0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ONET8521TY

ONET8521TY

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    -

  • 描述:

    Transimpedance Amplifier 1 Circuit Differential 0-DIESALE

  • 数据手册
  • 价格&库存
ONET8521TY 数据手册
ONET8521T SLLSE87A – JULY 2011 – REVISED AUGUST 2011 www.ti.com 11.3 Gbps Limiting Transimpedance Amplifier With RSSI Check for Samples: ONET8521T FEATURES 1 • • • • • • • • • 9 GHz Bandwidth 2.4 kΩ Differential Small Signal Transimpedance -20dBm Sensitivity 0.95 µARMS Input Referred Noise 2.5 mAPP Input Overload Current Received Signal Strength Indication (RSSI) 90 mW Typical Power Dissipation CML Data Outputs with On-Chip 50Ω Back-Termination On Chip Supply Filter Capacitor • • Single 3.3 V Supply Die Size: 870 µm × 1036 μm APPLICATIONS • • • • • • • 10G Ethernet 8G and 10G Fibre Channel 10G EPON SONET OC-192 6G CPRI and OBSAI PIN Preamplifier Receivers APD Preamplifier Receivers DESCRIPTION The ONET8521T is a high-speed, limiting transimpedance amplifier used in optical receivers with data rates up to 11.3Gbps. It features low input referred noise, 9GHz bandwidth, 2.4kΩ small signal transimpedance, and a received signal strength indicator (RSSI). The ONET8521T is available in die form, includes an on-chip VCC bypass capacitor and is optimized for packaging in a TO can. The ONET8521T requires a single 3.3V ±10% supply and its power efficient design typically dissipates less than 90mW. The device is characterized for operation from –40°C to 100°C case (IC back side) temperature. 1 Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. Copyright © 2011, Texas Instruments Incorporated ONET8521T SLLSE87A – JULY 2011 – REVISED AUGUST 2011 www.ti.com This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. BLOCK DIAGRAM A simplified block diagram of the ONET8521T is shown in Figure 1. The ONET8521T consists of the signal path, supply filters, a control block for dc input bias, automatic gain control (AGC) and received signal strength indication (RSSI). The RSSI provides the bias for the TIA stage and the control for the AGC. The signal path consists of a transimpedance amplifier stage, a voltage amplifier, and a CML output buffer. The on-chip filter circuit provides a filtered VCC for the PIN photodiode and for the transimpedance amplifier. The dc input bias circuit and automatic gain control use internal low pass filters to cancel the dc current on the input and to adjust the transimpedance amplifier gain. Furthermore, circuitry is provided to monitor the received signal strength. VCC_OUT To Voltage Amplifier and Output Buffer To TIA VCC_IN GND 220 W FILTER1/2 RSSI_IB AGC and DC Offset Cancellation RF OUT+ IN OUTTIA Voltage Amplifier CML Output Buffer RSSI_EB Figure 1. Simplified Block Diagram of the ONET8521T 2 Copyright © 2011, Texas Instruments Incorporated ONET8521T SLLSE87A – JULY 2011 – REVISED AUGUST 2011 www.ti.com BOND PAD ASSIGNMENT GND GND The ONET8521T is available in die form. The locations of the bondpads are shown in Figure 2. 18 17 8541T L 2 15 OUT– GND 3 14 GND VCC_OUT 4 13 RSSI_EB VCC_IN 5 12 RSSI_IB 7 8 9 10 11 NC 6 GND OUT+ FILTER2 GND IN 16 FILTER1 1 GND GND Figure 2. Bond Pad Assignment of ONET8521T PIN FUNCTIONS PIN NAME NO. GND 1, 3, 6, 10 14, 16 – 18 OUT+ TYPE DESCRIPTION Supply Circuit ground. All GND pads are connected on die. Bonding all pads is optional; however, for optimum performance a good ground connection is mandatory. 2 Analog output Non-inverted CML data output. On-chip 50Ω back-terminated to VCC. VCC_OUT 4 Supply 2.97V–3.63V supply voltage for the voltage and CML amplifiers. VCC_IN 5 Supply 2.97V–3.63V supply voltage for input TIA stage. FILTER 7, 9 Analog Bias voltage for photodiode cathode. These pads are internally connected to an 220Ω resistor to VCC and a filter capacitor to ground (GND). IN 8 Analog input Data input to TIA (photodiode anode). NC 11 No Connect Do not connect 12 Analog output Analog output current proportional to the input data amplitude. Indicates the strength of the received signal (RSSI) if the photo diode is biased from the TIA. Connected to an external resistor to ground (GND). For proper operation, ensure that the voltage at the RSSI pad does not exceed VCC – 0.65V. If the RSSI feature is not used this pad should be left open. RSSI_EB 13 Analog output Optional use when operated with external PD bias (e.g. APD). Analog output current proportional to the input data amplitude. Indicates the strength of the received signal (RSSI).Connected to an external resistor to ground (GND). For proper operation, ensure that the voltage at the RSSI pad does not exceed VCC – 0.65V. If the RSSI feature is not used this pad should be left open. OUT– 15 Analog output Inverted CML data output. On-chip 50Ω back-terminated to VCC. RSSI_IB Copyright © 2011, Texas Instruments Incorporated 3 ONET8521T SLLSE87A – JULY 2011 – REVISED AUGUST 2011 www.ti.com ABSOLUTE MAXIMUM RATINGS over operating free-air temperature range (unless otherwise noted) (1) (2) MIN MAX UNIT –0.3 4.0 V VCC_IN, VCC_OUT Supply voltage VFILTER1, VFILTER2, VOUT+, VOUT–, VRSSI_IB, VRSSI_EB Voltage at FILTER1, FILTER2, OUT+, OUT–, RSSI_IB, RSSI_EB (2) –0.3 4.0 V IIN Current into IN –0.7 3.5 mA IFILTER Current into FILTER1, FILTER2 –8 8 mA IOUT+, IOUT- Continuous current at outputs –8 8 ESD rating at all pins except input IN 2 ESD TJ,max (1) (2) ESD rating at input IN mA kV (HBM) 0.5 Maximum junction temperature kV(HBM) °C 125 Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltage values are with respect to network ground terminal. RECOMMENDED OPERATING CONDITIONS MIN NOM MAX VCC Supply voltage PARAMETER 2.97 3.3 3.63 V TA Operating backside die temperature –40 100 (1) °C LFILTER, LIN Wire-bond inductor at pins FILTER and IN 0.3 0.5 nH CPD Photodiode capacitance 0.2 (1) CONDITIONS UNIT pF 105°C maximum junction temperature DC ELECTRICAL CHARACTERISTICS over recommended operating conditions (unless otherwise noted). Typical values are at VCC = 3.3 V and TA = 25°C PARAMETER VCC IVCC Supply current VIN Input bias voltage ROUT Output resistance RFILTER Photodiode filter resistance (1) 4 TEST CONDITIONS Supply voltage MIN TYP MAX UNIT 2.97 3.3 3.63 V 27 (1) Input current iIN < 1000 μAPP 0.75 Single-ended to VCC 40 45 (1) Input current iIN < 2500 μAPP 40 mA 0.85 0.98 V 50 60 Ω 220 Ω Including RSSI current Copyright © 2011, Texas Instruments Incorporated ONET8521T SLLSE87A – JULY 2011 – REVISED AUGUST 2011 www.ti.com AC ELECTRICAL CHARACTERISTICS over recommended operating conditions (unless otherwise noted). Typical values are at VCC = +3.3 V and TA = 25°C PARAMETER Small signal transimpedance Z21 TEST CONDITIONS Differential output; Input current iIN = 20 μAPP (1) fHSS,3dB Small signal bandwidth iIN = 16 μAPP fL,3dB Low frequency –3 dB bandwidth 16 μA < iIN < 2000 μAPP iN,IN Input referred RMS noise SUS Unstressed sensitivity DJ Deterministic jitter DJOL Overload deterministic jitter MIN TYP 1500 2400 7 MAX Ω 9 GHz 30 100 10 GHz bandwidth (2) 0.95 1.4 10.3125 Gbps, PRBS31 pattern, 1310 nm, BER 10–12 –20 kHz μA dBm 25 μAPP < iIN < 500 μAPP (10.3125 Gbps, K28.5 pattern) 6 12 500 μAPP < iIN < 2000 μAPP (10.3125 Gbps, K28.5 pattern) 6 14 2000 μAPP < iIN < 2500 μAPP (10.3125 Gbps, K28.5 pattern) UNIT psPP 7 16 psPP VOUT,D,MAX Maximum differential output voltage Input current iIN = 500 μAPP 180 300 420 mVPP ARSSI_IB Resistive load to GND (3) 0.48 0.5 0.52 A/A 2 7 16 μA 0.6 A/A RSSI gain internal bias RSSI internal bias output offset current (no light) (4) ARSSI_EB RSSI gain external bias Resistive load to GND (3) RSSI external bias output offset current (no light) PSNR (1) (2) (3) (4) (5) Power supply noise rejection F < 10 MHz (5), Supply filtering according to SFF8431 0.43 25 μA –15 dB The small signal bandwidth is specified over process corners, temperature, and supply voltage variation. The assumed photodiode capacitance is 0.2 pF and the bond-wire inductance is 0.3 nH. The small signal bandwidth strongly depends on environmental parasitics. Careful attention to layout parasitics and external components is necessary to achieve optimal performance. Input referred RMS noise is (RMS output noise)/ (gain at 100 MHz). The RSSI output is a current output, which requires a resistive load to ground (GND). The voltage gain can be adjusted for the intended application by choosing the external resistor; however, for proper operation, ensure that the voltage at RSSI does not exceed VCC – 0.65V. Offset is added to improve accuracy below 5μA. When measured without input current (no light) the offset can be subtracted as a constant offset from RSSI measurements. PSNR is the differential output amplitude divided by the voltage ripple on supply; no input current at IN. Copyright © 2011, Texas Instruments Incorporated 5 ONET8521T SLLSE87A – JULY 2011 – REVISED AUGUST 2011 www.ti.com DETAILED DESCRIPTION SIGNAL PATH The first stage of the signal path is a transimpedance amplifier which converts the photodiode current into a voltage. If the input signal current exceeds a certain value, the transimpedance gain is reduced by means of a nonlinear AGC circuit to limit the signal amplitude. The second stage is a limiting voltage amplifier that provides additional limiting gain and converts the single ended input voltage into a differential data signal. The output stage provides CML outputs with an on-chip 50Ω back-termination to VCC. FILTER CIRCUITRY The FILTER pins provide a filtered VCC for a PIN photodiode bias. The on-chip low pass filter for the photodiode is implemented using a filter resistor of 220Ω and a capacitor. The corresponding corner frequency is below 5MHz. The supply voltages for the transimpedance amplifier are filtered by means of on-chip capacitors, thus avoiding the necessity to use an external supply filter capacitor. The input stage has a separate VCC supply (VCC_IN) which is not connected on chip to the supply of the limiting and CML stages (VCC_OUT). AGC AND RSSI The voltage drop across the internal photodiode supply-filter resistor is monitored by the bias and RSSI control circuit block in the case where a PIN diode is biased using the FILTER pins. If the dc input current exceeds a certain level then it is partially cancelled by means of a controlled current source. This keeps the transimpedance amplifier stage within sufficient operating limits for optimum performance. The automatic gain control circuitry adjusts the voltage gain of the AGC amplifier to ensure limiting behavior of the complete amplifier. Finally this circuit block senses the current through the filter resistor and generates a mirrored current that is proportional to the input signal strength. The mirrored current is available at the RSSI_IB output and can be sunk to ground (GND) using an external resistor. For proper operation, ensure that the voltage at the RSSI_IB pad does not exceed VCC – 0.65V. If an APD or PIN photodiode is used with an external bias then the RSSI_EB pin should be used. However, for greater accuracy under external photo diode biasing conditions, it is recommended to derive the RSSI from the external bias circuitry. 6 Copyright © 2011, Texas Instruments Incorporated ONET8521T SLLSE87A – JULY 2011 – REVISED AUGUST 2011 www.ti.com TYPICAL OPERATION CHARACTERISTICS Typical operating condition is at VCC = 3.3 V and TA = 25°C (unless otherwise noted) SMALL SIGNAL TRANSIMPENDANCE vs AMBIENT TEMPERATURE 2.5 5000 2.0 4000 Transimpedance - W Transimpedance - kW TRANSIMPEDANCE vs INPUT CURRENT 1.5 1.0 0.5 3000 2000 1000 0 0 200 400 600 800 IIN - Input Current - mAPP 0 -40 1000 -20 0 20 40 60 80 TA - Ambient Temperature - °C Figure 3. Figure 4. SMALL SIGNAL TRANSFER CHARACTERISTICS SMALL SIGNAL BANDWIDTH vs AMBIENT TEMPERATURE 100 14 6 3 12 0 10 Bandwidth - GHz Gain - dB -3 -6 -9 -12 8 6 4 -15 2 -18 -21 0.1 1 10 f - Frequency - GHz Figure 5. Copyright © 2011, Texas Instruments Incorporated 100 0 -40 -20 0 20 40 60 80 TA - Ambient Temperature - °C 100 Figure 6. 7 ONET8521T SLLSE87A – JULY 2011 – REVISED AUGUST 2011 www.ti.com TYPICAL OPERATION CHARACTERISTICS (continued) Typical operating condition is at VCC = 3.3 V and TA = 25°C (unless otherwise noted) OUTPUT VOLTAGE vs INPUT CURRENT DETERMINISTIC JITTER vs INPUT CURRENT 10 250 8 Deterministic Jitter - ps Differential Output Voltage - mVPP 300 200 150 100 0 0 200 400 600 800 IIN - Input Current - mAPP 1000 0 200 400 600 800 1000 1200 1400 1600 1800 2000 IIN - Input Current - mAPP Figure 7. Figure 8. INPUT REFERRED NOISE vs TEMPERATURE RSSI_IB OUTPUT CURRENT vs AVERAGE INPUT CURRENT 2.00 1000 900 1.75 800 RSSI_IB Output Current - mA Input Referred Noise - mArms 4 2 50 0 1.50 1.25 1.00 0.75 0.50 0.25 0 -40 700 600 500 400 300 200 100 -20 0 20 40 60 80 TA - Ambient Temperature - °C Figure 9. 8 6 100 0 0 200 400 600 800 1000 1200 Average Input Current - mA Figure 10. Copyright © 2011, Texas Instruments Incorporated ONET8521T SLLSE87A – JULY 2011 – REVISED AUGUST 2011 www.ti.com TYPICAL OPERATION CHARACTERISTICS (continued) Typical operating condition is at VCC = 3.3 V and TA = 25°C (unless otherwise noted) OUTPUT EYE-DIAGRAM AT 10.3 GBPS AND 20 μAPP INPUT CURRENT 25 mVdiv 20 ps/div OUTPUT EYE-DIAGRAM AT 10.3 GBPS AND 100 μAPP INPUT CURRENT 20 ps/div 50 mV/div Figure 11. Figure 12. OUTPUT EYE-DIAGRAM AT 10.3 GBPS AND 500 μAPP INPUT CURRENT OUTPUT EYE-DIAGRAM AT 10.3 GBPS AND 2 mAPP INPUT CURRENT 60 mV/div 20 ps/div Figure 13. Copyright © 2011, Texas Instruments Incorporated 60 mV/div 20 ps/div Figure 14. 9 ONET8521T SLLSE87A – JULY 2011 – REVISED AUGUST 2011 www.ti.com APPLICATION INFORMATION Figure 15 shows the ONET8521T used in a typical fiber optic receiver using the internal photodiode bias. The ONET8521T converts the electrical current generated by the PIN photodiode into a differential output voltage. The FILTER inputs provide a dc bias voltage for the PIN that is low pass filtered by the combination of an internal 220Ω resistor and a capacitor. Because the voltage drop across the 220Ω resistor is sensed and used by the bias circuit, the photodiode must be connected to the FILTER pads for the bias to function correctly. The RSSI output is used to mirror the photodiode output current and can be connected via a resistor to GND. The voltage gain can be adjusted for the intended application by choosing the external resistor; however, for proper operation of the ONET8521T, ensure that the voltage at RSSI never exceeds VCC – 0.65V. If the RSSI output is not used while operating with internal PD bias, it should be left open. The OUT+ and OUT– pins are internally terminated by 50Ω pull-up resisters to VCC. The outputs must be ac coupled, for example by using 0.1μF capacitors, to the succeeding device. VCC_OUT VCC_IN 0.1μF OUT+ 0.1μF OUT- 1 RSSI R RSSI GND Figure 15. Basic Application Circuit for PIN Receivers Figure 16 shows the ONET8521T being used in a typical fiber optic receiver using an external photodiode bias for an APD photodiode. This configuration can also be used for a PIN diode if desired. The external bias RSSI signal is based on a dc offset value and is not as accurate as the internal bias RSSI signal which is based upon the photodiode current. 10 Copyright © 2011, Texas Instruments Incorporated ONET8521T SLLSE87A – JULY 2011 – REVISED AUGUST 2011 www.ti.com VCC_OUT 0.1μF OUT+ 0.1μF OUT- VCC_IN V_BIAS RSSI R RSSI GND Figure 16. Basic Application Circuit for APD Receivers ASSEMBLY RECOMMENDATIONS Careful attention to assembly parasitics and external components is necessary to achieve optimal performance. Recommendations that optimize performance include: 1. Minimize the total capacitance on the IN pad by using a low capacitance photodiode and paying attention to stray capacitances. Place the photodiode close to the ONET8521T die in order to minimize the bond wire length and thus the parasitic inductance. 2. Use identical termination and symmetrical transmission lines at the ac coupled differential output pins OUT+ and OUT–. 3. Use short bond wire connections for the supply terminals VCC_IN, VCC_OUT, and GND. Supply voltage filtering is provided on chip but filtering may be improved by using an additional external capacitor. Copyright © 2011, Texas Instruments Incorporated 11 ONET8521T SLLSE87A – JULY 2011 – REVISED AUGUST 2011 www.ti.com CHIP DIMENSIONS AND PAD LOCATIONS 1036μm 18 17 8541T L 1 16 2 15 3 14 4 13 5 12 y 8 7 6 9 10 11 870μm x Die Thickness: 203 ± 13 μm Pad Dimensions: 105 µm × 65 μm Die Size: 870 ± 40 μm × 1036 ± 40 μm PAD COORDINATES (referenced to pad 1) x (μm) 12 SYMBOL TYPE DESCRIPTION y (μm) 1 0 0 GND Supply Circuit ground 2 0 -115 OUT+ Analog output Non-inverted data output 3 0 -230 GND Supply Circuit ground 4 0 -460 VCC_OUT Supply 3.3V supply voltage 5 0 -575 VCC_IN Supply 3.3V supply voltage 6 115.5 -728 GND Supply Circuit ground 7 225.5 -728 FILTER1 Analog Bias voltage for photodiode 8 335.5 -728 IN Analog input Data input to TIA 9 445.5 -728 FILTER2 Analog Bias voltage for photodiode 10 555.5 -728 GND Supply Circuit ground 11 665.5 -728 NC No connect Do not connect 12 671 -575 RSSI_IB Analog output RSSI output signal for internally biased receivers 13 671 -460 RSSI_EB Analog output RSSI output signal for externally biased receivers 14 671 -230 GND Supply Circuit ground 15 671 -115 OUT– Analog output Inverted data output 16 671 0 GND Supply Circuit ground 17 393 109 GND Supply Circuit ground 18 278 109 GND Supply Circuit ground Copyright © 2011, Texas Instruments Incorporated ONET8521T SLLSE87A – JULY 2011 – REVISED AUGUST 2011 www.ti.com TO46 LAYOUT EXAMPLE An example for a layout using an external bias voltage for the photodiode in a 5 pin TO46 can is shown in Figure 17. Figure 18 shows an example with a backside cathode contact photodiode using the internal bias voltage. OUT– OUT+ Capacitor Capacitor or ceramic substrate VCC VAPD Capacitor Figure 17. TO46 5 Pin Layout Using the ONET8521T with an Avalanche Photodiode OUT– OUT+ Capacitor Backside Cathode Capacitor or ceramic substrate VCC RSSI Figure 18. TO46 5 Pin Layout Using the Internal Bias Voltage for a Backside Cathode Contact Photodiode Copyright © 2011, Texas Instruments Incorporated 13 ONET8521T SLLSE87A – JULY 2011 – REVISED AUGUST 2011 www.ti.com REVISION HISTORY Changes from Original (July 2011) to Revision A Page • Changed die size .................................................................................................................................................................. 1 • Changed die size ................................................................................................................................................................ 12 14 Copyright © 2011, Texas Instruments Incorporated PACKAGE OPTION ADDENDUM www.ti.com 24-Apr-2019 PACKAGING INFORMATION Orderable Device Status (1) ONET8521TY ACTIVE Package Type Package Pins Package Drawing Qty DIESALE Y 0 1800 Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) TBD Call TI Call TI Op Temp (°C) Device Marking (4/5) -40 to 100 (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
ONET8521TY 价格&库存

很抱歉,暂时无法提供与“ONET8521TY”相匹配的价格&库存,您可以联系我们找货

免费人工找货