWM) outputs; 2 32-bit enhanced quadrature pulse (eQEP) peripherals; and 2 external memory interfaces: an asynchronous and SDRAM external memory interface (EMIFA) for slower memories or peripherals, and a higher speed memory interface (EMIFB) for SDRAM. The Ethernet Media Access Controller (EMAC) provides an efficient interface between the OMAP-L137 and the network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode. Additionally an Management Data Input/Output (MDIO) interface is available for PHY configuration. The HPI, I2C, SPI, USB1.1 and USB2.0 ports allow the device to easily control peripheral devices and/or communicate with host processors. The rich peripheral set provides the ability to control external peripheral devices and communicate with external processors. For details on each of the peripherals, see the related sections later in this document and the associated peripheral reference guides. The device has a complete set of development tools for both the ARM and DSP. These include C compilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows® debugger interface for visibility into source code execution. 4 Low-Power Applications Processor Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com 1.4 SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 Functional Block Diagram Figure 1-1 shows the functional block diagram of the device. JTAG Interface ARM Subsystem DSP Subsystem ARM926EJ-S CPU With MMU C674x™ DSP CPU 4 KB ETB AET System Control PLL/Clock Generator w/OSC Input Clock(s) GeneralPurpose Timer GeneralPurpose Timer (Watchdog) 16 KB 16 KB I-Cache D-Cache Power/Sleep Controller RTC/ Pin 32-KHz Multiplexing OSC 32 KB L1 Pgm 32 KB L1 RAM 8 KB RAM (Vector Table) 256 KB L2 RAM 64 KB ROM BOOT ROM Switched Central Resource (SCR) Peripherals DMA GPIO McASP w/FIFO (3) EDMA3 I2C (2) eCAP (3) SPI (2) UART (3) Internal Memory LCD Ctlr Connectivity Control Timers eHRPWM (3) Display Serial Interfaces Audio Ports eQEP (2) USB2.0 OTG Ctlr PHY USB1.1 OHCI Ctlr PHY (10/100) EMAC (RMII) MDIO 128 KB RAM PRU Subsystem External Memory Interfaces HPI MMC/SD (8b) EMIFA(8b/16B) NAND/Flash 16b SDRAM EMIFB SDRAM Only (16b/32b) Note: Not all peripherals are available at the same time due to multiplexing. Figure 1-1. OMAPL137 Functional Block Diagram Low-Power Applications Processor Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT 5 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 1 Low-Power Applications Processor ................. 1 5.12 MMC / SD / SDIO (MMCSD) ............................................. 1 1.2 Trademarks .......................................... 3 1.3 Description ........................................... 4 1.4 Functional Block Diagram ........................... 5 Device Overview ........................................ 7 2.1 Device Characteristics ............................... 7 2.2 Device Compatibility ................................. 8 2.3 ARM Subsystem ..................................... 8 2.4 DSP Subsystem .................................... 11 2.5 Memory Map Summary ............................ 17 2.6 Bare Die Information ............................... 21 2.7 Pin Assignments .................................... 28 2.8 Terminal Functions ................................. 29 Device Configuration ................................. 45 3.1 Introduction ......................................... 45 3.2 Boot Modes Supported ............................. 45 3.3 SYSCFG Module ................................... 45 Device Operating Conditions ....................... 48 5.13 Ethernet Media Access Controller (EMAC) ......... 92 5.14 5.15 Management Data Input/Output (MDIO) ........... 98 Multichannel Audio Serial Ports (McASP0, McASP1, and McASP2) ..................................... 100 5.16 Serial Peripheral Interface Ports (SPI0, SPI1) 114 5.17 Enhanced Capture Module (eCAP) 132 5.18 5.19 135 Enhanced High-Resolution Pulse-Width Modulator (eHRPWM) ........................................ 137 1.1 2 3 4 www.ti.com Features 4.1 Absolute Maximum Ratings Over Operating Case Temperature Range (Unless Otherwise Noted) ................................. 48 5 Recommended Operating Conditions 49 4.3 Electrical Characteristics 50 Peripheral Information and Electrical Specifications .......................................... 51 5.1 5.2 Parameter Information .............................. 51 Recommended Clock and Control Signal Transition Behavior ............................................ 51 5.3 ..................................... Reset ............................................... Crystal Oscillator or External Clock Input .......... Clock PLLs ......................................... Interrupts ............................................ General-Purpose Input/Output (GPIO) ............. EDMA ............................................... External Memory Interface A (EMIFA) ............. External Memory Interface B (EMIFB) ............. Power Supplies 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11 6 .............. ........................... 4.2 6 7 ....................... .... ............... Enhanced Quadrature Encoder Module (eQEP) .. 90 5.20 LCD Controller Timers 155 5.22 5.23 .................................... ............................................. Inter-Integrated Circuit Serial Ports (I2C0, I2C1) . 140 5.21 157 Universal Asynchronous Receiver/Transmitter (UART) ............................................ 161 ............ ........................ 5.26 Universal Host-Port Interface (UHPI) ............. 5.27 Memory Protection Units (MPU) .................. 5.28 Power and Sleep Controller (PSC) ................ 5.29 Emulation Logic ................................... 5.30 Real Time Clock (RTC) ........................... Device and Document Support ................... 6.1 Device Support .................................... 6.2 Documentation Support ........................... 163 5.24 USB1 Host Controller (USB1.1 OHCI) 5.25 USB0 OTG (USB2.0 OTG) 164 172 176 178 181 188 191 191 192 Mechanical Packaging and Orderable Information ............................................ 193 7.1 Device and Development-Support Tool Nomenclature ..................................... 193 52 7.2 Packaging Materials Information 53 7.3 7.4 Thermal Data for PTP ............................. 195 Supplementary Information About the 176-pin PTP PowerPAD™ Package ............................ 195 55 56 59 67 70 75 84 .................. ............................ 7.6 Mechanical Drawings ............................. 7.7 dMAX .............................................. 7.8 Key Manager ...................................... 7.9 SECCTRL ......................................... Revision History ........................................... 7.5 Packaging Information Contents 194 196 196 198 198 199 200 Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 2 Device Overview 2.1 Device Characteristics Table 2-1 provides an overview of OMAPL137. The table shows significant features of the device, including the capacity of on-chip RAM, peripherals, and the package type with pin count. Table 2-1. Characteristics of the OMAPL137 Processor HARDWARE FEATURES EMIFB SDRAM only, 16-bit bus width, up to 256 Mbit EMIFA Asynchronous (8-bit bus width) RAM, Flash, NOR, NAND Flash Card Interface EDMA3 Peripherals Not all peripherals pins are available at the same time (for more detail, see the Device Configurations section). MMC and SD cards supported. 32 independent channels, 8 QDMA channels, 2 Transfer controllers dMAX 16 independent channels Timers 2 64-Bit General Purpose (configurable as 2 separate 32-bit timers, 1 configurable as Watch Dog) UART 3 (one with RTS and CTS flow control) SPI 2 (Each with one hardware chip select) I2C 2 (both Master/Slave) Multichannel Audio Serial Port [McASP] 10/100 Ethernet MAC with Management Data I/O eHRPWM 3 (each with transmit/receive, FIFO buffer, 16/12/4 serializers) 1 (RMII Interface) 6 Single Edge, 6 Dual Edge Symmetric, or 3 Dual Edge Asymmetric Outputs eCAP 3 32-bit capture inputs or 3 32-bit auxiliary PWM outputs eQEP 2 32-bit QEP channels with 4 inputs/channel UHPI - USB 2.0 (USB0) Full Speed Host Or Device with On-Chip PHY USB 1.1 (USB1) - General-Purpose Input/Output Port 8 banks of 16-bit LCD Controller RTC Size (Bytes) 1 1 (32 KHz oscillator and seperate power trail. Provides time and date tracking and alarm capability.) 488KB RAM, 1088KB ROM DSP 32KB L1 Program (L1P)/Cache (up to 32KB) 32KB L1 Data (L1D)/Cache (up to 32KB) 256KB Unified Mapped RAM/Cache (L2) 1024KB ROM (L2) DSP Memories can be made accessible to ARM, EDMA3, and other peripherals. On-Chip Memory Organization ARM 16KB I-Cache 16KB D-Cache 8KB RAM (Vector Table) 64KB ROM ADDITIONAL SHARED MEMORY 128KB RAM C674x CPU ID + CPU Rev ID Control Status Register (CSR.[31:16]) 0x1400 C674x Megamodule Revision Revision ID Register (MM_REVID[15:0]) 0x0000 JTAG BSDL_ID DEVIDR0 register CPU Frequency MHz 0x8B7DF02F 674x DSP 300 MHz ARM926 300 MHz Device Overview Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT 7 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 www.ti.com Table 2-1. Characteristics of the OMAPL137 Processor (continued) HARDWARE FEATURES Cycle Time Voltage ns ARM926 3.33 ns Core (V) 1.2 V I/O (V) 3.3 V Package 24 mm x 24 mm, 176-Pin, 0.5 mm pitch, TQFP (PTP) Product Status (1) (1) 674x DSP 3.33 ns Product Preview (PP), Advance Information (AI), or Production Data (PD) AI ADVANCE INFORMATION concerns new products in the sampling or preproduction phase of development. Characteristic data and other specifications are subject to change without notice. PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. 2.2 Device Compatibility The ARM926EJ-S RISC CPU is compatible with other ARM9 CPUs from ARM Holdings plc. The C674x DSP core is code-compatible with the C6000™ DSP platform and supports features of both the C64x+ and C67x+ DSP families. 2.3 ARM Subsystem The ARM Subsystem includes the following features: • ARM926EJ-S RISC processor • ARMv5TEJ (32/16-bit) instruction set • Little endian • System Control Co-Processor 15 (CP15) • MMU • 16KB Instruction cache • 16KB Data cache • Write Buffer • Embedded Trace Module and Embedded Trace Buffer (ETM/ETB) • ARM Interrupt controller 2.3.1 ARM926EJ-S RISC CPU The ARM Subsystem integrates the ARM926EJ-S processor. The ARM926EJ-S processor is a member of ARM9 family of general-purpose microprocessors. This processor is targeted at multi-tasking applications where full memory management, high performance, low die size, and low power are all important. The ARM926EJ-S processor supports the 32-bit ARM and 16 bit THUMB instruction sets, enabling the user to trade off between high performance and high code density. Specifically, the ARM926EJ-S processor supports the ARMv5TEJ instruction set, which includes features for efficient execution of Java byte codes, providing Java performance similar to Just in Time (JIT) Java interpreter, but without associated code overhead. The ARM926EJ-S processor supports the ARM debug architecture and includes logic to assist in both hardware and software debug. The ARM926EJ-S processor has a Harvard architecture and provides a complete high performance subsystem, including: • ARM926EJ -S integer core • CP15 system control coprocessor • Memory Management Unit (MMU) 8 Device Overview Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com • • • • • SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 Separate instruction and data Caches Write buffer Separate instruction and data (internal RAM) interfaces Separate instruction and data AHB bus interfaces Embedded Trace Module and Embedded Trace Buffer (ETM/ETB) For more complete details on the ARM9, refer to the ARM926EJ-S Technical Reference Manual, available at http://www.arm.com 2.3.2 CP15 The ARM926EJ-S system control coprocessor (CP15) is used to configure and control instruction and data caches, Memory Management Unit (MMU), and other ARM subsystem functions. The CP15 registers are programmed using the MRC and MCR ARM instructions, when the ARM in a privileged mode such as supervisor or system mode. 2.3.3 MMU A single set of two level page tables stored in main memory is used to control the address translation, permission checks and memory region attributes for both data and instruction accesses. The MMU uses a single unified Translation Lookaside Buffer (TLB) to cache the information held in the page tables. The MMU features are: • Standard ARM architecture v4 and v5 MMU mapping sizes, domains and access protection scheme. • Mapping sizes are: – 1MB (sections) – 64KB (large pages) – 4KB (small pages) – 1KB (tiny pages) • Access permissions for large pages and small pages can be specified separately for each quarter of the page (subpage permissions) • Hardware page table walks • Invalidate entire TLB, using CP15 register 8 • Invalidate TLB entry, selected by MVA, using CP15 register 8 • Lockdown of TLB entries, using CP15 register 10 2.3.4 Caches and Write Buffer The size of the Instruction Cache is 16KB, Data cache is 16KB. Additionally, the Caches have the following features: • Virtual index, virtual tag, and addressed using the Modified Virtual Address (MVA) • Four-way set associative, with a cache line length of eight words per line (32-bytes per line) and with two dirty bits in the Dcache • Dcache supports write-through and write-back (or copy back) cache operation, selected by memory region using the C and B bits in the MMU translation tables. • Critical-word first cache refilling • Cache lockdown registers enable control over which cache ways are used for allocation on a line fill, providing a mechanism for both lockdown, and controlling cache corruption • Dcache stores the Physical Address TAG (PA TAG) corresponding to each Dcache entry in the TAG RAM for use during the cache line write-backs, in addition to the Virtual Address TAG stored in the TAG RAM. This means that the MMU is not involved in Dcache write-back operations, removing the possibility of TLB misses related to the write-back address. • Cache maintenance operations provide efficient invalidation of, the entire Dcache or Icache, regions of the Dcache or Icache, and regions of virtual memory. Device Overview Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT 9 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 www.ti.com The write buffer is used for all writes to a noncachable bufferable region, write-through region and write misses to a write-back region. A separate buffer is incorporated in the Dcache for holding write-back for cache line evictions or cleaning of dirty cache lines. The main write buffer has 16-word data buffer and a four-address buffer. The Dcache write-back has eight data word entries and a single address entry. 2.3.5 Advanced High-Performance Bus (AHB) The ARM Subsystem uses the AHB port of the ARM926EJ-S to connect the ARM to the Config bus and the external memories. Arbiters are employed to arbitrate access to the separate D-AHB and I-AHB by the Config Bus and the external memories bus. 2.3.6 Embedded Trace Macrocell (ETM) and Embedded Trace Buffer (ETB) To support real-time trace, the ARM926EJ-S processor provides an interface to enable connection of an Embedded Trace Macrocell (ETM). The ARM926EJ-S Subsystem in the device also includes the Embedded Trace Buffer (ETB). The ETM consists of two parts: • Trace Port provides real-time trace capability for the ARM9. • Triggering facilities provide trigger resources, which include address and data comparators, counter, and sequencers. The device trace port is not pinned out and is instead only connected to the Embedded Trace Buffer. The ETB has a 4KB buffer memory. ETB enabled debug tools are required to read/interpret the captured trace data. This device uses ETM9™ version r2p2 and ETB version r0p1. Documentation on the ETM and ETB is available from ARM Ltd. Reference the ' CoreSight™ ETM9™ Technical Reference Manual, revision r0p1' and the 'ETM9 Technical Reference Manual, revision r2p2'. 2.3.7 ARM Memory Mapping By default the ARM has access to most on and off chip memory areas, including the DSP Internal memories, EMIFA, EMIFB, and the additional 128K byte on chip shared SRAM. Likewise almost all of the on chip peripherals are accessible to the ARM by default. To improve security and/or robustness the device has extensive memory and peripheral protection units which can be configured to limit access rights to the various on / off chip resources to specific hosts; including the ARM as well as other master peripherals. This allows the system tasks to be partitioned between the ARM and DSP as best suites the particular application; while enhancing the overall robustness of the solution. See Table 2-3 for a detailed top level OMAPL137 memory map that includes the ARM memory space. 10 Device Overview Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com 2.4 SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 DSP Subsystem The DSP Subsystem includes the following features: • C674x DSP CPU • 32KB L1 Program (L1P)/Cache (up to 32KB) • 32KB L1 Data (L1D)/Cache (up to 32KB) • 256KB Unified Mapped RAM/Cache (L2) • 1MB Mask-programmable ROM • Little endian 32K Bytes L1P RAM/ Cache 256K Bytes L2 RAM Boot ROM 256 256 256 256 Cache Control Memory Protect Cache Control Memory Protect L1P Bandwidth Mgmt L2 Bandwidth Mgmt 256 256 256 Instruction Fetch 256 Power Down Interrupt Controller C674x Fixed/Floating Point CPU IDMA Register File A Register File B 64 64 256 CFG Bandwidth Mgmt Memory Protect EMC L1D Cache Control 32 MDMA 8 x 32 64 Configuration Peripherals Bus SDMA 64 64 64 High Performance Switch Fabric 32K Bytes L1D RAM/ Cache Figure 2-1. C674x Megamodule Block Diagram Device Overview Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT 11 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 2.4.1 www.ti.com C674x DSP CPU Description The C674x Central Processing Unit (CPU) consists of eight functional units, two register files, and two data paths as shown in Figure 2-2. The two general-purpose register files (A and B) each contain 32 32bit registers for a total of 64 registers. The general-purpose registers can be used for data or can be data address pointers. The data types supported include packed 8-bit data, packed 16-bit data, 32-bit data, 40bit data, and 64-bit data. Values larger than 32 bits, such as 40-bit-long or 64-bit-long values are stored in register pairs, with the 32 LSBs of data placed in an even register and the remaining 8 or 32 MSBs in the next upper register (which is always an odd-numbered register). The eight functional units (.M1, .L1, .D1, .S1, .M2, .L2, .D2, and .S2) are each capable of executing one instruction every clock cycle. The .M functional units perform all multiply operations. The .S and .L units perform a general set of arithmetic, logical, and branch functions. The .D units primarily load data from memory to the register file and store results from the register file into memory. The C674x CPU combines the performance of the C64x+ core with the floating-point capabilities of the C67x core. Each C674x .M unit can perform one of the following each clock cycle: one 32 x 32 bit multiply, one 16 x 32 bit multiply, two 16 x 16 bit multiplies, two 16 x 32 bit multiplies, two 16 x 16 bit multiplies with add/subtract capabilities, four 8 x 8 bit multiplies, four 8 x 8 bit multiplies with add operations, and four 16 x 16 multiplies with add/subtract capabilities (including a complex multiply). There is also support for Galois field multiplication for 8-bit and 32-bit data. Many communications algorithms such as FFTs and modems require complex multiplication. The complex multiply (CMPY) instruction takes four 16-bit inputs and produces a 32-bit real and a 32-bit imaginary output. There are also complex multiplies with rounding capability that produces one 32-bit packed output that contain 16-bit real and 16-bit imaginary values. The 32 x 32 bit multiply instructions provide the extended precision necessary for audio and other highprecision algorithms on a variety of signed and unsigned 32-bit data types. The .L or (Arithmetic Logic Unit) now incorporates the ability to do parallel add/subtract operations on a pair of common inputs. Versions of this instruction exist to work on 32-bit data or on pairs of 16-bit data performing dual 16-bit add and subtracts in parallel. There are also saturated forms of these instructions. The C674x core enhances the .S unit in several ways. On previous cores, dual 16-bit MIN2 and MAX2 comparisons were only available on the .L units. On the C674x core they are also available on the .S unit which increases the performance of algorithms that do searching and sorting. Finally, to increase data packing and unpacking throughput, the .S unit allows sustained high performance for the quad 8-bit/16-bit and dual 16-bit instructions. Unpack instructions prepare 8-bit data for parallel 16-bit operations. Pack instructions return parallel results to output precision including saturation support. Other new features include: • SPLOOP - A small instruction buffer in the CPU that aids in creation of software pipelining loops where multiple iterations of a loop are executed in parallel. The SPLOOP buffer reduces the code size associated with software pipelining. Furthermore, loops in the SPLOOP buffer are fully interruptible. • Compact Instructions - The native instruction size for the C6000 devices is 32 bits. Many common instructions such as MPY, AND, OR, ADD, and SUB can be expressed as 16 bits if the C674x compiler can restrict the code to use certain registers in the register file. This compression is performed by the code generation tools. • Instruction Set Enhancement - As noted above, there are new instructions such as 32-bit multiplications, complex multiplications, packing, sorting, bit manipulation, and 32-bit Galois field multiplication. • Exceptions Handling - Intended to aid the programmer in isolating bugs. The C674x CPU is able to detect and respond to exceptions, both from internally detected sources (such as illegal op-codes) and from system events (such as a watchdog time expiration). • Privilege - Defines user and supervisor modes of operation, allowing the operating system to give a basic level of protection to sensitive resources. Local memory is divided into multiple pages, each with read, write, and execute permissions. 12 Device Overview Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com • SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 Time-Stamp Counter - Primarily targeted for Real-Time Operating System (RTOS) robustness, a freerunning time-stamp counter is implemented in the CPU which is not sensitive to system stalls. For more details on the C674x CPU and its enhancements over the C64x architecture, see the following documents: • TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732) • TMS320C64x Technical Overview (literature number SPRU395) Device Overview Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT 13 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 www.ti.com src1 Odd register file A (A1, A3, A5...A31) src2 .L1 odd dst Even register file A (A0, A2, A4...A30) (D) even dst long src ST1b ST1a 8 32 MSB 32 LSB long src 8 even dst odd dst .S1 src1 Data path A (D) src2 .M1 dst2 dst1 src1 32 32 src2 LD1b LD1a (A) (B) (C) 32 MSB 32 LSB dst DA1 .D1 src1 src2 2x 1x .D2 LD2a LD2b Odd register file B (B1, B3, B5...B31) src2 DA2 src1 dst 32 LSB 32 MSB src2 .M2 Even register file B (B0, B2, B4...B30) (C) src1 dst2 32 (B) dst1 32 (A) src2 src1 .S2 odd dst even dst long src Data path B ST2a ST2b (D) 8 32 MSB 32 LSB long src even dst .L2 8 (D) odd dst src2 src1 Control Register Figure 2-2. TMS320C674x™ CPU (DSP Core) Data Paths 2.4.2 DSP Memory Mapping The DSP memory map is shown in Section 2.5 14 Device Overview Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 By default the DSP also has access to most on and off chip memory areas, with the exception of the ARM RAM, ROM, and AINTC interrupt controller. The DSP also boots first, and must release the ARM from reset before the ARM can execute any code. Additionally, the DSP megamodule includes the capability to limit access to its internal memories through its SDMA port; without needing an external MPU unit. 2.4.2.1 ARM Internal Memories The DSP does not have access to the ARM internal memory. 2.4.2.2 External Memories The DSP has access to the following External memories: • Asynchronous EMIF / SDRAM / NAND / NOR Flash (EMIFA) • SDRAM (EMIFB) 2.4.2.3 DSP Internal Memories The DSP has access to the following DSP memories: • L2 RAM • L1P RAM • L1D RAM 2.4.2.4 C674x CPU The C674x core uses a two-level cache-based architecture. The Level 1 Program cache (L1P) is 32 KB direct mapped cache and the Level 1 Data cache (L1D) is 32 KB 2-way set associated cache. The Level 2 memory/cache (L2) consists of a 256 KB memory space that is shared between program and data space. L2 memory can be configured as mapped memory, cache, or a combination of both. Table 2-2 shows a memory map of the C674x CPU cache registers for the device. Table 2-2. C674x Cache Registers HEX ADDRESS RANGE REGISTER ACRONYM 0x0184 0000 L2CFG 0x0184 0020 L1PCFG 0x0184 0024 L1PCC 0x0184 0040 L1DCFG 0x0184 0044 L1DCC 0x0184 0048 - 0x0184 0FFC - DESCRIPTION L2 Cache configuration register L1P Size Cache configuration register L1P Freeze Mode Cache configuration register L1D Size Cache configuration register L1D Freeze Mode Cache configuration register Reserved 0x0184 1000 EDMAWEIGHT 0x0184 1004 - 0x0184 1FFC - L2 EDMA access control register 0x0184 2000 L2ALLOC0 L2 allocation register 0 0x0184 2004 L2ALLOC1 L2 allocation register 1 0x0184 2008 L2ALLOC2 L2 allocation register 2 0x0184 200C L2ALLOC3 L2 allocation register 3 0x0184 2010 - 0x0184 3FFF - 0x0184 4000 L2WBAR L2 writeback base address register 0x0184 4004 L2WWC L2 writeback word count register 0x0184 4010 L2WIBAR L2 writeback invalidate base address register 0x0184 4014 L2WIWC L2 writeback invalidate word count register 0x0184 4018 L2IBAR L2 invalidate base address register 0x0184 401C L2IWC L2 invalidate word count register 0x0184 4020 L1PIBAR Reserved Reserved L1P invalidate base address register Device Overview Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT 15 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 www.ti.com Table 2-2. C674x Cache Registers (continued) HEX ADDRESS RANGE REGISTER ACRONYM 0x0184 4024 L1PIWC 0x0184 4030 L1DWIBAR L1D writeback invalidate base address register 0x0184 4034 L1DWIWC L1D writeback invalidate word count register 0x0184 4038 - 0x0184 4040 L1DWBAR L1D Block Writeback 0x0184 4044 L1DWWC L1D Block Writeback 0x0184 4048 L1DIBAR L1D invalidate base address register L1D invalidate word count register Reserved 0x0184 404C L1DIWC 0x0184 4050 - 0x0184 4FFF - 0x0184 5000 L2WB 0x0184 5004 L2WBINV 0x0184 5008 L2INV 0x0184 500C - 0x0184 5027 - 0x0184 5028 L1PINV DESCRIPTION L1P invalidate word count register Reserved L2 writeback all register L2 writeback invalidate all register L2 Global Invalidate without writeback Reserved L1P Global Invalidate 0x0184 502C - 0x0184 5039 - 0x0184 5040 L1DWB Reserved 0x0184 5044 L1DWBINV L1D Global Writeback L1D Global Writeback with Invalidate 0x0184 5048 L1DINV L1D Global Invalidate without writeback 0x0184 8000 – 0x0184 80FF MAR0 - MAR63 Reserved 0x0000 0000 – 0x3FFF FFFF 0x0184 8100 – 0x0184 817F MAR64 – MAR95 Memory Attribute Registers for EMIFA SDRAM Data (CS0) 0x4000 0000 – 0x5FFF FFFF 0x0184 8180 – 0x0184 8187 MAR96 - MAR97 Memory Attribute Registers for EMIFA Async Data (CS2) 0x6000 0000 – 0x61FF FFFF 0x0184 8188 – 0x0184 818F MAR98 – MAR99 Memory Attribute Registers for EMIFA Async Data (CS2) 0x6200 0000 – 0x63FF FFFF 0x0184 8190 – 0x0184 8197 MAR100 – MAR101 Memory Attribute Registers for EMIFA Async Data (CS2) 0x6400 0000 – 0x65FF FFFF 0x0184 8198 – 0x0184 819F MAR102 – MAR103 Memory Attribute Registers for EMIFA Async Data (CS2) 0x6600 0000 – 0x67FF FFFF 0x0184 81A0 – 0x0184 81FF MAR104 – MAR127 Reserved 0x6800 0000 – 0x7FFF FFFF 0x0184 8200 MAR128 0x0184 8204 – 0x0184 82FF MAR129 – MAR191 Reserved 0x8200 0000 – 0xBFFF FFFF 0x0184 8300 – 0x0184 837F MAR192 – MAR223 Memory Attribute Registers for EMIFD SDRAM Data (CS2) 0xC000 0000 – 0xDFFF FFFF 0x0184 8380 – 0x0184 83FF MAR224 – MAR255 Reserved 0xE000 0000 – 0xFFFF FFFF Memory Attribute Register for Shared RAM 0x8000 0000 – 0x8001 FFFF Reserved 0x8002 0000 – 0x81FF FFFF See Table 2-3 for a detailed top level OMAPL137 memory map that includes the DSP memory space. 16 Device Overview Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com 2.5 SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 Memory Map Summary Table 2-3. OMAPL137 Top Level Memory Map Start Address End Address Size 0x0000 0000 0x0000 0FFF 4K 0x0000 1000 0x006F FFFF 6M + 1020K 0x0070 0000 0x007F FFFF 1024K - DSP L2 ROM 0x0080 0000 0x0083 FFFF 256K - DSP L2 RAM 0x0084 0000 0x00DF FFFF 5M + 768K 0x00E0 0000 0x00E0 7FFF 32K 0x00E0 8000 0x00EF FFFF 992K ARM Mem Map DSP Mem Map EDMA Mem Map - dMAX Mem Map Master Peripheral Mem Map dMAX Local Address Space - LCDC Mem Map - DSP L1P RAM - 0x00F0 0000 0x00F0 7FFF 32K 0x00F0 8000 0x017F FFFF 8M + 992K - DSP L1D RAM - 0x0180 0000 0x0180 FFFF 64K - DSP Interrupt Controller - 0x0181 0000 0x0181 0FFF 4K - DSP Powerdown Controller - 0x0181 1000 0x0181 1FFF 4K - DSP Security ID - 0x0181 2000 0x0181 2FFF 4K - DSP Revision ID - 0x0181 3000 0x0181 FFFF 52K - - - 0x0182 0000 0x0182 FFFF 64K - DSP EMC - 0x0183 0000 0x0183 FFFF 64K - DSP Internal Reserved - 0x0184 0000 0x0184 FFFF 64K - DSP Memory System - 0x0185 0000 0x0187 FFFF 192K - 0x0188 0000 0x01BC 03FF 3M + 257K - 0x01BC 0400 0x01BC 042F 48 - 0x01BC 0430 0x01BC 044F 32 0x01BC 0000 0x01BC 0FFF 4K ARM ETB memory - 0x01BC 1000 0x01BC 17FF 2K ARM ETB reg - 0x01BC 1800 0x01BC 18FF 256 ARM Ice Crusher - 0x01BC 0500 0x01BC FFFF 62K + 768 - 0x01BD 0000 0x01BD FFFF 64K - 0x01BE 0000 0x01BF FFFF 128K - 0x01C0 0000 0x01C0 7FFF 32K EDMA3 CC - 0x01C0 8000 0x01C0 83FF 1024 EDMA3 TC0 - 0x01C0 8400 0x01C0 87FF 1024 EDMA3 TC1 - 0x01C0 8800 0x01C0 FFFF 30K 0x01C1 0000 0x01C1 0FFF 4K PSC 0 - 0x01C1 1000 0x01C1 1FFF 4K PLL Controller - 0x01C1 2000 0x01C1 3FFF 8K 0x01C1 4000 0x01C1 4FFF 4K - - - SYSCFG - Device Overview Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT 17 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 www.ti.com Table 2-3. OMAPL137 Top Level Memory Map (continued) Start Address End Address Size ARM Mem Map DSP Mem Map EDMA Mem Map 0x01C1 5000 0x01C1 5FFF 4K - 0x01C1 6000 0x01C1 6FFF 4K - dMAX Mem Map Master Peripheral Mem Map LCDC Mem Map 0x01C1 7000 0x01C1 7FFF 4K 0x01C1 8000 0x01C1 FFFF 32K - 0x01C2 0000 0x01C2 0FFF 4K Timer64P 0 - 0x01C2 1000 0x01C2 1FFF 4K Timer64P 1 - 0x01C2 2000 0x01C2 2FFF 4K I2C 0 - 0x01C2 3000 0x01C2 3FFF 4K RTC 0x01C2 4000 0x01C2 4FFF 4K 0x01C2 5000 0x01C2 FFFF 44K 0x01C3 0000 0x01C3 01FF 512 0x01C3 0200 0x01C3 1FFF 7K + 512 - dMAX Data RAM 0 - - 0x01C3 2000 0x01C3 21FF 512 0x01C3 2200 0x01C3 3FFF 7K + 512 0x01C3 4000 0x01C3 7FFF 16K dMAX Control Registers - 0x01C3 8000 0x01C3 8FFF 4K dMAX MAX0 Configuration Memory - 0x01C3 9000 0x01C3 BFFF 12K 0x01C3 C000 0x01C3 CFFF 4K 0x01C3 D000 0x01C3 FFFF 12K - 0x01C4 0000 0x01C4 0FFF 4K MMC/SD 0 - 0x01C4 1000 0x01C4 1FFF 4K SPI 0 - 0x01C4 2000 0x01C4 2FFF 4K UART 0 0x01C4 3000 0x01C4 3FFF 4K - 0x01C4 4000 0x01CF FFFF 752K - 0x01D0 0000 0x01D0 0FFF 4K McASP 0 Control - 0x01D0 1000 0x01D0 1FFF 4K McASP 0 AFIFO Ctrl - 0x01D0 2000 0x01D0 2FFF 4K McASP 0 Data - 0x01D0 3000 0x01D0 3FFF 4K 0x01D0 4000 0x01D0 4FFF 4K McASP 1 Control - 0x01D0 5000 0x01D0 5FFF 4K McASP 1 AFIFO Ctrl - 0x01D0 6000 0x01D0 6FFF 4K McASP 1 Data - 0x01D0 7000 0x01D0 7FFF 4K 0x01D0 8000 0x01D0 8FFF 4K McASP 2 Control - 0x01D0 9000 0x01D0 9FFF 4K McASP 2 AFIFO Ctrl - 0x01D0 A000 0x01D0 AFFF 4K McASP 2 Data - 0x01D0 B000 0x01D0 BFFF 4K 0x01D0 C000 0x01D0 CFFF 4K UART 1 0x01D0 D000 0x01D0 DFFF 4K UART 2 0x01D0 E000 0x01D0 EFFF 4K 0x01D0 F000 0x01DF FFFF 964K 0x01E0 0000 0x01E0 FFFF 64K USB0 0x01E1 0000 0x01E1 0FFF 4K UHPI 0x01E1 1000 0x01E1 1FFF 4K 0x01E1 2000 0x01E1 2FFF 4K 18 dMAX Data RAM 1 - - dMAX MAX1 Configuration Memory - - - - SPI 1 Device Overview - Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 Table 2-3. OMAPL137 Top Level Memory Map (continued) Start Address End Address Size ARM Mem Map DSP Mem Map EDMA Mem Map dMAX Mem Map Master Peripheral Mem Map LCDC Mem Map 0x01E1 3000 0x01E1 3FFF 4K LCD Controller - 0x01E1 4000 0x01E1 4FFF 4K MPU 1 - MPU 2 0x01E1 5000 0x01E1 5FFF 4K 0x01E1 6000 0x01E1 FFFF 40K - 0x01E2 0000 0x01E2 1FFF 8K EMAC Control Module RAM - 0x01E2 2000 0x01E2 2FFF 4K EMAC Control Module Registers - 0x01E2 3000 0x01E2 3FFF 4K EMAC Control Registers - 0x01E2 4000 0x01E2 4FFF 4K EMAC MDIO port - 0x01E2 5000 0x01E2 5FFF 4K USB1 - 0x01E2 6000 0x01E2 6FFF 4K GPIO - 0x01E2 7000 0x01E2 7FFF 4K PSC 1 - 0x01E2 8000 0x01E2 8FFF 4K I2C 1 - - 0x01E2 9000 0x01E2 9FFF 4K 0x01E2 A000 0x01EF FFFF 856K - 0x01F0 0000 0x01F0 0FFF 4K EPWM 0 - 0x01F0 1000 0x01F0 1FFF 4K HRPWM 0 - 0x01F0 2000 0x01F0 2FFF 4K eHRPWM 1 - 0x01F0 3000 0x01F0 3FFF 4K HRPWM 1 - 0x01F0 4000 0x01F0 4FFF 4K eHRPWM 2 - 0x01F0 5000 0x01F0 5FFF 4K HRPWM 2 - 0x01F0 6000 0x01F0 6FFF 4K ECAP 0 - 0x01F0 7000 0x01F0 7FFF 4K ECAP 1 - 0x01F0 8000 0x01F0 8FFF 4K ECAP 2 - 0x01F0 9000 0x01F0 9FFF 4K EQEP 0 - 0x01F0 A000 0x01F0 AFFF 4K EQEP 1 0x01F0 B000 0x01F0 BFFF 4K - 0x01F0 C000 0x116F FFFF 247M + 976K - 0x1170 0000 0x117F FFFF 1024K DSP L2 ROM - 0x1180 0000 0x1183 FFFF 256K DSP L2 RAM - 0x1184 0000 0x11DF FFFF 5M + 768K 0x11E0 0000 0x11E0 7FFF 32K 0x11E0 8000 0x11EF FFFF 992K 0x11F0 0000 0x11F0 7FFF 32K 0x11F0 8000 0x3FFF FFFF 736M + 992K 0x4000 0000 0x5FFF FFFF 512M EMIFA SDRAM data (CS0) - 0x6000 0000 0x61FF FFFF 32M EMIFA async data (CS2) - 0x6200 0000 0x63FF FFFF 32M EMIFA async data (CS3) - 0x6400 0000 0x65FF FFFF 32M EMIFA async data (CS4) - 0x6600 0000 0x67FF FFFF 32M EMIFA async data (CS5) - 0x6800 0000 0x6800 7FFF 32K EMIFA Control Regs - 0x6800 8000 0x7FFF FFFF 383M + 992K 0x8000 0000 0x8001 FFFF 128K - - DSP L1P RAM - DSP L1D RAM - - Shared RAM - Device Overview Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT 19 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 www.ti.com Table 2-3. OMAPL137 Top Level Memory Map (continued) Start Address End Address Size ARM Mem Map DSP Mem Map EDMA Mem Map 0x8002 0000 0xAFFF FFFF 767M + 896K - dMAX Mem Map 0xB000 0000 0xB000 7FFF 32K EMIFB Control Regs 0xB000 8000 0xBFFF FFFF 255M + 992K - 0xC000 0000 0xDFFF FFFF 512M EMIFB SDRAM Data 0xE000 0000 0xFFFC FFFF 511M + 832K - 0xFFFD 0000 0xFFFD FFFF 64K ARM local ROM Master Peripheral Mem Map LCDC Mem Map - 0xFFFE 0000 0xFFFE DFFF 56K 0xFFFE E000 0xFFFE FFFF 8K ARM Interrupt Controller - 0xFFFF 0000 0xFFFF 1FFF 8K ARM local RAM - 0xFFFF 2000 0xFFFF FFFF 56K - The DSP L2 ROM is used for boot purposes and cannot be programmed with application code. 20 Device Overview Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com 2.6 SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 Bare Die Information DIE THICKNESS BACKSIDE FINISH BACKSIDE POTENTIAL BOND PAD METALLIZATION COMPOSITION BOND PAD THICKNESS 380 µm Silicon with backgrind Floating TaN/AlCu 1000 nm Device Overview Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT 21 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 www.ti.com Table 2-4. Bond Pad Coordinates in Microns X MIN Y MIN X MAX Y MAX AXR1_00 DESCRIPTION 1 209.005 13.225 274.005 78.225 UART0_RXD 2 279.005 13.225 344.005 78.225 UART0_TXD 3 349.005 13.225 414.005 78.225 AXR1_10 4 419.005 13.225 484.005 78.225 VDDSHV 5 509.005 13.225 574.005 78.225 N/C 6 582.755 13.225 647.755 78.225 VSS 7 652.755 13.225 717.755 78.225 AXR1_11 8 722.755 13.225 787.755 78.225 SPI0_SCSN 9 792.755 13.225 857.755 78.225 VDD 10 862.755 13.225 927.755 78.225 SPI0_CLK 11 932.755 13.225 997.755 78.225 SPI0_ENAN 12 1002.755 13.225 1067.755 78.225 SPI1_SOMI 13 1072.755 13.225 1137.755 78.225 SPI1_SIMO 14 1142.755 13.225 1207.755 78.225 VDDSHV 15 1212.755 13.225 1277.755 78.225 VSS 16 1299.005 13.225 1364.005 78.225 N/C 17 1372.755 13.225 1437.755 78.225 SPI1_CLK 18 1442.755 13.225 1507.755 78.225 SPI0_SOMI 19 1512.755 13.225 1577.755 78.225 SPI0_SIMO 20 1582.755 13.225 1647.755 78.225 EMA_WAIT 21 1652.755 13.225 1717.755 78.225 VDD 22 1722.755 13.225 1787.755 78.225 EMA_OEN 23 1792.755 13.225 1857.755 78.225 EMA_CSN_2 24 1862.755 13.225 1927.755 78.225 VDDSHV 25 1932.755 13.225 1997.755 78.225 N/C 26 2002.755 13.225 2067.755 78.225 VSS 27 2089.005 13.225 2154.005 78.225 N/C 28 2159.005 13.225 2224.005 78.225 N/C 29 2229.005 13.225 2294.005 78.225 EMA_BA_1 30 2299.005 13.225 2364.005 78.225 EMA_A_10 31 2369.005 13.225 2434.005 78.225 VDD 32 2439.005 13.225 2504.005 78.225 EMA_A_00 33 2509.005 13.225 2574.005 78.225 EMA_A_01 34 2579.005 13.225 2644.005 78.225 EMA_A_02 35 2649.005 13.225 2714.005 78.225 EMA_A_03 36 2719.005 13.225 2784.005 78.225 VDDSHV 37 2789.005 13.225 2854.005 78.225 VSS 38 2879.005 13.225 2944.005 78.225 N/C 39 2954.005 13.225 3019.005 78.225 EMA_A_04 40 3024.005 13.225 3089.005 78.225 EMA_A_05 41 3094.005 13.225 3159.005 78.225 EMA_A_06 42 3164.005 13.225 3229.005 78.225 EMA_A_07 43 3234.005 13.225 3299.005 78.225 VDD 44 3304.005 13.225 3369.005 78.225 EMA_A_08 45 3374.005 13.225 3439.005 78.225 EMA_A_09 46 3444.005 13.225 3509.005 78.225 EMA_A_11 47 3514.005 13.225 3579.005 78.225 22 PAD NUMBER Device Overview Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 Table 2-4. Bond Pad Coordinates in Microns (continued) X MIN Y MIN X MAX Y MAX EMA_A_12 DESCRIPTION 48 PAD NUMBER 3584.005 13.225 3649.005 78.225 N/C 49 3654.005 13.225 3719.005 78.225 VDDSHV 50 3739.005 13.225 3804.005 78.225 N/C 51 3814.005 13.225 3879.005 78.225 N/C 52 3884.005 13.225 3949.005 78.225 N/C 53 3954.005 13.225 4019.005 78.225 N/C 54 4024.005 13.225 4089.005 78.225 VSS 55 4094.005 13.225 4159.005 78.225 N/C 56 4284.785 209.005 4349.785 274.005 EMA_D_00 57 4284.785 279.435 4349.785 344.435 N/C 58 4284.785 349.865 4349.785 414.865 EMA_D_01 59 4284.785 420.295 4349.785 485.295 EMA_D_02 60 4284.785 510.725 4349.785 575.725 N/C 61 4284.785 580.91 4349.785 645.91 N/C 62 4284.785 650.91 4349.785 715.91 VDDSHV 63 4284.785 720.91 4349.785 785.91 N/C 64 4284.785 790.91 4349.785 855.91 VSS 65 4284.785 860.91 4349.785 925.91 EMA_D_03 66 4284.785 930.91 4349.785 995.91 N/C 67 4284.785 1000.91 4349.785 1065.91 EMA_D_04 68 4284.785 1070.91 4349.785 1135.91 N/C 69 4284.785 1140.91 4349.785 1205.91 VDD 70 4284.785 1210.91 4349.785 1275.91 N/C 71 4284.785 1280.91 4349.785 1345.91 EMA_D_05 72 4284.785 1355.885 4349.785 1420.885 N/C 73 4284.785 1444.97 4349.785 1509.97 EMA_D_06 74 4284.785 1514.97 4349.785 1579.97 N/C 75 4284.785 1584.97 4349.785 1649.97 VSS 76 4284.785 1654.97 4349.785 1719.97 VDDSHV 77 4284.785 1724.97 4349.785 1789.97 N/C 78 4284.785 1794.97 4349.785 1859.97 N/C 79 4284.785 1864.97 4349.785 1929.97 N/C 80 4284.785 1934.97 4349.785 1999.97 EMA_D_07 81 4284.785 2004.97 4349.785 2069.97 N/C 82 4284.785 2074.97 4349.785 2139.97 EMA_WEN 83 4284.785 2150.615 4349.785 2215.615 N/C 84 4284.785 2235.345 4349.785 2300.345 VDD 85 4284.785 2305.345 4349.785 2370.345 VSS 86 4284.785 2375.345 4349.785 2440.345 N/C 87 4284.785 2445.345 4349.785 2510.345 VDDSHV 88 4284.785 2515.345 4349.785 2580.345 VDDSHV 89 4284.785 2585.345 4349.785 2650.345 VDD 90 4284.785 2655.345 4349.785 2720.345 VDD 91 4284.785 2725.345 4349.785 2790.345 N/C 92 4284.785 2795.345 4349.785 2860.345 VSS 93 4284.785 2865.345 4349.785 2930.345 N/C 94 4284.785 2935.345 4349.785 3000.345 Device Overview Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT 23 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 www.ti.com Table 2-4. Bond Pad Coordinates in Microns (continued) X MIN Y MIN X MAX Y MAX VDDSHV DESCRIPTION 95 4284.785 3015.775 4349.785 3080.775 VDDAR1 96 4284.785 3106.205 4349.785 3171.205 N/C 97 4284.785 3176.635 4349.785 3241.635 N/C 98 4284.785 3247.065 4349.785 3312.065 VDDNWA1 99 4284.785 3325.925 4349.785 3390.925 VDDNWA1 100 4284.785 3400.02 4349.785 3465.02 VDD 101 4284.785 3470.02 4349.785 3535.02 VSS 102 4284.785 3540.02 4349.785 3605.02 VDDSHV 103 4284.785 3610.02 4349.785 3675.02 N/C 104 4284.785 3680.02 4349.785 3745.02 N/C 105 4284.785 3750.02 4349.785 3815.02 VSS 106 4284.785 3824.225 4349.785 3889.225 N/C 107 4284.785 3913.46 4349.785 3978.46 VDDSHV 108 4284.785 3983.46 4349.785 4048.46 VDD 109 4284.785 4053.46 4349.785 4118.46 N/C 110 4284.785 4123.46 4349.785 4188.46 N/C 111 4284.785 4193.46 4349.785 4258.46 VSS 112 4284.785 4263.46 4349.785 4328.46 N/C 113 4284.785 4333.46 4349.785 4398.46 VDDSHV 114 4284.785 4407.665 4349.785 4472.665 VSS 115 4284.785 4497.34 4349.785 4562.34 N/C 116 4284.785 4567.34 4349.785 4632.34 N/C 117 4284.785 4637.34 4349.785 4702.34 VDDSHV 118 4284.785 4707.34 4349.785 4772.34 VSS 119 4284.785 4777.34 4349.785 4842.34 VDDSHV 120 4284.785 4847.34 4349.785 4912.34 VDD 121 4284.785 4917.34 4349.785 4982.34 N/C 122 4284.785 4987.34 4349.785 5052.34 VSS 123 4284.785 5061.535 4349.785 5126.535 VDDSHV 124 4284.785 5150.345 4349.785 5215.345 VDD 125 4284.785 5220.345 4349.785 5285.345 VSS 126 4284.785 5290.345 4349.785 5355.345 VDDSHV 127 4284.785 5360.345 4349.785 5425.345 AXR0_00 128 4284.785 5430.345 4349.785 5495.345 N/C 129 4284.785 5500.345 4349.785 5565.345 AXR0_01 130 4284.785 5574.545 4349.785 5639.545 AXR0_02 131 4284.785 5665.445 4349.785 5730.445 VDD 132 4090.765 5861.225 4155.765 5926.225 N/C 133 4020.555 5861.225 4085.555 5926.225 N/C 134 3949.215 5861.225 4014.215 5926.225 N/C 135 3878.885 5861.225 3943.885 5926.225 N/C 136 3808.415 5861.225 3873.415 5926.225 N/C 137 3738.31 5861.225 3803.31 5926.225 AXR0_03 138 3663.735 5861.225 3728.735 5926.225 N/C 139 3588.51 5861.225 3653.51 5926.225 AXR0_05 140 3518.415 5861.225 3583.415 5926.225 AXR0_06 141 3447.745 5861.225 3512.745 5926.225 24 PAD NUMBER Device Overview Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 Table 2-4. Bond Pad Coordinates in Microns (continued) X MIN Y MIN X MAX Y MAX VSS DESCRIPTION 142 PAD NUMBER 3376.035 5861.225 3441.035 5926.225 VDDSHV 143 3304.27 5861.225 3369.27 5926.225 AXR0_07 144 3233.645 5861.225 3298.645 5926.225 AXR0_08 145 3163.25 5861.225 3228.25 5926.225 AFSX0 146 3089.875 5861.225 3154.875 5926.225 VDDSHV 147 3019.115 5861.225 3084.115 5926.225 N/C 148 2948.625 5861.225 3013.625 5926.225 VSS 149 2869.395 5861.225 2934.395 5926.225 AHCLKR0 150 2798.835 5861.225 2863.835 5926.225 AFSR0 151 2726.12 5861.225 2791.12 5926.225 VPP 152 2652.81 5861.225 2717.81 5926.225 VPP 153 2581.05 5861.225 2646.05 5926.225 IFORCE 154 2510.13 5861.225 2575.13 5926.225 VSENSE 155 2439.42 5861.225 2504.42 5926.225 VDDA18V_USB1 156 2369.155 5861.225 2434.155 5926.225 VSS 157 2298.685 5861.225 2363.685 5926.225 USB1_DP 158 2228.45 5861.225 2293.45 5926.225 N/C 159 2158.275 5861.225 2223.275 5926.225 USB1_DM 160 2087.535 5861.225 2152.535 5926.225 VDDA33_USB1 161 2009.505 5861.225 2074.505 5926.225 VDD 162 1936.205 5861.225 2001.205 5926.225 VSS 163 1865.53 5861.225 1930.53 5926.225 USB0_ID 164 1795.4 5861.225 1860.4 5926.225 USB0_VBUS 165 1722.27 5861.225 1787.27 5926.225 VDDA12_USB0 166 1649.685 5861.225 1714.685 5926.225 VDDA18_USB0 167 1579.34 5861.225 1644.34 5926.225 VSSA_USB0 168 1509.05 5861.225 1574.05 5926.225 USB0_DP 169 1438.645 5861.225 1503.645 5926.225 N/C 170 1368.375 5861.225 1433.375 5926.225 USB0_DM 171 1298.05 5861.225 1363.05 5926.225 VSSA33_USB0 172 1219.04 5861.225 1284.04 5926.225 VDDA33_USB0 173 1147.91 5861.225 1212.91 5926.225 VSS 174 1076.44 5861.225 1141.44 5926.225 VDDA12_PLL 175 998.275 5861.225 1063.275 5926.225 VSSA12_PLL 176 925.39 5861.225 990.39 5926.225 OSCIN 177 854.085 5861.225 919.085 5926.225 OSCVSS 178 782.785 5861.225 847.785 5926.225 RESETN 179 709.655 5861.225 774.655 5926.225 VDD 180 637.15 5861.225 702.15 5926.225 N/C 181 559.62 5861.225 624.62 5926.225 RTC_XI 182 489.565 5861.225 554.565 5926.225 RTC_VSS 183 419.505 5861.225 484.505 5926.225 RTC_XO 184 349.49 5861.225 414.49 5926.225 VDD2 185 279.295 5861.225 344.295 5926.225 N/C 186 209.175 5861.225 274.175 5926.225 TRSTN 187 13.225 5666.345 78.225 5731.345 TRSTN 188 13.225 5595.145 78.225 5660.145 Device Overview Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT 25 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 www.ti.com Table 2-4. Bond Pad Coordinates in Microns (continued) X MIN Y MIN X MAX Y MAX N/C DESCRIPTION 189 13.225 5524.925 78.225 5589.925 N/C 190 13.225 5454.07 78.225 5519.07 N/C 191 13.225 5382.485 78.225 5447.485 N/C 192 13.225 5311.205 78.225 5376.205 N/C 193 13.225 5228.885 78.225 5293.885 N/C 194 13.225 5154.21 78.225 5219.21 N/C 195 13.225 5079.015 78.225 5144.015 N/C 196 13.225 5008.685 78.225 5073.685 N/C 197 13.225 4937.99 78.225 5002.99 N/C 198 147.195 4831.665 212.195 4896.665 N/C 199 147.195 4735.485 212.195 4800.485 VSS 200 147.195 4622.615 212.195 4687.615 VDDSHV 201 147.195 4435.67 212.195 4500.67 N/C 202 147.195 4360.73 212.195 4425.73 TDI 203 147.795 4235.69 212.795 4300.69 VDD 204 147.795 4164.985 212.795 4229.985 N/C 205 147.795 4069.08 212.795 4134.08 TCK 206 147.795 3989.035 212.795 4054.035 N/C 207 13.225 3906.515 78.225 3971.515 TDO 208 13.225 3836.385 78.225 3901.385 VDDSHV 209 13.225 3766.245 78.225 3831.245 N/C 210 13.225 3696.23 78.225 3761.23 VSS 211 13.225 3626.11 78.225 3691.11 VDDAR 212 13.225 3548.85 78.225 3613.85 VDDNWA 213 13.225 3478.71 78.225 3543.71 VDD 214 13.225 3406.13 78.225 3471.13 VDD 215 13.225 3335.39 78.225 3400.39 VDDSHV 216 13.225 3264.465 78.225 3329.465 N/C 217 13.225 3193.185 78.225 3258.185 N/C 218 13.225 3121.465 78.225 3186.465 VSS 219 13.225 3051.285 78.225 3116.285 AFSR1 220 13.225 2977.55 78.225 3042.55 N/C 221 13.225 2907.235 78.225 2972.235 VDD 222 13.225 2830.14 78.225 2895.14 VDD 223 13.225 2746.55 78.225 2811.55 VDDSHV 224 13.225 2674 78.225 2739 VSS 225 13.225 2603.34 78.225 2668.34 VSS 226 13.225 2524.765 78.225 2589.765 N/C 227 13.225 2452.975 78.225 2517.975 AXR1_04 228 13.225 2380.355 78.225 2445.355 AXR1_03 229 13.225 2306.825 78.225 2371.825 AXR1_02 230 13.225 2236.715 78.225 2301.715 AXR1_01 231 13.225 2155.32 78.225 2220.32 N/C 232 13.225 2077.3 78.225 2142.3 N/C 233 13.225 2006.525 78.225 2071.525 N/C 234 13.225 1934.25 78.225 1999.25 N/C 235 13.225 1864.03 78.225 1929.03 26 PAD NUMBER Device Overview Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 Table 2-4. Bond Pad Coordinates in Microns (continued) X MIN Y MIN X MAX Y MAX N/C DESCRIPTION 236 PAD NUMBER 13.225 1793.885 78.225 1858.885 N/C 237 13.225 1723.855 78.225 1788.855 N/C 238 13.225 1653.45 78.225 1718.45 N/C 239 13.225 1582.67 78.225 1647.67 N/C 240 13.225 1512.07 78.225 1577.07 N/C 241 13.225 1436.115 78.225 1501.115 N/C 242 13.225 1361.85 78.225 1426.85 N/C 243 13.225 1290.35 78.225 1355.35 N/C 244 13.225 1218.39 78.225 1283.39 N/C 245 13.225 1147.875 78.225 1212.875 N/C 246 13.225 1073.32 78.225 1138.32 N/C 247 13.225 1000.655 78.225 1065.655 N/C 248 13.225 929.045 78.225 994.045 N/C 249 13.225 858.22 78.225 923.22 N/C 250 13.225 788.035 78.225 853.035 N/C 251 13.225 715.485 78.225 780.485 N/C 252 13.225 641.13 78.225 706.13 N/C 253 13.225 570.685 78.225 635.685 N/C 254 13.225 488.67 78.225 553.67 N/C 255 13.225 417.65 78.225 482.65 N/C 256 13.225 346.84 78.225 411.84 N/C 257 13.225 275.62 78.225 340.62 Device Overview Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT 27 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 AMUTE1/EHRPWMTZ/GP4[14] AFSR0/GP3[12] ACLKR0/ECAP1/APWM1/GP2[15] AHCLKR0/RMII_MHZ_50_CLK/GP2[14]/BOOT[11] DVDD AFSX0/GP2[13]/BOOT[10] ACLKX0/ECAP0/APWM0/GP2[12] AHCLKX0/AHCLKX2/USB_REFCLKIN/GP2[11] AXR0[11]/AXR2[0]/GP3[11] UART1_TXD/AXR0[10]/GP3[10] UART1_RXD/AXR0[9]/GP3[9] AXR0[8]/MDIO_D/GP3[8] AXR0[7]/MDIO_CLK/GP3[7] DVDD AXR0[6]/RMII_RXER/ACLKR2/GP3[6] AXR0[5]/RMII_RXD[1]/AFSX2/GP3[5] AXR0[4]/RMII_RXD[0]/AXR2[1]/GP3[4] AXR0[3]/RMII_CRS_DV/AXR2[2]/GP3[3] CVDD AXR0[2]/RMII_TXEN/AXR2[3]/GP3[2] AXR0[1]/RMII_TXD[1]/ACLKX2/GP3[1] AXR0[0]/RMII_TXD[0]/AFSR2/GP3[0] EMB_RAS DVDD EMB_CS[0] EMB_BA[0]/GP7[1] EMB_BA[1]/GP7[0] EMB_A[10]/GP7[12] CVDD EMB_A[0]/GP7[2] EMB_A[1]/GP7[3] EMB_A[2]/GP7[4] EMB_A[3]/GP7[5] DVDD EMB_A[4]/GP7[6] EMB_A[5]/GP7[7] EMB_A[6]/GP7[8] EMB_A[7]/GP7[9] EMB_A[8]/GP7[10] CVDD EMB_A[9]/GP7[11] EMB_A[11]/GP7[13] DVDD EMB_A[12]/GP3[13] 2.7 2.7.1 RSV2 USB0_VDDA12 USB0_VDDA18 NC USB0_DP USB0_DM NC USB0_VDDA33 PLL0_VDDA PLL0_VSSA OSCIN OSCVSS OSCOUT RESET CVDD RTC_XI RTC_CVDD TRST DVDD TMS TDI CVDD TCK TDO RTCK/GP7[14] DVDD CVDD AHCLKX1/EPWM0B/GP3[14] CVDD ACLKX1/EPWM0A/GP3[15] AFSX1/EPWMSYNCI/EPWMSYNC0/GP4[10] DVDD ACLKR1/ECAP2/APWM2/GP4[12] AFSR1/GP4[13] CVDD AXR1[8]/EPWM1A/GP4[8] AXR1[7]/EPWM1B/GP4[7] AXR1[6]/EPWM2A/GP4[6] AXR1[5]/EPWM2B/GP4[5] DVDD AXR1[4]/EQEP1B/GP4[4] AXR1[3]/EQEP1A/GP4[3] AXR1[2]/GP4[2] AXR1[1]/GP4[1] 28 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 CVDD SPI0_CLK/EQEP1I/GP5[2]/BOOT[2] SPI0_ENA/UART0_CTS/EQEP0A/GP5[3]/BOOT[3] SPI1_SOMI[0]/I2C1_SCL/GP5[5]/BOOT[5] SPI1_SIMO[0]/I2C1_SDA/GP5[6]/BOOT[6] DVDD SPI1_CLK/EQEP1S/GP5[7]/BOOT[7] SPI0_SOMI[0]/EQEP0I/GP5[0]/BOOT[0] SPI0_SIMO[0]/EQEP0S/GP5[1]/BOOT[1] EMA_WAIT[0]/UHPI_HRDY/GP2[10] CVDD EMA_CS[3]/AMUTE2/GP2[6] EMA_OE//UHPI_HDS1/AXR0[13]/GP2[7] EMA_CS[2]/UHPI_HCS/GP2[5]/BOOT[15] DVDD EMA_BA[0]/LCD_D[4]/GP1[14] EMA_BA[1]/LCD_D[5]/UHPI_HHWIL/GP1[13] EMA_A[10]/LCD_VSYNC/GP1[10] CVDD EMA_A[0]/LCD_D[7]/GP1[0] EMA_A[1]/MMCSD_CLK/UHPI_HCNTL0/GP1[1] EMA_A[2]/MMCSD_CMD/UHPI_HCNTL1/GP1[2] EMA_A[3]/LCD_D[6]/GP1[3] DVDD EMA_A[4]/LCD_D[3]/GP1[4] EMA_A[5]/LCD_D[2]/GP1[5] EMA_A[6]/LCD_D[1]/GP1[6] EMA_A[7]/LCD_D[0]/GP1[7] CVDD EMA_A[8]/LCD_PCLK/GP1[8] EMA_A[9]/LCD_HSYNC/GP1[9] EMA_A[11]/LCD_AC_ENB_CS/GP1[11] EMA_A[12]/LCD_MCLK/GP1[12] DVDD EMA_D[0]/MMCSD_DAT[0]/UHPI_HD[0]/GP0[0]/BOOT[12] AXR1[0]/GP4[0] UART0_RXD/I2C0_SDA/TM64P0_IN12/GP5[8]/BOOT[8] UART0_TXD/I2C0_SCL/TM64P0_OUT12/GP5[9]/BOOT[9] AXR1[10]/GP5[10] DVDD AXR1[11]/GP5[11] SPI1_ENA/UART2_RXD/GP5[12] SPI1_SCS[0]/UART2_TXD/GP5[13] SPI0_SCS[0]/UART0_RTS/EQEP0B/GP5[4]/BOOT[4] OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 www.ti.com Pin Assignments Extensive use of pin multiplexing is used to accommodate the largest number of peripheral functions in the smallest possible package. Pin multiplexing is controlled using a combination of hardware configuration at device reset and software programmable register settings. Pin Map (Bottom View) Figure 2-3 shows the pin assignments for the PTP package. Note that micro-vias are not required. Contact your TI representative for routing recommendations. VSS (177) Thermal Pad Device Overview Submit Documentation Feedback Product Folder Links: OMAPL137-HT 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 EMB_SDCKE DVDD EMB_CLK EMB_WE_DQM[1]/GP5[14] EMB_D[8]/GP6[8] EMB_D[9]/GP6[9] EMB_D[10]/GP6[10] DVDD EMB_D[11]/GP6[11] EMB_D[12]/GP6[12] EMB_D[13]/GP6[13] CVDD EMB_D[14]/GP6[14] DVDD EMB_D[15]/GP6[15] EMB_D[0]/GP6[0] EMB_D[1]/GP6[1] DVDD EMB_D[2]/GP6[2] CVDD EMB_D[3]/GP6[3] CVDD EMB_D[4]/GP6[4] DVDD EMB_D[5]/GP6[5] EMB_D[6]/GP6[6] EMB_D[7]/GP6[7] CVDD EMB_WE_DQM[0]/GP5[15] EMB_WE DVDD EMB_CAS CVDD EMA_WE/UHPI_HRW/AXR0[12]/GP2[3]/BOOT[14] EMA_D[7]/MMCSD_DAT[7]/UHPI_HD[7]/GP0[7]/BOOT[13] DVDD EMA_D[6]/MMCSD_DAT[6]/UHPI_HD[6]/GP0[6] EMA_D[5]/MMCSD_DAT[5]/UHPI_HD[5]/GP0[5] CVDD EMA_D[4]/MMCSD_DAT[4]/UHPI_HD[4]/GP0[4] EMA_D[3]/MMCSD_DAT[3]/UHPI_HD[3]/GP0[3] DVDD EMA_D[2]/MMCSD_DAT[2]/UHPI_HD[2]/GP0[2] EMA_D[1]/MMCSD_DAT[1]/UHPI_HD[1]/GP0[1] Figure 2-3. Pin Map (PTP) Copyright © 2012–2013, Texas Instruments Incorporated OMAPL137-HT www.ti.com 2.8 SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 Terminal Functions Table 2-5 to Table 2-25 identify the external signal names, the associated pin/ball numbers along with the mechanical package designator, the pin type (I, O, IO, OZ, or PWR), whether the pin/ball has any internal pullup/pulldown resistors, whether the pin/ball is configurable as an IO in GPIO mode, and a functional pin description. 2.8.1 Device Reset and JTAG Table 2-5. Reset and JTAG Terminal Functions PIN NO SIGNAL NAME PTP TYPE (1) PULL (2) DESCRIPTION RESET RESET 146 I Device reset input TMS 152 I IPU JTAG test mode select TDI 153 I IPU JTAG test data input TDO 156 O IPD JTAG test data output TCK 155 I IPU JTAG test clock TRST 150 I IPD JTAG test reset RTCK/GP7[14] 157 I/O IPD JTAG test-port return clock output. JTAG (1) (2) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor 2.8.2 High-Frequency Oscillator and PLL Table 2-6. High-Frequency Oscillator and PLL Terminal Functions SIGNAL NAME PIN NO PTP TYPE (1) PULL (2) DESCRIPTION 1.2-V OSCILLATOR OSCIN 143 I Oscillator input OSCOUT 145 O Oscillator output OSCVSS 144 GND Oscillator ground (for filter only) 1.2-V PLL PLL0_VDDA 141 PWR PLL analog VDD (1.2-V filtered supply) PLL0_VSSA 142 GND PLL analog VSS (for filter) (1) (2) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor Device Overview Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT 29 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 2.8.3 www.ti.com Real-Time Clock and 32-kHz Oscillator Table 2-7. Real-Time Clock (RTC) and 1.2-V, 32-kHz Oscillator Terminal Functions PIN NO SIGNAL NAME PTP TYPE (1) RTC_CVDD 149 PWR RTC_XI 148 I (1) (2) PULL (2) DESCRIPTION RTC module core power ( isolated from rest of chip CVDD) Low-frequency (32-kHz) oscillator receiver for real-time clock I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor 2.8.4 External Memory Interface A (ASYNC, SDRAM) Table 2-8. External Memory Interface A (EMIFA) Terminal Functions PIN NO SIGNAL NAME PTP TYPE (1) PULL (2) EMA_D[7]/MMCSD_DAT[7]/UHPI_HD[7]/GP0[7]/BOOT[13] 54 I/O IPU EMA_D[6]/MMCSD_DAT[6]/UHPI_HD[6]/GP0[6] 52 I/O IPU EMA_D[5]/MMCSD_DAT[5]/UHPI_HD[5]/GP0[5] 51 I/O IPU EMA_D[4]/MMCSD_DAT[4]/UHPI_HD[4]/GP0[4] 49 I/O IPU EMA_D[3]/MMCSD_DAT[3]/UHPI_HD[3]/GP0[3] 48 I/O IPU EMA_D[2]/MMCSD_DAT[2]/UHPI_HD[2]/GP0[2] 46 I/O IPU EMA_D[1]/MMCSD_DAT[1]/UHPI_HD[1]/GP0[1] 45 I/O IPU EMA_D[0]/MMCSD_DAT[0]/UHPI_HD[0]/GP0[0]/BOOT[12] 44 I/O IPU EMA_A[12]/ LCD_MCLK/GP1[12] 42 O IPU EMA_A[11]/ LCD_AC_ENB_CS/GP1[11] 41 O IPU EMA_A[10]/ LCD_VSYNC/GP1[10] 27 O IPU EMA_A[9]/ LCD_HSYNC/GP1[9] 40 O IPU EMA_A[8]/ LCD_PCLK/GP1[8] 39 O IPU EMA_A[7]/ LCD_D[0]/GP1[7] 37 O IPD EMA_A[6]/ LCD_D[1]/GP1[6] 36 O IPD EMA_A[5]/ LCD_D[2]/GP1[5] 35 O IPD EMA_A[4]/ LCD_D[3]/GP1[4] 34 O IPD EMA_A[3]/ LCD_D[6]/GP1[3] 32 O IPD EMA_A[2]/MMCSD_CMD/UHPI_HCNTL1/GP1[2] 31 O IPU EMA_A[1]/MMCSD_CLK/UHPI_HCNTL0/GP1[1] 30 O EMA_A[0]/ LCD_D[7]/GP1[0] 29 EMA_BA[1]/ LCD_D[5]/UHPI_HHWIL/GP1[13] EMA_BA[0]/ LCD_D[4]/GP1[14] (1) (2) 30 MUXED DESCRIPTION MMC/SD, UHPI, GPIO, BOOT EMIFA data bus MMC/SD, UHPI, GPIO MMC/SD, UHPI, GPIO, BOOT LCD, GPIO EMIFA address bus IPU MMCSD, UHPI, GPIO EMIFA address bus. O IPD LCD, GPIO 26 O IPU LCD, UHPI, GPIO 25 O IPU LCD, GPIO EMIFA bank address I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor Device Overview Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 Table 2-8. External Memory Interface A (EMIFA) Terminal Functions (continued) PIN NO SIGNAL NAME PTP TYPE (1) PULL (2) MUXED DESCRIPTION EMA_CS[3] /AMUTE2/GP2[6] 21 O IPU McASP2, GPIO EMA_CS[2] /UHPI_HCS/GP2[5]/BOOT[15] 23 O IPU UHPI, GPIO, BOOT EMA_WE /UHPI_HRW/AXR0[12]/GP2[3]/BOOT[14] 55 O IPU UHPI, EMIFA SDRAM write MCASP0, enable. GOPIO, BOOT EMA_OE /UHPI_HDS1/AXR0[13]/GP2[7] 22 O IPU UHPI, McASP0, GPIO EMIFA output enable. EMA_WAIT[0]/ UHPI_HRDY/GP2[10] 19 I IPU UHPI, GPIO EMIFA wait input/interrupt. EMIFA Async Chip Select Device Overview Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT 31 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 2.8.5 www.ti.com External Memory Interface B (only SDRAM) Table 2-9. External Memory Interface B (EMIFB) Terminal Functions SIGNAL NAME PIN NO PTP TYPE (1) PULL (2) MUXED DESCRIPTION EMB_D[15]/GP6[15] 74 I/O IPD EMB_D[14]/GP6[14] 76 I/O IPD EMB_D[13]/GP6[13] 78 I/O IPD EMB_D[12]/GP6[12] 79 I/O IPD EMB_D[11]/GP6[11] 80 I/O IPD EMB_D[10]/GP6[10] 82 I/O IPD EMB_D[9]/GP6[9] 83 I/O IPD EMB_D[8]/GP6[8] 84 I/O IPD EMB_D[7]/GP6[7] 62 I/O IPD EMB_D[6]/GP6[6] 63 I/O IPD EMB_D[5]/GP6[5] 64 I/O IPD EMB_D[4]/GP6[4] 66 I/O IPD EMB_D[3]/GP6[3] 68 I/O IPD EMB_D[2]/GP6[2] 70 I/O IPD EMB_D[1]/GP6[1] 72 I/O IPD EMB_D[0]/GP6[0] 73 I/O IPD EMB_A[12]/GP3[13] 89 O IPD EMB_A[11]/GP7[13] 91 O IPD EMB_A[10]/GP7[12] 105 O IPD EMB_A[9]/GP7[11] 92 O IPD EMB_A[8]/GP7[10] 94 O IPD EMB_A[7]/GP7[9] 95 O IPD EMB_A[6]/GP7[8] 96 O IPD EMB_A[5]/GP7[7] 97 O IPD EMB_A[4]/GP7[6] 98 O IPD EMB_A[3]/GP7[5] 100 O IPD EMB_A[2]/GP7[4] 101 O IPD EMB_A[1]/GP7[3] 102 O IPD EMB_A[0]/GP7[2] 103 O IPD EMB_BA[1]/GP7[0] 106 O IPU EMB_BA[0]/GP7[1] 107 O IPU EMIFB SDRAM bank address. EMB_CLK 86 O IPU EMIF SDRAM clock. EMB_SDCKE 88 I/O IPU EMIFB SDRAM clock enable. EMB_WE 59 O IPU EMIFB write enable EMB_RAS 110 O IPU EMIFB SDRAM row address strobe. EMB_CAS 57 O IPU EMIFB column address strobe. EMB_CS[0] 108 O IPU EMIFB SDRAM chip select 0. (1) (2) 32 GPIO EMIFB SDRAM data bus. GPIO EMIFB SDRAM row/column address bus. EMIFB SDRAM row/column address. GPIO I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note:The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor Device Overview Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 Table 2-9. External Memory Interface B (EMIFB) Terminal Functions (continued) PIN NO SIGNAL NAME PTP TYPE (1) PULL (2) EMB_WE_DQM[1] /GP5[14] 85 O IPU EMB_WE_DQM[0] /GP5[15] 60 O IPU 2.8.6 MUXED GPIO DESCRIPTION EMIFB write enable/data mask for EMB_D. Serial Peripheral Interface Modules (SPI0, SPI1) Table 2-10. Serial Peripheral Interface (SPI) Terminal Functions PIN NO SIGNAL NAME PTP TYPE (1) PULL (2) MUXED DESCRIPTION SPI0 SPI0_SCS[0] /UART0_RTS/EQEP0B/GP5[4]/BOOT[4] 9 I/O IPU UART0, EQEP0B, GPIO, BOOT SPI0 chip select. SPI0_ENA /UART0_CTS/EQEP0A/GP5[3]/BOOT[3] 12 I/O IPU UART0, EQEP0A, GPIO, BOOT SPI0 enable. SPI0_CLK/EQEP1I/GP5[2]/BOOT[2] 11 I/O IPD eQEP1, GPIO, BOOT SPI0 clock. SPI0_SIMO[0]/EQEP0S/GP5[1]/BOOT[1] 18 I/O IPD SPI0_SOMI[0]/EQEP0I/GP5[0]/BOOT[0] 17 I/O IPD SPI1_SCS[0] /UART2_TXD/GP5[13] 8 I/O IPU SPI1_ENA /UART2_RXD/GP5[12] 7 I/O IPU SPI1_CLK/EQEP1S/GP5[7]/BOOT[7]` 16 I/O IPD SPI1_SIMO[0]/I2C1_SDA/GP5[6]/BOOT[6] 14 I/O IPU SPI1_SOMI[0]/I2C1_SCL/GP5[5]/BOOT[5] 13 I/O IPU eQEP0, GPIO, BOOT SPI0 data slave-inmaster-out. SPI0 data slaveout-master-in. SPI1 SPI1 chip select. UART2, GPIO SPI1 enable. eQEP1, GPIO, BOOT SPI1 clock. I2C1, GPIO, BOOT (1) (2) SPI1 data slave-inmaster-out. SPI1 data slaveout-master-in. I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor Device Overview Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT 33 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 2.8.7 www.ti.com Enhanced Capture/Auxiliary PWM Modules (eCAP0, eCAP1, eCAP2) The eCAP Module pins function as either input captures or auxiliary PWM 32-bit outputs, depending upon how the eCAP module is programmed. Table 2-11. Enhanced Capture Module (eCAP) Terminal Functions SIGNAL NAME PIN NO PTP TYPE (1) PULL (2) I/O IPD McASP0, GPIO enhanced capture 0 input or auxiliary PWM 0 output. I/O IPD McASP0, GPIO enhanced capture 1 input or auxiliary PWM 1 output. I/O IPD McASP1, GPIO enhanced capture 2 input or auxiliary PWM 2 output. MUXED DESCRIPTION eCAP0 ACLKX0/ECAP0/APWM0/GP2[12] 126 eCAP1 ACLKR0/ECAP1/APWM1/GP2[15] 130 eCAP2 ACLKR1/ECAP2/APWM2/GP4[12] (1) (2) 165 I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor 2.8.8 Enhanced Pulse Width Modulators (eHRPWM0, eHRPWM1, eHRPWM2) Table 2-12. Enhanced Pulse Width Modulator (eHRPWM) Terminal Functions SIGNAL NAME PIN NO PTP TYPE (1) PULL (2) MUXED DESCRIPTION eHRPWM0 eHRPWM0 A output. ACLKX1/EPWM0A/GP3[15] 162 I/O IPD AHCLKX1/EPWM0B/GP3[14] 160 I/O IPD AMUTE1/EPWMTZ/GP4[14] 132 I/O IPD McASP1, eHRPWM1, GPIO, eHRPWM2 eHRPWM0 trip zone input. AFSX1/EPWMSYNCI/EPWMSYNCO/GP4[10] 163 I/O IPD McASP1, eHRPWM0, GPIO Sync input to eHRPWM0 module or sync output to external PWM. McASP1, GPIO eHRPWM0 B output. eHRPWM1 AXR1[8]/EPWM1A/GP4[8] 168 I/O IPD AXR1[7]/EPWM1B/GP4[7] 169 I/O IPD AMUTE1/EPWMTZ/GP4[14] 132 I/O IPD McASP1, GPIO eHRPWM1 A (with high-resolution). eHRPWM1 B. McASP1, eHRPWM0, GPIO, eHRPWM2 eHRPWM1 trip zone input. eHRPWM2 (1) (2) 34 I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor Device Overview Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 Table 2-12. Enhanced Pulse Width Modulator (eHRPWM) Terminal Functions (continued) PIN NO SIGNAL NAME PTP TYPE (1) PULL (2) AXR1[6]/EPWM2A/GP4[6] 170 I/O IPD AXR1[5]/EPWM2B/GP4[5] 171 I/O IPD AMUTE1/EPWMTZ/GP4[14] 132 I/O IPD 2.8.9 MUXED DESCRIPTION eHRPWM2 A (with high-resolution). McASP1, GPIO eHRPWM2 B. McASP1, eHRPWM0, GPIO, eHRPWM2 eHRPWM2 trip zone input. Enhanced Quadrature Encoder Pulse Module (eQEP) Table 2-13. Enhanced Quadrature Encoder Pulse Module (eQEP) Terminal Functions PIN NO SIGNAL NAME PTP TYPE (1) PULL (2) MUXED DESCRIPTION eQEP0 SPI0_ENA/UART0_CTS/EQEP0A/GP5[3]/BOOT[3] 12 I IPU SPI0_SCS[0]/UART0_RTS/EQEP0B/GP5[4]/BOOT[4] 9 I IPU SPI0_SOMI[0]/EQEP0I/GP5[0]/BOOT[0] 17 I IPD SPI0_SIMO[0]/EQEP0S/GP5[1]/BOOT[1] 18 I IPD eQEP0A quadrature input. SPIO, UART0, GPIO, BOOT eQEP0B quadrature input. SPI0, GPIO, BOOT eQEP0 index. eQEP0 strobe. eQEP1 eQEP1A quadrature input. AXR1[3]/EQEP1A/GP4[3] 174 I IPD AXR1[4]/EQEP1B/GP4[4] 173 I IPD SPI0_CLK/EQEP1I/GP5[2]/BOOT[2] 11 I IPD SPI0, GPIO, BOOT eQEP1 index. SPI1_CLK/EQEP1S/GP5[7]/BOOT[7] 16 I IPD SPI1, GPIO, BOOT eQEP1 strobe. McASP1, GPIO (1) (2) eQEP1B quadrature input. I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor 2.8.10 Boot Table 2-14. Boot Terminal Functions (1) PIN NO SIGNAL NAME PTP TYPE (2) PULL (3) MUXED DESCRIPTION EMA_CS[2]/UHPI_HCS/GP2[5]/BOOT[15] 23 I IPU EMIFA, UHPI, GPIO BOOT[15]. EMA_WE/UHPI_HRW/AXR0[12]/GP2[3]/BOOT[14] 55 I IPU EMIFA, UHPI, McASP0, GPIO BOOT[14]. EMA_D[7]/MMCSD_DAT[7]/UHPI_HD[7]/GP0[7]/BOOT[13] 54 I IPU EMA_D[0]/MMCSD_DAT[0]/UHPI_HD[0]/GP0[0]/BOOT[12] 44 I IPU AHCLKR0/RMII_MHZ_50_CLK/GP2[14]/BOOT[11] 129 I IPD McASP0, EMAC, GPIO BOOT[11]. AFSX0/GP2[13]/BOOT[10] 127 I IPD McASP0, GPIO BOOT[10]. (1) (2) (3) EMIFA, MMC/SD, UHPI, GPIO BOOT[13]. BOOT[12]. Boot decoding will be defined in the ROM datasheet. I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor Device Overview Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT 35 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 www.ti.com Table 2-14. Boot Terminal Functions(1) (continued) PIN NO SIGNAL NAME PTP TYPE (2) PULL (3) MUXED DESCRIPTION UART0_TXD/I2C0_SCL/TM64P0_OUT12/GP5[9]/BOOT[9] 3 I IPU UART0, I2C0, Timer0, GPIO BOOT[9]. UART0_RXD/I2C0_SDA/TM64P0_IN12/GP5[8]/BOOT[8] 2 I IPU UART0, I2C0, Timer0, GPIO BOOT[8]. SPI1_CLK/EQEP1S/GP5[7]/BOOT[7] 16 I IPD SPI1, eQEP1, GPIO BOOT[7]. SPI1_SIMO[0]/I2C1_SDA/GP5[6]/BOOT[6] 14 I IPU SPI1_SOMI[0]/I2C1_SCL/GP5[5]/BOOT[5] 13 I IPU SPI0_SCS[0]/UART0_RTS/EQEP0B/GP5[4]/BOOT[4] 9 I IPU SPI0, UART0, eQEP0, GPIO BOOT[4]. SPI0_ENA/UART0_CTS/EQEP0A/GP5[3]/BOOT[3] 12 I IPU SPI0, UART0, eQEP0, GPIO BOOT[3]. SPI0_CLK/EQEP1I/GP5[2]/BOOT[2] 11 I IPD SPIO, eQEP1, GPIO BOOT[2]. SPI0_SIMO[0]/EQEP0S/GP5[1]/BOOT[1] 18 I IPD SPI0_SOMI[0]/EQEP0I/GP5[0]/BOOT[0] 17 I IPD SPI1, I2C1, GPIO SPI0, eQEP0, GPIO BOOT[6]. BOOT[5]. BOOT[1]. BOOT[0]. 2.8.11 Universal Asynchronous Receiver/Transmitters (UART0, UART1, UART2) Table 2-15. Universal Asynchronous Receiver/Transmitter (UART) Terminal Functions PIN NO SIGNAL NAME PTP TYPE (1) PULL (2) MUXED DESCRIPTION UART0 UART0_RXD/I2C0_SDA/TM64P0_IN12/GP5[8]/BOOT[8] 2 I IPU I2C0, BOOT, Timer0, GPIO, UART0 receive data. UART0_TXD/I2C0_SCL/TM64P0_OUT12/GP5[9]/BOOT[9] 3 O IPU I2C0, Timer0, GPIO, BOOT UART0 transmit data. SPI0_SCS[0]/ UART0_RTS /EQEP0B/GP5[4]/BOOT[4] 9 O IPU SPI0_ENA/ UART0_CTS /EQEP0A/GP5[3]/BOOT[3] 12 I IPU I IPD SPIO, eQEP0, GPIO, BOOT UART0 ready-tosend output UART0 clear-tosend input UART1 UART1_RXD/AXR0[9]/GP3[9] (3) 122 McASP0, GPIO UART1_TXD/AXR0[10]/GP3[10] (3) 123 UART1 receive data. O IPD UART1 transmit data. UART2 receive data. UART2 SPI1_ENA/UART2_RXD/GP5[12] 7 I IPU SPI1_SCS[0]/UART2_TXD/GP5[13] 8 O IPU SPI1, GPIO (1) (2) (3) 36 UART2 transmit data. I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor As these signals are internally pulled down while the device is in reset, it is necessary to externally pull them high with resistors if UART1 boot mode is used. See the OMAP-L137 Applications Processor Stsyem Reference Guide - Literature Number SPRUG84 for more for details on entering UART1 boot mode. Device Overview Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 2.8.12 Inter-Integrated Circuit Modules(I2C0, I2C1) Table 2-16. Inter-Integrated Circuit (I2C) Terminal Functions PIN NO SIGNAL NAME PTP TYPE (1) PULL (2) MUXED DESCRIPTION I2C0 UART0_RXD/I2C0_SDA/TM64P0_IN12/GP5[8]/BOOT[8] 2 I/O IPU UART0, Timer0, GPIO, BOOT I2C0 serial data. UART0_TXD/I2C0_SCL/TM64P0_OUT12/GP5[9]/BOOT[9] 3 I/O IPU UART0, Timer0, GPIO, BOOT I2C0 serial clock. I2C1 SPI1_SIMO[0]/I2C1_SDA/GP5[6]/BOOT[6] 14 I/O IPU SPI1_SOMI[0]/I2C1_SCL/GP5[5]/BOOT[5] 13 I/O IPU (1) (2) SPI1, GPIO, BOOT I2C1 serial Data. I2C1 serial clock. I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor 2.8.13 Timers Table 2-17. Timers Terminal Functions PIN NO SIGNAL NAME PTP TYPE (1) PULL (2) MUXED DESCRIPTION TIMER0 UART0_RXD/I2C0_SDA/TM64P0_IN12/GP5[8]/BOOT[8] 2 I IPU UART0_TXD/I2C0_SCL/TM64P0_OUT12/GP5[9]/BOOT[9] 3 O IPU UART0, I2C0, GPIO, BOOT Timer0 lower input. Timer0 lower output TIMER1 (Watchdog ) No external pins. The Timer1 peripheral pins are not pinned out as external pins. (1) (2) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor 2.8.14 Universal Host-Port Interface (UHPI) Note: The UHPI module requires 16 data pins for the host port interface to function. Therefore on the PTP, the UHPI is not available. Device Overview Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT 37 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 www.ti.com Table 2-18. Universal Host-Port Interface (UHPI) Terminal Functions PIN NO SIGNAL NAME PTP TYPE ( 1) PULL (2) EMA_D[7]/MMCSD_DAT[7]/UHPI_HD[7]/GP0[7]/ BOOT[13] 54 I/O IPU EMA_D[6]/MMCSD_DAT[6]/UHPI_HD[6]/GP0[6] 52 I/O IPU EMA_D[5]/MMCSD_DAT[5]/UHPI_HD[5]/GP0[5] 51 I/O IPU EMA_D[4]/MMCSD_DAT[4]/UHPI_HD[4]/GP0[4] 49 I/O IPU EMA_D[3]/MMCSD_DAT[3]/UHPI_HD[3]/GP0[3] 48 I/O IPU EMA_D[2]/MMCSD_DAT[2]/UHPI_HD[2]/GP0[2] 46 I/O IPU EMA_D[1]/MMCSD_DAT[1]/UHPI_HD[1]/GP0[1] 45 I/O IPU EMA_D[0]/MMCSD_DAT[0]/UHPI_HD[0]/GP0[0]/ BOOT[12] 44 I/O IPU EMA_A[2]/MMCSD_CMD/UHPI_HCNTL1/GP1[2] 31 I/O IPU EMA_A[1]/MMCSD_CLK/UHPI_HCNTL0/GP1[1] 30 I/O EMA_BA[1]/LCD_D[5]/UHPI_HHWIL/GP1[13] 26 EMA_WE/UHPI_HRW /AXR0[12]/GP2[3]/BOOT[14] MUXED DESCRIPTION EMIFA, MMC/SD, GPIO, BOOT EMIFA, MMC/SD, GPIO UHPI data bus. EMIFA, MMC/SD, GPIO, BOOT IPU EMIFA, MMCSD_CMD, GPIO UHPI access control. I/O IPU EMIFA, LCD, GPIO UHPI half-word identification control. 55 I/O IPU EMIFA, McASP, GPIO, BOOT UHPI read/write. EMA_CS[2]/ UHPI_HCS /GP2[5]/BOOT[15] 23 I/O IPU EMIFA, GPIO, BOOT UHPI chip select. EMA_OE/ UHPI_HDS1 /AXR0[13]/GP2[7] 22 I/O IPU EMIFA, McASP0, GPIO UHPI data strobe. EMA_WAIT[0]/ UHPI_HRDY /GP2[10] 19 I/O IPU EMIFA, GPIO UHPI ready. (1) (2) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor 2.8.15 Multichannel Audio Serial Ports (McASP0, McASP1, McASP2) Table 2-19. Multichannel Audio Serial Ports (McASPs) Terminal Functions PIN NO SIGNAL NAME PTP TYPE (1) PULL (2) MUXED DESCRIPTION McASP0 (1) (2) 38 I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor Device Overview Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 Table 2-19. Multichannel Audio Serial Ports (McASPs) Terminal Functions (continued) PIN NO SIGNAL NAME PTP TYPE (1) PULL (2) MUXED DESCRIPTION EMA_OE/UHPI_HDS1/AXR0[13]/GP2[7] 24 I/O IPU EMIFA, UHPI, GPIO EMA_WE/UHPI_HRW/AXR0[12]/GP2[3]/BOOT[14] 55 I/O IPU EMIFA, UHPI, GPIO, BOOT AXR0[11]/ AXR2[0]/GP3[11] 124 I/O IPD McASP2, GPIO AXR0[10]/GP3[10] 123 I/O IPD GPIO AXR0[9]/GP3[9] 122 I/O IPD GPIO AXR0[8]/MDIO_D/GP3[8] 121 I/O IPU AXR0[7]/MDIO_CLK/GP3[7] 120 I/O IPD AXR0[6]/RMII_RXER[0]/ACLKR2/GP3[6] 118 I/O IPD AXR0[5]/RMII_RXD[1]/AFSX2/GP3[5] 117 I/O IPD AXR0[4]/ RMII_RXD[0]/AXR2[1]/GP3[4] 116 I/O IPD AXR0[3]/RMII_CRS_DV/AXR2[2]/GP3[3] 115 I/O IPD AXR0[2]/RMII_TXEN/AXR2[3]/GP3[2] 113 I/O IPD AXR0[1]/RMII_TXD[1]/ACLKX2/GP3[1] 112 I/O IPD AXR0[0]/RMII_TXD[0]/AFSR2/GP3[0] 111 I/O IPD AHCLKX0/AHCLKX2/USB_REFCLKIN/GP2[11] 125 I/O IPD McASP0 McASP2, USB, transmit master GPIO clock. ACLKX0/ECAP0/APWM0/GP2[12] 126 I/O IPD eCAP0, GPIO McASP0 transmit bit clock. AFSX0/GP2[13]/BOOT[10] 127 I/O IPD GPIO, BOOT McASP0 transmit frame sync. AHCLKR0/RMII_MHZ_50_CLK/GP2[14]/BOOT[11] 129 I/O IPD EMAC, GPIO, BOOT McASP0 receive master clock. ACLKR0/ECAP1/APWM1/GP2[15] 130 I/O IPD eCAP1, GPIO McASP0 receive bit clock. AFSR0/GP3[12] 131 I/O IPD GPIO McASP0 receive frame sync. AXR1[11]/GP5[11] 6 I/O IPU AXR1[10]/GP5[10] 4 I/O IPU AXR1[8]/EPWM1A/GP4[8] 168 I/O IPD eHRPWM1 A, GPIO AXR1[7]/EPWM1B/GP4[7] 169 I/O IPD eHRPWM1 B, GPIO AXR1[6]/EPWM2A/GP4[6] 170 I/O IPD eHRPWM2 A, GPIO eHRPWM2 B, GPIO MDIO, GPIO McASP0 serial data. EMAC, McASP2, GPIO McASP1 AXR1[5]/EPWM2B/GP4[5] 171 I/O IPD AXR1[4]/EQEP1B/GP4[4] 173 I/O IPD AXR1[3]/EQEP1A/GP4[3] 174 I/O IPD AXR1[2]/GP4[2] 175 I/O IPD AXR1[1]/GP4[1] 176 I/O IPD AXR1[0]/GP4[0] 1 I/O IPD 160 I/O IPD AHCLKX1/EPWM0B/GP3[14] GPIO McASP1 serial data. eQEP, GPIO GPIO eHRPWM0, GPIO McASP1 transmit master clock. Device Overview Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT 39 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 www.ti.com Table 2-19. Multichannel Audio Serial Ports (McASPs) Terminal Functions (continued) PIN NO SIGNAL NAME PTP TYPE (1) PULL (2) MUXED DESCRIPTION ACLKX1/EPWM0A/GP3[15] 162 I/O IPD eHRPWM0, GPIO McASP1 transmit bit clock. AFSX1/EPWMSYNCI/EPWMSYNCO/GP4[10] 163 I/O IPD eHRPWM0, GPIO McASP1 transmit frame sync. ACLKR1/ECAP2/APWM2/GP4[12] 165 I/O IPD eCAP2, GPIO McASP1 receive bit clock. AFSR1/GP4[13] 166 I/O IPD GPIO McASP1 receive frame sync. eHRPWM0, eHRPWM1, GPIO, eHRPWM2 McASP1 mute output. AMUTE1/EPWMTZ/GP4[14] 132 O IPD AXR0[2]/RMII_TXEN/ AXR2[3]/GP3[2] 113 I/O IPD AXR0[3]/RMII_CRS_DV/ AXR2[2]/GP3[3] 115 I/O IPD AXR0[4]/RMII_RXD[0]/ AXR2[1]/GP3[4] 116 I/O IPD AXR0[11]/AXR2[0]/GP3[11] 124 I/O IPD AHCLKX0/AHCLKX2/USB_REFCLKIN/GP2[11] 125 I/O IPD AXR0[1]/RMII_TXD[1]/ ACLKX2/GP3[1] 112 I/O IPD AXR0[5]/RMII_RXD[1]/ AFSX2/GP3[5] 117 I/O IPD McASP0, EMAC, GPIO McASP2 transmit frame sync. AXR0[6]/RMII_RXER[0]/ ACLKR2/GP3[6] 118 I/O IPD McASP0, EMAC, GPIO McASP2 receive bit clock. EMA_CS[3]/AMUTE2/GP2[6] 21 O IPU EMIFA, GPIO McASP2 mute output. McASP2 McASP0, EMAC, GPIO McASP2 serial data. McASP0, GPIO McASP2 transmit master McASP0, USB, clock. GPIO McASP2 transmit bit clock. 2.8.16 Universal Serial Bus Modules (USB0, USB1) Table 2-20. Universal Serial Bus (USB) Terminal Functions SIGNAL NAME PIN NO PTP TYPE (1) PULL (2) DESCRIPTION USB0 2.0 OTG USB0_DM 138 A USB0 PHY data minus USB0_DP 137 A USB0 PHY data plus USB0_VDDA33 140 PWR USB0 PHY 3.3-V supply USB0_VDDA18 135 PWR USB0 PHY 1.8-V supply input USB0_VDDA12 (3) 134 PWR USB0 PHY 1.2-V LDO output for bypass cap AHCLKX0/AHCLKX2/USB_REFCLKIN/GP2[11] 125 I (1) (2) (3) 40 IPD USB_REFCLKIN. Optional 48 MHz clock input. I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor Core power supply LDO output for USB PHY. This pin must be connected via a 0.22 -μF capacitor to VSS. When the USB peripheral is not used, the USB_VDDA12 signal should still be connected via a 1-μF capacitor to VSS. Device Overview Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 Table 2-20. Universal Serial Bus (USB) Terminal Functions (continued) SIGNAL NAME PIN NO TYPE (1) PULL (2) PTP DESCRIPTION USB1 1.1 OHCI AHCLKX0/AHCLKX2/USB_REFCLKIN/GP2[11] 125 I IPD USB_REFCLKIN. Optional 48 MHz clock input. 2.8.17 Ethernet Media Access Controller (EMAC) Table 2-21. Ethernet Media Access Controller (EMAC) Terminal Functions SIGNAL NAME PIN NO TYPE (1) PULL (2) PTP MUXED DESCRIPTION RMII AHCLKR0/RMII_MHZ_50_CLK/GP2[14]/BOOT[11] 129 I/O IPD AXR0[6]/RMII_RXER[0]/ACLKR2/GP3[6] 118 I IPD AXR0[5]/RMII_RXD[1]/AFSX2/GP3[5] 117 I IPD AXR0[4]/RMII_RXD[0]/AXR2[1]/GP3[4] 116 I IPD AXR0[3]/RMII_CRS_DV/AXR2[2]/GP3[3] 115 I IPD AXR0[2]/RMII_TXEN/AXR2[3]/GP3[2] 113 O IPD AXR0[1]/RMII_TXD[1]/ACLKX2/GP3[1] 112 O IPD AXR0[0]/RMII_TXD[0]/AFSR2/GP3[0] 111 O IPD EMAC 50-MHz clock input or output. McASP0, GPIO, BOOT EMAC RMII receiver error. EMAC RMII receive data. McASP0, McASP2, GPIO EMAC RMII carrier sense data valid. EMAC RMII transmit enable. EMAC RMII trasmit data. MDIO AXR0[8]/MDIO_D/GP3[8] 121 I/O IPU AXR0[7]/MDIO_CLK/GP3[7] 120 O IPD (1) (2) McASP0, GPIO MDIO data clock. I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor 2.8.18 Multimedia Card/Secure Digital (MMC/SD) Table 2-22. Multimedia Card/Secure Digital (MMC/SD) Terminal Functions SIGNAL NAME PIN NO PTP TYPE (1) PULL (2) EMA_A[1]/MMCSD_CLK/UHPI_HCNTL0/GP1[1] 30 O IPU EMA_A[2]/MMCSD_CMD/UHPI_HCNTL1/GP1[2] 31 I/O IPU (1) (2) MUXED DESCRIPTION EMIFA, UHPI, GPIO MMCSD_CLK. MMCSD_CMD. I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor Device Overview Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT 41 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 www.ti.com Table 2-22. Multimedia Card/Secure Digital (MMC/SD) Terminal Functions (continued) PIN NO SIGNAL NAME PTP TYPE (1) PULL (2) MUXED EMIFA, UHPI, GPIO, BOOT EMA_D[7]/MMCSD_DAT[7]/UHPI_HD[7]/GP0[7]/BOOT[13] 54 I/O IPU EMA_D[6]/MMCSD_DAT[6]/UHPI_HD[6]/GP0[6] 52 I/O IPU EMA_D[5]/MMCSD_DAT[5]/UHPI_HD[5]/GP0[5] 51 I/O IPU EMA_D[4]/MMCSD_DAT[4]/UHPI_HD[4]/GP0[4] 49 I/O IPU EMA_D[3]/MMCSD_DAT[3]/UHPI_HD[3]/GP0[3] 48 I/O IPU EMA_D[2]/MMCSD_DAT[2]/UHPI_HD[2]/GP0[2] 46 I/O IPU EMA_D[1]/MMCSD_DAT[1]/UHPI_HD[1]/GP0[1] 45 I/O IPU EMA_D[0]/MMCSD_DAT[0]/UHPI_HD[0]/GP0[0]/BOOT[12] 44 I/O IPU 42 Device Overview EMIFA, UHPI, GPIO DESCRIPTION MMC/SD data. EMIFA, UHPI, GPIO, BOOT Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com 2.8.19 SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 Liquid Crystal Display Controller(LCD) Table 2-23. Liquid Crystal Display Controller (LCD) Terminal Functions PIN NO SIGNAL NAME PTP TYPE (1) PULL (2) MUXED DESCRIPTION EMA_A[0]/LCD_D[7]/GP1[0] 29 I/O IPD EMA_A[3]/LCD_D[6]/GP1[3] 32 I/O IPD EMA_BA[1]/LCD_D[5]/UHPI_HHWIL/GP1[13] 26 I/O IPU EMA_BA[0]/LCD_D[4]/GP1[14] 25 I/O IPU EMA_A[4]/LCD_D[3]/GP1[4] 34 I/O IPD EMA_A[5]/LCD_D[2]/GP1[5] 35 I/O IPD EMA_A[6]/LCD_D[1]/GP1[6] 36 I/O IPD EMA_A[7]/LCD_D[0]/GP1[7] 37 I/O IPD EMA_A[8]/LCD_PCLK/GP1[8] 39 O IPU EMA_A[9]/LCD_HSYNC/GP1[9] 40 O IPU LCD horizontal sync. EMA_A[10]/LCD_VSYNC/GP1[10] 27 O IPU LCD vertical sync. EMA_A[11]/ LCD_AC_ENB_CS /GP1[11] 41 O IPU LCD AC bias enable chip select. EMA_A[12]/LCD_MCLK/GP1[12] 42 O IPU LCD memory clock. (1) (2) EMIFA, GPIO EMIFA, UHPI, GPIO LCD data bus. EMIFA, GPIO LCD pixel clock. I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal. Note: The pin type shown refers to the input, output or high-impedance state of the pin function when configured as the the signal name highlighted in bold. All multiplexed signals may enter a high-impedance state when the configured function is input-only or the configured function supports high-Z operation. All GPIO signals can be used as input or output. For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction for that particular peripheral. IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor 2.8.20 Reserved and No-connect Table 2-24. Reserved and No-connect Terminal Functions SIGNAL NAME PIN NO PTP TYPE (1) DESCRIPTION Reserved. For proper device operation, this pin must be tied directly to CVDD. RSV2 133 PWR NC 139 - - NC 136 - - (1) PWR = Supply voltage. Device Overview Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT 43 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 www.ti.com 2.8.21 Supply and Ground Table 2-25. Supply and Ground Terminal Functions PIN NO SIGNAL NAME PTP TYPE (1) DESCRIPTION CVDD (Core supply) 10, 20, 28, 38, 50, 56, 61, 67, 69, 77, 93, 104, 114, 147, 154, 159, 161, 167, PWR 1.2-V core supply voltage pins DVDD (I/O supply) 5, 15, 24, 33, 43, 47, 53, 58, 65, 71, 75, 81, 87, 90, 99, 109, 119, 128, 151, 158, 164, 172, PWR 3.3-V I/O supply voltage pins. VSS (Ground) 177 GND Ground pins. (1) 44 PWR = Supply voltage, GND - Ground. Device Overview Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 3 Device Configuration 3.1 Introduction This device supports a variety of boot modes through an internal DSP ROM bootloader. This device does not support dedicated hardware boot modes; therefore, all boot modes utilize the internal DSP ROM. The input states of the BOOT pins are sampled and latched into the BOOTCFG register, which is part of the system configuration (SYSCFG) module, when device reset is deasserted. Boot mode selection is determined by the values of the BOOT pins. See Using the D800K001 Bootloader Application Report (SPRAB04) for more details on the ROM Boot Loader. 3.2 Boot Modes Supported The following boot modes are supported: • NAND Flash boot – 8-bit NAND – 16-bit NAND • NOR Flash boot – NOR Direct boot – NOR Legacy boot – NOR AIS boot • HPI Boot • I2C0/I2C1 Boot – Master boot – Slave boot • SPI0/SPI1 Boot – Master boot – Slave boot For more details on the boot mode selection, see TMS320OMAPL137 Digital Audio System-on-Chip User's Guide SPRUG83. 3.3 SYSCFG Module The following system level features of the chip are controlled by the SYSCFG peripheral: • Readable Device, Die, and Chip Revision ID • Control of Pin Multiplexing • Priority of bus accesses different bus masters in the system • Capture at power on reset the chip BOOT[15:0] pin values and make them available to software • Special case settings for peripherals: – Locking of PLL controller settings – Default burst sizes for EDMA3 TC0 and TC1 – Selection of the source for the eCAP module input capture (including on chip sources) – McASP AMUTEIN selection and clearing of AMUTE status for the three McASP peripherals – Control of the reference clock source and other side-band signals for both of the integrated USB PHYs – Clock source selection for EMIFA and EMIFB • Selects the source of emulation suspend signal (from either ARM or DSP) from peripherals supporting this function. • Control of on-chip inter-processor interrupts for signaling between ARM and DSP Device Configuration Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT 45 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 www.ti.com Since the SYSCFG peripheral controls global operation of the device, its registers are protected against erroneous accesses by several mechanisms: • A special key sequence must be written to KICK0, KICK1 registers before any other registers are writeable. • Additionally, many registers are accessible only by a host (ARM or DSP) when it is operating in its privileged mode. (ex. from the kernel, but not from user space code). • On a secure OMAPL137 device, some accesses are further restricted to the DSP running in secure mode. Note that this protection does not apply to OMAPL137 devices that are ordered with the "No Security Option". Table 3-1. System Configuration (SYSCFG) Module Register Access Offset 46 Acronym Register Description Access 0x01C1 4000 REVID Revision Identification Register — 0x01C14008 DIEIDR0 Device Identification Register 0 — 0x01C1 400C DIEIDR1 Device Identification Register 1 — 0x01C1 4010 DIEIDR2 Device Identification Register 2 — 0x01C1 4014 DIEIDR3 Device Identification Register 3 — 0x01C1 4018 DEVIDR0 Device Identification Register 0 0x01C1 4020 BOOTCFG Boot Configuration Register Privileged mode — 0x01C1 4038 KICK0R Kick 0 Register Privileged mode 0x01C1 403C KICK1R Kick 1 Register Privileged mode 0x01C1 4040 HOST0CFG Host 0 Configuration Register — 0x01C1 4044 HOST1CFG Host 1 Configuration Register 0x01C1 40E0 IRAWSTAT Interrupt Raw Status/Set Register Privileged mode — 0x01C1 40E4 IENSTAT Interrupt Enable Status/Clear Register Privileged mode 0x01C1 40E8 IENSET Interrupt Enable Register Privileged mode 0x01C1 40EC IENCLR Interrupt Enable Clear Register Privileged mode 0x01C1 40F0 EOI End of Interrupt Register Privileged mode 0x01C1 40F4 FLTADDRR Fault Address Register Privileged mode 0x01C1 40F8 FLTSTAT Fault Status Register 0x01C1 4110 MSTPRI0 Master Priority 0 Register Privileged mode 0x01C1 4114 MSTPRI1 Master Priority 1 Register Privileged mode 0x01C1 4118 MSTPRI2 Master Priority 2 Register Privileged mode 0x01C1 4120 PINMUX0 Pin Multiplexing Control 0 Register Privileged mode 0x01C1 4124 PINMUX1 Pin Multiplexing Control 1 Register Privileged mode — 0x01C1 4128 PINMUX2 Pin Multiplexing Control 2 Register Privileged mode 0x01C1 412C PINMUX3 Pin Multiplexing Control 3 Register Privileged mode 0x01C1 4130 PINMUX4 Pin Multiplexing Control 4 Register Privileged mode 0x01C1 4134 PINMUX5 Pin Multiplexing Control 5 Register Privileged mode 0x01C1 4138 PINMUX6 Pin Multiplexing Control 6 Register Privileged mode 0x01C1 413C PINMUX7 Pin Multiplexing Control 7 Register Privileged mode 0x01C1 4140 PINMUX8 Pin Multiplexing Control 8 Register Privileged mode 0x01C1 4144 PINMUX9 Pin Multiplexing Control 9 Register Privileged mode 0x01C1 4148 PINMUX10 Pin Multiplexing Control 10 Register Privileged mode 0x01C1 414C PINMUX11 Pin Multiplexing Control 11 Register Privileged mode 0x01C1 4150 PINMUX12 Pin Multiplexing Control 12 Register Privileged mode 0x01C1 4154 PINMUX13 Pin Multiplexing Control 13 Register Privileged mode 0x01C1 4158 PINMUX14 Pin Multiplexing Control 14 Register Privileged mode 0x01C1 415C PINMUX15 Pin Multiplexing Control 15 Register Privileged mode Device Configuration Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 Table 3-1. System Configuration (SYSCFG) Module Register Access (continued) Acronym Register Description 0x01C1 4160 Offset PINMUX16 Pin Multiplexing Control 16 Register Privileged mode Access 0x01C1 4164 PINMUX17 Pin Multiplexing Control 17 Register Privileged mode 0x01C1 4168 PINMUX18 Pin Multiplexing Control 18 Register Privileged mode 0x01C1 416C PINMUX19 Pin Multiplexing Control 19 Register Privileged mode 0x01C1 4170 SUSPSRC Reserved Suspend Source Register — 0x01C1 4174 CHIPSIG Chip Signal Register — 0x01C1 4178 CHIPSIG_CLR Chip Signal Clear Register — 0x01C1 417C CFGCHIP0 Chip Configuration 0 Register Privileged mode 0x01C1 4180 CFGCHIP1 Chip Configuration 1 Register Privileged mode 0x01C1 4184 CFGCHIP2 Chip Configuration 2 Register Privileged mode 0x01C1 4188 CFGCHIP3 Chip Configuration 3 Register Privileged mode 0x01C1 418C CFGCHIP4 Chip Configuration 4 Register Privileged mode Privileged mode — Device Configuration Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT 47 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 www.ti.com 4 Device Operating Conditions 4.1 Absolute Maximum Ratings Over Operating Case Temperature Range (Unless Otherwise Noted) (1) Core (CVDD, RTC_CVDD, PLL0_VDDA (2) ) Supply voltage ranges I/O, 1.8V (USB0_VDDA18, USB1_VDDA18) Output voltage ranges Clamp Current -0.5 V to 2 V (3) I/O, 3.3V (DVDD, USB0_VDDA33, USB1_VDDA33) Input voltage ranges -0.5 V to 1.4 V (3) -0.5 V to 3.8 V (3) VI I/O, 1.2V (OSCIN, RTC_XI) -0.3 V to CVDD + 0.3V VI I/O, 3.3V (Steady State) -0.3V to DVDD + 0.3V VI I/O, 3.3V (Transient) DVDD + 20% up to 20% of Signal Period VI I/O, USB 5V Tolerant Pins: (USB0_DM, USB0_DP, USB0_ID, USB1_DM, USB1_DP) 5.25V (4) VI I/O, USB0 VBUS 5.50V (4) VO I/O, 3.3V (Steady State) -0.5 V to DVDD + 0.3V VO I/O, 3.3V (Transient Overshoot/Undershoot) 20% of DVDD for up to 20% of the signal period Input or Output Voltages 0.3V above or below their respective power rails. Limit clamp current that flows through the I/O's internal diode protection cells. ±20mA Operating Junction Temperature ranges, TJ -55°C to 175°C Storage temperature range, Tstg -55°C to 150°C (1) (2) (3) (4) 48 Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. This pin is an internal LDO output and connected via 0.22 µF capacitor to USB0_VDDA12. All voltage values are with respect to VSS, PLL0_VSSA, OSCVSS, RTC_VSS Up to a max of 24 hours. Device Operating Conditions Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com 4.2 SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 Recommended Operating Conditions CVDD DVDD MIN NOM MAX UNIT Supply voltage, Core (CVDD, RTC_CVDD, PLL0_VDDA , USB0_VDDA12 (1)) 1.14 1.2 1.32 V Supply voltage, I/O, 1.8V (USB0_VDDA18, USB1_VDDA18) 1.71 1.8 1.89 V Supply voltage, I/O, 3.3V (DVDD, USB0_VDDA33, USB1_VDDA33) 3.15 3.3 3.45 V 0 0 0 V Supply ground (VSS, PLL0_VSSA, OSCVSS (2), RTC_VSS (2)) VSS High-level input voltage, I/O, 3.3V VIH (3) High-level input voltage, RTC_XI High-level input voltage, OSCIN 2 V 0.8*RTC_CVDD V 0.8*CVDD Low-level input voltage, I/O, 3.3V VIL (3) Low-level input voltage, RTC_XI Low-level input voltage, OSCIN Input Hysteresis USB USB0_VBUS tt Transition time, 10%-90%, All Inputs TA Operating ambient temperature range FSYSCLK1,6 DSP and ARM Operating Frequency (SYSCLK1,6) (3) V V 0.2*CVDD VHYS (1) (2) 0.8 0.2*RTC_CVDD 160 4.75 5 mV 5.25 V 10 ns -55 175 °C 0 300 MHz This pin is an internal LDO output and connected via 0.22 μF capacitor to VSS. When an external crystal is used, oscillator ground (OSC_VSS, RTC_VSS) must be kept separate from other grounds and connected directly to the crystal load capacitor ground. These pins are shorted to VSS on the device itself and should not be connected to VSS on the circuit board. If a crystal is not used and the clock input is driven directly, then the oscillator VSS may be connected to board ground. These I/O specifications do not apply to USB I/Os. USB0 I/Os adhere to USB2.0 specification. USB1 I/Os adhere to USB1.1 specification. Device Operating Conditions Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT 49 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 www.ti.com Electrical Characteristics (1) 4.3 PARAMETER VOH TEST CONDITIONS (2) MAX USB0_VDDA33 High speed: USB0_DM and USB0_DP 360 440 Low/full speed: USB1_DM and USB1_DP 2.8 USB1_VDDA33 DVDD= 3.15V, IOH = -4 mA DVDD= 3.15V, IOH = -100 μA UNIT V mV V 2.4 V 2.95 V Low/full speed: USB0_DM and USB0_DP 0.0 0.3 V High speed: USB0_DM and USB0_DP -10 10 mV Low/full speed: USB1_DM and USB1_DP 0.0 0.3 V DVDD= 3.15V, IOL = 4mA 0.4 V DVDD= 3.15V, IOL = +100 μA 0.2 V VI = VSS to DVDD without opposing internal resistor ±35 μA Low-level output voltage (3.3V I/O) II TYP 2.8 High-level output voltage (3.3V I/O) VOL MIN Low/full speed: USB0_DM and USB0_DP Input current VI = VSS to DVDD with opposing internal pullup resistor (3) -30 -200 μA VI = VSS to DVDD with opposing internal pulldown resistor (3) 50 300 μA ±40 μA VI = VSS to USB1_VDDA33 USB1_DM and USB1_DP IOH High-level output current All peripherals -4 mA IOL Low-level output current All peripherals 4 mA I/O Off-state output current VO = VDD or VSS; Internal pull disabled ±35 μA IOZ (4) CI Input capacitance CO (1) (2) (3) (4) Output capacitance LVCMOS signals 3 OSCIN 5 RTC_XI 2 LVCMOS signals 3 pF pF Parameters are characterized over -40°C to 125°C unless otherwise noted. II applies to input-only pins and bi-directional pins. For input-only pins, II indicates the input leakage current. For bi-directional pins, II indicates the input leakage current and off-state (Hi-Z) output leakage current. Does not apply to USB0 pins. Please see USB2.0 specification. Applies only to pins with an internal pullup (IPU) or pulldown (IPD) resistor. IOZ applies to output-only pins, indicating off-state (Hi-Z) output leakage current. 7000 Estimated Life - Hours 6000 5000 4000 3000 2000 1000 25 50 75 100 125 175 Continuous TJ - °C A. B. See datasheet for absolute maximum and minimum recommended operating conditions. The predicted operating lifetime vs. junction temperature is based on reliability modeling using electromigration as the dominant failure mechanism affecting device wearout for the specific device process and design characteristics. Figure 4-1. OMAPL137 Operating Life Derating Chart at 300 MHz, Core 1.2 V 50 Device Operating Conditions Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 5 Peripheral Information and Electrical Specifications 5.1 Parameter Information 5.1.1 Parameter Information Device-Specific Information Tester Pin Electronics 42 Ω Data Sheet Timing Reference Point Output Under Test 3.5 nH Transmission Line Z0 = 50 Ω (see note) 4.0 pF A. Device Pin (see note) 1.85 pF The data sheet provides timing at the device pin. For output timing analysis, the tester pin electronics and its transmission line effects must be taken into account. A transmission line with a delay of 2 ns or longer can be used to produce the desired transmission line effect. The transmission line is intended as a load only. It is not necessary to add or subtract the transmission line delay (2 ns or longer) from the data sheet timings. Input requirements in this data sheet are tested with an input slew rate of < 4 Volts per nanosecond (4 V/ns) at the device pin. Figure 5-1. Test Load Circuit for AC Timing Measurements The load capacitance value stated is only for characterization and measurement of AC timing signals. This load capacitance value does not indicate the maximum load the device is capable of driving. 5.1.1.1 Signal Transition Levels All input and output timing parameters are referenced to Vref for both "0" and "1" logic levels. For 3.3 V I/O, Vref = 1.65 V. For 1.8 V I/O, Vref = 0.9 V. For 1.2 V I/O, Vref = 0.6 V.” Vref Figure 5-2. Input and Output Voltage Reference Levels for AC Timing Measurements All rise and fall transition timing parameters are referenced to VIL MAX and VIH MIN for input clocks, VOLMAX and VOH MIN for output clocks. Vref = VIH MIN (or VOH MIN) Vref = VIL MAX (or VOL MAX) Figure 5-3. Rise and Fall Transition Time Voltage Reference Levels 5.2 Recommended Clock and Control Signal Transition Behavior All clocks and control signals must transition between VIH and VIL (or between VIL and VIH) in a monotonic manner. Copyright © 2012–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAPL137-HT 51 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 5.3 5.3.1 www.ti.com Power Supplies Power-on Sequence OMAPL137 devices include on chip logic that ensures I/O pins are tri-stated during the power on ramp, as long as the RESET pin is asserted. This is true even if the core voltage (CVDD) has not yet ramped. Normally, the only requirement during the power on ramp is that both the RESET and TRST pins remain asserted (low) until after the power supply rails have fully ramped. However, if the on chip USB modules are used; then to limit any noise on the USB0_DM, andUSB0_DP, USB1_DM, and USB1_DP pins to less than 200mV during the power on ramp, the sequence illustrated in Figure 5-4 must be followed. The requirement is that the core supply (CVDD) must ramp to at least 0.9V (1) before the IO supply (DVDD) reaches the 1.65V point in its ramp (2). And as is always the case, RESET and TRST must remain asserted during the power on ramp and released only after CVDD and DVDD are within their specified ranges. (2) 1.65 V DVDD (3) (1) CVDD 900 mV RESET, TRST VIL USB0_DM, USB0_DP USB1_DM, USB1_DP 200 mV Figure 5-4. Power Sequence 5.3.2 Unused USB0 (USB2.0) and USB1 (USB1.1) Pin Configurations If one or both USB modules on the device are not used, then some of the power supplies to those modules may not be required. This can eliminate the requirement for a 1.8V power supply to the USB modules. The required pin configurations for unused USB modules are shown below. Table 5-1. Unused USB0 and USB1 Pin Configurations 52 SIGNAL NAME Configuration (When USB0 and USB1 are not used) Configuration (When USB0 is used and USB1 is not used) USB0_DM No connect Use as USB0 function USB0_DP No connect Use as USB0 function USB0_VDDA33 No connect 3.3V USB0_VDDA18 No connect 1.8V USB0_ID No connect Use as USB0 function USB0_VBUS No connect Use as USB0 function USB0_DRVVBUS/GP4[15] No connect or use as alternate function Use as USB0 or alternate function USB0_VDDA12 No connect Internal USB0 PHY output connected to an external filter capacitor USB1_DM No connect Ground USB1_DP No connect Ground USB1_VDDA33 No connect No connect USB1_VDDA18 No connect No connect Peripheral Information and Electrical Specifications Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 Table 5-1. Unused USB0 and USB1 Pin Configurations (continued) SIGNAL NAME Configuration (When USB0 and USB1 are not used) Configuration (When USB0 is used and USB1 is not used) AHCLKX0/AHCLKX2/USB_REFCLKIN/ GP2[11] No connect or use as alternate function Use as USB0 or alternate function 5.4 5.4.1 Reset Power-On Reset (POR) A power-on reset (POR) is required to place the device in a known good state after power-up. Power-On Reset is initiated by bringing RESET and TRST low at the same time. POR sets all of the device internal logic to its default state. All pins are tri-stated with the exception of RESETOUT which remains active through the reset sequence. RESETOUT is an output for use by other controllers in the system that indicates the device is currently in reset. RTCK is maintained active through a POR. A • • • • • summary of the effects of Power-On Reset is given below: All internal logic (including emulation logic and the PLL logic) is reset to its default state Internal memory is not maintained through a POR RESETOUT goes active All device pins go to a high-impedance state The RTC peripheral is not reset during a POR. A software sequence is required to reset the RTC CAUTION A watchdog reset triggers a POR. 5.4.2 Warm Reset A warm reset provides a limited reset to the device. Warm Reset is initiated by bringing only RESET low (TRST is maintained high through a warm reset). Warm reset sets certain portions of the device to their default state while leaving others unaltered. All pins are tri-stated with the exception of RESETOUT which remains active through the reset sequence. RESETOUT is an output for use by other controllers in the system that indicates the device is currently in reset. During emulation, the emulator will maintain TRST high and hence only warm reset (not POR) is available during emulation debug and development. RTCK is maintained active through a POR. A • • • • • 5.4.3 summary of the effects of Warm Reset is given below: All internal logic (except for the emulation logic and the PLL logic) is reset to its default state Internal memory is maintained through a warm reset RESETOUT goes active All device pins go to a high-impedance state The RTC peripheral is not reset during a warm reset. A software sequence is required to reset the RTC Reset Electrical Data Timings Table 5-2 assumes testing over the recommended operating conditions. Copyright © 2012–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAPL137-HT 53 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 www.ti.com Table 5-2. Reset Timing Requirements NO. (1) (2) (3) (4) (1) (2) (3) PARAMETER MIN 1 tw(RSTL) Pulse width, RESET/TRST low 100 ns 2 tsu(BPV-RSTH) Setup time, boot pins valid before RESET/TRST high 20 ns 3 th(RSTH-BPV) Hold time, boot pins valid after RESET/TRST high 20 ns 4 td(RSTH-RESETOUTH) RESET high to RESETOUT high; Warm reset 4096 RESET high to RESETOUT high; Power-on Reset 6192 MAX UNIT cycles (4) Parameters are characterized from -40°C to 125°C unless otherwise noted. RESETOUT is multiplexed with other pin functions. See the Terminal Functions table, Table 2-5 for details. For power-on reset (POR), the reset timings in this table refer to RESET and TRST together. For warm reset, the reset timings in this table refer to RESET only (TRST is held high). OSCIN cycles Power Supplies Ramping Power Supplies Stable Clock Source Stable OSCIN 1 RESET TRST 4 RESETOUT 3 2 Boot Pins Config Figure 5-5. Power-On Reset (RESET and TRST active) Timing Power Supplies Stable OSCIN TRST 1 RESET 5 4 RESETOUT 3 2 Boot Pins Driven or Hi-Z Config Figure 5-6. Warm Reset (RESET active, TRST high) Timing 54 Peripheral Information and Electrical Specifications Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com 5.5 SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 Crystal Oscillator or External Clock Input The device includes two choices to provide an external clock input, which is fed to the on-chip PLL to generate high-frequency system clocks. These options are illustrated in Figure 5-7 and Figure 5-8. For input clock frequencies between 12 and 20 MHz, a crystal with 80 ohm max ESR is recommended. For input clock frequencies between 20 and 30 MHz, a crystal with 60 Ω max ESR is recommended. Typical C1, C2 values are 10-20 pF. The CLKMODE bit in the PLLCTL register must be 0 to use the on-chip oscillator. If CLKMODE is set to 1, the internal oscillator is disabled. • Figure 5-7 illustrates the option that uses on-chip 1.2V oscillator with external crystal circuit. • Figure 5-8 illustrates the option that uses an external 1.2V clock input. C2 OSCIN Clock Input to PLL X1 OSCOUT C1 OSCVSS The oscillator performance is validated up to 125°C, operating above 125°C is recommended to be driven with an external clock source. Figure 5-7. On-Chip 1.2V Oscillator Table 5-3. Oscillator Timing Requirements NO. fosc PARAMETER Oscillator frequency range (OSCIN/OSCOUT) OSCIN NC MIN MAX UNIT 12 30 MHz Clock Input to PLL OSCOUT OSCVSS Figure 5-8. External 1.2V Clock Source Table 5-4. OSCIN Timing Requirements MIN MAX UNIT fOSCIN NO. OSCIN frequency range (OSCIN) PARAMETER 12 50 MHz tc(OSCIN) Cycle time, external clock driven on OSCIN 20 Copyright © 2012–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAPL137-HT ns 55 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 www.ti.com Table 5-4. OSCIN Timing Requirements (continued) NO. PARAMETER MIN tw(OSCINH) Pulse width high, external clock on OSCIN MAX 0.4 UNIT ns tc(OSCIN) tw(OSCINL) Pulse width low, external clock on OSCIN tt(OSCIN) Transition time, OSCIN tj(OSCIN) Period jitter, OSCIN 5.6 0.4 tc(OSCIN) ns 5 ns 0.02P ns Clock PLLs The device has one PLL controller that provides clock to different parts of the system. PLL0 provides clocks (though various dividers) to most of the components of the device. The PLL controller provides the following: • Glitch-Free Transitions (on changing clock settings) • Domain Clocks Alignment • Clock Gating • PLL power down The various clock outputs given by the controller are as follows: • Domain Clocks: SYSCLK [1:n] • Auxiliary Clock from reference clock source: AUXCLK Various dividers that can be used are as follows: • Post-PLL Divider: POSTDIV • SYSCLK Divider: D1, ¼, Dn Various other controls supported are as follows: • PLL Multiplier Control: PLLM • Software programmable PLL Bypass: PLLEN 5.6.1 PLL Device-Specific Information The device DSP generates the high-frequency internal clocks it requires through an on-chip PLL. The PLL requires some external filtering components to reduce power supply noise as shown in Figure 59. CVDD PLL0_VDDA 50R 0.1 µF VSS 50R 0.01 µF PLL0_VSSA Ferrite Bead Figure 5-9. PLL External Filtering Components The input to the PLL is either from the on-chip oscillator (OSCIN pin) or from an external clock on the CLKIN pin. The PLL outputs seven clocks that have programmable divider options. Figure 5-10 illustrates the PLL Topology. The PLL is disabled by default after a device reset. It must be configured by software according to the allowable operating conditions listed in Table 5-5 before enabling the DSP to run from the PLL by setting PLLEN = 1. 56 Peripheral Information and Electrical Specifications Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 CLKMODE OSCIN PLLEN Square Wave 1 Crystal 0 PLL Pre-Div Post-Div PLLM 1 PLLDIV1 (/1) SYSCLK1 0 PLLDIV2 (/2) SYSCLK2 PLLDIV3 (/3) SYSCLK3 PLLDIV4 (/4) SYSCLK4 PLLDIV5 (/3) SYSCLK5 PLLDIV6 (/1) SYSCLK6 PLLDIV7 (/6) SYSCLK7 AUXCLK 0 DIV4.5 1 EMIFA Internal Clock Source CFGCHIP3[EMA_CLKSRC] DIV4.5 1 0 EMIFB Internal Clock Source CFGCHIP3[EMB_CLKSRC] SYSCLK1 SYSCLK2 SYSCLK3 SYSCLK4 SYSCLK5 SYSCLK6 SYSCLK7 14h 17h 18h 19h 1Ah 1Bh 1Ch 1Dh OSCDIV OBSCLK Pin OCSEL[OCSRC] Figure 5-10. PLL Topology Copyright © 2012–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAPL137-HT 57 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 www.ti.com Table 5-5. Allowed PLL Operating Conditions NO. PARAMETER Default Value MIN MAX UNIT 1 PLLRST: Assertion time during initialization N/A 125 N/A ns 2 Lock time: The time that the application has to wait for the PLL to acquire locks before setting PLLEN, after changing PREDIV, PLLM, or OSCIN N/A 3 PREDIV /1 4 PLL input frequency ( PLLREF) (1) 58 N/A 2000 N M where N = Pre-Divider Ratio M = PLL Multiplier ns (1) /1 /32 ns 12 30 (if internal oscillator is used) 50 (if external clock sourcce is used) MHz 5 PLL multiplier values (PLLM) x20 x4 x32 6 PLL output frequency. ( PLLOUT ) N/A 400 600 (1) MHz 7 POSTDIV /1 /2 (1) /32 ns PLL post divider / 2 must be used. The /4.5 clock path can be used to generate an EMIF clock from the undivided (i.e. 600 MHz) PLL output clock. Peripheral Information and Electrical Specifications Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com 5.6.2 SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 Device Clock Generation PLL0 is controlled by PLL Controller 0. The PLLC0 manages the clock ratios, alignment, and gating for the system clocks to the chip. The PLLC is responsible for controlling all modes of the PLL through software, in terms of pre-division of the clock inputs, multiply factor within the PLL, and post-division for each of the chip-level clocks from the PLL output. The PLLC also controls reset propagation through the chip, clock alignment, and test points. 5.6.3 PLL Controller 0 Registers Table 5-6. PLL Controller 0 Registers 5.7 ADDRESS ACRONYM REGISTER DESCRIPTION 0x01C1 1000 REVID Revision Identification Register 0x01C1 10E4 RSTYPE Reset Type Status Register 0x01C1 1100 PLLCTL PLL Control Register 0x01C1 1104 OCSEL OBSCLK Select Register 0x01C1 1110 PLLM PLL Multiplier Control Register 0x01C1 1114 PREDIV PLL Pre-Divider Control Register 0x01C1 1118 PLLDIV1 PLL Controller Divider 1 Register 0x01C1 111C PLLDIV2 PLL Controller Divider 2 Register 0x01C1 1120 PLLDIV3 PLL Controller Divider 3 Register 0x01C1 1124 OSCDIV Oscillator Divider 1 Register (OBSCLK) 0x01C1 1128 POSTDIV PLL Post-Divider Control Register 0x01C1 1138 PLLCMD PLL Controller Command Register 0x01C1 113C PLLSTAT PLL Controller Status Register 0x01C1 1140 ALNCTL PLL Controller Clock Align Control Register 0x01C1 1144 DCHANGE PLLDIV Ratio Change Status Register 0x01C1 1148 CKEN Clock Enable Control Register 0x01C1 114C CKSTAT Clock Status Register 0x01C1 1150 SYSTAT SYSCLK Status Register 0x01C1 1160 PLLDIV4 PLL Controller Divider 4 Register 0x01C1 1164 PLLDIV5 PLL Controller Divider 5 Register 0x01C1 1168 PLLDIV6 PLL Controller Divider 6 Register 0x01C1 116C PLLDIV7 PLL Controller Divider 7 Register 0x01C1 11F0 EMUCNT0 Emulation Performance Counter 0 Register 0x01C1 11F4 EMUCNT1 Emulation Performance Counter 1 Register Interrupts The device has a large number of interrupts to service the needs of its many peripherals and subsystems. Both the ARM and C674x CPUs are capable of servicing these interrupts equally. The interrupts can be selectively enabled or disabled in either of the controllers. Also, the ARM and DSP can communicate with each other through interrupts controlled by registers in the SYSCFG module. Copyright © 2012–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAPL137-HT 59 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 5.7.1 www.ti.com ARM CPU Interrupts The ARM9 CPU core supports 2 direct interrupts: FIQ and IRQ. The ARM Interrupt Controller on the OMAPL137 extends the number of interrupts to 100, and provides features like programmable masking, priority, hardware nesting support, and interrupt vector generation. The OMAPL137 ARM Interrupt controller is enhanced from previous devices like the DM6446 and DM355. 5.7.1.1 ARM Interrupt Controller (AINTC) Interrupt Signal Hierarchy On OMAPL137, the ARM Interrupt controller organizes interrupts into the following hierarchy: • Peripheral Interrupt Requests – Individual Interrupt Sources from Peripherals • 100 System Interrupts – One or more Peripheral Interrupt Requests are combined (fixed configuration) to generate a System Interrupt. – After prioritization, the AINTC will provide an interrupt vector based unique to each System Interrupt • 32 Interrupt Channels – Each System Interrupt is mapped to one of the 32 Interrupt Channels – Channel Number determines the first level of prioritization, Channel 0 is highest priority and 31 lowest. – If more than one system interrupt is mapped to a channel, priority within the channel is determined by system interrupt number (0 highest priority) • Host Interrupts (FIQ and IRQ) – Interrupt Channels 0 and 1 generate the ARM FIQ interrupt – Interrupt Channels 2 through 31 Generate the ARM IRQ interrupt • Debug Interrupts – Two Debug Interrupts are supported and can be used to trigger events in the debug subsystem – Sources can be selected from any of the System Interrupts or Host Interrupts 5.7.1.2 AINTC Hardware Vector Generation The AINTC also generates an interrupt vector in hardware for both IRQ and FIQ host interrupts. This may be used to accelerate interrupt dispatch. A unique vector is generated for each of the 100 system interrupts. The vector is computed in hardware as: VECTOR = BASE + (SYSTEM INTERRUPT NUMBER × SIZE) Where BASE and SIZE are programmable. The computed vector is a 32-bit address which may dispatched to using a single instruction of type LDR PC, [PC, #-] at the FIQ and IRQ vector locations (0xFFFF0018 and 0xFFFF001C respectively). 5.7.1.3 AINTC Hardware Interrupt Nesting Support Interrupt nesting occurs when an interrupt service routine re-enables interrupts, to allow the CPU to interrupt the ISR if a higher priority event occurs. The AINTC provides hardware support to facilitate interrupt nesting. It supports both global and per host interrupt (FIQ and IRQ in this case) automatic nesting. If enabled, the AINTC will automatically update an internal nesting register that temporarily masks interrupts at and below the priority of the current interrupt channel. Then if the ISR re-enables interrupts; only higher priority channels will be able to interrupt it. The nesting level is restored by the ISR by writing to the nesting level register on completion. Support for nesting can be enabled/disabled by software, with the option of automatic nesting on a global or per host interrupt basis; or manual nesting. 5.7.1.4 AINTC System Interrupt Assignments on OMAPL137 System Interrupt assignments for the OMAPL137 are listed in Table 5-7 60 Peripheral Information and Electrical Specifications Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 Table 5-7. AINTC System Interrupt Assignments System Interrupt Interrupt Name Source 0 COMMTX ARM 1 COMMRX ARM 2 NINT 3 PRU_EVTOUT0 4 5 Interrupt Name Source 51 IIC1_INT I2C1 52 LCDC_INT LCD Controller ARM 53 UART_INT1 UART1 PRU Interrupt 54 MCASP_INT McASP0, 1, 2 Combined RX / TX Interrupts PRU_EVTOUT1 PRU Interrupt 55 PSC1_ALLINT PSC1 PRU_EVTOUT2 PRU Interrupt 56 SPI1_INT SPI1 6 PRU_EVTOUT3 PRU Interrupt 57 UHPI_ARMINT UHPI Arm Interrupt 7 PRU_EVTOUT4 PRU Interrupt 58 USB0_INT USB0 Interrupt 8 PRU_EVTOUT5 PRU Interrupt 59 USB1_HCINT USB1 OHCI Host Controller Interrupt 9 PRU_EVTOUT6 PRU Interrupt 60 USB1_RWAKEUP USB1 Remote Wakeup Interrupt 10 PRU_EVTOUT7 PRU Interrupt 61 UART2_INT UART2 11 EDMA3_CC0_CCINT EDMA CC Region 0 62 - Reserved 12 EDMA3_CC0_CCERRINT EDMA CC 63 EHRPWM0 HiResTimer / PWM0 Interrupt 13 EDMA3_TC0_TCERRINT EDMA TC0 64 EHRPWM0TZ HiResTimer / PWM0 Trip Zone Interrupt 14 EMIFA_INT EMIFA 65 EHRPWM1 HiResTimer / PWM1 Interrupt 15 IIC0_INT I2C0 66 EHRPWM1TZ HiResTimer / PWM1 Trip Zone Interrupt 16 MMCSD_INT0 MMCSD 67 EHRPWM2 HiResTimer / PWM2 Interrupt 17 MMCSD_INT1 MMCSD 68 EHRPWM2TZ HiResTimer / PWM2 Trip Zone Interrupt 18 PSC0_ALLINT PSC0 69 ECAP0 ECAP0 19 RTC_IRQS[1:0] RTC 70 ECAP1 ECAP1 20 SPI0_INT SPI0 71 ECAP2 ECAP2 21 T64P0_TINT12 Timer64P0 Interrupt 12 72 EQEP0 EQEP0 22 T64P0_TINT34 Timer64P0 Interrupt 34 73 EQEP1 EQEP1 23 T64P1_TINT12 Timer64P1 Interrupt 12 74 T64P0_CMPINT0 Timer64P0 - Compare 0 24 T64P1_TINT34 Timer64P1 Interrupt 34 75 T64P0_CMPINT1 Timer64P0 - Compare 1 25 UART0_INT UART0 76 T64P0_CMPINT2 Timer64P0 - Compare 2 26 - Reserved 77 T64P0_CMPINT3 Timer64P0 - Compare 3 27 PROTERR MPU1, 2, and SYSCFG Protection Shared Interrupt 78 T64P0_CMPINT4 Timer64P0 - Compare 4 28 SYSCFG_CHIPINT0 SYSCFG CHIPSIG Register 79 T64P0_CMPINT5 Timer64P0 - Compare 5 29 SYSCFG_CHIPINT1 SYSCFG CHIPSIG Register 80 T64P0_CMPINT6 Timer64P0 - Compare 6 30 SYSCFG_CHIPINT2 SYSCFG CHIPSIG Register 81 T64P0_CMPINT7 Timer64P0 - Compare 7 31 SYSCFG_CHIPINT3 SYSCFG CHIPSIG Register 82 T64P1_CMPINT0 Timer64P1 - Compare 0 32 EDMA3_TC1_TCERRINT EDMA TC1 83 T64P1_CMPINT1 Timer64P1 - Compare 1 33 EMAC_C0RXTHRESH EMAC - Core 0 Receive Threshold Interrupt 84 T64P1_CMPINT2 Timer64P1 - Compare 2 34 EMAC_C0RX EMAC - Core 0 Receive Interrupt 85 T64P1_CMPINT3 Timer64P1 - Compare 3 Copyright © 2012–2013, Texas Instruments Incorporated System Interrupt Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAPL137-HT 61 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 www.ti.com Table 5-7. AINTC System Interrupt Assignments (continued) System Interrupt 62 Interrupt Name Source 35 EMAC_C0TX EMAC - Core 0 Transmit Interrupt 36 EMAC_C0MISC 37 System Interrupt Interrupt Name Source 86 T64P1_CMPINT4 Timer64P1 - Compare 4 EMAC - Core 0 Miscellaneous Interrupt 87 T64P1_CMPINT5 Timer64P1 - Compare 5 EMAC_C1RXTHRESH EMAC - Core 1 Receive Threshold Interrupt 88 T64P1_CMPINT6 Timer64P1 - Compare 6 38 EMAC_C1RX EMAC - Core 1 Receive Interrupt 89 T64P1_CMPINT7 Timer64P1 - Compare 7 39 EMAC_C1TX EMAC - Core 1 Transmit Interrupt 90 ARMCLKSTOPREQ PSC0 40 EMAC_C1MISC EMAC - Core 1 Miscellaneous Interrupt 91 - Reserved 41 EMIF_MEMERR EMIFB 92 - Reserved 42 GPIO_B0INT GPIO Bank 0 Interrupt 93 - Reserved 43 GPIO_B1INT GPIO Bank 1 Interrupt 94 - Reserved 44 GPIO_B2INT GPIO Bank 2 Interrupt 95 - Reserved 45 GPIO_B3INT GPIO Bank 3 Interrupt 96 - Reserved 46 GPIO_B4INT GPIO Bank 4 Interrupt 97 - Reserved 47 GPIO_B5INT GPIO Bank 5 Interrupt 98 - Reserved 48 GPIO_B6INT GPIO Bank 6 Interrupt 99 - Reserved 49 GPIO_B7INT GPIO Bank 7 Interrupt 100 - Reserved 50 - Reserved Peripheral Information and Electrical Specifications Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com 5.7.1.5 SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 AINTC Memory Map Table 5-8. AINTC Memory Map BYTE ADDRESS REGISTER NAME DESCRIPTION 0xFFFE E000 REV Revision Register Control Register 0xFFFE E004 CR 0xFFFE E008 - 0xFFFE E00F - Reserved 0xFFFE E010 GER Global Enable Register 0xFFFE E014 - 0xFFFE E01B - Reserved 0xFFFE E01C GNLR Global Nesting Level Register 0xFFFE E020 SISR System Interrupt Status Indexed Set Register 0xFFFE E024 SICR System Interrupt Status Indexed Clear Register 0xFFFE E028 EISR System Interrupt Enable Indexed Set Register 0xFFFE E02C EICR System Interrupt Enable Indexed Clear Register 0xFFFE E030 - Reserved 0xFFFE E034 HIEISR Host Interrupt Enable Indexed Set Register 0xFFFE E038 HIDISR Host Interrupt Enable Indexed Clear Register 0xFFFE E03C - 0xFFFE E04F - Reserved 0xFFFE E050 VBR Vector Base Register 0xFFFE E054 VSR Vector Size Register 0xFFFE E058 VNR Vector Null Register 0xFFFE E05C - 0xFFFE E07F - Reserved 0xFFFE E080 GPIR Global Prioritized Index Register 0xFFFE E084 GPVR Global Prioritized Vector Register 0xFFFE E088 - 0xFFFE E1FF - Reserved System Interrupt Status Raw / Set Registers 0xFFFE E200 - 0xFFFE E20F SRSR[1] - SRSR[3] 0xFFFE E20C - 0xFFFE E27F - Reserved 0xFFFE E280 - 0xFFFE E28B SECR[1] - SECR[3] System Interrupt Status Enabled / Clear Registers 0xFFFE E28C - 0xFFFE E2FF - Reserved 0xFFFE E300 - 0xFFFE E30B ESR[1] - ESR[3] System Interrupt Enable Set Registers 0xFFFE E30C - 0xFFFE E37F - Reserved 0xFFFE E380 - 0xFFFE E38B ECR[1] - ECR[3] System Interrupt Enable Clear Registers 0xFFFE E38C - 0xFFFE E3FF - Reserved 0xFFFE E400 - 0xFFFE E458 CMR[0] - CMR[22] Channel Map Registers (Byte Wide Registers) 0xFFFE E459 - 0xFFFE E7FF - Reserved Reserved 0xFFFE E800 - 0xFFFE E81F - 0xFFFE E820 - 0xFFFE E8FF - Reserved 0xFFFE E900 - 0xFFFE E904 HIPIR[1] - HIPIR[2] Host Interrupt Prioritized Index Registers 0xFFFE E908 - 0xFFFE EEFF - Reserved 0xFFFE EF00 - 0xFFFE EF04 - Reserved 0xFFFE EF08 - 0xFFFE F0FF - Reserved 0xFFFE F100 - 0xFFFE F104 HINLR[1] - HINLR[2] Host Interrupt Nesting Level Registers 0xFFFE F108 - 0xFFFE F4FF - Reserved 0xFFFE F500 HIER Host Interrupt Enable Register 0xFFFE F504 - 0xFFFE F5FF - Reserved 0xFFFE F600 HIPVR[1] - HIPVR[2] Host Interrupt Prioritized Vector Registers 0xFFFE F608 - 0xFFFE FFFF - Reserved Copyright © 2012–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAPL137-HT 63 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 5.7.2 www.ti.com DSP Interrupts The C674x DSP interrupt controller combines device events into 12 prioritized interrupts. The source for each of the 12 CPU interrupts is user programmable and is listed in Table 5-9. Also, the interrupt controller controls the generation of the CPU exception, NMI, and emulation interrupts. Table 5-10 summarizes the C674x interrupt controller registers and memory locations. For more details on DSP interrupt control, see the TMS320C64x+ DSP Megamodule Reference Guide, Literature Number SPRU871. Table 5-9. OMAPL137 DSP Interrupts EVT# Interrupt Name EVT# Interrupt Name Source 0 EVT0 C674x Int Ctl 0 64 T64P0_TINT34 Timer64P0 Interrupt 34 1 EVT1 C674x Int Ctl 1 65 GPIO_B0INT GPIO Bank 0 Interrupt 2 EVT2 C674x Int Ctl 2 66 PRU_EVTOUT4 3 EVT3 C674x Int Ctl 3 67 SYSCFG_CHIPINT3 4 T64P0_TINT12 Timer64P0 - TINT12 68 EQEP0 EQEP0 5 SYSCFG_CHIPINT2 SYSCFG _CHIPSIG Register 69 UART2_INT UART2 6 PRU_EVTOUT0 PRU Interrupt 70 PSC0_ALLINT PSC0 7 EHRPWM0 HiResTimer/PWM0 Interrupt 71 PSC1_ALLINT PSC1 8 EDMA3_CC0_INT1 EDMA3 CC0 Region 1 interrupt 72 GPIO_B7INT GPIO Bank 7 Interrupt LCD ControllerReserved PRU Interrupt SYSCFG_CHIPSIG Register 9 EMU-DTDMA C674x-ECM 73 LCDC_INT - 10 EHRPWM0TZ HiResTimer/PWM0 Trip Zone Interrupt 74 PROTERR 11 EMU-RTDXRX C674x-RTDX 75 - Reserved 12 EMU-RTDXTX C674x-RTDX 76 - Reserved 13 IDMAINT0 C674x-EMC 77 - Reserved 14 IDMAINT1 C674x-EMC 78 T64P0_CMPINT0 Timer64P0 - Compare 0 15 MMCSD_INT0 MMCSD MMC/SD Interrupt 79 T64P0_CMPINT1 Timer64P0 - Compare 1 16 MMCSD_INT1 MMCSD SDIO Interrupt 80 T64P0_CMPINT2 Timer64P0 - Compare 2 17 PRU_EVTOUT1 PRU Interrupt 81 T64P0_CMPINT3 Timer64P0 - Compare 3 18 EHRPWM1 HiResTimer/PWM1 Interrupt 82 T64P0_CMPINT4 Timer64P0 - Compare 4 19 USB0_INT USB0 Interrupt 83 T64P0_CMPINT5 Timer64P0 - Compare 5 20 USB1_HCINT - USB1 OHCI Host Controller Interrupt Reserved 84 T64P0_CMPINT6 Timer64P0 - Compare 6 21 USB1_RWAKEUP - USB1 Remote Wakeup Interrupt Reserved 85 T64P0_CMPINT7 Timer64P0 - Compare 7 22 PRU_EVTOUT2 PRU Interrupt 86 T64P1_CMPINT0 Timer64P1 - Compare 0 23 EHRPWM1TZ HiResTimer/PWM1 Trip Zone Interrupt 87 T64P1_CMPINT1 Timer64P1 - Compare 1 24 EHRPWM2 HiResTimer/PWM2 Interrupt 88 T64P1_CMPINT2 Timer64P1 - Compare 2 25 EHRPWM2TZ HiResTimer/PWM2 Trip Zone Interrupt 89 T64P1_CMPINT3 Timer64P1 - Compare 3 EMAC_C0RXTHRESH - EMAC - Core 0 Receive Threshold Interrupt Reserved 90 T64P1_CMPINT4 Timer64P1 - Compare 4 26 MPU1, 2, SYSCFG Protection Shared Interrupt 27 EMAC_C0RX - EMAC - Core 0 Receive Interrupt Reserved 91 T64P1_CMPINT5 Timer64P1 - Compare 5 28 EMAC_C0TX - EMAC - Core 0 Transmit Interrupt Reserved 92 T64P1_CMPINT6 Timer64P1 - Compare 6 29 EMAC_C0MISC - EMAC - Core 0 Miscellaneous Interrupt Reserved 93 T64P1_CMPINT7 Timer64P1 - Compare 7 94 - Reserved 95 - Reserved 30 31 64 Source EMAC_C1RXTHRESH - EMAC - Core 1 Receive Threshold Interrupt Reserved EMAC_C1RX - EMAC - Core 1 Receive Interrupt Reserved Peripheral Information and Electrical Specifications Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 Table 5-9. OMAPL137 DSP Interrupts (continued) EVT# Interrupt Name Source EVT# Interrupt Name 32 EMAC_C1TX - EMAC - Core 1 Transmit Interrupt Reserved 96 INTERR Source C674x-Int Ctl 33 EMAC_C1MISC - EMAC - Core 1 Miscellaneous Interrupt Reserved 97 EMC_IDMAERR C674x-EMC UHPI DSP Interrupt 98 - Reserved PRU Interrupt 99 - Reserved 34 UHPI_DSPINT 35 PRU_EVTOUT3 36 IIC0_INT I2C0 100 - Reserved 37 SP0_INT SPI0 101 - Reserved 38 UART0_INT UART0 102 - Reserved 39 PRU_EVTOUT5 PRU Interrupt 103 - Reserved 40 T64P1_TINT12 Timer64P1 Interrupt 12 104 - Reserved 41 GPIO_B1INT GPIO Bank 1 Interrupt 105 - Reserved 42 IIC1_INT I2C1 106 - Reserved 43 SPI1_INT SPI1 107 - Reserved 44 PRU_EVTOUT6 PRU Interrupt 108 - Reserved 45 ECAP0 ECAP0 109 - Reserved 46 UART_INT1 UART1 110 - Reserved 47 ECAP1 ECAP1 111 - Reserved 48 T64P1_TINT34 Timer64P1 Interrupt 34 112 - Reserved 49 GPIO_B2INT GPIO Bank 2 Interrupt 113 PMC_ED 50 PRU_EVTOUT7 PRU Interrupt 114 - Reserved ECAP2 115 - Reserved GPIO Bank 3 Interrupt 116 UMC_ED1 C674x-UMC EQEP1 117 UMC_ED2 C674x-UMC GPIO Bank 4 Interrupt 118 PDC_INT C674x-PDC EMIFA 119 SYS_CMPA C674x-SYS C674x-PMC 51 ECAP2 52 GPIO_B3INT 53 EQEP1 54 GPIO_B4INT 55 EMIFA_INT 56 EDMA3_CC0_ERRINT EDMA3 Channel Controller 0 120 PMC_CMPA C674x-PMC 57 EDMA3_TC0_ERRINT EDMA3 Transfer Controller 0 121 PMC_CMPA C674x-PMC 58 EDMA3_TC1_ERRINT EDMA3 Transfer Controller 1 122 DMC_CMPA C674x-DMC 59 GPIO_B5INT GPIO Bank 5 Interrupt 123 DMC_CMPA C674x-DMC 60 EMIFB_INT EMIFB Memory Error Interrupt 124 UMC_CMPA C674x-UMC 61 MCASP_INT McASP0,1,2 Combined RX/TX Interrupts 125 UMC_CMPA C674x-UMC 62 GPIO_B6INT GPIO Bank 6 Interrupt 126 EMC_CMPA C674x-EMC 63 RTC_IRQS RTC Combined 127 EMC_BUSERR C674x-EMC Copyright © 2012–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAPL137-HT 65 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 www.ti.com Table 5-10. C674x DSP Interrupt Controller Registers BYTE ADDRESS REGISTER NAME DESCRIPTION 0x0180 0000 EVTFLAG0 Event flag register 0 0x0180 0004 EVTFLAG1 Event flag register 1 0x0180 0008 EVTFLAG2 Event flag register 2 0x0180 000C EVTFLAG3 Event flag register 3 0x0180 0020 EVTSET0 Event set register 0 0x0180 0024 EVTSET1 Event set register 1 0x0180 0028 EVTSET2 Event set register 2 0x0180 002C EVTSET3 Event set register 3 0x0180 0040 EVTCLR0 Event clear register 0 0x0180 0044 EVTCLR1 Event clear register 1 0x0180 0048 EVTCLR2 Event clear register 2 0x0180 004C EVTCLR3 Event clear register 3 0x0180 0080 EVTMASK0 Event mask register 0 0x0180 0084 EVTMASK1 Event mask register 1 0x0180 0088 EVTMASK2 Event mask register 2 0x0180 008C EVTMASK3 Event mask register 3 0x0180 00A0 MEVTFLAG0 Masked event flag register 0 0x0180 00A4 MEVTFLAG1 Masked event flag register 1 0x0180 00A8 MEVTFLAG2 Masked event flag register 2 0x0180 00AC MEVTFLAG3 Masked event flag register 3 0x0180 00C0 EXPMASK0 Exception mask register 0 0x0180 00C4 EXPMASK1 Exception mask register 1 0x0180 00C8 EXPMASK2 Exception mask register 2 0x0180 00CC EXPMASK3 Exception mask register 3 0x0180 00E0 MEXPFLAG0 Masked exception flag register 0 0x0180 00E4 MEXPFLAG1 Masked exception flag register 1 0x0180 00E8 MEXPFLAG2 Masked exception flag register 2 0x0180 00EC MEXPFLAG3 Masked exception flag register 3 0x0180 0104 INTMUX1 Interrupt mux register 1 0x0180 0108 INTMUX2 Interrupt mux register 2 0x0180 010C INTMUX3 Interrupt mux register 3 0x0180 0140 - 0x0180 0144 - Reserved 0x0180 0180 INTXSTAT Interrupt exception status 0x0180 0184 INTXCLR Interrupt exception clear 0x0180 0188 INTDMASK Dropped interrupt mask register 0x0180 01C0 EVTASRT Event assert register 5.7.3 ARM/DSP Communications Interrupts Communications Interrupts between the ARM and DSP are part of the SYSCFG module on the OMAPL137 family of devices. 66 Peripheral Information and Electrical Specifications Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com 5.8 SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 General-Purpose Input/Output (GPIO) The GPIO peripheral provides general-purpose pins that can be configured as either inputs or outputs. When configured as an output, a write to an internal register can control the state driven on the output pin. When configured as an input, the state of the input is detectable by reading the state of an internal register. In addition, the GPIO peripheral can produce CPU interrupts and EDMA events in different interrupt/event generation modes. The GPIO peripheral provides generic connections to external devices. The GPIO pins are grouped into banks of 16 pins per bank (i.e., bank 0 consists of GPIO [0:15]). The device GPIO peripheral supports the following: • Up to 109 Pins on PTP package configurable as GPIO • External Interrupt and DMA request Capability – Every GPIO pin may be configured to generate an interrupt request on detection of rising and/or falling edges on the pin. – The interrupt requests within each bank are combined (logical or) to create eight unique bank level interrupt requests. – The bank level interrupt service routine may poll the INTSTATx register for its bank to determine which pin(s) have triggered the interrupt. – GPIO Banks 0, 1, 2, 3, 4, 5, 6, and 7 Interrupts assigned to ARM INTC Interrupt Requests 42, 43, 44, 45, 46, 47, 48, and 49 respectively – GPIO Banks 0, 1, 2, 3, 4, 5, 6, and 7 Interrupts assigned to DSP Events 65, 41, 49, 52, 54, 59, 62 and 72 respectively – Additionally, GPIO Banks 0, 1, 2, 3, 4, and 5 Interrupts assigned to EDMA events 6, 7, 22, 23, 28, and 29 respectively. • Set/clear functionality: Firmware writes 1 to corresponding bit position(s) to set or to clear GPIO signal(s). This allows multiple firmware processes to toggle GPIO output signals without critical section protection (disable interrupts, program GPIO, re-enable interrupts, to prevent context switching to anther process during GPIO programming). • Separate Input/Output registers • Output register in addition to set/clear so that, if preferred by firmware, some GPIO output signals can be toggled by direct write to the output register(s). • Output register, when read, reflects output drive status. This, in addition to the input register reflecting pin status and open-drain I/O cell, allows wired logic be implemented. The memory map for the GPIO registers is shown in Table 5-11. See the TMS320C674x/OMAP-L1x Processor Peripherals Overview Reference Guide. – Literature Number SPRUFK9 for more details. 5.8.1 GPIO Register Description(s) Table 5-11. GPIO Registers GPIO BYTE ADDRESS Acronym Register Description 0x01E2 6000 REV Peripheral Revision Register 0x01E2 6004 - Reserved 0x01E2 6008 BINTEN GPIO Interrupt Per-Bank Enable Register GPIO Banks 0 and 1 0x01E2 6010 DIR01 GPIO Banks 0 and 1 Direction Register 0x01E2 6014 OUT_DATA01 GPIO Banks 0 and 1 Output Data Register 0x01E2 6018 SET_DATA01 GPIO Banks 0 and 1 Set Data Register 0x01E2 601C CLR_DATA01 GPIO Banks 0 and 1 Clear Data Register 0x01E2 6020 IN_DATA01 GPIO Banks 0 and 1 Input Data Register 0x01E2 6024 SET_RIS_TRIG01 GPIO Banks 0 and 1 Set Rising Edge Interrupt Register 0x01E2 6028 CLR_RIS_TRIG01 GPIO Banks 0 and 1 Clear Rising Edge Interrupt Register Copyright © 2012–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAPL137-HT 67 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 www.ti.com Table 5-11. GPIO Registers (continued) GPIO BYTE ADDRESS Acronym Register Description 0x01E2 602C SET_FAL_TRIG01 GPIO Banks 0 and 1 Set Falling Edge Interrupt Register 0x01E2 6030 CLR_FAL_TRIG01 GPIO Banks 0 and 1 Clear Falling Edge Interrupt Register 0x01E2 6034 INTSTAT01 GPIO Banks 0 and 1 Interrupt Status Register 0x01E2 6038 DIR23 GPIO Banks 2 and 3 Direction Register 0x01E2 603C OUT_DATA23 GPIO Banks 2 and 3 Output Data Register 0x01E2 6040 SET_DATA23 GPIO Banks 2 and 3 Set Data Register 0x01E2 6044 CLR_DATA23 GPIO Banks 2 and 3 Clear Data Register 0x01E2 6048 IN_DATA23 GPIO Banks 2 and 3 Input Data Register 0x01E2 604C SET_RIS_TRIG23 GPIO Banks 2 and 3 Set Rising Edge Interrupt Register 0x01E2 6050 CLR_RIS_TRIG23 GPIO Banks 2 and 3 Clear Rising Edge Interrupt Register 0x01E2 6054 SET_FAL_TRIG23 GPIO Banks 2 and 3 Set Falling Edge Interrupt Register 0x01E2 6058 CLR_FAL_TRIG23 GPIO Banks 2 and 3 Clear Falling Edge Interrupt Register 0x01E2 605C INTSTAT23 GPIO Banks 2 and 3 GPIO Banks 2 and 3 Interrupt Status Register GPIO Banks 4 and 5 0x01E2 6060 DIR45 GPIO Banks 4 and 5 Direction Register 0x01E2 6064 OUT_DATA45 GPIO Banks 4 and 5 Output Data Register 0x01E2 6068 SET_DATA45 GPIO Banks 4 and 5 Set Data Register 0x01E2 606C CLR_DATA45 GPIO Banks 4 and 5 Clear Data Register 0x01E2 6070 IN_DATA45 GPIO Banks 4 and 5 Input Data Register 0x01E2 6074 SET_RIS_TRIG45 GPIO Banks 4 and 5 Set Rising Edge Interrupt Register 0x01E2 6078 CLR_RIS_TRIG45 GPIO Banks 4 and 5 Clear Rising Edge Interrupt Register 0x01E2 607C SET_FAL_TRIG45 GPIO Banks 4 and 5 Set Falling Edge Interrupt Register 0x01E2 6080 CLR_FAL_TRIG45 GPIO Banks 4 and 5 Clear Falling Edge Interrupt Register 0x01E2 6084 INTSTAT45 GPIO Banks 4 and 5 Interrupt Status Register GPIO Banks 6 and 7 68 0x01E2 6088 DIR67 GPIO Banks 6 and 7 Direction Register 0x01E2 608C OUT_DATA67 GPIO Banks 6 and 7 Output Data Register 0x01E2 6090 SET_DATA67 GPIO Banks 6 and 7 Set Data Register 0x01E2 6094 CLR_DATA67 GPIO Banks 6 and 7 Clear Data Register 0x01E2 6098 IN_DATA67 GPIO Banks 6 and 7 Input Data Register 0x01E2 609C SET_RIS_TRIG67 GPIO Banks 6 and 7 Set Rising Edge Interrupt Register 0x01E2 60A0 CLR_RIS_TRIG67 GPIO Banks 6 and 7 Clear Rising Edge Interrupt Register 0x01E2 60A4 SET_FAL_TRIG67 GPIO Banks 6 and 7 Set Falling Edge Interrupt Register 0x01E2 60A8 CLR_FAL_TRIG67 GPIO Banks 6 and 7 Clear Falling Edge Interrupt Register 0x01E2 60AC INTSTAT67 GPIO Banks 6 and 7 Interrupt Status Register Peripheral Information and Electrical Specifications Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com 5.8.2 SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 GPIO Peripheral Input/Output Electrical Data/Timing Table 5-12. Timing Requirements for GPIO Inputs (1) (see Figure 5-11) NO. MIN MAX UNIT 1 tw(GPIH) Pulse duration, GPIx high 2C (1) (2) ns 2 tw(GPIL) Pulse duration, GPIx low 2C (1) (2) ns (1) The pulse width given is sufficient to generate a CPU interrupt or an EDMA event. However, if a user wants to have the device recognize the GPIx changes through software polling of the GPIO register, the GPIx duration must be extended to allow the device enough time to access the GPIO register through the internal bus. C=SYSCLK4 period in ns. For example, when running parts at 300 MHz, C=13.33 ns. (2) Table 5-13. Switching Characteristics Over Recommended Operating Conditions for GPIO Outputs (see Figure 5-11) NO. PARAMETER MIN 3 tw(GPOH) Pulse duration, GPOx high 2C 4 tw(GPOL) Pulse duration, GPOx low 2C (1) (1) MAX (1) (2) (2) UNIT ns ns This parameter value should not be used as a maximum performance specification. Actual performance of back-to-back accesses of the GPIO is dependent upon internal bus activity. C=SYSCLK4 period in ns. For example, when running parts at 300 MHz, C=13.33 ns. (2) 2 1 GPIx 4 3 GPOx Figure 5-11. GPIO Port Timing 5.8.3 GPIO Peripheral External Interrupts Electrical Data/Timing Table 5-14. Timing Requirements for External Interrupts (1) (see Figure 5-12) NO. (1) (2) MIN MAX (1) (2) 1 tw(ILOW) Width of the external interrupt pulse low 2C 2 tw(IHIGH) Width of the external interrupt pulse high 2C (1) (2) UNIT ns ns The pulse width given is sufficient to generate an interrupt or an EDMA event. However, if a user wants to have the device recognize the GPIO changes through software polling of the GPIO register, the GPIO duration must be extended to allow the device enough time to access the GPIO register through the internal bus. C=SYSCLK4 period in ns. For example, when running parts at 300 MHz, C=13.33 ns. 2 1 EXT_INTx Figure 5-12. GPIO External Interrupt Timing Copyright © 2012–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAPL137-HT 69 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 5.9 www.ti.com EDMA Table 5-15 is the list of EDMA3 Channel Contoller Registers and Table 5-16 is the list of EDMA3 Transfer Controller registers. See the TMS320C674x/OMAP-L1x Processor Peripherals Overview Reference Guide. – Literature Number SPRUFK9 for more details. Table 5-15. EDMA3 Channel Controller (EDMA3CC) Registers BYTE ADDRESS Acronym 0x01C0 0000 PID Register Description 0x01C0 0004 CCCFG 0x01C0 0200 QCHMAP0 QDMA Channel 0 Mapping Register 0x01C0 0204 QCHMAP1 QDMA Channel 1 Mapping Register Peripheral Identification Register EDMA3CC Configuration Register Global Registers 0x01C0 0208 QCHMAP2 QDMA Channel 2 Mapping Register 0x01C0 020C QCHMAP3 QDMA Channel 3 Mapping Register 0x01C0 0210 QCHMAP4 QDMA Channel 4 Mapping Register 0x01C0 0214 QCHMAP5 QDMA Channel 5 Mapping Register 0x01C0 0218 QCHMAP6 QDMA Channel 6 Mapping Register 0x01C0 021C QCHMAP7 QDMA Channel 7 Mapping Register 0x01C0 0240 DMAQNUM0 DMA Channel Queue Number Register 0 0x01C0 0244 DMAQNUM1 DMA Channel Queue Number Register 1 0x01C0 0248 DMAQNUM2 DMA Channel Queue Number Register 2 0x01C0 024C DMAQNUM3 DMA Channel Queue Number Register 3 0x01C0 0260 QDMAQNUM QDMA Channel Queue Number Register 0x01C0 0284 QUEPRI Queue Priority Register (1) 0x01C0 0300 EMR 0x01C0 0308 EMCR Event Missed Register Event Missed Clear Register 0x01C0 0310 QEMR QDMA Event Missed Register 0x01C0 0314 QEMCR QDMA Event Missed Clear Register 0x01C0 0318 CCERR EDMA3CC Error Register 0x01C0 031C CCERRCLR 0x01C0 0320 EEVAL Error Evaluate Register 0x01C0 0340 DRAE0 DMA Region Access Enable Register for Region 0 0x01C0 0348 DRAE1 DMA Region Access Enable Register for Region 1 0x01C0 0350 DRAE2 DMA Region Access Enable Register for Region 2 0x01C0 0358 DRAE3 DMA Region Access Enable Register for Region 3 0x01C0 0380 QRAE0 QDMA Region Access Enable Register for Region 0 0x01C0 0384 QRAE1 QDMA Region Access Enable Register for Region 1 0x01C0 0388 QRAE2 QDMA Region Access Enable Register for Region 2 0x01C0 038C QRAE3 QDMA Region Access Enable Register for Region 3 0x01C0 0400 - 0x01C0 043C Q0E0-Q0E15 Event Queue Entry Registers Q0E0-Q0E15 0x01C0 0440 - 0x01C0 047C Q1E0-Q1E15 Event Queue Entry Registers Q1E0-Q1E15 0x01C0 0600 QSTAT0 Queue 0 Status Register 0x01C0 0604 QSTAT1 Queue 1 Status Register 0x01C0 0620 QWMTHRA 0x01C0 0640 CCSTAT EDMA3CC Error Clear Register Queue Watermark Threshold A Register EDMA3CC Status Register Global Channel Registers 0x01C0 1000 (1) 70 ER Event Register On previous architectures, the EDMA3TC priority was controlled by the queue priority register (QUEPRI) in the EDMA3CC memorymap. However for this device, the priority control for the transfer controllers is controlled by the chip-level registers in the System Configuration Module. You should use the chip-level registers and not QUEPRI to configure the TC priority. Peripheral Information and Electrical Specifications Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 Table 5-15. EDMA3 Channel Controller (EDMA3CC) Registers (continued) BYTE ADDRESS Acronym Register Description 0x01C0 1008 ECR Event Clear Register 0x01C0 1010 ESR Event Set Register 0x01C0 1018 CER Chained Event Register 0x01C0 1020 EER Event Enable Register 0x01C0 1028 EECR Event Enable Clear Register 0x01C0 1030 EESR Event Enable Set Register 0x01C0 1038 SER Secondary Event Register 0x01C0 1040 SECR 0x01C0 1050 IER 0x01C0 1058 IECR Interrupt Enable Clear Register 0x01C0 1060 IESR Interrupt Enable Set Register Secondary Event Clear Register Interrupt Enable Register 0x01C0 1068 IPR Interrupt Pending Register 0x01C0 1070 ICR Interrupt Clear Register 0x01C0 1078 IEVAL Interrupt Evaluate Register 0x01C0 1080 QER 0x01C0 1084 QEER QDMA Event Register 0x01C0 1088 QEECR QDMA Event Enable Clear Register 0x01C0 108C QEESR QDMA Event Enable Set Register 0x01C0 1090 QSER QDMA Secondary Event Register 0x01C0 1094 QSECR QDMA Event Enable Register QDMA Secondary Event Clear Register Shadow Region 0 Channel Registers 0x01C0 2000 ER 0x01C0 2008 ECR Event Register Event Clear Register 0x01C0 2010 ESR Event Set Register 0x01C0 2018 CER Chained Event Register 0x01C0 2020 EER Event Enable Register 0x01C0 2028 EECR Event Enable Clear Register 0x01C0 2030 EESR Event Enable Set Register 0x01C0 2038 SER Secondary Event Register 0x01C0 2040 SECR 0x01C0 2050 IER 0x01C0 2058 IECR Interrupt Enable Clear Register 0x01C0 2060 IESR Interrupt Enable Set Register 0x01C0 2068 IPR Interrupt Pending Register 0x01C0 2070 ICR Interrupt Clear Register 0x01C0 2078 IEVAL 0x01C0 2080 QER Secondary Event Clear Register Interrupt Enable Register Interrupt Evaluate Register QDMA Event Register 0x01C0 2084 QEER 0x01C0 2088 QEECR QDMA Event Enable Register QDMA Event Enable Clear Register 0x01C0 208C QEESR QDMA Event Enable Set Register 0x01C0 2090 QSER QDMA Secondary Event Register 0x01C0 2094 QSECR QDMA Secondary Event Clear Register Shadow Region 1 Channel Registers 0x01C0 2200 ER 0x01C0 2208 ECR Event Clear Register 0x01C0 2210 ESR Event Set Register 0x01C0 2218 CER Chained Event Register Copyright © 2012–2013, Texas Instruments Incorporated Event Register Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAPL137-HT 71 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 www.ti.com Table 5-15. EDMA3 Channel Controller (EDMA3CC) Registers (continued) BYTE ADDRESS Acronym Register Description 0x01C0 2220 EER Event Enable Register 0x01C0 2228 EECR Event Enable Clear Register 0x01C0 2230 EESR Event Enable Set Register 0x01C0 2238 SER Secondary Event Register 0x01C0 2240 SECR 0x01C0 2250 IER 0x01C0 2258 IECR Interrupt Enable Clear Register 0x01C0 2260 IESR Interrupt Enable Set Register 0x01C0 2268 IPR Interrupt Pending Register 0x01C0 2270 ICR Interrupt Clear Register 0x01C0 2278 IEVAL Secondary Event Clear Register Interrupt Enable Register Interrupt Evaluate Register 0x01C0 2280 QER 0x01C0 2284 QEER QDMA Event Register 0x01C0 2288 QEECR QDMA Event Enable Clear Register 0x01C0 228C QEESR QDMA Event Enable Set Register 0x01C0 2290 QSER QDMA Secondary Event Register 0x01C0 2294 QSECR 0x01C0 4000 - 0x01C0 4FFF — QDMA Event Enable Register QDMA Secondary Event Clear Register Parameter RAM (PaRAM) Table 5-16. EDMA3 Transfer Controller (EDMA3TC) Registers 72 Offset Transfer Controller 0 BYTE ADDRESS Transfer Controller 1 BYTE ADDRESS Acronym Register Description 0h 0x01C0 8000 0x01C0 8400 PID Peripheral Identification Register 4h 0x01C0 8004 0x01C0 8404 TCCFG EDMA3TC Configuration Register 100h 0x01C0 8100 0x01C0 8500 TCSTAT EDMA3TC Channel Status Register 120h 0x01C0 8120 0x01C0 8520 ERRSTAT Error Status Register 124h 0x01C0 8124 0x01C0 8524 ERREN Error Enable Register 128h 0x01C0 8128 0x01C0 8528 ERRCLR Error Clear Register 12Ch 0x01C0 812C 0x01C0 852C ERRDET Error Details Register 130h 0x01C0 8130 0x01C0 8530 ERRCMD Error Interrupt Command Register 140h 0x01C0 8140 0x01C0 8540 RDRATE Read Command Rate Register 240h 0x01C0 8240 0x01C0 8640 SAOPT Source Active Options Register 244h 0x01C0 8244 0x01C0 8644 SASRC Source Active Source Address Register 248h 0x01C0 8248 0x01C0 8648 SACNT Source Active Count Register 24Ch 0x01C0 824C 0x01C0 864C SADST Source Active Destination Address Register 250h 0x01C0 8250 0x01C0 8650 SABIDX Source Active B-Index Register 254h 0x01C0 8254 0x01C0 8654 SAMPPRXY Source Active Memory Protection Proxy Register Source Active Count Reload Register 258h 0x01C0 8258 0x01C0 8658 SACNTRLD 25Ch 0x01C0 825C 0x01C0 865C SASRCBREF Source Active Source Address B-Reference Register 260h 0x01C0 8260 0x01C0 8660 SADSTBREF Source Active Destination Address B-Reference Register 280h 0x01C0 8280 0x01C0 8680 DFCNTRLD 284h 0x01C0 8284 0x01C0 8684 DFSRCBREF Destination FIFO Set Source Address B-Reference Register 288h 0x01C0 8288 0x01C0 8688 DFDSTBREF Destination FIFO Set Destination Address B-Reference Register 300h 0x01C0 8300 0x01C0 8700 DFOPT0 Destination FIFO Options Register 0 304h 0x01C0 8304 0x01C0 8704 DFSRC0 Destination FIFO Source Address Register 0 308h 0x01C0 8308 0x01C0 8708 DFCNT0 Destination FIFO Count Register 0 Destination FIFO Set Count Reload Register Peripheral Information and Electrical Specifications Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 Table 5-16. EDMA3 Transfer Controller (EDMA3TC) Registers (continued) Offset Transfer Controller 0 BYTE ADDRESS Transfer Controller 1 BYTE ADDRESS Acronym Register Description 30Ch 0x01C0 830C 310h 0x01C0 8310 0x01C0 870C DFDST0 Destination FIFO Destination Address Register 0 0x01C0 8710 DFBIDX0 Destination FIFO B-Index Register 0 314h 340h 0x01C0 8314 0x01C0 8714 DFMPPRXY0 0x01C0 8340 0x01C0 8740 DFOPT1 Destination FIFO Options Register 1 344h 0x01C0 8344 0x01C0 8744 DFSRC1 Destination FIFO Source Address Register 1 348h 0x01C0 8348 0x01C0 8748 DFCNT1 Destination FIFO Count Register 1 34Ch 0x01C0 834C 0x01C0 874C DFDST1 Destination FIFO Destination Address Register 1 350h 0x01C0 8350 0x01C0 8750 DFBIDX1 Destination FIFO B-Index Register 1 354h 0x01C0 8354 0x01C0 8754 DFMPPRXY1 380h 0x01C0 8380 0x01C0 8780 DFOPT2 Destination FIFO Options Register 2 384h 0x01C0 8384 0x01C0 8784 DFSRC2 Destination FIFO Source Address Register 2 388h 0x01C0 8388 0x01C0 8788 DFCNT2 Destination FIFO Count Register 2 38Ch 0x01C0 838C 0x01C0 878C DFDST2 Destination FIFO Destination Address Register 2 390h 0x01C0 8390 0x01C0 8790 DFBIDX2 Destination FIFO B-Index Register 2 394h 0x01C0 8394 0x01C0 8794 DFMPPRXY2 3C0h 0x01C0 83C0 0x01C0 87C0 DFOPT3 Destination FIFO Options Register 3 3C4h 0x01C0 83C4 0x01C0 87C4 DFSRC3 Destination FIFO Source Address Register 3 3C8h 0x01C0 83C8 0x01C0 87C8 DFCNT3 Destination FIFO Count Register 3 3CCh 0x01C0 83CC 0x01C0 87CC DFDST3 Destination FIFO Destination Address Register 3 3D0h 0x01C0 83D0 0x01C0 87D0 DFBIDX3 Destination FIFO B-Index Register 3 3D4h 0x01C0 83D4 0x01C0 87D4 DFMPPRXY3 Destination FIFO Memory Protection Proxy Register 0 Destination FIFO Memory Protection Proxy Register 1 Destination FIFO Memory Protection Proxy Register 2 Destination FIFO Memory Protection Proxy Register 3 Table 5-17 shows an abbreviation of the set of registers which make up the parameter set for each of 128 EDMA events. Each of the parameter register sets consist of 8 32-bit word entries. Table 5-18 shows the parameter set entry registers with relative memory address locations within each of the parameter sets. Table 5-17. EDMA Parameter Set RAM HEX ADDRESS RANGE DESCRIPTION 0x01C0 4000 - 0x01C0 401F Parameters Set 0 (8 32-bit words) 0x01C0 4020 - 0x01C0 403F Parameters Set 1 (8 32-bit words) 0x01C0 4040 - 0x01cC0 405F Parameters Set 2 (8 32-bit words) 0x01C0 4060 - 0x01C0 407F Parameters Set 3 (8 32-bit words) 0x01C0 4080 - 0x01C0 409F Parameters Set 4 (8 32-bit words) 0x01C0 40A0 - 0x01C0 40BF Parameters Set 5 (8 32-bit words) ... ... 0x01C0 4FC0 - 0x01C0 4FDF Parameters Set 126 (8 32-bit words) 0x01C0 4FE0 - 0x01C0 4FFF Parameters Set 127 (8 32-bit words) Copyright © 2012–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAPL137-HT 73 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 www.ti.com Table 5-18. Parameter Set Entries HEX OFFSET ADDRESS WITHIN THE PARAMETER SET ACRONYM PARAMETER ENTRY 0x0000 OPT Option 0x0004 SRC Source Address 0x0008 A_B_CNT 0x000C DST A Count, B Count 0x0010 SRC_DST_BIDX Source B Index, Destination B Index 0x0014 LINK_BCNTRLD Link Address, B Count Reload 0x0018 SRC_DST_CIDX Source C Index, Destination C Index 0x001C CCNT Destination Address C Count Table 5-19. EDMA Events 74 Event Event Name / Source Event Event Name / Source 0 McASP0 Receive 16 MMCSD Receive 1 McASP0 Transmit 17 MMCSD Transmit 2 McASP1 Receive 18 SPI1 Receive 3 McASP1 Transmit 19 SPI1 Transmit 4 McASP2 Receive 20 dMAX EVTOUT[6] 5 McASP2 Transmit 21 dMAX EVTOUT[7] 6 GPIO Bank 0 Interrupt 22 GPIO Bank 2 Interrupt 7 GPIO Bank 1 Interrupt 23 GPIO Bank 3 Interrupt 8 UART0 Receive 24 I2C0 Receive 9 UART0 Transmit 25 I2C0 Transmit 10 Timer64P0 Event Out 12 26 I2C1 Receive 11 Timer64P0 Event Out 34 27 I2C1 Transmit 12 UART1 Receive 28 GPIO Bank 4 Interrupt 13 UART1 Transmit 29 GPIO Bank 5 Interrupt 14 SPI0 Receive 30 UART2 Receive 15 SPI0 Transmit 31 UART2 Transmit Peripheral Information and Electrical Specifications Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 5.10 External Memory Interface A (EMIFA) EMIFA is one of two external memory interfaces supported on the device. It is primarily intended to support asynchronous memory types, such as NAND and NOR flash and Asynchronous SRAM. However on this device, EMIFA also provides a secondary interface to SDRAM. See the TMS320C674x/OMAP-L1x Processor Peripherals Overview Reference Guide. – Literature Number SPRUFK9 for more details. 5.10.1 EMIFA Asynchronous Memory Support EMIFA supports asynchronous: • SRAM memories • NAND Flash memories • NOR Flash memories The EMIFA data bus width is up to 8 bits on the PTP package. The device supports up to fifteen address lines and an external wait/interrupt input. Up to four asynchronous chip selects are supported by EMIFA (EMA_CS[5:2]) . Two of the four chip selects are available on the PTP package (EMA_CS[3:2]). Each chip select has the following individually programmable attributes: • Data Bus Width • Read cycle timings: setup, hold, strobe • Write cycle timings: setup, hold, strobe • Bus turn around time • Extended Wait Option With Programmable Timeout • Select Strobe Option • NAND flash controller supports 1-bit and 4-bit ECC calculation on blocks of 512 bytes. 5.10.2 EMIFA Connection Examples Figure 5-13 illustrates an example of how SDRAM, NOR, and NAND flash devices might be connected to EMIFA of the device simultaneously. The SDRAM chip select must be EMA_CS[0]. Note that the NOR flash is connected to EMA_CS[2] and the NAND flash is connected to EMA_CS[3] in this example. Note that any type of asynchronous memory may be connected to EMA_CS[5:2]. The on-chip bootloader makes some assumptions on which chip select the contains the boot image, and this depends on the boot mode. For NOR boot mode; the on-chip bootloader requires that the image be stored in NOR flash on EMA_CS[2]. For NAND boot mode, the bootloader requires that the boot image is stored in NAND flash on EMA_CS[3]. It is always possible to have the image span multiple chip selects, but this must be supported by second stage boot code stored in the external flash. A likely use case with more than one EMIFA chip select used for NAND flash is illustrated in Figure 5-14. This figure shows how two multiplane NAND flash devices with two chip selects each would connect to the device EMIFA. In this case if NAND is the boot memory, then the boot image needs to be stored in the NAND area selected by EMA_CS[3]. Part of the application image could spill over into the NAND regions selected by other EMIFA chip selects; but would rely on the code stored in the EMA_CS[3] area to bootload it. Note that this example could also apply to the OMAPL137 device; except only one multiplane NAND could be supported with only EMA_CS[3:2] available. Copyright © 2012–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAPL137-HT 75 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 www.ti.com RESET CE CAS RAS WE SDRAM 2M x 16 x 4 CLK Bank CKE BA[1:0] A[11:0] LDQM UDQM DQ[15:0] EMA_BA[1] EMA_CS[0] EMA_CAS EMIFA EMA_RAS EMA_WE EMA_CLK EMA_SDCKE EMA_BA[1:0] EMA_A[12:0] EMA_WE_DQM[0] EMA_WE_DQM[1] EMA_D[15:0] EMA_CS[2] EMA_CS[3] EMA_WAIT EMA_OE A[0] A[12:1] DQ[15:0] NOR CE FLASH WE 512K x 16 OE RESET A[18:13] GPIO (6 Pins) RESET ... RY/BY EMA_A[1] EMA_A[2] ALE CLE DQ[15:0] NAND FLASH CE 1Gb x 16 WE RE RB DVDD Figure 5-13. OMAPL137 Connection Diagram: SDRAM, NOR, NAND EMA_A[1] EMA_A[2] EMA_D[7:0] EMA_CS[2] EMA_CS[3] EMA_WE EMA_OE EMIFA EMA_WAIT EMA_CS[4] EMA_CS[5] ALE CLE DQ[7:0] CE1 CE2 WE RE R/B1 R/B2 NAND FLASH x8, MultiPlane ALE CLE DQ[7:0] CE1 CE2 WE RE R/B1 R/B2 NAND FLASH x8, MultiPlane DVDD Figure 5-14. OMAPL137 EMIFA Connection Diagram: Multiple NAND Flash Planes 76 Peripheral Information and Electrical Specifications Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 5.10.3 External Memory Interface (EMIF) Table 5-20 is a list of the EMIF registers. For more information about these registers, see the C674x DSP External Memory Interface (EMIF) User's Guide (literature number SPRU711). Table 5-20. External Memory Interface (EMIFA) Registers BYTE ADDRESS Register Name Register Description 0x6800 0000 MIDR Module ID Register 0x6800 0004 AWCC Asynchronous Wait Cycle Configuration Register 0x6800 0008 SDCR SDRAM Configuration Register 0x6800 000C SDRCR SDRAM Refresh Control Register 0x6800 0010 CE2CFG Asynchronous 1 Configuration Register 0x6800 0014 CE3CFG Asynchronous 2 Configuration Register 0x6800 0018 CE4CFG Asynchronous 3 Configuration Register 0x6800 001C CE5CFG Asynchronous 4 Configuration Register 0x6800 0020 SDTIMR SDRAM Timing Register 0x6800 003C SDSRETR SDRAM Self Refresh Exit Timing Register 0x6800 0040 INTRAW EMIFA Interrupt Raw Register 0x6800 0044 INTMSK EMIFA Interrupt Mask Register 0x6800 0048 INTMSKSET EMIFA Interrupt Mask Set Register 0x6800 004C INTMSKCLR EMIFA Interrupt Mask Clear Register 0x6800 0060 NANDFCR NAND Flash Control Register 0x6800 0064 NANDFSR NAND Flash Status Register 0x6800 0070 NANDF1ECC NAND Flash 1 ECC Register (CS2 Space) 0x6800 0074 NANDF2ECC NAND Flash 2 ECC Register (CS3 Space) 0x6800 0078 NANDF3ECC NAND Flash 3 ECC Register (CS4 Space) 0x6800 007C NANDF4ECC NAND Flash 4 ECC Register (CS5 Space) 0x6800 00BC NAND4BITECCLOAD NAND Flash 4-Bit ECC Load Register 0x6800 00C0 NAND4BITECC1 NAND Flash 4-Bit ECC Register 1 0x6800 00C4 NAND4BITECC2 NAND Flash 4-Bit ECC Register 2 0x6800 00C8 NAND4BITECC3 NAND Flash 4-Bit ECC Register 3 0x6800 00CC NAND4BITECC4 NAND Flash 4-Bit ECC Register 4 0x6800 00D0 NANDERRADD1 NAND Flash 4-Bit ECC Error Address Register 1 0x6800 00D4 NANDERRADD2 NAND Flash 4-Bit ECC Error Address Register 2 0x6800 00D8 NANDERRVAL1 NAND Flash 4-Bit ECC Error Value Register 1 0x6800 00DC NANDERRVAL2 NAND Flash 4-Bit ECC Error Value Register 2 Copyright © 2012–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAPL137-HT 77 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 www.ti.com 5.10.4 EMIFA Electrical Data/Timing Table 5-21 through Table 5-22 assume testing over recommended operating conditions. Table 5-21. EMIFA Asynchronous Memory Timing Requirements (1) (2) NO. MIN Nom MAX UNIT READS and WRITES 2 Pulse duration, EM_WAIT assertion and deassertion tw(EM_WAIT) 2E ns READS 12 tsu(EMDV-EMOEH) Setup time, EM_D[15:0] valid before EM_OE high 13 th(EMOEH-EMDIV) Hold time, EM_D[15:0] valid after EM_OE high 14 tsu (EMOEL- Setup Time, EM_WAIT asserted before end of Strobe Phase (3) EMWAIT) 3 ns 0.5 ns 4E+3 ns 4E+3 ns WRITES 28 tsu (EMWEL- Setup Time, EM_WAIT asserted before end of Strobe Phase (3) EMWAIT) (1) (2) (3) Parameters are characterized from -40°C to 125°C unless otherwise noted. E = EMA_CLK period or in ns. EMA_CLK is selected either as SYSCLK3 or the PLL output clock divided by 4.5. As an example, when SYSCLK3 is selected and set to 100MHz, E=10ns. Setup before end of STROBE phase (if no extended wait states are inserted) by which EM_WAIT must be asserted to add extended wait states. Figure 5-19 and Figure 5-20 describe EMIF transactions that include extended wait states inserted during the STROBE phase. However, cycles inserted as part of this extended wait period should not be counted; the 4E requirement is to the start of where the HOLD phase would begin if there were no extended wait cycles. Table 5-22. EMIFA Asynchronous Memory Switching Characteristics (1) (2) NO. PARAMETER (3) (4) MIN Nom MAX UNIT (TA)*E - 3 (TA)*E (TA)*E + 3 ns EMIF read cycle time (EW = 0) (RS+RST+RH)*E - 3 (RS+RST+RH)*E (RS+RST+RH)*E + 3 ns EMIF read cycle time (EW = 1) (RS+RST+RH+(EW C*16))*E - 3 (RS+RST+RH+(EWC*1 6))*E (RS+RST+RH+(EW C*16))*E + 3 ns Output setup time, EMA_CE[5:2] low to EMA_OE low (SS = 0) (RS)*E-3 (RS)*E (RS)*E+3 ns Output setup time, EMA_CE[5:2] low to EMA_OE low (SS = 1) -3 0 +3 ns Output hold time, EMA_OE high to EMA_CE[5:2] high (SS = 0) (RH)*E - 3 (RH)*E (RH)*E + 3 ns Output hold time, EMA_OE high to EMA_CE[5:2] high (SS = 1) -3 0 +3 ns READS and WRITES 1 td(TURNAROUND) Turn around time READS 3 4 5 tc(EMRCYCLE) tsu(EMCEL-EMOEL) th(EMOEH-EMCEH) 6 tsu(EMBAV-EMOEL) Output setup time, EMA_BA[1:0] valid to EMA_OE low (RS)*E-3 (RS)*E (RS)*E+3 ns 7 th(EMOEH-EMBAIV) Output hold time, EMA_OE high to EMA_BA[1:0] invalid (RH)*E-3 (RH)*E (RH)*E+3 ns 8 tsu(EMBAV-EMOEL) Output setup time, EMA_A[13:0] valid to EMA_OE low (RS)*E-3 (RS)*E (RS)*E+3 ns 9 th(EMOEH-EMAIV) Output hold time, EMA_OE high to EMA_A[13:0] invalid (RH)*E-3 (RH)*E (RH)*E+3 ns (1) (2) (3) (4) 78 Parameters are characterized from -40°C to 125°C unless otherwise noted. TA = Turn around, RS = Read setup, RST = Read strobe, RH = Read hold, WS = Write setup, WST = Write strobe, WH = Write hold, MEWC = Maximum external wait cycles. These parameters are programmed via the Asynchronous Bank and Asynchronous Wait Cycle Configuration Registers. These support the following range of values: TA[4-1], RS[16-1], RST[64-1], RH[8-1], WS[16-1], WST[64-1], WH[8-1], and MEW[1-256]. E = EMA_CLK period or in ns. EMA_CLK is selected either as SYSCLK3 or the PLL output clock divided by 4.5. As an example, when SYSCLK3 is selected and set to 100MHz, E=10ns. EWC = external wait cycles determined by EMA_WAIT input signal. EWC supports the following range of values EWC[256-1]. Note that the maximum wait time before timeout is specified by bit field MEWC in the Asynchronous Wait Cycle Configuration Register. Peripheral Information and Electrical Specifications Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 Table 5-22. EMIFA Asynchronous Memory Switching Characteristics(1)(2) NO. PARAMETER 10 tw(EMOEL) 11 td(EMWAITH-EMOEH) (3) (4) (continued) MIN Nom MAX EMA_OE active low width (EW = 0) (RST)*E-3 (RST)*E (RST)*E+3 ns EMA_OE active low width (EW = 1) (RST+(EWC*16))*E3 (RST+(EWC*16))*E (RST+(EWC*16))*E +3 ns 3E-3 4E 4E+3 ns (WS+WST+WH)*E-3 (WS+WST+WH)*E (WS+WST+WH)*E+ 3 ns (WS+WST+WH+(E (WS+WST+WH+(EWC* WC*16))*E - 3 16))*E (WS+WST+WH+(E WC*16))*E + 3 ns Delay time from EMA_WAIT deasserted to EMA_OE high UNIT WRITES EMIF write cycle time (EW = 0) 15 tc(EMWCYCLE) EMIF write cycle time (EW = 1) 16 17 tsu(EMCEL-EMWEL) th(EMWEH-EMCEH) Output setup time, EMA_CE[5:2] low to EMA_WE low (SS = 0) (WS)*E - 3 (WS)*E (WS)*E + 3 ns Output setup time, EMA_CE[5:2] low to EMA_WE low (SS = 1) -3 0 +3 ns Output hold time, EMA_WE high to EMA_CE[5:2] high (SS = 0) (WH)*E-3 (WH)*E (WH)*E+3 ns Output hold time, EMA_WE high to EMA_CE[5:2] high (SS = 1) -3 0 +3 ns 18 tsu(EMDQMV-EMWEL) Output setup time, EMA_BA[1:0] valid to EMA_WE low (WS)*E-3 (WS)*E (WS)*E+3 ns 19 th(EMWEH-EMDQMIV) Output hold time, EMA_WE high to EMA_BA[1:0] invalid (WH)*E-3 (WH)*E (WH)*E+3 ns 20 tsu(EMBAV-EMWEL) Output setup time, EMA_BA[1:0] valid to EMA_WE low (WS)*E-3 (WS)*E (WS)*E+3 ns 21 th(EMWEH-EMBAIV) Output hold time, EMA_WE high to EMA_BA[1:0] invalid (WH)*E-3 (WH)*E (WH)*E+3 ns 22 tsu(EMAV-EMWEL) Output setup time, EMA_A[13:0] valid to EMA_WE low (WS)*E-3 (WS)*E (WS)*E+3 ns 23 th(EMWEH-EMAIV) Output hold time, EMA_WE high to EMA_A[13:0] invalid (WH)*E-3 (WH)*E (WH)*E+3 ns EMA_WE active low width (EW = 0) (WST)*E-3 (WST)*E (WST)*E+3 ns 24 tw(EMWEL) EMA_WE active low width (EW = 1) (WST+(EWC*16))*E -3 (WST+(EWC*16))*E (WST+(EWC*16))*E +3 ns 25 td(EMWAITH-EMWEH) Delay time from EMA_WAIT deasserted to EMA_WE high 3E-3 4E 4E+3 ns 26 tsu(EMDV-EMWEL) Output setup time, EMA_D[15:0] valid to EMA_WE low (WS)*E-3 (WS)*E (WS)*E+3 ns 27 th(EMWEH-EMDIV) Output hold time, EMA_WE high to EMA_D[15:0] invalid (WH)*E-3 (WH)*E (WH)*E+3 ns Table 5-23. Timing Requirements for EMIFA SDRAM Interface Parameters are characterized from -40°C to 125°C unless otherwise noted. NO. PARAMETER 19 tsu(EMA_DV-EM_CLKH) Input setup time, read data valid on EMA_D[15:0] before EMA_CLK rising 20 th(CLKH-DIV) Input hold time, read data valid on EMA_D[15:0] after EMA_CLK rising 1.2V MIN 1.1V MAX MIN MAX 1.0V MIN MAX UNIT 2 3 3 ns 1.6 1.6 1.6 ns Table 5-24. Switching Characteristics for EMIFA SDRAM Interface Parameters are characterized from -40°C to 125°C unless otherwise noted. NO. PARAMETER 1.2V MIN 1.1V MAX MIN MAX 1.0V MIN 1 tc(CLK) Cycle time, EMIF clock EMA_CLK 10 15 20 2 tw(CLK) Pulse width, EMIF clock EMA_CLK high or low 3 5 8 3 td(CLKH-CSV) Delay time, EMA_CLK rising to EMA_CS[0] valid 4 toh(CLKH-CSIV) Output hold time, EMA_CLK rising to EMA_CS[0] invalid Copyright © 2012–2013, Texas Instruments Incorporated 7 1 9.5 1 MAX UNIT ns ns 13 1 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAPL137-HT ns ns 79 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 www.ti.com Table 5-24. Switching Characteristics for EMIFA SDRAM Interface (continued) Parameters are characterized from -40°C to 125°C unless otherwise noted. NO. 5 1.2V PARAMETER MIN td(CLKH-DQMV) Delay time, EMA_CLK rising to EMA_WE_DQM[1:0] valid 6 toh(CLKH-DQMIV) Output hold time, EMA_CLK rising to EMA_WE_DQM[1:0] invalid 7 td(CLKH-AV) Delay time, EMA_CLK rising to EMA_A[12:0] and EMA_BA[1:0] valid 8 toh(CLKH-AIV) Output hold time, EMA_CLK rising to EMA_A[12:0] and EMA_BA[1:0] invalid MIN 7 1 1 1 9 td(CLKH-DV) Delay time, EMA_CLK rising to EMA_D[15:0] valid toh(CLKH-DIV) Output hold time, EMA_CLK rising to EMA_D[15:0] invalid 11 td(CLKH-RASV) Delay time, EMA_CLK rising to EMA_RAS valid 12 toh(CLKH-RASIV) Output hold time, EMA_CLK rising to EMA_RAS invalid 13 td(CLKH-CASV) Delay time, EMA_CLK rising to EMA_CAS valid 14 toh(CLKH-CASIV) Output hold time, EMA_CLK rising to EMA_CAS invalid 15 td(CLKH-WEV) Delay time, EMA_CLK rising to EMA_WE valid 16 toh(CLKH-WEIV) Output hold time, EMA_CLK rising to EMA_WE invalid 17 tdis(CLKH-DHZ) Delay time, EMA_CLK rising to EMA_D[15:0] tri-stated 18 tena(CLKH-DLZ) Output hold time, EMA_CLK rising to EMA_D[15:0] driving 1.0V MAX 7 7 1 7 9.5 ns ns ns 13 1 ns ns 13 1 1 ns ns 13 1 1 1 13 9.5 ns ns 1 9.5 7 1 13 9.5 ns ns 1 1 1 13 9.5 UNIT ns 1 1 1 13 9.5 7 MAX 1 1 1 MIN 9.5 7 10 BASIC SDRAM WRITE OPERATION 1.1V MAX ns ns 1 2 2 EMA_CLK 3 4 EMA_CS[0] 5 6 EMA_WE_DQM[1:0] 7 8 7 8 EMA_BA[1:0] EMA_A[12:0] 9 10 EMA_D[15:0] 11 12 EMA_RAS 13 EMA_CAS 15 16 EMA_WE Figure 5-15. EMIFA Basic SDRAM Write Operation 80 Peripheral Information and Electrical Specifications Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 BASIC SDRAM READ OPERATION 1 2 2 EMA_CLK 3 4 EMA_CS[0] 5 6 EMA_WE_DQM[1:0] 7 8 7 8 EMA_BA[1:0] EMA_A[12:0] 19 17 2 EM_CLK Delay 20 18 EMA_D[15:0] 11 12 EMA_RAS 13 14 EMA_CAS EMA_WE Figure 5-16. EMIFA Basic SDRAM Read Operation 3 1 EMA_CS[5:2] EMA_BA[1:0] EMA_A[22:0] EMA_WE_DQM[1:0] 1 EMA_A_RW 4 8 5 9 6 7 10 EMA_OE 13 12 EMA_D[15:0] EMA_WE Figure 5-17. Asynchronous Memory Read Timing for EMIFA Copyright © 2012–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAPL137-HT 81 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 www.ti.com 15 1 EMA_CS[5:2] EMA_BA[1:0] EMA_A[22:0] EMA_WE_DQM[1:0] EMA_A_RW 16 17 18 19 20 21 22 23 1 24 EMA_WE 26 27 EMA_D[15:0] EMA_OE Figure 5-18. Asynchronous Memory Write Timing for EMIFA EMA_CE[5:2] SETUP STROBE Extended Due to EMA_WAIT STROBE HOLD EMA_BA[1:0] EMA_A[12:0] EMA_D[15:0] 14 11 EMA_OE 2 EMA_WAIT Asserted 2 Deasserted Figure 5-19. EMA_WAIT Read Timing Requirements 82 Peripheral Information and Electrical Specifications Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 EMA_CE[5:2] SETUP STROBE Extended Due to EMA_WAIT STROBE HOLD EMA_BA[1:0] EMA_A[12:0] EMA_D[15:0] 28 25 EMA_WE 2 EMA_WAIT Asserted 2 Deasserted Figure 5-20. EMA_WAIT Write Timing Requirements Copyright © 2012–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAPL137-HT 83 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 www.ti.com 5.11 External Memory Interface B (EMIFB) Figure 5-21, EMIFB Functional Block Diagram illustrates a high-level view of the EMIFB and its connections within the device. Multiple requesters have access to EMIFB through a switched central resource (indicated as crossbar in the figure). The EMIFB implements a split transaction internal bus, allowing concurrence between reads and writes from the various requesters. See the TMS320C674x/OMAP-L1x Processor Peripherals Overview Reference Guide. – Literature Number SPRUFK9 for more details. EMIFB Registers CPU EDMA Crossbar MPU2 Master Peripherals (USB, UHPI...) EMB_CS EMB_CAS Cmd/Write EMB_RAS FIFO EMB_WE EMB_CLK EMB_SDCKE Read EMB_BA[1:0] FIFO EMB_A[x:0] EMB_D[x:0] EMB_WE_DQM[x:0] SDRAM Interface Figure 5-21. EMIFB Functional Block Diagram EMIFB supports a 3.3V LVCMOS Interface. 84 Peripheral Information and Electrical Specifications Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 5.11.1 Interfacing to SDRAM The EMIFB supports a glueless interface to SDRAM devices with the following characteristics: • Pre-charge bit is A[10] • The number of column address bits is 8, 9, 10 or 11 • The number of row address bits is 13 (in case of mobile SDR, number of row address bits can be 9, 10, 11, 12, or 13) • The number of internal banks is 1, 2 or 4 Figure 5-22 shows an interface between the EMIFB and a 2M × 16 × 4 bank SDRAM device. In addition, Figure 5-23 shows an interface between the EMIFB and a 2M × 32 × 4 bank SDRAM device and Figure 524 shows an interface between the EMIFB and two 4M × 16 × 4 bank SDRAM devices. Refer to Table 525, as an example that shows additional list of commonly-supported SDRAM devices and the required connections for the address pins. Note that in Table 5-25, page size/column size (not indicated in the table) is varied to get the required addressability range. EMIFB EMB_CS EMB_CAS EMB_RAS EMB_WE EMB_CLK EMB_SDCKE EMB_BA[1:0] EMB_A[11:0] EMB_WE_DQM[0] EMB_WE_DQM[1] EMB_D[15:0] SDRAM 2M x 16 x 4 Bank CE CAS RAS WE CLK CKE BA[1:0] A[11:0] LDQM UDQM DQ[15:0] Figure 5-22. EMIFB to 2M × 16 × 4 bank SDRAM Interface SDRAM 2M x 32 x 4 Bank EMIFB EMB_CS EMB_CAS EMB_RAS EMB_WE EMB_CLK EMB_SDCKE EMB_BA[1:0] EMB_A[11:0] EMB_WE_DQM[3:0] EMB_D[31:0] CE CAS RAS WE CLK CKE BA[1:0] A[11:0] DQM[3:0] DQ[31:0] Figure 5-23. EMIFB to 2M × 32 × 4 bank SDRAM Interface Copyright © 2012–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAPL137-HT 85 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 www.ti.com SDRAM 4M x 16 x 4 Bank EMIFB EMB_CS EMB_CAS EMB_RAS EMB_WE EMB_CLK EMB_SDCKE EMB_BA[1:0] EMB_A[12:0] EMB_WE_DQM[0] EMB_WE_DQM[1] EMB_D[15:0] EMB_WE_DQM[2] EMB_WE_DQM[3] EMB_D[31:16] CE CAS RAS WE CLK CKE BA[1:0] A[12:0] LDQM UDQM DQ[15:0] SDRAM 4M x 16 x 4 Bank CE CAS RAS WE CLK CKE BA[1:0] A[12:0] LDQM UDQM DQ[15:0] Figure 5-24. EMIFB to Dual 4M × 16 × 4 bank SDRAM Interface Table 5-25. Example of 16/32-bit EMIFB Address Pin Connections SDRAM Size Width Banks 64M bits ×16 4 ×32 128M bits 256M bits ×16 A[11:0] EMIFB EMB_A[11:0] SDRAM A[10:0] EMIFB EMB_A[10:0] SDRAM A[11:0] EMIFB EMB_A[11:0] 4 SDRAM A[11:0] EMIFB EMB_A[11:0] ×16 4 SDRAM A[12:0] EMIFB EMB_A[12:0] ×16 ×32 86 4 SDRAM ×32 ×32 512M bits 4 Address Pins 4 4 4 SDRAM A[11:0] EMIFB EMB_A[11:0] SDRAM A[12:0] EMIFB EMB_A[12:0] SDRAM A[12:0] EMIFB EMB_A[12:0] Peripheral Information and Electrical Specifications Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 Table 5-26 is a list of the EMIFB registers. Table 5-26. EMIFB Base Controller Registers BYTE ADDRESS Acronym Register 0xB000 0000 MIDR Module ID Register 0xB000 0008 SDCFG SDRAM Configuration Register 0xB000 000C SDRFC SDRAM Refresh Control Register 0xB000 0010 SDTIM1 SDRAM Timing Register 1 0xB000 0014 SDTIM2 SDRAM Timing Register 2 0xB000 001C SDCFG2 SDRAM Configuration 2 Register 0xB000 0020 BPRIO Peripheral Bus Burst Priority Register 0xB000 0040 PC1 Performance Counter 1 Register 0xB000 0044 PC2 Performance Counter 2 Register 0xB000 0048 PCC Performance Counter Configuration Register 0xB000 004C PCMRS Performance Counter Master Region Select Register 0xB000 0050 PCT Performance Counter Time Register 0xB000 00C0 IRR Interrupt Raw Register 0xB000 00C4 IMR Interrupt Mask Register 0xB000 00C8 IMSR Interrupt Mask Set Register 0xB000 00CC IMCR Interrupt Mask Clear Register 5.11.2 EMIFB Electrical Data/Timing Table 5-27. EMIFB SDRAM Interface Timing Requirements NO. MIN 19 tsu(DV-CLKH) Input setup time, read data valid on EMB_D[31:0] before EMB_CLK rising 20 th(CLKH-DIV) Input hold time, read data valid on EMB_D[31:0] after EMB_CLK rising MAX UNIT 0.8 ns 1.6 ns Table 5-28. EMIFB SDRAM Interface Switching Characteristics NO. PARAMETER 1 (1) tc(CLK) Cycle time, EMIF clock EMB_CLK (1) tw(CLK) Pulse width, EMIF clock EMB_CLK high or low 3 td(CLKH-CSV) Delay time, EMB_CLK rising to EMB_CS[0] valid 4 toh(CLKH-CSIV) Output hold time, EMB_CLK rising to EMB_CS[0] invalid 5 td(CLKH-DQMV) Delay time, EMB_CLK rising to EMB_WE_DQM[3:0] valid 6 toh(CLKH-DQMIV) Output hold time, EMB_CLK rising to EMB_WE_DQM[3:0] invalid 7 td(CLKH-AV) Delay time, EMB_CLK rising to EMB_A[12:0] and EMB_BA[1:0] valid 8 toh(CLKH-AIV) Output hold time, EMB_CLK rising to EMB_A[12:0] and EMB_BA[1:0] invalid 9 td(CLKH-DV) Delay time, EMB_CLK rising to EMB_D[31:0] valid 10 toh(CLKH-DIV) Output hold time, EMB_CLK rising to EMB_D[31:0] invalid 11 td(CLKH-RASV) Delay time, EMB_CLK rising to EMB_RAS valid 12 toh(CLKH-RASIV) Output hold time, EMB_CLK rising to EMB_RAS invalid 13 td(CLKH-CASV) Delay time, EMB_CLK rising to EMB_CAS valid 14 toh(CLKH-CASIV) Output hold time, EMB_CLK rising to EMB_CAS invalid 2 (1) MIN MAX UNIT 7.5 ns 3 ns 7 0.9 ns ns 7 0.9 ns ns 7 0.9 ns ns 7 0.9 ns ns 7 0.9 ns ns 7 0.9 ns ns Parameters are characterized from -40°C to 125°C unless otherwise noted. Copyright © 2012–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAPL137-HT 87 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 www.ti.com Table 5-28. EMIFB SDRAM Interface Switching Characteristics (continued) NO. PARAMETER MIN 15 td(CLKH-WEV) Delay time, EMB_CLK rising to EMB_WE valid 16 toh(CLKH-WEIV) Output hold time, EMB_CLK rising to EMB_WE invalid 17 tdis(CLKH-DHZ) Delay time, EMB_CLK rising to EMB_D[31:0] tri-stated 18 tena(CLKH-DLZ) Output hold time, EMB_CLK rising to EMB_D[31:0] driving BASIC SDRAM WRITE OPERATION MAX UNIT 7 0.9 ns 7 0.9 ns ns ns 1 2 2 EMB_CLK 3 4 EMB_CS[0] 5 6 EMB_WE_DQM[3:0] 7 8 7 8 EMB_BA[1:0] EMB_A[12:0] 9 10 EMB_D[31:0] 11 12 EMB_RAS 13 EMB_CAS 15 16 EMB_WE Figure 5-25. EMIFB Basic SDRAM Write Operation 88 Peripheral Information and Electrical Specifications Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 BASIC SDRAM READ OPERATION 1 2 2 EMB_CLK 3 4 EMB_CS[0] 5 6 EMB_WE_DQM[3:0] 7 8 7 8 EMB_BA[1:0] EMB_A[12:0] 19 17 20 2 EM_CLK Delay 18 EMB_D[31:0] 11 12 EMB_RAS 13 14 EMB_CAS EMB_WE Figure 5-26. EMIFB Basic SDRAM Read Operation Copyright © 2012–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAPL137-HT 89 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 www.ti.com 5.12 MMC / SD / SDIO (MMCSD) 5.12.1 MMCSD Peripheral Description The device includes an MMCSD controller which are compliant with MMC V3.31, Secure Digital Part 1 Physical Layer Specification V1.1 and Secure Digital Input Output (SDIO) V2.0 specifications. The device MMC/SD Controller has following features: • MultiMediaCard (MMC). • Secure Digital (SD) Memory Card. • MMC/SD protocol support. • SDIO protocol support. • Programmable clock frequency. • 512 bit Read/Write FIFO to lower system overhead. • Slave EDMA transfer capability. • SD high capacity support. The MMC/SD Controller does not support SPI mode. See the TMS320C674x/OMAP-L1x Processor Peripherals Overview Reference Guide. – Literature Number SPRUFK9 for more details. 5.12.2 MMCSD Peripheral Register Description(s) Table 5-29. Multimedia Card/Secure Digital (MMC/SD) Card Controller Registers Offset Acronym Register Description 0x01C4 0000 MMCCTL MMC Control Register 0x01C4 0004 MMCCLK MMC Memory Clock Control Register 0x01C4 0008 MMCST0 MMC Status Register 0 0x01C4 000C MMCST1 MMC Status Register 1 0x01C4 0010 MMCIM MMC Interrupt Mask Register 0x01C4 0014 MMCTOR MMC Response Time-Out Register 0x01C4 0018 MMCTOD MMC Data Read Time-Out Register 0x01C4 001C MMCBLEN MMC Block Length Register 0x01C4 0020 MMCNBLK MMC Number of Blocks Register 0x01C4 0024 MMCNBLC MMC Number of Blocks Counter Register 0x01C4 0028 MMCDRR MMC Data Receive Register 0x01C4 002C MMCDXR MMC Data Transmit Register 0x01C4 0030 MMCCMD MMC Command Register 0x01C4 0034 MMCARGHL MMC Argument Register 0x01C4 0038 MMCRSP01 MMC Response Register 0 and 1 0x01C4 003C MMCRSP23 MMC Response Register 2 and 3 0x01C4 0040 MMCRSP45 MMC Response Register 4 and 5 0x01C4 0044 MMCRSP67 MMC Response Register 6 and 7 0x01C4 0048 MMCDRSP MMC Data Response Register 0x01C4 0050 MMCCIDX MMC Command Index Register 0x01C4 0064 SDIOCTL SDIO Control Register 0x01C4 0068 SDIOST0 SDIO Status Register 0 0x01C4 006C SDIOIEN SDIO Interrupt Enable Register 0x01C4 0070 SDIOIST SDIO Interrupt Status Register 0x01C4 0074 MMCFIFOCTL MMC FIFO Control Register 90 Peripheral Information and Electrical Specifications Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 5.12.3 MMC/SD Electrical Data/Timing Table 5-30. Timing Requirements for MMC/SD Module (1) NO. MIN MAX UNIT 1 tsu(CMDV-CLKH) Setup time, MMCSD_CMD valid before MMCSD_CLK high 3.2 ns 2 th(CLKH-CMDV) Hold time, MMCSD_CMD valid after MMCSD_CLK high 1.5 ns 3 tsu(DATV-CLKH) Setup time, MMCSD_DATx valid before MMCSD_CLK high 3.2 ns 4 th(CLKH-DATV) Hold time, MMCSD_DATx valid after MMCSD_CLK high 1.5 ns (1) Parameters are characterized from -40°C to 125°C unless otherwise noted. Table 5-31. Switching Characteristics Over Recommended Operating Conditions for MMC/SD Module (1) NO. (1) PARAMETER MIN MAX UNIT 7 f(CLK) Operating frequency, MMCSD_CLK 0 52 MHz 8 f(CLK_ID) Identification mode frequency, MMCSD_CLK 0 400 KHz 9 tW(CLKL) Pulse width, MMCSD_CLK low 6.5 10 tW(CLKH) Pulse width, MMCSD_CLK high 6.5 ns 11 tr(CLK) Rise time, MMCSD_CLK 12 tf(CLK) Fall time, MMCSD_CLK 13 td(CLKL-CMD) Delay time, MMCSD_CLK low to MMCSD_CMD transition -4.5 14 td(CLKL-DAT) Delay time, MMCSD_CLK low to MMCSD_DATx transition -4.5 2.5 ns ns 3 ns 3 ns 2.5 ns Parameters are characterized from -40°C to 125°C unless otherwise noted. 10 9 7 MMCSD_CLK 13 13 START MMCSD_CMD 13 XMIT Valid Valid 13 Valid END Figure 5-27. MMC/SD Host Command Timing 9 7 10 MMCSD_CLK 1 2 START MMCSD_CMD XMIT Valid Valid Valid END Figure 5-28. MMC/SD Card Response Timing 10 9 7 MMCSD_CLK 14 MMCSD_DATx 14 START 14 D0 D1 Dx 14 END Figure 5-29. MMC/SD Host Write Timing Copyright © 2012–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAPL137-HT 91 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 www.ti.com 9 10 7 MMCSD_CLK 4 4 3 Start MMCSD_DATx 3 D0 D1 Dx End Figure 5-30. MMC/SD Host Read and Card CRC Status Timing 5.13 Ethernet Media Access Controller (EMAC) The Ethernet Media Access Controller (EMAC) provides an efficient interface between device and the network. The device EMAC supports both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support. The EMAC controls the flow of packet data from the device to the PHY. The MDIO module controls PHY configuration and status monitoring. Both the EMAC and the MDIO modules interface to the device through a custom interface that allows efficient data transmission and reception. This custom interface is referred to as the EMAC control module, and is considered integral to the EMAC/MDIO peripheral. The control module is also used to multiplex and control interrupts. See the TMS320C674x/OMAP-L1x Processor Peripherals Overview Reference Guide. – Literature Number SPRUFK9 for more details. 5.13.1 EMAC Peripheral Register Description(s) Table 5-32. Ethernet Media Access Controller (EMAC) Registers BYTE ADDRESS 92 REGISTER Register Description 0x01E2 3000 TXREV Transmit Revision Register 0x01E2 3004 TXCONTROL Transmit Control Register 0x01E2 3008 TXTEARDOWN Transmit Teardown Register 0x01E2 3010 RXREV Receive Revision Register 0x01E2 3014 RXCONTROL Receive Control Register 0x01E2 3018 RXTEARDOWN Receive Teardown Register 0x01E2 3080 TXINTSTATRAW Transmit Interrupt Status (Unmasked) Register 0x01E2 3084 TXINTSTATMASKED Transmit Interrupt Status (Masked) Register 0x01E2 3088 TXINTMASKSET Transmit Interrupt Mask Set Register 0x01E2 308C TXINTMASKCLEAR Transmit Interrupt Clear Register 0x01E2 3090 MACINVECTOR MAC Input Vector Register 0x01E2 3094 MACEOIVECTOR MAC End Of Interrupt Vector Register 0x01E2 30A0 RXINTSTATRAW Receive Interrupt Status (Unmasked) Register 0x01E2 30A4 RXINTSTATMASKED Receive Interrupt Status (Masked) Register 0x01E2 30A8 RXINTMASKSET Receive Interrupt Mask Set Register 0x01E2 30AC RXINTMASKCLEAR Receive Interrupt Mask Clear Register 0x01E2 30B0 MACINTSTATRAW MAC Interrupt Status (Unmasked) Register 0x01E2 30B4 MACINTSTATMASKED MAC Interrupt Status (Masked) Register 0x01E2 30B8 MACINTMASKSET MAC Interrupt Mask Set Register 0x01E2 30BC MACINTMASKCLEAR MAC Interrupt Mask Clear Register 0x01E2 3100 RXMBPENABLE Receive Multicast/Broadcast/Promiscuous Channel Enable Register 0x01E2 3104 RXUNICASTSET Receive Unicast Enable Set Register 0x01E2 3108 RXUNICASTCLEAR Receive Unicast Clear Register 0x01E2 310C RXMAXLEN Receive Maximum Length Register Peripheral Information and Electrical Specifications Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 Table 5-32. Ethernet Media Access Controller (EMAC) Registers (continued) BYTE ADDRESS REGISTER Register Description 0x01E2 3110 RXBUFFEROFFSET Receive Buffer Offset Register 0x01E2 3114 RXFILTERLOWTHRESH Receive Filter Low Priority Frame Threshold Register 0x01E2 3120 RX0FLOWTHRESH Receive Channel 0 Flow Control Threshold Register 0x01E2 3124 RX1FLOWTHRESH Receive Channel 1 Flow Control Threshold Register 0x01E2 3128 RX2FLOWTHRESH Receive Channel 2 Flow Control Threshold Register 0x01E2 312C RX3FLOWTHRESH Receive Channel 3 Flow Control Threshold Register 0x01E2 3130 RX4FLOWTHRESH Receive Channel 4 Flow Control Threshold Register 0x01E2 3134 RX5FLOWTHRESH Receive Channel 5 Flow Control Threshold Register 0x01E2 3138 RX6FLOWTHRESH Receive Channel 6 Flow Control Threshold Register 0x01E2 313C RX7FLOWTHRESH Receive Channel 7 Flow Control Threshold Register 0x01E2 3140 RX0FREEBUFFER Receive Channel 0 Free Buffer Count Register 0x01E2 3144 RX1FREEBUFFER Receive Channel 1 Free Buffer Count Register 0x01E2 3148 RX2FREEBUFFER Receive Channel 2 Free Buffer Count Register 0x01E2 314C RX3FREEBUFFER Receive Channel 3 Free Buffer Count Register 0x01E2 3150 RX4FREEBUFFER Receive Channel 4 Free Buffer Count Register 0x01E2 3154 RX5FREEBUFFER Receive Channel 5 Free Buffer Count Register 0x01E2 3158 RX6FREEBUFFER Receive Channel 6 Free Buffer Count Register 0x01E2 315C RX7FREEBUFFER Receive Channel 7 Free Buffer Count Register 0x01E2 3160 MACCONTROL MAC Control Register 0x01E2 3164 MACSTATUS MAC Status Register 0x01E2 3168 EMCONTROL Emulation Control Register 0x01E2 316C FIFOCONTROL FIFO Control Register 0x01E2 3170 MACCONFIG MAC Configuration Register 0x01E2 3174 SOFTRESET Soft Reset Register 0x01E2 31D0 MACSRCADDRLO MAC Source Address Low Bytes Register 0x01E2 31D4 MACSRCADDRHI MAC Source Address High Bytes Register 0x01E2 31D8 MACHASH1 MAC Hash Address Register 1 0x01E2 31DC MACHASH2 MAC Hash Address Register 2 0x01E2 31E0 BOFFTEST Back Off Test Register 0x01E2 31E4 TPACETEST Transmit Pacing Algorithm Test Register 0x01E2 31E8 RXPAUSE Receive Pause Timer Register 0x01E2 31EC TXPAUSE Transmit Pause Timer Register 0x01E2 3200 - 0x01E2 32FC (see Table 5-33) EMAC Statistics Registers 0x01E2 3500 MACADDRLO MAC Address Low Bytes Register, Used in Receive Address Matching 0x01E2 3504 MACADDRHI MAC Address High Bytes Register, Used in Receive Address Matching 0x01E2 3508 MACINDEX MAC Index Register 0x01E2 3600 TX0HDP Transmit Channel 0 DMA Head Descriptor Pointer Register 0x01E2 3604 TX1HDP Transmit Channel 1 DMA Head Descriptor Pointer Register 0x01E2 3608 TX2HDP Transmit Channel 2 DMA Head Descriptor Pointer Register 0x01E2 360C TX3HDP Transmit Channel 3 DMA Head Descriptor Pointer Register 0x01E2 3610 TX4HDP Transmit Channel 4 DMA Head Descriptor Pointer Register 0x01E2 3614 TX5HDP Transmit Channel 5 DMA Head Descriptor Pointer Register 0x01E2 3618 TX6HDP Transmit Channel 6 DMA Head Descriptor Pointer Register 0x01E2 361C TX7HDP Transmit Channel 7 DMA Head Descriptor Pointer Register 0x01E2 3620 RX0HDP Receive Channel 0 DMA Head Descriptor Pointer Register 0x01E2 3624 RX1HDP Receive Channel 1 DMA Head Descriptor Pointer Register 0x01E2 3628 RX2HDP Receive Channel 2 DMA Head Descriptor Pointer Register Copyright © 2012–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAPL137-HT 93 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 www.ti.com Table 5-32. Ethernet Media Access Controller (EMAC) Registers (continued) BYTE ADDRESS REGISTER Register Description 0x01E2 362C RX3HDP Receive Channel 3 DMA Head Descriptor Pointer Register 0x01E2 3630 RX4HDP Receive Channel 4 DMA Head Descriptor Pointer Register 0x01E2 3634 RX5HDP Receive Channel 5 DMA Head Descriptor Pointer Register 0x01E2 3638 RX6HDP Receive Channel 6 DMA Head Descriptor Pointer Register 0x01E2 363C RX7HDP Receive Channel 7 DMA Head Descriptor Pointer Register 0x01E2 3640 TX0CP Transmit Channel 0 Completion Pointer Register 0x01E2 3644 TX1CP Transmit Channel 1 Completion Pointer Register 0x01E2 3648 TX2CP Transmit Channel 2 Completion Pointer Register 0x01E2 364C TX3CP Transmit Channel 3 Completion Pointer Register 0x01E2 3650 TX4CP Transmit Channel 4 Completion Pointer Register 0x01E2 3654 TX5CP Transmit Channel 5 Completion Pointer Register 0x01E2 3658 TX6CP Transmit Channel 6 Completion Pointer Register 0x01E2 365C TX7CP Transmit Channel 7 Completion Pointer Register 0x01E2 3660 RX0CP Receive Channel 0 Completion Pointer Register 0x01E2 3664 RX1CP Receive Channel 1 Completion Pointer Register 0x01E2 3668 RX2CP Receive Channel 2 Completion Pointer Register 0x01E2 366C RX3CP Receive Channel 3 Completion Pointer Register 0x01E2 3670 RX4CP Receive Channel 4 Completion Pointer Register 0x01E2 3674 RX5CP Receive Channel 5 Completion Pointer Register 0x01E2 3678 RX6CP Receive Channel 6 Completion Pointer Register 0x01E2 367C RX7CP Receive Channel 7 Completion Pointer Register Table 5-33. EMAC Statistics Registers 94 HEX ADDRESS RANGE ACRONYM REGISTER NAME 0x01E2 3200 RXGOODFRAMES Good Receive Frames Register 0x01E2 3204 RXBCASTFRAMES Broadcast Receive Frames Register (Total number of good broadcast frames received) 0x01E2 3208 RXMCASTFRAMES Multicast Receive Frames Register (Total number of good multicast frames received) 0x01E2 320C RXPAUSEFRAMES Pause Receive Frames Register 0x01E2 3210 RXCRCERRORS 0x01E2 3214 RXALIGNCODEERRORS 0x01E2 3218 RXOVERSIZED 0x01E2 321C RXJABBER 0x01E2 3220 RXUNDERSIZED Receive Undersized Frames Register (Total number of undersized frames received) 0x01E2 3224 RXFRAGMENTS Receive Frame Fragments Register 0x01E2 3228 RXFILTERED 0x01E2 322C RXQOSFILTERED 0x01E2 3230 RXOCTETS 0x01E2 3234 TXGOODFRAMES Good Transmit Frames Register (Total number of good frames transmitted) Receive CRC Errors Register (Total number of frames received with CRC errors) Receive Alignment/Code Errors Register (Total number of frames received with alignment/code errors) Receive Oversized Frames Register (Total number of oversized frames received) Receive Jabber Frames Register (Total number of jabber frames received) Filtered Receive Frames Register Received QOS Filtered Frames Register Receive Octet Frames Register (Total number of received bytes in good frames) 0x01E2 3238 TXBCASTFRAMES Broadcast Transmit Frames Register 0x01E2 323C TXMCASTFRAMES Multicast Transmit Frames Register 0x01E2 3240 TXPAUSEFRAMES Pause Transmit Frames Register Peripheral Information and Electrical Specifications Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 Table 5-33. EMAC Statistics Registers (continued) HEX ADDRESS RANGE ACRONYM 0x01E2 3244 TXDEFERRED REGISTER NAME Deferred Transmit Frames Register Transmit Collision Frames Register 0x01E2 3248 TXCOLLISION 0x01E2 324C TXSINGLECOLL 0x01E2 3250 TXMULTICOLL 0x01E2 3254 TXEXCESSIVECOLL 0x01E2 3258 TXLATECOLL 0x01E2 325C TXUNDERRUN 0x01E2 3260 TXCARRIERSENSE 0x01E2 3264 TXOCTETS 0x01E2 3268 FRAME64 0x01E2 326C FRAME65T127 Transmit and Receive 65 to 127 Octet Frames Register 0x01E2 3270 FRAME128T255 Transmit and Receive 128 to 255 Octet Frames Register 0x01E2 3274 FRAME256T511 Transmit and Receive 256 to 511 Octet Frames Register 0x01E2 3278 FRAME512T1023 Transmit and Receive 512 to 1023 Octet Frames Register 0x01E2 327C FRAME1024TUP Transmit and Receive 1024 to 1518 Octet Frames Register 0x01E2 3280 NETOCTETS 0x01E2 3284 RXSOFOVERRUNS Receive FIFO or DMA Start of Frame Overruns Register 0x01E2 3288 RXMOFOVERRUNS Receive FIFO or DMA Middle of Frame Overruns Register 0x01E2 328C RXDMAOVERRUNS Receive DMA Start of Frame and Middle of Frame Overruns Register Transmit Single Collision Frames Register Transmit Multiple Collision Frames Register Transmit Excessive Collision Frames Register Transmit Late Collision Frames Register Transmit Underrun Error Register Transmit Carrier Sense Errors Register Transmit Octet Frames Register Transmit and Receive 64 Octet Frames Register Network Octet Frames Register Table 5-34. EMAC Control Module Registers BYTE ADDRESS Acronym Register Description 0x01E2 2000 REV EMAC Control Module Revision Register 0x01E2 2004 SOFTRESET EMAC Control Module Software Reset Register 0x01E2 200C INTCONTROL EMAC Control Module Interrupt Control Register 0x01E2 2010 C0RXTHRESHEN EMAC Control Module Interrupt Core 0 Receive Threshold Interrupt Enable Register 0x01E2 2014 C0RXEN EMAC Control Module Interrupt Core 0 Receive Interrupt Enable Register 0x01E2 2018 C0TXEN EMAC Control Module Interrupt Core 0 Transmit Interrupt Enable Register 0x01E2 201C C0MISCEN EMAC Control Module Interrupt Core 0 Miscellaneous Interrupt Enable Register 0x01E2 2020 C1RXTHRESHEN EMAC Control Module Interrupt Core 1 Receive Threshold Interrupt Enable Register 0x01E2 2024 C1RXEN EMAC Control Module Interrupt Core 1 Receive Interrupt Enable Register 0x01E2 2028 C1TXEN EMAC Control Module Interrupt Core 1 Transmit Interrupt Enable Register 0x01E2 202C C1MISCEN EMAC Control Module Interrupt Core 1 Miscellaneous Interrupt Enable Register 0x01E2 2030 C2RXTHRESHEN EMAC Control Module Interrupt Core 2 Receive Threshold Interrupt Enable Register 0x01E2 2034 C2RXEN EMAC Control Module Interrupt Core 2 Receive Interrupt Enable Register 0x01E2 2038 C2TXEN EMAC Control Module Interrupt Core 2 Transmit Interrupt Enable Register 0x01E2 203C C2MISCEN EMAC Control Module Interrupt Core 2 Miscellaneous Interrupt Enable Register 0x01E2 2040 C0RXTHRESHSTAT EMAC Control Module Interrupt Core 0 Receive Threshold Interrupt Status Register 0x01E2 2044 C0RXSTAT EMAC Control Module Interrupt Core 0 Receive Interrupt Status Register 0x01E2 2048 C0TXSTAT EMAC Control Module Interrupt Core 0 Transmit Interrupt Status Register 0x01E2 204C C0MISCSTAT EMAC Control Module Interrupt Core 0 Miscellaneous Interrupt Status Register Copyright © 2012–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAPL137-HT 95 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 www.ti.com Table 5-34. EMAC Control Module Registers (continued) BYTE ADDRESS Acronym Register Description 0x01E2 2050 C1RXTHRESHSTAT EMAC Control Module Interrupt Core 1 Receive Threshold Interrupt Status Register 0x01E2 2054 C1RXSTAT EMAC Control Module Interrupt Core 1 Receive Interrupt Status Register 0x01E2 2058 C1TXSTAT EMAC Control Module Interrupt Core 1 Transmit Interrupt Status Register 0x01E2 205C C1MISCSTAT EMAC Control Module Interrupt Core 1 Miscellaneous Interrupt Status Register 0x01E2 2060 C2RXTHRESHSTAT EMAC Control Module Interrupt Core 2 Receive Threshold Interrupt Status Register 0x01E2 2064 C2RXSTAT EMAC Control Module Interrupt Core 2 Receive Interrupt Status Register 0x01E2 2068 C2TXSTAT EMAC Control Module Interrupt Core 2 Transmit Interrupt Status Register 0x01E2 206C C2MISCSTAT EMAC Control Module Interrupt Core 2 Miscellaneous Interrupt Status Register 0x01E2 2070 C0RXIMAX EMAC Control Module Interrupt Core 0 Receive Interrupts Per Millisecond Register 0x01E2 2074 C0TXIMAX EMAC Control Module Interrupt Core 0 Transmit Interrupts Per Millisecond Register 0x01E2 2078 C1RXIMAX EMAC Control Module Interrupt Core 1 Receive Interrupts Per Millisecond Register 0x01E2 207C C1TXIMAX EMAC Control Module Interrupt Core 1 Transmit Interrupts Per Millisecond Register 0x01E2 2080 C2RXIMAX EMAC Control Module Interrupt Core 2 Receive Interrupts Per Millisecond Register 0x01E2 2084 C2TXIMAX EMAC Control Module Interrupt Core 2 Transmit Interrupts Per Millisecond Register Table 5-35. EMAC Control Module RAM HEX ADDRESS RANGE ACRONYM 0x01E2 0000 - 0x01E2 1FFF REGISTER NAME EMAC Local Buffer Descriptor Memory Table 5-36. RMII Timing Requirements NO. 1 (1) MIN TYP MAX 20 UNIT Cycle Time, RMII_MHZ_50_CLK (1) tw(RMII_MHZ_50_CLKH) Pulse Width, RMII_MHZ_50_CLK High 7 13 ns 3 (1) tw(RMII_MHZ_50_CLKL) Pulse Width, RMII_MHZ_50_CLK Low 7 13 ns 6 tsu(RXD-RMII_MHZ_50_CLK) Input Setup Time, RXD Valid before RMII_MHZ_50_CLK High 4.5 ns 7 th(RMII_MHZ_50_CLK-RXD) Input Hold Time, RXD Valid after RMII_MHZ_50_CLK High 2.1 ns 8 tsu(CRSDV-RMII_MHZ_50_CLK) Input Setup Time, CRSDV Valid before RMII_MHZ_50_CLK High 4.5 ns 9 th(RMII_MHZ_50_CLK-CRSDV) Input Hold Time, CRSDV Valid after RMII_MHZ_50_CLK High 2.1 ns 10 tsu(RXER-RMII_MHZ_50_CLK) Input Setup Time, RXER Valid before RMII_MHZ_50_CLK High 4.5 ns 11 th(RMII_MHZ_50_CLK-RXER) Input Hold Time, RXER Valid after RMII_MHZ_50_CLK High 2.1 ns 2 (1) PARAMETER tc(RMII_MHZ_50_CLK) ns Parameters are characterized from -40°C to 125°C unless otherwise noted. Table 5-37. RMII Timing Requirements NO. 4 96 PARAMETER td(RMII_MHZ_50_CLK- Output Delay Time, RMII_MHZ_50_CLKHigh to TXD) TXD Valid MIN 1.8 TYP MAX 14 UNIT ns Peripheral Information and Electrical Specifications Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 Table 5-37. RMII Timing Requirements (continued) NO. 5 PARAMETER MIN td(RMII_MHZ_50_CLK- Output Delay Time, RMII_MHZ_50_CLK High to TXEN) TXEN Valid TYP MAX 1.8 14 UNIT ns 1 2 3 RMII_MHz_50_CLK 5 5 RMII_TXEN 4 RMII_TXD[1:0] 6 7 RMII_RXD[1:0] 8 9 RMII_CRS_DV 10 11 RMII_REXR Figure 5-31. RMII Timing Diagram Copyright © 2012–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAPL137-HT 97 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 www.ti.com 5.14 Management Data Input/Output (MDIO) The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order to enumerate all PHY devices in the system. The Management Data Input/Output (MDIO) module implements the 802.3 serial management interface to interrogate and control Ethernet PHY(s) using a shared two-wire bus. Host software uses the MDIO module to configure the auto-negotiation parameters of each PHY attached to the EMAC, retrieve the negotiation results, and configure required parameters in the EMAC module for correct operation. The module is designed to allow almost transparent operation of the MDIO interface, with very little maintenance from the core processor. Only one PHY may be connected at any given time. See the TMS320C674x/OMAP-L1x Processor Peripherals Overview Reference Guide. – Literature Number SPRUFK9 for more details. 5.14.1 MDIO Registers For a list of supported MDIO registers see Table 5-38 [MDIO Registers]. Table 5-38. MDIO Register Memory Map HEX ADDRESS RANGE ACRONYM 0x01E2 4000 REV REGISTER NAME 0x01E2 4004 CONTROL 0x01E2 4008 ALIVE MDIO PHY Alive Status Register 0x01E2 400C LINK MDIO PHY Link Status Register 0x01E2 4010 LINKINTRAW 0x01E2 4014 LINKINTMASKED Revision Identification Register MDIO Control Register MDIO Link Status Change Interrupt (Unmasked) Register MDIO Link Status Change Interrupt (Masked) Register 0x01E2 4018 – 0x01E2 4020 USERINTRAW Reserved 0x01E2 4024 USERINTMASKED MDIO User Command Complete Interrupt (Masked) Register MDIO User Command Complete Interrupt Mask Set Register MDIO User Command Complete Interrupt (Unmasked) Register 0x01E2 4028 USERINTMASKSET 0x01E2 402C USERINTMASKCLEAR 0x01E2 4030 - 0x01E2 407C – 0x01E2 4080 USERACCESS0 MDIO User Access Register 0 0x01E2 4084 USERPHYSEL0 MDIO User PHY Select Register 0 0x01E2 4088 USERACCESS1 MDIO User Access Register 1 0x01E2 408C USERPHYSEL1 MDIO User PHY Select Register 1 0x01E2 4090 - 0x01E2 47FF – MDIO User Command Complete Interrupt Mask Clear Register Reserved Reserved 5.14.2 Management Data Input/Output (MDIO) Electrical Data/Timing Table 5-39. Timing Requirements for MDIO Input (1) (see Figure 5-32 and Figure 5-33) NO. (1) 98 MIN 1 tc(MDIO_CLK) Cycle time, MDIO_CLK 400 2 tw(MDIO_CLK) Pulse duration, MDIO_CLK high/low 180 3 tt(MDIO_CLK) Transition time, MDIO_CLK 4 tsu(MDIO-MDIO_CLKH) Setup time, MDIO data input valid before MDIO_CLK high 5 th(MDIO_CLKH-MDIO) Hold time, MDIO data input valid after MDIO_CLK high MAX UNIT ns ns 5 ns 10 ns 0 ns Parameters are characterized from -40°C to 125°C unless otherwise noted. Peripheral Information and Electrical Specifications Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 1 3 3 MDIO_CLK 4 5 MDIO (input) Figure 5-32. MDIO Input Timing Table 5-40. Switching Characteristics Over Recommended Operating Conditions for MDIO Output (1) (see Figure 5-33) NO. 7 (1) td(MDIO_CLKL-MDIO) Delay time, MDIO_CLK low to MDIO data output valid MIN MAX UNIT 0 100 ns Parameters are characterized from -40°C to 125°C unless otherwise noted. 1 MDIO_CLK 7 MDIO (output) Figure 5-33. MDIO Output Timing Copyright © 2012–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAPL137-HT 99 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 www.ti.com 5.15 Multichannel Audio Serial Ports (McASP0, McASP1, and McASP2) The McASP serial port is specifically designed for multichannel audio applications. Its key features are: • Flexible clock and frame sync generation logic and on-chip dividers • Up to sixteen transmit or receive data pins and serializers • Large number of serial data format options, including: – TDM Frames with 2 to 32 time slots per frame (periodic) or 1 slot per frame (burst) – Time slots of 8,12,16, 20, 24, 28, and 32 bits – First bit delay 0, 1, or 2 clocks – MSB or LSB first bit order – Left- or right-aligned data words within time slots • DIT Mode (optional) with 384-bit Channel Status and 384-bit User Data registers • Extensive error checking and mute generation logic • All unused pins GPIO-capable Additionally, while the OMAPL137 McASP modules are backward compatible with the McASP on previous devices, the OMAPL137 McASP includes the following new features: • Transmit & Receive FIFO Buffers for each McASP. Allows the McASP to operate at a higher sample rate by making it more tolerant to DMA latency. • Dynamic Adjustment of Clock Dividers – Clock Divider Value may be changed without resetting the McASP The three McASPs on the device are configured with the following options: Table 5-41. OMAPL137 McASP Configurations (1) (1) Module Serializers McASP0 16 McASP1 McASP2 AFIFO DIT Pins 64 Word RX 64 Word TX N AXR0[13:0], AHCLKR0, ACLKR0, AFSR0, AHCLKX0, ACLKX0, AFSX0 12 64 Word RX 64 Word TX N AXR1[11:10], AXR1[8:0], ACLKR1, AFSR1, AHCLKX1, ACLKX1, AFSX1, AMUTE1 4 16 Word RX 16 Word TX Y AXR2[3:0], ACLKR2, AFSR2, AHCLKX2, ACLKX2, AFSX2, AMUTE2 Pins available are the maximum number of pins that may be configured for a particular McASP; not including pin multiplexing. Pins Peripheral Configuration Bus GIO Control DIT RAM 384 C 384 U Optional McASP DMA Bus (Dedicated) Transmit Formatter Receive Formatter Function Receive Logic Clock/Frame Generator State Machine AHCLKRx ACLKRx AFSRx Receive Master Clock Receive Bit Clock Receive Left/Right Clock or Frame Sync Clock Check and Error Detection AMUTEINx AMUTEx The McASPs DO NOT have dedicated AMUTEINx pins. Transmit Logic Clock/Frame Generator State Machine AFSXx ACLKXx AHCLKXx Transmit Left/Right Clock or Frame Sync Transmit Bit Clock Transmit Master Clock Serializer 0 AXRx[0] Transmit/Receive Serial Data Pin Serializer 1 AXRx[1] Transmit/Receive Serial Data Pin Serializer y AXRx[y] Transmit/Receive Serial Data Pin McASPx (x = 0, 1, 2) Figure 5-34. McASP Block Diagram 100 Peripheral Information and Electrical Specifications Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 5.15.1 McASP Peripheral Registers Description(s) Registers for the McASP are summarized in Table 5-42. The registers are accessed through the peripheral configuration port. The receive buffer registers (RBUF) and transmit buffer registers (XBUF) can also be accessed through the DMA port, as listed in Table 5-43 Registers for the McASP Audio FIFO (AFIFO) are summarized in Table 5-44. Note that the AFIFO Write FIFO (WFIFO) and Read FIFO (RFIFO) have independent control and status registers. The AFIFO control registers are accessed through the peripheral configuration port. See the TMS320C674x/OMAP-L1x Processor Peripherals Overview Reference Guide. – Literature Number SPRUFK9 for more details. Table 5-42. McASP Registers Accessed Through Peripheral Configuration Port Offset McASP0 BYTE ADDRESS McASP1 BYTE ADDRESS McASP2 BYTE ADDRESS Acronym Register Description 0h 0x01D0 0000 0x01D0 4000 0x01D0 8000 REV Revision identification register 10h 0x01D0 0010 0x01D0 4010 0x01D0 8010 PFUNC Pin function register 14h 0x01D0 0014 0x01D0 4014 0x01D0 8014 PDIR Pin direction register 18h 0x01D0 0018 0x01D0 4018 0x01D0 8018 PDOUT Pin data output register 1Ch 0x01D0 001C 0x01D0 401C 0x01D0 801C PDIN Read returns: Pin data input register 1Ch 0x01D0 001C 0x01D0 401C 0x01D0 801C PDSET Writes affect: Pin data set register (alternate write address: PDOUT) 20h 0x01D0 0020 0x01D0 4020 0x01D0 8020 PDCLR Pin data clear register (alternate write address: PDOUT) 44h 0x01D0 0044 0x01D0 4044 0x01D0 8044 GBLCTL Global control register 48h 0x01D0 0048 0x01D0 4048 0x01D0 8048 AMUTE Audio mute control register 4Ch 0x01D0 004C 0x01D0 404C 0x01D0 804C DLBCTL Digital loopback control register 50h 0x01D0 0050 0x01D0 4050 0x01D0 8050 DITCTL DIT mode control register 60h 0x01D0 0060 0x01D0 4060 0x01D0 8060 RGBLCTL Receiver global control register: Alias of GBLCTL, only receive bits are affected - allows receiver to be reset independently from transmitter 64h 0x01D0 0064 0x01D0 4064 0x01D0 8064 RMASK Receive format unit bit mask register 68h 0x01D0 0068 0x01D0 4068 0x01D0 8068 RFMT Receive bit stream format register 6Ch 0x01D0 006C 0x01D0 406C 0x01D0 806C AFSRCTL Receive frame sync control register 70h 0x01D0 0070 0x01D0 4070 0x01D0 8070 ACLKRCTL Receive clock control register 74h 0x01D0 0074 0x01D0 4074 0x01D0 8074 AHCLKRCTL Receive high-frequency clock control register 78h 0x01D0 0078 0x01D0 4078 0x01D0 8078 RTDM Receive TDM time slot 0-31 register 7Ch 0x01D0 007C 0x01D0 407C 0x01D0 807C RINTCTL Receiver interrupt control register 80h 0x01D0 0080 0x01D0 4080 0x01D0 8080 RSTAT Receiver status register 84h 0x01D0 0084 0x01D0 4084 0x01D0 8084 RSLOT Current receive TDM time slot register 88h 0x01D0 0088 0x01D0 4088 0x01D0 8088 RCLKCHK Receive clock check control register 8Ch 0x01D0 008C 0x01D0 408C 0x01D0 808C REVTCTL Receiver DMA event control register ACh 0x01D0 00A0 0x01D0 40A0 0x01D0 80A0 XGBLCTL Transmitter global control register. Alias of GBLCTL, only transmit bits are affected - allows transmitter to be reset independently from receiver A4h 0x01D0 00A4 0x01D0 40A4 0x01D0 80A4 XMASK Transmit format unit bit mask register A8h 0x01D0 00A8 0x01D0 40A8 0x01D0 80A8 XFMT Transmit bit stream format register ACh 0x01D0 00AC 0x01D0 40AC 0x01D0 80AC AFSXCTL Transmit frame sync control register B0h 0x01D0 00B0 0x01D0 40B0 0x01D0 80B0 ACLKXCTL Transmit clock control register B4h 0x01D0 00B4 0x01D0 40B4 0x01D0 80B4 AHCLKXCTL Transmit high-frequency clock control register B8h 0x01D0 00B8 0x01D0 40B8 0x01D0 80B8 XTDM Transmit TDM time slot 0-31 register BCh 0x01D0 00BC 0x01D0 40BC 0x01D0 80BC XINTCTL Transmitter interrupt control register C0h 0x01D0 00C0 0x01D0 40C0 0x01D0 80C0 XSTAT Transmitter status register C4h 0x01D0 00C4 0x01D0 40C4 0x01D0 80C4 XSLOT Current transmit TDM time slot register Copyright © 2012–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAPL137-HT 101 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 www.ti.com Table 5-42. McASP Registers Accessed Through Peripheral Configuration Port (continued) Offset McASP0 BYTE ADDRESS McASP1 BYTE ADDRESS McASP2 BYTE ADDRESS Acronym Register Description C8h 0x01D0 00C8 0x01D0 40C8 0x01D0 80C8 XCLKCHK Transmit clock check control register CCh 0x01D0 00CC 0x01D0 40CC 0x01D0 80CC XEVTCTL Transmitter DMA event control register 100h 0x01D0 0100 0x01D0 4100 0x01D0 8100 DITCSRA0 Left (even TDM time slot) channel status register (DIT mode) 0 104h 0x01D0 0104 0x01D0 4104 0x01D0 8104 DITCSRA1 Left (even TDM time slot) channel status register (DIT mode) 1 108h 0x01D0 0108 0x01D0 4108 0x01D0 8108 DITCSRA2 Left (even TDM time slot) channel status register (DIT mode) 2 10Ch 0x01D0 010C 0x01D0 410C 0x01D0 810C DITCSRA3 Left (even TDM time slot) channel status register (DIT mode) 3 110h 0x01D0 0110 0x01D0 4110 0x01D0 8110 DITCSRA4 Left (even TDM time slot) channel status register (DIT mode) 4 114h 0x01D0 0114 0x01D0 4114 0x01D0 8114 DITCSRA5 Left (even TDM time slot) channel status register (DIT mode) 5 118h 0x01D0 0118 0x01D0 4118 0x01D0 8118 DITCSRB0 Right (odd TDM time slot) channel status register (DIT mode) 0 11Ch 0x01D0 011C 0x01D0 411C 0x01D0 811C DITCSRB1 Right (odd TDM time slot) channel status register (DIT mode) 1 120h 0x01D0 0120 0x01D0 4120 0x01D0 8120 DITCSRB2 Right (odd TDM time slot) channel status register (DIT mode) 2 124h 0x01D0 0124 0x01D0 4124 0x01D0 8124 DITCSRB3 Right (odd TDM time slot) channel status register (DIT mode) 3 128h 0x01D0 0128 0x01D0 4128 0x01D0 8128 DITCSRB4 Right (odd TDM time slot) channel status register (DIT mode) 4 12Ch 0x01D0 012C 0x01D0 412C 0x01D0 812C DITCSRB5 Right (odd TDM time slot) channel status register (DIT mode) 5 130h 0x01D0 0130 0x01D0 4130 0x01D0 8130 DITUDRA0 Left (even TDM time slot) channel user data register (DIT mode) 0 134h 0x01D0 0134 0x01D0 4134 0x01D0 8134 DITUDRA1 Left (even TDM time slot) channel user data register (DIT mode) 1 138h 0x01D0 0138 0x01D0 4138 0x01D0 8138 DITUDRA2 Left (even TDM time slot) channel user data register (DIT mode) 2 13Ch 0x01D0 013C 0x01D0 413C 0x01D0 813C DITUDRA3 Left (even TDM time slot) channel user data register (DIT mode) 3 140h 0x01D0 0140 0x01D0 4140 0x01D0 8140 DITUDRA4 Left (even TDM time slot) channel user data register (DIT mode) 4 144h 0x01D0 0144 0x01D0 4144 0x01D0 8144 DITUDRA5 Left (even TDM time slot) channel user data register (DIT mode) 5 148h 0x01D0 0148 0x01D0 4148 0x01D0 8148 DITUDRB0 Right (odd TDM time slot) channel user data register (DIT mode) 0 14Ch 0x01D0 014C 0x01D0 414C 0x01D0 814C DITUDRB1 Right (odd TDM time slot) channel user data register (DIT mode) 1 150h 0x01D0 0150 0x01D0 4150 0x01D0 8150 DITUDRB2 Right (odd TDM time slot) channel user data register (DIT mode) 2 154h 0x01D0 0154 0x01D0 4154 0x01D0 8154 DITUDRB3 Right (odd TDM time slot) channel user data register (DIT mode) 3 158h 0x01D0 0158 0x01D0 4158 0x01D0 8158 DITUDRB4 Right (odd TDM time slot) channel user data register (DIT mode) 4 15Ch 0x01D0 015C 0x01D0 415C 0x01D0 815C DITUDRB5 Right (odd TDM time slot) channel user data register (DIT mode) 5 180h 0x01D0 0180 0x01D0 4180 0x01D0 8180 SRCTL0 Serializer control register 0 184h 0x01D0 0184 0x01D0 4184 0x01D0 8184 SRCTL1 Serializer control register 1 188h 0x01D0 0188 0x01D0 4188 0x01D0 8188 SRCTL2 Serializer control register 2 102 Peripheral Information and Electrical Specifications Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 Table 5-42. McASP Registers Accessed Through Peripheral Configuration Port (continued) Offset McASP0 BYTE ADDRESS McASP1 BYTE ADDRESS McASP2 BYTE ADDRESS Acronym Register Description 18Ch 0x01D0 018C 0x01D0 418C 0x01D0 818C SRCTL3 Serializer control register 3 190h 0x01D0 0190 0x01D0 4190 0x01D0 8190 SRCTL4 Serializer control register 4 194h 0x01D0 0194 0x01D0 4194 0x01D0 8194 SRCTL5 Serializer control register 5 198h 0x01D0 0198 0x01D0 4198 0x01D0 8198 SRCTL6 Serializer control register 6 19Ch 0x01D0 019C 0x01D0 419C 0x01D0 819C SRCTL7 Serializer control register 7 1A0h 0x01D0 01A0 0x01D0 41A0 0x01D0 81A0 SRCTL8 Serializer control register 8 1A4h 0x01D0 01A4 0x01D0 41A4 0x01D0 81A4 SRCTL9 Serializer control register 9 1A8h 0x01D0 01A8 0x01D0 41A8 0x01D0 81A8 SRCTL10 Serializer control register 10 1ACh 0x01D0 01AC 0x01D0 41AC 0x01D0 81AC SRCTL11 Serializer control register 11 1B0h 0x01D0 01B0 0x01D0 41B0 0x01D0 81B0 SRCTL12 Serializer control register 12 1B4h 0x01D0 01B4 0x01D0 41B4 0x01D0 81B4 SRCTL13 Serializer control register 13 1B8h 0x01D0 01B8 0x01D0 41B8 0x01D0 81B8 SRCTL14 Serializer control register 14 1BCh 0x01D0 01BC 0x01D0 41BC 0x01D0 81BC SRCTL15 Serializer control register 15 200h 0x01D0 0200 0x01D0 4200 0x01D0 8200 XBUF0 (1) Transmit buffer register for serializer 0 204h 0x01D0 0204 0x01D0 4204 0x01D0 8204 XBUF1 (2) Transmit buffer register for serializer 1 208h 0x01D0 0208 0x01D0 4208 0x01D0 8208 XBUF2 (2) Transmit buffer register for serializer 2 (2) Transmit buffer register for serializer 3 20Ch 0x01D0 020C 0x01D0 420C 0x01D0 820C XBUF3 210h 0x01D0 0210 0x01D0 4210 0x01D0 8210 XBUF4 (2) Transmit buffer register for serializer 4 214h 0x01D0 0214 0x01D0 4214 0x01D0 8214 XBUF5 (2) Transmit buffer register for serializer 5 (2) Transmit buffer register for serializer 6 218h 0x01D0 0218 0x01D0 4218 0x01D0 8218 XBUF6 21Ch 0x01D0 021C 0x01D0 421C 0x01D0 821C XBUF7 (2) Transmit buffer register for serializer 7 220h 0x01D0 0220 0x01D0 4220 0x01D0 8220 XBUF8 (2) Transmit buffer register for serializer 8 (2) Transmit buffer register for serializer 9 224h 0x01D0 0224 0x01D0 4224 0x01D0 8224 XBUF9 228h 0x01D0 0228 0x01D0 4228 0x01D0 8228 XBUF10 (2) Transmit buffer register for serializer 10 22Ch 0x01D0 022C 0x01D0 422C 0x01D0 822C XBUF11 (2) Transmit buffer register for serializer 11 230h 0x01D0 0230 0x01D0 4230 0x01D0 8230 XBUF12 (2) Transmit buffer register for serializer 12 (2) Transmit buffer register for serializer 13 234h 0x01D0 0234 0x01D0 4234 0x01D0 8234 XBUF13 238h 0x01D0 0238 0x01D0 4238 0x01D0 8238 XBUF14 (2) Transmit buffer register for serializer 14 23Ch 0x01D0 023C 0x01D0 423C 0x01D0 823C XBUF15 (2) Transmit buffer register for serializer 15 (3) Receive buffer register for serializer 0 280h 0x01D0 0280 0x01D0 4280 0x01D0 8280 RBUF0 284h 0x01D0 0284 0x01D0 4284 0x01D0 8284 RBUF1 (3) Receive buffer register for serializer 1 288h 0x01D0 0288 0x01D0 4288 0x01D0 8288 RBUF2 (3) Receive buffer register for serializer 2 (3) Receive buffer register for serializer 3 28Ch 0x01D0 028C 0x01D0 428C 0x01D0 828C RBUF3 290h 0x01D0 0290 0x01D0 4290 0x01D0 8290 RBUF4 (3) Receive buffer register for serializer 4 294h 0x01D0 0294 0x01D0 4294 0x01D0 8294 RBUF5 (3) Receive buffer register for serializer 5 298h 0x01D0 0298 0x01D0 4298 0x01D0 8298 RBUF6 (3) Receive buffer register for serializer 6 (3) Receive buffer register for serializer 7 29Ch 0x01D0 029C 0x01D0 429C 0x01D0 829C RBUF7 2A0h 0x01D0 02A0 0x01D0 42A0 0x01D0 82A0 RBUF8 (3) Receive buffer register for serializer 8 2A4h 0x01D0 02A4 0x01D0 42A4 0x01D0 82A4 RBUF9 (3) Receive buffer register for serializer 9 (3) Receive buffer register for serializer 10 2A8h 0x01D0 02A8 0x01D0 42A8 0x01D0 82A8 RBUF10 2ACh 0x01D0 02AC 0x01D0 42AC 0x01D0 82AC RBUF11 (3) Receive buffer register for serializer 11 2B0h 0x01D0 02B0 0x01D0 42B0 0x01D0 82B0 RBUF12 (3) Receive buffer register for serializer 12 (3) Receive buffer register for serializer 13 Receive buffer register for serializer 14 (1) (2) (3) 2B4h 0x01D0 02B4 0x01D0 42B4 0x01D0 82B4 RBUF13 2B8h 0x01D0 02B8 0x01D0 42B8 0x01D0 82BB RBUF14 (3) Writes to XRBUF originate from peripheral configuration port only when XBUSEL = 1 in XFMT. Writes to XRBUF originate from peripheral configuration port only when XBUSEL = 1 in XFMT. Reads from XRBUF originate on peripheral configuration port only when RBUSEL = 1 in RFMT. Copyright © 2012–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAPL137-HT 103 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 www.ti.com Table 5-42. McASP Registers Accessed Through Peripheral Configuration Port (continued) Offset McASP0 BYTE ADDRESS McASP1 BYTE ADDRESS McASP2 BYTE ADDRESS Acronym Register Description 2BCh 0x01D0 02BC 0x01D0 42BC 0x01D0 82BC RBUF15 (3) Receive buffer register for serializer 15 Table 5-43. McASP Registers Accessed Through DMA Port Hex Address Register Name McASP0 BYTE ADDRESS McASP1 BYTE ADDRESS McASP2 BYTE ADDRESS Register Description Read Accesses RBUF 01D0 2000 01D0 6000 01D0 A000 Receive buffer DMA port address. Cycles through receive serializers, skipping over transmit serializers and inactive serializers. Starts at the lowest serializer at the beginning of each time slot. Reads from DMA port only if XBUSEL = 0 in XFMT. Write Accesses XBUF 01D0 2000 01D0 6000 01D0 A000 Transmit buffer DMA port address. Cycles through transmit serializers, skipping over receive and inactive serializers. Starts at the lowest serializer at the beginning of each time slot. Writes to DMA port only if RBUSEL = 0 in RFMT. Table 5-44. McASP AFIFO Registers Accessed Through Peripheral Configuration Port 104 McASP0 BYTE ADDRESS McASP1 BYTE ADDRESS McASP2 BYTE ADDRESS Acronym Register Description 0x01D0 1000 0x01D0 5000 0x01D0 9000 AFIFOREV AFIFO revision identification register 0x01D0 1010 0x01D0 1014 0x01D0 5010 0x01D0 9010 WFIFOCTL Write FIFO control register 0x01D0 5014 0x01D0 9014 WFIFOSTS Write FIFO status register 0x01D0 1018 0x01D0 5018 0x01D0 9018 RFIFOCTL Read FIFO control register 0x01D0 101C 0x01D0 501C 0x01D0 901C RFIFOSTS Read FIFO status register Peripheral Information and Electrical Specifications Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 5.15.2 McASP Electrical Data/Timing 5.15.2.1 Multichannel Audio Serial Port 0 (McASP0) Timing Table 5-45 and Table 5-46 assume testing over recommended operating conditions (see Figure 5-35 and Figure 5-36). Table 5-45. McASP0 Timing Requirements (1) NO. MIN 1 (3) tc(AHCLKRX) 2 (3) tw(AHCLKRX) 3 (3) tc(ACLKRX) 4 (3) tw(ACLKRX) 5 tsu(AFSRX-ACLKRX) Cycle time, AHCLKR0 external, AHCLKR0 input 20 Cycle time, AHCLKX0 external, AHCLKX0 input 20 Pulse duration, AHCLKR0 external, AHCLKR0 input 10 Pulse duration, AHCLKX0 external, AHCLKX0 input 10 Cycle time, ACLKR0 external, ACLKR0 input greater of 2P or 20 Cycle time, ACLKX0 external, ACLKX0 input greater of 2P or 20 Pulse duration, ACLKR0 external, ACLKR0 input 10 Pulse duration, ACLKX0 external, ACLKX0 input 10 Setup time, AFSR0 input to ACLKR0 internal (4) 10 Setup time, AFSX0 input to ACLKX0 internal 10 Setup time, AFSR0 input to ACLKR0 external input (4) 3.2 Setup time, AFSX0 input to ACLKX0 external input 3.2 Setup time, AFSR0 input to ACLKR0 external output (4) 3.2 Setup time, AFSX0 input to ACLKX0 external output 7 (1) (2) (3) (4) (5) tsu(AXR-ACLKRX) ns ns ns ns ns -0.8 Hold time, AFSR0 input after ACLKR0 external input (4) 0.6 Hold time, AFSX0 input after ACLKX0 external input 0.9 Hold time, AFSR0 input after ACLKR0 external output (4) 0.6 Hold time, AFSX0 input after ACLKX0 external output 0.9 Setup time, AXR0[n] input to ACLKR0 internal (4) 10 Setup time, AXR0[n] input to ACLKX0 internal UNIT -0.8 Hold time, AFSX0 input after ACLKX0 internal th(ACLKRX-AFSRX) MAX 3.2 Hold time, AFSR0 input after ACLKR0 internal (4) 6 (2) (5) ns 10 Setup time, AXR0[n] input to ACLKR0 external input (4) 3.2 Setup time, AXR0[n] input to ACLKX0 external input (5) 3.2 Setup time, AXR0[n] input to ACLKR0 external output (4) 3.2 Setup time, AXR0[n] input to ACLKX0 external output (5) 3.2 ns ACLKX0 internal – McASP0 ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1 ACLKX0 external input – McASP0 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0 ACLKX0 external output – McASP0 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1 ACLKR0 internal – McASP0 ACLKRCTL.CLKRM = 1, PDIR.ACLKR =1 ACLKR0 external input – McASP0 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0 ACLKR0 external output – McASP0 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1 P = SYSCLK2 period Parameters are characterized from -40°C to 125°C unless otherwise noted. McASP0 ACLKXCTL.ASYNC=1: Receiver is clocked by its own ACLKR0 McASP0 ACLKXCTL.ASYNC=0: Receiver is clocked by transmitter's ACLKX0 Copyright © 2012–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAPL137-HT 105 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 www.ti.com Table 5-45. McASP0 Timing Requirements(1) (2) (continued) NO. 8 106 MIN th(ACLKRX-AXR) Hold time, AXR0[n] input after ACLKR0 internal (4) -1.25 Hold time, AXR0[n] input after ACLKX0 internal (5) -1.25 Hold time, AXR0[n] input after ACLKR0 external input (4) 0.9 Hold time, AXR0[n] input after ACLKX0 external input (5) 0.9 Hold time, AXR0[n] input after ACLKR0 external output (4) 0.9 Hold time, AXR0[n] input after ACLKX0 external output (5) 0.9 MAX UNIT ns Peripheral Information and Electrical Specifications Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 Table 5-46. McASP0 Switching Characteristics (1) NO. 9 (2) 10 (2) 11 (2) 12 (2) PARAMETER tc(AHCLKRX) tw(AHCLKRX) tc(ACLKRX) tw(ACLKRX) MIN Cycle time, AHCLKR0 internal, AHCLKR0 output 20 Cycle time, AHCLKR0 external, AHCLKR0 output 20 Cycle time, AHCLKX0 internal, AHCLKX0 output 20 Cycle time, AHCLKX0 external, AHCLKX0 output 20 Pulse duration, AHCLKR0 internal, AHCLKR0 output (AHR/2) – 2.5 (3) Pulse duration, AHCLKR0 external, AHCLKR0 output (AHR/2) – 2.5 (3) Pulse duration, AHCLKX0 internal, AHCLKX0 output (AHX/2) – 2.5 (4) Pulse duration, AHCLKX0 external, AHCLKX0 output (AHX/2) – 2.5 (4) Cycle time, ACLKR0 internal, ACLKR0 output greater of 2P or 20 ns (5) Cycle time, ACLKR0 external, ACLKR0 output greater of 2P or 20 ns (5) Cycle time, ACLKX0 internal, ACLKX0 output greater of 2P or 20 ns (5) Cycle time, ACLKX0 external, ACLKX0 output greater of 2P or 20 ns (5) (AR/2) – 2.5 (6) Pulse duration, ACLKR0 external, ACLKR0 output (AR/2) – 2.5 (6) Pulse duration, ACLKX0 internal, ACLKX0 output (AX/2) – 2.5 (7) Pulse duration, ACLKX0 external, ACLKX0 output (AX/2) – 2.5 (7) (8) Delay time, ACLKX0 internal, AFSX output Delay time, ACLKR0 external input, AFSR output 13 td(ACLKRX-AFSRX) (8) td(ACLKX-AXRV) (1) (2) (3) (4) (5) (6) (7) (8) tdis(ACLKX-AXRHZ) ns ns 0 6.2 0 6.2 2.25 12.5 2.25 12.5 Delay time, ACLKR0 external output, AFSR output (8) 2.25 12.5 Delay time, ACLKX0 external output, AFSX output 2.25 12.5 0 6.2 Delay time, ACLKX0 external input, AXR0[n] output 2.25 12.5 Delay time, ACLKX0 external output, AXR0[n] output 2.25 12.5 0 6.2 Disable time, ACLKX0 external input, AXR0[n] output 2.25 12.5 Disable time, ACLKX0 external output, AXR0[n] output 2.25 12.5 Disable time, ACLKX0 internal, AXR0[n] output 15 ns Delay time, ACLKX0 external input, AFSX output Delay time, ACLKX0 internal, AXR0[n] output 14 UNIT ns Pulse duration, ACLKR0 internal, ACLKR0 output Delay time, ACLKR0 internal, AFSR output MAX ns ns ns McASP0 ACLKX0 internal – ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1 ACLKX0 external input – McASP0 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0 ACLKX0 external output – McASP0ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1 ACLKR0 internal – McASP0 ACLKR0CTL.CLKRM = 1, PDIR.ACLKR =1 ACLKR0 external input – McASP0 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0 ACLKR0 external output – McASP0 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1 Parameters are characterized from -40°C to 125°C unless otherwise noted. AHR - Cycle time, AHCLKR0. AHX - Cycle time, AHCLKX0. P = SYSCLK2 period AR - ACLKR0 period. AX - ACLKX0 period. McASP0 ACLKXCTL.ASYNC=1: Receiver is clocked by its own ACLKR0 5.15.2.2 Multichannel Audio Serial Port 1 (McASP1) Timing Table 5-47 and Table 5-48 assume testing over recommended operating conditions (see Figure 5-35 and Figure 5-36). Copyright © 2012–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAPL137-HT 107 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 www.ti.com Table 5-47. McASP1 Timing Requirements (1) NO. MIN 1 (3) tc(AHCLKRX) 2 (3) tw(AHCLKRX) 3 (3) tc(ACLKRX) 4 (3) tw(ACLKRX) 5 tsu(AFSRX-ACLKRX) Cycle time, AHCLKR1 external, AHCLKR1 input 20 Cycle time, AHCLKX1 external, AHCLKX1 input 20 Pulse duration, AHCLKR1 external, AHCLKR1 input 10 Pulse duration, AHCLKX1 external, AHCLKX1 input 10 Cycle time, ACLKR1 external, ACLKR1 input greater of 2P or 20 Cycle time, ACLKX1 external, ACLKX1 input greater of 2P or 20 Pulse duration, ACLKR1 external, ACLKR1 input 10 Pulse duration, ACLKX1 external, ACLKX1 input 10 Setup time, AFSR1 input to ACLKR1 internal (4) 11 Setup time, AFSX1 input to ACLKX1 internal 11 Setup time, AFSR1 input to ACLKR1 external input (4) 2.7 Setup time, AFSX1 input to ACLKX1 external input 2.7 Setup time, AFSR1 input to ACLKR1 external output (4) 2.7 Setup time, AFSX1 input to ACLKX1 external output 6 th(ACLKRX-AFSRX) -1.4 Hold time, AFSX1 input after ACLKX1 internal -1.4 Hold time, AFSR1 input after ACLKR1 external input (4) 0.7 Hold time, AFSX1 input after ACLKX1 external input 0.7 Hold time, AFSR1 input after ACLKR1 external output (4) 0.9 Hold time, AFSX1 input after ACLKX1 external output 0.9 Setup time, AXR1[n] input to ACLKR1 internal (4) 11 8 (1) (2) (3) (4) (5) 108 tsu(AXR-ACLKRX) th(ACLKRX-AXR) (5) MAX UNIT ns ns ns ns ns 2.7 Hold time, AFSR1 input after ACLKR1 internal (4) Setup time, AXR1[n] input to ACLKX1 internal 7 (2) ns 11 Setup time, AXR1[n] input to ACLKR1 external input (4) 2.7 Setup time, AXR1[n] input to ACLKX1 external input (5) 2.7 Setup time, AXR1[n] input to ACLKR1 external output (4) 2.7 Setup time, AXR1[n] input to ACLKX1 external output (5) 2.7 Hold time, AXR1[n] input after ACLKR1 internal (4) -1.4 Hold time, AXR1[n] input after ACLKX1 internal (5) -1.4 Hold time, AXR1[n] input after ACLKR1 external input (4) 0.6 Hold time, AXR1[n] input after ACLKX1 external input (5) 0.9 Hold time, AXR1[n] input after ACLKR1 external output (4) 0.9 Hold time, AXR1[n] input after ACLKX1 external output (5) 0.9 ns ns ACLKX1 internal – McASP1 ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1 ACLKX1 external input – McASP1 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0 ACLKX1 external output – McASP1 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1 ACLKR1 internal – McASP1 ACLKRCTL.CLKRM = 1, PDIR.ACLKR =1 ACLKR1 external input – McASP1 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0 ACLKR1 external output – McASP1 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1 P = SYSCLK2 period Parameters are characterized from -40°C to 125°C unless otherwise noted. McASP1 ACLKXCTL.ASYNC=1: Receiver is clocked by its own ACLKR1 McASP1 ACLKXCTL.ASYNC=0: Receiver is clocked by transmitter's ACLKX1 Peripheral Information and Electrical Specifications Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 Table 5-48. McASP1 Switching Characteristics (1) NO. 9 (2) 10 (2) 11 (2) 12 (2) PARAMETER tc(AHCLKRX) tw(AHCLKRX) tc(ACLKRX) tw(ACLKRX) MIN Cycle time, AHCLKR1 internal, AHCLKR1 output 20 Cycle time, AHCLKR1 external, AHCLKR1 output 20 Cycle time, AHCLKX1 internal, AHCLKX1 output 20 Cycle time, AHCLKX1 external, AHCLKX1 output 20 Pulse duration, AHCLKR1 internal, AHCLKR1 output (AHR/2) – 2.5 (3) Pulse duration, AHCLKR1 external, AHCLKR1 output (AHR/2) – 2.5 (3) Pulse duration, AHCLKX1 internal, AHCLKX1 output (AHX/2) – 2.5 (4) Pulse duration, AHCLKX1 external, AHCLKX1 output (AHX/2) – 2.5 (4) Cycle time, ACLKR1 internal, ACLKR1 output greater of 2P or 20 ns (5) Cycle time, ACLKR1 external, ACLKR1 output greater of 2P or 20 ns (5) Cycle time, ACLKX1 internal, ACLKX1 output greater of 2P or 20 ns (5) Cycle time, ACLKX1 external, ACLKX1 output greater of 2P or 20 ns (5) (AR/2) – 2.5 (6) Pulse duration, ACLKR1 external, ACLKR1 output (AR/2) – 2.5 (6) Pulse duration, ACLKX1 internal, ACLKX1 output (AX/2) – 2.5 (7) Pulse duration, ACLKX1 external, ACLKX1 output (AX/2) – 2.5 (7) (8) Delay time, ACLKX1 internal, AFSX output Delay time, ACLKR1 external input, AFSR output 13 td(ACLKRX-AFSRX) (8) (1) (2) (3) (4) (5) (6) (7) (8) tdis(ACLKX-AXRHZ) ns 0.3 7 0.3 7 14.5 3 14.5 Delay time, ACLKR1 external output, AFSR output (8) 3 14.5 3 14.5 0.3 7 Delay time, ACLKX1 external input, AXR1[n] output 3 14.5 Delay time, ACLKX1 external output, AXR1[n] output 3 14.5 0.3 7 Disable time, ACLKX1 external input, AXR1[n] output 3 14.5 Disable time, ACLKX1 external output, AXR1[n] output 3 14.5 Disable time, ACLKX1 internal, AXR1[n] output 15 ns 3 Delay time, ACLKX1 internal, AXR1[n] output td(ACLKX-AXRV) ns Delay time, ACLKX1 external input, AFSX output Delay time, ACLKX1 external output, AFSX output 14 UNIT ns Pulse duration, ACLKR1 internal, ACLKR1 output Delay time, ACLKR1 internal, AFSR output MAX ns ns ns McASP1 ACLKX1 internal – ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1 McASP1 ACLKX1 external input – ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0 McASP1 ACLKX1 external output – ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1 McASP1 ACLKR1 internal – ACLKR1CTL.CLKRM = 1, PDIR.ACLKR =1 McASP1 ACLKR1 external input – ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0 McASP1 ACLKR1 external output – ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1 Parameters are characterized from -40°C to 125°C unless otherwise noted. AHR - Cycle time, AHCLKR1. AHX - Cycle time, AHCLKX1. P = SYSCLK2 period AR - ACLKR1 period. AX - ACLKX1 period. McASP1 ACLKXCTL.ASYNC=1: Receiver is clocked by its own ACLKR1 5.15.2.3 Multichannel Audio Serial Port 2 (McASP2) Timing Table 5-49 and Table 5-50 assume testing over recommended operating conditions (see Figure 5-35 and Figure 5-36). Copyright © 2012–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAPL137-HT 109 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 www.ti.com Table 5-49. McASP2 Timing Requirements (1) NO. MIN 1 (3) tc(AHCLKRX) 2 (3) tw(AHCLKRX) 3 (3) tc(ACLKRX) 4 (3) tw(ACLKRX) 5 tsu(AFSRX-ACLKRX) Cycle time, AHCLKR2 external, AHCLKR2 input 13 Cycle time, AHCLKX2 external, AHCLKX2 input 13 Pulse duration, AHCLKR2 external, AHCLKR2 input 6.5 Pulse duration, AHCLKX2 external, AHCLKX2 input 6.5 Cycle time, ACLKR2 external, ACLKR2 input greater of 2P or 13 Cycle time, ACLKX2 external, ACLKX2 input greater of 2P or 13 Pulse duration, ACLKR2 external, ACLKR2 input 6.5 Pulse duration, ACLKX2 external, ACLKX2 input 6.5 Setup time, AFSR2 input to ACLKR2 internal (4) 11 Setup time, AFSX2 input to ACLKX2 internal 11 Setup time, AFSR2 input to ACLKR2 external input (4) 1.7 Setup time, AFSX2 input to ACLKX2 external input 1.7 Setup time, AFSR2 input to ACLKR2 external output (4) 1.7 Setup time, AFSX2 input to ACLKX2 external output 6 th(ACLKRX-AFSRX) -1.25 Hold time, AFSX2 input after ACLKX2 internal -1.25 Hold time, AFSR2 input after ACLKR2 external input (4) 1.3 Hold time, AFSX2 input after ACLKX2 external input 1.3 Hold time, AFSR2 input after ACLKR2 external output (4) 1.3 Hold time, AFSX2 input after ACLKX2 external output 1.3 Setup time, AXR2[n] input to ACLKR2 internal (4) 11 8 (1) (2) (3) (4) (5) 110 tsu(AXR-ACLKRX) th(ACLKRX-AXR) (5) MAX UNIT ns ns ns ns ns 1.7 Hold time, AFSR2 input after ACLKR2 internal (4) Setup time, AXR2[n] input to ACLKX2 internal 7 (2) ns 11 Setup time, AXR2[n] input to ACLKR2 external input (4) 1.7 Setup time, AXR2[n] input to ACLKX2 external input (5) 1.7 Setup time, AXR2[n] input to ACLKR2 external output (4) 1.7 Setup time, AXR2[n] input to ACLKX2 external output (5) 1.7 Hold time, AXR2[n] input after ACLKR2 internal (4) -1.7 Hold time, AXR2[n] input after ACLKX2 internal (5) -1.7 Hold time, AXR2[n] input after ACLKR2 external input (4) 1.3 Hold time, AXR2[n] input after ACLKX2 external input (5) 1.3 Hold time, AXR2[n] input after ACLKR2 external output (4) 1.3 Hold time, AXR2[n] input after ACLKX2 external output (5) 1.3 ns ns ACLKX2 internal – McASP2 ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1 ACLKX2 external input – McASP2 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0 ACLKX2 external output – McASP2 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1 ACLKR2 internal – McASP2 ACLKRCTL.CLKRM = 1, PDIR.ACLKR =1 ACLKR2 external input – McASP2 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0 ACLKR2 external output – McASP2 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1 P = SYSCLK2 period Parameters are characterized from -40°C to 125°C unless otherwise noted. McASP2 ACLKXCTL.ASYNC=1: Receiver is clocked by its own ACLKR2 McASP2 ACLKXCTL.ASYNC=0: Receiver is clocked by transmitter's ACLKX2 Peripheral Information and Electrical Specifications Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 Table 5-50. McASP2 Switching Characteristics (1) NO. 9 (2) 10 (2) 11 (2) 12 (2) PARAMETER tc(AHCLKRX) tw(AHCLKRX) tc(ACLKRX) tw(ACLKRX) MIN Cycle time, AHCLKR2 internal, AHCLKR2 output 13 Cycle time, AHCLKR2 external, AHCLKR2 output 13 Cycle time, AHCLKX2 internal, AHCLKX2 output 13 Cycle time, AHCLKX2 external, AHCLKX2 output 13 Pulse duration, AHCLKR2 internal, AHCLKR2 output (AHR/2) – 2.5 (3) Pulse duration, AHCLKR2 external, AHCLKR2 output (AHR/2) – 2.5 (3) Pulse duration, AHCLKX2 internal, AHCLKX2 output (AHX/2) – 2.5 (4) Pulse duration, AHCLKX2 external, AHCLKX2 output (AHX/2) – 2.5 (4) Cycle time, ACLKR2 internal, ACLKR2 output greater of 2P or 13 ns (5) Cycle time, ACLKR2 external, ACLKR2 output greater of 2P or 13 ns (5) Cycle time, ACLKX2 internal, ACLKX2 output greater of 2P or 13 ns (5) Cycle time, ACLKX2 external, ACLKX2 output greater of 2P or 13 ns (5) (AR/2) – 2.5 (6) Pulse duration, ACLKR2 external, ACLKR2 output (AR/2) – 2.5 (6) Pulse duration, ACLKX2 internal, ACLKX2 output (AX/2) – 2.5 (7) Pulse duration, ACLKX2 external, ACLKX2 output (AX/2) – 2.5 (7) (8) Delay time, ACLKX2 internal, AFSX output Delay time, ACLKR2 external input, AFSR output 13 td(ACLKRX-AFSRX) (8) 15 (1) (2) (3) (4) (5) (6) (7) (8) tdis(ACLKX-AXRHZ) ns ns -1.5 3 -1.5 3 1.6 11 1.6 11 Delay time, ACLKR2 external output, AFSR output (8) 1.6 11 1.6 11 Delay time, ACLKX2 internal, AXR2[n] output td(ACLKX-AXRV) ns Delay time, ACLKX2 external input, AFSX output Delay time, ACLKX2 external output, AFSX output 14 UNIT ns Pulse duration, ACLKR2 internal, ACLKR2 output Delay time, ACLKR2 internal, AFSR output MAX -1.5 3 Delay time, ACLKX2 external input, AXR2[n] output 1.6 11 Delay time, ACLKX2 external output, AXR2[n] output 1.6 11 Disable time, ACLKX2 internal, AXR2[n] output -1.5 3 Disable time, ACLKX2 external input, AXR2[n] output 1.6 11 Disable time, ACLKX2 external output, AXR2[n] output 1.6 11 ns ns ns McASP2 ACLKX2 internal – ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1 McASP2 ACLKX2 external input – ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0 McASP2 ACLKX2 external output – ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1 McASP2 ACLKR2 internal – ACLKR2CTL.CLKRM = 1, PDIR.ACLKR =1 McASP2 ACLKR2 external input – ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0 McASP2 ACLKR2 external output – ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1 Parameters are characterized from -40°C to 125°C unless otherwise noted. AHR - Cycle time, AHCLKR2. AHX - Cycle time, AHCLKX2. P = SYSCLK2 period AR - ACLKR2 period. AX - ACLKX2 period. McASP2 ACLKXCTL.ASYNC=1: Receiver is clocked by its own ACLKR2 Copyright © 2012–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAPL137-HT 111 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 www.ti.com 2 1 2 AHCLKR/X (Falling Edge Polarity) AHCLKR/X (Rising Edge Polarity) 4 3 4 ACLKR/X (CLKRP = CLKXP = 0)(A) ACLKR/X (CLKRP = CLKXP = 1)(B) 6 5 AFSR/X (Bit Width, 0 Bit Delay) AFSR/X (Bit Width, 1 Bit Delay) AFSR/X (Bit Width, 2 Bit Delay) AFSR/X (Slot Width, 0 Bit Delay) AFSR/X (Slot Width, 1 Bit Delay) AFSR/X (Slot Width, 2 Bit Delay) 8 7 AXR[n] (Data In/Receive) A. B. For CLKRP = CLKXP = receiver is configured for For CLKRP = CLKXP = receiver is configured for A0 A1 A30 A31 B0 B1 B30 B31 C0 C1 C2 C3 C31 0, the McASP transmitter is configured for rising edge (to shift data out) and the McASP falling edge (to shift data in). 1, the McASP transmitter is configured for falling edge (to shift data out) and the McASP rising edge (to shift data in). Figure 5-35. McASP Input Timings 112 Peripheral Information and Electrical Specifications Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 10 10 9 AHCLKR/X (Falling Edge Polarity) AHCLKR/X (Rising Edge Polarity) 12 11 12 ACLKR/X (CLKRP = CLKXP = 1)(A) ACLKR/X (CLKRP = CLKXP = 0)(B) 13 13 13 13 AFSR/X (Bit Width, 0 Bit Delay) AFSR/X (Bit Width, 1 Bit Delay) AFSR/X (Bit Width, 2 Bit Delay) 13 13 13 AFSR/X (Slot Width, 0 Bit Delay) AFSR/X (Slot Width, 1 Bit Delay) AFSR/X (Slot Width, 2 Bit Delay) 14 15 AXR[n] (Data Out/Transmit) A0 A. B. For CLKRP = CLKXP = receiver is configured for For CLKRP = CLKXP = receiver is configured for A1 A30 A31 B0 B1 B30 B31 C0 C1 C2 C3 C31 1, the McASP transmitter is configured for falling edge (to shift data out) and the McASP rising edge (to shift data in). 0, the McASP transmitter is configured for rising edge (to shift data out) and the McASP falling edge (to shift data in). Figure 5-36. McASP Output Timings Copyright © 2012–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAPL137-HT 113 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 www.ti.com 5.16 Serial Peripheral Interface Ports (SPI0, SPI1) Figure 5-37 is a block diagram of the SPI module, which is a simple shift register and buffer plus control logic. Data is written to the shift register before transmission occurs and is read from the buffer at the end of transmission. The SPI can operate either as a master, in which case, it initiates a transfer and drives the SPIx_CLK pin, or as a slave. Four clock phase and polarity options are supported as well as many data formatting options. SPIx_SIMO SPIx_SOMI Peripheral Configuration Bus Interrupt and DMA Requests 16-Bit Shift Register 16-Bit Buffer SPIx_ENA GPIO Control (all pins) State Machine SPIx_SCS Clock Control SPIx_CLK Figure 5-37. Block Diagram of SPI Module The SPI supports 3-, 4-, and 5-pin operation with three basic pins (SPIx_CLK, SPIx_SIMO, and SPIx_SOMI) and two optional pins (SPIx_SCS, SPIx_ENA). The optional SPIx_SCS (Slave Chip Select) pin is most useful to enable in slave mode when there are other slave devices on the same SPI port. The device will only shift data and drive the SPIx_SOMI pin when SPIx_SCS is held low. In slave mode, SPIx_ENA is an optional output and can be driven in either a push-pull or open-drain manner. The SPIx_ENA output provides the status of the internal transmit buffer (SPIDAT0/1 registers). In four-pin mode with the enable option, SPIx_ENA is asserted only when the transmit buffer is full, indicating that the slave is ready to begin another transfer. In five-pin mode, the SPIx_ENA is additionally qualified by SPIx_SCS being asserted. This allows a single handshake line to be shared by multiple slaves on the same SPI bus. In master mode, the SPIx_ENA pin is an optional input and the master can be configured to delay the start of the next transfer until the slave asserts SPIx_ENA. The addition of this handshake signal simplifies SPI communications and, on average, increases SPI bus throughput since the master does not need to delay each transfer long enough to allow for the worst-case latency of the slave device. Instead, each transfer can begin as soon as both the master and slave have actually serviced the previous SPI transfer. 114 Peripheral Information and Electrical Specifications Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 Optional − Slave Chip Select SPIx_SCS SPIx_SCS Optional Enable (Ready) SPIx_ENA SPIx_ENA SPIx_CLK SPIx_CLK SPIx_SOMI SPIx_SOMI SPIx_SIMO SPIx_SIMO MASTER SPI SLAVE SPI Figure 5-38. Illustration of SPI Master-to-SPI Slave Connection Copyright © 2012–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAPL137-HT 115 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 www.ti.com 5.16.1 SPI Peripheral Registers Description(s) Table 5-51 is a list of the SPI registers. See the TMS320C674x/OMAP-L1x Processor Peripherals Overview Reference Guide. – Literature Number SPRUFK9 for more details. Table 5-51. SPIx Configuration Registers 116 SPI0 BYTE ADDRESS SPI1 BYTE ADDRESS 0x01C4 1000 0x01E1 2000 SPIGCR0 Global Control Register 0 0x01C4 1004 0x01E1 2004 SPIGCR1 Global Control Register 1 0x01C4 1008 0x01E1 2008 SPIINT0 Interrupt Register 0x01C4 100C 0x01E1 200C SPILVL Interrupt Level Register 0x01C4 1010 0x01E1 2010 SPIFLG Flag Register 0x01C4 1014 0x01E1 2014 SPIPC0 Pin Control Register 0 (Pin Function) 0x01C4 1018 0x01E1 2018 SPIPC1 Pin Control Register 1 (Pin Direction) 0x01C4 101C 0x01E1 201C SPIPC2 Pin Control Register 2 (Pin Data In) 0x01C4 1020 0x01E1 2020 SPIPC3 Pin Control Register 3 (Pin Data Out) 0x01C4 1024 0x01E1 2024 SPIPC4 Pin Control Register 4 (Pin Data Set) 0x01C4 1028 0x01E1 2028 SPIPC5 Pin Control Register 5 (Pin Data Clear) 0x01C4 102C 0x01E1 202C Reserved Reserved - Do not write to this register 0x01C4 1030 0x01E1 2030 Reserved Reserved - Do not write to this register 0x01C4 1034 0x01E1 2034 Reserved Reserved - Do not write to this register REGISTER NAME DESCRIPTION 0x01C4 1038 0x01E1 2038 SPIDAT0 Shift Register 0 (without format select) 0x01C4 103C 0x01E1 203C SPIDAT1 Shift Register 1 (with format select) 0x01C4 1040 0x01E1 2040 SPIBUF Buffer Register 0x01C4 1044 0x01E1 2044 SPIEMU Emulation Register 0x01C4 1048 0x01E1 2048 SPIDELAY Delay Register 0x01C4 104C 0x01E1 204C SPIDEF Default Chip Select Register 0x01C4 1050 0x01E1 2050 SPIFMT0 Format Register 0 0x01C4 1054 0x01E1 2054 SPIFMT1 Format Register 1 0x01C4 1058 0x01E1 2058 SPIFMT2 Format Register 2 0x01C4 105C 0x01E1 205C SPIFMT3 Format Register 3 0x01C4 1060 0x01E1 2060 Reserved Reserved - Do not write to this register 0x01C4 1064 0x01E1 2064 INTVEC1 Interrupt Vector for SPI INT1 Peripheral Information and Electrical Specifications Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 5.16.2 SPI Electrical Data/Timing 5.16.2.1 Serial Peripheral Interface (SPI) Timing Table 5-52 through Table 5-67 assume testing over recommended operating conditions (see Figure 5-39 through Figure 5-42). Table 5-52. General Timing Requirements for SPI0 Master Modes (1) (2) NO. Cycle Time, SPI0_CLK, All Master Modes 2 tw(SPCH)M Pulse Width High, SPI0_CLK, All Master Modes 0.5tc(SPC)M - 1 ns 3 tw(SPCL)M Pulse Width Low, SPI0_CLK, All Master Modes 0.5tc(SPC)M - 1 ns 5 6 7 8 td(SIMO_SPC)M td(SPC_SIMO)M toh(SPC_SIMO)M tsu(SOMI_SPC)M tih(SPC_SOMI)M Delay, initial data bit valid on SPI0_SIMO after initial edge on SPI0_CLK (3) Delay, subsequent bits valid on SPI0_SIMO after transmit edge of SPI0_CLK Output hold time, SPI0_SIMO valid after receive edge of SPI0_CLK Input Setup Time, SPI0_SOMI valid before receive edge of SPI0_CLK Input Hold Time, SPI0_SOMI valid after receive edge of SPI0_CLK greater of 2P or 20 ns MAX UNIT tc(SPC)M 4 (1) (2) (3) MIN 1 256P Polarity = 0, Phase = 0, to SPI0_CLK rising 5 Polarity = 0, Phase = 1, to SPI0_CLK rising -0.5tc(SPC)M + 5 Polarity = 1, Phase = 0, to SPI0_CLK falling 5 Polarity = 1, Phase = 1, to SPI0_CLK falling -0.5tc(SPC)M + 5 Polarity = 0, Phase = 0, from SPI0_CLK rising 5 Polarity = 0, Phase = 1, from SPI0_CLK falling 5 Polarity = 1, Phase = 0, from SPI0_CLK falling 5 Polarity = 1, Phase = 1, from SPI0_CLK rising 5 ns ns ns Polarity = 0, Phase = 0, from SPI0_CLK falling 0.5tc(SPC)M -3 Polarity = 0, Phase = 1, from SPI0_CLK rising 0.5tc(SPC)M -3 Polarity = 1, Phase = 0, from SPI0_CLK rising 0.5tc(SPC)M -3 Polarity = 1, Phase = 1, from SPI0_CLK falling 0.5tc(SPC)M -3 Polarity = 0, Phase = 0, to SPI0_CLK falling 0 Polarity = 0, Phase = 1, to SPI0_CLK rising 0 Polarity = 1, Phase = 0, to SPI0_CLK rising 0 Polarity = 1, Phase = 1, to SPI0_CLK falling 0 Polarity = 0, Phase = 0, from SPI0_CLK falling 5 Polarity = 0, Phase = 1, from SPI0_CLK rising 5 Polarity = 1, Phase = 0, from SPI0_CLK rising 5 Polarity = 1, Phase = 1, from SPI0_CLK falling 5 ns ns ns Parameters are characterized from -40°C to 125°C unless otherwise noted. P = SYSCLK2 period First bit may be MSB or LSB depending upon SPI configuration. MO(0) refers to first bit and MO(n) refers to last bit output on SPI0_SIMO. MI(0) refers to the first bit input and MI(n) refers to the last bit input on SPI0_SOMI. Copyright © 2012–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAPL137-HT 117 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 www.ti.com Table 5-53. General Timing Requirements for SPI0 Slave Modes (1) (2) NO. MIN MAX UNIT greater of 3P or 20 ns ns 9 tc(SPC)S Cycle Time, SPI0_CLK, All Slave Modes 10 tw(SPCH)S Pulse Width High, SPI0_CLK, All Slave Modes 18 ns 11 tw(SPCL)S Pulse Width Low, SPI0_CLK, All Slave Modes 18 ns 12 13 14 15 16 (1) (2) (3) (4) 118 tsu(SOMI_SPC)S td(SPC_SOMI)S toh(SPC_SOMI)S tsu(SIMO_SPC)S tih(SPC_SIMO)S Setup time, transmit data written to SPI before initial clock edge from master. (3) (4) Delay, subsequent bits valid on SPI0_SOMI after transmit edge of SPI0_CLK Output hold time, SPI0_SOMI valid after receive edge of SPI0_CLK Input Setup Time, SPI0_SIMO valid before receive edge of SPI0_CLK Input Hold Time, SPI0_SIMO valid after receive edge of SPI0_CLK Polarity = 0, Phase = 0, to SPI0_CLK rising 2P Polarity = 0, Phase = 1, to SPI0_CLK rising 2P Polarity = 1, Phase = 0, to SPI0_CLK falling 2P Polarity = 1, Phase = 1, to SPI0_CLK falling 2P ns Polarity = 0, Phase = 0, from SPI0_CLK rising 19 Polarity = 0, Phase = 1, from SPI0_CLK falling 19 Polarity = 1, Phase = 0, from SPI0_CLK falling 19 Polarity = 1, Phase = 1, from SPI0_CLK rising 19 ns Polarity = 0, Phase = 0, from SPI0_CLK falling 0.5tc(SPC)S -3 Polarity = 0, Phase = 1, from SPI0_CLK rising 0.5tc(SPC)S -3 Polarity = 1, Phase = 0, from SPI0_CLK rising 0.5tc(SPC)S -3 Polarity = 1, Phase = 1, from SPI0_CLK falling 0.5tc(SPC)S -3 Polarity = 0, Phase = 0, to SPI0_CLK falling 0 Polarity = 0, Phase = 1, to SPI0_CLK rising 0 Polarity = 1, Phase = 0, to SPI0_CLK rising 0 Polarity = 1, Phase = 1, to SPI0_CLK falling 0 Polarity = 0, Phase = 0, from SPI0_CLK falling 5 Polarity = 0, Phase = 1, from SPI0_CLK rising 5 Polarity = 1, Phase = 0, from SPI0_CLK rising 5 Polarity = 1, Phase = 1, from SPI0_CLK falling 5 ns ns ns Parameters are characterized from -40°C to 125°C unless otherwise noted. P = SYSCLK2 period First bit may be MSB or LSB depending upon SPI configuration. SO(0) refers to first bit and SO(n) refers to last bit output on SPI0_SOMI. SI(0) refers to the first bit input and SI(n) refers to the last bit input on SPI0_SIMO. Measured from the termination of the write of new data to the SPI module, In analyzing throughput requirements, additional internal bus cycles must be accounted for to allow data to be written to the SPI module by either the DSP CPU or the dMAX. Peripheral Information and Electrical Specifications Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 Table 5-54. Additional (1) SPI0 Master Timings, 4-Pin Enable Option (2) NO. 17 (1) (2) (3) (4) (5) MIN td(ENA_SPC)M 18 (3) td(SPC_ENA)M Delay from slave assertion of SPI0_ENA active to first SPI0_CLK from master. (4) Max delay for slave to deassert SPI0_ENA after final SPI0_CLK edge to ensure master does not begin the next transfer. (5) MAX UNIT Polarity = 0, Phase = 0, to SPI0_CLK rising 3P + 3.6 Polarity = 0, Phase = 1, to SPI0_CLK rising 0.5tc(SPC)M + 3P + 3.6 Polarity = 1, Phase = 0, to SPI0_CLK falling 3P + 3.6 Polarity = 1, Phase = 1, to SPI0_CLK falling 0.5tc(SPC)M + 3P + 3.6 Polarity = 0, Phase = 0, from SPI0_CLK falling P+5 Polarity = 0, Phase = 1, from SPI0_CLK falling 0.5tc(SPC)M+P+5 Polarity = 1, Phase = 0, from SPI0_CLK rising P+5 Polarity = 1, Phase = 1, from SPI0_CLK rising 0.5tc(SPC)M+P+5 ns ns These parameters are in addition to the general timings for SPI master modes (Table 5-52). P = SYSCLK2 period Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four master clocking modes. In the case where the master SPI is ready with new data before SPI0_ENA assertion. In the case where the master SPI is ready with new data before SPI0_ENA deassertion. Table 5-55. Additional (1) SPI0 Master Timings, 4-Pin Chip Select Option (2) (3) NO. 19 20 (1) (2) (3) (4) (5) (6) (7) (8) (4) MIN td(SCS_SPC)M td(SPC_SCS)M Delay from SPI0_SCS active to first SPI0_CLK (5) (6) Delay from final SPI0_CLK edge to master deasserting SPI0_SCS (7) (8) Polarity = 0, Phase = 0, to SPI0_CLK rising 2P -5 Polarity = 0, Phase = 1, to SPI0_CLK rising 0.5tc(SPC)M + 2P -5 Polarity = 1, Phase = 0, to SPI0_CLK falling 2P -5 Polarity = 1, Phase = 1, to SPI0_CLK falling 0.5tc(SPC)M + 2P -5 Polarity = 0, Phase = 0, from SPI0_CLK falling 0.5tc(SPC)M P-3 Polarity = 0, Phase = 1, from SPI0_CLK falling P-3 Polarity = 1, Phase = 0, from SPI0_CLK rising 0.5tc(SPC)M P-3 Polarity = 1, Phase = 1, from SPI0_CLK rising P-3 MAX UNIT ns ns These parameters are in addition to the general timings for SPI master modes (Table 5-52). Parameters are characterized from -40°C to 125°C unless otherwise noted. P = SYSCLK2 period Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four master clocking modes. In the case where the master SPI is ready with new data before SPI0_SCS assertion. This delay can be increased under software control by the register bit field SPIDELAY.C2TDELAY[4:0]. Except for modes when SPIDAT1.CSHOLD is enabled and there is additional data to transmit. In this case, SPI0_SCS will remain asserted. This delay can be increased under software control by the register bit field SPIDELAY.T2CDELAY[4:0]. Copyright © 2012–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAPL137-HT 119 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 www.ti.com Table 5-56. Additional (1) SPI0 Master Timings, 5-Pin Option (2) (3) NO. 18 20 21 22 23 MIN td(SPC_ENA)M td(SPC_SCS)M td(SCSL_ENAL)M td(SCS_SPC)M td(ENA_SPC)M Max delay for slave to deassert SPI0_ENA after final SPI0_CLK edge to ensure master does not begin the next transfer. (5) Delay from final SPI0_CLK edge to master deasserting SPI0_SCS (6) (7) Delay from assertion of SPI0_ENA low to first SPI0_CLK edge. (11) MAX UNIT Polarity = 0, Phase = 0, from SPI0_CLK falling P+5 Polarity = 0, Phase = 1, from SPI0_CLK falling 0.5tc(SPC)M+P+5 Polarity = 1, Phase = 0, from SPI0_CLK rising P+5 Polarity = 1, Phase = 1, from SPI0_CLK rising 0.5tc(SPC)M+P+5 ns Polarity = 0, Phase = 0, from SPI0_CLK falling 0.5tc(SPC)M+P-3 Polarity = 0, Phase = 1, from SPI0_CLK falling P-3 Polarity = 1, Phase = 0, from SPI0_CLK rising 0.5tc(SPC)M+P-3 Polarity = 1, Phase = 1, from SPI0_CLK rising P-3 ns Max delay for slave SPI to drive SPI0_ENA valid after master asserts SPI0_SCS to delay the master from beginning the next transfer, Delay from SPI0_SCS active to first SPI0_CLK (8) (9) (10) (4) C2TDELAY + P Polarity = 0, Phase = 0, to SPI0_CLK rising 2P -5 Polarity = 0, Phase = 1, to SPI0_CLK rising 0.5tc(SPC)M + 2P -5 Polarity = 1, Phase = 0, to SPI0_CLK falling 2P -5 Polarity = 1, Phase = 1, to SPI0_CLK falling 0.5tc(SPC)M + 2P -5 ns ns Polarity = 0, Phase = 0, to SPI0_CLK rising 3P + 3.6 Polarity = 0, Phase = 1, to SPI0_CLK rising 0.5tc(SPC)M + 3P + 3.6 Polarity = 1, Phase = 0, to SPI0_CLK falling 3P + 3.6 Polarity = 1, Phase = 1, to SPI0_CLK falling 0.5tc(SPC)M + 3P + 3.6 ns (1) (2) (3) (4) (5) (6) These parameters are in addition to the general timings for SPI master modes (Table 5-53). Parameters are characterized from -40°C to 125°C unless otherwise noted. P = SYSCLK2 period Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four master clocking modes. In the case where the master SPI is ready with new data before SPI0_ENA deassertion. Except for modes when SPIDAT1.CSHOLD is enabled and there is additional data to transmit. In this case, SPI0_SCS will remain asserted. (7) This delay can be increased under software control by the register bit field SPIDELAY.T2CDELAY[4:0]. (8) If SPI0_ENA is asserted immediately such that the transmission is not delayed by SPI0_ENA. (9) In the case where the master SPI is ready with new data before SPI0_SCS assertion. (10) This delay can be increased under software control by the register bit field SPIDELAY.C2TDELAY[4:0]. (11) If SPI0_ENA was initially deasserted high and SPI0_CLK is delayed. 120 Peripheral Information and Electrical Specifications Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 Table 5-57. Additional (1) SPI0 Slave Timings, 4-Pin Enable Option (2) (3) NO. 24 (1) (2) (3) (4) (4) MIN td(SPC_ENAH)S Delay from final SPI0_CLK edge to slave deasserting SPI0_ENA. MAX UNIT Polarity = 0, Phase = 0, from SPI0_CLK falling 1.5 P -3 2.5 P + 18.5 Polarity = 0, Phase = 1, from SPI0_CLK falling – 0.5tc(SPC)M + 1.5 P -3 – 0.5tc(SPC)M + 2.5 P + 18.5 Polarity = 1, Phase = 0, from SPI0_CLK rising 1.5 P -3 2.5 P + 18.5 Polarity = 1, Phase = 1, from SPI0_CLK rising – 0.5tc(SPC)M + 1.5 P -3 – 0.5tc(SPC)M + 2.5 P + 18.5 ns These parameters are in addition to the general timings for SPI slave modes (Table 5-53). Parameters are characterized from -40°C to 125°C unless otherwise noted. P = SYSCLK2 period Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four slave clocking modes. Table 5-58. Additional (1) SPI0 Slave Timings, 4-Pin Chip Select Option (2) (3) NO. 25 26 (1) (2) (3) (4) (4) MIN td(SCSL_SPC)S td(SPC_SCSH)S Required delay from SPI0_SCS asserted at slave to first SPI0_CLK edge at slave. Required delay from final SPI0_CLK edge before SPI0_SCS is deasserted. MAX 2P Polarity = 0, Phase = 0, from SPI0_CLK falling 0.5tc(SPC)M + 2P+5 Polarity = 0, Phase = 1, from SPI0_CLK falling 2P+5 Polarity = 1, Phase = 0, from SPI0_CLK rising 0.5tc(SPC)M + 2P+5 Polarity = 1, Phase = 1, from SPI0_CLK rising 2P+5 UNIT ns ns 27 tena(SCSL_SOMI)S Delay from master asserting SPI0_SCS to slave driving SPI0_SOMI valid P + 18.5 ns 28 tdis(SCSH_SOMI)S Delay from master deasserting SPI0_SCS to slave 3-stating SPI0_SOMI P + 18.5 ns These parameters are in addition to the general timings for SPI slave modes (Table 5-53). Parameters are characterized from -40°C to 125°C unless otherwise noted. P = SYSCLK2 period Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four slave clocking modes. Copyright © 2012–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAPL137-HT 121 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 www.ti.com Table 5-59. Additional (1) SPI0 Slave Timings, 5-Pin Option (2) (3) NO. 25 26 (4) MIN Required delay from SPI0_SCS asserted at slave to first SPI0_CLK edge at slave. td(SCSL_SPC)S Required delay from final SPI0_CLK edge before SPI0_SCS is deasserted. td(SPC_SCSH)S MAX UNIT 2P Polarity = 0, Phase = 0, from SPI0_CLK falling 0.5tc(SPC)M + 2P+5 Polarity = 0, Phase = 1, from SPI0_CLK falling 2P+5 Polarity = 1, Phase = 0, from SPI0_CLK rising 0.5tc(SPC)M + 2P+5 Polarity = 1, Phase = 1, from SPI0_CLK rising 2P+5 ns ns 27 tena(SCSL_SOMI)S Delay from master asserting SPI0_SCS to slave driving SPI0_SOMI valid P + 18.5 ns 28 tdis(SCSH_SOMI)S Delay from master deasserting SPI0_SCS to slave 3-stating SPI0_SOMI P + 18.5 ns 29 tena(SCSL_ENA)S Delay from master deasserting SPI0_SCS to slave driving SPI0_ENA valid 18.5 ns 30 (1) (2) (3) (4) (5) tdis(SPC_ENA)S Delay from final clock receive edge on SPI0_CLK to slave 3-stating or driving high SPI0_ENA. (5) Polarity = 0, Phase = 0, from SPI0_CLK falling 2.5 P + 18.5 Polarity = 0, Phase = 1, from SPI0_CLK rising 2.5 P + 18.5 Polarity = 1, Phase = 0, from SPI0_CLK rising 2.5 P + 18.5 Polarity = 1, Phase = 1, from SPI0_CLK falling 2.5 P + 18.5 ns These parameters are in addition to the general timings for SPI slave modes (Table 5-53). Parameters are characterized from -40°C to 125°C unless otherwise noted. P = SYSCLK2 period Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four slave clocking modes. SPI0_ENA is driven low after the transmission completes if the SPIINT0.ENABLE_HIGHZ bit is programmed to 0. Otherwise it is tristated. If tri-stated, an external pullup resistor should be used to provide a valid level to the master. This option is useful when tying several SPI slave devices to a single master. Table 5-60. General Timing Requirements for SPI1 Master Modes (1) (2) NO. MIN tc(SPC)M Cycle Time, SPI1_CLK, All Master Modes 2 tw(SPCH)M Pulse Width High, SPI1_CLK, All Master Modes 0.5tc(SPC)M - 1 ns 3 tw(SPCL)M Pulse Width Low, SPI1_CLK, All Master Modes 0.5tc(SPC)M - 1 ns 4 5 (1) (2) (3) 122 td(SIMO_SPC)M td(SPC_SIMO)M Delay, initial data bit valid on SPI1_SIMO after initial edge on SPI1_CLK (3) Delay, subsequent bits valid on SPI1_SIMO after transmit edge of SPI1_CLK greater of 3P or 20 ns MAX UNIT 1 256P Polarity = 0, Phase = 0, to SPI1_CLK rising 5 Polarity = 0, Phase = 1, to SPI1_CLK rising -0.5tc(SPC)M + 5 Polarity = 1, Phase = 0, to SPI1_CLK falling 5 Polarity = 1, Phase = 1, to SPI1_CLK falling -0.5tc(SPC)M + 5 Polarity = 0, Phase = 0, from SPI1_CLK rising 5 Polarity = 0, Phase = 1, from SPI1_CLK falling 5 Polarity = 1, Phase = 0, from SPI1_CLK falling 5 Polarity = 1, Phase = 1, from SPI1_CLK rising 5 ns ns ns Parameters are characterized from -40°C to 125°C unless otherwise noted. P = SYSCLK2 period First bit may be MSB or LSB depending upon SPI configuration. MO(0) refers to first bit and MO(n) refers to last bit output on SPI1_SIMO. MI(0) refers to the first bit input and MI(n) refers to the last bit input on SPI1_SOMI. Peripheral Information and Electrical Specifications Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 Table 5-60. General Timing Requirements for SPI1 Master Modes(1)(2) (continued) NO. 6 MIN toh(SPC_SIMO)M 7 tsu(SOMI_SPC)M 8 tih(SPC_SOMI)M Output hold time, SPI1_SIMO valid after receive edge of SPI1_CLK Input Setup Time, SPI1_SOMI valid before receive edge of SPI1_CLK Input Hold Time, SPI1_SOMI valid after receive edge of SPI1_CLK Polarity = 0, Phase = 0, from SPI1_CLK falling 0.5tc(SPC)M -3 Polarity = 0, Phase = 1, from SPI1_CLK rising 0.5tc(SPC)M -3 Polarity = 1, Phase = 0, from SPI1_CLK rising 0.5tc(SPC)M -3 Polarity = 1, Phase = 1, from SPI1_CLK falling 0.5tc(SPC)M -3 Polarity = 0, Phase = 0, to SPI1_CLK falling 0 Polarity = 0, Phase = 1, to SPI1_CLK rising 0 Polarity = 1, Phase = 0, to SPI1_CLK rising 0 Polarity = 1, Phase = 1, to SPI1_CLK falling 0 Polarity = 0, Phase = 0, from SPI1_CLK falling 5 Polarity = 0, Phase = 1, from SPI1_CLK rising 5 Polarity = 1, Phase = 0, from SPI1_CLK rising 5 Polarity = 1, Phase = 1, from SPI1_CLK falling 5 MAX UNIT ns ns ns Table 5-61. General Timing Requirements for SPI1 Slave Modes (1) (2) NO. MIN MAX UNIT greater of 3P or 40 ns ns 9 tc(SPC)S Cycle Time, SPI1_CLK, All Slave Modes 10 tw(SPCH)S Pulse Width High, SPI1_CLK, All Slave Modes 18 ns 11 tw(SPCL)S Pulse Width Low, SPI1_CLK, All Slave Modes 18 ns 12 13 (1) (2) (3) (4) tsu(SOMI_SPC)S td(SPC_SOMI)S Setup time, transmit data written to SPI before initial clock edge from master. (3) (4) Delay, subsequent bits valid on SPI1_SOMI after transmit edge of SPI1_CLK Polarity = 0, Phase = 0, to SPI1_CLK rising 2P Polarity = 0, Phase = 1, to SPI1_CLK rising 2P Polarity = 1, Phase = 0, to SPI1_CLK falling 2P Polarity = 1, Phase = 1, to SPI1_CLK falling 2P ns Polarity = 0, Phase = 0, from SPI1_CLK rising 19 Polarity = 0, Phase = 1, from SPI1_CLK falling 19 Polarity = 1, Phase = 0, from SPI1_CLK falling 19 Polarity = 1, Phase = 1, from SPI1_CLK rising 19 ns Parameters are characterized from -40°C to 125°C unless otherwise noted. P = SYSCLK2 period First bit may be MSB or LSB depending upon SPI configuration. SO(0) refers to first bit and SO(n) refers to last bit output on SPI1_SOMI. SI(0) refers to the first bit input and SI(n) refers to the last bit input on SPI1_SIMO. Measured from the termination of the write of new data to the SPI module, In analyzing throughput requirements, additional internal bus cycles must be accounted for to allow data to be written to the SPI module by either the DSP CPU or the dMAX. Copyright © 2012–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAPL137-HT 123 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 www.ti.com Table 5-61. General Timing Requirements for SPI1 Slave Modes(1)(2) (continued) NO. 14 MIN toh(SPC_SOMI)S 15 tsu(SIMO_SPC)S 16 tih(SPC_SIMO)S Output hold time, SPI1_SOMI valid after receive edge of SPI1_CLK Input Setup Time, SPI1_SIMO valid before receive edge of SPI1_CLK Input Hold Time, SPI1_SIMO valid after receive edge of SPI1_CLK Polarity = 0, Phase = 0, from SPI1_CLK falling 0.5tc(SPC)S -3 Polarity = 0, Phase = 1, from SPI1_CLK rising 0.5tc(SPC)S -3 Polarity = 1, Phase = 0, from SPI1_CLK rising 0.5tc(SPC)S -3 Polarity = 1, Phase = 1, from SPI1_CLK falling 0.5tc(SPC)S -3 Polarity = 0, Phase = 0, to SPI1_CLK falling 0 Polarity = 0, Phase = 1, to SPI1_CLK rising 0 Polarity = 1, Phase = 0, to SPI1_CLK rising 0 Polarity = 1, Phase = 1, to SPI1_CLK falling 0 Polarity = 0, Phase = 0, from SPI1_CLK falling 5 Polarity = 0, Phase = 1, from SPI1_CLK rising 5 Polarity = 1, Phase = 0, from SPI1_CLK rising 5 Polarity = 1, Phase = 1, from SPI1_CLK falling 5 MAX UNIT ns ns ns Table 5-62. Additional (1) SPI1 Master Timings, 4-Pin Enable Option (2) (3) NO. 17 18 (1) (2) (3) (4) (5) (6) 124 (4) MIN td(ENA_SPC)M td(SPC_ENA)M Delay from slave assertion of SPI1_ENA active to first SPI1_CLK from master. (5) Max delay for slave to deassert SPI1_ENA after final SPI1_CLK edge to ensure master does not begin the next transfer. (6) MAX UNIT Polarity = 0, Phase = 0, to SPI1_CLK rising P+3 Polarity = 0, Phase = 1, to SPI1_CLK rising 0.5tc(SPC)M + P + 3 Polarity = 1, Phase = 0, to SPI1_CLK falling P+3 Polarity = 1, Phase = 1, to SPI1_CLK falling 0.5tc(SPC)M + P + 3 Polarity = 0, Phase = 0, from SPI1_CLK falling P+5 Polarity = 0, Phase = 1, from SPI1_CLK falling 0.5tc(SPC)M+P+5 Polarity = 1, Phase = 0, from SPI1_CLK rising P+5 Polarity = 1, Phase = 1, from SPI1_CLK rising 0.5tc(SPC)M+P+5 ns ns These parameters are in addition to the general timings for SPI master modes (Table 5-60). Parameters are characterized from -40°C to 125°C unless otherwise noted. P = SYSCLK2 period Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four master clocking modes. In the case where the master SPI is ready with new data before SPI1_ENA assertion. In the case where the master SPI is ready with new data before SPI1_ENA deassertion. Peripheral Information and Electrical Specifications Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 Table 5-63. Additional (1) SPI1 Master Timings, 4-Pin Chip Select Option (2) (3) NO. 19 (1) (2) (3) (4) (5) (6) (7) (8) MIN td(SCS_SPC)M 20 td(SPC_SCS)M Delay from SPI1_SCS active to first SPI1_CLK (5) (6) Delay from final SPI1_CLK edge to master deasserting SPI1_SCS (7) (8) Polarity = 0, Phase = 0, to SPI1_CLK rising 2P -5 Polarity = 0, Phase = 1, to SPI1_CLK rising 0.5tc(SPC)M + 2P -5 Polarity = 1, Phase = 0, to SPI1_CLK falling 2P -5 Polarity = 1, Phase = 1, to SPI1_CLK falling 0.5tc(SPC)M + 2P -5 Polarity = 0, Phase = 0, from SPI1_CLK falling 0.5tc(SPC)M-3 Polarity = 0, Phase = 1, from SPI1_CLK falling -3 Polarity = 1, Phase = 0, from SPI1_CLK rising 0.5tc(SPC)M-3 Polarity = 1, Phase = 1, from SPI1_CLK rising -3 ns These parameters are in addition to the general timings for SPI master modes (Table 5-60). Parameters are characterized from -40°C to 125°C unless otherwise noted. P = SYSCLK2 period Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four master clocking modes. In the case where the master SPI is ready with new data before SPI1_SCS assertion. This delay can be increased under software control by the register bit field SPIDELAY.C2TDELAY[4:0]. Except for modes when SPIDAT1.CSHOLD is enabled and there is additional data to transmit. In this case, SPI1_SCS will remain asserted. This delay can be increased under software control by the register bit field SPIDELAY.T2CDELAY[4:0]. NO. 20 21 (1) (2) (3) (4) (5) (6) (7) MAX UNIT ns Table 5-64. Additional (1) SPI1 Master Timings, 5-Pin Option (2) (3) 18 (4) MIN td(SPC_ENA)M td(SPC_SCS)M td(SCSL_ENAL)M Max delay for slave to deassert SPI1_ENA after final SPI1_CLK edge to ensure master does not begin the next transfer. (5) Delay from final SPI1_CLK edge to master deasserting SPI1_SCS (6) (7) (4) MAX UNIT Polarity = 0, Phase = 0, from SPI1_CLK falling P+3 Polarity = 0, Phase = 1, from SPI1_CLK falling 0.5tc(SPC)M+P+3 Polarity = 1, Phase = 0, from SPI1_CLK rising P+3 Polarity = 1, Phase = 1, from SPI1_CLK rising 0.5tc(SPC)M+P+3 ns Polarity = 0, Phase = 0, from SPI1_CLK falling 0.5tc(SPC)M-3 Polarity = 0, Phase = 1, from SPI1_CLK falling -3 Polarity = 1, Phase = 0, from SPI1_CLK rising 0.5tc(SPC)M-3 Polarity = 1, Phase = 1, from SPI1_CLK rising -3 Max delay for slave SPI to drive SPI1_ENA valid after master asserts SPI1_SCS to delay the master from beginning the next transfer, ns C2TDELAY + P ns These parameters are in addition to the general timings for SPI master modes (Table 5-61). Parameters are characterized from -40°C to 125°C unless otherwise noted. P = SYSCLK2 period Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four master clocking modes. In the case where the master SPI is ready with new data before SPI1_ENA deassertion. Except for modes when SPIDAT1.CSHOLD is enabled and there is additional data to transmit. In this case, SPI1_SCS will remain asserted. This delay can be increased under software control by the register bit field SPIDELAY.T2CDELAY[4:0]. Copyright © 2012–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAPL137-HT 125 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 www.ti.com Table 5-64. Additional(1) SPI1 Master Timings, 5-Pin Option(2)(3) (4) (continued) NO. 22 Delay from SPI1_SCS active to first SPI1_CLK (8) (9) (10) td(SCS_SPC)M 23 (8) (9) (10) (11) MIN Delay from assertion of SPI1_ENA low to first SPI1_CLK edge. (11) td(ENA_SPC)M Polarity = 0, Phase = 0, to SPI1_CLK rising 2P -5 Polarity = 0, Phase = 1, to SPI1_CLK rising 0.5tc(SPC)M + 2P -5 Polarity = 1, Phase = 0, to SPI1_CLK falling 2P -5 Polarity = 1, Phase = 1, to SPI1_CLK falling 0.5tc(SPC)M + 2P -5 MAX UNIT ns Polarity = 0, Phase = 0, to SPI1_CLK rising P+3 Polarity = 0, Phase = 1, to SPI1_CLK rising 0.5tc(SPC)M + P + 3 Polarity = 1, Phase = 0, to SPI1_CLK falling P+3 Polarity = 1, Phase = 1, to SPI1_CLK falling 0.5tc(SPC)M + P + 3 ns If SPI1_ENA is asserted immediately such that the transmission is not delayed by SPI1_ENA. In the case where the master SPI is ready with new data before SPI1_SCS assertion. This delay can be increased under software control by the register bit field SPIDELAY.C2TDELAY[4:0]. If SPI1_ENA was initially deasserted high and SPI1_CLK is delayed. Table 5-65. Additional (1) SPI1 Slave Timings, 4-Pin Enable Option (2) (3) NO. 24 (1) (2) (3) (4) (4) MIN td(SPC_ENAH)S Delay from final SPI1_CLK edge to slave deasserting SPI1_ENA. MAX UNIT Polarity = 0, Phase = 0, from SPI1_CLK falling 1.5 P -3 2.5 P + 19 Polarity = 0, Phase = 1, from SPI1_CLK falling – 0.5tc(SPC)M + 1.5 P -3 – 0.5tc(SPC)M + 2.5 P + 19 Polarity = 1, Phase = 0, from SPI1_CLK rising 1.5 P -3 2.5 P + 19 Polarity = 1, Phase = 1, from SPI1_CLK rising – 0.5tc(SPC)M + 1.5 P -3 – 0.5tc(SPC)M + 2.5 P + 19 ns These parameters are in addition to the general timings for SPI slave modes (Table 5-61). Parameters are characterized from -40°C to 125°C unless otherwise noted. P = SYSCLK2 period Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four slave clocking modes. Table 5-66. Additional (1) SPI1 Slave Timings, 4-Pin Chip Select Option (2) (3) NO. 25 26 (4) MIN td(SCSL_SPC)S td(SPC_SCSH)S Required delay from SPI1_SCS asserted at slave to first SPI1_CLK edge at slave. Required delay from final SPI1_CLK edge before SPI1_SCS is deasserted. MAX 2P Polarity = 0, Phase = 0, from SPI1_CLK falling 0.5tc(SPC)M + 2P+5 Polarity = 0, Phase = 1, from SPI1_CLK falling 2P+5 Polarity = 1, Phase = 0, from SPI1_CLK rising 0.5tc(SPC)M + 2P+5 Polarity = 1, Phase = 1, from SPI1_CLK rising 2P+5 UNIT ns ns 27 tena(SCSL_SOMI)S Delay from master asserting SPI1_SCS to slave driving SPI1_SOMI valid P + 19 ns 28 tdis(SCSH_SOMI)S Delay from master deasserting SPI1_SCS to slave 3-stating SPI1_SOMI P + 19 ns (1) (2) (3) (4) 126 These parameters are in addition to the general timings for SPI slave modes (Table 5-61). Parameters are characterized from -40°C to 125°C unless otherwise noted. P = SYSCLK2 period Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four slave clocking modes. Peripheral Information and Electrical Specifications Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 Table 5-67. Additional (1) SPI1 Slave Timings, 5-Pin Option (2) (3) NO. 25 26 MIN td(SCSL_SPC)S td(SPC_SCSH)S Required delay from SPI1_SCS asserted at slave to first SPI1_CLK edge at slave. Required delay from final SPI1_CLK edge before SPI1_SCS is deasserted. MAX 2P Polarity = 0, Phase = 0, from SPI1_CLK falling 0.5tc(SPC)M + 2P Polarity = 0, Phase = 1, from SPI1_CLK falling 2P Polarity = 1, Phase = 0, from SPI1_CLK rising 0.5tc(SPC)M + 2P Polarity = 1, Phase = 1, from SPI1_CLK rising 2P UNIT ns ns 27 tena(SCSL_SOMI)S Delay from master asserting SPI1_SCS to slave driving SPI1_SOMI valid P + 19 ns 28 tdis(SCSH_SOMI)S Delay from master deasserting SPI1_SCS to slave 3-stating SPI1_SOMI P + 19 ns 29 tena(SCSL_ENA)S Delay from master deasserting SPI1_SCS to slave driving SPI1_ENA valid 19 ns 30 (1) (2) (3) (4) (5) (4) tdis(SPC_ENA)S Delay from final clock receive edge on SPI1_CLK to slave 3-stating or driving high SPI1_ENA. (5) Polarity = 0, Phase = 0, from SPI1_CLK falling 2.5 P + 19 Polarity = 0, Phase = 1, from SPI1_CLK rising 2.5 P + 19 Polarity = 1, Phase = 0, from SPI1_CLK rising 2.5 P + 19 Polarity = 1, Phase = 1, from SPI1_CLK falling 2.5 P + 19 ns These parameters are in addition to the general timings for SPI slave modes (Table 5-61). Parameters are characterized from -40°C to 125°C unless otherwise noted. P = SYSCLK2 period Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four slave clocking modes. SPI1_ENA is driven low after the transmission completes if the SPIINT0.ENABLE_HIGHZ bit is programmed to 0. Otherwise it is tristated. If tri-stated, an external pullup resistor should be used to provide a valid level to the master. This option is useful when tying several SPI slave devices to a single master. Copyright © 2012–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAPL137-HT 127 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 www.ti.com 1 2 MASTER MODE POLARITY = 0 PHASE = 0 3 SPIx_CLK 5 4 SPIx_SIMO MO(0) 7 SPIx_SOMI 6 MO(1) MO(n−1) MO(n) 8 MI(0) MI(1) MI(n−1) MI(n) MASTER MODE POLARITY = 0 PHASE = 1 4 SPIx_CLK 6 5 SPIx_SIMO MO(0) 7 SPIx_SOMI MO(1) MO(n−1) MI(1) MI(n−1) MO(n) 8 MI(0) MI(n) 4 MASTER MODE POLARITY = 1 PHASE = 0 SPIx_CLK 5 SPIx_SIMO 6 MO(0) 7 SPIx_SOMI MO(1) MO(n−1) MO(n) 8 MI(0) MI(1) MI(n−1) MI(n) MASTER MODE POLARITY = 1 PHASE = 1 SPIx_CLK 5 4 SPIx_SIMO MO(0) 7 SPIx_SOMI MI(0) 6 MO(1) MO(n−1) MI(1) MI(n−1) MO(n) 8 MI(n) Figure 5-39. SPI Timings—Master Mode 128 Peripheral Information and Electrical Specifications Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 9 12 10 SLAVE MODE POLARITY = 0 PHASE = 0 11 SPIx_CLK 15 SPIx_SIMO 16 SI(0) SI(1) SI(n−1) 13 SPIx_SOMI SO(0) SI(n) 14 SO(1) SO(n−1) 12 SO(n) SLAVE MODE POLARITY = 0 PHASE = 1 SPIx_CLK 15 SPIx_SIMO 16 SI(0) SI(1) 13 SPIx_SOMI SO(0) SI(n−1) SI(n) SO(n−1) SO(n) 14 SO(1) SLAVE MODE POLARITY = 1 PHASE = 0 12 SPIx_CLK 15 SPIx_SIMO 16 SI(0) SI(1) SI(n−1) 13 SPIx_SOMI SO(0) SO(1) SI(n) 14 SO(n−1) SO(n) SLAVE MODE POLARITY = 1 PHASE = 1 12 SPIx_CLK 15 SPIx_SIMO 16 SI(0) SI(1) 13 SPIx_SOMI SO(0) SO(1) SI(n−1) SI(n) 14 SO(n−1) SO(n) Figure 5-40. SPI Timings—Slave Mode Copyright © 2012–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAPL137-HT 129 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 www.ti.com MASTER MODE 4 PIN WITH ENABLE 17 18 SPIx_CLK SPIx_SIMO MO(0) SPIx_SOMI MI(0) MO(1) MO(n−1) MI(1) MI(n−1) MO(n) MI(n) SPIx_ENA MASTER MODE 4 PIN WITH CHIP SELECT 19 20 SPIx_CLK SPIx_SIMO MO(0) SPIx_SOMI MI(0) MO(1) MO(n−1) MO(n) MI(1) MI(n−1) MI(n) SPIx_SCS MASTER MODE 5 PIN 22 20 MO(1) 23 18 SPIx_CLK SPIx_SIMO MO(0) MO(n−1) MO(n) SPIx_SOMI 21 SPIx_ENA MI(0) MI(1) MI(n−1) MI(n) DESEL(A) DESEL(A) SPIx_SCS A. DESELECTED IS PROGRAMMABLE EITHER HIGH OR 3−STATE (REQUIRES EXTERNAL PULLUP) Figure 5-41. SPI Timings—Master Mode (4-Pin and 5-Pin) 130 Peripheral Information and Electrical Specifications Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 SLAVE MODE 4 PIN WITH ENABLE 24 SPIx_CLK SPIx_SOMI SO(0) SO(1) SO(n−1) SO(n) SPIx_SIMO SI(0) SPIx_ENA SI(1) SI(n−1) SI(n) SLAVE MODE 4 PIN WITH CHIP SELECT 26 25 SPIx_CLK 27 SPIx_SOMI 28 SO(n−1) SO(0) SO(1) SO(n) SPIx_SIMO SI(0) SPIx_SCS SI(1) SI(n−1) SI(n) SLAVE MODE 5 PIN 26 30 25 SPIx_CLK 27 SPIx_SOMI 28 SO(1) SO(0) SO(n−1) SO(n) SPIx_SIMO 29 SPIx_ENA DESEL(A) SI(0) SI(1) SI(n−1) SI(n) DESEL(A) SPIx_SCS A. DESELECTED IS PROGRAMMABLE EITHER HIGH OR 3−STATE (REQUIRES EXTERNAL PULLUP) Figure 5-42. SPI Timings—Slave Mode (4-Pin and 5-Pin) Copyright © 2012–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAPL137-HT 131 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 www.ti.com 5.17 Enhanced Capture Module (eCAP) The device contains up to three enhanced capture (eCAP) modules. Figure 5-43 shows a functional block diagram of a module. Uses for ECAP include: • Speed measurements of rotating machinery (e.g. toothed sprockets sensed via Hall sensors) • Elapsed time measurements between position sensor triggers • Period and duty cycle measurements of Pulse train signals • Decoding current or voltage amplitude derived from cuty cycle encoded current/voltage sensors The ECAP module described in this specification includes the following features: • 32 bit time base • 4 event time-stamp registers (each 32 bits) • Edge polarity selection for up to 4 sequenced time-stamp capture events • Interrupt on either of the 4 events • Single shot capture of up to 4 event time-stamps • Continuous mode capture of time-stamps in a 4 deep circular buffer • Absolute time-stamp capture • Difference mode time-stamp capture • All the above resources are dedicated to a single input pin The eCAP modules are clocked at the SYSCLK2 rate. The clock enable bits (ECAP1/2/3/4ENCLK) in the PCLKCR1 register are used to turn off the eCAP modules individually (for low power operation). Upon reset, ECAP1ENCLK, ECAP2ENCLK, ECAP3ENCLK, and ECAP4EN CLK are set to low, indicating that the peripheral clock is off. 132 Peripheral Information and Electrical Specifications Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 SYNC www.ti.com SYNCIn SYNCOut CTRPHS (phase register−32 bit) TSCTR (counter−32 bit) APWM mode CTR_OVF OVF Delta−mode RST CTR [0−31] PRD [0−31] CMP [0−31] PWM compare logic 32 CTR=PRD CTR [0−31] CTR=CMP 32 32 CAP1 (APRD active) APRD shadow 32 32 LD1 LD MODE SELECT PRD [0−31] Polarity select 32 CMP [0−31] CAP2 (ACMP active) 32 LD2 LD 32 CAP3 (APRD shadow) LD 32 CAP4 (ACMP shadow) LD Polarity select Event qualifier ACMP shadow eCAPx Event Pre-scale Polarity select LD3 LD4 4 Capture events Polarity select 4 CEVT[1:4] to Interrupt Controller Interrupt Trigger and Flag control CTR_OVF Continuous / Oneshot Capture Control CTR=PRD CTR=CMP Figure 5-43. eCAP Functional Block Diagram Copyright © 2012–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAPL137-HT 133 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 www.ti.com Table 5-68 is the list of the ECAP registers. See the TMS320C674x/OMAP-L1x Processor Peripherals Overview Reference Guide. – Literature Number SPRUFK9 for more details. Table 5-68. ECAPx Configuration Registers ECAP0 BYTE ADDRESS ECAP1 BYTE ADDRESS ECAP2 BYTE ADDRESS 0x01F0 6000 0x01F0 7000 0x01F0 8000 TSCTR 0x01F0 6004 0x01F0 7004 0x01F0 8004 CTRPHS REGISTER NAME DESCRIPTION Time-Stamp Counter Counter Phase Offset Value Register 0x01F0 6008 0x01F0 7008 0x01F0 8008 CAP1 Capture 1 Register 0x01F0 600C 0x01F0 700C 0x01F0 800C CAP2 Capture 2 Register 0x01F0 6010 0x01F0 7010 0x01F0 8010 CAP3 Capture 3 Register 0x01F0 6014 0x01F0 7014 0x01F0 8014 CAP4 Capture 4 Register 0x01F0 6028 0x01F0 7028 0x01F0 8028 ECCTL1 Capture Control Register 1 0x01F0 602A 0x01F0 702A 0x01F0 802A ECCTL2 Capture Control Register 2 0x01F0 602C 0x01F0 702C 0x01F0 802C ECEINT Capture Interrupt Enable Register 0x01F0 602E 0x01F0 702E 0x01F0 802E ECFLG Capture Interrupt Flag Register 0x01F0 6030 0x01F0 7030 0x01F0 8030 ECCLR Capture Interrupt Clear Register 0x01F0 6032 0x01F0 7032 0x01F0 8032 ECFRC Capture Interrupt Force Register 0x01F0 605C 0x01F0 705C 0x01F0 805C REVID Revision ID Table 5-69 shows the eCAP timing requirement and Table 5-70 shows the eCAP switching characteristics. Table 5-69. Enhanced Capture (eCAP) Timing Requirement (1) PARAMETER tw(CAP) (1) Capture input pulse width TEST CONDITIONS MIN MAX UNIT Asynchronous 2tc(SCO) cycles Synchronous 2tc(SCO) cycles Parameters are characterized from -40°C to 125°C unless otherwise noted. Table 5-70. eCAP Switching Characteristics (1) PARAMETER tw(APWM) (1) 134 TEST CONDITIONS Pulse duration, APWMx output high/low MIN 20 MAX UNIT ns Parameters are characterized from -40°C to 125°C unless otherwise noted. Peripheral Information and Electrical Specifications Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 5.18 Enhanced Quadrature Encoder Module (eQEP) The device contains up to two enhanced quadrature encoder (eQEP) modules. System control registers To CPU EQEPxENCLK Data bus SYSCLK2 QCPRD QCTMR QCAPCTL 16 16 16 Quadrature capture unit (QCAP) QCTMRLAT QCPRDLAT Registers used by multiple units QUTMR QWDTMR QUPRD QWDPRD 32 16 QEPCTL QEPSTS UTIME Interrupt Controller QFLG UTOUT QWDOG QDECCTL 16 WDTOUT EQEPxAIN QCLK EQEPxINT 16 QPOSLAT EQEPxIIN QI Position counter/ control unit (PCCU) EQEPxIOUT QS Quadrature decoder PHE (QDU) QPOSSLAT PCSOUT QPOSILAT EQEPxIOE EQEPxSIN EQEPxSOUT EQEPxSOE 32 32 QPOSCNT EQEPxB/XDIR GPIO MUX EQEPxI EQEPxS 16 QPOSCMP QPOSINIT EQEPxA/XCLK EQEPxBIN QDIR QEINT QFRC QPOSMAX QCLR QPOSCTL Enhanced QEP (eQEP) Peripheral Figure 5-44. eQEP Functional Block Diagram Table 5-71 is the list of the EQEP registers. See the TMS320C674x/OMAP-L1x Processor Peripherals Overview Reference Guide. – Literature Number SPRUFK9 for more details. Table 5-72 shows the eQEP timing requirement and Table 5-73 shows the eQEP switching characteristics. Copyright © 2012–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAPL137-HT 135 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 www.ti.com Table 5-71. EQEP Registers EQEP0 BYTE ADDRESS EQEP1 BYTE ADDRESS 0x01F0 9000 0x01F0 A000 QPOSCNT eQEP Position Counter 0x01F0 9004 0x01F0 A004 QPOSINIT eQEP Initialization Position Count REGISTER NAME DESCRIPTION 0x01F0 9008 0x01F0 A008 QPOSMAX eQEP Maximum Position Count 0x01F0 900C 0x01F0 A00C QPOSCMP eQEP Position-compare 0x01F0 9010 0x01F0 A010 QPOSILAT eQEP Index Position Latch 0x01F0 9014 0x01F0 A014 QPOSSLAT eQEP Strobe Position Latch 0x01F0 9018 0x01F0 A018 QPOSLAT eQEP Position Latch 0x01F0 901C 0x01F0 A01C QUTMR eQEP Unit Timer 0x01F0 9020 0x01F0 A020 QUPRD eQEP Unit Period Register 0x01F0 9024 0x01F0 A024 QWDTMR eQEP Watchdog Timer 0x01F0 9026 0x01F0 A026 QWDPRD eQEP Watchdog Period Register 0x01F0 9028 0x01F0 A028 QDECCTL eQEP Decoder Control Register 0x01F0 902A 0x01F0 A02A QEPCTL eQEP Control Register 0x01F0 902C 0x01F0 A02C QCAPCTL eQEP Capture Control Register 0x01F0 902E 0x01F0 A02E QPOSCTL eQEP Position-compare Control Register 0x01F0 9030 0x01F0 A030 QEINT eQEP Interrupt Enable Register 0x01F0 9032 0x01F0 A032 QFLG eQEP Interrupt Flag Register 0x01F0 9034 0x01F0 A034 QCLR eQEP Interrupt Clear Register 0x01F0 9036 0x01F0 A036 QFRC eQEP Interrupt Force Register 0x01F0 9038 0x01F0 A038 QEPSTS eQEP Status Register 0x01F0 903A 0x01F0 A03A QCTMR eQEP Capture Timer 0x01F0 903C 0x01F0 A03C QCPRD eQEP Capture Period Register 0x01F0 903E 0x01F0 A03E QCTMRLAT eQEP Capture Timer Latch 0x01F0 9040 0x01F0 A040 QCPRDLAT eQEP Capture Period Latch 0x01F0 905C 0x01F0 A05C REVID eQEP Revision ID Table 5-72. Enhanced Quadrature Encoder Pulse (eQEP) Timing Requirements (1) TEST CONDITIONS MIN MAX UNIT tw(QEPP) QEP input period Asynchronous/synchronous 2tc(SCO) cycles tw(INDEXH) QEP Index Input High time Asynchronous/synchronous 2tc(SCO) cycles tw(INDEXL) QEP Index Input Low time Asynchronous/synchronous 2tc(SCO) cycles tw(STROBH) QEP Strobe High time Asynchronous/synchronous 2tc(SCO) cycles tw(STROBL) QEP Strobe Input Low time Asynchronous/synchronous 2tc(SCO) cycles (1) Parameters are characterized from -40°C to 125°C unless otherwise noted. Table 5-73. eQEP Switching Characteristics (1) MAX UNIT td(CNTR)xin Delay time, external clock to counter increment PARAMETER 4tc(SCO) cycles td(PCS-OUT)QEP Delay time, QEP input edge to position compare sync output 6tc(SCO) cycles (1) 136 TEST CONDITIONS MIN Parameters are characterized from -40°C to 125°C unless otherwise noted. Peripheral Information and Electrical Specifications Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 5.19 Enhanced High-Resolution Pulse-Width Modulator (eHRPWM) The device contains up to three enhanced PWM Modules (eHRPWM). Figure 5-45 shows a block diagram of multiple eHRPWM modules. Figure 4-4 shows the signal interconnections with the eHRPWM. See the TMS320C674x/OMAP-L1x Processor Peripherals Overview Reference Guide. – Literature Number SPRUFK9 for more details. EPWMSYNCI EPWM0INT EPWM0SYNCI EPWM0A ePWM0 module EPWM0B TZ EPWM0SYNCO EPWM1SYNCI EPWM1INT EPWM1A ePWM1 module EPWM1SYNCO EPWM1B GPIO MUX TZ EPWM2SYNCI EPWM2INT Interrupt Controllers EPWM2A ePWM2 module EPWM2SYNCO To eCAP0 Module (sync in) EPWM2B TZ EPWMSYNCO Peripheral Bus Figure 5-45. Multiple PWM Modules in the device Copyright © 2012–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAPL137-HT 137 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 www.ti.com Table 5-74. eHRPWM Module Control and Status Registers Grouped by Submodule eHRPWM1 BYTE ADDRESS eHRPWM2 BYTE ADDRESS 0x01F0 0000 0x01F0 2000 0x01F0 4000 TBCTL 1 No Time-Base Control Register 0x01F0 0002 0x01F0 2002 0x01F0 4002 TBSTS 1 No Time-Base Status Register 0x01F0 0004 0x01F0 2004 0x01F0 4004 TBPHSHR 1 No Extension for HRPWM Phase Register 0x01F0 0006 0x01F0 2006 0x01F0 4006 TBPHS 1 No Time-Base Phase Register 0x01F0 0008 0x01F0 2008 0x01F0 4008 TBCNT 1 No Time-Base Counter Register 0x01F0 000A 0x01F0 200A 0x01F0 400A TBPRD 1 Yes Time-Base Period Register Acronym Size (×16) Sha do w Register Description eHRPWM0 BYTE ADDRESS Time-Base Submodule Registers (1) Counter-Compare Submodule Registers 0x01F0 000E 0x01F0 200E 0x01F0 400E CMPCTL 1 No Counter-Compare Control Register 0x01F0 0010 0x01F0 2010 0x01F0 4010 CMPAHR 1 No Extension for HRPWM Counter-Compare A Register (1) 0x01F0 0012 0x01F0 2012 0x01F0 4012 CMPA 1 Yes Counter-Compare A Register 0x01F0 0014 0x01F0 2014 0x01F0 4014 CMPB 1 Yes Counter-Compare B Register Action-Qualifier Submodule Registers 0x01F0 0016 0x01F0 2016 0x01F0 4016 AQCTLA 1 No Action-Qualifier Control Register for Output A (eHRPWMxA) 0x01F0 0018 0x01F0 2018 0x01F0 4018 AQCTLB 1 No Action-Qualifier Control Register for Output B (eHRPWMxB) 0x01F0 001A 0x01F0 201A 0x01F0 401A AQSFRC 1 No Action-Qualifier Software Force Register 0x01F0 001C 0x01F0 201C 0x01F0 401C AQCSFRC 1 Yes Action-Qualifier Continuous S/W Force Register Set 0x01F0 001E 0x01F0 201E 0x01F0 401E DBCTL 1 No Dead-Band Generator Control Register 0x01F0 0020 0x01F0 2020 0x01F0 4020 DBRED 1 No Dead-Band Generator Rising Edge Delay Count Register 0x01F0 0022 0x01F0 2022 0x01F0 4022 DBFED 1 No Dead-Band Generator Falling Edge Delay Count Register 0x01F0 003C 0x01F0 203C 0x01F0 403C 1 No PWM-Chopper Control Register Dead-Band Generator Submodule Registers PWM-Chopper Submodule Registers PCCTL Trip-Zone Submodule Registers 0x01F0 0024 0x01F0 2024 0x01F0 4024 TZSEL 1 No Trip-Zone Select Register 0x01F0 0028 0x01F0 2028 0x01F0 4028 TZCTL 1 No Trip-Zone Control Register 0x01F0 002A 0x01F0 202A 0x01F0 402A TZEINT 1 No Trip-Zone Enable Interrupt Register 0x01F0 002C 0x01F0 202C 0x01F0 402C TZFLG 1 No Trip-Zone Flag Register 0x01F0 002E 0x01F0 202E 0x01F0 402E TZCLR 1 No Trip-Zone Clear Register 0x01F0 0030 0x01F0 2030 0x01F0 4030 TZFRC 1 No Trip-Zone Force Register Event-Trigger Submodule Registers 0x01F0 0032 0x01F0 2032 0x01F0 4032 ETSEL 1 No Event-Trigger Selection Register 0x01F0 0034 0x01F0 2034 0x01F0 4034 ETPS 1 No Event-Trigger Pre-Scale Register 0x01F0 0036 0x01F0 2036 0x01F0 4036 ETFLG 1 No Event-Trigger Flag Register 0x01F0 0038 0x01F0 2038 0x01F0 4038 ETCLR 1 No Event-Trigger Clear Register 0x01F0 003A 0x01F0 203A 0x01F0 403A ETFRC 1 No Event-Trigger Force Register High-Resolution PWM (HRPWM) Submodule Registers 0x01F0 1040 (1) 138 0x01F0 3040 0x01F0 5040 HRCNFG 1 No HRPWM Configuration Register (1) These registers are only available on eHRPWM instances that include the high-resolution PWM (HRPWM) extension; otherwise, these locations are reserved. Peripheral Information and Electrical Specifications Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 5.19.1 Enhanced Pulse Width Modulator (eHRPWM) Timing PWM refers to PWM outputs on eHRPWM1-6. Table 5-75 shows the PWM timing requirements and Table 5-76, switching characteristics. Table 5-75. eHRPWM Timing Requirements (1) PARAMETER tw(SYNCIN) (1) TEST CONDITIONS Sync input pulse width MIN MAX UNIT Asynchronous 2tc(SCO) cycles Synchronous 2tc(SCO) cycles Parameters are characterized from -40°C to 125°C unless otherwise noted. Table 5-76. eHRPWM Switching Characteristics (1) PARAMETER TEST CONDITIONS tw(PWM) Pulse duration, PWMx output high/low tw(SYNCOUT) Sync output pulse width td(PWM)TZA Delay time, trip input active to PWM forced high Delay time, trip input active to PWM forced low td(TZ-PWM)HZ Delay time, trip input active to PWM Hi-Z (1) MIN MAX UNIT 20 ns 8tc(SCO) cycles no pin load 25 ns 20 ns Parameters are characterized from -40°C to 125°C unless otherwise noted. 5.19.2 Trip-Zone Input Timing tw(TZ) TZ td(TZ_PWM)HZ PWM (A) A. PWM refers to all the PWM pins in the device. The state of the PWM pins after TZ is taken high depends on the PWM recovery software. Figure 5-46. PWM Hi-Z Characteristics Table 5-77. Trip-Zone Input Timing Requirements (1) MIN tw(TZ) (1) Pulse duration, TZx input low MAX UNIT Asynchronous 1tc(SCO) cycles Synchronous 2tc(SCO) cycles Parameters are characterized from -40°C to 125°C unless otherwise noted. Table 5-78 shows the high-resolution PWM switching characteristics. Table 5-78. High Resolution PWM Characteristics at SYSCLKOUT = (60 - 100 MHz) (1) MIN Micro Edge Positioning (MEP) step size (1) (2) (2) TYP MAX 200 UNIT ps Parameters are characterized from -40°C to 125°C unless otherwise noted. Maximum MEP step size is based on worst-case process, maximum temperature and maximum voltage. MEP step size will increase with low voltage and high temperature and decrease with voltage and cold temperature. Applications that use the HRPWM feature should use MEP Scale Factor Optimizer (SFO) estimation software functions. See the TI software libraries for details of using SFO function in end applications. SFO functions help to estimate the number of MEP steps per SYSCLKOUT period dynamically while the HRPWM is in operation. Copyright © 2012–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAPL137-HT 139 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 www.ti.com 5.20 LCD Controller Table 5-79 lists the LCD Controller registers. See the TMS320C674x/OMAP-L1x Processor Peripherals Overview Reference Guide. – Literature Number SPRUFK9 for more details. Table 5-79. LCD Controller (LCDC) Registers Address Offset Acronym Register Description 0x01E1 3000 REVID LCD Revision Identification Register 0x01E1 3004 LCD_CTRL LCD Control Register 0x01E1 3008 LCD_STAT LCD Status Register 0x01E1 300C LIDD_CTRL LCD LIDD Control Register 0x01E1 3010 LIDD_CS0_CONF LCD LIDD CS0 Configuration Register 0x01E1 3014 LIDD_CS0_ADDR LCD LIDD CS0 Address Read/Write Register 0x01E1 3018 LIDD_CS0_DATA LCD LIDD CS0 Data Read/Write Register 0x01E1 301C LIDD_CS1_CONF LCD LIDD CS1 Configuration Register 0x01E1 3020 LIDD_CS1_ADDR LCD LIDD CS1 Address Read/Write Register 0x01E1 3024 LIDD_CS1_DATA LCD LIDD CS1 Data Read/Write Register 0x01E1 3028 RASTER_CTRL LCD Raster Control Register 0x01E1 302C RASTER_TIMING_0 LCD Raster Timing 0 Register 0x01E1 3030 RASTER_TIMING_1 LCD Raster Timing 1 Register 0x01E1 3034 RASTER_TIMING_2 LCD Raster Timing 2 Register 0x01E1 3038 RASTER_SUBPANEL LCD Raster Subpanel Display Register 0x01E1 3040 LCDDMA_CTRL LCD DMA Control Register 0x01E1 3044 LCDDMA_FB0_BASE LCD DMA Frame Buffer 0 Base Address Register 0x01E1 3048 LCDDMA_FB0_CEILING LCD DMA Frame Buffer 0 Ceiling Address Register 0x01E1 304C LCDDMA_FB1_BASE LCD DMA Frame Buffer 1 Base Address Register 0x01E1 3050 LCDDMA_FB1_CEILING LCD DMA Frame Buffer 1 Ceiling Address Register 5.20.1 LCD Interface Display Driver (LIDD Mode) Table 5-80. LCD LIDD Mode Timing Requirements (1) NO (1) PARAMETER 16 tsu(LCD_D) Setup time, LCD_D[15:0] valid before LCD_CLK (SYSCLK2) ↑ 17 th(LCD_D) Hold time, LCD_D[15:0] valid after LCD_CLK (SYSCLK2) ↑ MIN MAX UNIT 7 ns 0.5 ns Parameters are characterized from -40°C to 125°C unless otherwise noted. Table 5-81. LCD LIDD Mode Timing Characteristics (1) NO (1) 140 PARAMETER MIN MAX UNIT -0.5 10 ns 4 td(LCD_D_V) Delay time, LCD_CLK (SYSCLK2) ↑ to LCD_D[15:0] valid (write) 5 td(LCD_D_I) Delay time, LCD_CLK (SYSCLK2) ↑ to LCD_D[15:0] invalid (write) -0.5 10 ns 6 td(LCD_E_A) Delay time, LCD_CLK (SYSCLK2) ↑ to LCD_AC_ENB_CS↓ -0.5 7 ns 7 td(LCD_E_I) Delay time, LCD_CLK (SYSCLK2) ↑ to LCD_AC_ENB_CS↑ -0.5 7 ns 8 td(LCD_A_A) Delay time, LCD_CLK (SYSCLK2) ↑ to LCD_VSYNC↓ -0.5 8 ns 9 td(LCD_A_I) Delay time, LCD_CLK (SYSCLK2) ↑ to LCD_VSYNC↑ -0.5 8 ns Parameters are characterized from -40°C to 125°C unless otherwise noted. Peripheral Information and Electrical Specifications Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 Table 5-81. LCD LIDD Mode Timing Characteristics(1) (continued) NO PARAMETER MIN MAX UNIT -0.5 8 ns 10 td(LCD_W_A) Delay time, LCD_CLK (SYSCLK2) ↑ to LCD_HSYNC↓ 11 td(LCD_W_I) Delay time, LCD_CLK (SYSCLK2) ↑ to LCD_HSYNC↑ -0.5 8 ns 12 td(LCD_STRB_A) Delay time, LCD_CLK (SYSCLK2) ↑ to LCD_PCLK↑ -0.5 12 ns 13 td(LCD_STRB_I) Delay time, LCD_CLK (SYSCLK2) ↑ to LCD_PCLK↓ -0.5 12 ns 14 td(LCD_D_Z) Delay time, LCD_CLK (SYSCLK2) ↑ to LCD_D[15:0] in 3-state -0.5 12 ns 15 td(Z_LCD_D) Delay time, LCD_CLK (SYSCLK2) ↑ to 15 td(Z_LCD_D) 3-state) LCD_D[15:0] (valid from 3-state) -0.5 12 ns 1 W_SU (0 to 31) 2 3 LCD_CLK (SYSCLK2) CS_DELAY (0 to 3) W_STROBE (1 to 63) R_SU (0 to 31) R_STROBE (1 to 63) W_HOLD (1 to 15) 4 R_HOLD (1 to 15) 5 14 17 16 LCD_D[15:0] CS_DELAY (0 to 3) 15 Data[7:0] Write Data Read Status LCD_PCLK Not Used 8 9 LCD_VSYNC RS 10 11 LCD_HSYNC R/W 12 12 13 13 E0 E1 LCD_AC_ENB_CS Figure 5-47. Character Display HD44780 Write Copyright © 2012–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAPL137-HT 141 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 www.ti.com W_HOLD (1–15) R_SU (0–31) 1 2 R_STROBE R_HOLD CS_DELAY (1–63) (1–5) (0−3) (0–31) W_SU 17 15 4 W_STROBE CS_DELAY (1–63) (0 − 3) 3 Not Used LCD_CLK (SYSCLK2) 14 16 LCD_D[7:0] 5 Data[7:0] Write Instruction Read Data LCD_PCLK Not Used 8 9 RS LCD_VSYNC 10 11 LCD_HSYNC R/W 12 13 12 LCD_AC_ENB_CS 13 E0 E1 Figure 5-48. Character Display HD44780 Read 142 Peripheral Information and Electrical Specifications Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 W_HOLD (1−15) W_HOLD (1−15) 1 2 W_SU W_STROBE CS_DELAY W_SU W_STROBE (0−31) (1−63) (0−3) (0−31) (1−63) CS_DELAY (0−3) 3 Clock LCD_CLK (SYSCLK2) 4 LCD_D[15:0] LCD_AC_ENB_CS (async mode) 5 5 4 Write Address Write Data 7 6 Data[15:0] 6 7 CS0 CS1 9 8 A0 LCD_VSYNC 10 11 11 10 R/W LCD_HSYNC 12 13 12 13 E LCD_PCLK Figure 5-49. Micro-Interface Graphic Display 6800 Write Copyright © 2012–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAPL137-HT 143 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 www.ti.com W_HOLD (1−15) 1 2 W_SU W_STROBE CS_DELAY (0−31) (1−63) (0−3) R_SU (0−31) R_STROBE (1−63 R_HOLD CS_DELAY (1−15) (0−3) 3 Clock LCD_CLK (SYSCLK2) 4 LCD_D[15:0] 5 14 16 17 15 Write Address Data[15:0] Read Data 6 7 6 7 LCD_AC_ENB_CS (async mode) CS0 CS1 9 8 LCD_VSYNC A0 11 10 LCD_HSYNC R/W 12 13 12 LCD_PCLK 13 E Figure 5-50. Micro-Interface Graphic Display 6800 Read 144 Peripheral Information and Electrical Specifications Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 R_SU (0−31) R_SU (0−31) R_STROBE R_HOLD CS_DELAY R_STROBE R_HOLD CS_DELAY 1 2 (1−63) 3 (1−15) (0−3) (1−63) (1−15) (0−3) Clock LCD_CLK (SYSCLK2) 14 16 17 15 14 17 16 15 LCD_D[15:0] Data[15:0] Read Data 6 LCD_AC_ENB_CS (async mode) 7 Read Status 6 7 CS0 CS1 8 9 LCD_VSYNC A0 R/W LCD_HSYNC 12 13 12 13 E LCD_PCLK Figure 5-51. Micro-Interface Graphic Display 6800 Status Copyright © 2012–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAPL137-HT 145 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 www.ti.com W_HOLD (1−15) W_HOLD (1−15) 1 2 W_SU W_STROBE CS_DELAY W_SU W_STROBE CS_DELAY (0−31) 3 (1−63) (0−3) (0−31) (1−63) (0 − 3) Clock LCD_CLK (SYSCLK2) 4 LCD_D[15:0] LCD_AC_ENB_CS (async mode) 5 4 Write Address 5 DATA[15:0] Write Data 7 6 6 7 CS0 CS1 8 9 LCD_VSYNC A0 10 11 10 LCD_HSYNC 11 WR LCD_PCLK RD Figure 5-52. Micro-Interface Graphic Display 8080 Write 146 Peripheral Information and Electrical Specifications Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 W_HOLD (1−15) W_SU W_STROBE R_SU (0−31) CS_DELAY R_STROBE R_HOLD CS_DELAY 1 2 3 (0−31) (1−63) (0−3) (1−63) (1−15) 16 17 (0−3) Clock LCD_CLK (SYSCLK2) 4 LCD_D[15:0] 5 14 15 Data[15:0] Write Address 6 7 LCD_AC_ENB_CS (async mode) 6 Read Data 7 CS0 CS1 9 8 LCD_VSYNC A0 10 11 WR LCD_HSYNC 12 13 RD LCD_PCLK Figure 5-53. Micro-Interface Graphic Display 8080 Read Copyright © 2012–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAPL137-HT 147 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 www.ti.com R_SU (0−31) R_SU (0−31) R_STROBE 1 2 (1-63) R_HOLD (1-15) CS_DELAY R_STROBE R_HOLD (0-3) (1-63) CS_DELAY (1-15) (0-3) 3 Clock LCD_CLK (SYSCLK2) 14 16 17 15 14 16 17 15 Data[15:0] LCD_D[15:0] Read Data Read Status 7 6 6 7 LCD_AC_ENB_CS CS0 CS1 8 9 A0 LCD_VSYNC WR LCD_HSYNC 12 13 12 13 RD LCD_PCLK Figure 5-54. Micro-Interface Graphic Display 8080 Status 148 Peripheral Information and Electrical Specifications Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 5.20.2 LCD Raster Mode Table 5-82. LCD Raster Mode Timing See Figure 5-56 through Figure 5-54 NO. Clock frequency, pixel clock tc(PIXEL_CLK) Cycle time, pixel clock (2) tw(PIXEL_CLK_H) 3 (2) tw(PIXEL_CLK_L) 4 td(LCD_D_V) Delay time, LCD_PCLK↑ to LCD_D[15:0] valid (write) 5 td(LCD_D_IV) Delay time, LCD_PCLK↑ to LCD_D[15:0] invalid (write) 1 (2) 2 (1) (2) (3) PARAMETER fclock(PIXEL_CLK) MIN MAX UNIT F/2 (1) MHz 26.6 ns Pulse duration, pixel clock high 10 ns Pulse duration, pixel clock low 10 0 ns 12.5 ns 0 12.5 ns (3) S2+12.5 ( 6 td(LCD_AC_ENB_CS_A) Delay time, LCD_PCLK↓ to LCD_AC_ENB_CS↑ S2+0 7 td(LCD_AC_ENB_CS_I) Delay time, LCD_PCLK↓ to LCD_AC_ENB_CS↓ S2+0 (3) 8 td(LCD_VSYNC_A) Delay time, LCD_PCLK↓ to LCD_VSYNC↑ 9 td(LCD_VSYNC_I) Delay time, LCD_PCLK↓ to LCD_VSYNC↓ 10 td(LCD_HSYNC_A) 11 td(LCD_HSYNC_I) 3) S2+12.5 ( ns 3) ns 0 12.5 ns 0 12.5 ns Delay time, LCD_PCLK↑ to LCD_HSYNC↑ 0 12.5 ns Delay time, LCD_PCLK↑ to LCD_HSYNC↓ 0 12.5 ns F = frequency of LCD_PCLK in ns Parameters are characterized from -40°C to 125°C unless otherwise noted. S2=SYSCLK2 cycle time in ns. Frame-to-frame timing is derived through the following parameters in the LCD (RASTER_TIMING_1) register: • Vertical front porch (VFP) • Vertical sync pulse width (VSW) • Vertical back porch (VBP) • Lines per panel (LPP) Line-to-line timing is derived through the following parameters in the LCD (RASTER_TIMING_0) register: • Horizontal front porch (HFP) • Horizontal sync pulse width (HSW) • Horizontal back porch (HBP) • Pixels per panel (PPL) LCD_AC_ENB_CS timing is derived through the following parameter in the LCD (RASTER_TIMING_2) register: • AC bias frequency (ACB) The display format produced in raster mode is shown in Figure 5-55. An entire frame is delivered one line at a time. The first line delivered starts at data pixel (1, 1) and ends at data pixel (P, 1). The last line delivered starts at data pixel (1, L) and ends at data pixel (P, L). The beginning of each new frame is denoted by the activation of I/O signal LCD_VSYNC. The beginning of each new line is denoted by the activation of I/O signal LCD_HSYNC. Copyright © 2012–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAPL137-HT 149 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 www.ti.com Data Pixels (From 1 to P) 1, 1 2, 1 1, 2 2, 2 P−2, 1 3, 1 P−1, 1 P, 1 P−1, 2 P, 2 P, 3 Data Lines (From 1 to L) 1, 3 LCD P, L−2 1, L−2 1, L−1 2, L−1 1, L 2, L P−2, L 3, L P−1, L−1 P, L−1 P−1, L P, L Figure 5-55. LCD Raster-Mode Display Format 150 Peripheral Information and Electrical Specifications Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 Frame Time ~ 70Hz Active TFT VBP (0 to 255) VSW (1 to 64) Line Time LPP VFP (1 to 1024) (0 to 255) VSW (1 to 64) Hsync LCD_HSYNC LCD_VSYNC Vsync Data LCD_D[15:0] 1, 1 P, 1 1, L−1 P, L−1 1, 2 P, 2 1, L P, L Enable LCD_AC_ENB_CS ACB ACB (0 to 255) (0 to 255) 10 11 Hsync LCD_HSYNC CLK LCD_PCLK Data LCD_D[15:0] 1, 1 2, 1 P, 1 PLL 16 (1 to 1024) 1, 2 HFP HSW HBP (1 to 256) (1 to 64) (1 to 256) 2, 2 P, 2 PLL 16 (1 to 1024) Line 2 Line 1 Figure 5-56. LCD Raster-Mode Active Copyright © 2012–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAPL137-HT 151 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 www.ti.com Frame Time ~ 70Hz VBP = 0 VFP = 0 VBP = 0 VFP = 0 Passive STN VSW = 1 (1 to 64) VSW = 1 (1 to 64) LPP (1 to 1024) Line Time LCD_HSYNC LP LCD_VSYNC FP 1, L Data LCD_D[7:0] 1, 1: 1, 2: P, 2 P, 2 1, L: P, L 1, 3: P, 3 1, 4: P, 4 1, 5: P, 5 1, 6: P, 6 1, L P, L 1, L−1 P, L−1 1, 1 P, 1 1, 2 P, 2 1, L−4 1, L−3 1, L−2 1, L−1 P, L−4 P, L−3 P, L−2 P, L−1 M LCD_AC_ENB_CS ACB ACB (0 to 255) (0 to 255) 11 10 LCD_HSYNC LP LCD_PCLK CP Data LCD_D[7:0] 1, 5 2, 5 P, 5 PPL 16 1, 6 (1 to 1024) HFP HSW HBP (1 to 256) (1 to 64) (1 to 256) 2, 6 P, 6 PPL 16 (1 to 2024) Line 6 Line 5 Figure 5-57. LCD Raster-Mode Passive 152 Peripheral Information and Electrical Specifications Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 6 LCD_AC_ENB_CS 8 LCD_VSYNC 10 11 LCD_HSYNC 1 2 3 LCD_PCLK (passive mode) 5 4 LCD_D[7:0] (passive mode) 1, L 2, L P, L 1, 1 2, 1 P, 1 1 2 3 LCD_PCLK (active mode) 4 LCD_D[15:0] (active mode) VBP = 0 VFP = 0 VSW = 1 1, L 2, L PPL 16 × (1 to 1024) Line L 5 P, L HFP (1 to 256 HSW (1 to 64) HBP (1 to 256) PPL 16 ×(1 to 1024) Line 1 (Passive Only) Figure 5-58. LCD Raster-Mode Control Signal Activation Copyright © 2012–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAPL137-HT 153 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 www.ti.com 7 LCD_AC_ENB_CS 9 LCD_VSYNC 10 11 LCD_HSYNC 1 3 4 LCD_PCLK (passive mode) 5 4 LCD_D[7:0] (passive mode) 1, 1 2, 1 P, 1 1, 2 2, 2 P, 2 1 2 3 LCD_PCLK (active mode) 4 LCD_D[15:0] (active mode) VBP = 0 VFP = 0 VSW = 1 5 1, 1 PPL 16 × (1 to 1024) HFP (1 to 256 HSW (1 to 64) HBP (1 to 256) Line 1 for passive 2, 1 P, 1 PPL 16 ×(1 to 1024) Line 1 for active Line 2 for passive Figure 5-59. LCD Raster-Mode Control Signal Deactivation 154 Peripheral Information and Electrical Specifications Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 5.21 Timers The timers support the following features: • Configurable as single 64-bit timer or two 32-bit timers • Period timeouts generate interrupts, DMA events or external pin events • Eight 32-bit compare registers • Compare matches generate interrupt events • Capture capability • 64-bit Watchdog capability (Timer64P1 only) Table 5-83 lists the timer registers. See the TMS320C674x/OMAP-L1x Processor Peripherals Overview Reference Guide. – Literature Number SPRUFK9 for more details. Table 5-83. Timer Registers Timer64P 0 Timer64P 1 0x01C2 0000 0x01C2 1000 REV 0x01C2 0004 0x01C2 1004 EMUMGT 0x01C2 0008 0x01C2 1008 GPINTGPEN 0x01C2 000C 0x01C2 100C GPDATGPDIR 0x01C2 0010 0x01C2 1010 TIM12 Timer Counter Register 12 0x01C2 0014 0x01C2 1014 TIM34 Timer Counter Register 34 0x01C2 0018 0x01C2 1018 PRD12 Timer Period Register 12 0x01C2 001C 0x01C2 101C PRD34 Timer Period Register 34 0x01C2 0020 0x01C2 1020 TCR 0x01C2 0024 0x01C2 1024 TGCR 0x01C2 0028 0x01C2 1028 WDTCR 0x01C2 0034 0x01C2 1034 REL12 Timer Reload Register 12 0x01C2 0038 0x01C2 1038 REL34 Timer Reload Register 34 0x01C2 003C 0x01C2 103C CAP12 Timer Capture Register 12 0x01C2 0040 0x01C2 1040 CAP34 Timer Capture Register 34 0x01C2 0044 0x01C2 1044 INTCTLSTAT 0x01C2 0060 0x01C2 1060 CMP0 Compare Register 0 0x01C2 0064 0x01C2 1064 CMP1 Compare Register 1 0x01C2 0068 0x01C2 1068 CMP2 Compare Register 2 0x01C2 006C 0x01C2 106C CMP3 Compare Register 3 0x01C2 0070 0x01C2 1070 CMP4 Compare Register 4 0x01C2 0074 0x01C2 1074 CMP5 Compare Register 5 0x01C2 0078 0x01C2 1078 CMP6 Compare Register 6 0x01C2 007C 0x01C2 107C CMP7 Compare Register 7 Copyright © 2012–2013, Texas Instruments Incorporated Acronym Register Description Revision Register Emulation Management Register GPIO Interrupt and GPIO Enable Register GPIO Data and GPIO Direction Register Timer Control Register Timer Global Control Register Watchdog Timer Control Register Timer Interrupt Control and Status Register Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAPL137-HT 155 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 5.21.1 www.ti.com Timer Electrical Data/Timing Table 5-84. Timing Requirements for Timer Input (1) (2) (3) (see Figure 5-60) NO. MIN MAX UNIT 1 tc(TIN) Cycle time, TIM_IN 2 tw(TINPH) Pulse duration, TIM_IN high 0.45C 0.55C ns 3 tw(TINPL) Pulse duration, TIM_IN low 0.45C 0.55C ns 4 tt(TIN) Transition time, TIM_IN 0.05C ns (1) (2) (3) 4P ns Parameters are characterized from -40°C to 125°C unless otherwise noted. P = OSCIN cycle time in ns. For example, when OSCIN frequency is 27 MHz, use P = 37.037 ns. C = TM64P0_IN12 cycle time in ns. For example, when TM64Px_IN12 frequency is 27 MHz, use C = 37.037 ns 1 2 4 3 4 TM64P0_IN12 Figure 5-60. Timer Timing Table 5-85. Switching Characteristics Over Recommended Operating Conditions for Timer Output (1) NO. MIN MAX (2) UNIT 5 tw(TOUTH) Pulse duration, TM64P0_OUT12 high 4P ns 6 tw(TOUTL) Pulse duration, TM64P0_OUT12 low 4P ns (1) (2) Parameters are characterized from -40°C to 125°C unless otherwise noted. P = OSCIN cycle time in ns. For example, when OSCIN frequency is 27 MHz, use P = 37.037 ns. 5 6 TM64P0_OUT12 Figure 5-61. Timer Timing 156 Peripheral Information and Electrical Specifications Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 5.22 Inter-Integrated Circuit Serial Ports (I2C0, I2C1) 5.22.1 I2C Device-Specific Information Having two I2C modules on the device simplifies system architecture, since one module may be used by the DSP to control local peripherals ICs (DACs, ADCs, etc.) while the other may be used to communicate with other controllers in a system or to implement a user interface. Figure Figure 5-62 is block diagram of the I2C Module. Each I2C port supports: • Compatible with Philips® I2C Specification Revision 2.1 (January 2000) • Fast Mode up to 400 Kbps (no fail-safe I/O buffers) • Noise Filter to Remove Noise 50 ns or less • Seven- and Ten-Bit Device Addressing Modes • Master (Transmit/Receive) and Slave (Transmit/Receive) Functionality • Events: DMA, Interrupt, or Polling • General-Purpose I/O Capability if not used as I2C Clock Prescaler I2CPSCx Control Prescaler Register Bit Clock Generator I2Cx_SCL Noise Filter I2CCOARx Own Address Register I2CSARx Slave Address Register I2CCLKHx Clock Divide High Register I2CCMDRx Mode Register I2CCLKLx Clock Divide Low Register I2CEMDRx Extended Mode Register I2CCNTx Data Count Register I2CPID1 Peripheral ID Register 1 I2CPID2 Peripheral ID Register 2 Transmit I2Cx_SDA Noise Filter I2CXSRx Transmit Shift Register I2CDXRx Transmit Buffer Interrupt/DMA Receive I2CIERx I2CDRRx Receive Buffer I2CSTRx I2CRSRx Receive Shift Register I2CSRCx I2CPFUNC Pin Function Register I2CPDOUT Interrupt Enable Register Interrupt Status Register Interrupt Source Register Peripheral Configuration Bus Interrupt DMA Requests Control I2CPDIR I2CPDIN Pin Direction Register Pin Data In Register I2CPDSET I2CPDCLR Pin Data Out Register Pin Data Set Register Pin Data Clear Register Figure 5-62. I2C Module Block Diagram Copyright © 2012–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAPL137-HT 157 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 www.ti.com 5.22.2 I2C Peripheral Registers Description(s) Table 5-86 is the list of the I2C registers. See the TMS320C674x/OMAP-L1x Processor Peripherals Overview Reference Guide. – Literature Number SPRUFK9 for more details. Table 5-86. Inter-Integrated Circuit (I2C) Registers I2C0 BYTE ADDRESS I2C1 BYTE ADDRESS Acronym Register Description 0x01C2 2000 0x01E2 8000 ICOAR I2C Own Address Register 0x01C2 2004 0x01E2 8004 ICIMR I2C Interrupt Mask Register 0x01C2 2008 0x01E2 8008 ICSTR I2C Interrupt Status Register 0x01C2 200C 0x01E2 800C ICCLKL I2C Clock Low-Time Divider Register 0x01C2 2010 0x01E2 8010 ICCLKH I2C Clock High-Time Divider Register 0x01C2 2014 0x01E2 8014 ICCNT I2C Data Count Register 0x01C2 2018 0x01E2 8018 ICDRR I2C Data Receive Register 0x01C2 201C 0x01E2 801C ICSAR I2C Slave Address Register 0x01C2 2020 0x01E2 8020 ICDXR I2C Data Transmit Register 0x01C2 2024 0x01E2 8024 ICMDR I2C Mode Register 0x01C2 2028 0x01E2 8028 ICIVR I2C Interrupt Vector Register 0x01C2 202C 0x01E2 802C ICEMDR I2C Extended Mode Register 0x01C2 2030 0x01E2 8030 ICPSC I2C Prescaler Register 0x01C2 2034 0x01E2 8034 REVID1 I2C Revision Identification Register 1 0x01C2 2038 0x01E2 8038 REVID2 I2C Revision Identification Register 2 0x01C2 2048 0x01E2 8048 ICPFUNC I2C Pin Function Register 0x01C2 204C 0x01E2 804C ICPDIR I2C Pin Direction Register 0x01C2 2050 0x01E2 8050 ICPDIN I2C Pin Data In Register 0x01C2 2054 0x01E2 8054 ICPDOUT I2C Pin Data Out Register 0x01C2 2058 0x01E2 8058 ICPDSET I2C Pin Data Set Register 0x01C2 205C 0x01E2 805C ICPDCLR I2C Pin Data Clear Register 5.22.3 I2C Electrical Data/Timing 5.22.3.1 Inter-Integrated Circuit (I2C) Timing Table 5-87 and Table 5-88 assume testing over recommended operating conditions (see Figure 5-63 and Figure 5-64). Table 5-87. I2C Input Timing Requirements (1) NO. (1) 158 MIN 1 tc(SCL) Cycle time, I2Cx_SCL 2 tsu(SCLH-SDAL) Setup time, I2Cx_SCL high before I2Cx_SDA low 3 th(SCLL-SDAL) Hold time, I2Cx_SCL low after I2Cx_SDA low 4 tw(SCLL) Pulse duration, I2Cx_SCL low 5 tw(SCLH) Pulse duration, I2Cx_SCL high 6 tsu(SDA-SCLH) Setup time, I2Cx_SDA before I2Cx_SCL high Standard Mode 10 Fast Mode 2.5 Standard Mode 4.7 Fast Mode 0.6 Standard Mode 4 Fast Mode 0.6 Standard Mode 4.7 Fast Mode 1.3 Standard Mode 4 Fast Mode 0.6 Standard Mode 250 Fast Mode 100 MAX UNIT μs μs μs μs μs ns Parameters are characterized from -40°C to 125°C unless otherwise noted. Peripheral Information and Electrical Specifications Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 Table 5-87. I2C Input Timing Requirements(1) (continued) NO. MIN 7 th(SDA-SCLL) Hold time, I2Cx_SDA after I2Cx_SCL low 8 tw(SDAH) Pulse duration, I2Cx_SDA high 9 tr(SDA) Rise time, I2Cx_SDA 10 tr(SCL) Rise time, I2Cx_SCL 11 tf(SDA) Fall time, I2Cx_SDA 12 tf(SCL) Fall time, I2Cx_SCL 13 tsu(SCLH-SDAH) Setup time, I2Cx_SCL high before I2Cx_SDA high 14 tw(SP) Pulse duration, spike (must be suppressed) 15 Cb Capacitive load for each bus line Standard Mode 0 Fast Mode 0 Standard Mode 4.7 Fast Mode 1.3 Standard Mode Fast Mode 20 + 0.1Cb Standard Mode Fast Mode Standard Mode 300 300 300 20 + 0.1Cb 300 4 Fast Mode 0.6 Standard Mode N/A Fast Mode 300 300 20 + 0.1Cb 0 UNIT μs μs 1000 Standard Mode Fast Mode 0.9 1000 20 + 0.1Cb Standard Mode Fast Mode MAX ns ns ns ns μs 50 Standard Mode 400 Fast Mode 400 ns pF Table 5-88. I2C Switching Characteristics (1) (2) NO. (1) (2) PARAMETER 16 tc(SCL) Cycle time, I2Cx_SCL 17 tsu(SCLH-SDAL) Setup time, I2Cx_SCL high before I2Cx_SDA low 18 th(SDAL-SCLL) Hold time, I2Cx_SCL low after I2Cx_SDA low 19 tw(SCLL) Pulse duration, I2Cx_SCL low 20 tw(SCLH) Pulse duration, I2Cx_SCL high 21 tsu(SDAV-SCLH) Setup time, I2Cx_SDA valid before I2Cx_SCL high 22 th(SCLL-SDAV) Hold time, I2Cx_SDA valid after I2Cx_SCL low 23 tw(SDAH) Pulse duration, I2Cx_SDA high 28 tsu(SCLH-SDAH) Setup time, I2Cx_SCL high before I2Cx_SDA high MIN Standard Mode 10 Fast Mode 2.5 Standard Mode 4.7 Fast Mode 0.6 Standard Mode 0.6 Standard Mode 4.7 Fast Mode 1.3 0.6 Standard Mode 250 Fast Mode 100 Standard Mode 0 Fast Mode 0 Standard Mode 4.7 Fast Mode 1.3 Standard Mode Fast Mode μs μs μs 4 Fast Mode UNIT μs 4 Fast Mode Standard Mode MAX μs ns 0.9 4 0.6 μs μs μs Parameters are characterized from -40°C to 125°C unless otherwise noted. I2C must be configured correctly to meet the timings in Table 5-88. Copyright © 2012–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAPL137-HT 159 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 www.ti.com 11 9 I2Cx_SDA 6 8 14 4 13 5 10 I2Cx_SCL 1 12 3 2 7 3 Stop Start Repeated Start Stop Figure 5-63. I2C Receive Timings 26 24 I2Cx_SDA 21 23 19 28 20 25 I2Cx_SCL 16 27 18 17 22 18 Stop Start Repeated Start Stop Figure 5-64. I2C Transmit Timings 160 Peripheral Information and Electrical Specifications Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com 5.23 SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 Universal Asynchronous Receiver/Transmitter (UART) The device has 3 UART peripherals. Each UART has the following features: • 16-byte storage space for both the transmitter and receiver FIFOs • 1, 4, 8, or 14 byte selectable receiver FIFO trigger level for autoflow control and DMA • DMA signaling capability for both received and transmitted data • Programmable auto-rts and auto-cts for autoflow control • Programmable Baud Rate up to 3MBaud • Programmable Oversampling Options of x13 and x16 • Frequency pre-scale values from 1 to 65,535 to generate appropriate baud rates • Prioritized interrupts • Programmable serial data formats – 5, 6, 7, or 8-bit characters – Even, odd, or no parity bit generation and detection – 1, 1.5, or 2 stop bit generation • False start bit detection • Line break generation and detection • Internal diagnostic capabilities – Loopback controls for communications link fault isolation – Break, parity, overrun, and framing error simulation • Modem control functions (CTS, RTS) on UART0 only. The UART registers are listed in Section 5.23.1 5.23.1 UART Peripheral Registers Description(s) Table 5-89 is the list of UART registers. See the TMS320C674x/OMAP-L1x Processor Peripherals Overview Reference Guide. – Literature Number SPRUFK9 for more details. Table 5-89. UART Registers UART0 BYTE ADDRESS UART1 BYTE ADDRESS UART2 BYTE ADDRESS REGISTER NAME Register Description 0x01C4 2000 0x01D0 C000 0x01C4 2000 0x01D0 C000 0x01D0 D000 RBR Receiver Buffer Register (read only) 0x01D0 D000 THR Transmitter Holding Register (write only) 0x01C4 2004 0x01C4 2008 0x01D0 C004 0x01D0 D004 IER Interrupt Enable Register 0x01D0 C008 0x01D0 D008 IIR Interrupt Identification Register (read only) 0x01C4 2008 0x01D0 C008 0x01D0 D008 FCR FIFO Control Register (write only) 0x01C4 200C 0x01D0 C00C 0x01D0 D00C LCR Line Control Register 0x01C4 2010 0x01D0 C010 0x01D0 D010 MCR Modem Control Register 0x01C4 2014 0x01D0 C014 0x01D0 D014 LSR Line Status Register 0x01C4 2018 0x01D0 C018 0x01D0 D018 MSR Modem Status Register 0x01C4 201C 0x01D0 C01C 0x01D0 D01C SCR Scratchpad Register 0x01C4 2020 0x01D0 C020 0x01D0 D020 DLL Divisor LSB Latch 0x01C4 2024 0x01D0 C024 0x01D0 D024 DLH Divisor MSB Latch 0x01C4 2028 0x01D0 C028 0x01D0 D028 REVID1 Revision Identification Register 1 0x01C4 2030 0x01D0 C030 0x01D0 D030 PWREMU_MGMT Power and Emulation Management Register 0x01C4 2034 0x01D0 C034 0x01D0 D034 MDR Mode Definition Register Copyright © 2012–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAPL137-HT 161 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 www.ti.com 5.23.2 UART Electrical Data/Timing Table 5-90. Timing Requirements for UARTx Receive (1) (2) (see Figure 5-65) NO. (1) (2) MIN MAX UNIT 4 tw(URXDB) Pulse duration, receive data bit (RXDn) 0.96U 1.05U ns 5 tw(URXSB) Pulse duration, receive start bit 0.96U 1.05U ns Parameters are characterized from -40°C to 125°C unless otherwise noted. U = UART baud time = 1/programmed baud rate. Table 5-91. Switching Characteristics Over Recommended Operating Conditions for UARTx Transmit (1) (2) (see Figure 5-65) NO. (1) (2) PARAMETER MIN MAX UNIT 1 f(baud) Maximum programmable baud rate 3 MBaud 2 tw(UTXDB) Pulse duration, transmit data bit (TXDn) U-2 U+2 ns 3 tw(UTXSB) Pulse duration, transmit start bit U-2 U+2 ns Parameters are characterized from -40°C to 125°C unless otherwise noted. U = UART baud time = 1/programmed baud rate. 3 2 UART_TXDn Start Bit Data Bits 5 4 UART_RXDn Start Bit Data Bits Figure 5-65. UART Transmit/Receive Timing 162 Peripheral Information and Electrical Specifications Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 5.24 USB1 Host Controller (USB1.1 OHCI) All OMAPL137 USB interfaces are compliant with Universal Serial Bus Specifications, Revision 1.1. Table 5-92 is the list of USB Host Controller registers. See the TMS320C674x/OMAP-L1x Processor Peripherals Overview Reference Guide. – Literature Number SPRUFK9 for more details. Table 5-92. USB Host Controller (USB1) Registers USB BYTE ADDRESS (1) (2) (3) REGISTER NAME Register Description 0x01E2 5000 HCREVISION OHCI Revision Number Register 0x01E2 5004 HCCONTROL HC Operating Mode Register 0x01E2 5008 HCCOMMANDSTATUS HC Command and Status Register 0x01E2 500C HCINTERRUPTSTATUS HC Interrupt and Status Register 0x01E2 5010 HCINTERRUPTENABLE HC Interrupt Enable Register 0x01E2 5014 HCINTERRUPTDISABLE HC Interrupt Disable Register 0x01E2 5018 HCHCCA HC HCAA Address Register (1) 0x01E2 501C HCPERIODCURRENTED HC Current Periodic Register (1) 0x01E2 5020 HCCONTROLHEADED HC Head Control Register (1) 0x01E2 5024 HCCONTROLCURRENTED HC Current Control Register (1) 0x01E2 5028 HCBULKHEADED HC Head Bulk Register (1) 0x01E2 502C HCBULKCURRENTED HC Current Bulk Register (1) 0x01E2 5030 HCDONEHEAD HC Head Done Register (1) 0x01E2 5034 HCFMINTERVAL HC Frame Interval Register 0x01E2 5038 HCFMREMAINING HC Frame Remaining Register 0x01E2 503C HCFMNUMBER HC Frame Number Register 0x01E2 5040 HCPERIODICSTART HC Periodic Start Register 0x01E2 5044 HCLSTHRESHOLD HC Low-Speed Threshold Register 0x01E2 5048 HCRHDESCRIPTORA HC Root Hub A Register 0x01E2 504C HCRHDESCRIPTORB HC Root Hub B Register 0x01E2 5050 HCRHSTATUS HC Root Hub Status Register 0x01E2 5054 HCRHPORTSTATUS1 HC Port 1 Status and Control Register (2) 0x01E2 5058 HCRHPORTSTATUS2 HC Port 2 Status and Control Register (3) Restrictions apply to the physical addresses used in these registers. Connected to the integrated USB1.1 phy pins (USB1_DM, USB1_DP). Although the controller implements two ports, the second port cannot be used. Table 5-93. Switching Characteristics Over Recommended Operating Conditions for USB1 (1) NO. U1 (1) (2) (3) (4) (5) LOW SPEED PARAMETER tr Rise time, USB.DP and USB.DM signals (2) (2) FULL SPEED UNIT MIN MAX MAX MAX 75 (2) 300 (2) 4 (2) 20 (2) ns (2) (2) (2) 20 (2) ns U2 tf Fall time, USB.DP and USB.DM signals U3 tRFM Rise/Fall time matching (3) 80 (3) 120 (3) 90 (3) 110 (3) % U4 VCRS Output signal cross-over voltage (2) 1.3 (2) 2 (2) 1.3 (2) 2 (2) V U5 tj Differential propagation jitter U6 fop Operating frequency (5) (4) 75 -25 (4) 300 25 (4) 1.5 4 -2 (4) 2 (4) 12 ns MHz Parameters are characterized from -40°C to 125°C unless otherwise noted. Low Speed: CL = 200 pF. High Speed: CL = 50pF tRFM =( tr/tf ) x 100 t jr = t px(1) - tpx(0) fop = 1/tper Copyright © 2012–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAPL137-HT 163 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 www.ti.com 5.25 USB0 OTG (USB2.0 OTG) The USB2.0 peripheral supports the following features: • USB 2.0 peripheral at speeds high speed and full speed (FS: 12 Mb/s) • USB 2.0 host at speeds FS, and low speed (LS: 1.5 Mb/s) • All transfer modes (control, bulk, interrupt, and isochronous) • 4 Transmit (TX) and 4 Receive (RX) endpoints in addition to endpoint 0 • FIFO RAM – 4K endpoint – Programmable size • Integrated USB 2.0 High Speed PHY • Connects to a standard Charge Pump for VBUS 5 V generation • RNDIS mode for accelerating RNDIS type protocols using short packet termination over USB Table 5-94 is the list of USB OTG registers. See the TMS320C674x/OMAP-L1x Processor Peripherals Overview Reference Guide. – Literature Number SPRUFK9 for more details. Table 5-94. Universal Serial Bus OTG (USB0) Registers BYTE ADDRESS Acronym 0x01E0 0000 Revision Register 0x01E0 0004 CTRLR 0x01E0 0008 STATR Control Register Status Register 0x01E0 000C Emulation Register 0x01E0 0010 Mode Register 0x01E0 0014 164 Register Description AUTOREQ Autorequest Register 0x01E0 0018 SRP Fix Time Register 0x01E0 001C RX Teardown Register 0x01E0 0020 INTSRCR USB Interrupt Source Register 0x01E0 0024 INTSETR USB Interrupt Source Set Register 0x01E0 0028 INTCLRR USB Interrupt Source Clear Register 0x01E0 002C INTMSKR USB Interrupt Mask Register 0x01E0 0030 INTMSKSETR USB Interrupt Mask Set Register 0x01E0 0034 INTMSKCLRR USB Interrupt Mask Clear Register 0x01E0 0038 INTMASKEDR USB Interrupt Source Masked Register 0x01E0 003C EOIR USB End of Interrupt Register 0x01E0 0040 INTVECTR USB Interrupt Vector Register 0x01E0 0050 RNDISEP1 Generic RNDIS Size EP1 0x01E0 0054 RNDISEP2 Generic RNDIS Size EP2 0x01E0 0058 RNDISEP3 Generic RNDIS Size EP3 0x01E0 005C RNDISEP4 Generic RNDIS Size EP4 0x01E0 0400 FADDR Function Address Register 0x01E0 0401 POWER Power Management Register 0x01E0 0402 INTRTX Interrupt Register for Endpoint 0 plus Transmit Endpoints 1 to 4 0x01E0 0404 INTRRX Interrupt Register for Receive Endpoints 1 to 4 0x01E0 0406 INTRTXE Interrupt enable register for INTRTX 0x01E0 0408 INTRRXE Interrupt Enable Register for INTRRX 0x01E0 040A INTRUSB Interrupt Register for Common USB Interrupts Interrupt Enable Register for INTRUSB 0x01E0 040B INTRUSBE 0x01E0 040C FRAME Frame Number Register 0x01E0 040E INDEX Index Register for Selecting the Endpoint Status and Control Registers Peripheral Information and Electrical Specifications Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 Table 5-94. Universal Serial Bus OTG (USB0) Registers (continued) BYTE ADDRESS Acronym Register Description 0x01E0 040F TESTMODE Register to Enable the USB 2.0 Test Modes Indexed Registers These registers operate on the endpoint selected by the INDEX register 0x01E0 0410 TXMAXP Maximum Packet Size for Peripheral/Host Transmit Endpoint (Index register set to select Endpoints 1-4 only) 0x01E0 0412 PERI_CSR0 Control Status Register for Endpoint 0 in Peripheral Mode. (Index register set to select Endpoint 0) HOST_CSR0 Control Status Register for Endpoint 0 in Host Mode. (Index register set to select Endpoint 0) PERI_TXCSR Control Status Register for Peripheral Transmit Endpoint. (Index register set to select Endpoints 1-4) HOST_TXCSR Control Status Register for Host Transmit Endpoint. (Index register set to select Endpoints 1-4) 0x01E0 0414 RXMAXP Maximum Packet Size for Peripheral/Host Receive Endpoint (Index register set to select Endpoints 1-4 only) 0x01E0 0416 PERI_RXCSR Control Status Register for Peripheral Receive Endpoint. (Index register set to select Endpoints 1-4) HOST_RXCSR Control Status Register for Host Receive Endpoint. (Index register set to select Endpoints 1-4) COUNT0 Number of Received Bytes in Endpoint 0 FIFO. (Index register set to select Endpoint 0) RXCOUNT Number of Bytes in Host Receive Endpoint FIFO. (Index register set to select Endpoints 1- 4) 0x01E0 0418 0x01E0 041A HOST_TYPE0 Defines the speed of Endpoint 0 0x01E0 041B HOST_TXTYPE Sets the operating speed, transaction protocol and peripheral endpoint number for the host Transmit endpoint. (Index register set to select Endpoints 1-4 only) HOST_NAKLIMIT0 Sets the NAK response timeout on Endpoint 0. (Index register set to select Endpoint 0) HOST_TXINTERVAL Sets the polling interval for Interrupt/ISOC transactions or the NAK response timeout on Bulk transactions for host Transmit endpoint. (Index register set to select Endpoints 1-4 only) 0x01E0 041C HOST_RXTYPE Sets the operating speed, transaction protocol and peripheral endpoint number for the host Receive endpoint. (Index register set to select Endpoints 1-4 only) 0x01E0 041D HOST_RXINTERVAL Sets the polling interval for Interrupt/ISOC transactions or the NAK response timeout on Bulk transactions for host Receive endpoint. (Index register set to select Endpoints 1-4 only) 0x01E0 041F CONFIGDATA Returns details of core configuration. (Index register set to select Endpoint 0) FIFO 0x01E0 0420 FIFO0 Transmit and Receive FIFO Register for Endpoint 0 0x01E0 0424 FIFO1 Transmit and Receive FIFO Register for Endpoint 1 0x01E0 0428 FIFO2 Transmit and Receive FIFO Register for Endpoint 2 0x01E0 042C FIFO3 Transmit and Receive FIFO Register for Endpoint 3 0x01E0 0430 FIFO4 Transmit and Receive FIFO Register for Endpoint 4 OTG Device Control 0x01E0 0460 DEVCTL Device Control Register Dynamic FIFO Control 0x01E0 0462 TXFIFOSZ Transmit Endpoint FIFO Size (Index register set to select Endpoints 1-4 only) 0x01E0 0463 RXFIFOSZ Receive Endpoint FIFO Size (Index register set to select Endpoints 1-4 only) 0x01E0 0464 TXFIFOADDR Transmit Endpoint FIFO Address (Index register set to select Endpoints 1-4 only) Copyright © 2012–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAPL137-HT 165 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 www.ti.com Table 5-94. Universal Serial Bus OTG (USB0) Registers (continued) BYTE ADDRESS Acronym Register Description 0x01E0 0466 RXFIFOADDR Receive Endpoint FIFO Address (Index register set to select Endpoints 1-4 only) Target Endpoint 0 Control Registers, Valid Only in Host Mode 0x01E0 0480 TXFUNCADDR Address of the target function that has to be accessed through the associated Transmit Endpoint. 0x01E0 0482 TXHUBADDR Address of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 0x01E0 0483 TXHUBPORT Port of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 0x01E0 0484 RXFUNCADDR Address of the target function that has to be accessed through the associated Receive Endpoint. 0x01E0 0486 RXHUBADDR Address of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 0x01E0 0487 RXHUBPORT Port of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Target Endpoint 1 Control Registers, Valid Only in Host Mode 0x01E0 0488 TXFUNCADDR Address of the target function that has to be accessed through the associated Transmit Endpoint. 0x01E0 048A TXHUBADDR Address of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 0x01E0 048B TXHUBPORT Port of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 0x01E0 048C RXFUNCADDR Address of the target function that has to be accessed through the associated Receive Endpoint. 0x01E0 048E RXHUBADDR Address of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 0x01E0 048F RXHUBPORT Port of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Target Endpoint 2 Control Registers, Valid Only in Host Mode 0x01E0 0490 TXFUNCADDR Address of the target function that has to be accessed through the associated Transmit Endpoint. 0x01E0 0492 TXHUBADDR Address of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 0x01E0 0493 TXHUBPORT Port of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 0x01E0 0494 RXFUNCADDR Address of the target function that has to be accessed through the associated Receive Endpoint. 0x01E0 0496 RXHUBADDR Address of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 0x01E0 0497 RXHUBPORT Port of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Target Endpoint 3 Control Registers, Valid Only in Host Mode 0x01E0 0498 166 TXFUNCADDR Address of the target function that has to be accessed through the associated Transmit Endpoint. Peripheral Information and Electrical Specifications Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 Table 5-94. Universal Serial Bus OTG (USB0) Registers (continued) BYTE ADDRESS Acronym Register Description 0x01E0 049A TXHUBADDR Address of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 0x01E0 049B TXHUBPORT Port of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 0x01E0 049C RXFUNCADDR Address of the target function that has to be accessed through the associated Receive Endpoint. 0x01E0 049E RXHUBADDR Address of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 0x01E0 049F RXHUBPORT Port of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. Target Endpoint 4 Control Registers, Valid Only in Host Mode 0x01E0 04A0 TXFUNCADDR Address of the target function that has to be accessed through the associated Transmit Endpoint. 0x01E0 04A2 TXHUBADDR Address of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 0x01E0 04A3 TXHUBPORT Port of the hub that has to be accessed through the associated Transmit Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 0x01E0 04A4 RXFUNCADDR Address of the target function that has to be accessed through the associated Receive Endpoint. 0x01E0 04A6 RXHUBADDR Address of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 0x01E0 04A7 RXHUBPORT Port of the hub that has to be accessed through the associated Receive Endpoint. This is used only when full speed or low speed device is connected via a USB2.0 high-speed hub. 0x01E0 0502 PERI_CSR0 Control Status Register for Endpoint 0 in Peripheral Mode HOST_CSR0 Control Status Register for Endpoint 0 in Host Mode Number of Received Bytes in Endpoint 0 FIFO Control and Status Register for Endpoint 0 0x01E0 0508 COUNT0 0x01E0 050A HOST_TYPE0 Defines the Speed of Endpoint 0 0x01E0 050B HOST_NAKLIMIT0 Sets the NAK Response Timeout on Endpoint 0 0x01E0 050F CONFIGDATA Returns details of core configuration. Control and Status Register for Endpoint 1 0x01E0 0510 TXMAXP Maximum Packet Size for Peripheral/Host Transmit Endpoint 0x01E0 0512 PERI_TXCSR Control Status Register for Peripheral Transmit Endpoint (peripheral mode) HOST_TXCSR Control Status Register for Host Transmit Endpoint (host mode) 0x01E0 0514 RXMAXP 0x01E0 0516 PERI_RXCSR Control Status Register for Peripheral Receive Endpoint (peripheral mode) HOST_RXCSR Control Status Register for Host Receive Endpoint (host mode) 0x01E0 0518 RXCOUNT 0x01E0 051A HOST_TXTYPE 0x01E0 051B HOST_TXINTERVAL Copyright © 2012–2013, Texas Instruments Incorporated Maximum Packet Size for Peripheral/Host Receive Endpoint Number of Bytes in Host Receive endpoint FIFO Sets the operating speed, transaction protocol and peripheral endpoint number for the host Transmit endpoint. Sets the polling interval for Interrupt/ISOC transactions or the NAK response timeout on Bulk transactions for host Transmit endpoint. Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAPL137-HT 167 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 www.ti.com Table 5-94. Universal Serial Bus OTG (USB0) Registers (continued) BYTE ADDRESS Acronym 0x01E0 051C HOST_RXTYPE Register Description 0x01E0 051D HOST_RXINTERVAL 0x01E0 0520 TXMAXP 0x01E0 0522 PERI_TXCSR Control Status Register for Peripheral Transmit Endpoint (peripheral mode) HOST_TXCSR Control Status Register for Host Transmit Endpoint (host mode) Sets the operating speed, transaction protocol and peripheral endpoint number for the host Receive endpoint. Sets the polling interval for Interrupt/ISOC transactions or the NAK response timeout on Bulk transactions for host Receive endpoint. Control and Status Register for Endpoint 2 Maximum Packet Size for Peripheral/Host Transmit Endpoint 0x01E0 0524 RXMAXP Maximum Packet Size for Peripheral/Host Receive Endpoint 0x01E0 0526 PERI_RXCSR Control Status Register for Peripheral Receive Endpoint (peripheral mode) HOST_RXCSR Control Status Register for Host Receive Endpoint (host mode) 0x01E0 0528 RXCOUNT 0x01E0 052A HOST_TXTYPE Number of Bytes in Host Receive endpoint FIFO 0x01E0 052B HOST_TXINTERVAL 0x01E0 052C HOST_RXTYPE 0x01E0 052D HOST_RXINTERVAL 0x01E0 0530 TXMAXP 0x01E0 0532 PERI_TXCSR Control Status Register for Peripheral Transmit Endpoint (peripheral mode) HOST_TXCSR Control Status Register for Host Transmit Endpoint (host mode) Sets the operating speed, transaction protocol and peripheral endpoint number for the host Transmit endpoint. Sets the polling interval for Interrupt/ISOC transactions or the NAK response timeout on Bulk transactions for host Transmit endpoint. Sets the operating speed, transaction protocol and peripheral endpoint number for the host Receive endpoint. Sets the polling interval for Interrupt/ISOC transactions or the NAK response timeout on Bulk transactions for host Receive endpoint. Control and Status Register for Endpoint 3 Maximum Packet Size for Peripheral/Host Transmit Endpoint 0x01E0 0534 RXMAXP 0x01E0 0536 PERI_RXCSR Maximum Packet Size for Peripheral/Host Receive Endpoint Control Status Register for Peripheral Receive Endpoint (peripheral mode) HOST_RXCSR Control Status Register for Host Receive Endpoint (host mode) 0x01E0 0538 RXCOUNT Number of Bytes in Host Receive endpoint FIFO 0x01E0 053A HOST_TXTYPE 0x01E0 053B HOST_TXINTERVAL 0x01E0 053C HOST_RXTYPE 0x01E0 053D HOST_RXINTERVAL 0x01E0 0540 TXMAXP 0x01E0 0542 PERI_TXCSR Control Status Register for Peripheral Transmit Endpoint (peripheral mode) HOST_TXCSR Control Status Register for Host Transmit Endpoint (host mode) Sets the operating speed, transaction protocol and peripheral endpoint number for the host Transmit endpoint. Sets the polling interval for Interrupt/ISOC transactions or the NAK response timeout on Bulk transactions for host Transmit endpoint. Sets the operating speed, transaction protocol and peripheral endpoint number for the host Receive endpoint. Sets the polling interval for Interrupt/ISOC transactions or the NAK response timeout on Bulk transactions for host Receive endpoint. Control and Status Register for Endpoint 4 0x01E0 0544 168 RXMAXP Maximum Packet Size for Peripheral/Host Transmit Endpoint Maximum Packet Size for Peripheral/Host Receive Endpoint Peripheral Information and Electrical Specifications Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 Table 5-94. Universal Serial Bus OTG (USB0) Registers (continued) BYTE ADDRESS Acronym 0x01E0 0546 PERI_RXCSR Control Status Register for Peripheral Receive Endpoint (peripheral mode) Register Description HOST_RXCSR Control Status Register for Host Receive Endpoint (host mode) 0x01E0 0548 RXCOUNT 0x01E0 054A HOST_TXTYPE Number of Bytes in Host Receive endpoint FIFO 0x01E0 054B HOST_TXINTERVAL 0x01E0 054C HOST_RXTYPE 0x01E0 054D HOST_RXINTERVAL 0x01E0 1000 DMAREV Sets the operating speed, transaction protocol and peripheral endpoint number for the host Transmit endpoint. Sets the polling interval for Interrupt/ISOC transactions or the NAK response timeout on Bulk transactions for host Transmit endpoint. Sets the operating speed, transaction protocol and peripheral endpoint number for the host Receive endpoint. Sets the polling interval for Interrupt/ISOC transactions or the NAK response timeout on Bulk transactions for host Receive endpoint. DMA Registers DMA Revision Register 0x01E0 1004 TDFDQ 0x01E0 1008 DMAEMU DMA Teardown Free Descriptor Queue Control Register DMA Emulation Control Register 0x01E0 1800 TGCR[0] Transmit Channel 0 Global Configuration Register Receive Channel 0 Global Configuration Register 0x01E0 1808 RXGCR[0] 0x01E0 180C RXHPCRA[0] Receive Channel 0 Host Packet Configuration Register A 0x01E0 1810 RXHPCRB[0] Receive Channel 0 Host Packet Configuration Register B 0x01E0 1820 TGCR[1] Transmit Channel 1 Global Configuration Register Receive Channel 1 Global Configuration Register 0x01E0 1828 RXGCR[1] 0x01E0 182C RXHPCRA[1] Receive Channel 1 Host Packet Configuration Register A 0x01E0 1830 RXHPCRB[1] Receive Channel 1 Host Packet Configuration Register B 0x01E0 1840 TGCR[2] Transmit Channel 2 Global Configuration Register 0x01E0 1848 RXGCR[2] Receive Channel 2 Global Configuration Register 0x01E0 184C RXHPCRA[2] Receive Channel 2 Host Packet Configuration Register A 0x01E0 1850 RXHPCRB[2] Receive Channel 2 Host Packet Configuration Register B 0x01E0 1860 TGCR[3] Transmit Channel 3 Global Configuration Register 0x01E0 1868 RXGCR[3] Receive Channel 3 Global Configuration Register 0x01E0 186C RXHPCRA[3] Receive Channel 3 Host Packet Configuration Register A Receive Channel 3 Host Packet Configuration Register B 0x01E0 1870 RXHPCRB[3] 0x01E0 2C00 DMA_SCHED_CTRL 0x01E0 2D00 ENTRY[0] DMA Scheduler Table Word 0 0x01E0 2D04 ENTRY[1] DMA Scheduler Table Word 1 ... ... 0x01E0 2DFC ENTRY[63] 0x01E0 4000 QMGRREV Queue Manager Revision Register 0x01E0 4008 DIVERSION Queue Diversion Register 0x01E0 4020 FDBSC0 Free Descriptor/Buffer Starvation Count Register 0 0x01E0 4024 FDBSC1 Free Descriptor/Buffer Starvation Count Register 1 0x01E0 4028 FDBSC2 Free Descriptor/Buffer Starvation Count Register 2 0x01E0 402C FDBSC3 Free Descriptor/Buffer Starvation Count Register 3 0x01E0 4080 LRAM0BASE Linking RAM Region 0 Base Address Register 0x01E0 4084 LRAM0SIZE Linking RAM Region 0 Size Register 0x01E0 4088 LRAM1BASE Linking RAM Region 1 Base Address Register 0x01E0 4090 PEND0 DMA Scheduler Control Register ... DMA Scheduler Table Word 63 Queue Manager Registers Copyright © 2012–2013, Texas Instruments Incorporated Queue Pending Register 0 Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAPL137-HT 169 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 www.ti.com Table 5-94. Universal Serial Bus OTG (USB0) Registers (continued) BYTE ADDRESS Acronym 0x01E0 4094 PEND1 Register Description 0x01E0 5000 QMEMRBASE[0] Memory Region 0 Base Address Register 0x01E0 5004 QMEMRCTRL[0] Memory Region 0 Control Register 0x01E0 5010 QMEMRBASE[1] Memory Region 1 Base Address Register 0x01E0 5014 QMEMRCTRL[1] Memory Region 1 Control Register ... ... 0x01E0 5070 QMEMRBASE[7] Memory Region 7 Base Address Register 0x01E0 5074 QMEMRCTRL[7] Memory Region 7 Control Register 0x01E0 6000 QCTRL_CTRLA[0] Queue Manager Queue 0 Control Register A 0x01E0 6004 QCTRL_CTRLB[0] Queue Manager Queue 0 Control Register B 0x01E0 6008 QCTRL_CTRLC[0] Queue Manager Queue 0 Control Register C 0x01E0 600C QCTRL_CTRLD[0] Queue Manager Queue 0 Control Register D 0x01E0 6010 QCTRL_CTRLA[1] Queue Manager Queue 1 Control Register A 0x01E0 6014 QCTRL_CTRLB[1] Queue Manager Queue 1 Control Register B Queue Pending Register 1 ... 0x01E0 6018 QCTRL_CTRLC[1] Queue Manager Queue 1 Control Register C 0x01E0 601C QCTRL_CTRLD[1] Queue Manager Queue 1 Control Register D ... ... 0x01E0 63F0 QCTRL_CTRLA[63] Queue Manager Queue 63 Status Register A 0x01E0 63F4 QCTRL_CTRLB[63] Queue Manager Queue 63 Status Register B 0x01E0 63F8 QCTRL_CTRLC[63] Queue Manager Queue 63 Status Register C 0x01E0 63FC QCTRL_CTRLD[63] Queue Manager Queue 63 Status Register D 0x01E0 6800 QCTRL_STATA[0] Queue Manager Queue 0 Status Register A 0x01E0 6804 QCTRL_STATB[0] Queue Manager Queue 0 Status Register B 0x01E0 6808 QCTRL_STATC[0] Queue Manager Queue 0 Status Register C 0x01E0 6810 QCTRL_STATA[1] Queue Manager Queue 1 Status Register A 0x01E0 6814 QCTRL_STATB[1] Queue Manager Queue 1 Status Register B 0x01E0 6818 QCTRL_STATC[1] Queue Manager Queue 1 Status Register C ... ... ... 0x01E0 6BF0 QCTRL_STATA[63] ... Queue Manager Queue 63 Status Register A 0x01E0 6BF4 QCTRL_STATB[63] Queue Manager Queue 63 Status Register B 0x01E0 6BF8 QCTRL_STATC[63] Queue Manager Queue 63 Status Register C 5.25.1 USB0 Electrical Data/Timing Table 5-95. Switching Characteristics Over Recommended Operating Conditions for USB0 (1) (see Figure 5-66) NO. 1 LOW SPEED 1.5 Mbps PARAMETER tr(D) Rise time, USB0_DP and USB0_DM signals (2) (2) FULL SPEED 12 Mbps HIGH SPEED 480 Mbps MIN MAX MIN MAX MIN 75 300 4 20 0.5 UNIT MAX ns 2 tf(D) Fall time, USB0_DP and USB0_DM signals 75 300 4 20 0.5 3 trfM Rise/Fall time, matching (3) 80 120 90 111 – – 4 VCRS Output signal cross-over voltage (2) 1.3 2 1.3 2 – – 5 (1) (2) (3) (4) 170 tjr(source)NT Source (Host) Driver jitter, next transition 2 2 ns % V (4) ns Parameters are characterized from -40°C to 125°C unless otherwise noted. Low Speed: CL = 200 pF, Full Speed: CL = 50 pF, High Speed: CL = 50 pF tRFM = (tr/tf) x 100. [Excluding the first transaction from the Idle state.] For more detailed information, see the Universal Serial Bus Specification Revision 2.0, Chapter 7. Electrical. Peripheral Information and Electrical Specifications Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 Table 5-95. Switching Characteristics Over Recommended Operating Conditions for USB0(1) (see Figure 5-66) (continued) NO. LOW SPEED 1.5 Mbps PARAMETER MIN tjr(FUNC)NT 6 Function Driver jitter, next transition tjr(source)PT Source (Host) Driver jitter, paired transition tjr(FUNC)PT Function Driver jitter, paired transition 7 tw(EOPT) Pulse duration, EOP transmitter 8 tw(EOPR) Pulse duration, EOP receiver 9 t(DRATE) Data Rate 10 ZDRV Driver Output Resistance 11 ZINP Receiver Input Impedance (5) (5) 1250 FULL SPEED 12 Mbps MAX MIN MAX MAX 2 (4) ns 1 1 (4) ns 10 1 (4) ns – ns 1500 160 175 82 1.5 – MIN UNIT 25 670 100k HIGH SPEED 480 Mbps – – – 12 40.5 100k 49.5 ns 480 Mb/s 40.5 49.5 Ω - - Ω tjr = tpx(1) - tpx(0) USB0_DM VCRS USB0_DP tper - tjr 90% VOH 10% VOL tr tf Figure 5-66. USB0 Integrated Transceiver Interface Timing Copyright © 2012–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAPL137-HT 171 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 www.ti.com 5.26 Universal Host-Port Interface (UHPI) 5.26.1 HPI Device-Specific Information The device includes a user-configurable 16-bit Host-port interface (HPI16). See the TMS320C674x/OMAP-L1x Processor Peripherals Overview Reference Guide. – Literature Number SPRUFK9 for more details. 5.26.2 HPI Peripheral Register Description(s) Table 5-96. HPI Control Registers HEX ADDRESS RANGE ACRONYM 0x01E1 0000 PID 0x01E1 0004 PWREMU_MGMT REGISTER NAME Peripheral Identification Register HPI power and emulation management register 0x01E1 0008 - 0x01E1 000C GPIO_EN 0x01E1 0010 GPIO_DIR1 General Purpose IO Direction Register 1 0x01E1 0014 GPIO_DAT1 General Purpose IO Data Register 1 0x01E1 0018 GPIO_DIR2 General Purpose IO Direction Register 2 0x01E1 001C GPIO_DAT2 General Purpose IO Data Register 2 0x01E1 0020 GPIO_DIR3 General Purpose IO Direction Register 3 0x01E1 0024 GPIO_DAT3 General Purpose IO Data Register 3 0x01E1 0028 - Reserved 0x01E1 002C - Reserved 0x01E1 0030 HPIC HPI control register 0x01E1 0034 HPIA (HPIAW) (1) HPI address register (Write) 0x01E1 0038 HPIA (HPIAR) (1) HPI address register (Read) 0x01E1 000C - 0x01E1 07FF - (1) 172 COMMENTS The CPU has read/write access to the PWREMU_MGMT register. Reserved General Purpose IO Enable Register The Host and the CPU both have read/write access to the HPIC register. The Host has read/write access to the HPIA registers. The CPU has only read access to the HPIA registers. Reserved There are two 32-bit HPIA registers: HPIAR for read operations and HPIAW for write operations. The HPI can be configured such that HPIAR and HPIAW act as a single 32-bit HPIA (single-HPIA mode) or as two separate 32-bit HPIAs (dual-HPIA mode) from the perspective of the Host. The CPU can access HPIAW and HPIAR independently. Peripheral Information and Electrical Specifications Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 5.26.3 HPI Electrical Data/Timing Table 5-97. Timing Requirements for Host-Port Interface Cycles (1) (2) NO. MIN (4) 1 tsu(SELV-HSTBL) Setup time, select signals 2 th(HSTBL-SELV) Hold time, select signals (4) valid after HSTROBE low valid before HSTROBE low 3 tw(HSTBL) 4 MAX UNIT 5 ns 2 ns Pulse duration, HSTROBE active low 15 ns tw(HSTBH) Pulse duration, HSTROBE inactive high between consecutive accesses 2M ns 11 tsu(HDV-HSTBH) Setup time, host data valid before HSTROBE high 5 ns 12 th(HSTBH-HDV) Hold time, host data valid after HSTROBE high 1 ns th(HRDYL-HSTBH) Hold time, HSTROBE high after HRDY low. HSTROBE should not be inactivated until HRDY is active (low); otherwise, HPI writes will not complete properly. 0 ns 13 (1) (2) (3) (4) (3) Parameters are characterized from -40°C to 125°C unless otherwise noted. HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS. M=SYSCLK2 period (CPU clock frequency)/2 in ns. For example, when running parts at 300 MHz, use M=6.67 ns. Select signals include: HCNTL[1:0], HR/W and HHWIL. Copyright © 2012–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAPL137-HT 173 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 www.ti.com Table 5-98. Switching Characteristics for Host-Port Interface Cycles (1) (2) NO. PARAMETER (3) (4) MIN UNIT MAX For HPI Write, HRDY can go high (not ready) for these HPI Write conditions; otherwise, HRDY stays low (ready): Case 1: Back-to-back HPIA writes (can be either first or second half-word) Case 2: HPIA write following a PREFETCH command (can be either first or second half-word) Case 3: HPID write when FIFO is full or flushing (can be either first or second half-word) Case 4: HPIA write and Write FIFO not empty For HPI Read, HRDY can go high (not ready) for these HPI Read conditions: Case 1: HPID read (with autoincrement) and data not in Read FIFO (can only happen to first half-word of HPID access) Case 2: First half-word access of HPID Read without auto-increment For HPI Read, HRDY stays low (ready) for these HPI Read conditions: Case 1: HPID read with auto-increment and data is already in Read FIFO (applies to either half-word of HPID access) Case 2: HPID read without autoincrement and data is already in Read FIFO (always applies to second halfword of HPID access) Case 3: HPIC or HPIA read (applies to either half-word access) 5 td(HSTBL-HRDYV) Delay time, HSTROBE low to HRDY valid 5a td(HRSL-HRDYV) Delay time HAS low to HRDY valid 6 ten(HSTBL-HD) Enable time, HD driven from HSTROBE low 7 td(HRDYL-HDV) Delay time, HRDY low to HD valid 8 toh(HSTBH-HDV) Output hold time, HD valid after HSTROBE high 14 tdis(HSTBH-HDV) Disable time, HD high-impedance from HSTROBE high 15 18 (1) (2) (3) (4) 174 td(HSTBL-HDV) td(HSTBH-HRDYV) 12 ns 13 2 ns 0 1.5 ns ns 12 ns Delay time, HSTROBE low to HD valid For HPI Read. Applies to conditions where data is already residing in HPID/FIFO: Case 1: HPIC or HPIA read Case 2: First half-word of HPID read with auto-increment and data is already in Read FIFO Case 3: Second half-word of HPID read with or without auto-increment 15 ns Delay time, HSTROBE high to HRDY valid For HPI Write, HRDY can go high (not ready) for these HPI Write conditions; otherwise, HRDY stays low (ready): Case 1: HPID write when Write FIFO is full (can happen to either half-word) Case 2: HPIA write (can happen to either half-word) Case 3: HPID write without autoincrement (only happens to second half-word) 12 ns Parameters are characterized from -40°C to 125°C unless otherwise noted. M=SYSCLK2 period (CPU clock frequency)/2 in ns. For example, when running parts at 300 MHz, use M=6.67 ns. HSTROBE refers to the following logical operation on HCS, HDS1, and HDS2: [NOT(HDS1 XOR HDS2)] OR HCS. By design, whenever HCS is driven inactive (high), HPI will drive HRDY active (low). Peripheral Information and Electrical Specifications Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 UHPI_HCS UHPI_HAS(D) 2 2 1 1 UHPI_HCNTL[1:0] 2 1 2 1 UHPI_HR/W 2 2 1 1 UHPI_HHWIL 4 3 3 UHPI_HSTROBE (A)(C) 15 15 14 14 6 8 UHPI_HD[15:0] (output) 5 UHPI_HRDY 13 7 6 1st Half-Word 8 2nd Half-Word (B) A. UHPI_HSTROBE refers to the following logical operation on UHPI_HCS, UHPI_HDS1, and UHPI_HDS2: [NOT(HDS1 XOR HDS2)] OR UHPI_HCS. B. Depending on the type of write or read operation (HPID without auto-incrementing; HPIA, HPIC, or HPID with auto-incrementing) and the state of the FIFO, transitions on UHPI_HRDY may or may not occur. . C. UHPI_HCS reflects typical UHPI_HCS behavior when UHPI_HSTROBE assertion is caused by UHPI_HDS1 or UHPI_HDS2. UHPI_HCS timing requirements are reflected by parameters for UHPI_HSTROBE . D The diagram above assumes UHPI_HAS has been pulled high. Figure 5-67. UHPI Read Timing (HAS Not Used, Tied High) Copyright © 2012–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAPL137-HT 175 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 www.ti.com UHPI_HCS UHPI_HAS(D) 1 1 2 2 UHPI_HCNTL[1:0] 1 1 2 2 UHPI_HR/W 1 1 2 2 UHPI_HHWIL 3 3 4 UHPI_HSTROBE(A)(C) 11 UHPI_HD[15:0] (input) 11 12 12 1st Half-Word 5 13 2nd Half-Word 18 13 18 5 UHPI_HRDY(B) A. UHPI_HSTROBE refers to the following logical operation on UHPI_HCS, UHPI_HDS1, and UHPI_HDS2: [NOT(HDS1 XOR HDS2)] OR UHPI_HCS. B. Depending on the type of write or read operation (HPID without auto-incrementing; HPIA, HPIC, or HPID with auto-incrementing) and the state of the FIFO, transitions on UHPI_HRDY may or may not occur. C. UHPI_HCS reflects typical UHPI_HCS behavior when UHPI_HSTROBE assertion is caused by UHPI_HDS1 or UHPI_HDS2. UHPI_HCS timing requirements are reflected by parameters for UHPI_HSTROBE. D The diagram above assumes UHPI_HAS has been pulled high. Figure 5-68. UHPI Write Timing (HAS Not Used, Tied High) 5.27 Memory Protection Units (MPU) The MPU performs memory protection checking. It inputs a VBUSM or VBUSP bus, checks the address against the fixed and programmable regions to see if the access is allowed. If allowed the transfer is passed unmodified to the output VBUSM or VBUSP bus. If the transfer is illegal (fails the protection check) then the MPU does not pass the transfer to the output bus but rather services the transfer internally back to the input bus (to prevent a hang) returning the fault status to the requestor as well as generating an interrupt about the fault. The following features are supported by the MPU: • Provides memory protection for fixed and programmable address ranges. • Supports multiple programmable address region. • Supports secure and debug access privileges. • Supports read, write, and execute access privileges. • Supports privid(8) associations with ranges. • Generates an interrupt when there is a protection violation, and saves violating transfer parameters. • MMR access is also protected. 176 Peripheral Information and Electrical Specifications Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 Table 5-99. MPU Register Descriptions MPU1 BYTE ADDRESS MPU2 BYTE ADDRESS 0x01E1 4000 0x01E1 5000 REVISION 0x01E1 4004 0x01E1 5004 CONFIGURATION 0x01E1 4008 - 0x01E1 4009 0x01E1 5008 - 0x01E1 5009 RSVD 0x01E1 4010 0x01E1 5010 INTR_RAW_STATUS 0x01E1 4014 0x01E1 5014 INTR_ENABLED_STATUS Interrupt Enabled Status/Clear Interrupt Enable REGISTER NAME DESCRIPTION Revision Configuration Reserved Interrupt Raw Status/Set 0x01E1 4018 0x01E1 5018 INTR_ENABLE 0x01E1 401C 0x01E1 501C INTR_ENABLE_CLR 0x01E1 4020 0x01E1 5020 RSVD Reserved 0x01E1 4024 0x01E1 5024 RSVD Reserved 0x01E1 4028 - 0x01E1 40FF 0x01E1 5028 - 0x01E1 50FF RSVD Reserved 0x01E1 4100 0x01E1 5100 FIXED_MPSAR Fixed 1 Start Address 0x01E1 4104 0x01E1 5104 FIXED_MPEAR Fixed 1 End Address 0x01E1 4108 0x01E1 5108 FIXED_MPPA Interrupt Enable Clear Fixed 1 MPPA 0x01E1 410C 0x01E1 510C RSVD Reserved 0x01E1 4110 - 0x01E1 41FF 0x01E1 5110 - 0x01E1 51FF RSVD Reserved 0x01E1 4200 0x01E1 5200 PROG0_MPSAR Programmable 1 Start Address 0x01E1 4204 0x01E1 5204 PROG0_MPEAR Programmable 1 End Address 0x01E1 4208 0x01E1 5208 PROG0_MPPA 0x01E1 420C 0x01E1 520C RSVD 0x01E1 4210 0x01E1 5210 PROG1_MPSAR 0x01E1 4214 0x01E1 5214 PROG1_MPEAR 0x01E1 4218 0x01E1 5218 PROG1_MPPA 0x01E1 421C 0x01E1 521C RSVD 0x01E1 4220 0x01E1 5220 PROG2_MPSAR 0x01E1 4224 0x01E1 5224 PROG2_MPEAR 0x01E1 4228 0x01E1 5228 PROG2_MPPA 0x01E1 422C 0x01E1 522C RSVD 0x01E1 4230 0x01E1 5230 PROG3_MPSAR 0x01E1 4234 0x01E1 5234 PROG3_MPEAR PROG3_MPPA 0x01E1 4238 0x01E1 5238 0x01E1 423C 0x01E1 523C RSVD 0x01E1 4240 0x01E1 5240 PROG4_MPSAR 0x01E1 4244 0x01E1 5244 PROG4_MPEAR PROG4_MPPA 0x01E1 4248 0x01E1 5248 0x01E1 424C 0x01E1 524C RSVD 0x01E1 4250 0x01E1 5250 PROG5_MPSAR 0x01E1 4254 0x01E1 5254 PROG5_MPEAR 0x01E1 4258 0x01E1 5258 PROG5_MPPA 0x01E1 425C - 0x01E1 42FF 0x01E1 525C RSVD - 0x01E1 5260 PROG6_MPSAR - 0x01E1 5264 PROG6_MPEAR Copyright © 2012–2013, Texas Instruments Incorporated Programmable 1 MPPA Reserved Additional Programmable Range MMRs Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAPL137-HT 177 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 www.ti.com Table 5-99. MPU Register Descriptions (continued) MPU1 BYTE ADDRESS MPU2 BYTE ADDRESS REGISTER NAME - 0x01E1 5268 PROG6_MPPA - 0x01E1 526C RSVD - 0x01E1 5270 PROG7_MPSAR - 0x01E1 5274 PROG7_MPEAR - 0x01E1 5278 PROG7_MPPA - 0x01E1 527C RSVD - 0x01E1 5280 PROG8_MPSAR - 0x01E1 5284 PROG8_MPEAR - 0x01E1 5288 PROG8_MPPA - 0x01E1 528C RSVD - 0x01E1 5290 PROG9_MPSAR - 0x01E1 5294 PROG9_MPEAR - 0x01E1 5298 PROG9_MPPA - 0x01E1 529C RSVD - 0x01E1 52A0 PROG10_MPSAR - 0x01E1 52A4 PROG10_MPEAR - 0x01E1 52A8 PROG10_MPPA - 0x01E1 52AC RSVD - 0x01E1 52B0 PROG11_MPSAR - 0x01E1 52B4 PROG11_MPEAR - 0x01E1 52B8 PROG11_MPPA - 0x01E1 52BC - 0x01E1 52FF RSVD 0x01E1 4300 0x01E1 5300 MPFAR Fault 1 Address 0x01E1 4304 0x01E1 5304 MPFSR Fault 1 Status 0x01E1 4308 0x01E1 5308 MPFCR Fault 1 Clear DESCRIPTION 5.28 Power and Sleep Controller (PSC) The Power and Sleep Controllers (PSC) are responsible for managing transitions of system power on/off, clock on/off, resets (device level and module level). It is used primarily to provide granular power control for on chip modules (peripherals and CPU). A PSC module consists of a Global PSC (GPSC) and a set of Local PSCs (LPSCs). The GPSC contains memory mapped registers, PSC interrupts, a state machine for each peripheral/module it controls. An LPSC is associated with every module that is controlled by the PSC and provides clock and reset control. See the TMS320C674x/OMAP-L1x Processor Peripherals Overview Reference Guide. – Literature Number SPRUFK9 for more details. The PSC includes the following features: • Provides a software interface to: – Control module clock enable/disable – Control module reset – Control CPU local reset • Supports ICEpick TAP Router power, clock and reset features. For details on ICEpick features see http://tiexpressdsp.com/wiki/index.php?title=ICEPICK. Table 5-100. Power and Sleep Controller (PSC) Registers 178 PSC0 PSC1 0x01C1 0000 0x01E2 7000 Register Description REVID Peripheral Revision and Class Information Register Peripheral Information and Electrical Specifications Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 Table 5-100. Power and Sleep Controller (PSC) Registers (continued) PSC0 PSC1 Register Description 0x01C1 0018 0x01E2 7018 INTEVAL Interrupt Evaluation Register 0x01C1 0040 0x01E2 7040 MERRPR0 Module Error Pending Register 0 (module 0-15) (PSC0) Module Error Pending Register 0 (module 0-31) (PSC1) 0x01C1 0050 0x01E2 7050 MERRCR0 Module Error Clear Register 0 (module 0-15) (PSC0) Module Error Clear Register 0 (module 0-31) (PSC1) 0x01C1 0060 0x01E2 7060 PERRPR Power Error Pending Register 0x01C1 0068 0x01E2 7068 PERRCR Power Error Clear Register 0x01C1 0120 0x01E2 7120 PTCMD Power Domain Transition Command Register 0x01C1 0128 0x01E2 7128 PTSTAT Power Domain Transition Status Register 0x01C1 0200 0x01E2 7200 PDSTAT0 Power Domain 0 Status Register 0x01C1 0204 0x01E2 7204 PDSTAT1 Power Domain 1 Status Register 0x01C1 0300 0x01E2 7300 PDCTL0 Power Domain 0 Control Register 0x01C1 0304 0x01E2 7304 PDCTL1 Power Domain 1 Control Register 0x01C1 0400 0x01E2 7400 PDCFG0 Power Domain 0 Configuration Register 0x01C1 0404 0x01E2 7404 PDCFG1 Power Domain 1 Configuration Register 0x01C1 0800 - 0x01C1 083C 0x01E2 7800 - 0x01E2 787C MDSTAT0MDSTAT15 Module Status n Register (modules 0-15) (PSC0) MDSTAT0MDSTAT31 Module Status n Register (modules 0-31) (PSC1) MDCTL0MDCTL15 Module Control n Register (modules 0-15) (PSC0) MDCTL0MDCTL31 Module Control n Register (modules 0-31) (PSC1) 0x01C1 0A00 - 0x01C1 0A3C 0x01E2 7A00 - 0x01E2 7A7C 5.28.1 Power Domain and Module Topology The device includes two PSC modules. Each PSC module consists of an Always On power domain and an additional pseudo/internal power domain that manages the sleep modes for the RAMs present in the DSP subsystem and the L3 RAM, respectively. Each PSC module controls clock states for several of the on chip modules, controllers and interconnect components. Table 5-101 and Table 5-102 lists the set of peripherals/modules that are controlled by the PSC, the power domain they are associated with, the LPSC assignment and the default (power-on reset) module states. See the device-specific data manual for the peripherals available on a given device. The module states and terminology are defined in Section 5.28.1.2. Table 5-101. PSC0 Default Module Configuration LPSC Number Module Name Power Domain Default Module State Auto Sleep/Wake Only 0 EDMA3 Channel Controller AlwaysON (PD0) SwRstDisable — 1 EDMA Transfer Controller 0 AlwaysON (PD0) SwRstDisable — 2 EDMA Transfer Controller 1 AlwaysON (PD0) SwRstDisable — 3 EMIFA (BR7) AlwaysON (PD0) SwRstDisable — 4 SPI 0 AlwaysON (PD0) SwRstDisable — 5 MMC/SD 0 AlwaysON (PD0) SwRstDisable — 6 Arm Interrupt Controller — AlwaysON (PD0) — SwRstDisable — — 7 ARM RAM/ROM — AlwaysON (PD0) — Enable — Yes — 8 - - - — 9 UART 0 AlwaysON (PD0) SwRstDisable — Copyright © 2012–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAPL137-HT 179 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 www.ti.com Table 5-101. PSC0 Default Module Configuration (continued) LPSC Number Module Name Power Domain Default Module State Auto Sleep/Wake Only 10 SCR0 (Br 0, Br 1, Br 2, Br 8) AlwaysON (PD0) Enable Yes 11 SCR1 (Br 4) AlwaysON (PD0) Enable Yes 12 SCR2 (Br 3, Br 5, Br 6) AlwaysON (PD0) Enable Yes 13 dMAX AlwaysON (PD0) SwRstDisable — 14 ARM — AlwaysON (PD0) — SwRstDisable — — 15 DSP PD_DSP (PD1) Enable — Table 5-102. PSC1 Default Module Configuration LPSC Number Module Name Power Domain Module State Auto Sleep/Wake Only 0 - — — — 1 USB0 (USB2.0) AlwaysON (PD0) SwRstDisable — 2 USB1 (USB1.1) — AlwaysON (PD0) — SwRstDisable — — 3 GPIO AlwaysON (PD0) SwRstDisable — 4 UHPI AlwaysON (PD0) SwRstDisable — 5 EMAC — AlwaysON (PD0) — SwRstDisable — — 6 EMIFB (Br 20) AlwaysON (PD0) SwRstDisable — 7 McASP0 ( + McASP0 FIFO) AlwaysON (PD0) SwRstDisable — 8 McASP1 ( + McASP1 FIFO) AlwaysON (PD0) SwRstDisable — 9 McASP2( + McASP2 FIFO) AlwaysON (PD0) SwRstDisable — 10 SPI 1 AlwaysON (PD0) SwRstDisable — 11 I2C 1 AlwaysON (PD0) SwRstDisable — 12 UART 1 AlwaysON (PD0) SwRstDisable — 13 UART 2 AlwaysON (PD0) SwRstDisable — 14-15 16 — — — — 16 LCDC — AlwaysON (PD0) — SwRstDisable — — 17 eHRPWM0/1/2 AlwaysON (PD0) SwRstDisable — 18-19 Not Used — — — 20 ECAP0/1/2 AlwaysON (PD0) SwRstDisable — 21 EQEP0/1 AlwaysON (PD0) SwRstDisable — 22-23 - — — — 24 SCR8 (Br 15) AlwaysON (PD0) Enable Yes 25 SCR7 (Br 12) AlwaysON (PD0) Enable Yes 26 SCR12 (Br 18) AlwaysON (PD0) Enable Yes 27-30 - — — — 31 Shared RAM (Br 13) PD_SHRAM (PD1) Enable Yes 5.28.1.1 Power Domain States A power domain can only be in one of the two states: ON or OFF, defined as follows: • ON: power to the domain is on • OFF: power to the domain is off 180 Peripheral Information and Electrical Specifications Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 In the device, for both PSC0 and PSC1, the Always ON domain, or PD0 power domain, is always in the ON state when the chip is powered-on. This domain is not programmable to OFF state. • On PSC0 PD1/PD_DSP Domain: Controls the sleep state for DSP L1 and L2 Memories • On PSC1 PD1/PD_SHRAM Domain: Controls the sleep state for the 128K Shared RAM 5.28.1.2 Module States The PSC defines several possible states for a module. This states are essentially a combination of the module reset asserted or de-asserted and module clock on/enabled or off/disabled. The module states are defined in Table 5-103. Table 5-103. Module States Module State Module Reset Module Clock Module State Definition Enable De-asserted On A module in the enable state has its module reset de-asserted and it has its clock on. This is the normal operational state for a given module SwRstDisable Asserted Off A module in the SwResetDisable state has its module reset asserted and it has its clock disabled. After initial power-on, several modules come up in the SwRstDisable state. Generally, software is not expected to initiate this state 5.29 Emulation Logic This section describes the steps to use a third party debugger. The debug capabilities and features for DSP and ARM are as shown below. For TI’s latest debug and emulation information see : http://tiexpressdsp.com/wiki/index.php?title=Category:Emulation DSP: • Basic Debug – Execution Control – System Visibility • Real-Time Debug – Interrupts serviced while halted – Low/non-intrusive system visibility while running • Advanced Debug – Global Start – Global Stop – Specify targeted memory level(s) during memory accesses – HSRTDX (High Speed Real Time Data eXchange) • Advanced System Control – Subsystem reset via debug – Peripheral notification of debug events – Cache-coherent debug accesses • Security – Configurable levels of security and debug visibility – Halting on a security violation – Debug halts prevented during secure code execution – Memory accesses prevented to secure memory Copyright © 2012–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAPL137-HT 181 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 • • • www.ti.com Analysis Actions – Stop program execution – Generate debug interrupt – Benchmarking with counters – External trigger generation – Debug state machine state transition – Combinational and Sequential event generation Analysis Events – Program event detection – Data event detection – External trigger Detection – System event detection (i.e. cache miss) – Debug state machine state detection Analysis Configuration – Application access – Debugger access Table 5-104. DSP Debug Features Category Hardware Feature Availability Software breakpoint Unlimited Up to 10 HWBPs, including: 4 precise Basic Debug Hardware breakpoint (1) HWBPs inside DSP core and one of them is associated with a counter. 2 imprecise 4 imprecise Watch point Analysis (1) (1) (1) HWBPs from AET. HWBPs from AET which are shared for watch point. Up to 4 watch points, which are shared with HWBPs, and can also be used as 2 watch points with data (32 bits) Watch point with Data Up to 2, Which can also be used as 4 watch points. Counters/timers 1x64-bits (cycle only) + 2x32-bits (water marke counters) External Event Trigger In 1 External Event Trigger Out 1 Precise hardware breakpoints will halt the processor immediately prior to the execution of the selected instruction. Imprecise breakpoints will halt the processor some number of cycles after the selected instruction depending on device conditions. ARM: • Basic Debug – Execution Control – System Visibility • Advanced Debug – Global Start – Global Stop • Advanced System Control – Subsystem reset via debug – Peripheral notification of debug events – Cache-coherent debug accesses 182 Peripheral Information and Electrical Specifications Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com • • • • • • • SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 Security – Halting on a security violation (by cross-triggering via INTC) – Memory accesses prevented to secure memory (this is ensured by system level security mechanism) Program Trace – Program flow corruption – Code coverage – Path coverage – Thread/interrupt synchronization problems Data Trace – Memory corruption Timing Trace – Profiling Analysis Actions – Stop program execution – Control trace streams – Generate debug interrupt – Benchmarking with counters – External trigger generation – Debug state machine state transition – Combinational and Sequential event generation Analysis Events – Program event detection – Data event detection – External trigger Detection – System event detection (i.e. cache miss) – Debug state machine state detection Analysis Configuration – Application access – Debugger access Table 5-105. ARM Debug Features Category Hardware Feature Availability Software breakpoint Unlimited Up to 14 HWBPs, including: 2 precise Basic Debug Hardware breakpoint (1) HWBP inside ARM core which are shared with watch points. 8 imprecise (1) HWBPs from ETM’s address comparators, which are shared with trace function, and can be used as watch point too. 4 imprecise (1) (1) HWBPs from ICECrusher. Precise hardware breakpoints will halt the processor immediately prior to the execution of the selected instruction. Imprecise breakpoints will halt the processor some number of cycles after the selected instruction depending on device conditions. Copyright © 2012–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAPL137-HT 183 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 www.ti.com Table 5-105. ARM Debug Features (continued) Category Hardware Feature Availability Up to 6 watch points, including: Watch point 2 from ARM core which is shared with HWBPs and can be associated with a data. 8 from ETM’s address comparators, which are shared with trace function, and HWBPs. 2 from ARM core which is shared with HWBPs. Analysis Trace Control Watch point with Data 8 watch points from ETM can be associated with a data comparator, and ETM has total 4 data comparators. Counters/timers 3x32-bit (1 cycle ; 2 event) External Event Trigger In 1 External Event Trigger Out 1 Internal Cross-Triggering Signals One between ARM and DSP Address range for trace 4 Data qualification for trace 2 System events for trace control 20 Counters/Timers for trace control 2x16-bit State Machines/Sequencers 1x3-State State Machine Context/Thread ID Comparator 1 Independent trigger control units 12 Capture depth PC 4k bytes ETB Capture depth PC + Timing 4k bytes ETB Application accessible Y On-chip Trace Capture 5.29.1 JTAG Port Description The target debug interface uses the five standard IEEE 1149.1(JTAG) signals (TRST, TCK, TMS, TDI, and TDO), a return clock (RTCK) due to the clocking requirements of the ARM926EJ-S and EMU0. TRST holds the debug and boundary scan logic in reset (normal DSP operation) when pulled low (its default state). Since TRST has an internal pull-down resistor, this ensures that at power up the device functions in its normal (non-test) operation mode if TRST is not connected. Otherwise, TRST should be driven inactive by the emulator or boundary scan controller. Boundary scan test cannot be performed while the TRST pin is pulled low. Table 5-106. JTAG Port Description 184 PIN TYPE NAME DESCRIPTION TRST I Test Logic Reset When asserted (active low) causes all test and debug logic in OMAPL137 to be reset along with the IEEE 1149.1 interface TCK I Test Clock This is the test clock used to drive an IEEE 1149.1 TAP state machine and logic. Depending on the emulator attached to OMAPL137, this is a free running clock or a gated clock depending on RTCK monitoring. RTCK O Returned Test Clock Synchronized TCK. Depending on the emulator attached to OMAPL137, the JTAG signals are clocked from RTCK or RTCK is monitored by the emulator to gate TCK. TMS I Test Mode Select Directs the next state of the IEEE 1149.1 test access port state machine TDI I Test Data Input Scan data input to the device TDO O Test Data Output Scan data output of the device EMU0 I/O Emulation 0 Channel 0 trigger + HSRTDX Peripheral Information and Electrical Specifications Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 5.29.2 Scan Chain Configuration Parameters Table 5-107 shows the TAP configuration details required to configure the router/emulator for this device. Table 5-107. JTAG Port Description Router Port ID Default TAP TAP Name Tap IR Length 17 No C674x 38 18 No ARM926 4 19 No ETB 4 The router is ICEpick revision C and has a 6-bit IR length. 5.29.3 Initial Scan Chain Configuration The first level of debug interface that sees the scan controller is the TAP router module. The debugger can configure the TAP router for serially linking up to 16 TAP controllers or individually scanning one of the TAP controllers without disrupting the IR state of the other TAPs. 5.29.3.1 Adding TAPS to the Scan Chain A Power-On Reset (POR) or the JTAG Test-Logic Reset state configures the TAP router to contain only the router’s TAP. The TAP router must be programmed to add additional TAPs to the scan chain. The following JTAG scans must be completed to add the ARM926EJ-S to the scan chain. Router TDO TDI CLK Steps TMS Router ARM926EJ-S/ETM Figure 5-69. Adding ARM926EJ-S to the scan chain Pre-amble: The device whose data reaches the emulator first is listed first in the board configuration file. This device is a pre-amble for all the other devices. This device has the lowest device ID. Post-amble: The device whose data reaches the emulator last is listed last in the board configuration file. This device is a post-amble for all the other devices. This device has the highest device ID. • Function : Update the JTAG preamble and post-amble counts. – Parameter : The IR pre-amble count is '0'. – Parameter : The IR post-amble count is '0'. – Parameter : The DR pre-amble count is '0'. – Parameter : The DR post-amble count is '0'. – Parameter : The IR main count is '6'. – Parameter : The DR main count is '1'. Copyright © 2012–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAPL137-HT 185 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 • • • • • • • • 186 www.ti.com Function : Do a send-only JTAG IR/DR scan. – Parameter : The route to JTAG shift state is 'shortest transition'. – Parameter : The JTAG shift state is 'shift-ir'. – Parameter : The JTAG destination state is 'pause-ir'. – Parameter : The bit length of the command is '6'. – Parameter : The send data value is '0x00000007'. – Parameter : The actual receive data is 'discarded'. Function : Do a send-only JTAG IR/DR scan. – Parameter : The route to JTAG shift state is 'shortest transition'. – Parameter : The JTAG shift state is 'shift-dr'. – Parameter : The JTAG destination state is 'pause-dr'. – Parameter : The bit length of the command is '8'. – Parameter : The send data value is '0x00000089'. – Parameter : The actual receive data is 'discarded'. Function : Do a send-only JTAG IR/DR scan. – Parameter : The route to JTAG shift state is 'shortest transition'. – Parameter : The JTAG shift state is 'shift-ir'. – Parameter : The JTAG destination state is 'pause-ir'. – Parameter : The bit length of the command is '6'. – Parameter : The send data value is '0x00000002'. – Parameter : The actual receive data is 'discarded'. Function : Embed the port address in next command. – Parameter : The port address field is '0x0f000000'. – Parameter : The port address value is '3'. Function : Do a send-only JTAG IR/DR scan. – Parameter : The route to JTAG shift state is 'shortest transition'. – Parameter : The JTAG shift state is 'shift-dr'. – Parameter : The JTAG destination state is 'pause-dr'. – Parameter : The bit length of the command is '32'. – Parameter : The send data value is '0xa2002108'. – Parameter : The actual receive data is 'discarded'. Function : Do a send-only all-ones JTAG IR/DR scan. – Parameter : The JTAG shift state is 'shift-ir'. – Parameter : The JTAG destination state is 'run-test/idle'. – Parameter : The bit length of the command is '6'. – Parameter : The send data value is 'all-ones'. – Parameter : The actual receive data is 'discarded'. Function : Wait for a minimum number of TCLK pulses. – Parameter : The count of TCLK pulses is '10'. Function : Update the JTAG preamble and post-amble counts. – Parameter : The IR pre-amble count is '0'. – Parameter : The IR post-amble count is '6'. – Parameter : The DR pre-amble count is '0'. – Parameter : The DR post-amble count is '1'. – Parameter : The IR main count is '4'. – Parameter : The DR main count is '1'. Peripheral Information and Electrical Specifications Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 The initial scan chain contains only the TAP router module. The following steps must be completed in order to add ETB TAP to the scan chain. Router TDI ARM926EJ-S/ETM TDO CLK Steps TMS Router • • • • • ARM926EJ-S/ETM ETB Figure 5-70. Adding ETB to the scan chain Function : Do a send-only JTAG IR/DR scan. – Parameter : The route to JTAG shift state is 'shortest transition'. – Parameter : The JTAG shift state is 'shift-ir'. – Parameter : The JTAG destination state is 'pause-ir'. – Parameter : The bit length of the command is '6'. – Parameter : The send data value is '0x00000007'. – Parameter : The actual receive data is 'discarded'. Function : Do a send-only JTAG IR/DR scan. – Parameter : The route to JTAG shift state is 'shortest transition'. – Parameter : The JTAG shift state is 'shift-dr'. – Parameter : The JTAG destination state is 'pause-dr'. – Parameter : The bit length of the command is '8'. – Parameter : The send data value is '0x00000089'. – Parameter : The actual receive data is 'discarded'. Function : Do a send-only JTAG IR/DR scan. – Parameter : The route to JTAG shift state is 'shortest transition'. – Parameter : The JTAG shift state is 'shift-ir'. – Parameter : The JTAG destination state is 'pause-ir'. – Parameter : The bit length of the command is '6'. – Parameter : The send data value is '0x00000002'. – Parameter : The actual receive data is 'discarded'. Function : Embed the port address in next command. – Parameter : The port address field is '0x0f000000'. – Parameter : The port address value is '3'. Function : Do a send-only JTAG IR/DR scan. – Parameter : The route to JTAG shift state is 'shortest transition'. – Parameter : The JTAG shift state is 'shift-dr'. – Parameter : The JTAG destination state is 'pause-dr'. – Parameter : The bit length of the command is '32'. – Parameter : The send data value is '0xa3302108'. – Parameter : The actual receive data is 'discarded'. Copyright © 2012–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAPL137-HT 187 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 • • • www.ti.com Function : Do a send-only all-ones JTAG IR/DR scan. – Parameter : The JTAG shift state is 'shift-ir'. – Parameter : The JTAG destination state is 'run-test/idle'. – Parameter : The bit length of the command is '6'. – Parameter : The send data value is 'all-ones'. – Parameter : The actual receive data is 'discarded'. Function : Wait for a minimum number of TCLK pulses. – Parameter : The count of TCLK pulses is '10'. Function : Update the JTAG preamble and post-amble counts. – Parameter : The IR pre-amble count is '0'. – Parameter : The IR post-amble count is '6 + 4'. – Parameter : The DR pre-amble count is '0'. – Parameter : The DR post-amble count is '1 + 1'. – Parameter : The IR main count is '4'. – Parameter : The DR main count is '1'. 5.29.4 JTAG 1149.1 Boundary Scan Considerations To • • • use boundary scan, the following sequence should be followed: Execute a valid reset sequence and exit reset Wait at least 6000 OSCIN clock cycles Enter boundary scan mode using the JTAG pins No specific value is required on the EMU0 pin for boundary scan testing. If TRST is not driven by the boundary scan tool or tester, TRST should be externally pulled high during boundary scan testing. 5.30 Real Time Clock (RTC) The RTC provides a time reference to an application running on the device. The current date and time is tracked in a set of counter registers that update once per second. The time can be represented in 12-hour or 24-hour mode. The calendar and time registers are buffered during reads and writes so that updates do not interfere with the accuracy of the time and date. Alarms are available to interrupt the CPU at a particular time, or at periodic time intervals, such as once per minute or once per day. In addition, the RTC can interrupt the CPU every time the calendar and time registers are updated, or at programmable periodic intervals. The real-time clock (RTC) provides the following features: • 100-year calendar (xx00 to xx99) • Counts seconds, minutes, hours, day of the week, date, month, and year with leap year compensation • Binary-coded-decimal (BCD) representation of time, calendar, and alarm • 12-hour clock mode (with AM and PM) or 24-hour clock mode • Alarm interrupt • Periodic interrupt • Single interrupt to the CPU • Supports external 32.768-kHz crystal or external clock source of the same frequency • Separate isolated power supply Figure 5-71 shows a block diagram of the RTC. See the TMS320C674x/OMAP-L1x Processor Peripherals Overview Reference Guide. – Literature Number SPRUFK9 for more details. 188 Peripheral Information and Electrical Specifications Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 RTC_XI Counter 32 kHz Oscillator Compensation Seconds Minutes Week Days XTAL RTC_XO Hours Days Months Years Oscillator Alarm Alarm Interrupts Timer Periodic Interrupts Figure 5-71. Real-Time Clock Block Diagram 5.30.1 Clock Source The clock reference for the RTC is an external 32.768-kHz crystal or an external clock source of the same frequency. The RTC also has a separate power supply that is isolated from the rest of the system. When the CPU and other peripherals are without power, the RTC can remain powered to preserve the current time and calendar information. The source for the RTC reference clock may be provided by a crystal or by an external clock source. The RTC has an internal oscillator buffer to support direct operation with a crystal. The crystal is connected between pins RTC_XI and RTC_XO. RTC_XI is the input to the on-chip oscillator and RTC_XO is the output from the oscillator back to the crystal. A crystal with 70k-ohm max ESR is recommended. Typical C1, C2 values are 10-20 pF. An external 32.768-kHz clock source may be used instead of a crystal. In such a case, the clock source is connected to RTC_XI, and RTC_XO is left unconnected. If the RTC is not used, the RTC_XI pin should be held high and RTC_XO should be left unconnected. RTC Power Source Real Time Clock C2 XTAL 32.768 kHz RTC_CVDD RTC_XI RTC_XO 32K OSC C1 Real Time Clock (RTC) Module RTC_VSS Isolated RTC Power Domain The oscillator performance is validated up to 125°C, operating above 125°C is recommended to be driven with an external clock source. Figure 5-72. Clock Source Copyright © 2012–2013, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: OMAPL137-HT 189 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 www.ti.com 5.30.2 Registers Table 5-108 lists the memory-mapped registers for the RTC. See the device-specific data manual for the memory address of these registers. Table 5-108. Real-Time Clock (RTC) Registers 190 BYTE ADDRESS Acronym Register Description 0x01C2 3000 SECOND Seconds Register 0x01C2 3004 MINUTE Minutes Register 0x01C2 3008 HOUR Hours Register 0x01C2 300C DAY Day of the Month Register 0x01C2 3010 MONTH Month Register 0x01C2 3014 YEAR Year Register 0x01C2 3018 DOTW Day of the Week Register 0x01C2 3020 ALARMSECOND Alarm Seconds Register 0x01C2 3024 ALARMMINUTE Alarm Minutes Register 0x01C2 3028 ALARMHOUR Alarm Hours Register 0x01C2 302C ALARMDAY Alarm Days Register 0x01C2 3030 ALARMMONTH Alarm Months Register 0x01C2 3034 ALARMYEAR Alarm Years Register 0x01C2 3040 CTRL Control Register 0x01C2 3044 STATUS Status Register 0x01C2 3048 INTERRUPT Interrupt Enable Register 0x01C2 304C COMPLSB Compensation (LSB) Register 0x01C2 3050 COMPMSB Compensation (MSB) Register 0x01C2 3054 OSC Oscillator Register 0x01C2 3060 SCRATCH0 Scratch 0 (General-Purpose) Register 0x01C2 3064 SCRATCH1 Scratch 1 (General-Purpose) Register 0x01C2 3068 SCRATCH2 Scratch 2 (General-Purpose) Register 0x01C2 306C KICK0 Kick 0 (Write Protect) Register 0x01C2 3070 KICK1 Kick 1 (Write Protect) Register Peripheral Information and Electrical Specifications Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 6 Device and Document Support 6.1 Device Support TI offers an extensive line of development tools for the OMAPL137 platform, including tools to evaluate the performance of the processors, generate code, develop algorithm implementations, and fully integrate and debug software and hardware modules. The tool's support documentation is electronically available within the Code Composer Studio™ Integrated Development Environment (IDE). The following products support development of applications: Software Development Tools: Code Composer Studio™ Integrated Development Environment (IDE): including Editor C/C++/Assembly Code Generation, and Debug plus additional development tools Scalable, Real-Time Foundation Software (DSP/BIOS™), which provides the basic run-time target software needed to support any application. Hardware Development Tools: Extended Development System (XDS™) Emulator For a complete listing of development-support tools for OMAPL137 , visit the Texas Instruments web site on the Worldwide Web at http://www.ti.com uniform resource locator (URL). For information on pricing and availability, contact the nearest TI field sales office or authorized distributor. Device and Document Support Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT 191 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 6.2 www.ti.com Documentation Support The following documents describe the Applications Processor. Copies of these documents are available on the Internet at www.ti.com. Tip: Enter the literature number in the search box provided at www.ti.com. DSP Reference Guides SPRUG82 TMS320C674x DSP Cache User's Guide. Explains the fundamentals of memory caches and describes how the two-level cache-based internal memory architecture in the TMS320C674x digital signal processor (DSP) can be efficiently used in DSP applications. Shows how to maintain coherence with external memory, how to use DMA to reduce memory latencies, and how to optimize your code to improve cache efficiency. The internal memory architecture in the C674x DSP is organized in a two-level hierarchy consisting of a dedicated program cache (L1P) and a dedicated data cache (L1D) on the first level. Accesses by the CPU to the these first level caches can complete without CPU pipeline stalls. If the data requested by the CPU is not contained in cache, it is fetched from the next lower memory level, L2 or external memory. 192 SPRUFE8 TMS320C674x DSP CPU and Instruction Set Reference Guide. Describes the CPU architecture, pipeline, instruction set, and interrupts for the TMS320C674x digital signal processors (DSPs). The C674x DSP is an enhancement of the C64x+ and C67x+ DSPs with added functionality and an expanded instruction set. SPRU186 TMS320C6000 Assembly Language Tools User's Guide.Describes the assembly language tools (assembler, linker, and other tools used to develop assembly language code), assembler directives, macros, common object file format, and symbolic debugging directives for the TMS320C6000 platform of devices (including the C64x+, C67x+, and C674x generations). SPRU187 TMS320C6000 Optimizing Compiler User's Guide. Describes the TMS320C6000 C compiler and the assembly optimizer. This C compiler accepts ANSI standard C source code and produces assembly language source code for the TMS320C6000 platform of devices (including the C64x+, C67x+, and C674x generations). The assembly optimizer helps you optimize your assembly code. SPRUG83 TMS320OMAPL137 Digital Audio Processor System Reference Guide. Describes the ARM subsystem, DSP subsystem, system memory, device clocking, phase-locked loop controller (PLLC), power and sleep controller (PSC), power management, ARM interrupt controller (AINTC), and system configuration module. SPRUFK5 TMS320C674x DSP Megamodule Reference Guide. Describes the TMS320C674x digital signal processor (DSP) megamodule. Included is a discussion on the internal direct memory access (IDMA) controller, the interrupt controller, the power-down controller, memory protection, bandwidth management, and the memory and cache. SPRUFK9 TMS320C674x/OMAP-L1x Processor Peripherals Overview Reference Guide. Provides an overview and briefly describes the peripherals available on the device. SPRUG84 OMAP-L137 Applications Processor System Reference Guide System-on-Chip (SoC) including the ARM subsystem, DSP subsystem, system memory, device clocking, phaselocked loop controller (PLLC), power and sleep controller (PSC), power management, ARM interrupt controller (AINTC), and system configuration module. Device and Document Support Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 7 Mechanical Packaging and Orderable Information This section describes the device orderable part numbers, packaging options, materials, thermal and mechanical parameters. 7.1 Device and Development-Support Tool Nomenclature To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all DSP devices and support tools. Each DSP commercial family member has one of three prefixes: TMX, TMP, or TMS (e.g., TMS320C6745). Texas Instruments recommends two of three possible prefix designators for its support tools: TMDX and TMDS. These prefixes represent evolutionary stages of product development from engineering prototypes (TMX/TMDX) through fully qualified production devices/tools (TMS/TMDS). To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all DSP devices and support tools. Each DSP commercial family member has one of three prefixes: X, P or NULL (e.g., XOMAPL137). Texas Instruments recommends two of three possible prefix designators for its support tools: TMDX and TMDS. These prefixes represent evolutionary stages of product development from engineering prototypes (TMX/TMDX) through fully qualified production devices/tools (TMS/TMDS). Device development evolutionary flow: X Experimental device that is not necessarily representative of the final device's electrical specifications. P Final silicon die that conforms to the device's electrical specifications but has not completed quality and reliability verification. NULL Fully-qualified production device. Support tool development evolutionary flow: TMDX Development-support product that has not yet completed Texas Instruments internal qualification testing. TMDS Fully qualified development-support product. X and P devices and TMDX development-support tools are shipped against the following disclaimer: "Developmental product is intended for internal evaluation purposes." Null devices and TMDS development-support tools have been characterized fully, and the quality and reliability of the device have been demonstrated fully. TI's standard warranty applies. Predictions show that prototype devices (TMX or TMP) have a greater failure rate than the standard production devices. Texas Instruments recommends that these devices not be used in any production system because their expected end-use failure rate still is undefined. Only qualified production devices are to be used. TI device nomenclature also includes a suffix with the device family name. This suffix indicates the package type (for example, ZBK), the temperature range (for example, "Blank" is the commercial temperature range), and the device speed range in megahertz (for example, "Blank" is the default). Figure 7-1 provides a legend for reading the complete device name for any OMAPL13x member. Copyright © 2012–2013, Texas Instruments Incorporated Mechanical Packaging and Orderable Information Submit Documentation Feedback Product Folder Links: OMAPL137-HT 193 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 X OMAPL137 www.ti.com ( ) PTP ( ) PREFIX X = Experimental Device P = Prototype Device Blank = Production Device TEMPERATURE RANGE (JUNCTION) Blank = 0°C to 90°C (Commercial Grade) D = -40°C to 90°C (Industrial Grade) A = -40°C to 105°C (Extended Grade) T = -40°C to 125°C (Automotive Grade) H = -55°C to 175°C (High Temp Grade) DEVICE SILICON REVISION Blank = Silicon Revision 1.0 A = Silicon Revision 1.1 B = Silicon Revision 2.0 or 2.1 PACKAGE TYPE PTP = 176 Pin PTP Package, Pb-free and Green Figure 7-1. Device Nomenclature (PTP Package) OMAPL137 ( ) H KGD ( ) DEVICE SILICON REVISION Blank = Silicon Revision 1.0 A = Silicon Revision 1.1 B = Silicon Revision 2.0 or 2.1 TEMPERATURE RANGE (JUNCTION) 1 = Waffle Pack PACKAGE TYPE KGD = Known Good Die H = -55°C to 175°C (High Temp Grade) Figure 7-2. Device Nomenclature (KGD Package) 7.2 Packaging Materials Information The 176-pin PTP package is lead-free (Pb-free) and green. "Lead-free" and "green" are defined as follows: • Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. • Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material). 194 Mechanical Packaging and Orderable Information Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com 7.3 SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 Thermal Data for PTP The following table(s) show the thermal resistance characteristics for the PowerPADTM PTP mechanical package. Table 7-1. Thermal Resistance Characteristics (PowerPADTM Package) [PTP] NO. °C/W 1 RΘJCTOP Junction-to-case top 9.3 2 RΘJB Junction-to-board 10.3 3 RΘJA Junction-to-free air 26.5 4 RΘJCBOT Junction-to-case bottom 0.2 5 PsiJT Junction-to-package top 0.4 6 PsiJB Junction-to-board 10.1 7.4 Supplementary Information About the 176-pin PTP PowerPAD™ Package This section highlights a few important details about the 176-pin PTP PowerPAD™ package. Texas Instruments' PowerPAD Thermally Enhanced Package Technical Brief (literature number SLMA002) should be consulted when creating a PCB footprint for this device. 7.4.1 Standoff Height As illustrated in Figure 7-3, the standoff height specification for this device (between 0.050 mm and 0.150 mm) is measured from the seating plane established by the three lowest package pins to the lowest point on the package body. Due to warpage, the lowest point on the package body is located in the center of the package at the exposed thermal pad. Using this definition of standoff height provides the correct result for determining the correct solder paste thickness. According to TI's PowerPAD Thermally Enhanced Package Technical Brief (literature number SLMA002), the recommended range of solder paste thickness for this package is between 0.152 mm and 0.178 mm. Standoff Height Figure 7-3. Standoff Height Measurement on 176-pin PTP Package 7.4.2 PowerPAD™ PCB Footprint In general, for proper thermal performance, the thermal pad under the package body should be as large as possible. However, the soldermask opening for the PowerPAD™ should be sized to match the pad size on the 176-pin PTP package; as illustrated in Figure 7-4. Copyright © 2012–2013, Texas Instruments Incorporated Mechanical Packaging and Orderable Information Submit Documentation Feedback Product Folder Links: OMAPL137-HT 195 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 www.ti.com Thermal Pad on Top Copper should be as large as Possible. Soldermask opening should be smaller and match the size of the thermal pad on the DSP. Figure 7-4. Soldermask Opening Should Match Size of DSP Thermal Pad 7.5 Packaging Information Table 7-2. Orderable Part Numbers PACKAGE CPU SPEED EMIFB SDRAM SPEED CORE SUPPLY I/O SUPPLY OPERATING JUNCTION TEMPERATURE RANGE OMAPL137BPTPH 176 PTP 300 MHz 133 MHz 1.2 V 3.3 V -55°C to 175°C OMAPL137BHKGD1 KGD die 300 MHz 133 MHz 1.2 V 3.3 V -55°C to 175°C ORDERABLE PART NUMBER 7.6 Mechanical Drawings This section contains the detailed mechanical drawing for the PTP PowerPADTM plastic quad flat pack package. Additionally, a detailed drawing of the actual thermal pad dimensions as well as a recommended PCB footprint are provided. 196 Mechanical Packaging and Orderable Information Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com 7.6.1 SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 PTP (S-PQFP-G176) PTP (S-PQFP-G176) PowerPAD™ PLASTIC QUAD 132 89 133 88 Thermal Pad (See Note D) 0,27 0,08 0,17 M 0,50 0,13 NOM 176 45 1 44 Gage Plane 21,50 SQ 24,20 23,80 26,20 25,80 SQ 0,25 0,15 SQ 0°-7° 0,05 1,45 0,75 1,35 0,45 Seating Plane 0,08 1,60 MAX NOTES: A. B. C. D. All linear dimensions are in millimeters. This drawing is subject to change without notice. Body dimensions do not include mold flash or protrusion. This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package. Texas Instruments Literature No. SLMA002 for information regarding recommened board layout. This documrnt is available at . E. Falls within JEDEC MS-026 PowerPAD is a trademark of Texas Instruments Incorporated. Copyright © 2012–2013, Texas Instruments Incorporated Mechanical Packaging and Orderable Information Submit Documentation Feedback Product Folder Links: OMAPL137-HT 197 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 7.7 www.ti.com dMAX Table 7-3 lists the dMAX control registers. Table 7-3. dMAX Control Registers Register Address dMAX Register Name 6000 0008h DEPR The dMAX event polarity register (DEPR) controls the polarity-rising edge (low to high) or falling edge (high to low)-that sets the flag in the EFR register. 6000 000Ch DEER The events can be enabled by writing a 1 to dMAX Event Enable Register (DEER). 6000 0010h DEDR The events can be disabled by writing a 1 to dMAX Event Disable Register (DEDR). 6000 0014h DEHPR An event is assigned to the high priority event group when the bit, which corresponds to the event, is set in the dMAX Event High Priority Register (DEHPR). 6000 0018h DELPR An event is assigned to the low priority event group when the bit, which corresponds to the event, is set in the dMAX Event Low Priority Register (DELPR). 6000 001Ch DEFR The dMAX Event Flag Register (DEFR) indicates that an appropriate transition edge (specified in the Event Polarity Register) has occurred on the event signals. All events are captured in the event flag register, even when the events are disabled. 6000 0034h DER0 The dMAX event register (DER0) reflects current value of the event signals 70. 6000 0054h DER1 The dMAX event register (DER1) reflects current value of the event signals 158. 6000 0074h DER2 The dMAX event register (DER2) reflects current value of the event signals 2316. 6000 0094h DER3 The dMAX event register (DER3) reflects current value of the event signals 3124. 6000 0040h DFSR0 dMAX FIFO status register 0. Writing a 1 to the DFSR0 register clears the corresponding bit. Writing 0 has no effect. 6000 0060h DFSR1 dMAX FIFO status register 1. Writing a 1 to the DFSR1 register clears the corresponding bit. Writing 0 has no effect. 6000 0080h DTCR0 dMAX transfer completion register 0. Writing a 1 to the DTCR0 register clears the corresponding bit. Writing 0 has no effect. 6000 00A0h DTCR1 dMAX transfer completion register 1. Writing a 1 to the DTCR1 register clears the corresponding bit. Writing 0 has no effect. - DETR dMAX event trigger register. By toggling a bit in this register the CPU can trigger an event. To facilitate faster CPU access, the dMAX Event Trigger Register is not memory-mapped and is placed inside the CPU module. - DESR dMAX event status register. To facilitate low CPU access overhead this register mirrors TCC bits from DTCR0 and DTCR1 registers. The register also keeps track of dMAX controller activity. To facilitate faster CPU access, the dMAX Event Status Register is not memory-mapped and is placed inside the CPU module. 7.8 Register Description Key Manager The Key Manager provides the management of the security keys within the Security Architecture. Its goal as part of the architecture is to provide protection of keys / key information (known from this point on as Keys) against unintended users.The following features are supported by the Key Manager: • Controls the system level security key information • Supports a configurable number of 128-bit security keys and 16-bit key checksums (up to 16) • EFUSE scan chain snooping capabilities – Device Type capture – Security Key checksum validation 198 Mechanical Packaging and Orderable Information Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT OMAPL137-HT www.ti.com • • SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 Read only VBUSP slave port for register access – Access controls for security key information • Configurable mstid and privid filter • Support for CBA memory protection sideband signals (secure, priv, privid, emudbg) – Clock management interface Interaction with system level Security controller Table 7-4. Key Manager Register Descriptions BYTE ADDRESS 01xC1 2000 REGISTER NAME DESCRIPTION REVID Revision Register 01xC1 2004 STAT Key Manager Status 01xC1 2008 CHKSUMSTAT Key Checksum Status 01xC1 200C RSVD Reserved 01xC1 2010 - 01xC1 201C KEY1WRD1 Key 1 01xC1 2020 - 01xC1 202C KEY1WRD1 Key 2 ... ... ... 01xC1 20F0 - 01xC1 20FC KEY1WRD1 Key 15 01xC1 2100 - 01xC1 210C KEY1WRD1 Key 16 01xC1 2110 - 01xC1 23FF RSVD Reserved 7.9 SECCTRL Table 7-5. SECCTRL Register Descriptions BYTE ADDRESS REGISTER NAME 01xC1 3000 PID RSVD DESCRIPTION Reserved SYSSTATUS SYSWR RSVD Reserved ARMWR SYSCONTROL SYSCONTROLPROTECT SYSTAPEN SECRESERVED PSTATUS PREADDEBUGDAT PWRITEDEBUGDAT Copyright © 2012–2013, Texas Instruments Incorporated Mechanical Packaging and Orderable Information Submit Documentation Feedback Product Folder Links: OMAPL137-HT 199 OMAPL137-HT SPRS677B – FEBRUARY 2012 – REVISED FEBRUARY 2013 www.ti.com Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. Changes from Revision A (February 2012) to Revision B • • • • • 200 Page Added bare die information and bond pad coordinates for Known Good Die (KGD) ..................................... 21 Added N/C to blank descriptions in Table 2-4 .................................................................................. 22 Deleted : Murata BLM31PG500SN1L or Equivalent from Figure 5-9 ....................................................... 56 Added device nomenclature for KGD .......................................................................................... 194 Added orderable part number for KGD ........................................................................................ 196 Mechanical Packaging and Orderable Information Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: OMAPL137-HT PACKAGE OPTION ADDENDUM www.ti.com 10-Dec-2020 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) (3) Device Marking (4/5) (6) OMAPL137BHKGD1 ACTIVE XCEPT KGD 0 35 RoHS & Green Call TI N / A for Pkg Type -55 to 175 OMAPL137BPTPH ACTIVE HLQFP PTP 176 1 RoHS & Green NIPDAU Level-4-260C-72 HR -55 to 175 OMAPL137BPTPH (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
OMAPL137BPTPH 价格&库存

很抱歉,暂时无法提供与“OMAPL137BPTPH”相匹配的价格&库存,您可以联系我们找货

免费人工找货