0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
OPA4192IPWR

OPA4192IPWR

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    TSSOP14_5X4.4MM

  • 描述:

    OPAx192 36V 低失调电压、低输入偏置电流、轨到轨输入/输出精密运算放大器,具有 e-trim™

  • 数据手册
  • 价格&库存
OPA4192IPWR 数据手册
Product Folder Sample & Buy Support & Community Tools & Software Technical Documents Reference Design OPA192, OPA2192, OPA4192 SBOS620E – DECEMBER 2013 – REVISED NOVEMBER 2015 OPAx192 36-V, Precision, Rail-to-Rail Input/Output, Low Offset Voltage, Low Input Bias Current Op Amp with e-trim™ 1 Features 3 Description • • • • • • • • • • • • • • The OPAx192 family (OPA192, OPA2192, and OPA4192) is a new generation of 36-V, e-trim operational amplifiers. 1 Low Offset Voltage: ±5 µV Low Offset Voltage Drift: ±0.2 µV/°C Low Noise: 5.5 nV/√Hz at 1 kHz High Common-Mode Rejection: 140 dB Low Bias Current: ±5 pA Rail-to-Rail Input and Output Wide Bandwidth: 10 MHz GBW High Slew Rate: 20 V/µs Low Quiescent Current: 1 mA per Amplifier Wide Supply: ±2.25 V to ±18 V, 4.5 V to 36 V EMI/RFI Filtered Inputs Differential Input Voltage Range to Supply Rail High Capacitive Load Drive Capability: 1 nF Industry Standard Packages: – Single in SOIC-8, SOT-23-5, and VSSOP-8 – Dual in SOIC-8 and VSSOP-8 – Quad in SOIC-14 and TSSOP-14 These devices offer outstanding dc precision and ac performance, including rail-to-rail input/output, low offset (±5 µV, typ), low offset drift (±0.2 µV/°C, typ), and 10-MHz bandwidth. Unique features such as differential input-voltage range to the supply rail, high output current (±65 mA), high capacitive load drive of up to 1 nF, and high slew rate (20 V/µs) make the OPA192 a robust, highperformance operational amplifier for high-voltage industrial applications. The OPA192 family of op amps is available in standard packages and is specified from –40°C to +125°C. Device Information(1) PART NUMBER OPA192 2 Applications • • • • • • • Multiplexed Data-Acquisition Systems Test and Measurement Equipment High-Resolution ADC Driver Amplifiers SAR ADC Reference Buffers Programmable Logic Controllers High-Side and Low-Side Current Sensing High Precision Comparator OPA2192 OPA4192 PACKAGE BODY SIZE (NOM) SOIC (8) 4.90 mm × 3.90 mm SOT-23 (5) 2.90 mm × 1.60 mm VSSOP (8) 3.00 mm × 3.00 mm SOIC (8) 4.90 mm × 3.90 mm VSSOP (8) 3.00 mm × 3.00 mm SOIC (14) 8.65 mm x 3.90 mm TSSOP (14) 5.00 mm x 4.40 mm (1) For all available packages, see the package option addendum at the end of the data sheet. OPA192 in a High-Voltage, Multiplexed, Data-Acquisition System Analog Inputs REF3140 Bridge Sensor OPA192 Thermocouple 4:2 HV MUX Gain Network Gain Network Current Sensing Photo Detector High-Voltage Multiplexed Input RC Filter Reference Driver REF OPA192 + Gain Network Gain Network OPA192 LED OPA350 + + Optical Sensor RC Filter High-Voltage Level Translation VINP Antialiasing Filter ADS8864 VINM VCM 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA. OPA192, OPA2192, OPA4192 SBOS620E – DECEMBER 2013 – REVISED NOVEMBER 2015 www.ti.com Table of Contents 1 2 3 4 5 6 Features .................................................................. Applications ........................................................... Description ............................................................. Revision History..................................................... Pin Configuration and Functions ......................... Specifications......................................................... 1 1 1 2 4 6 6.1 6.2 6.3 6.4 6.5 6.6 6.7 Absolute Maximum Ratings ..................................... 6 ESD Ratings.............................................................. 6 Recommended Operating Conditions....................... 6 Thermal Information: OPA192 .................................. 7 Thermal Information: OPA2192 ................................ 7 Thermal Information: OPA4192 ................................ 7 Electrical Characteristics: VS = ±4 V to ±18 V (VS = +8 V to +36 V)............................................................ 8 6.8 Electrical Characteristics: VS = ±2.25 V to ±4 V (VS = +4.5 V to +8 V)......................................................... 10 6.9 Typical Characteristics ............................................ 12 6.10 Typical Characteristics .......................................... 13 7 Parameter Measurement Information ................ 21 8 Detailed Description ............................................ 23 7.1 Input Offset Voltage Drift......................................... 21 8.1 8.2 8.3 8.4 9 Overview ................................................................. Functional Block Diagram ....................................... Feature Description................................................. Device Functional Modes........................................ 23 23 24 30 Application and Implementation ........................ 31 9.1 Application Information............................................ 31 9.2 Typical Applications ................................................ 31 10 Power-Supply Recommendations ..................... 35 11 Layout................................................................... 35 11.1 Layout Guidelines ................................................. 35 11.2 Layout Example .................................................... 36 12 Device and Documentation Support ................. 37 12.1 12.2 12.3 12.4 12.5 12.6 12.7 Device Support...................................................... Documentation Support ........................................ Related Links ........................................................ Community Resources.......................................... Trademarks ........................................................... Electrostatic Discharge Caution ............................ Glossary ................................................................ 37 37 37 37 38 38 38 13 Mechanical, Packaging, and Orderable Information ........................................................... 38 4 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. Changes from Revision D (September 2015) to Revision E Page • Changed PW package from product preview to production data........................................................................................... 1 • Added PW package to test condition for input offset voltage drift.......................................................................................... 8 • Added PW package to test condition for input offset voltage drift........................................................................................ 10 • Added PW package condition to Figure 8 ........................................................................................................................... 13 • Added PW package condition to Figure 10 ......................................................................................................................... 13 • Added PW package condition to Figure 52 ......................................................................................................................... 22 • Changed Figure 70 to fix typos ............................................................................................................................................ 36 Changes from Revision C (March 2015) to Revision D Page • Changed device status to Production Data; OPA4192 released to Production .................................................................... 1 • Deleted footnote 2 from Device Information table ................................................................................................................. 1 • Deleted footnote 2 from Pin Configuration and Functions section ......................................................................................... 4 • Changed ESD Ratings table: added correct OPA4192 CDM specifications ......................................................................... 6 • Added Frequency Response, Crosstalk parameter to Electrical Characteristics: VS = ±4 V to ±18 V table ......................... 9 • Added Frequency Response, Crosstalk parameter to Electrical Characteristics: VS = ±2.25 V to ±4 V table .................... 11 • Changed Typical Characteristics to current standards (split curves and table of graphs into separate sections to be SDS compliant) .................................................................................................................................................................... 12 • Added Crosstalk vs Frequency row to Table 1 ................................................................................................................... 12 • Added Figure 48 .................................................................................................................................................................. 20 2 Submit Documentation Feedback Copyright © 2013–2015, Texas Instruments Incorporated Product Folder Links: OPA192 OPA2192 OPA4192 OPA192, OPA2192, OPA4192 www.ti.com SBOS620E – DECEMBER 2013 – REVISED NOVEMBER 2015 Changes from Revision B (March 2014) to Revision C Page • Added CDM row for OPA2192, OPA4192 in ESD Ratings table ........................................................................................... 6 • Changed input offset voltage values for VCM ≥ (V+) – 1.5 V test condition............................................................................ 8 • Changed Input offset voltage parameter typical specs for VCM = (V+) – 1.5 V test conditions ............................................. 8 • Changed test conditions for dVOS/dT parameter .................................................................................................................... 8 • Changed input offset voltage max values and test conditions for VCM = (V+) – 3 V test condition...................................... 10 • Changed input offset voltage values and test conditions for VCM = (V+) – 1.5 V test condition .......................................... 10 • Changed Input offset voltage parameter typical specs for VCM = (V+) – 1.5 V test conditions ............................................ 10 • Changed test conditions for dVOS/dT parameter ................................................................................................................. 10 • Added text to last bullet of Layout Guidelines section.......................................................................................................... 35 Changes from Revision A (January 2014) to Revision B Page • Added ESD Ratings and Recommended Operating Conditions tables, and Parameter Measurement Information, Application and Implementation, Power-Supply Recommendations, and Device and Documentation Support sections, and moved existing sections ................................................................................................................................... 1 • Changed all OPA192 and OPA2192 packages to production data........................................................................................ 1 • Changed package names to latest standard; changed all MSOP to VSSOP, SO to SOIC, and SOT23 to SOT ................. 1 • Deleted DCK package pin configuration................................................................................................................................. 4 • Added thermal information for OPA192 DBV and DGK packages......................................................................................... 7 • Added OPA2192 and OPA4192 Thermal Information tables ................................................................................................ 7 • Added rows with additional test conditions to input offset voltage parameter........................................................................ 8 • Changed Input offset voltage drift parameter ........................................................................................................................ 8 • Changed CMRR test conditions ............................................................................................................................................ 8 • Added rows with additional test conditions to input offset voltage parameter...................................................................... 10 • Changed Input offset voltage drift parameter ....................................................................................................................... 10 • Changed PSSR parameter .................................................................................................................................................. 10 • Changed CMRR test conditions .......................................................................................................................................... 10 • Added Output section ........................................................................................................................................................... 11 • Added typical characteristic curves to Table 1 .................................................................................................................... 12 • Added TA = 25°C to Typical Characteristics condition line .................................................................................................. 12 • Added nine new histogram plots from Figure 2 to Figure 10 ............................................................................................... 13 • Changed Figure 11 to show more units ............................................................................................................................... 13 • Changed Figure 19 .............................................................................................................................................................. 15 • Added text to Application Information section ...................................................................................................................... 31 • Changed text in Layout Guidelines section .......................................................................................................................... 35 Changes from Original (December 2013) to Revision A Page • Changed first paragraph of 16-Bit Precision Multiplexed Data-Acquisition System section ................................................ 31 • Changed Figure 66 and title ................................................................................................................................................. 31 • Changed TIDU181 reference design title ............................................................................................................................. 32 Copyright © 2013–2015, Texas Instruments Incorporated Product Folder Links: OPA192 OPA2192 OPA4192 Submit Documentation Feedback 3 OPA192, OPA2192, OPA4192 SBOS620E – DECEMBER 2013 – REVISED NOVEMBER 2015 www.ti.com 5 Pin Configuration and Functions DBV Package: OPA192 5-Pin SOT Top View OUT 1 V- 2 +IN 3 D and DGK Packages: OPA2192 8-Pin SOIC and VSSOP Top View V+ 5 4 -IN D and DGK Packages: OPA192 8-Pin SOIC and VSSOP Top View (1) 4 NC(1) 1 8 NC(1) -IN 2 7 V+ +IN 3 6 OUT V- 4 5 NC(1) OUT A 1 8 V+ -IN A 2 7 OUT B +IN A 3 6 -IN B V- 4 5 +IN B D and PW Packages: OPA4192 14-Pin SOIC and TSSOP Top View OUT A 1 14 OUT D -IN A 2 13 -IN D +IN A 3 12 +IN D V+ 4 11 V- +IN B 5 10 +IN C -IN B 6 9 -IN C OUT B 7 8 OUT C NC = No internal connection. Submit Documentation Feedback Copyright © 2013–2015, Texas Instruments Incorporated Product Folder Links: OPA192 OPA2192 OPA4192 OPA192, OPA2192, OPA4192 www.ti.com SBOS620E – DECEMBER 2013 – REVISED NOVEMBER 2015 Pin Functions: OPA192 PIN OPA192 NAME +IN I/O D (SOIC), DGK (VSSOP) DBV (SOT) 3 3 DESCRIPTION I Noninverting input Inverting input –IN 2 4 I NC 1, 5, 8 — — No internal connection (can be left floating) OUT 6 1 O Output V+ 7 5 — Positive (highest) power supply V– 4 2 — Negative (lowest) power supply Pin Functions: OPA2192 and OPA4192 PIN OPA2192 OPA4192 D (SOIC), DGK (VSSOP) D (SOIC), PW (TSSOP) +IN A 3 3 I Noninverting input, channel A +IN B 5 5 I Noninverting input, channel B +IN C — 10 I Noninverting input, channel C +IN D — 12 I Noninverting input, channel D –IN A 2 2 I Inverting input, channel A –IN B 6 6 I Inverting input, channel B –IN C — 9 I Inverting input,,channel C –IN D — 13 I Inverting input, channel D OUT A 1 1 O Output, channel A OUT B 7 7 O Output, channel B OUT C — 8 O Output, channel C OUT D — 14 O Output, channel D V+ 8 4 — Positive (highest) power supply V– 4 11 — Negative (lowest) power supply NAME I/O DESCRIPTION Copyright © 2013–2015, Texas Instruments Incorporated Product Folder Links: OPA192 OPA2192 OPA4192 Submit Documentation Feedback 5 OPA192, OPA2192, OPA4192 SBOS620E – DECEMBER 2013 – REVISED NOVEMBER 2015 www.ti.com 6 Specifications 6.1 Absolute Maximum Ratings (1) over operating free-air temperature range (unless otherwise noted) MIN Supply voltage, VS = (V+) – (V–) Signal input pins Common-mode Voltage (V–) – 0.5 V ±10 mA Continuous Operating range –55 150 Junction 150 Storage, Tstg (2) V (V+) – (V–) + 0.2 Current (1) UNIT ±20 (40, single supply) (V+) + 0.5 Differential Output short circuit (2) Temperature MAX –65 °C 150 Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. Short-circuit to ground, one amplifier per package. 6.2 ESD Ratings V(ESD) VALUE UNIT Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1) ±4000 V Electrostatic discharge Charged-device model (CDM), per JEDEC specification JESD22-C101 (2) ±1000 V Electrostatic discharge Charged-device model (CDM), per JEDEC specification JESD22-C101 (2) ±750 V Electrostatic discharge Charged-device model (CDM), per JEDEC specification JESD22-C101 (2) ±500 V MAX UNIT OPA192 V(ESD) OPA2192 V(ESD) OPA4192 V(ESD) (1) (2) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. 6.3 Recommended Operating Conditions over operating free-air temperature range (unless otherwise noted) MIN Supply voltage, VS = (V+) – (V–) Specified temperature 6 Submit Documentation Feedback NOM 4.5 (±2.25) 36 (±18) V –40 +125 °C Copyright © 2013–2015, Texas Instruments Incorporated Product Folder Links: OPA192 OPA2192 OPA4192 OPA192, OPA2192, OPA4192 www.ti.com SBOS620E – DECEMBER 2013 – REVISED NOVEMBER 2015 6.4 Thermal Information: OPA192 OPA192 THERMAL METRIC (1) D (SOIC) DBV (SOT) DGK (VSSOP) 8 PINS 5 PINS 8 PINS UNIT 180.4 °C/W RθJA Junction-to-ambient thermal resistance 115.8 158.8 RθJC(top) Junction-to-case(top) thermal resistance 60.1 60.7 67.9 °C/W RθJB Junction-to-board thermal resistance 56.4 44.8 102.1 °C/W ψJT Junction-to-top characterization parameter 12.8 1.6 10.4 °C/W ψJB Junction-to-board characterization parameter 55.9 4.2 100.3 °C/W RθJC(bot) Junction-to-case(bottom) thermal resistance N/A N/A N/A °C/W (1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953. 6.5 Thermal Information: OPA2192 OPA2192 THERMAL METRIC (1) D (SOIC) DGK (VSSOP) 8 PINS 8 PINS UNIT RθJA Junction-to-ambient thermal resistance 107.9 158 °C/W RθJC(top) Junction-to-case(top) thermal resistance 53.9 48.6 °C/W RθJB Junction-to-board thermal resistance 48.9 78.7 °C/W ψJT Junction-to-top characterization parameter 6.6 3.9 °C/W ψJB Junction-to-board characterization parameter 48.3 77.3 °C/W RθJC(bot) Junction-to-case(bottom) thermal resistance N/A N/A °C/W (1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953. 6.6 Thermal Information: OPA4192 OPA4192 THERMAL METRIC (1) D (SOIC) PW (TSSOP) 14 PINS 14 PINS UNIT RθJA Junction-to-ambient thermal resistance 86.4 92.6 °C/W RθJC(top) Junction-to-case(top) thermal resistance 46.3 27.5 °C/W RθJB Junction-to-board thermal resistance 41.0 33.6 °C/W ψJT Junction-to-top characterization parameter 11.3 1.9 °C/W ψJB Junction-to-board characterization parameter 40.7 33.1 °C/W RθJC(bot) Junction-to-case(bottom) thermal resistance N/A N/A °C/W (1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953. Copyright © 2013–2015, Texas Instruments Incorporated Product Folder Links: OPA192 OPA2192 OPA4192 Submit Documentation Feedback 7 OPA192, OPA2192, OPA4192 SBOS620E – DECEMBER 2013 – REVISED NOVEMBER 2015 www.ti.com 6.7 Electrical Characteristics: VS = ±4 V to ±18 V (VS = +8 V to +36 V) At TA = +25°C, VCM = VOUT = VS / 2, and RLOAD = 10 kΩ connected to VS / 2, unless otherwise noted. PARAMETER TEST CONDITIONS MIN TYP MAX UNIT ±5 ±25 ±8 ±50 ±10 ±75 ±10 ±40 TA = 0°C to 85°C ±25 ±150 TA = –40°C to +125°C ±50 ±250 TA = 0°C to 85°C ±0.1 ±0.5 ±0.15 ±0.8 TA = 0°C to 85°C ±0.1 ±0.8 TA = –40°C to +125°C ±0.2 ±1.0 ±0.3 ±1.0 µV/V ±5 ±20 pA ±5 nA ±20 pA ±2 nA OFFSET VOLTAGE TA = 0°C to 85°C VOS Input offset voltage TA = –40°C to +125°C VCM = (V+) – 1.5 V D packages only dVOS/dT Input offset voltage drift DBV, DGK, and PW packages only PSRR Power-supply rejection ratio TA = –40°C to +125°C TA = –40°C to +125°C µV µV/°C INPUT BIAS CURRENT IB IOS Input bias current Input offset current TA = –40°C to +125°C ±2 TA = –40°C to +125°C NOISE En Input voltage noise (V–) – 0.1 V < VCM < (V+) – 3 V f = 0.1 Hz to 10 Hz 1.30 (V+) – 1.5 V < VCM < (V+) + 0.1 V f = 0.1 Hz to 10 Hz 4 (V–) – 0.1 V < VCM < (V+) – 3 V en Input voltage noise density (V+) – 1.5 V < VCM < (V+) + 0.1 V f = 100 Hz µVPP 10.5 f = 1 kHz 5.5 f = 100 Hz 32 f = 1 kHz nV/√Hz 12.5 NOISE (continued) in Input current noise density f = 1 kHz 1.5 fA/√Hz INPUT VOLTAGE VCM Common-mode voltage range (V–) – 0.1 (V–) – 0.1 V < VCM < (V+) – 3 V CMRR Common-mode rejection ratio (V+) – 1.5 V < VCM < (V+) TA = –40°C to +125°C TA = –40°C to +125°C (V+) – 3 V < VCM < (V+) – 1.5 V (V+) + 0.1 120 140 114 126 100 120 86 100 V dB See Typical Characteristics INPUT IMPEDANCE ZID Differential ZIC Common-mode 100 || 1.6 MΩ || pF 1 || 6.4 1013Ω || pF OPEN-LOOP GAIN (V–) + 0.6 V < VO < (V+) – 0.6 V, RLOAD = 2 kΩ AOL Open-loop voltage gain (V–) + 0.3 V < VO < (V+) – 0.3 V, RLOAD = 10 kΩ 8 Submit Documentation Feedback TA = –40°C to +125°C TA = –40°C to +125°C 120 134 114 126 126 140 120 134 dB Copyright © 2013–2015, Texas Instruments Incorporated Product Folder Links: OPA192 OPA2192 OPA4192 OPA192, OPA2192, OPA4192 www.ti.com SBOS620E – DECEMBER 2013 – REVISED NOVEMBER 2015 Electrical Characteristics: VS = ±4 V to ±18 V (VS = +8 V to +36 V) (continued) At TA = +25°C, VCM = VOUT = VS / 2, and RLOAD = 10 kΩ connected to VS / 2, unless otherwise noted. PARAMETER TEST CONDITIONS MIN TYP MAX UNIT FREQUENCY RESPONSE GBW Unity gain bandwidth SR Slew rate G = 1, 10-V step To 0.01% ts Settling time To 0.001% tOR Overload recovery time VIN × G = VS THD+N Total harmonic distortion + noise G = 1, f = 1 kHz, VO = 3.5 VRMS Crosstalk 10 MHz 20 V/µs V S = ±18 V, G = 1, 10-V step 1.4 V S = ±18 V, G = 1, 5-V step 0.9 V S = ±18 V, G = 1, 10-V step 2.1 V S = ±18 V, G = 1, 5-V step µs 1.8 200 ns 0.00008% OPA2192 and OPA4192, at dc 150 OPA2192 and OPA4192, f = 100 kHz 130 dB OUTPUT No load Positive rail Voltage output swing from rail VO Short-circuit current CLOAD Capacitive load drive ZO Open-loop output impedance 15 95 110 RLOAD = 2 kΩ 430 500 5 15 RLOAD = 10 kΩ 95 110 RLOAD = 2 kΩ 430 500 No load Negative rail ISC 5 RLOAD = 10 kΩ ±65 mV mA See Typical Characteristics f = 1 MHz, IO = 0 A, see Figure 31 Ω 375 POWER SUPPLY IQ Quiescent current per amplifier IO = 0 A 1 TA = –40°C to +125°C, IO = 0 A 1.2 1.5 mA TEMPERATURE Thermal protection (1) (1) 140 °C For a detailed description of thermal protection, see the Thermal Protection section. Copyright © 2013–2015, Texas Instruments Incorporated Product Folder Links: OPA192 OPA2192 OPA4192 Submit Documentation Feedback 9 OPA192, OPA2192, OPA4192 SBOS620E – DECEMBER 2013 – REVISED NOVEMBER 2015 www.ti.com 6.8 Electrical Characteristics: VS = ±2.25 V to ±4 V (VS = +4.5 V to +8 V) At TA = +25°C, VCM = VOUT = VS / 2, and RLOAD = 10 kΩ connected to VS / 2, unless otherwise noted. PARAMETER TEST CONDITIONS MIN TYP MAX ±5 ±25 ±8 ±50 ±10 ±75 UNIT OFFSET VOLTAGE VCM = (V+) – 3 V TA = 0°C to 85°C TA = –40°C to +125°C VOS Input offset voltage (V+) – 3.5 V < VCM < (V+) – 1.5 V VCM = (V+) – 1.5 V dVOS/dT PSRR Input offset voltage drift Power-supply rejection ratio See Common-Mode Voltage Range section ±10 ±40 TA = 0°C to 85°C ±25 ±150 TA = –40°C to +125°C ±50 ±250 ±0.1 ±0.5 TA = –40°C to +125°C ±0.15 ±0.8 TA = 0°C to 85°C VCM = (V+) – 3 V, DBV, DGK, and PW packages only TA = –40°C to +125°C ±0.1 ±0.8 ±0.2 ±1.1 VCM = (V+) – 1.5 V, TA = –40°C to +125°C ±0.5 ±3 VCM = (V+) – 3 V, D packages only µV TA = 0°C to 85°C TA = –40°C to +125°C, VCM = VS / 2 – 0.75 V ±1 µV µV/°C µV/V INPUT BIAS CURRENT IB IOS Input bias current Input offset current ±5 TA = –40°C to +125°C ±2 TA = –40°C to +125°C ±20 pA ±5 nA ±20 pA ±2 nA NOISE En Input voltage noise (V–) – 0.1 V < VCM < (V+) – 3 V, f = 0.1 Hz to 10 Hz (V–) – 0.1 V < VCM < (V+) – 3 V en Input voltage noise density (V+) – 1.5 V < VCM < (V+) + 0.1 V in 1.30 (V+) – 1.5 V < VCM < (V+) + 0.1 V, f = 0.1 Hz to 10 Hz Input current noise density µVPP 4 f = 100 Hz 10.5 f = 1 kHz 5.5 f = 100 Hz 32 f = 1 kHz 12.5 f = 1 kHz 1.5 nV/√Hz fA/√Hz INPUT VOLTAGE VCM Common-mode voltage range (V–) – 0.1 (V–) – 0.1 V < VCM < (V+) – 3 V CMRR Common-mode rejection ratio (V+) – 1.5 V < VCM < (V+) TA = –40°C to +125°C TA = –40°C to +125°C (V+) – 3 V < VCM < (V+) – 1.5 V (V+) + 0.1 94 110 90 104 100 120 84 100 V dB See Typical Characteristics INPUT IMPEDANCE ZID Differential ZIC Common-mode 100 || 1.6 MΩ || pF 1 || 6.4 1013Ω || pF OPEN-LOOP GAIN (V–) + 0.6 V < VO < (V+) – 0.6 V, RLOAD = 2 kΩ AOL Open-loop voltage gain (V–) + 0.3 V < VO < (V+) – 0.3 V, RLOAD = 10 kΩ 10 Submit Documentation Feedback TA = –40°C to +125°C TA = –40°C to +125°C 110 120 100 114 110 126 110 120 dB Copyright © 2013–2015, Texas Instruments Incorporated Product Folder Links: OPA192 OPA2192 OPA4192 OPA192, OPA2192, OPA4192 www.ti.com SBOS620E – DECEMBER 2013 – REVISED NOVEMBER 2015 Electrical Characteristics: VS = ±2.25 V to ±4 V (VS = +4.5 V to +8 V) (continued) At TA = +25°C, VCM = VOUT = VS / 2, and RLOAD = 10 kΩ connected to VS / 2, unless otherwise noted. PARAMETER TEST CONDITIONS MIN TYP MAX UNIT FREQUENCY RESPONSE GBW Unity gain bandwidth SR Slew rate G = 1, 10-V step ts Settling time To 0.01% tOR Overload recovery time Crosstalk 10 MHz 20 V/µs 1 µs VIN× G = VS 200 ns OPA2192 and OPA4192, at dc 150 OPA2192 and OPA4192, f = 100 kHz 130 VS = ±3 V, G = 1, 5-V step dB OUTPUT No load Positive rail Voltage output swing from rail VO Short-circuit current CLOAD Capacitive load drive ZO Open-loop output impedance 15 95 110 RLOAD = 2 kΩ 430 500 5 15 RLOAD = 10 kΩ 95 110 RLOAD = 2 kΩ 430 500 No load Negative rail ISC 5 RLOAD = 10 kΩ ±65 mV mA See Typical Characteristics f = 1 MHz, IO = 0 A, see Figure 31 Ω 375 POWER SUPPLY IQ Quiescent current per amplifier IO = 0 A 1 TA = –40°C to +125°C 1.2 1.5 mA TEMPERATURE Thermal protection (1) (1) 140 °C For a detailed description of thermal protection, see the Thermal Protection section. Copyright © 2013–2015, Texas Instruments Incorporated Product Folder Links: OPA192 OPA2192 OPA4192 Submit Documentation Feedback 11 OPA192, OPA2192, OPA4192 SBOS620E – DECEMBER 2013 – REVISED NOVEMBER 2015 www.ti.com 6.9 Typical Characteristics Table 1. Table of Graphs DESCRIPTION FIGURE Offset Voltage Production Distribution Figure 1 to Figure 6 Offset Voltage Drift Distribution Figure 7 to Figure 10 Offset Voltage vs Temperature Figure 11 Offset Voltage vs Common-Mode Voltage Figure 12 to Figure 14 Offset Voltage vs Power Supply Figure 15 Open-Loop Gain and Phase vs Frequency Figure 16 Closed-Loop Gain and Phase vs Frequency Figure 17 Input Bias Current vs Common-Mode Voltage Figure 18 Input Bias Current vs Temperature Figure 19 Output Voltage Swing vs Output Current (maximum supply) Figure 20 CMRR and PSRR vs Frequency Figure 21 CMRR vs Temperature Figure 22 PSRR vs Temperature Figure 23 0.1-Hz to 10-Hz Noise Figure 24 Input Voltage Noise Spectral Density vs Frequency Figure 25 THD+N Ratio vs Frequency Figure 26 THD+N vs Output Amplitude Figure 27 Quiescent Current vs Supply Voltage Figure 28 Quiescent Current vs Temperature Figure 29 Open Loop Gain vs Temperature Figure 30 Open Loop Output Impedance vs Frequency Small Signal Overshoot vs Capacitive Load (100-mV Output Step) Figure 31 Figure 32, Figure 33 No Phase Reversal Figure 34 Positive Overload Recovery Figure 35 Negative Overload Recovery Small-Signal Step Response (100 mV) Figure 36 Figure 37, Figure 38 Large-Signal Step Response Settling Time Figure 39 Figure 40 to Figure 43 Short-Circuit Current vs Temperature Figure 44 Maximum Output Voltage vs Frequency Figure 45 Propagation Delay Rising Edge Figure 46 Propagation Delay Falling Edge Figure 47 Crosstalk vs Frequency Figure 48 12 Submit Documentation Feedback Copyright © 2013–2015, Texas Instruments Incorporated Product Folder Links: OPA192 OPA2192 OPA4192 OPA192, OPA2192, OPA4192 www.ti.com SBOS620E – DECEMBER 2013 – REVISED NOVEMBER 2015 6.10 Typical Characteristics At TA = 25°C, VS = ±18 V, VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2, and CL = 100 pF, unless otherwise noted. 50 22 Distribution Taken From 190 Amplifiers TA = 125 ƒC Distribution Taken From 4715 Amplifiers 18 40 16 Amplifiers (%) Percentage of Amplifiers (%) 20 14 12 10 8 30 20 6 10 4 Offset Voltage ( V) Offset Voltage (µV) C032 Figure 1. Offset Voltage Production Distribution at 25°C Figure 2. Offset Voltage Production Distribution at 125°C Distribution Taken From 190 Amplifiers TA = 0ƒC 70 60 50 50 40 30 40 30 20 20 10 10 0 0 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 40 45 50 Amplifiers (%) 60 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 40 45 50 Offset Voltage (µV) Offset Voltage (µV) C013 Figure 3. Offset Voltage Production Distribution at 85°C C013 Figure 4. Offset Voltage Production Distribution at 0°C 50 35 35 25 20 75 50 0 25 5 0 0 10 5 -25 15 10 -50 15 Offset Voltage (µV) 50 20 25 25 30 0 30 -75 Amplifiers (%) 40 -75 Amplifiers (%) Distribution Taken From 190 Amplifiers TA = -40ƒC 45 40 -25 Distribution Taken From 190 Amplifiers TA = -25ƒC 45 -50 50 75 Amplifiers (%) C013 Distribution Taken From 190 Amplifiers TA = 85ƒC 70 75 50 25 0 -25 -50 0 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 0 -75 2 Offset Voltage (µV) C013 Figure 5. Offset Voltage Production Distribution at –25°C C013 Figure 6. Offset Voltage Production Distribution at –40°C Copyright © 2013–2015, Texas Instruments Incorporated Product Folder Links: OPA192 OPA2192 OPA4192 Submit Documentation Feedback 13 OPA192, OPA2192, OPA4192 SBOS620E – DECEMBER 2013 – REVISED NOVEMBER 2015 www.ti.com Typical Characteristics (continued) At TA = 25°C, VS = ±18 V, VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2, and CL = 100 pF, unless otherwise noted. 70 60 50 Distribution Taken From 120 Amplifiers SOIC, TA = -40ƒC to +125ƒC Distribution Taken From 75 Amplifiers SOT and VSSOP, TA = -40ƒC to +125ƒC 40 Amplifiers (%) Amplifiers (%) 50 40 30 30 20 20 10 Offset Voltage Drift (µV/ƒC) 1.1 0.9 0.7 0.5 0.3 0.1 -0.1 -0.3 -0.5 -0.7 -0.9 -1.1 0 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0 0.1 -0.1 -0.2 -0.3 -0.4 -0.5 -0.6 -0.7 Offset Voltage Drift (µV/ƒC) C013 OPA192ID and OPA2192ID C013 OPA192IDBV, OPA192IDGK, OPA2192IDGK, and OPA4192IPW Figure 7. Offset Voltage Drift Distribution from –40°C to +125°C Figure 8. Offset Voltage Drift Distribution from –40°C to +125°C 25 Offset Voltage Drift (µV/ƒC) 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 -0.1 0.5 0.4 0.3 0.2 0.1 0 -0.1 -0.2 0 -0.3 0 -0.4 5 -0.5 10 -0.2 10 -0.3 20 15 -0.4 30 20 -0.5 40 -0.6 Amplifiers (%) Amplifiers (%) 50 Distribution Taken From 75 Amplifiers SOT and VSSOP, TA = 0ƒC to 85ƒC -0.7 60 30 Distribution Taken From 120 Amplifiers SOIC, TA = 0ƒC to 85ƒC -0.8 70 0.8 0 -0.8 10 Offset Voltage Drift (µV/ƒC) C013 OPA192ID and OPA2192ID C013 OPA192IDBV, OPA192IDGK, OPA2192IDGK, and OPA4192IPW Figure 9. Offset Voltage Drift Distribution from 0°C to 85°C Figure 10. Offset Voltage Drift Distribution from 0°C to 85°C 100 50 190 Typical Units Shown 5 Typical Units Shown 75 25 25 VOS ( V) VOS ( V) 50 0 ±25 0 VCM = -18.1 V ±50 ±25 ±75 ±100 ±75 ±50 ±25 ±50 0 25 50 75 100 125 Temperature (ƒC) Figure 11. Offset Voltage vs Temperature 14 Submit Documentation Feedback 150 ±20 ±15 ±10 ±5 0 VCM (V) C001 5 10 15 20 C001 Figure 12. Offset Voltage vs Common-Mode Voltage Copyright © 2013–2015, Texas Instruments Incorporated Product Folder Links: OPA192 OPA2192 OPA4192 OPA192, OPA2192, OPA4192 www.ti.com SBOS620E – DECEMBER 2013 – REVISED NOVEMBER 2015 Typical Characteristics (continued) At TA = 25°C, VS = ±18 V, VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2, and CL = 100 pF, unless otherwise noted. 200 100 5 Typical Units Shown 5 Typical Units Shown VS = ±2.25 V 150 75 VCM = +18.1 V 100 50 VOS ( V) 50 VOS ( V) VCM = -18.1 V 25 0 0 ±50 ±25 P-Channel N-Channel ±150 ±75 Transition ±100 12.5 13.5 14.5 15.5 16.5 17.5 VCM (V) Transition P-Channel ±200 ±2.5 ±2.0 ±1.5 ±1.0 ±0.5 0.0 0.5 18.5 Figure 13. Offset Voltage vs Common-Mode Voltage Gain (dB) VOS ( V) 80.0 0 ±10 ±20 180 20.0 0.0 10.0 12.0 14.0 16.0 18.0 20.0 VSUPPLY (V) Phase ±20.0 1 Figure 15. Offset Voltage vs Power Supply 10 100 1k 10k 100k Frequency (Hz) 1M 0 10M 100M C004 Figure 16. Open-Loop Gain and Phase vs Frequency 20 G = -100 G = +1 G = -1 G = -10 15 Input Bias Current (pA) 40.0 90 45 C001 60.0 135 40.0 ±40 ±50 Open-loop Gain 60.0 ±30 8.0 C001 Phase (ƒ) 10 6.0 2.5 120.0 100.0 4.0 2.0 Figure 14. Offset Voltage vs Common-Mode Voltage 20 2.0 1.5 CLOAD = 15 pF 30 0.0 1.0 140.0 10 Typical Units Shown VS = ±2.25 V to “18 V 40 N-Channel VCM (V) C001 50 Gain (dB) VCM = +2.35 V VCM = -2.35 V ±100 ±50 20.0 0.0 IB- 10 5 0 IB+ ±5 ±10 ±15 ±20.0 1000 10k 100k 1M Frequency (Hz) ±20 ±18.0 10M ±9.0 Figure 17. Closed-Loop Gain and Phase vs Frequency 0.0 9.0 VCM (V) C003 18.0 C001 Figure 18. Input Bias Current vs Common-Mode Voltage Copyright © 2013–2015, Texas Instruments Incorporated Product Folder Links: OPA192 OPA2192 OPA4192 Submit Documentation Feedback 15 OPA192, OPA2192, OPA4192 SBOS620E – DECEMBER 2013 – REVISED NOVEMBER 2015 www.ti.com Typical Characteristics (continued) At TA = 25°C, VS = ±18 V, VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2, and CL = 100 pF, unless otherwise noted. 6000 (V-) + 5 IB+ IB Ios Input Bias Current (pA) 5000 (V-) + 4 +125°C 4000 (V-) + 3 Vout (V) 3000 2000 (V-) + 2 -40°C (V-) + 1 1000 (V-) Ios 0 ±1000 (V-) - 1 ±75 ±50 ±25 0 25 50 75 100 125 150 Temperature (ƒC) 175 0 Common-Mode Rejection Ratio (µV/V) Common-Mode Rejection Ratio (dB), Power-Supply Rejection Ratio (dB) 30 40 50 60 70 80 C001 Figure 20. Output Voltage Swing vs Output Current (Maximum Supply) 160.0 140.0 120.0 100.0 80.0 60.0 +PSRR CMRR 20.0 20 Iout (mA) Figure 19. Input Bias Current vs Temperature 40.0 10 C001 -PSRR 10 8 6 4 VS = ±2.25 V, VCM = V+ - 3 V 2 0 ±2 VS = ±18 V, VCM = 0 V ±4 ±6 ±8 ±10 0.0 1 10 100 1k 10k 100k Frequency (Hz) 1M ±75 ±50 ±25 0 25 50 75 100 Temperature (ƒC) C012 Figure 21. CMRR and PSRR vs Frequency 125 150 C001 Figure 22. CMRR vs Temperature 0.8 0.6 0.4 400 nV/div Power-Supply Rejection Ratio (µV/V) 1 0.2 0 -0.2 -0.4 -0.6 -0.8 Peak-to-Peak Noise = VRMS × 6.6 = 1.30 Vpp -1 ±75 ±50 ±25 0 25 50 75 100 Temperature (ƒC) Figure 23. PSRR vs Temperature 16 Submit Documentation Feedback 125 Time (1 s/div) 150 C001 C001 Figure 24. 0.1-Hz to 10-Hz Noise Copyright © 2013–2015, Texas Instruments Incorporated Product Folder Links: OPA192 OPA2192 OPA4192 OPA192, OPA2192, OPA4192 www.ti.com SBOS620E – DECEMBER 2013 – REVISED NOVEMBER 2015 Typical Characteristics (continued) At TA = 25°C, VS = ±18 V, VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2, and CL = 100 pF, unless otherwise noted. Total Harmonic Distortion + Noise (%) Voltage Noise Density (nV/rtHz) VCM = V+ - 100 mV N-Channel Input 100 10 VCM = 0 V P-Channel Input 1 10 100 1k G = +1 V/V, RL = 2 k G = -1 V/V, RL = 10 k 0.01 10k 0.001 -100 0.0001 -120 VOUT = 3.5 VRMS BW = 80 kHz -140 10 100k Frequency (Hz) -80 0.001 -100 0.1 -120 1.1 1.0 0.9 -140 1 0.8 10 0 Output Amplitude (VRMS) C007 1.2 IQ (mA) Total Harmonic Distortion + Noise (%) 0.01 Total Harmonic Distortion + Noise (dB) -60 G = +1 V/V, RL = 10 k G = +1 V/V, RL = 2 k G = -1 V/V, RL = 10 k G = -1 V/V, RL = 2 k 10k Figure 26. THD+N Ratio vs Frequency f = 1 kHz BW = 80 kHz 0.00001 0.01 1k Frequency (Hz) Figure 25. Input Voltage Noise Spectral Density vs Frequency 0.0001 100 C002 0.1 -80 G = -1 V/V, RL = 2 k 0.00001 1 0.1 -60 G = +1 V/V, RL = 10 k Total Harmonic Distortion + Noise (dB) 0.1 1000 4 8 12 16 20 24 28 32 36 Supply Voltage (V) C008 Figure 27. THD+N vs Output Amplitude C001 Figure 28. Quiescent Current vs Supply Voltage 3.0 1.2 Vs = 4.5 V Vs = 36 V 2.0 1.1 AOL (µV/V) IQ (mA) 1.0 Vs = ±18 V 1 Vs = ±2.25 V 0.0 ±1.0 0.9 ±2.0 ±3.0 0.8 ±75 ±50 ±25 0 25 50 75 100 125 Temperature (ƒC) Figure 29. Quiescent Current vs Temperature 150 RL = 10 kŸ ±75 ±50 ±25 0 25 50 75 100 125 Temperature (ƒC) C001 150 C001 Figure 30. Open-Loop Gain vs Temperature Copyright © 2013–2015, Texas Instruments Incorporated Product Folder Links: OPA192 OPA2192 OPA4192 Submit Documentation Feedback 17 OPA192, OPA2192, OPA4192 SBOS620E – DECEMBER 2013 – REVISED NOVEMBER 2015 www.ti.com Typical Characteristics (continued) At TA = 25°C, VS = ±18 V, VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2, and CL = 100 pF, unless otherwise noted. 10k 50 RII = 1NŸ kO R G = -1 RFF = 1NŸ kO 45 40 1k Overshoot (%) Output Impedance ( ) + 18 V 100 ± + 35 RISO OPA192 + VIN CL ± 30 ± 18 V 25 20 RISO = 00 15 RISO = 2525 10 RISO = 50 50 5 10 0 0 1 10 100 1k 10k 100k 1M Frequency (Hz) 10M 10p 100p Figure 31. Open-Loop Output Impedance vs Frequency 1n Capacitive Load (F) C016 C013 Figure 32. Small-Signal Overshoot vs Capacitive Load (100-mV Output Step) 50 ± 40 35 OPA192 + VIN RL CL + + ± 37 VPP ± 18 V Sine Wave (±18.5V) ± 18 V ± 5 V/div 30 VIN + 18 V ± RISO OPA192 + Overshoot (%) G = +1 + 18 V 45 25 20 VOUT 15 VOUT RISO = 0 0 RISO = 25 25 RISO = 50 50 10 5 0 10p 100p Time (200 s/div) 1n Capacitive Load (F) C011 C013 Figure 33. Small-Signal Overshoot vs Capacitive Load (100-mV Output Step) Figure 34. No Phase Reversal kO RRI I = 1 NŸ + 18 V VOUT RRI = 1 kO NŸ I ± + RRF = 10 kO NŸ F OPA192 OPA192 G = -10 VOUT + ± VOUT ± 18 V 5 V/div 5 V/div ± ± + VOUT + VIN + 18 V VIN RRFF = 10 kO NŸ ± 18 V G = -10 VIN VIN Time (200 ns/div) Time (200 ns/div) C009 Figure 35. Positive Overload Recovery 18 Submit Documentation Feedback C010 Figure 36. Negative Overload Recovery Copyright © 2013–2015, Texas Instruments Incorporated Product Folder Links: OPA192 OPA2192 OPA4192 OPA192, OPA2192, OPA4192 www.ti.com SBOS620E – DECEMBER 2013 – REVISED NOVEMBER 2015 Typical Characteristics (continued) At TA = 25°C, VS = ±18 V, VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2, and CL = 100 pF, unless otherwise noted. kO RRI I = 1NŸ G = -1 kO RRF F = 1NŸ + 18 V ± + OPA192 + ± 20 mV/div 20 mV/div VIN G = +1 + 18 V ± CL ± 18 V OPA192 + + VIN RL ± 18 V CL ± RL = 1 kŸ CL = 10 pF CL = 10 pF Time (120 ns/div) Time (100 ns/div) C006 C015 Figure 38. Small-Signal Step Response (100 mV) Figure 37. Small-Signal Step Response (100 mV) 4 kO RI RI = 1NŸ Output Delta from Final Value (mV) 2 V/div RL = 1 kŸ CL = 10 pF G = -1 kO RFRF = 1NŸ + 18 V ± + OPA192 + VIN ± CL ± 18 V G = +1 3 2 1 0 -1 0.01% Settling = ±1 mV -2 -3 Step Applied at t = 0 -4 Time (300 ns/div) 0 0.25 0.5 0.75 C005 1.25 1.5 1.75 2 C034 Figure 40. Settling Time (10-V Positive Step) Figure 39. Large-Signal Step Response 4 4 G = +1 Output Delta from Final Value (mV) Output Delta from Final Value (mV) 1 Time ( s) 3 2 1 0 0.01% Settling = ±500 V -1 -2 -3 Step Applied at t = 0 -4 G = +1 3 2 1 0 -1 0.01% Settling = ±1 mV -2 -3 Step Applied at t = 0 -4 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 Time ( s) 1.8 0 0.2 0.4 0.8 1 1.2 1.4 1.6 1.8 Time ( s) C034 Figure 41. Settling Time (5-V Positive Step) 0.6 2 C034 Figure 42. Settling Time (10-V Negative Step) Copyright © 2013–2015, Texas Instruments Incorporated Product Folder Links: OPA192 OPA2192 OPA4192 Submit Documentation Feedback 19 OPA192, OPA2192, OPA4192 SBOS620E – DECEMBER 2013 – REVISED NOVEMBER 2015 www.ti.com Typical Characteristics (continued) At TA = 25°C, VS = ±18 V, VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2, and CL = 100 pF, unless otherwise noted. 80 G = +1 ISC, Source 3 2 1 0 0.01% Settling = ±500 V -1 -2 40 20 -3 Step Applied at t = 0 0 -4 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 Time ( s) ±75 1.8 30 0 Output Voltage (5 V/div) VS = ±5 V VS = ±2.25 V 1M 100 125 150 C001 tpLH = 0.97 s VOUT Voltage 0 Time (200 ns/div) 10M Frequency (Hz) 75 Overdrive = 100 mV 15 100k 50 Figure 44. Short-Circuit Current vs Temperature 20 10k 25 Temperature (ƒC) 25 5 ±25 Maximum output voltage without slew-rate induced distortion. VS = ±15 V 10 ±50 C034 Figure 43. Settling Time (5-V Negative Step) Output Voltage (VPP) ISC, Sink 60 ISC (mA) Output Delta from Final Value (mV) 4 C025 C033 Figure 45. Maximum Output Voltage vs Frequency Figure 46. Propagation Delay Rising Edge -100 VOUT Voltage Crosstalk (db) Output Voltage (1 V/div) -80 tpLH = 1.1 s Overdrive = 100 mV -120 -140 -160 Time (200 ns/div) -180 1k 10k C026 Figure 47. Propagation Delay Falling Edge 20 Submit Documentation Feedback 100k 1M Frequency (Hz) Figure 48. Crosstalk vs Frequency Copyright © 2013–2015, Texas Instruments Incorporated Product Folder Links: OPA192 OPA2192 OPA4192 OPA192, OPA2192, OPA4192 www.ti.com SBOS620E – DECEMBER 2013 – REVISED NOVEMBER 2015 7 Parameter Measurement Information 7.1 Input Offset Voltage Drift The OPAx192 family of operational amplifiers is manufactured using TI’s e-trim technology. Each amplifier input offset voltage and input offset voltage drift is trimmed in production, thereby minimizing errors associated with input offset voltage and input offset voltage drift. The e-trim technology is a TI proprietary method of trimming internal device parameters during either wafer probing or final testing. When trimming input offset voltage drift the systematic or linear drift error on each device is trimmed to zero. This results in the remaining errors associated with input offset drift are minimal and are the result from only nonlinear error sources. Figure 49 illustrates this concept. Input Offset Voltage VOS Before e-trim VOS After e-trim Linear component of drift Linear component of drift Temperature Figure 49. Input Offset Before and After Drift Trim A common method of specifying input offset voltage drift is the box method. The box method estimates a maximum input offset drift by bounding the offset voltage versus temperature curve with a box and using the corners of this bounding box to determine the drift. The slope of the line connecting the diagonal corners of the box corresponds to the input offset voltage drift. Figure 50 shows the box method concept. The box method works particularly well when the input offset drift is dominated by the linear component of drift, but because the OPA192 family uses TI’s e-trim technology to remove the linear component input offset voltage drift, the box method is not a particularly useful method of accurately performing an error analysis. Figure 50 shows 30 typical units of the OPAx192 with the box method superimposed for illustrative purposes. The boundaries of the box are determined by the specified temperature range along the x-axis and the maximum specified input offset voltage across that same temperature range along the y-axis. Using the box method predicts an input offset voltage drift of 0.9 µV/°C. As shown in Figure 50, the slopes of the actual input offset voltage versus temperature are much less than that predicted by the box method. The box method predicts a pessimistic value for the maximum input offset voltage drift and is not recommended when performing an error analysis. Offset Voltage vs Temperature 100 75 Offset Voltage (PV) 50 25 0 -25 -50 -75 -100 -50 -25 0 25 50 75 Temperature (qC) 100 125 150 Figure 50. The Box Method Copyright © 2013–2015, Texas Instruments Incorporated Product Folder Links: OPA192 OPA2192 OPA4192 Submit Documentation Feedback 21 OPA192, OPA2192, OPA4192 SBOS620E – DECEMBER 2013 – REVISED NOVEMBER 2015 www.ti.com Input Offset Voltage Drift (continued) Instead of the box method, a convenient way to illustrate input offset drift is to compute the slopes of the input offset voltage versus temperature curve. This is the same as computing the input offset drift at each point along the input offset voltage versus temperature curve. The results for the OPAx192 family are shown in Figure 51 and Figure 52. 1.1 SOIC 0.6 Input Offset Voltage Drift ( V/ƒC) Input Offset Voltage Drift ( V/ƒC) 1 0.8 +3 1 +1 0.4 0.2 0 -0.2 -0.4 -1 -0.6 -3 1 -0.8 -1 SOT and VSSOP 0.9 +3 1 0.7 +1 0.5 0.3 0.1 -0.1 -0.3 -0.5 -1 -0.7 -0.9 -3 1 -1.1 ±75 ±50 ±25 0 25 50 75 100 125 Temperature (ƒC) ±75 150 ±50 ±25 0 25 50 75 Temperature (ƒC) C001 Figure 51. Input Offset Voltage Drift vs Temperature (OPA192ID and OPA2192ID) 100 125 150 C001 Figure 52. Input Offset Voltage Drift vs Temperature (OPA192IDBV, OPA192IDGK, OPA2192IDGK, and OPA4192IPW) As shown in Figure 51, the input offset drift is typically less than ±0.3 µV/°C over the range from –40°C to +125°C. When performing an error analysis over the full specified temperature range, use the typical and maximum values for input offset voltage drift as described in the Electrical Characteristics tables. If a reduced temperature range is applicable, use the information shown in Figure 51 or Figure 52 when performing an error analysis. To determine the change in input offset voltage, use Equation 1: ΔVOS = ΔT × dVOS/dT where • • • ΔVOS = Change in input offset voltage ΔT = Change in temperature dVOS/dT = Input offset voltage drift (1) For example, determine the amount of OPA192ID input offset voltage change over the temperature range of 25°C to 75°C for 1 σ (68%) of the units. As shown in Figure 51, the input offset drift is typically 0.15 µV/°C. This input offset drift results in a typical input offset voltage change of (75°C – 25°C) × 0.15 µV/°C = 7.5 µV . For 3 σ (99.7%) of the units, Figure 51 shows a typical input offset drift of 0.4 µV/°C. This input offset drift results in a typical input offset voltage change of (75°C – 25°C) × 0.4 µV/°C = 20 µV. Figure 53 shows six typical units. 75 6 Typical Units Shown 50 31 VOS ( V) 25 0 ±25 -3 1 ±50 ±75 ±75 ±50 ±25 0 25 50 75 100 125 Temperature (ƒC) 150 C001 Figure 53. Input Offset Voltage Drift vs Temperature for Six Typical Units 22 Submit Documentation Feedback Copyright © 2013–2015, Texas Instruments Incorporated Product Folder Links: OPA192 OPA2192 OPA4192 OPA192, OPA2192, OPA4192 www.ti.com SBOS620E – DECEMBER 2013 – REVISED NOVEMBER 2015 8 Detailed Description 8.1 Overview The OPAx192 family of operational amplifiers use e-trim, a method of package-level trim for offset and offset temperature drift implemented during the final steps of manufacturing after the plastic molding process. This method minimizes the influence of inherent input transistor mismatch, as well as errors induced during package molding. The trim communication occurs on the output pin of the standard pinout, and after the trim points are set, further communication to the trim structure is permanently disabled. The Functional Block Diagram section shows the simplified diagram of the OPA192 with e-trim. Unlike previous e-trim op amps, the OPAx192 uses a patented two-temperature trim architecture to achieve a very low offset voltage of 25 µV (max) and low voltage offset drift of 0.5 µV/°C (max) over the full specified temperature range. This level of precision performance at wide supply voltages makes these amplifiers useful for high-impedance industrial sensors, filters, and high-voltage data acquisition. 8.2 Functional Block Diagram OPAx192 NCH Input Stage IN+ 36-V Differential Front End Slew Boost High Capacitive Load Compensation Output Stage VOUT IN PCH Input Stage t e-trim Package Level Trim Copyright © 2013–2015, Texas Instruments Incorporated Product Folder Links: OPA192 OPA2192 OPA4192 Submit Documentation Feedback 23 OPA192, OPA2192, OPA4192 SBOS620E – DECEMBER 2013 – REVISED NOVEMBER 2015 www.ti.com 8.3 Feature Description 8.3.1 Input Protection Circuitry The OPAx192 uses a unique input architecture to eliminate the need for input protection diodes but still provides robust input protection under transient conditions. Conventional input diode protection schemes shown in Figure 54 can be activated by fast transient step responses and can introduce signal distortion and settling time delays because of alternate current paths, as shown in Figure 55. For low-gain circuits, these fast-ramping input signals forward-bias back-to-back diodes, causing an increase in input current, and resulting in extended settling time, as shown in Figure 56. V+ V+ VIN+ VIN+ VOUT OPA192 36 V VOUT ~0.7 V VIN VIN V OPA192 Provides Full 36-V Differential Input Range V Conventional Input Protection Limits Differential Input Range Figure 54. OPA192 Input Protection Does Not Limit Differential Input Capability Vn = +10 V RFILT +10 V 1 Ron_mux Sn 1 D 2 ~±9.3 V +10 V CFILT CS CD Vn+1 = ±10 V RFILT ±10 V Vin± 2 Ron_mux Sn+1 ~0.7 V CS CFILT Vout Idiode_transient ±10 V Input Low Pass Filter Vin+ Buffer Amplifier Simplified Mux Model Figure 55. Back-to-Back Diodes Create Settling Issues Output Delta From Final Value (mV) 100 Standard Input Diode Structure Extends Settling Time 80 60 40 0.1% Settling = ±10 mV 20 0 ±20 OPA192 Input Structure Offers Fast Settling ±40 ±60 ±80 ±100 0 5 10 15 20 25 30 35 40 45 50 55 Time ( s) 60 C040 Figure 56. OPA192 Protection Circuit Maintains Fast-Settling Transient Response 24 Submit Documentation Feedback Copyright © 2013–2015, Texas Instruments Incorporated Product Folder Links: OPA192 OPA2192 OPA4192 OPA192, OPA2192, OPA4192 www.ti.com SBOS620E – DECEMBER 2013 – REVISED NOVEMBER 2015 Feature Description (continued) The OPAx192 family of operational amplifiers provides a true high-impedance differential input capability for highvoltage applications. This patented input protection architecture does not introduce additional signal distortion or delayed settling time, making the device an optimal op amp for multichannel, high-switched, input applications. The OPA192 can tolerate a maximum differential swing (voltage between inverting and noninverting pins of the op amp) of up to 36 V, making the device suitable for use as a comparator or in applications with fast-ramping input signals such as multiplexed data-acquisition systems; see Figure 66. 8.3.2 EMI Rejection The OPAx192 uses integrated electromagnetic interference (EMI) filtering to reduce the effects of EMI from sources such as wireless communications and densely-populated boards with a mix of analog signal chain and digital components. EMI immunity can be improved with circuit design techniques; the OPAx192 benefits from these design improvements. Texas Instruments has developed the ability to accurately measure and quantify the immunity of an operational amplifier over a broad frequency spectrum extending from 10 MHz to 6 GHz. Figure 57 shows the results of this testing on the OPA192. Table 2 shows the EMIRR IN+ values for the OPA192 at particular frequencies commonly encountered in real-world applications. Applications listed in Table 2 may be centered on or operated near the particular frequency shown. Detailed information can also be found in the application report EMI Rejection Ratio of Operational Amplifiers, SBOA128, available for download from www.ti.com. 160.0 PRF = -10 dBm VSUPPLY = ±18 V VCM = 0 V 140.0 EMIRR IN+ (dB) 120.0 100.0 80.0 60.0 40.0 20.0 0.0 10M 100M 1G Frequency (Hz) 10G C017 Figure 57. EMIRR Testing Table 2. OPA192 EMIRR IN+ For Frequencies of Interest FREQUENCY APPLICATION OR ALLOCATION EMIRR IN+ 400 MHz Mobile radio, mobile satellite, space operation, weather, radar, ultra-high frequency (UHF) applications 44.1 dB 900 MHz Global system for mobile communications (GSM) applications, radio communication, navigation, GPS (to 1.6 GHz), GSM, aeronautical mobile, UHF applications 52.8 dB 1.8 GHz GSM applications, mobile personal communications, broadband, satellite, L-band (1 GHz to 2 GHz) 61.0 dB 2.4 GHz 802.11b, 802.11g, 802.11n, Bluetooth®, mobile personal communications, industrial, scientific and medical (ISM) radio band, amateur radio and satellite, S-band (2 GHz to 4 GHz) 69.5 dB 3.6 GHz Radiolocation, aero communication and navigation, satellite, mobile, S-band 88.7 dB 5.0 GHz 802.11a, 802.11n, aero communication and navigation, mobile communication, space and satellite operation, C-band (4 GHz to 8 GHz) 105.5 dB Copyright © 2013–2015, Texas Instruments Incorporated Product Folder Links: OPA192 OPA2192 OPA4192 Submit Documentation Feedback 25 OPA192, OPA2192, OPA4192 SBOS620E – DECEMBER 2013 – REVISED NOVEMBER 2015 www.ti.com 8.3.3 Phase Reversal Protection The OPAx192 family has internal phase-reversal protection. Many op amps exhibit a phase reversal when the input is driven beyond its linear common-mode range. This condition is most often encountered in noninverting circuits when the input is driven beyond the specified common-mode voltage range, causing the output to reverse into the opposite rail. The OPAx192 is a rail-to-rail input op amp; therefore, the common-mode range can extend up to the rails. Input signals beyond the rails do not cause phase reversal; instead, the output limits into the appropriate rail. This performance is shown in Figure 58. VIN + 18 V ± OPA192 VOUT + ± 37 VPP ± 18 V Sine Wave (±18.5V) 5 V/div + VOUT Time (200 s/div) C011 Figure 58. No Phase Reversal 8.3.4 Thermal Protection TA = 65°C PD = 0.81W JA = 116°C/W TJ = 116°C/W × 0.81W + 65°C TJ = 159°C (expected) +30 V VOUT The internal power dissipation of any amplifier causes its internal (junction) temperature to rise. This phenomenon is called self heating. The absolute maximum junction temperature of the OPAx192 is 150°C. Exceeding this temperature causes damage to the device. The OPAx192 has a thermal protection feature that prevents damage from self heating. The protection works by monitoring the temperature of the device and turning off the op amp output drive for temperatures above 140°C. Figure 59 shows an application example for the OPA192 that has significant self heating (159°C) because of its power dissipation (0.81 W). Thermal calculations indicate that for an ambient temperature of 65°C the device junction temperature must reach 187°C. The actual device, however, turns off the output drive to maintain a safe junction temperature. Figure 59 shows how the circuit behaves during thermal protection. During normal operation, the device acts as a buffer so the output is 3 V. When self heating causes the device junction temperature to increase above 140°C, the thermal protection forces the output to a high-impedance state and the output is pulled to ground through resistor RL. 3V Normal Operation 0V Output High-Z 150°C OPA192 + ± VIN 3V + RL 3V 100 Ÿ ± 140ºC Temperature IOUT = 30 mA Figure 59. Thermal Protection 8.3.5 Capacitive Load and Stability The OPAx192 features a patented output stage capable of driving large capacitive loads, and in a unity-gain configuration, directly drives up to 1 nF of pure capacitive load. Increasing the gain enhances the ability of the amplifier to drive greater capacitive loads; see Figure 60 and Figure 61. The particular op amp circuit configuration, layout, gain, and output loading are some of the factors to consider when establishing whether an amplifier will be stable in operation. 26 Submit Documentation Feedback Copyright © 2013–2015, Texas Instruments Incorporated Product Folder Links: OPA192 OPA2192 OPA4192 OPA192, OPA2192, OPA4192 www.ti.com SBOS620E – DECEMBER 2013 – REVISED NOVEMBER 2015 50 50 RII = 1NŸ kO R G = -1 RFF = 1NŸ kO 45 ± + ± 35 + VIN ± 30 40 RISO CL ± 18 V 25 35 + VIN RL 25 RISO = 00 15 RISO = 2525 15 10 RISO = 50 50 10 20 RISO = 0 0 RISO = 25 25 RISO = 50 50 5 0 0 10p 100p 1n 10p Capacitive Load (F) CL ± 18 V ± 30 20 5 RISO OPA192 + OPA192 Overshoot (%) Overshoot (%) 40 G = +1 + 18 V 45 + 18 V 100p 1n Capacitive Load (F) C013 Figure 60. Small-Signal Overshoot vs Capacitive Load (100-mV Output Step) C013 Figure 61. Small-Signal Overshoot vs Capacitive Load (100-mV Output Step) For additional drive capability in unity-gain configurations, improve capacitive load drive by inserting a small (10 Ω to 20 Ω) resistor, RISO, in series with the output, as shown in Figure 62. This resistor significantly reduces ringing and maintains dc performance for purely capacitive loads. However, if a resistive load is in parallel with the capacitive load, then a voltage divider is created, thus introducing a gain error at the output and slightly reducing the output swing. The error introduced is proportional to the ratio RISO / RL, and is generally negligible at low output levels. A high capacitive load drive makes the OPA192 well suited for applications such as reference buffers, MOSFET gate drives, and cable-shield drives. The circuit shown in Figure 62 uses an isolation resistor, RISO, to stabilize the output of an op amp. RISO modifies the open-loop gain of the system for increased phase margin, and results using the OPA192 are summarized in Table 3. For additional information on techniques to optimize and design using this circuit, TI Precision Design TIDU032 details complete design goals, simulation, and test results. +Vs Vout Riso + Vin Cload + ± -Vs Figure 62. Extending Capacitive Load Drive with the OPA192 Table 3. OPA192 Capacitive Load Drive Solution Using Isolation Resistor Comparison of Calculated and Measured Results PARAMETER VALUE Capacitive Load 100 pF 1000 pF 0.01 µF 0.1 µF 1 µF Phase Margin 45° 60° 45° 60° 45° 60° 45° 60° 45° 60° RISO (Ω) 47.0 360.0 24.0 100.0 20.0 51.0 6.2 15.8 2.0 4.7 Measured Overshoot (%) 23.2 8.6 10.4 22.5 9.0 22.1 8.7 23.1 8.6 21.0 8.6 Calculated PM 45.1° 58.1° 45.8° 59.7° 46.1° 60.1° 45.2° 60.2° 47.2° 60.2° For step-by-step design procedure, circuit schematics, bill of materials, printed circuit board (PCB) files, simulation results, and test results, refer to TI Precision Design TIDU032, Capacitive Load Drive Solution using an Isolation Resistor . Copyright © 2013–2015, Texas Instruments Incorporated Product Folder Links: OPA192 OPA2192 OPA4192 Submit Documentation Feedback 27 OPA192, OPA2192, OPA4192 SBOS620E – DECEMBER 2013 – REVISED NOVEMBER 2015 www.ti.com 8.3.6 Common-Mode Voltage Range The OPAx192 is a 36-V, true rail-to-rail input operational amplifier with an input common-mode range that extends 100 mV beyond either supply rail. This wide range is achieved with paralleled complementary N-channel and P-channel differential input pairs, as shown in Figure 63. The N-channel pair is active for input voltages close to the positive rail, typically (V+) – 3 V to 100 mV above the positive supply. The P-channel pair is active for inputs from 100 mV below the negative supply to approximately (V+) – 1.5 V. There is a small transition region, typically (V+) –3 V to (V+) – 1.5 V in which both input pairs are on. This transition region can vary modestly with process variation, and within this region PSRR, CMRR, offset voltage, offset drift, noise and THD performance may be degraded compared to operation outside this region. +Vsupply IS1 VINPCH1 NCH4 NCH3 PCH2 VIN+ e-TrimTM FUSE BANK VOS TRIM VOS DRIFT TRIM -Vsupply Figure 63. Rail-to-Rail Input Stage To achieve the best performance for two-stage rail-to-rail input amplifiers, avoid the transition region when possible. The OPAx192 uses a precision trim for both the N-channel and P-channel regions. This technique enables significantly lower levels of offset than previous-generation devices, causing variance in the transition region of the input stages to appear exaggerated relative to offset over the full common-mode range, as shown in Figure 64. Transition Region N-Channel Region P-Channel Region 200 200 100 100 Input Offset Voltage ( V) Input Offset Voltage ( V) P-Channel Region 0 ±100 OPA192 e-Trim Input Offset Voltage vs Vcm ±200 Transition Region N-Channel Region 0 ±100 ±200 Input Offset Voltage vs Vcm without e-Trim Input ±300 ±15.0 ±14.0 « 11.0 12.0 13.0 Common-Mode Voltage (V) 14.0 15.0 ±300 ±15.0 ±14.0 « 11.0 12.0 13.0 Common-Mode Voltage (V) 14.0 15.0 Figure 64. Common-Mode Transition vs Standard Rail-to-Rail Amplifiers 28 Submit Documentation Feedback Copyright © 2013–2015, Texas Instruments Incorporated Product Folder Links: OPA192 OPA2192 OPA4192 OPA192, OPA2192, OPA4192 www.ti.com SBOS620E – DECEMBER 2013 – REVISED NOVEMBER 2015 8.3.7 Electrical Overstress Designers often ask questions about the capability of an operational amplifier to withstand electrical overstress (EOS). These questions tend to focus on the device inputs, but may involve the supply voltage pins or even the output pin. Each of these different pin functions have electrical stress limits determined by the voltage breakdown characteristics of the particular semiconductor fabrication process and specific circuits connected to the pin. Additionally, internal electrostatic discharge (ESD) protection is built into these circuits to protect them from accidental ESD events both before and during product assembly. Having a good understanding of this basic ESD circuitry and its relevance to an electrical overstress event is helpful. Figure 65 shows an illustration of the ESD circuits contained in the OPAx192 (indicated by the dashed line area). The ESD protection circuitry involves several current-steering diodes connected from the input and output pins and routed back to the internal power-supply lines, where the diodes meet at an absorption device or the power-supply ESD cell, internal to the operational amplifier. This protection circuitry is intended to remain inactive during normal circuit operation. TVS + ± RF +VS VDD R1 RS IN± 100 Ÿ IN+ 100 Ÿ OPA192 ± + Power-Supply ESD Cell ID VIN RL + ± VSS + ± ±VS TVS Figure 65. Equivalent Internal ESD Circuitry Relative to a Typical Circuit Application Copyright © 2013–2015, Texas Instruments Incorporated Product Folder Links: OPA192 OPA2192 OPA4192 Submit Documentation Feedback 29 OPA192, OPA2192, OPA4192 SBOS620E – DECEMBER 2013 – REVISED NOVEMBER 2015 www.ti.com An ESD event is very short in duration and very high voltage (for example, 1 kV, 100 ns), whereas an EOS event is long duration and lower voltage (for example, 50 V, 100 ms). The ESD diodes are designed for out-of-circuit ESD protection (that is, during assembly, test, and storage of the device before being soldered to the PCB). During an ESD event, the ESD signal is passed through the ESD steering diodes to an absorption circuit (labeled ESD power-supply circuit). The ESD absorption circuit clamps the supplies to a safe level. Although this behavior is necessary for out-of-circuit protection, excessive current and damage is caused if activated in-circuit. A transient voltage suppressors (TVS) can be used to prevent against damage caused by turning on the ESD absorption circuit during an in-circuit ESD event. Using the appropriate current limiting resistors and TVS diodes allows for the use of device ESD diodes to protect against EOS events. 8.3.8 Overload Recovery Overload recovery is defined as the time required for the op amp output to recover from a saturated state to a linear state. The output devices of the op amp enter a saturation region when the output voltage exceeds the rated operating voltage, either due to the high input voltage or the high gain. After the device enters the saturation region, the charge carriers in the output devices require time to return back to the linear state. After the charge carriers return back to the linear state, the device begins to slew at the specified slew rate. Thus, the propagation delay in case of an overload condition is the sum of the overload recovery time and the slew time. The overload recovery time for the OPAx192 is approximately 200 ns. 8.4 Device Functional Modes The OPAx192 has a single functional mode and is operational when the power-supply voltage is greater than 4.5 V (±2.25 V). The maximum power supply voltage for the OPAx192 is 36 V (±18 V). 30 Submit Documentation Feedback Copyright © 2013–2015, Texas Instruments Incorporated Product Folder Links: OPA192 OPA2192 OPA4192 OPA192, OPA2192, OPA4192 www.ti.com SBOS620E – DECEMBER 2013 – REVISED NOVEMBER 2015 9 Application and Implementation NOTE Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality. 9.1 Application Information The OPAx192 family offers outstanding dc precision and ac performance. These devices operate up to 36-V supply rails and offer true rail-to-rail input/output, ultralow offset voltage and offset voltage drift, as well as 10-MHz bandwidth and high capacitive load drive. These features make the OPAx192 a robust, highperformance operational amplifier for high-voltage industrial applications. 9.2 Typical Applications 9.2.1 16-Bit Precision Multiplexed Data-Acquisition System Figure 66 shows a 16-bit, differential, 4-channel, multiplexed data-acquisition system. This example is typical in industrial applications that require low distortion and a high-voltage differential input. The circuit uses the ADS8864, a 16-bit, 400-kSPS successive-approximation-resistor (SAR) analog-to-digital converter (ADC), along with a precision, high-voltage, signal-conditioning front end, and a 4-channel differential multiplexer (mux). This TI Precision Design details the process for optimizing the precision, high-voltage, front-end drive circuit using the OPA192 and OPA140 to achieve excellent dynamic performance and linearity with the ADS8864. 1 2 Very Low Output Impedance Input-Filter Bandwidth ±20-V, 10-kHz Sine Wave OPA192 + + OPA192 3 High-Impedance Inputs No Differential Input Clamps Fast Settling-Time Requirements Attenuate High-Voltage Input Signal Fast-Settling Time Requirements Stability of the Input Driver 4 Attenuate ADC Kickback Noise VREF Output: Value and Accuracy Low Temp and Long-Term Drift Voltage Reference CH0+ RC Filter Buffer RC Filter Reference Driver CH0- Gain Network OPA192 Gain Network + 4:2 Mux REFP + CH3+ OPA140 Gain Network OPA192 VINP + Antialiasing Filter SAR ADC + VINM OPA192 CH3- CONV Gain Network ±20-V, 10-kHz Sine Wave OPA192 + n 16 Bits 400 kSPS High-Voltage Level Translation VCM High-Voltage Multiplexed Input REF3240 Voltage Divider OPA350 VCM Generation Circuit Counter n Shmidtt Trigger Delay Digital Counter For Multiplexer 5 Fast logic transition Figure 66. OPA192 in 16-Bit, 400-kSPS, 4-Channel, Multiplexed Data Acquisition System for High-Voltage Inputs with Lowest Distortion 9.2.1.1 Design Requirements The primary objective is to design a ±20 V, differential 4-channel multiplexed data acquisition system with lowest distortion using the 16-bit ADS8864 at a throughput of 400 kSPS for a 10 kHz full-scale pure sine-wave input. The design requirements for this block design are: Copyright © 2013–2015, Texas Instruments Incorporated Product Folder Links: OPA192 OPA2192 OPA4192 Submit Documentation Feedback 31 OPA192, OPA2192, OPA4192 SBOS620E – DECEMBER 2013 – REVISED NOVEMBER 2015 www.ti.com Typical Applications (continued) • • • • • System Supply Voltage: ±15 V ADC Supply Voltage: 3.3 V ADC Sampling Rate: 400 kSPS ADC Reference Voltage (REFP): 4.096 V System Input Signal: A high-voltage differential input signal with a peak amplitude of 10 V and frequency (fIN) of 10 kHz are applied to each differential input of the mux. 9.2.1.2 Detailed Design Procedure The purpose of this precision design is to design an optimal high voltage multiplexed data acquisition system for highest system linearity and fast settling. The overall system block diagram is illustrated in Figure 66. The circuit is a multichannel data acquisition signal chain consisting of an input low-pass filter, multiplexer (mux), mux output buffer, attenuating SAR ADC driver, digital counter for mux and the reference driver. The architecture allows fast sampling of multiple channels using a single ADC, providing a low-cost solution. The two primary design considerations to maximize the performance of a precision multiplexed data acquisition system are the mux input analog front-end and the high-voltage level translation SAR ADC driver design. However, carefully design each analog circuit block based on the ADC performance specifications in order to achieve the fastest settling at 16-bit resolution and lowest distortion system. The diagram includes the most important specifications for each individual analog block. This design systematically approaches each analog circuit block to achieve a 16-bit settling for a full-scale input stage voltage and linearity for a 10-kHz sinusoidal input signal at each input channel. The first step in the design is to understand the requirement for extremely low impedance input-filter design for the mux. This understanding helps in the decision of an appropriate input filter and selection of a mux to meet the system settling requirements. The next important step is the design of the attenuating analog front-end (AFE) used to level translate the high-voltage input signal to a low-voltage ADC input when maintaining amplifier stability. The next step is to design a digital interface to switch the mux input channels with minimum delay. The final design challenge is to design a high-precision, reference-driver circuit that provides the required REFP reference voltage with low offset, drift, and noise contributions. 9.2.1.3 Application Curve Integral Nonlinearity Error (LSB) 2.0 1.5 1.0 0.5 0 –0.5 –1.0 –1.5 –2.0 –20 –15 –10 –5 0 5 10 15 20 ADC Differential Input (V) Figure 67. ADC 16-Bit Linearity Error for the Multiplexed Data Acquisition Block For step-by-step design procedure, circuit schematics, bill of materials, PCB files, simulation results, and test results, refer to TI Precision Design TIDU181, 16-bit, 400-kSPS, 4-Channel, Multiplexed Data Acquisition System for High Voltage Inputs with Lowest Distortion. 32 Submit Documentation Feedback Copyright © 2013–2015, Texas Instruments Incorporated Product Folder Links: OPA192 OPA2192 OPA4192 OPA192, OPA2192, OPA4192 www.ti.com SBOS620E – DECEMBER 2013 – REVISED NOVEMBER 2015 9.2.2 Slew Rate Limit for Input Protection In control systems for valves or motors, abrupt changes in voltages or currents can cause mechanical damages. By controlling the slew rate of the command voltages into the drive circuits, the load voltages ramps up and down at a safe rate. For symmetrical slew-rate applications (positive slew rate equals negative slew rate), one additional op amp provides slew-rate control for a given analog gain stage. The unique input protection and high output current and slew rate of the OPAx192 make the device an optimal amplifier to achieve slew rate control for both dual- and single-supply systems.Figure 68 shows the OPA192 in a slew-rate limit design. Op Amp Gain Stage Slew Rate Limiter C1 470 nF R1 1.69 kŸ VEE VEE + R2 1.6 MŸ VIN OPA192 V+ OPA192 V+ VOUT VCC RL 10 kŸ VCC Figure 68. Slew Rate Limiter Uses One Op Amp For step-by-step design procedure, circuit schematics, bill of materials, PCB files, simulation results, and test results, refer to TI Precision Design TIDU026, Slew Rate Limiter Uses One Op Amp. Copyright © 2013–2015, Texas Instruments Incorporated Product Folder Links: OPA192 OPA2192 OPA4192 Submit Documentation Feedback 33 OPA192, OPA2192, OPA4192 SBOS620E – DECEMBER 2013 – REVISED NOVEMBER 2015 www.ti.com 9.2.3 Precision Reference Buffer The OPAx192 features high output current drive capability and low input offset voltage, making the device an excellent reference buffer to provide an accurate buffered output with ample drive current for transients. For the 10-µF ceramic capacitor shown in Figure 69, RISO, a 37.4-Ω isolation resistor, provides separation of two feedback paths for optimal stability. Feedback path number one is through RF and is directly at the output, VOUT. Feedback path number two is through RFx and CF and is connected at the output of the op amp. The optimized stability components shown for the 10-µF load give a closed-loop signal bandwidth at VOUT of 4 kHz and still provides a loop gain phase margin of 89°. Any other load capacitances require recalculation of the stability components: RF, RFx , CF , and RISO. RF 1 kŸ RFx 10 kŸ CF 39 nF RISO 37.4 Ÿ OPA192 V+ VOUT CL 10 µF VREF 2.5 V VCC Figure 69. Precision Reference Buffer 34 Submit Documentation Feedback Copyright © 2013–2015, Texas Instruments Incorporated Product Folder Links: OPA192 OPA2192 OPA4192 OPA192, OPA2192, OPA4192 www.ti.com SBOS620E – DECEMBER 2013 – REVISED NOVEMBER 2015 10 Power-Supply Recommendations The OPAx192 is specified for operation from 4.5 V to 36 V (±2.25 V to ±18 V); many specifications apply from –40°C to +125°C. Parameters that can exhibit significant variance with regard to operating voltage or temperature are presented in the Typical Characteristics. CAUTION Supply voltages larger than 40 V can permanently damage the device; see the Absolute Maximum Ratings. Place 0.1-μF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or highimpedance power supplies. For more detailed information on bypass capacitor placement, refer to the Layout section. 11 Layout 11.1 Layout Guidelines For best operational performance of the device, use good PCB layout practices, including: • Noise can propagate into analog circuitry through the power pins of the circuit as a whole and op amp itself. Bypass capacitors are used to reduce the coupled noise by providing low-impedance power sources local to the analog circuitry. – Connect low-ESR, 0.1-µF ceramic bypass capacitors between each supply pin and ground, placed as close to the device as possible. A single bypass capacitor from V+ to ground is applicable for singlesupply applications. • Separate grounding for analog and digital portions of circuitry is one of the simplest and most-effective methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to ground planes. A ground plane helps distribute heat and reduces EMI noise pickup. Make sure to physically separate digital and analog grounds paying attention to the flow of the ground current. For more detailed information refer to Circuit Board Layout Techniques, SLOA089. • In order to reduce parasitic coupling, run the input traces as far away from the supply or output traces as possible. If these traces cannot be kept separate, crossing the sensitive trace perpendicular is much better as opposed to in parallel with the noisy trace. • Place the external components as close to the device as possible. As illustrated in Figure 70, keeping RF and RG close to the inverting input minimizes parasitic capacitance. • Keep the length of input traces as short as possible. Always remember that the input traces are the most sensitive part of the circuit. • Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly reduce leakage currents from nearby traces that are at different potentials. • Cleaning the PCB following board assembly is recommended for best performance. • Any precision integrated circuit may experience performance shifts due to moisture ingress into the plastic package. Following any aqueous PCB cleaning process, baking the PCB assembly is recommended to remove moisture introduced into the device packaging during the cleaning process. A low temperature, post cleaning bake at 85°C for 30 minutes is sufficient for most circumstances. Copyright © 2013–2015, Texas Instruments Incorporated Product Folder Links: OPA192 OPA2192 OPA4192 Submit Documentation Feedback 35 OPA192, OPA2192, OPA4192 SBOS620E – DECEMBER 2013 – REVISED NOVEMBER 2015 www.ti.com 11.2 Layout Example + VIN VOUT RG RF (Schematic Representation) Run the input traces as far away from the supply lines as possible Place components close to device and to each other to reduce parasitic errors VS+ RF N/C N/C GND ±IN V+ VIN +IN OUTPUT V± N/C RG Use low-ESR, ceramic bypass capacitor GND VS± GND Use low-ESR, ceramic bypass capacitor VOUT Ground (GND) plane on another layer Figure 70. Operational Amplifier Board Layout for Noninverting Configuration 36 Submit Documentation Feedback Copyright © 2013–2015, Texas Instruments Incorporated Product Folder Links: OPA192 OPA2192 OPA4192 OPA192, OPA2192, OPA4192 www.ti.com SBOS620E – DECEMBER 2013 – REVISED NOVEMBER 2015 12 Device and Documentation Support 12.1 Device Support 12.1.1 Development Support 12.1.1.1 TINA-TI™ (Free Software Download) TINA™ is a simple, powerful, and easy-to-use circuit simulation program based on a SPICE engine. TINA-TI is a free, fully-functional version of the TINA software, preloaded with a library of macro models in addition to a range of both passive and active models. TINA-TI provides all the conventional dc, transient, and frequency domain analysis of SPICE, as well as additional design capabilities. Available as a free download from the Analog eLab Design Center, TINA-TI offers extensive post-processing capability that allows users to format results in a variety of ways. Virtual instruments offer the ability to select input waveforms and probe circuit nodes, voltages, and waveforms, creating a dynamic quick-start tool. NOTE These files require that either the TINA software (from DesignSoft™) or TINA-TI software be installed. Download the free TINA-TI software from the TINA-TI folder. 12.1.1.2 TI Precision Designs The OPA192 is featured in several TI Precision Designs, available online at http://www.ti.com/ww/en/analog/precision-designs/. TI Precision Designs are analog solutions created by TI’s precision analog applications experts and offer the theory of operation, component selection, simulation, complete PCB schematic and layout, bill of materials, and measured performance of many useful circuits. 12.2 Documentation Support 12.2.1 Related Documentation Circuit Board Layout Techniques, SLOA089. Op Amps for Everyone, SLOD006. 12.3 Related Links Table 4 lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy. Table 4. Related Links PARTS PRODUCT FOLDER SAMPLE & BUY TECHNICAL DOCUMENTS TOOLS & SOFTWARE SUPPORT & COMMUNITY OPA192 Click here Click here Click here Click here Click here OPA2192 Click here Click here Click here Click here Click here OPA4192 Click here Click here Click here Click here Click here 12.4 Community Resources The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers. Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support. Copyright © 2013–2015, Texas Instruments Incorporated Product Folder Links: OPA192 OPA2192 OPA4192 Submit Documentation Feedback 37 OPA192, OPA2192, OPA4192 SBOS620E – DECEMBER 2013 – REVISED NOVEMBER 2015 www.ti.com 12.5 Trademarks e-trim, E2E are trademarks of Texas Instruments. TINA-TI is a trademark of Texas Instruments, Inc and DesignSoft, Inc. Bluetooth is a registered trademark of Bluetooth SIG, Inc. TINA, DesignSoft are trademarks of DesignSoft, Inc. All other trademarks are the property of their respective owners. 12.6 Electrostatic Discharge Caution This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. 12.7 Glossary SLYZ022 — TI Glossary. This glossary lists and explains terms, acronyms, and definitions. 13 Mechanical, Packaging, and Orderable Information The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. 38 Submit Documentation Feedback Copyright © 2013–2015, Texas Instruments Incorporated Product Folder Links: OPA192 OPA2192 OPA4192 PACKAGE OPTION ADDENDUM www.ti.com 10-Dec-2020 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) (6) OPA192ID ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 OPA192 OPA192IDBVR ACTIVE SOT-23 DBV 5 3000 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 OUYS OPA192IDBVT ACTIVE SOT-23 DBV 5 250 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 OUYS OPA192IDGKR ACTIVE VSSOP DGK 8 2500 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 OUXS OPA192IDGKT ACTIVE VSSOP DGK 8 250 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 OUXS OPA192IDR ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 OPA192 OPA2192ID ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 2192 OPA2192IDGKR ACTIVE VSSOP DGK 8 2500 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 OVLM OPA2192IDGKT ACTIVE VSSOP DGK 8 250 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 OVLM OPA2192IDR ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 2192 OPA4192ID ACTIVE SOIC D 14 50 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 125 OPA4192 OPA4192IDR ACTIVE SOIC D 14 2500 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 125 OPA4192 OPA4192IPW ACTIVE TSSOP PW 14 90 RoHS & Green SN Level-3-260C-168 HR -40 to 125 OPA4192 OPA4192IPWR ACTIVE TSSOP PW 14 2000 RoHS & Green SN Level-3-260C-168 HR -40 to 125 OPA4192 (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". Addendum-Page 1 Samples PACKAGE OPTION ADDENDUM www.ti.com 10-Dec-2020 RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
OPA4192IPWR 价格&库存

很抱歉,暂时无法提供与“OPA4192IPWR”相匹配的价格&库存,您可以联系我们找货

免费人工找货
OPA4192IPWR

库存:0

OPA4192IPWR
  •  国内价格
  • 1+44.28270
  • 10+38.63700
  • 30+35.19450
  • 100+32.31090

库存:0