0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
PCM5252RHBT

PCM5252RHBT

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    VQFN32_5X5MM

  • 描述:

    114DB32-BITSTEREODIFFERENTIAL

  • 数据手册
  • 价格&库存
PCM5252RHBT 数据手册
Product Folder Sample & Buy Support & Community Tools & Software Technical Documents PCM5252 SLASE63 – NOVEMBER 2014 PCM5252 Purepath™ Smart Amp 4.2-VRMS DirectPath™, 114-dB Audio Stereo DifferentialOutput DAC with 32-bit, 384-kHz PCM Interface 1 Features 3 Description • • • • • • • The PCM5252 is a monolithic CMOS integrated circuit that includes a stereo digital-to-analog converter and additional support circuitry in a small QFN package. The PCM5252 uses the latest generation of TI’s advanced segment-DAC architecture to achieve excellent dynamic performance and improved tolerance to clock jitter. 1 • • • • • • • • • • Differential DirectPath™ Ground Biased Outputs Smart Amplifier Technology Market-Leading Low Out-of-Band Noise Selectable Digital-Filter Latency and Performance No DC Blocking Capacitors Required Integrated Negative Charge Pump Intelligent Muting System; Soft Up or Down Ramp and Analog Mute for 120-dB Mute SNR Integrated High-Performance Audio PLL With BCK Reference to Generate SCK Internally Accepts 16-Bit, 24-Bit, and 32-Bit Audio Data PCM Data Formats: I2S, Left-Justified SPI or I2C Control Hardware Configuration Automatic Power-Save Mode When LRCK And BCK Are Deactivated 1.8-V or 3.3-V Failsafe LVCMOS Digital Inputs Single Supply Operation: – 3.3 V Analog, 1.8 V or 3.3 V Digital Integrated Power-On Reset Small 32-pin VQFN Package The PCM5252 integrates a fully programmable miniDSP core, allowing developers to integrate filters, dynamic range controls, custom interpolators, and other differentiating features to their products. The PCM5252 integrates ROM components of TI's PurePath™ Smart Amp technology, which allows speakers to be driven with more peak power than their average-power rating, without damage to the speaker by voice coil over excursion or thermal overload. The PCM5252 provides 4.2-VRMS ground-centered differential outputs, allowing designers to eliminate DC blocking capacitors on the output, as well as external muting circuits traditionally associated with single supply line drivers. The integrated PLL on the device removes the requirement for a system clock (commonly known as master clock), allowing a 3-wire I2S connection and reducing system EMI. 2 Applications • • • • Block diagrams for the can be found at Functional Block Diagram. HiFi Smartphone A/V Receivers DVD, BD Players HDTV Receivers Device Information(1) PART NAME PCM5252 PACKAGE VQFN (32) BODY SIZE (NOM) 5.00mm × 5.00mm (1) For all available packages, see the orderable addendum at the end of the datasheet. Simplified System Diagram 2 I S 2ch Single Ended PCM1863/5 DOUT BCK LRCK IN AUX 2ch Single Ended Current Segment DAC TAS5630B miniDSPs, Filters PCM5252 IN MIC TPA6120A2 Analog Sensor - Light Intensity - Ultrasonic - Battery Level BT Module MSP430 WiLAN chip 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA. PCM5252 SLASE63 – NOVEMBER 2014 www.ti.com Table of Contents 1 2 3 4 5 6 Features .................................................................. Applications ........................................................... Description ............................................................. Revision History..................................................... Device Comparison ............................................... Pin Configuration and Functions ......................... 8.4 Device Functional Modes........................................ 48 1 1 1 2 3 4 9 9.1 Application Information............................................ 54 9.2 Typical Application .................................................. 54 10 Power Supply Recommendations ..................... 56 10.1 Power Supply Distribution and Requirements ...... 10.2 Recommended Powerdown Sequence................. 10.3 External Power Sense Undervoltage Protection Mode ........................................................................ 10.4 Power-On Reset Function..................................... 10.5 PCM5252 Power Modes ....................................... 6.1 Control Mode Effect On Pin Assignments ................ 4 6.2 Pin Assignments ....................................................... 4 7 Specifications......................................................... 7 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.10 7.11 8 Application and Implementation ........................ 54 Absolute Maximum Ratings ...................................... 7 ESD Ratings ............................................................ 7 Recommended Operating Conditions....................... 7 Thermal Information .................................................. 7 Electrical Characteristics........................................... 8 Switching Characteristics ........................................ 11 Timing Requirements: SCK Input ........................... 11 Timing Requirements: PCM Audio Data ................. 12 Timing Requirements: I2S Master, See Figure 6 ... 12 Timing Requirements: XSMT ................................ 13 Typical Characteristics .......................................... 14 56 57 60 62 63 11 Layout................................................................... 65 11.1 Layout Guidelines ................................................. 65 11.2 Layout Example .................................................... 65 12 Programming ....................................................... 66 12.1 Coefficient Data Formats ...................................... 66 12.2 Power Down and Reset Behavior ......................... 66 13 Register Maps...................................................... 67 13.1 PCM5252 Register Map........................................ 67 14 Device and Documentation Support ............... 115 14.1 Community Resources........................................ 115 14.2 Trademarks ......................................................... 115 14.3 Electrostatic Discharge Caution .......................... 115 Detailed Description ............................................ 16 8.1 Overview ................................................................. 16 8.2 Functional Block Diagram ....................................... 17 8.3 Feature Description................................................. 17 15 Mechanical, Packaging, and Orderable Information ......................................................... 115 4 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. 2 DATE REVISION NOTES November 2014 * Initial release. Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 PCM5252 www.ti.com SLASE63 – NOVEMBER 2014 5 Device Comparison Table 1. Typical Performance (3.3-V Power Supply) PARAMETER PCM5252 SNR 114 dB Dynamic range 114 dB THD+N at –1 dBFS -93 dB Full-scale single-ended output 4.2 VRMS (GND center) Normal 8× oversampling digital filter latency 20/fS Low latency 8× oversampling digital filter latency 3.5/fS Sampling frequency 8 kHz to 384 kHz System clock multiples (fSCK): 64, 128, 192, 256, 384, 512, 768, 1024, 1152, 1536, 2048, 3072 Up to 50 MHz Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 3 PCM5252 SLASE63 – NOVEMBER 2014 www.ti.com 6 Pin Configuration and Functions 6.1 Control Mode Effect On Pin Assignments The PCM5252 supports control from I2C, SPI and Hardware Modes (referred to as HW mode). Selection of modes is done using MODE1 and MODE2 pins. (See the PCM5252 Pin Functions table. SPI Mode is selected by pulling MODE1 to DVDD. I2C Mode is selected by pulling MODE1 to DGND and MODE2 to DVDD. Hardware Control Mode is selected by pulling both MODE1 and MODE2 pins to DGND. 6.2 Pin Assignments 32 31 30 29 SCK 25 24 NC 26 NC 27 FMT 28 LRCK SCK 29 GPIO6 30 DIN 31 BCK 32 1 FLT XSMT QFN Package 32-Pin RHB Top View DIN MODE2 NC 25 24 NC 26 MISO 27 LRCK SCK 28 GPIO6 29 DIN 30 BCK NC 31 NC ADR1 32 1 QFN Package 32-Pin RHB Top View BCK XSMT LRCK QFN Package 32-Pin RHB Top View 28 27 26 25 24 MS XSMT 1 MODE2 MODE1 LDOO 2 23 MODE1 3 22 GPO 21 AGNS LDOO 2 DGND 3 22 ADR2 DGND 3 22 GPIO2 DGND DVDD 4 21 GPIO3 DVDD 4 21 GPIO3 DVDD 4 CPVDD 5 20 GPIO4 CPVDD 5 20 GPIO4 CPVDD 5 20 MAST CAPP 6 19 GPIO5 CAPP 6 19 GPIO5 CAPP 6 19 ATT0 CPGND 7 18 ATT1 CAPM 8 ATT2 Figure 1. I2C Control 12 13 14 15 17 16 MOSI Figure 2. SPI Control 9 10 11 12 13 14 15 17 16 DEMP 11 MC GND AGND 10 AGND 9 VCOM 8 CAPM AVDD AVDD SDA OUTRP OUTRP 17 16 OUTLN OUTLN 15 18 OUTRN 14 7 VNEG 12 13 CPGND SCL OUTLP 11 AGND 10 OUTRN 8 9 VCOM 18 VNEG CAPM 7 OUTLP CPGND GND AVDD GND OUTRP 23 OUTLN 2 OUTRN LDOO VNEG MODE1 OUTLP 23 Figure 3. Hardware Control PCM5252 Pin Functions PIN MODE, NAME I2C SPI HW PIN I/O XSMT 1 I Soft mute control (1) Soft mute (Low) / soft un-mute (High) LDOO 2 - Internal logic supply rail pin for decoupling, 1.8V DGND 3 - Digital ground DVDD 4 - Digital power supply, 3.3V or 1.8V CPVDD 5 - Charge pump power supply, 3.3V CAPP 6 O Charge pump flying capacitor pin for positive rail CPGND 7 - Charge pump ground CAPM 8 O Charge pump flying capacitor pin for negative rail VNEG 9 O Negative charge pump rail pin for decoupling, -3.3V OUTLP 10 Positive Differential Analog output from DAC left channel OUTLN 11 Negative Differential Analog output from DAC left channel OUTRN 12 Negative Differential Analog output from DAC right channel OUTRP 13 AVDD 14 - Analog power supply, 3.3V AGND 15 - Analog ground O I2C, SPI VCOM output (Optional mode selected by register; default setting is VREF mode.) When in VREF mode (default), this pin ties to GND. When in VCOM mode, decoupling capacitor to GND is required. I HW DEMP: De-emphasis control for 44.1kHz sampling rate: Off (Low) / On (High) VCOM 16 Positive Differential Analog output from DAC right channel. DEMP (1) 4 DESCRIPTION Failsafe LVCMOS Schmitt trigger input. Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 PCM5252 www.ti.com SLASE63 – NOVEMBER 2014 Pin Assignments (continued) PCM5252 Pin Functions (continued) PIN MODE, NAME I2C SPI HW PIN SDA I/O DESCRIPTION I/O I2C Data for I2C (2) (1) SPI Input data for SPI (1) HW Digital gain and attenuation control pin 17 MOSI I ATT2 2 SCL 18 MC I ATT1 GPIO5 19 I/O ATT0 GPIO4 20 21 I/O AGNS ADR2 22 GPIO2 GPO Input clock for I2C (1) SPI Input clock for SPI (1) HW Digital gain and attenuation control pin I2C, SPI General purpose digital input and output port HW Digital gain and attenuation control pin I2C, SPI General purpose digital input and output port I/O MAST GPIO3 IC I/O O (3) (3) 2 HW I S Master clock select pin : Master (High) BCK/LRCK outputs, Slave (Low) BCK/LRCK inputs I2C, SPI General purpose digital input and output port HW Analog gain selector : 0dB 2VRMS output (Low), -6dB 1VRMS output (High) I2C 2nd LSB address select bit for I2C (3) SPI General purpose digital input and output port HW General Purpose Output (Low level) (3) (3) Mode control selection pin (1) MODE1 = Low, MODE2 = Low : Hardwired mode Reserved MODE1 23 I MODE1 = Low, MODE2 = High: I2C mode MODE1 = High: SPI mode MODE2 MODE2 24 MS I GPIO6 25 I/O FLT MODE2 (See definition in Mode 1 description) SPI MS pin (chip select for SPI) 2 I C, SPI General purpose digital input and output port Filter select : Normal latency (Low) / Low latency (High) I HW SCK 26 I System clock input (1) BCK 27 I/O DIN 28 I 29 - 30 - 31 I/O NC LRCK ADR1 MISO (GPIO1) 32 I/O FMT (2) (3) I2C, HW Audio data bit clock input (slave) or output (master) (1) Audio data input (1) No connect Audio data word clock input (slave) or output (master) (1) I2C LSB address select bit for I2C SPI Primary output data for SPI readback. Secondary; general purpose digital input/output port controlled by register HW Audio format selection : I2S (Low) / Left justified (High) Open-drain configuration in out mode. Internal Pulldown Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 5 PCM5252 SLASE63 – NOVEMBER 2014 www.ti.com Table 2. Gain and Attenuation in Hardwired Mode 6 ATT PIN CONDITION (ATT2 : ATT1 : ATT0) GAIN AND ATTENUATION LEVEL (000) 0 dB (001) + 3 dB (010) + 6 dB (011) + 9 dB (100) + 12 dB (101) + 15 dB (110) - 6 dB (111) - 3 dB Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 PCM5252 www.ti.com SLASE63 – NOVEMBER 2014 7 Specifications 7.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted) Supply voltage Digital input voltage MIN MAX AVDD, CPVDD, DVDD –0.3 3.9 LDO with DVDD at 1.8 V –0.3 2.25 DVDD at 1.8 V –0.3 2.25 DVDD at 3.3 V –0.3 3.9 UNIT V V Analog input voltage –0.3 3.9 V Storage temperature, Tstg –40 125 °C 7.2 ESD Ratings VALUE V(ESD) (1) (2) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1) ±2500 Charged-device model (CDM), per JEDEC specification JESD22-C101 (2) ±1500 UNIT V JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. 7.3 Recommended Operating Conditions AVDD Analog power supply voltage Referenced to AGND (1) DVDD Digital power supply voltage Referenced to DGND (1) CPVDD Charge pump supply voltage Referenced to CPGND (1) MCLK Master clock frequency LOL, LOR Stereo line output load resistance CLOUT Digital output load capacitance TJ Operating junction temperature (1) MIN NOM MAX 3 3.3 3.46 VREF mode 3.2 3.3 3.46 1.8 V DVDD 1.65 1.8 1.95 3.3 V DVDD 3.1 3.3 3.46 3.1 3.3 3.46 2 10 kΩ 10 pF VCOM mode 50 –25 85 UNIT V V V MHz °C All grounds on board are tied together; they must not differ in voltage by more than 0.2-V maximum, for any combination of ground signals. 7.4 Thermal Information THERMAL METRIC (1) PW 20 PINS UNIT RθJA Junction-to-ambient thermal resistance 91.2 °C/W RθJC(top) Junction-to-case (top) thermal resistance 25.3 °C/W RθJB Junction-to-board thermal resistance 42 °C/W ψJT Junction-to-top characterization parameter 1 °C/W ψJB Junction-to-board characterization parameter 41.5 °C/W RθJC(bot) Junction-to-case (bottom) thermal resistance — °C/W (1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report. Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 7 PCM5252 SLASE63 – NOVEMBER 2014 www.ti.com 7.5 Electrical Characteristics All specifications at TA = 25°C, AVDD = CPVDD = DVDD = 3.3V, fS = 48kHz, system clock = 512 fS and 24-bit data unless otherwise noted. PARAMETER TEST CONDITIONS Resolution MIN TYP MAX 16 24 32 UNIT Bits Digital Input/Output Logic family: 3.3 V LVCMOS compatible VIH Input logic level, high VIL Input logic level, low 0.7×DVDD IIH Input logic current, high VIN = VDD IIL Input logic current, low VIN = 0 V VOH Output logic level, high IOH = –4 mA VOL Output logic level, low IOL = 4 mA V 0.3×DVDD V 10 µA –10 µA 0.8×DVDD V 0.22×DVDD V Logic family 1.8 V LVCMOS compatible VIH Input logic level, high VIL Input logic level, low 0.7×DVDD IIH Input logic current, high VIN = VDD IIL Input logic current, low VIN = 0 V VOH Output logic level, high IOH = –2 mA VOL Output logic level, low IOL = 2 mA V 0.3×DVDD V 10 µA –10 µA 0.8×DVDD V 0.22×DVDD V Dynamic Performance (PCM Mode) (1) (2) THD+N at –1 dBFS (2) fS = 48 kHz –93 fS = 96 kHz –93 fS = 192 kHz –93 EIAJ, A-weighted, fS = 48 kHz Dynamic range (2) Signal-to-noise ratio (2) Signal to noise ratio with analog mute (2) (3) Channel separation (1) (2) (3) 8 108 –83 dB 114 EIAJ, A-weighted, fS = 96 kHz 114 EIAJ, A-weighted, fS = 192 kHz 114 EIAJ, A-weighted, fS = 48 kHz 114 EIAJ, A-weighted, fS = 96 kHz 114 EIAJ, A-weighted, fS = 192 kHz 114 EIAJ, A-weighted, fS = 48 kHz 113 123 EIAJ, A-weighted, fS = 96 kHz 113 123 EIAJ, A-weighted, fS = 192 kHz 113 123 fS = 48 kHz 100 / 95 109 / 103 fS = 96 kHz 100 / 95 109 / 103 fS = 192 kHz 100 / 95 109 / 103 dB dB dB dB Filter condition: THD+N: 20-Hz HPF, 20-kHz AES17 LPF; Dynamic range: 20-Hz HPF, 20-kHz AES17 LPF; A-weighted signal-to-noise ratio: 20-Hz HPF, 20-kHz AES17 LPF; A-weighted channel separation: 20-Hz HPF, 20-kHz AES17 LPF. Analog performance specifications are measured using the System Two Cascade™ audio measurement system by Audio Precision™ in the RMS mode. Output load is 10 kΩ, with 470-Ω output resistor and a 2.2-nF shunt capacitor (see recommended output filter). Assert XSMT or both L-ch and R-ch PCM data are Bipolar Zero. Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 PCM5252 www.ti.com SLASE63 – NOVEMBER 2014 Electrical Characteristics (continued) All specifications at TA = 25°C, AVDD = CPVDD = DVDD = 3.3V, fS = 48kHz, system clock = 512 fS and 24-bit data unless otherwise noted. PARAMETER TEST CONDITIONS MIN TYP MAX UNIT Analog Output Single Ended Output voltage 2.1 Differential Output Voltage 4.2 Gain error Gain mismatch, channel-to-channel Bipolar zero error (per pin) At bipolar zero Load impedance VRMS VRMS –6 ±2 6 % of FSR –6 ±2 6 % of FSR –2 ±1 2 mV 5 kΩ Filter Characteristics–1: Normal (8x) Pass band 0.45fS Stop band 0.55fS Stop band attenuation –60 dB Pass-band ripple ±0.02 Delay time 20fS dB s Filter Characteristics–2: Low Latency (8x) Pass band 0.47fS Stop band 0.55fS Stop band attenuation –52 dB Pass-band ripple ±0.0001 Delay time 3.5fS dB s Filter Characteristics–3: Asymmetric FIR (8x) Pass band 0.40fS Stop band 0.72fS Stop band attenuation –52 dB Pass-band ripple ±0.05 Delay time 1.2fS dB s Filter Characteristics–4: High-Attenuation (8x) Pass band 0.45fS Stop band 0.45S Stop band attenuation –100 Pass-band ripple dB ±0.0005 Delay time 33.7fS dB s Power Supply Requirements DVDD Digital supply voltage Target DVDD = 1.8 V 1.65 1.8 1.95 VDC DVDD Digital supply voltage Target DVDD = 3.3 V 3 3.3 3.6 VDC AVDD Analog supply voltage 3 3.3 3.6 VDC CPVDD Charge-pump supply voltage 3 3.3 3.6 VDC fS = 48 kHz, Input is Bipolar Zero data 11 14 fS = 96 kHz, Input is Bipolar Zero data 12 fS = 192 kHz, Input is Bipolar Zero data 14 fS = 48 kHz, Input is 1kHz -1dBFS data 11 fS = 96 kHz, Input is 1kHz -1dBFS data 12 fS = 192 kHz, Input is 1kHz -1dBFS data 14 fS = N/A, Power Down Mode 0.3 0.6 fS = 48 kHz, Input is Bipolar Zero data 12 15 fS = 96 kHz, Input is Bipolar Zero data 13 fS = 192 kHz, Input is Bipolar Zero data 15 IDD IDD IDD IDD (4) DVDD supply current at 1.8 V DVDD supply current at 1.8 V DVDD supply current at 1.8 V (4) DVDD supply current at 3.3 V mA 14 mA mA mA Power Down Mode, with LRCK, BCK, and SCK halted at Low level. Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 9 PCM5252 SLASE63 – NOVEMBER 2014 www.ti.com Electrical Characteristics (continued) All specifications at TA = 25°C, AVDD = CPVDD = DVDD = 3.3V, fS = 48kHz, system clock = 512 fS and 24-bit data unless otherwise noted. PARAMETER IDD IDD ICC ICC ICC DVDD supply current at 3.3 V DVDD supply current at 3.3 V (4) AVDD / CPVDD supply current AVDD / CPVDD supply current AVDD / CPVDD supply current (4) Power dissipation, DVDD = 1.8 V Power dissipation, DVDD = 1.8 V Power dissipation, DVDD = 1.8 V (4) Power dissipation, DVDD = 3.3 V Power dissipation, DVDD = 3.3 V Power dissipation, DVDD = 3.3 V (4) 10 TYP MAX fS = 48 kHz, Input is 1kHz -1dBFS data TEST CONDITIONS 12 15 fS = 96 kHz, Input is 1kHz -1dBFS data 13 fS = 192 kHz, Input is 1kHz -1dBFS data 15 fS = N/A, Power Down Mode 0.5 0.8 fS = 48 kHz, Input is Bipolar Zero data 11 16 fS = 96 kHz, Input is Bipolar Zero data 11 fS = 192 kHz, Input is Bipolar Zero data 11 fS = 48 kHz, Input is 1kHz -1dBFS data 24 fS = 96 kHz, Input is 1kHz -1dBFS data 24 fS = 192 kHz, Input is 1kHz -1dBFS data 24 fS = N/A, Power Down Mode MIN mA 32 mA 0.2 0.4 59.4 78 fS = 96 kHz, Input is Bipolar Zero data 61.2 fS = 192 kHz, Input is Bipolar Zero data 64.8 99 fS = 96 kHz, Input is 1kHz -1dBFS data 100.8 fS = 192 kHz, Input is 1kHz -1dBFS data 104.4 fS = N/A (Power Down Mode) 79.2 fS = 96 kHz, Input is Bipolar Zero data 82.5 fS = 192 kHz, Input is Bipolar Zero data 89.1 fS = 48 kHz, Input is 1kHz -1dBFS data 118.8 fS = 96 kHz, Input is 1kHz -1dBFS data 122.1 fS = 192 kHz, Input is 1kHz -1dBFS data 128.7 fS = N/A (Power Down Mode) Submit Documentation Feedback 2.3 mA mW 130.8 mW 1.2 fS = 48 kHz, Input is Bipolar Zero data mA mA fS = 48 kHz, Input is Bipolar Zero data fS = 48 kHz, Input is 1kHz -1dBFS data UNIT mW 103 mW 155 mW 4 mW Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 PCM5252 www.ti.com SLASE63 – NOVEMBER 2014 7.6 Switching Characteristics over operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT DATA FORMAT (PCM MODE) Audio data interface format I2S, left-justified, right-justified, and TDM Audio data bit length 16, 20, 24, 32-bit acceptable Audio data format MSB first, twos-complement Sampling frequency (1) fS 8 384 kHz CLOCKS 64, 128, 192, 256, 384, 512, 768, 1024, 1152, 1536, 2048, or 3072 fSCK, up to 50 Mhz System clock frequency PLL input frequency (1) (2) Clock divider uses fractional divide D > 0, P=1 (2) Clock divider uses integer divide D = 0, P=1 6.7 20 MHz 1 20 MHz One sample time is defined as the reciprocal of the sampling frequency. 1 × tS = 1 / fS With the appropriate P coefficient setting, the PLL accepts up to 50 MHz. This clock is then divided to meet the ≤ 20-MHz requirement. See PLL Calculation. 7.7 Timing Requirements: SCK Input Figure 4 shows the timing requirements for the system clock input. For optimal performance, use a clock source with low phase jitter and noise. MIN tSCY System clock pulse cycle time tSCKH System clock pulse width, high tSCKL System clock pulse width, low 20 DVDD = 1.8 V 8 DVDD = 3.3 V 9 DVDD = 1.8 V 8 DVDD = 3.3 V 9 NOM MAX UNIT 1000 ns ns ns tSCKH "H" 0.7*DVDD System Clock (SCK) 0.3*DVDD "L" tS CK L tSCY Figure 4. Timing Requirements for SCK Input Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 11 PCM5252 SLASE63 – NOVEMBER 2014 www.ti.com 7.8 Timing Requirements: PCM Audio Data MIN NOM MAX UNIT tBCY BCK Pulse Cycle Time 40 ns tBCL BCK Pulse Width LOW 16 ns tBCH BCK Pulse Width HIGH 16 ns tBL BCK Rising Edge to LRCK Edge tBCK BCK frequency at DVDD = 3.3V 24.576 MHz tBCK(1.8V) BCK frequency at DVDD = 1.8V 12.288 MHz tLB LRCK Edge to BCK Rising Edge 8 ns tDS DATA Set Up Time 8 ns tDH DATA Hold Time 8 ns tDOD DATA delay time from BCK falling edge 8 ns 15 ns Figure 5. PCM5252 Serial Audio Timing - Slave In software mode, The PCM5252 can act as an I2S master, generating BCK and LRCK as outputs from the SCK input. Table 3. I2S Master Mode Registers Register Function Page0, Register 9, D(0), D(4), and D(5) I2S Master mode select Register 32, D(6:0) Register 33, D(7:0) BCK divider and LRCK divider 7.9 Timing Requirements: I2S Master, See Figure 6 MIN NOM MAX UNIT tBCY BCK Pulse Cycle Time 40 ns tBCL BCK Pulse Width LOW 16 ns tBCH BCK Pulse Width HIGH 16 ns tBCK BCK frequency at DVDD = 3.3 V 24.576 MHz tBCK(1.8V) BCK frequency at DVDD = 1.8 V 12.288 MHz tLRD LRCKx delay time from BCKx falling edge tDS DATA Set Up Time 12 –10 8 Submit Documentation Feedback 20 ns ns Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 PCM5252 www.ti.com SLASE63 – NOVEMBER 2014 Timing Requirements: I2S Master, See Figure 6 (continued) MIN NOM MAX UNIT tDH DATA Hold Time 8 tDOD DATA delay time from BCK falling edge at DVDD = 3.3 V 15 ns ns tDOD(1.8V) DATA delay time from BCK falling edge at DVDD = 1.8 V 20 ns Figure 6. PCM5252 Serial Audio Timing - I2S Master 7.10 Timing Requirements: XSMT MIN NOM MAX UNIT tr Rise time 20 ns tf Fall time 20 ns Figure 7. XSMT Timing for Soft Mute and Soft Un-Mute Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 13 PCM5252 SLASE63 – NOVEMBER 2014 www.ti.com 7.11 Typical Characteristics 10 10 -10 -10 -30 -30 THD+N (dB) THD+N (dB) All specifications at TA = 25°C, AVDD = CPVDD = DVDD = 3.3V, fS = 48kHz, system clock = 512 fS and 24-bit data unless otherwise noted. -50 -50 -70 -70 -90 -90 -110 -100 -80 -60 -40 Input Level (dBFS) -20 -110 -100 0 -20 -40 -40 -60 -60 Amplitude (dB) Amplitude (dB) -40 -20 0 Figure 9. THD+N vs Input Level -20 -80 -100 -80 -100 -120 -120 -140 -140 -160 -160 0 5 10 Frequency (kHz) 15 0 20 5 10 Frequency (kHz) 15 20 Figure 11. FFT Plot At –60 db Input Figure 10. FFT Plot At –60 db Input -20 -20 -40 -40 -60 -60 Amplitude (dB) Amplitude (dB) -60 Input Level (dBFS) Figure 8. THD+N vs Input Level -80 -100 -120 -80 -100 -120 -140 -140 -160 -160 -180 -180 0 5 10 Frequency (kHz) 15 20 0 Figure 12. FFT Plot at Bipolar Zero Data (BPZ) 14 -80 Submit Documentation Feedback 5 10 Frequency (kHz) 15 20 Figure 13. FFT Plot at BPZ Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 PCM5252 www.ti.com SLASE63 – NOVEMBER 2014 Typical Characteristics (continued) All specifications at TA = 25°C, AVDD = CPVDD = DVDD = 3.3V, fS = 48kHz, system clock = 512 fS and 24-bit data unless otherwise noted. -20 -40 Amplitude (dB) Amplitude (dB) -60 -80 -100 -120 -140 -160 -180 0 5 Frequency (kHz) 0 -20 -20 -40 -40 Amplitude (dB) Amplitude (dB) 0 -80 -100 15 20 Figure 15. FFT Plot at BPZ With Analog Mute (AMUTE) Figure 14. FFT Plot at BPZ With Analog Mute (AMUTE) -60 10 Frequency (kHz) -60 -80 -100 -120 -120 -140 -140 -160 -160 0 50 100 150 200 Frequency (kHz) 250 300 0 Figure 16. FFT Plot at –60 dB to 300 khz 50 100 150 200 Frequency (kHz) 250 300 Figure 17. FFT Plot at –60 dB to 300 khz Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 15 PCM5252 SLASE63 – NOVEMBER 2014 www.ti.com 8 Detailed Description 8.1 Overview The PCM5252 PurePath™ Smart Amp enhances the bass, sound fidelity and increased loudness by driving the speaker to its thermal and mechanical limits. TI's PurePath™ Smart Amp technology allows speakers to be driven with more peak power than their averagepower rating, without damage to the speaker by voice coil over excursion or thermal overload. Sophisticated speaker models (electro-mechanical-thermal) are used as a foundation for the protection and enhancement of the system. This is done by modeling the loudspeaker in the on-chip miniDSP and running an adaptive algorithm that modifies the output based on the modeled conditions of the speaker. TI provides a PurePath™ Console (PPC) GUI, including a TI learning board that measures the loudspeaker parameters. The PPC GUI generates the code for download to the device on boot-up. Smart Amp technology in the PCM5252 devices use information from the SOA (Safe Operating Area) characterization details for the loudspeaker, as well as real-world temperature, and uses this data in an adaptive control algorithm in order to control Smart Bass and Smart DRP (Dynamic Range Preservation). The protection side of the algorithm is also used for thermal protection and mechanical voice coil excursion protection. The integrated PLL on the device provided adds the flexibility to remove the system clock (commonly known as master clock), allowing a 3-wire I2S connection and reducing system EMI. In addition, the PLL is completely programmable, allowing the device to become the I2S clock master and drive a DSP serial port as a slave. The PLL also accepts a non-standard clock (up to 50 MHz) as a source to generate the audio related clock (for example, 24.576 MHz). Powersense undervoltage protection utilizes a two-level mute system. Upon clock error or system power failure, the device digitally attenuates the data (or last known good data) and then mutes the analog circuit. Compared with existing DAC technology, the PCM5252 devices offer up to 20 dB of lower out-of-band noise, reducing EMI and aliasing in downstream amplifiers/ADCs (from traditional 100-kHz OBN measurements to 3 MHz). The PCM5252 devices accept industry-standard audio data formats with 16-bit to 32-bit data. Sample rates up to 384 kHz are supported. 16 Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 PCM5252 www.ti.com SLASE63 – NOVEMBER 2014 Zero Data Detector 32-bit ∆Σ Modulator Interpolation Filter Current Segment DAC Differential Line Outputs Current Segment DAC I/V DOUT (I2S) (through any GPIO) Digital Volume Control Programmable miniDSP DIN (I2S) I/V Audio Interface 8.2 Functional Block Diagram Advanced Mute Control SPI/I2C Clock Halt Detection PCM5252 Program RAM GPIO GPIO6/FLT GPIO5/ATT0 GPIO4/MAST GPIO3/AGNS GPIO2/ADR2/DOUT Power Supply CPVDD (3.3V) AVDD (3.3V) DVDD (1.8V or 3.3V) GND LRCK BCK MCK PLL Clock UVP/ Reset UVP/XSMT POR VCom Charge Pump MOSI/SDA/ATT2 MS/MODE2 MODE1 MC/SCL/ATT1 MISO/ADR1/FMT CAPP CAPM VNEG 8.3 Feature Description 8.3.1 Terminology Control registers in this data sheet are given by REGISTER BIT/BYTE NAME (Page.x HEX ADDRESS). SE refers to single-ended analog inputs, DIFF refers to Differential analog inputs. SCK (System Clock) and MCLK (Master Clock) are used interchangeably. Sampling frequency is symbolized by fS. Full scale is symbolized by FS. Sample time as a unit is symbolized by tS. Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 17 PCM5252 SLASE63 – NOVEMBER 2014 www.ti.com Feature Description (continued) 8.3.2 Audio Data Interface 8.3.2.1 Audio Serial Interface The audio interface port is a 3-wire serial port with the signals LRCK, BCK, and DIN. BCK is the serial audio bit clock, used to clock the serial data present on DIN into the serial shift register of the audio interface. Serial data is clocked into the PCM5252 on the rising edge of BCK. LRCK is the serial audio left/right word clock. LRCK polarity for left/right is given by the format selected. Table 4. PCM5252 Audio Data Formats, Bit Depths and Clock Rates CONTROL MODE FORMAT DATA BITS I2S/LJ 32, 24, 20, 16 Software Control (SPI or I2S) TDM/DSP Hardware Control I2S/LJ 32, 24, 20, 16 32, 24, 20, 16 MAX LRCK FREQUENCY [fS] SCK RATE [x fS] BCK RATE [x fS] Up to 192 kHz 128 – 3072 64, 48, 32 384 kHz 64, 128 64, 48, 32 Up to 48 kHz 128 – 3072 128, 256 128, 256 96 kHz 128 – 512 192 kHz 128, 192, 256 128 Up to 192 kHz 128 – 3072 64, 48, 32 384 kHz 64, 128 64, 48, 32 The PCM5252 requires the synchronization of LRCK and system clock, but does not need a specific phase relation between LRCK and system clock. If the relationship between LRCK and system clock changes more than ±5 SCK, internal operation (using an onchip oscillator) is initialized within one sample period and analog outputs are forced to the bipolar zero level until resynchronization between LRCK and system clock is completed. If the relationship between LRCK and BCK are invalid more than 4 LRCK periods, internal operation (using an onchip oscillator) is initialized within one sample period and analog outputs are forced to the bipolar zero level until resynchronization between LRCK and BCK is completed. 18 Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 PCM5252 www.ti.com SLASE63 – NOVEMBER 2014 8.3.2.2 PCM Audio Data Formats The PCM5252 supports industry-standard audio data formats, including standard I2S and left-justified. Data formats are selected via Register (Pg0Reg40). All formats require binary twos-complement, MSB-first audio data; up to 32-bit audio data is accepted. The PCM5252 also supports right-justified and TDM/DSP in software control mode. I2S, LJ, RJ, and TDM/DSP are selected using Register (Pg0Reg40). All formats require binary twos-complement, MSB-first audio data. Up to 32 bits are accepted. Default setting is I2S and 24-bit word length. ! " ! # ! " ! # ! " ! $ $ $ Figure 18. Left-Justified Audio Data Format !" !# $ ! !" $ !# ! ! !# I2S Data Format; L-channel = LOW, R-channel = HIGH Figure 19. I2S Audio Data Format Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 19 PCM5252 SLASE63 – NOVEMBER 2014 www.ti.com NOTE In TDM Modes, Duty Cycle of LRCK should be 1x BCK at minimum. Rising edge is considered frame start. TDM/DSP Data Format; L-channel = FIRST, R-channel = LAST with OFFSET = 1 Figure 20. TDM/DSP 2 Audio Data Format TDM/DSP Data Format; L-channel = FIRST, R-channel = LAST with OFFSET = N Figure 21. TDM/DSP 3 Audio Data Format 20 Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 PCM5252 www.ti.com SLASE63 – NOVEMBER 2014 8.3.2.3 Zero Data Detect The PCM5252 has a zero-detect function. When the device detects the continuous zero data for both left and right channels, or separate channels, Analog mutes are set to both OUTL and OUTR, or separate OUTL and OUTR. These are controlled by Page 0, Register 65, D(2:1) as shown in Table 5. Table 5. Zero Data Detection Mode ATMUTECTL VALUE FUNCTION 0 Independently L-ch or R-ch are zero data for zero data detection 1 (Default) Both L-ch and R-ch have to be zero data for zero data detection 0 Zero detection and analog mute are disabled for R-ch Bit : 2 Bit : 1 Bit : 0 1 (Default) Zero detection analog mute are enabled for R-ch 0 Zero detection analog mute are disabled for L-ch 1 (Default) Zero detection analog mute are enabled for L-ch Table 6. Zero Data Detection Time ATMUTETIML / ATMUTETIMR NUMBER OF LRCKs TIME AT 48 kHz 000 1024 21 ms 001 5120 106 ms 010 10240 213 ms 011 25600 533 ms 100 51200 1.066 sec 101 102400 2.133 sec 110 256000 5.333 sec 111 512000 10.66 sec 8.3.3 XSMT Pin (Soft Mute / Soft Un-Mute) An external digital host controls the PCM5252 soft mute function by driving the XSMT pin with a specific minimum rise time (tr) and fall time (tf) for soft mute and soft un-mute. The PCM5252 requires tr and tf times of less than 20 ns. In the majority of applications, this is no problem; however, traces with high capacitance may have issues. When the XSMT pin is shifted from high to low (3.3 V to 0 V), a soft digital attenuation ramp begins. –1-dB attenuation is then applied every sample time from 0 dBFS to –∞. The soft attenuation ramp takes 104 samples. When the XSMT pin is shifted from low to high (0 V to 3.3 V), a soft digital un-mute is started. 1-dB gain steps are applied every sample time from –∞ to 0 dBFS. The un-mute takes 104 samples. In systems where XSMT is not required, it can be directly connected to AVDD. Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 21 PCM5252 SLASE63 – NOVEMBER 2014 www.ti.com 8.3.4 Audio Processing 8.3.4.1 PCM5252 Audio Processing Options 8.3.4.1.1 Overview The PCM5252 features a programmable miniDSP core that offers Hybrid-Flows which are a RAM/ROM combination of code. Common functions are embedded in ROM, and custom RAM flows, created by TI can be run on the miniDSP core. The algorithms for the miniDSP must be loaded into the device after power up. The miniDSP can run up to 1024 instructions on every audio sample at a 48kHz sample rate. Development is done using Purepath™ Console software. NOTE At higher sampling frequencies, fewer instruction cycles are available. (For example, 512 instructions can be done in a 96-kHz frame.) The PCM5252 supports two different code sources. ROM based process flow (See the next section for how to select) and RAM based process flow. In program 31 (RAM based), different algorithms can be called from ROM such as EQ, DRC and Zero Crossing volume control. Please see the PurePath Studio Development Environment for more details. Smart Amplifier is another process flow that is available for use. Program 5 integrates a 2.1 Smart Amplifier system, without Smart Bass enhancement. A mixed RAM/ROM Mode is available using program 31 that can do a 2.0 Stereo Smart Amplifier with Smart Bass enhancement. However, the MIPS requirements for Smart Amplifier allow the process flow to work up to 48kHz sampling rate. Any higher sampling rates will require a custom process flow with limited processing (such as a simpler EQ and Dynamic Range Control), 8.3.4.1.2 miniDSP Instruction Register Registers on Page 152-169 are 25-bit instructions for the miniDSP engine. For details, see Table 43. 7 bits of Instr(32:25) in Base register +0 are reserved bits. 1 bit of Instr(24) - (LSB) in Base register +0 is MSB bit of 25 bit instruction. These instructions control miniDSP operation. When the fully programmable miniDSP mode is enabled and the DAC channel is powered up, the read and write access to these registers is disabled. 8.3.4.1.3 Digital Output The PCM5252 supports an SDOUT output. This can be selected within the process flow, and driven out of a GPIO pin selected in the register map (for example, Page 0 / Register 80). Users should note that the I2S output will be attenuated by 0.5 dB. A full scale (FS) output will actually be FS-0.5dB. This can be compensated for within the process flow using PurePath Studio. The I2S output can be a separate audio stream to the analog DAC output, allowing 2.1 and 2.2 systems to be implimented. By default, the SDOUT is not linked to the volume control registers on Page 0 / Register 60, 61, 62. However, it is possible to configure the SDOUT component in Purepath studio to mirror that register. 8.3.4.1.4 Software Software development for the PCM5252 is supported through TI's comprehensive PurePath Console; a powerful, easy-to-use tool designed specifically to simplify software development on the PCM5252 miniDSP audio platform. The Graphical Development Environment consists of number of Hybrid Flows that can be downloaded to the device and run on the miniDSP. Please visit the PCM5252 product folder on www.ti.com to learn more about PurePath Console and the latest status on available, ready-to-use DSP algorithms. 22 Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 PCM5252 www.ti.com SLASE63 – NOVEMBER 2014 8.3.4.2 Interpolation Filter The PCM5252 provides 4 types of interpolation filters, selectable by writing to Page 0, Register 43, D(4:0). Additional RAM based Hybrid Flows can be implemented by selecting Program 31, and downloading instructions and coefficients to the device. Table 7. ROM Preset Programs (1) PROGRAM NUMBER D(4:0) 0 0 0000 Reserved 1 0 0001 Normal x8/x4/x2/x1 Interpolation Filter (1) DESCRIPTION MINIMUM CYCLES 256 (1) 2 0 0010 Low Latency x8/x4/x2/x1 Interpolation Filter 3 0 0011 High Attenuation x8/x4/x2 Interpolation Filter (1) 4 0 0100 Reserved 5 0 0101 Reserved 6 0 0110 Reserved 7 0 0111 Asymmetric FIR Interpolation Filter (1) : : 31 1 1111 256 512 512 Reserved RAM Process flow (e.g. can be used to implement Smart Amplifier 2.1 Mode) At fs=44.1 kHz, de-emphasis filter is supported. The PCM5252 supports four sampling modes (single rate, dual rate, quad rate, and octal rate) which produce different oversampling rates (OSR) in the interpolation digital filter operation. These are shown in Table 8. Table 8. Sampling Modes and Oversampling Rates SAMPLING MODE SAMPLING FREQUENCY (fS) kHz OVERSAMPLING RATE (OSR) 8 16 Single Rate 32 8 or 16 44.1 48 Dual Rate Quad Rate Octal Rate 88.2 96 176.4 192 384 4 2 1 (Bypass) Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 23 PCM5252 SLASE63 – NOVEMBER 2014 www.ti.com Table 9. Normal x8 Interpolation Filter, Single Rate PARAMETER CONDITION Filter Gain Pass Band 0 ……. 0.45 × fS VALUE (TYP) Filter Gain Stop Band 0.55 × fS ….. 7.455 × fS Filter Group Delay VALUE (MAX) UNIT ±0.01 dB –60 dB 20 / fs S SPACE 1.0 0 0.8 −20 0.6 Amplitude (FFS) Amplitude (dB) −40 −60 0.4 0.2 −80 0.0 −100 −120 −0.2 0 1 2 Frequency (x fS) 3 −0.4 4 0 50 100 150 200 250 Samples 300 350 G023 G012 Figure 22. Normal x8 Interpolation Filter Frequency Response 400 Figure 23. Normal x8 Interpolation Filter Impulse Response 0.05 0.04 0.03 Amplitude (dB) 0.02 0.01 0.00 −0.01 −0.02 −0.03 −0.04 −0.05 0.0 0.1 0.2 0.3 Frequency (x fS) 0.4 0.5 G034 Figure 24. Normal x8 Interpolation Filter Passband Ripple 24 Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 PCM5252 www.ti.com SLASE63 – NOVEMBER 2014 Table 10. Normal x4 Interpolation Filter, Dual Rate PARAMETER CONDITION Filter Gain Pass Band 0 ……. 0.45 × fS VALUE (TYP) Filter Gain Stop Band 0.55 × fS ….. 3.455 × fS Filter Group Delay VALUE (MAX) UNIT ±0.01 dB –60 dB 20 / fs S SPACE 0 1.0 0.8 −20 0.6 Amplitude (FFS) Amplitude (dB) −40 −60 0.4 0.2 −80 0.0 −100 −120 −0.2 −0.4 0 1 Frequency (x fS) 2 0 20 40 60 80 100 Samples 120 140 G020 G009 Figure 25. Normal x4 Interpolation Filter Frequency Response 160 Figure 26. Normal x4 Interpolation Filter Impulse Response 0.05 0.04 0.03 Amplitude (dB) 0.02 0.01 0.00 −0.01 −0.02 −0.03 −0.04 −0.05 0.0 0.25 Frequency (x fS) 0.5 G031 Figure 27. Normal x4 Interpolation Filter Passband Ripple Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 25 PCM5252 SLASE63 – NOVEMBER 2014 www.ti.com Table 11. Normal x2 Interpolation Filter, Quad Rate PARAMETER CONDITION Filter Gain Pass Band 0 ……. 0.45 × fS VALUE (TYP) Filter Gain Stop Band 0.55 × fS ….. 1.455 × fS Filter Group Delay VALUE (MAX) UNIT ±0.01 dB –60 dB 20 / fs S SPACE 0 1.0 0.8 −20 0.6 Amplitude (FFS) Amplitude (dB) −40 −60 0.4 0.2 −80 0.0 −100 −120 −0.2 −0.4 0 0.5 Frequency (x fS) 1 0 10 20 30 40 50 60 Samples 70 80 90 G017 G006 Figure 28. Normal x2 Interpolation Filter Frequency Response 100 Figure 29. Normal x2 Interpolation Filter Impulse Response 0.05 0.04 0.03 Amplitude (dB) 0.02 0.01 0.00 −0.01 −0.02 −0.03 −0.04 −0.05 0.0 0.25 Frequency (x fS) 0.5 G028 Figure 30. Normal x2 Interpolation Filter Passband Ripple 26 Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 PCM5252 www.ti.com SLASE63 – NOVEMBER 2014 Table 12. Low Latency x8 Interpolation Filter, Single Rate PARAMETER CONDITION Filter Gain Pass Band 0 ……. 0.45 × fS VALUE (TYP) Filter Gain Stop Band 0.55 × fS ….. 7.455 × fS Filter Group Delay VALUE (MAX) UNIT ±0.001 dB –52 dB 3.5 × ts S SPACE 1.0 0 0.8 −20 0.6 Amplitude (FFS) Amplitude (dB) −40 −60 0.4 0.2 0.0 −80 −0.2 −100 −0.4 −120 0 1 2 Frequency (x fS) 3 4 −0.6 0 50 100 150 200 250 Samples 300 350 400 G022 G011 Figure 31. Low Latency x8 Interpolation Filter Frequency Response Figure 32. Low Latency x8 Interpolation Filter Impulse Response 0.00010 0.00008 0.00006 Amplitude (dB) 0.00004 0.00002 0.00000 −0.00002 −0.00004 −0.00006 −0.00008 −0.00010 0.0 0.1 0.2 0.3 Frequency (x fS) 0.4 0.5 G033 Figure 33. Low Latency x8 Interpolation Filter Passband Ripple Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 27 PCM5252 SLASE63 – NOVEMBER 2014 www.ti.com Table 13. Low Latency x4 Interpolation Filter, Dual Rate PARAMETER CONDITION Filter Gain Pass Band 0 ……. 0.45 × fS VALUE (TYP) Filter Gain Stop Band 0.55 × fS ….. 3.455 × fS Filter Group Delay VALUE (MAX) UNIT ±0.001 dB –52 dB 3.5 × ts S SPACE 0 1.0 0.8 −20 0.6 Amplitude (FFS) Amplitude (dB) −40 −60 0.4 0.2 0.0 −80 −0.2 −100 −0.4 −120 −0.6 0 1 Frequency (x fS) 2 0 20 40 60 80 100 Samples 120 140 160 180 G019 G008 Figure 34. Low Latency x4 Interpolation Filter Frequency Response Figure 35. Low Latency x4 Interpolation Filter Impulse Response 0.0001 0.00008 0.00006 Amplitude (dB) 0.00004 0.00002 0 −0.00002 −0.00004 −0.00006 −0.00008 −0.0001 0.0 0.25 Frequency (x fS) 0.5 G030 Figure 36. Low Latency x4 Interpolation Filter Passband Ripple 28 Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 PCM5252 www.ti.com SLASE63 – NOVEMBER 2014 Table 14. Low Latency ×2 Interpolation Filter, Quad Rate PARAMETER CONDITION Filter Gain Pass Band 0 ……. 0.45 × fS VALUE (TYP) Filter Gain Stop Band 0.55 × fS ….. 1.455 × fS Filter Group Delay VALUE (MAX) UNIT ±0.001 dB –52 dB 3.5 × ts S SPACE 0 1.0 0.8 −20 0.6 Amplitude (FFS) Amplitude (dB) −40 −60 0.4 0.2 −80 0.0 −100 −120 −0.2 −0.4 0 0.5 Frequency (x fS) 1 0 10 20 30 40 50 60 Samples 70 80 90 100 G016 G005 Figure 37. Low Latency x2 Interpolation Filter Frequency Response Figure 38. Low Latency x2 Interpolation Filter Impulse Response 0.0001 0.00008 0.00006 Amplitude (dB) 0.00004 0.00002 0 −0.00002 −0.00004 −0.00006 −0.00008 −0.0001 0.0 0.25 Frequency (x fS) 0.5 G030 Figure 39. Low Latency x2 Interpolation Filter Passband Ripple Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 29 PCM5252 SLASE63 – NOVEMBER 2014 www.ti.com Table 15. Asymmetric FIR x8 Interpolation Filter, Single Rate PARAMETER CONDITION Filter Gain Pass Band 0 ……. 0.40 × fS VALUE (TYP) Filter Gain Stop Band 0.72 × fS ….. 7.28 × fS Filter Group Delay VALUE (MAX) UNIT ±0.05 dB –50 dB 1.2 × ts S SPACE 0 1 0.8 −20 0.6 Amplitude (FFS) Amplitude (dB) −40 −60 0.4 0.2 −80 0 −100 −120 −0.2 0 1 2 Frequency ( × fS) 3 −0.4 4 0 10 20 30 40 50 Samples G003 Figure 40. Asymmetric FIR x8 Interpolation Filter Frequency Response, Single Rate 60 70 80 G006 Figure 41. Asymmetric FIR x8 Interpolation Filter Impulse Response, Single Rate 0.2 0.15 Amplitude (dB) 0.1 0.05 0 −0.05 −0.1 −0.15 −0.2 0 0.1 0.2 0.3 Frequency ( × fS) 0.4 0.5 G009 Figure 42. Asymmetric FIR x8 Interpolation Filter Passband Ripple, Single Rate 30 Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 PCM5252 www.ti.com SLASE63 – NOVEMBER 2014 Table 16. Asymmetric FIR x4 Interpolation Filter, Dual Rate PARAMETER CONDITION Filter Gain Pass Band 0 ……. 0.40 × fS VALUE (TYP) Filter Gain Stop Band 0.72 × fS ….. 3.28 × fS Filter Group Delay VALUE (MAX) UNIT ±0.05 dB –50 dB 1.2 × ts S SPACE 0 1 −20 0.8 0.6 Amplitude (FFS) Amplitude (dB) −40 −60 0.4 0.2 −80 0 −100 −120 −0.2 0 1 2 Frequency (x fS) −0.4 0 10 20 30 Samples 40 50 G002 Figure 43. Asymmetric FIR x4 Interpolation Filter Frequency Response, Dual Rate 60 G005 Figure 44. Asymmetric FIR x4 Interpolation Filter Impulse Response, Dual Rate 0.2 0.15 Amplitude (dB) 0.1 0.05 0 −0.05 −0.1 −0.15 −0.2 0 0.5 Frequency ( × fS) 1 G008 Figure 45. Asymmetric x4 Interpolation Filter Passband Ripple, Dual Rate Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 31 PCM5252 SLASE63 – NOVEMBER 2014 www.ti.com Table 17. Asymmetric FIR x2 Interpolation Filter, Quad Rate PARAMETER CONDITION Filter Gain Pass Band 0 ……. 0.40 × fS VALUE (TYP) Filter Gain Stop Band 0.72 × fS ….. 1.28 × fS Filter Group Delay VALUE (MAX) UNIT ±0.05 dB –50 dB 1.2 × ts S SPACE 0 1 −20 0.8 0.6 Amplitude (FFS) Amplitude (dB) −40 −60 0.4 0.2 −80 0 −100 −120 −0.2 0 0.5 Frequency (x fS) −0.4 1 0 10 20 30 40 50 Samples G001 Figure 46. Asymmetric FIR x2 Interpolation Filter Frequency Response, Quad Rate G004 Figure 47. Asymmetric FIR x2 Interpolation Filter Impulse Response, Quad Rate 0.2 0.15 Amplitude (dB) 0.1 0.05 0 −0.05 −0.1 −0.15 −0.2 0 0.25 Frequency (x fS) 0.5 G100 Figure 48. Asymmetric x2 Interpolation Filter Passband Ripple, Quad Rate 32 Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 PCM5252 www.ti.com SLASE63 – NOVEMBER 2014 Table 18. High-Attentuation x8 Interpolation Filter, Single Rate PARAMETER CONDITION Filter Gain Pass Band 0 ……. 0.45 × fS VALUE (TYP) Filter Gain Stop Band 0.55 × fS ….. 7.455 × fS Filter Group Delay VALUE (MAX) UNIT ±0.0005 dB –100 dB 33.7 × tS S SPACE 0 1 0.8 −20 0.6 Amplitude (FFS) Amplitude (dB) −40 −60 0.4 0.2 −80 0 −100 −120 −0.2 0 1 2 Frequency ( × fS) 3 −0.4 4 0 50 100 150 200 250 300 350 400 450 500 550 600 Samples G003 Figure 49. High-Attentuation x8 Interpolation Filter Frequency Response, Single Rate G006 Figure 50. High-Attentuation x8 Interpolation Filter Impulse Response, Single Rate 0.002 0.0015 Amplitude (dB) 0.001 0.0005 0 −0.0005 −0.001 −0.0015 −0.002 0 0.1 0.2 0.3 Frequency ( × fS) 0.4 0.5 G009 Figure 51. High-Attentuation x8 Interpolation Filter Passband Ripple, Single Rate Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 33 PCM5252 SLASE63 – NOVEMBER 2014 www.ti.com Table 19. High-Attentuation x4 Interpolation Filter, Dual Rate PARAMETER CONDITION Filter Gain Pass Band 0 ……. 0.45 × fS VALUE (TYP) Filter Gain Stop Band 0.55 × fS ….. 3.455 × fS Filter Group Delay VALUE (MAX) UNIT ±0.0005 dB –100 dB 33.7 × tS S SPACE 0 1 −20 0.8 0.6 Amplitude (FFS) Amplitude (dB) −40 −60 0.4 0.2 −80 0 −100 −120 −0.2 0 1 Frequency (x fS) 2 −0.4 0 50 100 150 Samples G004 Figure 52. High-Attentuation x4 Interpolation Filter Frequency Response, Dual Rate 200 250 300 G005 Figure 53. High-Attentuation x4 Interpolation Filter Impulse Response, Dual Rate 0.002 0.0015 Amplitude (dB) 0.001 0.0005 0 −0.0005 −0.001 −0.0015 −0.002 0 0.25 Frequency (x fS) 0.5 G101 Figure 54. High-Attentuation x4 Interpolation Filter Passband Ripple, Dual Rate 34 Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 PCM5252 www.ti.com SLASE63 – NOVEMBER 2014 Table 20. High-Attentuation x2 Interpolation Filter, Quad Rate PARAMETER CONDITION Filter Gain Pass Band 0 ……. 0.45 × fS VALUE (TYP) Filter Gain Stop Band 0.55 × fS ….. 1.455 × fS Filter Group Delay VALUE (MAX) UNIT ±0.0005 dB –100 dB 33.7 × tS S SPACE 0 1 −20 0.8 0.6 Amplitude (FFS) Amplitude (dB) −40 −60 0.4 0.2 −80 0 −100 −120 −0.2 0 0.5 Frequency (x fS) 1 −0.4 0 10 20 30 40 50 60 70 Samples 80 90 100 110 120 G003 Figure 55. High-Attentuation x2 Interpolation Filter Frequency Response, Quad Rate G004 Figure 56. High-Attentuation x2 Interpolation Filter Impulse Response, Quad Rate 0.002 0.0015 Amplitude (FFS) 0.001 0.0005 0 −0.0005 −0.001 −0.0015 −0.002 0 0.25 Frequency (x fS) 0.5 G102 Figure 57. High-Attentuation x2 Interpolation Filter Passband Ripple, Quad Rate Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 35 PCM5252 SLASE63 – NOVEMBER 2014 www.ti.com 8.3.4.3 Overview The PCM5252 features a configurable miniDSP core. The algorithms for the miniDSP are loaded into the device after power up. The miniDSP has direct access to the digital stereo audio stream, offering the possibility for advanced DSP algorithms with very low group delay. The miniDSP can run up to 1024 instructions on every audio sample at a 48 kHz sample rate. The PCM5252 Smart Amplifier uses a mix of code sources. ROM based process flow and RAM based process flow. In the program, different algorithms are called from ROM – such as EQ, DRC and Zero Crossing volume control enabling a faster program load. 8.3.4.4 Smart SOA The "Safe Operating Area" (SOA) for a loudspeaker is based on its electro-mechanical-thermal model. Depending on a speaker's inefficiency, some of the power is dissipated as heat rather than mechanical/acoustic energy. By understanding the characteristics of the speaker, Smart Amp is able to drive the speaker harder, without causing the speaker to thermally overload; or, suffer voice coil over-exclusion and fail. SMART SOA are parameters that are differentiated by a PPC GUI into coefficients that the algorithm uses. 8.3.4.5 Smart BASS Smart Bass is an intelligent True Bass Alignment algorithm. Smart Bass uses the combination of the speaker model and a desired target response selected by the user to equalize the speaker in the bass region. This target response is critical for the sound character and the user can apply the same target response to very different speakers and get the same sound. In conventional adaptive Bass Boost Algorithms, designers need to vary the amount of bass boost whenever the output volume is changed. This approach is very much an "open loop" process. Smart Bass is a new proprietary algorithm that combines: True bass extension (in bandwidth and amplitude) and Psycho-acoustic bass extension, with a smart adaptive control. Smart Bass varies the mix of True Bass extension and Psycho-acoustic bass extension in real time, depending on the loudspeakers position in its SOA. Smart Bass dynamically switches between True Bass and Psycho-acoustic extension based on a number of parameters such as: • Capabilities and properties of the speaker, including Q compensation • Music type • Volume setting • Temperature • User preferences • Designer preferences 8.3.4.6 Smart Protection The two main failure mechanisms for loudspeakers are over temperature and over excursion. By modeling the current state of the speaker, Smart Protection adaptively changes various settings in Smart Amplifier to avoid over temperature and over excursion. Design engineers must first provide details of the loudspeaker (driver and enclosure) into the GUI. From there the appropriate coefficients are generated for the algorithm. 8.3.4.7 Implementing a Real World Design Traditionally, system developers and hardware engineers use graphic equalizers in trial-and-error fashion to boost the bass for each new speaker until the sound is right (or "good enough" in many cases). However, this typically results in a strange combined response with too much phase shift. This process must be repeated every time a new speaker is selected. The Smart Bass concept uses the GUI to select a desired target response takes the speaker out of the equation. By this approach users can obtain a target response with minimum phase warp and time domain ringing which gives a speedy and tight bass. Conversely, users can select a target response that has lots of ringing to give a classical heavy ‘oomph’ bass. 36 Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 PCM5252 www.ti.com SLASE63 – NOVEMBER 2014 8.3.4.8 Digital Output The PCM5252 supports an SDOUT output. This can be selected within the process flow, and driven out of a GPIO pin selected in the register map (e.g. Page 0 / Register 80). The I2S output can be fed back to the signal host and used for echo cancellation. 8.3.4.9 Software Software selection for the PCM5252 is supported through TI's comprehensive PurePathTM Console Development Environment; a powerful, easy-to-use tool designed specifically to simplify development on the PCM5252 platform. Visit the PCM5252 product folder on www.ti.com to learn more about PurePath™ Console and the latest status on available, ready-to-use DSP algorithms. 8.3.4.10 Process Flow An example of the default Process Flow available for the PCM5252 in the PurePath™ Console target is shown below: DIN GPIO3 (SDOUT) I2S Input Stereo Volume Control I2S Output Mono Bass Mix 10 BiQuads Smart Amp Left/Right DAC Analog Output DACL DACR Left Right Figure 58. Example Processflow This process flow has from input to output: • Volume block, from -110 db to +6 dB with 0.5 dB steps, including a fixed gain block of 0dB to 12 dB gain • monobass mixer – mixes the bass into mono below the set frequency, useful for systems where left and right speaker shares the same cabinet volume, bypassed when not needed • 10 Biquads for filtering and EQ. The PPC GUI have an advanced biquad control where various filter and eq options can be set and controlled. • SmartAmp block, containing all the blocks for bass Q compensation, bass alignment, excursion control and power limited • Digital monitor output enabled on GPIO3 Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 37 PCM5252 SLASE63 – NOVEMBER 2014 www.ti.com 8.3.5 DAC and Differential Analog Outputs 8.3.5.1 Analog Outputs The PCM5252 devices include a two-channel DAC, with differential outputs. Each pin has a full-scale output voltage is 2.1 Vrms with ground center output. This equates to a 4.2 Vrms differential output. A DC-coupled load is supported in addition to an AC-coupled load, if the load resistance conforms to the specification. The PCM5252 DAC outputs on the OUTLP, OUTLN, OUTRP, and OUTRN terminals have market-leading low out-of-band noise, which offer up to 20-dB lower out-of-band noise compared with existing DAC technology. Many applications require an external low-pass RC filter (470 Ω + 1.2 nF) to provide sufficient out-of-band noise rejection. This RC filter provides the added advantage of improved protection against ESD damage. The PCM5252 can also support single ended outputs, using OUTLP and OUTRP respectively. A single 470-Ω and 2.2-nF capacitor can be used on each pin in single ended mode. The choice between VREF and VCOM modes affects the maximum output level. This is explained in Recommended Operating Conditions. Optional RC Low-Pass Filter P Output 4.3nF 470W N Output 470W + Right Differential + Output Left Differential Output 6 OUTLP RC LPF 7 OUTLN 8 OUTRN RC LPF 9 OUTRP Figure 59. Optional Low Pass Filters 8.3.5.2 Choosing Between VREF and VCOM Modes VREF mode is the default configuration. This mode allows full 2.1-Vrms signal output. As shown in Recommended Operating Conditions, the minimum AVDD to avoid clipping is 3.2 V. VCOM mode allows setting a custom common-mode voltage when required by the application. This somewhat limits the output signal swing before clipping. 8.3.5.2.1 Voltage Reference and Output Levels The PCM5252 devices have an internal, fixed band-gap reference voltage, with default operation in VREF mode. No external decoupling capacitor is required for this mode. The PCM5252 devices can be operated with a common-mode voltage output (VCOM mode) at the VCOM pin by setting Page 1, Register 1, D(0) to 1. In this mode, an external decoupling capacitor is required. When using this DAC in VREF mode, the output-signal voltage is independent of the power-supply voltage: The D/A conversion gain in VREF mode yields a 2.1-Vrms output voltage with a digital full-scale input. However, in VREF mode, an output waveform may clip due to the limitations that may be present in the analog power supply voltage. On the other hand, the full-scale output voltage in VCOM mode is proportional to the analog power supply AVDD (for example, (2.1 × AVDD / 3.3) Vrms). 38 Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 PCM5252 www.ti.com SLASE63 – NOVEMBER 2014 8.3.5.2.2 Mode Switching Sequence, from VREF Mode to VCOM Mode Following register setting sequence is recommended for changing VREF mode to VCOM mode. 1. Page 0 / Register 2 RQST = 1: Standby mode 2. Page 1 / Register 8 RCMF = 1: Fast ramp up → on 3. Page 1 / Register 9  VCPD = 0: VCOM is power on 4. Wait 3 ms with external capacitor = 1 µF 5. Page 1 / Register 8 RCMF = 0: Fast ramp up → off 6. Page 1 / Register 1 OSEL = 1: VCOM mode 7. Page 0 / Register 2 RQST = 0: Normal mode 8.3.5.3 Digital Volume Control A basic digital volume control with range from 24 dB to –103 dB and mute is available on each channels by Page 0, Resister 61, D(7:0) for L-ch and Register 62, D(7:0) for R-ch. These volume controls all have 0.5-dB step programmability over most gain and attenuation ranges. Table 21 lists the detailed gain versus programmed setting for this basic volume control. Volume can be changed for both L-ch and R-ch at the same time or independently by Page 0, Register 60, D(1:0). When D(1:0) set 00 (default), independent control is selected. When D(1:0) set 01, R-ch accords with L-ch volume. When D(1:0) set 10, L-ch accords with R-ch volume. To set D(1:0) to 11 is prohibited. NOTE This volume control is done externally to the miniDSP and only influences the analog DAC output. Any changes to the SDOUT data should be done in the miniDSP process flow. Table 21. Digital Volume Control Settings GAIN SETTING BINARY DATA GAIN (dB) COMMENTS 0 0000-0000 24.0 Positive maximum 1 0000-0001 23.5 : : — 46 0010-1110 1.0 47 0010-1111 0.5 48 0011-0000 0.0 49 0011-0001 –0.5 50 0011-0010 –1.0 51 0011-0011 –1.5 : : — 253 1111-1101 –102.5 254 1111-1110 –103 255 1111-1111 –∞ No attenuation (default) Negative maximum Negative infinite (Mute) Ramp-up frequency and ramp-down frequency can be controlled by Page 0, Register 63, D(7:6) and D(3:2) as shown in Table 22. Also Ramp-up step and ramp-down step can be controlled by Page 0, Register 63 D(5:4) and D(1:0) as shown in Table 23. Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 39 PCM5252 SLASE63 – NOVEMBER 2014 www.ti.com Table 22. Ramp-Up or Down Frequency RAMP-UP SPEED EVERY N fS COMMENTS RAMP-DOWN FREQUENCY EVERY N fS COMMENTS 00 1 Default 00 1 Default 01 2 01 2 10 4 10 4 11 Direct change 11 Direct change Table 23. Ramp-Up or Down Step RAMP-UP STEP STEP dB RAMP-DOWN STEP STEP dB 00 01 4.0 00 -4.0 2.0 01 -2.0 10 1.0 11 0.5 10 -1.0 11 -0.5 COMMENTS Default COMMENTS Default 8.3.5.3.1 Emergency Ramp-Down Digital volume emergency ramp-down by is provided for situations such as I2S clock error and power supply failure. Ramp-down speed is controlled by Page 0, Register 64, D(7:6). Ramp-down step can be controlled by Page 0 Register 64, D(5:4). Default is ramp-down by every fS cycle with –4-dB step. 8.3.5.4 Analog Gain Control Analog gain control can be selected between 2-Vrms FS (0 dB) or 1-Vrms FS (–6 dB). Gain is controlled through hardware by the AGNS pin, and through software (SPI/I2C), Page 1, Register 2, D4(L-ch) / D0(R-ch). 40 Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 PCM5252 www.ti.com SLASE63 – NOVEMBER 2014 8.3.6 Reset and System Clock Functions 8.3.6.1 Clocking Overview The PCM5252 devices have flexible systems for clocking. Internally, the device requires a number of clocks, mostly at related clock rates to function correctly. All of these clocks can be derived from the serial audio interface in one form or another. Delta Sigma Modulator 16fS (24bit) 128fS (~8 bit) DSPCK Current Segments I V Line Driver + -3V3 DACCK miniDSP (inc interpolator) OSRCK fS (24bit) LRCK Serial Audio Interface (Input) CPCK -3v3 Charge Pump Figure 60. Audio Flow with Respective Clocks As shown in Figure 60 the data flows at the sample rate (fS). Once the data is brought into the serial audio interface, it gets processed, interpolated and modulated all the way to 128 × fS before arriving at the current segments for the final digital to analog conversion. The clock tree is shown in Figure 61. SCK SCK/PLL Mux PLLEN (Pg0, Reg 4 0x04) DSPCK (miniDSP Clock ) Divider DDSP (Pg0, Reg 27 0x1B) SREF (Pg0, Reg 13 0x0D) SDAC (Pg0, Reg 14 0x0E) BCK PLL GPIO * PLLCKIN K*R/P DAC CLK Source GPIO* Mux SCK PLLCK SCK DACCK (DAC Clock ) Divider DDAC (Pg0, Reg 28 0x1C) Divider CPCK (Charge Pump Clock ) DNCP (Pg0, Reg 29 0x1D) K = J.D J = 1,2,3,…..,62,63 D= 0000,0001,….,9998,9999 R= 1,2,3,4,….,15,16 P= 1,2,….,127,128 Divider OSRCK (Oversampling Ratio Clock ) MUX Divide by 2 DOSR (Pg0, Reg 30 0x1E) I16E (Pg0, Reg 34 0x22) Figure 61. PCM5252 Clock Distribution Tree The serial audio interface typically has 4 connections: SCK (system master clock), BCK (bit clock), LRCK (left right word clock), and DIN (data). The device has an internal PLL that is used to take either SCK or BCK and create the higher rate clocks required by the interpolating processor and the DAC clock. This allows the device to operate with or without an external SCK. In situations where the highest audio performance is required, it is suggested that the SCK is brought to the device, along with BCK and LRCK. The device should be configured so that the PLL is only providing a clock source to the miniDSP. By ensuring that the DACCK (DAC Clock) is being driven by the external SCK source, jitter evident in the PLL (in all PLLs) is kept out of the DAC, charge pump, and oversampling system. Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 41 PCM5252 SLASE63 – NOVEMBER 2014 www.ti.com Everything else should be a division of the incoming SCK. This is done by setting DAC CLK Source Mux (SDAC in Figure 61) to use SCK as a source, rather than the output of the SCK/PLL Mux. Code examples for this are available in SLASE12. When the Auto Clock Configuration bit is set (Page 0/ Register 0x25), no additional clocks configuration is required. However, when setting custom PLL values and so forth, the target output rates should match those shown in the recommended PLL values of Table 122. 8.3.6.2 Clock Slave Mode With Master and System Clock (SCK) Input (4 Wire I2S) The PCM5252 requires a system clock to operate the digital interpolation filters and advanced segment DAC modulators. The system clock is applied at the SCK input and supports up to 50 MHz. The PCM5252 systemclock detection circuit automatically senses the system-clock frequency. Common audio sampling frequencies in the bands of 8 kHz, 16 kHz, (32 kHz - 44.1 kHz - 48 kHz), (88.2kHz - 96kHz), (176.4 kHz - 192 kHz), and 384 kHz with ±4% tolerance are supported. Values in the parentheses are grouped when detected, (for example, 88.2 kHZ and 96 kHz are detected as double rate, and 32 kHz, 44.1 kHz and 48 kHz are detected as single rate.) In the presence of a valid bit SCK, BCK and LRCK in software mode, the device will auto-configure the clock tree and PLL to drive the miniDSP as required. The sampling frequency detector sets the clock for the digital filter, Delta Sigma Modulator (DSM) and the Negative Charge Pump (NCP) automatically. Table 24 shows examples of system clock frequencies for common audio sampling rates. SCK rates that are not common to standard audio clocks, between 1 MHz and 50 MHz, are only supported in software mode by configuring various PLL and clock-divider registers. This programmability allows the device to become a clock master and drive the host serial port with LRCK and BCK, from a non-audio related clock (for example, using 12 MHz to generate 44.1 kHz [LRCK] and 2.8224 MHz [BCK]). Table 24. System Master Clock Inputs for Audio Related Clocks SYSTEM CLOCK FREQUENCY (fSCK) (MHz) SAMPLING FREQUENCY 64 fS 128 fS 192 fS 256 fS 384 fS 512 fS 768 fS 1024 fS 1152 fS 1536 fS 2048 fS 3072 fS 8 kHz – (1) 1.024 (2) 1.536 (2) 2.048 3.072 4.096 6.144 8.192 9.216 12.288 16.384 24.576 16 kHz – (1) 2.048 (2) 3.072 (2) 4.096 6.144 8.192 12.288 16.384 18.432 24.576 36.864 49.152 32 kHz – (1) 4.096 (2) 6.144 (2) 8.192 12.288 16.384 24.576 32.768 36.864 49.152 – (1) – (1) 44.1 kHz – (1) 5.6488 (2) 8.4672 (2) 11.2896 16.9344 22.5792 33.8688 45.1584 – (1) – (1) – (1) – (1) – (1) – (1) – (1) – (1) – (1) – (1) – (1) – (1) 48 kHz 88.2 kHz – (1) 6.144 (2) 9.216 12.288 18.432 24.576 36.864 (1) 49.152 16.9344 22.5792 33.8688 45.1584 – 12.288 (2) 18.432 24.576 36.864 49.152 – (1) – (1) – (1) – (1) – (1) – (1) 176.4 kHz – (1) 22.579 33.8688 45.1584 – (1) – (1) – (1) – (1) – (1) – (1) – (1) – (1) 192 kHz – (1) 24.576 36.864 49.152 – (1) – (1) – (1) – (1) – (1) – (1) – (1) – (1) (1) (1) (1) (1) (1) (1) (1) – (1) 49.152 – (1) – (1) – – – – (1) – (1) 24.576 11.2896 (2) (2) 96 kHz 384 kHz (1) (2) – (1) – – – – This system clock rate is not supported for the given sampling frequency. This system clock rate is supported by PLL mode. See Timing Requirements: PCM Audio Data for clock timing requirements. 42 Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 PCM5252 www.ti.com SLASE63 – NOVEMBER 2014 8.3.6.3 Clock Slave Mode With BCK PLL to Generate Internal Clocks (3-Wire PCM) The system clock PLL mode allows designers to use a simple 3-wire I2S audio source. The 3-wire source reduces the need for a high frequency SCK, making PCB layout easier, and reduces high frequency electromagnetic interference. In hardwired mode, the internal PLL is disabled as soon as an external SCK is supplied. In hardwired mode, the device starts up expecting an external SCK input, but if BCK and LRCK start correctly while SCK remains at ground level for 16 successive LRCK periods, then the internal PLL starts, automatically generating an internal SCK from the BCK reference. Specific BCK rates are required to generate an appropriate master clock. Table 25 describes the minimum and maximum BCK per LRCK for the integrated PLL to automatically generate an internal SCK. In software mode, the user must set all the PLL registers and clock divider registers for referencing BCK. See Clock Generation Using the PLL for more information. Recommended values can be found in Table 122. Table 25. BCK Rates (MHz) by LRCK Sample Rate for PCM5252 PLL Operation BCK (fS) SAMPLE F (kHz) 32 64 8 – – 16 – 1.024 32 1.024 2.048 44.1 1.4112 2.8224 48 1.536 3.072 96 3.072 6.144 192 6.144 12.288 384 12.288 24.576 8.3.6.4 Clock Generation Using the PLL The PCM5252 supports a wide range of options to generate the required clocks for the DAC section as well as interface and other control blocks as shown in Figure 61. The clocks for the PLL require a source reference clock. This clock is sourced as the incoming BCK or SCK. In software mode, a GPIO can also be used. The source reference clock for the PLL reference clock is selected by programming the SRCREF value on Page 0, Register 13, D(6:4). The PCM5252 provides several programmable clock dividers to achieve a variety of sampling rates for the DAC and clocks for the NCP, OSR and the miniDSP. OSRCK for OSR must be set at 16 fS frequency by DOSR on Page0, Register 30, D(6:0). See Figure 61. If PLL functionality is not required, set the PLLEN value on Page 0, Register 4, D(0) to 0. In this situation, an external SCK is required. Table 26. PLL Configuration Registers CLOCK MULTIPLEXER FUNCTION BITS SRCREF PLL reference Page 0, Register 13, D(6:4) DIVIDER FUNCTION BITS miniDSP clock divider Page 0, Register 27, D(6:0) DACCK DAC clock divider Page 0, Register 28, D(6:0) CPCK NCP clock divider Page 0, Register 29, D(6:0) OSRCK OSR clock divider Page 0, Register 30, D(6:0) DBCK External BCK Div Page 0, Register 32, D(6:0) DLRK External LRCK Div Page 0, Register 33, D(7:0) DDSP Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 43 PCM5252 SLASE63 – NOVEMBER 2014 www.ti.com 8.3.6.5 PLL Calculation The PCM5252 has an on-chip PLL with fractional multiplication to generate the clock frequency needed by the audio DAC, Negative Charge Pump, Modulator and Digital Signal Processing blocks. The programmability of the PLL allows operation from a wide variety of clocks that may be available in the system. The PLL input (PLLCKIN) supports clock frequencies from 1 MHz to 50 MHz and is register programmable to enable generation of required sampling rates with fine precision. The PLL is enabled by default. The PLL can be turned on by writing to Page 0, Register 4, D(0). When the PLL is enabled, the PLL output clock PLLCK is given by Equation 1. PLLCK = PLLCKIN x R x J.D P or PLLCK = PLLCKIN x R x K P where • • • • R = 1, 2, 3,4, ... , 15, 16 J = 4,5,6, . . . 63, and D = 0000, 0001, 0002, . . . 9999 K = [J value].[D value] P = 1, 2, 3, ... 15 (1) R, J, D, and P are programmable. J is the integer portion of K (the numbers to the left of the decimal point), while D is the fractional portion of K (the numbers to the right of the decimal point, assuming four digits of precision). 8.3.6.5.1 Examples: • • • • If If If If K K K K = = = = 8.5, then J = 8, D = 5000 7.12, then J = 7, D = 1200 14.03, then J = 14, D = 0300 6.0004, then J = 6, D = 0004 When the PLL is enabled and D = 0000, the following conditions must be satisfied: • 1 MHz ≤ ( PLLCKIN / P ) ≤ 20 MHz • 64 MHz ≤ (PLLCKIN x K x R / P ) ≤ 100 MHz (in VREF mode) • 72 MHz ≤ (PLLCKIN x K x R / P ) ≤ 86 MHz (in VCOM mode) • 1 ≤ J ≤ 63 When the PLL is enabled and D ≠ 0000, the following conditions must be satisfied: • 6.667 MHz ≤ PLLCLKIN / P ≤ 20 MHz • 64 MHz ≤ (PLLCKIN x K x R / P ) ≤ 100 MHz (in VREF mode) • 72 MHz ≤ (PLLCK IN x K x R / P ) ≤ 86 MHz (in VCOM mode) • 4 ≤ J ≤ 11 • R=1 When the PLL is enabled, • fS = (PLLCLKIN × K × R) / (2048 × P) • The value of N is selected so that fS × N = PLLCLKIN x K x R / P is in the allowable range. Example: MCLK = 12 MHz and fS = 44.1 kHz, (N=2048) Select P = 1, R = 1, K = 7.5264, which results in J = 7, D = 5264 Example: MCLK = 12 MHz and fS = 48.0 kHz, (N=2048) Select P = 1, R = 1, K = 8.192, which results in J = 8, D = 1920 Values are written to the registers in Table 27. 44 Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 PCM5252 www.ti.com SLASE63 – NOVEMBER 2014 8.3.6.5.1.1 Recommended PLL Settings Recommended values for the PLL can be found after the register descriptions in this data sheet. Different values are defined based on the device configuration for VREF or VCOM mode. Other configurations are possible, at your own risk. Table 27 show the details of the register locations, as well as the nomenclature for the table of registers found at the end of this document. Table 27. PLL Registers DIVIDER FUNCTION BITS PLLE PLL enable Page 0, Register 4, D(0) PPDV PLL P Page 0, Register 20, D(3:0) PJDV PLL J Page 0, Register 21, D(5:0) PDDV PLL D PRDV PLL R Page 0, Register 22, D(5:0) Page 0, Register 23, D(7:0) Page 0, Register 24, D(3:0) Table 28. PLL Configuration Recommendations COLUMN DESCRIPTION fS (kHz) Sampling frequency RSCK Ratio between sampling frequency and SCK frequency (SCK frequency = RSCK × sampling frequency) SCK (MHz) System master clock frequency at SCK input (pin 20) PLL VCO (MHz) PLL VCO frequency as PLLCK in Figure 61 P One of the PLL coefficients in Equation 1 PLL REF (MHz) Internal reference clock frequency which is produced by SCK / P M=K*R The final PLL multiplication factor computed from K and R as described in Equation 1 K = J.D One of the PLL coefficients in Equation 1 R One of the PLL coefficients in Equation 1 PLL fS Ratio between fS and PLL VCO frequency (PLL VCO / fS) DSP fS Ratio between miniDSP operating clock rate and fS (PLL fS / NMAC) NMAC The miniDSP clock divider value in Table 26 DSP CLK (MHz) The miniDSP operating frequency as DSPCK in Figure 61 MOD fS Ratio between DAC operating clock frequency and fS (PLL fS / NDAC) MOD f (kHz) DAC operating frequency as DACCK in Figure 61 NDAC DAC clock divider value in Table 26 DOSR OSR clock divider value in Table 26 for generating OSRCK in Figure 61. DOSR must be chosen so that MOD fS / DOSR = 16 for correct operation. NCP NCP (negative charge pump) clock divider value in Table 26 CP f Negative charge pump clock frequency (fS × MOD fS / NCP) % Error Percentage of error between PLL VCO / PLL fS and fS (mismatch error). • This number is typically zero but can be non-zero especially when K is not an integer (D is not zero). • This number may be non-zero only when the PCM5252 acts as a master. Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 45 PCM5252 SLASE63 – NOVEMBER 2014 www.ti.com 8.3.6.6 Clock Master Mode from Audio Rate Master Clock In Master Mode, the device generates bit clock (BCK) and left-right clock (LRCK) and outputs them on the appropriate pins. To configure the device in this mode, first put the device into reset, then use registers BCKO and LRKO (Pg 0, Reg 9 0x09). Then reset the LRCK and BCK divider counters using bits RBCK and RLRK (Pg 0, Reg 12 0x0C). Finally, exit reset. An example of this is given in register programming examples in the PCM5242 data sheet (SLASE12.) Figure 62 shows a simplified serial port clock tree for the device in master mode. Audio Related System Clock(SCK) SCK Divider Q=1...128 BCKO (Bit Clock Output In Master Mode) Divider Q=1...128 BCK LRCKO (LR Clock Output In Master Mode) LRCK Figure 62. Simplified Clock Tree for SCK Sourced Master Mode In master mode, SCK is an input and BCK/LRCK are outputs. BCK and LRCK are integer divisions of SCK. Master mode with a non-audio rate master clock source will require external GPIOs to use the PLL in standalone mode. The PLL will also need to be configured to ensure that the onchip miniDSP processor can be driven at its maximum clock rate. Register changes that need to be done include switching the device into master mode, and setting the divider ratio. Here is an example of using 24.576 MCLK as a master clock source and driving the BCK and LRCK with integer dividers to create 48 kHz. In this mode, the DAC section of the device is also running from the PLL output. While the PLL inside the PCM5252 is one that has been specified to achieve the stated performance, using the SCK CMOS Oscillator source will have less jitter. To switch the DAC clocks (SDAC in the Figure 61) the following registers should be modified. • Clock Tree Flex Mode (Page 253, Registers 0x3F and 0x40) • DAC and OSR Source Clock Register (Page 0, Reg 14) – set to 0x30 (SCK input, and OSR is set to whatever the DAC source is) • The DAC clock divider should be 16 FS. – 16 × 48 kHz = 768 kHz – 24.576 MHz (SCK in) / 768 kHz = 32 – Therefor, divide ratio for register DDAC (Page 0, Reg 28 0x1C) should be set to 32. The may the register is mapped gives 0x00 = 1, so 32 must be converted to 0x1F. An example configuration can be found in the PCM5242 data sheet (SLASE12). 46 Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 PCM5252 www.ti.com SLASE63 – NOVEMBER 2014 8.3.6.7 Clock Master from a Non-Audio Rate Master Clock The classic example here is running a 12-MHz Master clock for a 48-kHz sampling system. Given the clock tree for the device (shown in Figure 61), a non-audio clock rate cannot be brought into the SCK to the PLL in master mode. Therefore, the PLL source must be configured to be a GPIO pin, and the output brought back into another GPIO pin. NON AUDIO SCK GPIOx NEW AUDIO SCK PLL GPIOy SCK BCK OUT BCK LRCK OUT LRCK Master Mode BCK Integer Divider Master Mode LRCK Integer Divider Figure 63. Application Diagram for Using Non-Audio Clock Sources to Generate Audio Clocks The clock flow through the system is shown in Figure 63. The newly-generated SCK must be brought out of the device on a GPIO pin, then brought into the SCK pin for integer division to create BCK and LRCK outputs. NOTE Pullup resistors must be used on BCK and LRCK in this mode to ensure the device does not go into sleep mode. A code example for configuring this mode is provided in the PCM5242 data sheet (SLASE12). Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 47 PCM5252 SLASE63 – NOVEMBER 2014 www.ti.com 8.4 Device Functional Modes 8.4.1 Choosing a Control Mode SPI Mode is selected by connecting MODE1 to DVDD. SPI Mode uses four signal lines and allows higher-speed full-duplex communication between the host and the PCM5252 device. I2C Mode is selected by connecting MODE1 to DGND and Mode2 to DVDD. I2C uses two signal lines for halfduplex communication, and is widely used in a variety of devices. Hardware Control Mode is selected by connecting both MODE1 and MODE2 pins to DGND. Hardware control is useful in applications that do not require on-the-fly device-reconfiguration changes in operating features such as gain or filter latency selection. See Pin Assignments for a comparison of pin assignments for the 32-pin VQFN. 8.4.1.1 Software Control 8.4.1.1.1 SPI Interface The SPI interface is a 4-wire synchronous serial port which operates asynchronously to the serial audio interface and the system clock (SCK). The serial control interface is used to program and read the on-chip mode registers. The control interface includes MISO (pin 24), MOSI (pin 11), MC (pin 12), and MS (pin 18). MISO (Master In Slave Out) is the serial data output, used to read back the values of the mode registers; MOSI (Master Out Slave In) is the serial data input, used to program the mode registers. MC is the serial bit clock, used to shift data in and out of the control port by falling edge of MC, and MS is the mode control enable with LOW active, used to enable the internal mode register access. If feedback from the device is not required, the MISO pin can be assigned to GPIO1 by register control. 8.4.1.1.1.1 Register Read and Write Operation All read/write operations for the serial control port use 16-bit data words. Figure 64 shows the control data word format. The most significant bit is the read/write bit. For write operations, the bit must be set to 0. For read operations, the bit must be set to 1. There are seven bits, labeled IDX[6:0], that hold the register index (or address) for the read and write operations. The least significant eight bits, D[7:0], contain the data to be written to, or the data that was read from, the register specified by IDX[6:0]. Figure 64 and Figure 65 show the functional timing diagram to write or read through the serial control port. MS is held at a logic-1 state until a register access. To start the register write or read cycle, set MS to logic 0. Sixteen clocks are then provided on MC, corresponding to the 16 bits of the control data word on MOSI and read-back data on MISO. After the eighth clock cycle has completed, the data from the indexed-mode control register appears on MISO during the read operation. After the sixteenth clock cycle has completed, the data is latched into the indexed-mode control register during the write operation. To write or read subsequent data, MS is set to logic 1 once (see tMHH in Figure 69). LSB MSB IDX6 IDX5 IDX4 IDX3 IDX2 IDX1 IDX0 R/W D7 D6 D5 Register Index (or Address) D4 D3 D2 D1 D0 Register Data Figure 64. Control Data Word Format; MDI NOTE B8 is used for selection of Write or Read. Setting = 0 indicates a Write, while = 1 indicates a Read. Bits 15–9 are used for register address. Bits 7–0 are used for register data. Multiple-byte write or read (up to 8 bytes) is supported while MS is kept low. The address field becomes the initial address, automatically incrementing for each byte. 48 Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 PCM5252 www.ti.com SLASE63 – NOVEMBER 2014 Device Functional Modes (continued) Figure 65. Serial Control Format; Write, Single Byte Figure 66. Serial Control Format; Write, Multiple Byte Figure 67. Serial Control Format; Read Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 49 PCM5252 SLASE63 – NOVEMBER 2014 www.ti.com Device Functional Modes (continued) Figure 68. Serial Control Format; Read, Multiple Byte Figure 69. Control Interface Timing Table 29. Control Interface Timing MIN tMCY MC Pulse Cycle Time tMCL UNIT ns MC Low Level Time 40 ns tMCH MC High Level Time 40 ns tMHH MS High Level Time 20 ns tMSS MS ↓ Edge to MC ↑ Edge 30 ns tMSH MS Hold Time (1) 30 ns tMDH MDI Hold Time 15 ns tMDS MDI Set-up Time 15 tMOS MC Rise Edge to MDO Stable (1) 50 MAX 100 ns 20 ns MC falling edge for LSB to MS rising edge. Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 PCM5252 www.ti.com SLASE63 – NOVEMBER 2014 8.4.1.1.2 I2C Interface The PCM5252 supports the I2C serial bus and the data transmission protocol for standard and fast mode as a slave device. In I2C mode, the control terminals are changed as follows. Table 30. I2C Pins and Functions SIGNAL PIN I/O DESCRIPTION SDA 11 I/O I2C data SCL 12 I I2C clock 2 ADR2 16 I I C address 2 ADR1 24 I I2C address 1 8.4.1.1.2.1 Slave Address Table 31. I2C Slave Address MSB LSB 1 0 0 1 1 ADR2 ADR1 R/ W The PCM5252 has 7 bits for its own slave address. The first five bits (MSBs) of the slave address are factory preset to 10011 (0x9x). The next two bits of the address byte are the device select bits which can be userdefined by the ADR1 and ADR0 terminals. A maximum of four devices can be connected on the same bus at one time. This gives a range of 0x98, 0x9A, 0x9C and 0x9E. Each PCM5252 responds when it receives its own slave address. 8.4.1.1.2.2 Register Address Auto-Increment Mode MSB LSB INC A6 A5 A4 A3 A2 A1 A0 Figure 70. Auto Increment Mode Auto-increment mode allows multiple sequential register locations to be written to or read back in a single operation, and is especially useful for block write and read operations. 8.4.1.1.2.3 Packet Protocol A master device must control packet protocol, which consists of start condition, slave address, read/write bit, data if write or acknowledge if read, and stop condition. The PCM5252 supports only slave receivers and slave transmitters. SDA SCL St Start condition 1–7 8 9 1–8 9 Slave address R/W ACK DATA ACK 1–8 DATA R/W: Read operation if 1; otherwise, write operation ACK: Acknowledgement of a byte if 0 DATA: 8 bits (byte) 9 9 ACK ACK Sp Stop condition Figure 71. Packet Protocol Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 51 PCM5252 SLASE63 – NOVEMBER 2014 www.ti.com Table 32. Write Operation - Basic I2C Framework Transmitter M M M S M S M S S M Data Type St slave address R/ ACK DATA ACK DATA ACK ACK Sp Table 33. Read Operation - Basic I2C Framework Transmitter M M M S S M S M M M Data Type St slave address R/ ACK DATA ACK DATA ACK NACK Sp M = Master Device; S = Slave Device; St = Start Condition; Sp = Stop Condition 8.4.1.1.2.4 Write Register A master can write to any PCM5252 registers using single or multiple accesses. The master sends a PCM5252 slave address with a write bit, a register address with auto-increment bit, and the data. If auto-increment is enabled, the address is that of the starting register, followed by the data to be transferred. When the data is received properly, the index register is incremented by 1 automatically. When the index register reaches 0x7F, the next value is 0x0. Table 34 shows the write operation. Table 34. Write Operation Transmitter M Data Type M St M slave addr S W M ACK reg addr inc S M ACK write data 1 S M S S M ACK write data 2 ACK ACK Sp M = Master Device; S = Slave Device; St = Start Condition; Sp = Stop Condition; W = Write; ACK = Acknowledge 8.4.1.1.2.5 Read Register A master can read the PCM5252 register. The value of the register address is stored in an indirect index register in advance. The master sends a PCM5252 slave address with a read bit after storing the register address. Then the PCM5252 transfers the data which the index register points to. When auto-increment is enabled, the index register is incremented by 1 automatically. When the index register reaches 0x7F, the next value is 0x0. Table 35 shows the read operation. Table 35. Read Operation Transmitter Data Type M M St slave addr M W S M ACK inc S reg addr ACK M M M S S M M M Sr slave addr R ACK data ACK NACK Sp M = Master Device; S = Slave Device; St = Start Condition; Sr = Repeated Start Condition; Sp = Stop Condition; W = Write; R = Read; NACK = Not acknowledge 8.4.1.1.2.6 Timing Characteristics Repeated START START tBUF STOP tSDA-R tD-HD tD-SU tSDA-F tP-SU SDA tLOW tRS-HD tSCL-R tSP SCL tS-HD tSCL-F tHI tRS-SU Figure 72. Register Access Timing 52 Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 PCM5252 www.ti.com SLASE63 – NOVEMBER 2014 Table 36. I2C Bus Timing MIN fSCL Standard SCL clock frequency Fast tBUF Bus free time between a STOP and START condition tLOW Low period of the SCL clock tHI High period of the SCL clock tRS-SU Setup time for (repeated)START condition tS-HD tRS-HD Hold time for (repeated)START condition Standard 4.7 Fast 1.3 Standard 4.7 Fast 1.3 MAX UNIT 100 kHz 400 kHz µs µs Standard 4.0 µs Fast 600 ns Standard 4.7 µs Fast 600 ns Standard 4.0 µs ns Fast 600 Standard 250 Fast 100 tD-SU Data setup time tD-HD Data hold time tSCL-R Rise time of SCL signal tSCL-R1 Rise time of SCL signal after a repeated START condition and after an acknowledge bit tSCL-F Fall time of SCL signal tSDA-R Rise time of SDA signal tSDA-F Fall time of SDA signal tP-SU Setup time for STOP condition CB Capacitive load for SDA and SCL line tSP Pulse width of spike suppressed VNH Noise margin at High level for each connected device (including hysteresis) ns Standard 0 900 Fast 0 900 Standard 20 + 0.1CB 1000 Fast 20 + 0.1CB 300 Standard 20 + 0.1CB 1000 Fast 20 + 0.1CB 300 Standard 20 + 0.1CB 1000 Fast 20 + 0.1CB 300 Standard 20 + 0.1CB 1000 Fast 20 + 0.1CB 300 Standard 20 + 0.1CB 1000 Fast 20 + 0.1CB 300 ns ns ns ns ns ns Standard 4.0 µs Fast 600 ns Fast 0.2 × VDD 400 pF 50 ns V 8.4.2 VREF and VCOM Modes See Choosing Between VREF and VCOM Modes for information on configuring these modes. Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 53 PCM5252 SLASE63 – NOVEMBER 2014 www.ti.com 9 Application and Implementation NOTE Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality. 9.1 Application Information 9.2 Typical Application Differential outputs DAC's are regularly used where higher performance is required from them compared to single ended output DACs. They offer twice as much output voltage for the same power supply, along with noise cancelling effect of differential signaling. The PCM5252 makes an ideal front end for both analog input speaker amplifiers and headphone amplifiers with its higher voltage differential output and low noise floor. 9.2.1 High Fidelity Smartphone Application A new trend in portable applications are termed "Hifi Smartphones". In these systems, a standard portable audio codec continues to be used for telephony, while a separate, higher performance DAC and Headphone Amplifier is used for music playback. Figure 73 shows a complete circuit schematic for such a system. The digital audio is fed into a high performance DAC. The PCM5252 is a 32-bit, stereo DAC. The PCM5252 is pin to pin and register set compatible with the PCM5242. The PCM5252 contains an expanded ROM that contains the Smart Amplifier Algorithm components. Vcc+ Vcc- 1.0mF 0603 10mF/25V 10mF/25V +3.3V 0603 X5R 0603 X5R 0.1mF/16V TPA6120A2RGY 10mF/10V 0603 X5R 0.1mF/25V 0402 X7R AGND AVDD OUTRP OUTRN NC QFN32-RHB OUTLN LRCK ADR1/MISO/FMT 1 2 3 4 5 6 CPGND PCM5242RHB 7 CAPM NC 8 OUTLP VNEG 402W 16 0603 15 0402 X7R 0402 X7R 13 OUTRP 12 OUTRN 11 OUTLN OUTLP 10 402W 1000pF/50V 402W 0603 402W 402W 0603 402W RIN+ 1 RIN- 2 LIN- 6 LIN+ 0603 COG 0603 9 2.2mF/25V 0603 1000pF/50V 402W 0603 COG 0603 0603 8 12 10 LINRIN- HEADPHONE OUTPUT 3 NC 4 NC 5 NC 11 NC LOUT 1 39.2W 13 7 ROUT RIN+ 3 RIGHT 2 LEFT 0805 1/8W TPA6120A2 LIN+ 39.2W 9 0805 1/8W 3.5mm 806W 0603 806W 806W 0603 +1.8V 0603 0805 X7R 806W +1.8V 10.0kW XSMT 0402 X7R 0603 14 14 QFN14-RGY PowerPAD 0.1mF/25V 402W LVCC- SDA/MOSI/ATT2 DIN VCOM/DEMP LVCC+ GPIO5/ATT0 GPIO4/MAST GPIO3/AGNS SCL/MC/ATT1 MODE1 17 CAPP 32 19 18 CPVDD 31 20 GND 30 21 DVDD 29 BCK 22 LDOO 28 SCK MODE2/MS 27 23 XSMT 26 GPIO6/FLT GPIO2/GPO 24 25 0.1mF/25V 0.1mF/25V RVCC- 0402 X7R RVCC+ QFN32-RHB PowerPAD Shield PCM5242RHB 0603 0402 2.2mF/25V 0805 X7R SOFT MUTE 2 1 0.1mF/16V 2.2mH +3.3V TPS65135 0402 X7R 0.1mF/16V 0402 X7R 2.2mF/25V +3.3V to +5/-5V POWER SUPPLY 15 0805 X7R 1 +3.3V 8 10mF/6.3V +1.8V 0.1mF/16V TPS65135 0.1mF/16V 0402 X7R 10mF/10V 16 QFN16-RTE PowerPAD 0603 X5R 0402 X7R 100LS 4 11 12 0603 X5R 0.1mF/16V 5 L1 L2 L1 L2 VIN OUTP EN OUTP VAUX FB PGND FBG PGND OUTN GND OUTN Vcc+ 14 13 10 9 365kW 0805 1/8W 7 10mF/6.3V 0603 X5R 6 3 120kW 0805 1/8W 2 0402 X7R 487kW 0805 1/8W 10mF/6.3V 0603 X5R Vcc- Figure 73. High Fidelity Smartphone Application 54 Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 PCM5252 www.ti.com SLASE63 – NOVEMBER 2014 Typical Application (continued) 9.2.1.1 Design Requirements • Directpath output to headphone amplifier • 1VRMS output, as 2VRMS may cause hearing damage into low impedance headphones • Stereo differential inputs (DAC is differential) • Be transparent to the user. (DAC SNR and THD+N performance all the way to the headphone) • Automatic fS switching up to 384kHz • 3-wire I2S source 9.2.1.2 Detailed Design Procedure For optimal performance, the TPA6120A2 is configured for use with differential inputs, stereo use, and a gain of 1V/V. The TPA6120A2 requires a bipolar power supply to drive a ground centered output. The application employs a TPS65135 DC-DC converter that generates ±5V from a single 3.3V supply. The PCM5252 DAC is configured for a 1VRMS output so that clipping is avoided should the 3.3V power supply sag. The PCM5252 offers a ground centered output, so that no DC blocking capacitors are required between it and the TPA6120A2. (Page 1, Register 2) 9.2.1.2.1 Initialization Script w 98 00 01 # PCM5252 to Page 1 w 98 02 11 # PCM5252 output to 1 Vrms w 98 00 00 # PCM5252 back to page 0 w 98 3B 66 # set auto mute time to six seconds of audio zero. w 98 3C 01 # Left Vol register controls both w 98 3D 4F # Change left channel volume, right will follow. w 98 3F BB # set vol changes for every 4 samples, 0.5 sample steps. 9.2.1.3 Application Performance Plot -20 -40 Amplitude (dB) -60 -80 -100 -120 -140 -160 0 5 10 Frequency (kHz) 15 20 Figure 74. 2 FFT Plot At -60db Input In this particular application, the TPA6120A2's performance is transparent and the performance of the system is dictated by the PCM5252 DAC, even into a 32-Ω headphone load. Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 55 PCM5252 SLASE63 – NOVEMBER 2014 www.ti.com 10 Power Supply Recommendations 10.1 Power Supply Distribution and Requirements The PCM5252 devices are powered through the pins shown in Figure 75. AVDD 3.3V CPVDD 3.3V DAC Charge Pump Reference Oscillator DVDD (1.8V or 3.3v) LDOO 1.8V Digital Core ( ^W[•, Logic etc) Digital IO Analog Circuits 1.8V LDO PLL Clock Halt Detect Digital Circuits Power Circuits Line Driver PCM186x Figure 75. Power Distribution Tree Within PCM5252 Table 37. Power Supply Pin Descriptions 56 NAME USAGE / DESCRIPTION AVDD Analog voltage supply; must be 3.3 V. This powers all analog circuitry that the DAC runs on. DVDD Digital voltage supply. This is used as the I/O voltage control and the input to the onchip LDO. CPVDD Charge Pump Voltage Supply - must be 3.3 V LDOO Output from the onchip LDO. Should be used with a 0.1-µF decoupling cap. Can be driven (used as power input) with a 1.8-V supply to bypass the onchip LDO for lower power consumption. AGND Analog ground DGND Digital ground Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 PCM5252 www.ti.com SLASE63 – NOVEMBER 2014 10.2 Recommended Powerdown Sequence Under certain conditions, the PCM5252 devices can exhibit some pops on power down. Pops are caused by a device not having enough time to detect power loss and start the muting process. The PCM5252 devices have two auto-mute functions to mute the device upon power loss (intentional or unintentional). 10.2.1 XSMT = 0 When the XSMT pin is pulled low, the incoming PCM data is attenuated to 0, closely followed by a hard analog mute. This process takes 150 sample times (ts) + 0.2 ms. Because this mute time is mainly dominated by the sampling frequency, systems sampling at 192 kHz will mute much faster than a 48-kHz system. 10.2.2 Clock Error Detect When clock error is detected on the incoming data clock, the PCM5252 devices switch to an internal oscillator, and continue to the drive the output, while attenuating the data from the last known value. Once this process is complete, the PCM5252 outputs are hard muted to ground. Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 57 PCM5252 SLASE63 – NOVEMBER 2014 www.ti.com Recommended Powerdown Sequence (continued) 10.2.3 Planned Shutdown These auto-muting processes can be manipulated by system designs to mute before power loss in the following ways: 1. Assert XSMT low 150 tS + 0.2 ms before power is removed. 3.3V VDD 0V 150tS + 0.2ms High XSMT Low High I2 S Clocks SCK, BCK, LRCK Low Time Figure 76. Assert XSMT 2. Stop I2S clocks (SCK, BCK, LRCK) 3 ms before powerdown as shown in Figure 77. 3.3V VDD 0V High XSMT Low 3 ms High I2S Clocks SCK, BCK, LRCK Low Time Figure 77. Stop I2C Clocks 10.2.4 Unplanned Shutdown Many systems use a low-noise regulator to provide an AVDD 3.3-V supply for the DAC. The XSMT Pin can take advantage of such a feature to measure the pre-regulated output from the system SMPS to mute the output before the entire SMPS discharges. Figure 78 shows how to configure such a system to use the XSMT pin. The XSMT pin can also be used in parallel with a GPIO pin from the system microcontroller/DSP or power supply. 58 Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 PCM5252 www.ti.com SLASE63 – NOVEMBER 2014 Recommended Powerdown Sequence (continued) MCU GPIO “mute” signal GND XSMT Linear Regulator 110V / 220V SMPS 6V PCM5xxx Audio DAC 3.3V 10 F GND GND Figure 78. Using the XSMT Pin Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 59 PCM5252 SLASE63 – NOVEMBER 2014 www.ti.com 10.3 External Power Sense Undervoltage Protection Mode NOTE External Power Sense Undervoltage Protection Mode is supported only when DVDD = 3.3 V. The XSMT pin can also be used to monitor a system voltage, such as the 24-VDC LCD TV backlight, or 12-VDC system supply using a voltage divider created with two resistors. (See Figure 79.) • If the XSMT pin makes a transition from 1 to 0 over 6 ms or more, the device switches into external undervoltage protection mode. This mode uses two trigger levels: – When the XSMT pin level reaches 2 V, soft mute process begins. – When the XSMT pin level reaches 1.2 V, analog mute engages, regardless of digital audio level, and shutdown begins. (DAC and related circuitry powers down). A timing diagram to show this is shown in Figure 80. NOTE The XSMT input pin voltage range is from –0.3 V to DVDD + 0.3 V. The ratio of external resistors must produce a voltage within this input range. Any increase in power supply (such as power supply positive noise or ripple) can pull the XSMT pin higher than DVDD + 0.3 V. For example, if the PCM5252 is monitoring a 12-V input, and dividing the voltage by 4, then the voltage at XSMT during ideal power supply conditions is 3.3 V. A voltage spike higher than 14.4 V causes a voltage greater than 3.6 V (DVDD + 0.3) on the XSMT pin, potentially damaging the device. Providing the divider is set appropriately, any DC voltage can be monitored. System VDD 12V supply 7.25kW XSMT 2.75kW Figure 79. XSMT in External UVP Mode 60 Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 PCM5252 www.ti.com SLASE63 – NOVEMBER 2014 External Power Sense Undervoltage Protection Mode (continued) Figure 80. XSMT Timing for Undervoltage Protection Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 61 PCM5252 SLASE63 – NOVEMBER 2014 www.ti.com 10.4 Power-On Reset Function 10.4.1 Power-On Reset, DVDD 3.3-V Supply The PCM5252 includes a power-on reset function, as shown in Figure 81. With VDD > 2.8 V, the power-on reset function is enabled. After the initialization period, the PCM5252 is set to its default reset state. Analog output will begin ramping after valid data has been passing through the device for the given group delay given by the digital interpolation filter selected. 3.3V 2.8V AVDD, DVDD, CPVDD Internal Reset Reset Removal Internal Reset 4 ms I2S Clocks SCK, BCK, LRCK Figure 81. Power-On Reset Timing, DVDD = 3.3 V 62 Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 PCM5252 www.ti.com SLASE63 – NOVEMBER 2014 Power-On Reset Function (continued) 10.4.2 Power-On Reset, DVDD 1.8-V Supply The PCM5252 includes a power-on reset function, as shown in Figure 82. With AVDD greater than approximately 2.8 V, CPVDD greater than approximately 2.8 V, and DVDD greater than approximately 1.5 V, the power-on reset function is enabled. After the initialization period, the PCM5252 is set to its default reset state. 3.3V 2.8V AVDD, CPVDD 1.8V 1.5V DVDD, LDOO Internal Reset Reset Removal Internal Reset 4 ms I2S Clocks SCK, BCK, LRCK Figure 82. Power-On Reset Timing, DVDD = 1.8 V 10.5 PCM5252 Power Modes 10.5.1 Setting Digital Power Supplies and I/O Voltage Rails The internal digital core of the PCM5252 devices run from a 1.8-V supply. This can be generated by the internal LDO, or by an external 1.8-V supply. DVDD is used to set the I/O voltage, and to be used as the input to the onchip LDO that creates the 1.8 V required by the digital core. For systems that require 3.3-V I/O support, but lower power consumption, DVDD should be connected to 3.3 V and LDOO can be connected to an external 1.8-V source. Doing so will disable the onchip LDO. When setting I/O voltage to be 1.8 V, both DVDD and LDOO must be provided with an external 1.8-V supply. 10.5.2 Power Save Modes The PCM5252 devices offer two power-save modes: standby and power-down. When a clock error (SCK, BCK, and LRCK) or clock halt is detected, the PCM5252 device automatically enters standby mode. The DAC and line driver are also powered down. The device can also be placed in standby mode via software command. When BCK and LRCK remain at a low level for more than 1 second, the PCM5252 device automatically enters powerdown mode. Power-down mode disables the negative charge pump and bias/reference circuit, in addition to those disabled in standby mode. The device can also be placed in power-down mode via software command. The detection time of BCK and LRCK halt can be controlled by Page 0, Register 44, D(2:0). Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 63 PCM5252 SLASE63 – NOVEMBER 2014 www.ti.com PCM5252 Power Modes (continued) When expected audio clocks (SCK, BCK, LRCK) are applied to the PCM5252 device, or if BCK and LRCK start correctly while SCK remains at ground level for 16 successive LRCK periods, the device starts its powerup sequence automatically. 10.5.3 Power Save Parameter Programming Table 38. Power Save Registers REGISTER Page 0, Register 2, D(4) Software standby mode command Page 0, Register 2, D(0) Software power-down command Page 0, Register 2, D(4) and D(0) Page 0, Register 44, D(2:0) 64 DESCRIPTION Software power-up sequence command (required after software standby or powerdown) Detection time of BCK and LRCK halt Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 PCM5252 www.ti.com SLASE63 – NOVEMBER 2014 11 Layout 11.1 Layout Guidelines • • • • • The PCM5252 family of devices are simple to layout. Most engineers use a shared common ground for an entire device. GND can consider AGND and DGND connected. Good system partitioning should keep digital clock and interface traces away from the differential analog outputs for highest analog performance. This reduces any high-speed clock return currents influencing the analog outputs. Power supply and charge pump decoupling capacitors should be placed as close as possible to the device. The thermal pad on the underside of the package should be connected to GND. The top layer should be used for routing signals, whilst the bottom layer can be used for GND. 11.2 Layout Example MCU or Connect to 3.3V/GND GPIO4 GPIO5 SCL/MC 22 21 20 19 18 SDA/MOSI SDA/MOSI GPIO3 23 17 16 VCOM SCK 26 15 AGND BCK 27 14 AVDD DIN 28 13 LINEOUTRP NC 29 12 LINEOUTRL NC 30 11 LINEOUTLR LRCK 31 10 LINEOUTLP 32 1 2 3 4 5 6 7 8 LDOO DGND DVDD CPVDD CPAPP CPGND CAPM ADR1/MISO/GPIO1 Thermal Pad (GND) XSMT 3.3V / GND SCL/MC ADR2/GPIO2 PCM Data Source 24 25 MODE1 GPIO5 MODE2/MS GPIO4 GPIO6 9 3.3V Amplifier VNEG 3.3V 3.3V Figure 83. PCM5252 Layout Example Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 65 PCM5252 SLASE63 – NOVEMBER 2014 www.ti.com 12 Programming 12.1 Coefficient Data Formats All mixer gain coefficients are 24-bit coefficients using a 4.20 number format. Numbers formatted as 4.20 numbers have 4 bits to the left of the binary point and 20 bits to the right of the binary point. If the most significant bit is logic 0, the number is a positive number. If the most significant bit is a logic 1, then the number is a negative number. In this case, every bit must be inverted, a 1 added to the result. 12.2 Power Down and Reset Behavior Register values including those in the Coefficient Memory and Instruction Memory should remain when the device is put into power down mode. (PG0 Reg 0x02). Register values in the device are reset to defaults when bit 0 or 4 of (Pg0, Reg 0x01) is set to 1. Please see the register description for more information. 66 Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 PCM5252 www.ti.com SLASE63 – NOVEMBER 2014 13 Register Maps 13.1 PCM5252 Register Map In any page, register 0 is the Page Select Register. The register value selects the Register Page from 0 to 255 for next read or write command. Table 39. Register Map Overview (continued) Table 39. Register Map Overview REGISTER REGISTER NUMBER NUMBER DESCRIPTION Page 0 DESCRIPTION 65 Auto mute 75 - 79 Reserved 0 Page select register 80 - 85 GPIOn output selection 1 Analog control register 86, 87 GPIO control 2 Standby, Powerdown requests 88, 89 Reserved 3 Mute 90 DSP overflow 4 PLL Lock Flag, PLL enable 91 - 94 Sample rate status 5 Reserved 95 - 107 Reserved 6 SPI MISO function select 108 Analog mute monitor 7 De-emphasis enable, SDOUT select 109 - 118 Reserved 8 GPIO enables 119 GPIO input 9 BCK, LRCLK configuration 120 Auto Mute flags 10 DSP GPIO Input 121 Reserved 11 Reserved Page 1 12 Master mode BCK, LRCLK reset 1 Output amplitude type 13 PLL clock source select 2 Analog gain control 14 - 19 Reserved 3, 4 Reserved 20 - 24 PLL dividers 5 Undervoltage protection 25, 26 Reserved 6 Analog mute control 27 DSP clock divider 7 Analog gain boost 28 DAC clock divider 8, 9 VCOM configuration 29 NCP clock divider Page 44 30 OSR clock divider 1 Coefficient memory (CRAM) control 31 Reserved Pages 44 - 52 32, 33 Master mode dividers Coefficient buffer - A (256 coeffs x 24 bits) : See Table 41 34 fS speed mode Pages 62 - 70 35, 36 IDAC (number of DSP clock cycles available in one audio frame) Coefficient buffer - B (256 coeffs x 24 bits) : See Table 42 71 - 252 Reserved 37 Ignore various errors 38,39 Reserved Pages 152 186 Instruction buffer (1024 instruction x 25 bits), I512 - I1023 are reserved.: See Table 43 40, 41 I2S configuration Pages 187 252 Reserved 42 DAC data path Page 253 43 DSP program selection 63, 64 Clock Flex Mode 44 Clock missing detection period Reserved 59 Auto mute time Pages 254 255 60 - 64 Digital volume Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 67 PCM5252 SLASE63 – NOVEMBER 2014 www.ti.com The PCM5252 has a register map split into multiple pages. Pages 0 and 1 control of the DAC and other on-chip peripherals. Pages 44 through 52 are used for Coefficient A memory, while Pages 62-70 are coefficient B memory. Pages 152-186 contain the miniDSP instruction memory. Page 253 is where the Clock Flex Mode register is located. 256 24-bit coefficients, 30 coefficients per page, 4 registers per coefficient 1024 24-bit instructions, 30 instructions per page, 4 registers per instruction Reserved 256 24-bit coefficients, 30 coefficients per page, 4 registers per coefficient Instruction 253 Clock Flex Mode Clock Flex Analog Control 187-252 General Control and Configuration Coeffient B Reserved Desc: Coeffient A 152-186 71-151 Analog Control Reserved Control 62-70 53-61 Func: 44-52 Reserved 1 2-43 0 Reserved Page: 254-255 Table 40. PCM5252 Register Page Structure Table 41. Coefficient Buffer-A Map COEFF NO PAGE NO BASE REGISTER BASE REGISTER + 0 BASE REGISTER + 1 BASE REGISTER + 2 BASE REGISTER + 3 C0 44 8 Coef(23:16) Coef(15:8) Coef(7:0) Reserved. C1 44 12 Coef(23:16) Coef(15:8) Coef(7:0) Reserved. .. .. .. .. .. .. .. C29 44 124 Coef(23:16) Coef(15:8) Coef(7:0) Reserved. C30 45 8 Coef(23:16) Coef(15:8) Coef(7:0) Reserved. .. .. .. .. .. .. .. C59 45 124 Coef(23:16) Coef(15:8) Coef(7:0) Reserved. C60 46 8 Coef(23:16) Coef(15:8) Coef(7:0) Reserved. .. .. .. .. .. .. .. C89 46 124 Coef(23:16) Coef(15:8) Coef(7:0) Reserved. C90 47 8 Coef(23:16) Coef(15:8) Coef(7:0) Reserved. .. .. .. .. .. .. .. C119 47 124 Coef(23:16) Coef(15:8) Coef(7:0) Reserved. C120 48 8 Coef(23:16) Coef(15:8) Coef(7:0) Reserved. .. .. .. .. .. .. .. C149 48 124 Coef(23:16) Coef(15:8) Coef(7:0) Reserved. C150 49 8 Coef(23:16) Coef(15:8) Coef(7:0) Reserved. .. .. .. .. .. .. .. C179 49 124 Coef(23:16) Coef(15:8) Coef(7:0) Reserved. C180 50 8 Coef(23:16) Coef(15:8) Coef(7:0) Reserved. .. .. .. .. .. .. .. C209 50 124 Coef(23:16) Coef(15:8) Coef(7:0) Reserved. C210 51 8 Coef(23:16) Coef(15:8) Coef(7:0) Reserved. .. .. .. .. .. .. .. C239 51 124 Coef(23:16) Coef(15:8) Coef(7:0) Reserved. C240 52 8 Coef(23:16) Coef(15:8) Coef(7:0) Reserved. .. .. .. .. .. .. .. C255 52 68 Coef(23:16) Coef(15:8) Coef(7:0) Reserved. 68 Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 PCM5252 www.ti.com SLASE63 – NOVEMBER 2014 Table 42. Coefficient Buffer-B Map COEFF NO PAGE NO BASE REGISTER BASE REGISTER + 0 BASE REGISTER + 1 BASE REGISTER + 2 BASE REGISTER + 3 C0 62 8 Coef(23:16) Coef(15:8) Coef(7:0) Reserved. C1 62 12 Coef(23:16) Coef(15:8) Coef(7:0) Reserved. .. .. .. .. .. .. .. C29 62 124 Coef(23:16) Coef(15:8) Coef(7:0) Reserved. C30 63 8 Coef(23:16) Coef(15:8) Coef(7:0) Reserved. .. .. .. .. .. .. .. C59 63 124 Coef(23:16) Coef(15:8) Coef(7:0) Reserved. C60 64 8 Coef(23:16) Coef(15:8) Coef(7:0) Reserved. .. .. .. .. .. .. .. C89 64 124 Coef(23:16) Coef(15:8) Coef(7:0) Reserved. C90 65 8 Coef(23:16) Coef(15:8) Coef(7:0) Reserved. .. .. .. .. .. .. .. C119 65 124 Coef(23:16) Coef(15:8) Coef(7:0) Reserved. C120 66 8 Coef(23:16) Coef(15:8) Coef(7:0) Reserved. .. .. .. .. .. .. .. C149 66 124 Coef(23:16) Coef(15:8) Coef(7:0) Reserved. C150 67 8 Coef(23:16) Coef(15:8) Coef(7:0) Reserved. .. .. .. .. .. .. .. C179 67 124 Coef(23:16) Coef(15:8) Coef(7:0) Reserved. C180 68 8 Coef(23:16) Coef(15:8) Coef(7:0) Reserved. .. .. .. .. .. .. .. C209 68 124 Coef(23:16) Coef(15:8) Coef(7:0) Reserved. C210 69 8 Coef(23:16) Coef(15:8) Coef(7:0) Reserved. .. .. .. .. .. .. .. C239 69 124 Coef(23:16) Coef(15:8) Coef(7:0) Reserved. C240 70 8 Coef(23:16) Coef(15:8) Coef(7:0) Reserved. .. .. .. .. .. .. .. C255 70 68 Coef(23:16) Coef(15:8) Coef(7:0) Reserved. Table 43. miniDSP Instruction Map COEFF NO PAGE NO BASE REGISTER BASE REGISTER + 0 BASE REGISTER + 1 BASE REGISTER + 2 BASE REGISTER + 3 I0 152 8 Instr(31:24) Instr(23:16) Instr(15:8) Instr(7:0) I1 152 12 Instr(31:24) Instr(23:16) Instr(15:8) Instr(7:0) .. .. .. .. .. .. .. I29 152 124 Instr(31:24) Instr(23:16) Instr(15:8) Instr(7:0) I30 153 8 Instr(31:24) Instr(23:16) Instr(15:8) Instr(7:0) .. .. .. .. .. .. .. I59 153 124 Instr(31:24) Instr(23:16) Instr(15:8) Instr(7:0) I60 154 8 Instr(31:24) Instr(23:16) Instr(15:8) Instr(7:0) .. .. .. .. .. .. .. I89 154 124 Instr(31:24) Instr(23:16) Instr(15:8) Instr(7:0) I90 155 8 Instr(31:24) Instr(23:16) Instr(15:8) Instr(7:0) .. .. .. .. .. .. .. I119 155 124 Instr(31:24) Instr(23:16) Instr(15:8) Instr(7:0) I120 156 8 Instr(31:24) Instr(23:16) Instr(15:8) Instr(7:0) .. .. .. .. .. .. .. I149 156 124 Instr(31:24) Instr(23:16) Instr(15:8) Instr(7:0) I150 157 8 Instr(31:24) Instr(23:16) Instr(15:8) Instr(7:0) .. .. .. .. .. .. .. I179 157 124 Instr(31:24) Instr(23:16) Instr(15:8) Instr(7:0) I180 158 8 Instr(31:24) Instr(23:16) Instr(15:8) Instr(7:0) .. .. .. .. .. .. .. I209 158 124 Instr(31:24) Instr(23:16) Instr(15:8) Instr(7:0) I210 159 8 Instr(31:24) Instr(23:16) Instr(15:8) Instr(7:0) .. .. .. .. .. .. .. Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 69 PCM5252 SLASE63 – NOVEMBER 2014 www.ti.com Table 43. miniDSP Instruction Map (continued) COEFF NO PAGE NO BASE REGISTER BASE REGISTER + 0 BASE REGISTER + 1 BASE REGISTER + 2 BASE REGISTER + 3 I239 159 124 Instr(31:24) Instr(23:16) Instr(15:8) Instr(7:0) I240 160 8 Instr(31:24) Instr(23:16) Instr(15:8) Instr(7:0) .. .. .. .. .. .. .. I269 160 124 Instr(31:24) Instr(23:16) Instr(15:8) Instr(7:0) I270 161 8 Instr(31:24) Instr(23:16) Instr(15:8) Instr(7:0) .. .. .. .. .. .. .. I299 161 124 Instr(31:24) Instr(23:16) Instr(15:8) Instr(7:0) I300 162 8 Instr(31:24) Instr(23:16) Instr(15:8) Instr(7:0) .. .. .. .. .. .. .. I329 162 124 Instr(31:24) Instr(23:16) Instr(15:8) Instr(7:0) I330 163 8 Instr(31:24) Instr(23:16) Instr(15:8) Instr(7:0) .. .. .. .. .. .. .. I359 163 124 Instr(31:24) Instr(23:16) Instr(15:8) Instr(7:0) I360 164 8 Instr(31:24) Instr(23:16) Instr(15:8) Instr(7:0) .. .. .. .. .. .. .. I389 164 124 Instr(31:24) Instr(23:16) Instr(15:8) Instr(7:0) I390 165 8 Instr(31:24) Instr(23:16) Instr(15:8) Instr(7:0) .. .. .. .. .. .. .. I419 165 124 Instr(31:24) Instr(23:16) Instr(15:8) Instr(7:0) I420 166 8 Instr(31:24) Instr(23:16) Instr(15:8) Instr(7:0) .. .. .. .. .. .. .. I449 166 124 Instr(31:24) Instr(23:16) Instr(15:8) Instr(7:0) I450 167 8 Instr(31:24) Instr(23:16) Instr(15:8) Instr(7:0) .. .. .. .. .. .. .. I479 167 124 Instr(31:24) Instr(23:16) Instr(15:8) Instr(7:0) I480 168 8 Instr(31:24) Instr(23:16) Instr(15:8) Instr(7:0) .. .. .. .. .. .. .. I509 168 124 Instr(31:24) Instr(23:16) Instr(15:8) Instr(7:0) I510 169 8 Instr(31:24) Instr(23:16) Instr(15:8) Instr(7:0) I511 169 12 Instr(31:24) Instr(23:16) Instr(15:8) Instr(7:0) .. .. .. .. .. .. .. I539 169 124 Reserved. Reserved. Reserved. Reserved. I540 170 8 Reserved. Reserved. Reserved. Reserved. .. .. .. .. .. .. .. I569 170 124 Reserved. Reserved. Reserved. Reserved. I570 171 8 Reserved. Reserved. Reserved. Reserved. .. .. .. .. .. .. .. I599 171 124 Reserved. Reserved. Reserved. Reserved. I600 172 8 Reserved. Reserved. Reserved. Reserved. .. .. .. .. .. .. .. I629 172 124 Reserved. Reserved. Reserved. Reserved. I630 173 8 Reserved. Reserved. Reserved. Reserved. .. .. .. .. .. .. .. I659 173 124 Reserved. Reserved. Reserved. Reserved. I660 174 8 Reserved. Reserved. Reserved. Reserved. .. .. .. .. .. .. .. I689 174 124 Reserved. Reserved. Reserved. Reserved. I690 175 8 Reserved. Reserved. Reserved. Reserved. .. .. .. .. .. .. .. I719 175 124 Reserved. Reserved. Reserved. Reserved. I720 176 8 Reserved. Reserved. Reserved. Reserved. .. .. .. .. .. .. .. I749 176 124 Reserved. Reserved. Reserved. Reserved. I750 177 8 Reserved. Reserved. Reserved. Reserved. .. .. .. .. .. .. .. I779 177 124 Reserved. Reserved. Reserved. Reserved. 70 Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 PCM5252 www.ti.com SLASE63 – NOVEMBER 2014 Table 43. miniDSP Instruction Map (continued) COEFF NO PAGE NO BASE REGISTER BASE REGISTER + 0 BASE REGISTER + 1 BASE REGISTER + 2 BASE REGISTER + 3 I780 178 8 Reserved. Reserved. Reserved. Reserved. .. .. .. .. .. .. .. I809 178 124 Reserved. Reserved. Reserved. Reserved. I810 179 8 Reserved. Reserved. Reserved. Reserved. .. .. .. .. .. .. .. I839 179 124 Reserved. Reserved. Reserved. Reserved. I840 180 8 Reserved. Reserved. Reserved. Reserved. .. .. .. .. .. .. .. I869 180 124 Reserved. Reserved. Reserved. Reserved. I870 181 8 Reserved. Reserved. Reserved. Reserved. .. .. .. .. .. .. .. I899 181 124 Reserved. Reserved. Reserved. Reserved. I900 182 8 Reserved. Reserved. Reserved. Reserved. .. .. .. .. .. .. .. I929 182 124 Reserved. Reserved. Reserved. Reserved. I930 183 8 Reserved. Reserved. Reserved. Reserved. .. .. .. .. .. .. .. I959 183 124 Reserved. Reserved. Reserved. Reserved. I960 184 8 Reserved. Reserved. Reserved. Reserved. .. .. .. .. .. .. .. I989 184 124 Reserved. Reserved. Reserved. Reserved. I990 185 8 Reserved. Reserved. Reserved. Reserved. .. .. .. .. .. .. .. I1019 185 124 Reserved. Reserved. Reserved. Reserved. I1020 186 8 Reserved. Reserved. Reserved. Reserved. .. .. .. .. .. .. .. I1023 186 20 Reserved. Reserved. Reserved. Reserved. Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 71 PCM5252 SLASE63 – NOVEMBER 2014 www.ti.com 13.1.1 Detailed Register Descriptions 13.1.1.1 Register Map Summary Table 44. Register Map Summary DEC HEX B7 B6 B5 B4 B3 B2 B1 B0 1 01 RSV RSV RSV RSTM RSV RSV RSV RSTR 2 02 RSV RSV RSV RQST RSV RSV RSV RQPD 3 03 RSV RSV RSV RQML RSV RSV RSV RQMR 4 04 RSV RSV RSV PLCK RSV RSV RSV PLLE 6 06 RSV RSV RSV RSV RSV RSV FSMI1 FSMI0 7 07 RSV RSV RSV DEMP RSV RSV RSV SDSL 8 08 RSV RSV G6OE G5OE G4OE G3OE G2OE G1OE Page 0 72 9 09 RSV RSV BCKP BCKO RSV RSV RSV LRKO 10 0A DSPG7 DSPG6 DSPG5 DSPG4 DSPG3 DSPG2 DSPG1 DSPG0 12 0C RSV RSV RSV RSV RSV RSV RBCK RLRK 13 0D RSV SREF2 SREF1 SREF0 RSV RSV RSV RSV 14 0E RSV SDAC2 SDAC1 SDAC0 RSV RSV RSV RSV 18 12 RSV RSV RSV RSV RSV GREF2 GREF1 GREF0 19 13 RSV RSV RSV RSV RSV RSV RSV RQSY 20 14 RSV RSV RSV RSV PPDV3 PPDV2 PPDV1 PPDV0 21 15 RSV RSV PJDV5 PJDV4 PJDV3 PJDV2 PJDV1 PJDV0 22 16 RSV RSV PDDV13 PDDV12 PDDV11 PDDV10 PDDV9 PDDV8 23 17 PDDV7 PDDV6 PDDV5 PDDV4 PDDV3 PDDV2 PDDV1 PDDV0 24 18 RSV RSV RSV RSV PRDV3 PRDV2 PRDV1 PRDV0 27 1B RSV DDSP6 DDSP5 DDSP4 DDSP3 DDSP2 DDSP1 DDSP0 28 1C RSV DDAC6 DDAC5 DDAC4 DDAC3 DDAC2 DDAC1 DDAC0 29 1D RSV DNCP6 DNCP5 DNCP4 DNCP3 DNCP2 DNCP1 DNCP0 30 1E RSV DOSR6 DOSR5 DOSR4 DOSR3 DOSR2 DOSR1 DOSR0 32 20 RSV DBCK6 DBCK5 DBCK4 DBCK3 DBCK2 DBCK1 DBCK0 33 21 DLRK7 DLRK6 DLRK5 DLRK4 DLRK3 DLRK2 DLRK1 DLRK0 34 22 RSV RSV RSV I16E RSV RSV FSSP1 FSSP0 35 23 IDAC15 IDAC14 IDAC13 IDAC12 IDAC11 IDAC10 IDAC9 IDAC8 36 24 IDAC7 IDAC6 IDAC5 IDAC4 IDAC3 IDAC2 IDAC1 IDAC0 37 25 RSV IDFS IDBK IDSK IDCH IDCM DCAS IPLK 40 28 RSV RSV AFMT1 AFMT0 RSV RSV ALEN1 ALEN0 41 29 AOFS7 AOFS6 AOFS5 AOFS4 AOFS3 AOFS2 AOFS1 AOFS0 42 2A RSV RSV AUPL1 AUPL0 RSV RSV AUPR1 AUPR0 43 2B RSV RSV RSV PSEL4 PSEL3 PSEL2 PSEL1 PSEL0 44 2C RSV RSV RSV RSV RSV CMDP2 CMDP1 CMDP0 59 3B RSV AMTL2 AMTL1 AMTL0 RSV AMTR2 AMTR1 AMTR0 60 3C RSV RSV RSV RSV RSV RSV PCTL1 PCTL0 61 3D VOLL7 VOLL6 VOLL5 VOLL4 VOLL3 VOLL2 VOLL1 VOLL0 62 3E VOLR7 VOLR6 VOLR5 VOLR4 VOLR3 VOLR2 VOLR1 VOLR0 63 3F VNDF1 VNDF0 VNDS1 VNDS0 VNUF1 VNUF0 VNUS1 VNUS0 64 40 VEDF1 VEDF0 VEDS1 VEDS0 RSV RSV RSV RSV 65 41 RSV RSV RSV RSV RSV ACTL2 AMLE1 AMRE0 80 50 RSV RSV RSV G1SL4 G1SL3 G1SL2 G1SL1 G1SL0 81 51 RSV RSV RSV G2SL4 G2SL3 G2SL2 G2SL1 G2SL0 Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 PCM5252 www.ti.com SLASE63 – NOVEMBER 2014 Table 44. Register Map Summary (continued) DEC HEX B7 B6 B5 B4 B3 B2 B1 B0 82 52 RSV RSV RSV G3SL4 G3SL3 G3SL2 G3SL1 G3SL0 83 53 RSV RSV RSV G4SL4 G4SL3 G4SL2 G4SL1 G4SL0 84 54 RSV RSV RSV G5SL4 G5SL3 G5SL2 G5SL1 G5SL0 85 55 RSV RSV RSV G6SL4 G6SL3 G6SL2 G6SL1 G6SL0 86 56 RSV RSV GOUT5 GOUT4 GOUT3 GOUT2 GOUT1 GOUT0 87 57 RSV RSV GINV5 GINV4 GINV3 GINV2 GINV1 GINV0 90 5A RSV RSV RSV L1OV R1OV L2OV R2OV SFOV 91 5B RSV DTFS2 DTFS1 DTFS0 DTSR3 DTSR2 DTSR1 DTSR0 92 5C RSV RSV RSV RSV RSV RSV RSV DTBR8 93 5D DTBR7 DTBR6 DTBR5 DTBR4 DTBR3 DTBR2 DTBR1 DTBR0 94 5E RSV CDST PLL-L LrckBck fS-SCKr SCKval BCKval fSval 95 5F RSV RSV RSV LTSH RSV CKMF CSRF CERF 108 6C RSV RSV RSV RSV RSV RSV AMLM AMRM 109 6D RSV RSV RSV SDTM RSV RSV RSV SHTM 114 72 RSV RSV RSV RSV RSV RSV MTST1 MTST0 115 73 RSV RSV RSV RSV RSV RSV FSMM1 FSMM0 118 76 BOTM RSV RSV RSV PSTM3 PSTM2 PSTM1 PSTM0 119 77 RSV RSV GPIN5 GPIN4 GPIN3 GPIN2 GPIN1 RSV 120 78 RSV RSV RSV AMFL RSV RSV RSV AMFR 121 79 RSV RSV RSV RSV RSV RSV RSV DAMD 122 7A RSV RSV RSV RSV RSV RSV RSV EIFM 123 7B RSV G1MC2 G1MC1 G1MC0 RSV G2MC2 G2MC1 G2MC0 124 7C RSV G3MC2 G3MC1 G3MC0 RSV G4MC2 G4MC1 G4MC0 125 7D RSV G5MC2 G5MC1 G5MC0 RSV G6MC2 G6MC1 G6MC0 Page 1 Dec Hex b7 b6 b5 b4 b3 b2 b1 b0 1 01 RSV RSV RSV RSV RSV RSV RSV OSEL 2 02 RSV RSV RSV LAGN RSV RSV RSV RAGN 5 05 RSV RSV RSV RSV RSV RSV UEPD UIPD 6 06 RSV RSV RSV RSV RSV RSV RSV AMCT 7 07 RSV RSV RSV AGBL RSV RSV RSV AGBR 8 08 RSV RSV RSV RSV RSV RSV RSV RCMF 9 09 RSV RSV RSV RSV RSV RSV RSV VCPD Page 44 Dec Hex b7 b6 b5 b4 b3 b2 b1 b0 1 01 RSV RSV RSV RSV ACRM AMDC ACRS ACSW b7 b6 b5 b4 b3 b2 b1 b0 Page 253 Dec Hex 63 3F PLLFLEX17 PLLFLEX16 PLLFLEX15 PLLFLEX14 PLLFLEX13 PLLFLEX12 PLLFLEX11 PLLFLEX10 64 40 PLLFLEX27 PLLFLEX26 PLLFLEX25 PLLFLEX24 PLLFLEX23 PLLFLEX22 PLLFLEX21 PLLFLEX20 13.1.1.2 Page 0 Registers Table 45. Page 0 / Register 1 Dec Hex b7 b6 b5 b4 b3 b2 b1 b0 1 01 RSV RSV RSV RSTM RSV RSV RSV RSTR Reset Value 0 0 Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 73 PCM5252 SLASE63 – NOVEMBER 2014 RSV www.ti.com Reserved Reserved. Do not access. RSTM Reset Modules This bit resets the interpolation filter and the DAC modules. Since the DSP is also reset, the coeffient RAM content will also be cleared by the DSP. This bit is auto cleared and can be set only in standby mode. Default value: 0 0: Normal 1: Reset modules RSTR Reset Registers This bit resets the mode registers back to their initial values. The RAM content is not cleared, but the execution source will be back to ROM. This bit is auto cleared and must be set only when the DAC is in standby mode (resetting registers when the DAC is running is prohibited and not supported). Default value: 0 0: Normal 1: Reset mode registers Table 46. Page 0 / Register 2 Dec Hex b7 b6 b5 b4 b3 b2 b1 b0 2 02 RSV RSV RSV RQST RSV RSV RSV RQPD Reset Value RSV 0 0 Reserved Reserved. Do not access. RQST Standby Request When this bit is set, the DAC will be forced into a system standby mode, which is also the mode the system enters in the case of clock errors. In this mode, most subsystems will be powered down but the charge pump and digital power supply. Default value: 0 0: Normal operation 1: Standby mode RQPD Powerdown Request When this bit is set, the DAC will be forced into powerdown mode, in which the power consumption would be minimum as the charge pump is also powered down. However, it will take longer to restart from this mode. This mode has higher precedence than the standby mode, that is, setting this bit along with bit 4 for standby mode will result in the DAC going into powerdown mode. Default value: 0 0: Normal operation 1: Powerdown mode Table 47. Page 0 / Register 3 Dec Hex b7 b6 b5 b4 b3 b2 b1 b0 3 03 RSV RSV RSV RQML RSV RSV RSV RQMR Reset Value RSV 0 0 Reserved Reserved. Do not access. RQML Mute Left Channel This bit issues soft mute request for the left channel. The volume will be smoothly ramped down/up to avoid pop/click noise. Default value: 0 0: Normal volume 1: Mute 74 Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 PCM5252 www.ti.com SLASE63 – NOVEMBER 2014 RQMR Mute Right Channel This bit issues soft mute request for the right channel. The volume will be smoothly ramped down/up to avoid pop/click noise. Default value: 0 0: Normal volume 1: Mute Table 48. Page 0 / Register 4 Dec Hex b7 b6 b5 b4 b3 b2 b1 b0 4 04 RSV RSV RSV PLCK RSV RSV RSV PLLE Reset Value RSV 1 Reserved Reserved. Do not access. PLCK PLL Lock Flag (Read Only) This bit indicates whether the PLL is locked or not. When the PLL is disabled this bit always shows that the PLL is not locked. 0: The PLL is locked 1: The PLL is not locked PLLE PLL Enable This bit enables or disables the internal PLL. When PLL is disabled, the master clock will be switched to the SCK. Default value: 1 0: Disable PLL 1: Enable PLL Table 49. Page 0 / Register 6 Dec Hex b7 b6 b5 b4 b3 b2 b1 b0 6 06 RSV RSV RSV RSV RSV RSV FSMI1 FSMI0 0 0 Reset Value RSV Reserved Reserved. Do not access. FSMI[1:0] SPI MISO function sel These bits select the function of the SPI_MISO pin when in SPI mode. If the pin is set as GPIO, register readout via SPI is not possible. Default value: 00 00: SPI_MISO 01: GPIO1 Others: Reserved (Do not set) Table 50. Page 0 / Register 7 Dec Hex b7 b6 b5 b4 b3 b2 b1 b0 7 07 RSV RSV RSV DEMP RSV RSV RSV SDSL Reset Value RSV 0 0 Reserved Reserved. Do not access. DEMP De-Emphasis Enable This bit enables or disables the de-emphasis filter. The default coefficients are for 44.1kHz sampling rate, but can be changed by reprogramming the appropriate coeffients in RAM. Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 75 PCM5252 SLASE63 – NOVEMBER 2014 www.ti.com Default value: 0 0: De-emphasis filter is disabled 1: De-emphasis filter is enabled SDSL SDOUT Select This bit selects what is being output as SDOUT via GPIO pins. Default value: 0 0: SDOUT is the DSP output (post-processing) 1: SDOUT is the DSP input (pre-processing) Table 51. Page 0 / Register 8 Dec Hex b7 b6 b5 b4 b3 b2 b1 b0 8 08 RSV RSV G6OE G5OE G4OE G3OE G2OE G1OE 0 0 0 0 0 0 Reset Value RSV Reserved Reserved. Do not access. G6OE GPIO6 Output Enable This bit sets the direction of the GPIO6 pin Default value: 0 0: GPIO6 is input 1: GPIO6 is output G5OE GPIO5 Output Enable This bit sets the direction of the GPIO5 pin Default value: 0 0: GPIO5 is input 1: GPIO5 is output G4OE GPIO4 Output Enable This bit sets the direction of the GPIO4 pin Default value: 0 0: GPIO4 is input 1: GPIO4 is output G3OE GPIO3 Output Enable This bit sets the direction of the GPIO3 pin Default value: 0 0: GPIO3 is input 1: GPIO3 is output G2OE GPIO2 Output Enable This bit sets the direction of the GPIO2 pin Default value: 0 0: GPIO2 is input 1: GPIO2 is output G1OE GPIO1 Output Enable This bit sets the direction of the GPIO1 pin Default value: 0 0: GPIO1 is input 1: GPIO1 is output 76 Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 PCM5252 www.ti.com SLASE63 – NOVEMBER 2014 Table 52. Page 0 / Register 9 Dec Hex b7 b6 b5 b4 b3 b2 b1 b0 9 09 RSV RSV BCKP BCKO RSV RSV RSV LRKO 0 0 Reset Value RSV 0 Reserved Reserved. Do not access. BCKP BCK Polarity This bit sets the inverted BCK mode. In inverted BCK mode, the DAC assumes that the LRCK and DIN edges are aligned to the rising edge of the BCK. Normally they are assumed to be aligned to the falling edge of the BCK. Default value: 0 0: Normal BCK mode 1: Inverted BCK mode BCKO BCK Output Enable This bit sets the BCK pin direction to output for I2S master mode operation. In I2S master mode the PCM5xxx outputs the reference BCK and LRCK, and the external source device provides the DIN according to these clocks. Use Page 0 / Register 32 to program the division factor of the SCK to yield the desired BCK rate (normally 64FS) Default value: 0 0: BCK is input (I2S slave mode) 1: BCK is output (I2S master mode) LRKO LRCLK Output Enable This bit sets the LRCK pin direction to output for I2S master mode operation. In I2S master mode the PCM5xxx outputs the reference BCK and LRCK, and the external source device provides the DIN according to these clocks. Use Page 0 / Register 33 to program the division factor of the BCK to yield 1FS for LRCK. Default value: 0 0: LRCK is input (I2S slave mode) 1: LRCK is output (I2S master mode) Table 53. Page 0 / Register 10 Dec Hex b7 b6 b5 b4 b3 b2 b1 b0 10 0A DSPG7 DSPG6 DSPG5 DSPG4 DSPG3 DSPG2 DSPG1 DSPG0 0 0 0 0 0 0 0 0 Reset Value DSPG[7:0] DSP GPIO Input The DSP accepts a 24-bit external control signals input. The value set in this register will go to bit 16:8 of this external input. Default value: 00000000 Table 54. Page 0 / Register 12 Dec Hex b7 b6 b5 b4 b3 b2 b1 b0 12 0C RSV RSV RSV RSV RSV RSV RBCK RLRK 0 0 Reset Value RSV Reserved Reserved. Do not access. RBCK Master Mode BCK Divider Reset This bit, when set to 0, will reset the SCK divider to generate BCK clock for I2S master mode. To use I2S master mode, the divider must be enabled and programmed properly. Default value: 0 0: Master mode BCK clock divider is reset Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 77 PCM5252 SLASE63 – NOVEMBER 2014 www.ti.com 1: Master mode BCK clock divider is functional RLRK Master Mode LRCK Divider Reset This bit, when set to 0, will reset the BCK divider to generate LRCK clock for I2S master mode. To use I2S master mode, the divider must be enabled and programmed properly. Default value: 0 0: Master mode LRCK clock divider is reset 1: Master mode LRCK clock divider is functional Table 55. Page 0 / Register 13 Dec Hex b7 b6 b5 b4 b3 b2 b1 b0 13 0D RSV SREF2 SREF1 SREF0 RSV RSV RSV RSV 0 0 0 Reset Value RSV Reserved Reserved. Do not access. SREF[2:0] PLL Reference This bit select the source clock for internal PLL. This bit is ignored and overriden in clock auto set mode. Default value: 000 000: The PLL reference clock is SCK 001: The PLL reference clock is BCK 010: Reserved 011: The PLL reference clock is GPIO (selected using Page 0 / Register 18) others: Reserved (PLL reference is muted) SREF PLL Reference Default value: 0 Table 56. Page 0 / Register 14 Dec Hex b7 b6 b5 b4 b3 b2 b1 b0 14 0E RSV SDAC2 SDAC1 SDAC0 RSV RSV RSV RSV 0 0 0 Reset Value RSV Reserved Reserved. Do not access. SDAC[2:0] DAC clock source These bits select the source clock for DAC clock divider. Default value: 000 This Register requires use of the Clock Flex Register 000: Master clock (PLL/SCK and OSC auto-select) 001: PLL clock 010: Reserved 011: SCK clock 100: BCK clock others: Reserved (muted) Table 57. Page 0 / Register 18 Dec Hex b7 b6 b5 b4 b3 b2 b1 b0 18 12 RSV RSV RSV RSV RSV GREF2 GREF1 GREF0 0 0 0 Reset Value 78 Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 PCM5252 www.ti.com SLASE63 – NOVEMBER 2014 RSV Reserved Reserved. Do not access. GREF[2:0] GPIO Source for PLL reference clk These bits select the GPIO pins as clock input source when GPIO is selected as the PLL reference clock source. Default value: 000 This register requires use of the Clock Flex Register.000: GPIO1 001: GPIO2 010: GPIO3 011: GPIO4 100: GPIO5 101: GPIO6 others: Reserved (muted) Table 58. Page 0 / Register 19 Dec Hex b7 b6 b5 b4 b3 b2 b1 b0 19 13 RSV RSV RSV RSV RSV RSV RSV RQSY Reset Value RSV 0 Reserved Reserved. Do not access. RQSY Sync request This bit, when set to 1 will issue the clock resynchronization by synchronously resets the DAC, CP and OSR clocks. The actual clock resynchronization takes place when this bit is set back to 0, where the DAC, CP and OSR clocks are resumed at the beginning of the audio frame. Default value: 0 0: Resume DAC, CP and OSR clocks synchronized to the beginning of audio frame 1: Halt DAC, CP and OSR clocks as the beginning of resynchronization process Table 59. Page 0 / Register 20 Dec Hex b7 b6 b5 b4 b3 b2 b1 b0 20 14 RSV RSV RSV RSV PPDV3 PPDV2 PPDV1 PPDV0 0 0 0 0 Reset Value RSV Reserved Reserved. Do not access. PPDV[3:0] PLL P These bits set the PLL divider P factor. These bits are ignored in clock auto set mode. Default value: 0000 0000: P=1 0001: P=2 ... 1110: P=15 1111: Prohibited (do not set this value) Table 60. Page 0 / Register 21 Dec Hex b7 b6 b5 b4 b3 b2 b1 b0 21 15 RSV RSV PJDV5 PJDV4 PJDV3 PJDV2 PJDV1 PJDV0 0 0 0 0 0 0 Reset Value Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 79 PCM5252 SLASE63 – NOVEMBER 2014 RSV www.ti.com Reserved Reserved. Do not access. PJDV[5:0] PLL J These bits set the J part of the overall PLL multiplication factor J.D * R. These bits are ignored in clock auto set mode. Default value: 000000 000000: Prohibited (do not set this value) 000001: J=1 000010: J=2 ... 111111: J=63 Table 61. Page 0 / Register 22 Dec Hex b7 b6 b5 b4 b3 b2 b1 b0 22 16 RSV RSV PDDV13 PDDV12 PDDV11 PDDV10 PDDV9 PDDV8 0 0 0 0 0 0 Reset Value Table 62. Page 0 / Register 23 Dec Hex b7 b6 b5 b4 b3 b2 b1 b0 23 17 PDDV7 PDDV6 PDDV5 PDDV4 PDDV3 PDDV2 PDDV1 PDDV0 0 0 0 0 0 0 0 0 Reset Value RSV Reserved Reserved. Do not access. PDDV[13:0] PLL D (MSB) These bits set the D part of the overall PLL multiplication factor J.D * R. These bits are ignored in clock auto set mode. Default value: 00000000000000 0 (in decimal): D=0000 1 (in decimal): D=0001 ... 9999 (in decimal): D=9999 others: Prohibited (do not set) Table 63. Page 0 / Register 24 Dec Hex b7 b6 b5 b4 b3 b2 b1 b0 24 18 RSV RSV RSV RSV PRDV3 PRDV2 PRDV1 PRDV0 0 0 0 0 Reset Value RSV Reserved Reserved. Do not access. PRDV[3:0] PLL R These bits set the R part of the overall PLL multiplication factor J.D * R. These bits are ignored in clock auto set mode. Default value: 0000 0000: R=1 0001: R=2 ... 1111: R=16 80 Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 PCM5252 www.ti.com SLASE63 – NOVEMBER 2014 Table 64. Page 0 / Register 27 Dec Hex b7 b6 b5 b4 b3 b2 b1 b0 27 1B RSV DDSP6 DDSP5 DDSP4 DDSP3 DDSP2 DDSP1 DDSP0 0 0 0 0 0 0 0 Reset Value RSV Reserved Reserved. Do not access. DDSP[6:0] DSP Clock Divider These bits set the source clock divider value for the DSP clock. These bits are ignored in clock auto set mode. Default value: 0000000 0000000: Divide by 1 0000001: Divide by 2 ... 1111111: Divide by 128 Table 65. Page 0 / Register 28 Dec Hex b7 b6 b5 b4 b3 b2 b1 b0 28 1C RSV DDAC6 DDAC5 DDAC4 DDAC3 DDAC2 DDAC1 DDAC0 0 0 0 0 0 0 0 Reset Value RSV Reserved Reserved. Do not access. DDAC[6:0] DAC Clock Divider These bits set the source clock divider value for the DAC clock. These bits are ignored in clock auto set mode. Default value: 0000000 0000000: Divide by 1 0000001: Divide by 2 ... 1111111: Divide by 128 Table 66. Page 0 / Register 29 Dec Hex b7 b6 b5 b4 b3 b2 b1 b0 29 1D RSV DNCP6 DNCP5 DNCP4 DNCP3 DNCP2 DNCP1 DNCP0 0 0 0 0 0 0 0 Reset Value RSV Reserved Reserved. Do not access. DNCP[6:0] NCP Clock Divider These bits set the source clock divider value for the CP clock. These bits are ignored in clock auto set mode. Default value: 0000000 0000000: Divide by 1 0000001: Divide by 2 ... 1111111: Divide by 128 Table 67. Page 0 / Register 30 Dec Hex b7 b6 b5 b4 b3 b2 b1 b0 30 1E RSV DOSR6 DOSR5 DOSR4 DOSR3 DOSR2 DOSR1 DOSR0 0 0 0 0 0 0 0 Reset Value Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 81 PCM5252 SLASE63 – NOVEMBER 2014 RSV www.ti.com Reserved Reserved. Do not access. DOSR[6:0] OSR Clock Divider These bits set the source clock divider value for the OSR clock. These bits are ignored in clock auto set mode. Default value: 0000000 0000000: Divide by 1 0000001: Divide by 2 ... 1111111: Divide by 128 Table 68. Page 0 / Register 32 Dec Hex b7 b6 b5 b4 b3 b2 b1 b0 32 20 RSV DBCK6 DBCK5 DBCK4 DBCK3 DBCK2 DBCK1 DBCK0 0 0 0 0 0 0 0 Reset Value RSV Reserved Reserved. Do not access. DBCK[6:0] Master Mode BCK Divider These bits set the SCK divider value to generate I2S master BCK clock. Default value: 0000000 0000000: Divide by 1 0000001: Divide by 2 ... 1111111: Divide by 128 Table 69. Page 0 / Register 33 Dec Hex b7 b6 b5 b4 b3 b2 b1 b0 33 21 DLRK7 DLRK6 DLRK5 DLRK4 DLRK3 DLRK2 DLRK1 DLRK0 0 0 0 0 0 0 0 0 Reset Value DLRK[7:0] Master Mode LRCK Divider These bits set the I2S master BCK clock divider value to generate I2S master LRCK clock. Default value: 00000000 00000000: Divide by 1 00000001: Divide by 2 ... 11111111: Divide by 256 Table 70. Page 0 / Register 34 Dec Hex b7 b6 b5 b4 b3 b2 b1 b0 34 22 RSV RSV RSV I16E RSV RSV FSSP1 FSSP0 0 0 Reset Value RSV 0 Reserved Reserved. Do not access. I16E 16x Interpolation This bit enables or disables the 16x interpolation mode Default value: 0 0: 8x interpolation 82 Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 PCM5252 www.ti.com SLASE63 – NOVEMBER 2014 1: 16x interpolation FSSP[1:0] FS Speed Mode These bits select the FS operation mode, which must be set according to the current audio sampling rate. These bits are ignored in clock auto set mode. Default value: 00 00: Single speed (FS ≤ 48 kHz) 01: Double speed (48 kHz < FS ≤ 96 kHz) 10: Quad speed (96 kHz < FS ≤ 192 kHz) 11: Octal speed (192 kHz < FS ≤ 384 kHz) Table 71. Page 0 / Register 35 Dec Hex b7 b6 b5 b4 b3 b2 b1 b0 35 23 IDAC15 IDAC14 IDAC13 IDAC12 IDAC11 IDAC10 IDAC9 IDAC8 0 0 0 0 0 0 0 1 Reset Value Table 72. Page 0 / Register 36 Dec Hex b7 b6 b5 b4 b3 b2 b1 b0 36 24 IDAC7 IDAC6 IDAC5 IDAC4 IDAC3 IDAC2 IDAC1 IDAC0 0 0 0 0 0 0 0 0 Reset Value IDAC[15:0] IDAC (MSB) These bits specify the number of DSP clock cycles available in one audio frame. The value should match the DSP clock FS ratio. These bits are ignored in clock auto set mode. Default value: 0000000100000000 Table 73. Page 0 / Register 37 Dec Hex b7 b6 b5 b4 b3 b2 b1 b0 37 25 RSV IDFS IDBK IDSK IDCH IDCM DCAS IPLK 0 0 0 0 0 0 0 Reset Value RSV Reserved Reserved. Do not access. IDFS Ignore FS Detection This bit controls whether to ignore the FS detection. When ignored, FS error will not cause a clock error. Default value: 0 0: Regard FS detection 1: Ignore FS detection IDBK Ignore BCK Detection This bit controls whether to ignore the BCK detection against LRCK. The BCK must be stable between 32FS and 256FS inclusive or an error will be reported. When ignored, a BCK error will not cause a clock error. Default value: 0 0: Regard BCK detection 1: Ignore BCK detection IDSK Ignore SCK Detection This bit controls whether to ignore the SCK detection against LRCK. Only some certain SCK ratios within some error margin are allowed. When ignored, an SCK error will not cause a clock error. Default value: 0 0: Regard SCK detection 1: Ignore SCK detection IDCH Ignore Clock Halt Detection Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 83 PCM5252 SLASE63 – NOVEMBER 2014 www.ti.com This bit controls whether to ignore the SCK halt (static or frequency is lower than acceptable) detection. When ignored an SCK halt will not cause a clock error. Default value: 0 0: Regard SCK halt detection 1: Ignore SCK halt detection IDCM Ignore LRCK/BCK Missing Detection This bit controls whether to ignore the LRCK/BCK missing detection. The LRCK/BCK need to be in low state (not only static) to be deemed missing. When ignored an LRCK/BCK missing will not cause the DAC go into powerdown mode. Default value: 0 0: Regard LRCK/BCK missing detection 1: Ignore LRCK/BCK missing detection DCAS Disable Clock Divider Autoset This bit enables or disables the clock auto set mode. When dealing with uncommon audio clock configuration, the auto set mode must be disabled and all clock dividers must be set manually. Addtionally, some clock detectors might also need to be disabled. The clock autoset feature will not work with PLL enabled in VCOM mode. In this case this feature has to be disabled and the clock dividers must be set manually. Default value: 0 0: Enable clock auto set 1: Disable clock auto set IPLK Ignore PLL Lock Detection This bit controls whether to ignore the PLL lock detection. When ignored, PLL unlocks will not cause a clock error. The PLL lock flag at Page 0 / Register 4, bit 4 is always correct regardless of this bit. Default value: 0 0: PLL unlocks raise clock error 1: PLL unlocks are ignored Table 74. Page 0 / Register 40 Dec Hex b7 b6 b5 b4 b3 b2 b1 b0 40 28 RSV RSV AFMT1 AFMT0 RSV RSV ALEN1 ALEN0 0 0 1 0 Reset Value RSV Reserved Reserved. Do not access. AFMT[1:0] I2S Data Format These bits control both input and output audio interface formats for DAC operation. Default value: 00 00: I2S 01: TDM/DSP 10: RTJ 11: LTJ ALEN[1:0] I2S Word Length These bits control both input and output audio interface sample word lengths for DAC operation. Default value: 10 00: 16 bits 01: 20 bits 10: 24 bits 11: 32 bits 84 Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 PCM5252 www.ti.com SLASE63 – NOVEMBER 2014 Table 75. Page 0 / Register 41 Dec Hex b7 b6 b5 b4 b3 b2 b1 b0 41 29 AOFS7 AOFS6 AOFS5 AOFS4 AOFS3 AOFS2 AOFS1 AOFS0 0 0 0 0 0 0 0 0 Reset Value AOFS[7:0] I2S Shift These bits control the offset of audio data in the audio frame for both input and output. The offset is defined as the number of BCK from the starting (MSB) of audio frame to the starting of the desired audio sample. Default value: 00000000 00000000: offset = 0 BCK (no offset) 00000001: ofsset = 1 BCK 00000010: offset = 2 BCKs ... 11111111: offset = 256 BCKs Table 76. Page 0 / Register 42 Dec Hex b7 b6 b5 b4 b3 b2 b1 b0 42 2A RSV RSV AUPL1 AUPL0 RSV RSV AUPR1 AUPR0 0 1 0 1 Reset Value RSV Reserved Reserved. Do not access. AUPL[1:0] Left DAC Data Path These bits control the left channel audio data path connection. Default value: 01 00: Zero data (mute) 01: Left channel data 10: Right channel data 11: Reserved (do not set) AUPR[1:0] Right DAC Data Path These bits control the right channel audio data path connection. Default value: 01 00: Zero data (mute) 01: Right channel data 10: Left channel data 11: Reserved (do not set) Table 77. Page 0 / Register 43 Dec Hex b7 b6 b5 b4 b3 b2 b1 b0 43 2B RSV RSV RSV PSEL4 PSEL3 PSEL2 PSEL1 PSEL0 0 0 0 0 1 Reset Value RSV Reserved Reserved. Do not access. PSEL[4:0] DSP Program Selection These bits select the DSP program to use for audio processing. Default value: 00001 00000: Reserved (do not set) 00001: 8x/4x/2x FIR interpolation filter with de-emphasis 00010: 8x/4x/2x Low latency IIR interpolation filter with de-emphasis Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 85 PCM5252 SLASE63 – NOVEMBER 2014 www.ti.com 00011: High attenuation x8/x4/x2 interpolation filter with de-emphasis 00100: Reserved 00101: Fixed process flow with configurable parameters 00110: Reserved (do not set) 00111: 8x Ringing-less low latency FIR interpolation filter without de-emphasis 11111: others: Reserved (do not set) Table 78. Page 0 / Register 44 Dec Hex b7 b6 b5 b4 b3 b2 b1 b0 44 2C RSV RSV RSV RSV RSV CMDP2 CMDP1 CMDP0 0 0 0 Reset Value RSV Reserved Reserved. Do not access. CMDP[2:0] Clock Missing Detection Period These bits set how long both BCK and LRCK keep low before the audio clocks deemed missing and the DAC transitions to powerdown mode. Default value: 000 000: about 1 second 001: about 2 seconds 010: about 3 seconds ... 111: about 8 seconds Table 79. Page 0 / Register 59 Dec Hex b7 b6 b5 b4 b3 b2 b1 b0 59 3B RSV AMTL2 AMTL1 AMTL0 RSV AMTR2 AMTR1 AMTR0 0 0 0 0 0 0 Reset Value RSV Reserved Reserved. Do not access. AMTL[2:0] Auto Mute Time for Left Channel These bits specify the length of consecutive zero samples at left channel before the channel can be auto muted. The times shown are for 48 kHz sampling rate and will scale with other rates. Default value: 000 000: 21 ms 001: 106 ms 010: 213 ms 011: 533 ms 100: 1.07 sec 101: 2.13 sec 110: 5.33 sec 111: 10.66 sec AMTR[2:0] Auto Mute Time for Right Channel These bits specify the length of consecutive zero samples at right channel before the channel can be auto muted. The times shown are for 48 kHz sampling rate and will scale with other rates. Default value: 000 000: 21 ms 001: 106 ms 86 Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 PCM5252 www.ti.com SLASE63 – NOVEMBER 2014 010: 213 ms 011: 533 ms 100: 1.07 sec 101: 2.13 sec 110: 5.33 sec 111: 10.66 sec Table 80. Page 0 / Register 60 Dec Hex b7 b6 b5 b4 b3 b2 b1 b0 60 3C RSV RSV RSV RSV RSV RSV PCTL1 PCTL0 0 0 Reset Value RSV Reserved Reserved. Do not access. PCTL[1:0] Digital Volume Control These bits control the behavior of the digital volume. Default value: 00 00: The volume for Left and right channels are independent 01: Right channel volume follows left channel setting 10: Left channel volume follows right channel setting 11: Reserved (The volume for Left and right channels are independent) Table 81. Page 0 / Register 61 Dec Hex b7 b6 b5 b4 b3 b2 b1 b0 61 3D VOLL7 VOLL6 VOLL5 VOLL4 VOLL3 VOLL2 VOLL1 VOLL0 0 0 1 1 0 0 0 0 Reset Value VOLL[7:0] Left Digital Volume These bits control the left channel digital volume. The digital volume is 24 dB to -103 dB in -0.5 dB step. Default value: 00110000 00000000: +24.0 dB 00000001: +23.5 dB ... 00101111: +0.5 dB 00110000: 0.0 dB 00110001: -0.5 dB ... 11111110: -103 dB 11111111: Mute Table 82. Page 0 / Register 62 Dec Hex b7 b6 b5 b4 b3 b2 b1 b0 62 3E VOLR7 VOLR6 VOLR5 VOLR4 VOLR3 VOLR2 VOLR1 VOLR0 0 0 1 1 0 0 0 0 Reset Value VOLR[7:0] Right Digital Volume These bits control the right channel digital volume. The digital volume is 24 dB to -103 dB in -0.5 dB step. Default value: 00110000 00000000: +24.0 dB Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 87 PCM5252 SLASE63 – NOVEMBER 2014 www.ti.com 00000001: +23.5 dB ... 00101111: +0.5 dB 00110000: 0.0 dB 00110001: -0.5 dB ... 11111110: -103 dB 11111111: Mute Table 83. Page 0 / Register 63 Dec Hex b7 b6 b5 b4 b3 b2 b1 b0 63 3F VNDF1 VNDF0 VNDS1 VNDS0 VNUF1 VNUF0 VNUS1 VNUS0 0 0 1 0 0 0 1 0 Reset Value VNDF[1:0] Digital Volume Normal Ramp Down Frequency These bits control the frequency of the digital volume updates when the volume is ramping down. The setting here is applied to soft mute request, asserted by XSMUTE pin or Page 0 / Register 3. Default value: 00 00: Update every 1 FS period 01: Update every 2 FS periods 10: Update every 4 FS periods 11: Directly set the volume to zero (Instant mute) VNDS[1:0] Digital Volume Normal Ramp Down Step These bits control the step of the digital volume updates when the volume is ramping down. The setting here is applied to soft mute request, asserted by XSMUTE pin or Page 0 / Register 3. Default value: 10 00: Decrement by 4 dB for each update 01: Decrement by 2 dB for each update 10: Decrement by 1 dB for each update 11: Decrement by 0.5 dB for each update VNUF[1:0] Digital Volume Normal Ramp Up Frequency These bits control the frequency of the digital volume updates when the volume is ramping up. The setting here is applied to soft unmute request, asserted by XSMUTE pin or Page 0 / Register 3. Default value: 00 00: Update every 1 FS period 01: Update every 2 FS periods 10: Update every 4 FS periods 11: Directly restore the volume (Instant unmute) VNUS[1:0] Digital Volume Normal Ramp Up Step These bits control the step of the digital volume updates when the volume is ramping up. The setting here is applied to soft unmute request, asserted by XSMUTE pin or Page 0 / Register 3. Default value: 10 00: Increment by 4 dB for each update 01: Increment by 2 dB for each update 10: Increment by 1 dB for each update 11: Increment by 0.5 dB for each update Table 84. Page 0 / Register 64 Dec Hex b7 b6 b5 b4 b3 b2 b1 b0 64 40 VEDF1 VEDF0 VEDS1 VEDS0 RSV RSV RSV RSV 0 0 0 0 Reset Value 88 Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 PCM5252 www.ti.com SLASE63 – NOVEMBER 2014 RSV Reserved Reserved. Do not access. VEDF[1:0] Digital Volume Emergency Ramp Down Frequency These bits control the frequency of the digital volume updates when the volume is ramping down due to clock error or power outage, which usually needs faster ramp down compared to normal soft mute. Default value: 00 00: Update every 1 FS period 01: Update every 2 FS periods 10: Update every 4 FS periods 11: Directly set the volume to zero (Instant mute) VEDS[1:0] Digital Volume Emergency Ramp Down Step These bits control the step of the digital volume updates when the volume is ramping down due to clock error or power outage, which usually needs faster ramp down compared to normal soft mute. Default value: 00 00: Decrement by 4 dB for each update 01: Decrement by 2 dB for each update 10: Decrement by 1 dB for each update 11: Decrement by 0.5 dB for each update Table 85. Page 0 / Register 65 Dec Hex b7 b6 b5 b4 b3 b2 b1 b0 65 41 RSV RSV RSV RSV RSV ACTL2 AMLE1 AMRE0 1 1 1 Reset Value RSV Reserved Reserved. Do not access. ACTL[2:0] Auto Mute Control This bit controls the behavior of the auto mute upon zero sample detection. The time length for zero detection is set with Page 0 / Register 59. Default value: 111 0: Auto mute left channel and right channel independently. 1: Auto mute left and right channels only when both channels are about to be auto muted. AMLE[1:0] Auto Mute Left Channel This bit enables or disables auto mute on right channel. Note that when right channel auto mute is disabled and the Page 0 / Register 65, bit 2 is set to 1, the left channel will also never be auto muted. Default value: 11 0: Disable right channel auto mute 1: Enable right channel auto mute AMRE Auto Mute Right Channel This bit enables or disables auto mute on left channel. Note that when left channel auto mute is disabled and the Page 0 / Register 65, bit 2 is set to 1, the right channel will also never be auto muted. Default value: 1 0: Disable left channel auto mute 1: Enable left channel auto mute Table 86. Page 0 / Register 80 Dec Hex b7 b6 b5 b4 b3 b2 b1 b0 80 50 RSV RSV RSV G1SL4 G1SL3 G1SL2 G1SL1 G1SL0 0 0 0 0 0 Reset Value Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 89 PCM5252 SLASE63 – NOVEMBER 2014 RSV www.ti.com Reserved Reserved. Do not access. G1SL[4:0] GPIO1 Output Selection These bits select the signal to output to GPIO1. To actually output the selected signal, the GPIO1 must be set to output mode at Page 0 / Register 8. Default value: 00000 00000: off (low) 00001: DSP GPIO1 output 00010: Register GPIO1 output (Page 0 / Register 86, bit 0) 00011: Auto mute flag (asserted when both L and R channels are auto muted) 00100: Auto mute flag for left channel 00101: Auto mute flag for right channel 00110: Clock invalid flag (clock error or clock changing or clock missing) 00111: Serial audio interface data output (SDOUT) 01000: Analog mute flag for left channel (low active) 01001: Analog mute flag for right channel (low active) 01010: PLL lock flag 01011: Charge pump clock 01100: Reserved 01101: Reserved 01110: Under voltage flag, asserted when XSMUTE voltage is higher than 0.7 DVDD 01111: Under voltage flag, asserted when XSMUTE voltage is higher than 0.3 DVDD 010000: PLL Output/4 (Requires Clock Flex Register) OTHERS: RESERVED Table 87. Page 0 / Register 81 Dec Hex b7 b6 b5 b4 b3 b2 b1 b0 81 51 RSV RSV RSV G2SL4 G2SL3 G2SL2 G2SL1 G2SL0 0 0 0 0 0 Reset Value RSV Reserved Reserved. Do not access. G2SL[4:0] GPIO2 Output Selection These bits select the signal to output to GPIO2. To actually output the selected signal, the GPIO2 must be set to output mode at Page 0 / Register 8. Default value: 00000 00000: off (low) 00001: DSP GPIO2 output 00010: Register GPIO2 output (Page 0 / Register 86, bit 1) 00011: Auto mute flag (asserted when both L and R channels are auto muted) 00100: Auto mute flag for left channel 00101: Auto mute flag for right channel 00110: Clock invalid flag (clock error or clock changing or clock missing) 00111: Serial audio interface data output (SDOUT) 01000: Analog mute flag for left channel (low active) 01001: Analog mute flag for right channel (low active) 01010: PLL lock flag 01011: Charge pump clock 01100: Reserved 01101: Reserved 90 Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 PCM5252 www.ti.com SLASE63 – NOVEMBER 2014 01110: Under voltage flag, asserted when XSMUTE voltage is higher than 0.7 DVDD 01111: Under voltage flag, asserted when XSMUTE voltage is higher than 0.3 DVDD 010000: PLL Output/4 (Requires Clock Flex Register) OTHERS: RESERVED Table 88. Page 0 / Register 82 Dec Hex b7 b6 b5 b4 b3 b2 b1 b0 82 52 RSV RSV RSV G3SL4 G3SL3 G3SL2 G3SL1 G3SL0 0 0 0 0 0 Reset Value RSV Reserved Reserved. Do not access. G3SL[4:0] GPIO3 Output Selection These bits select the signal to output to GPIO3. To actually output the selected signal, the GPIO3 must be set to output mode at Page 0 / Register 8. Default value: 00000 0000: off (low) 0001: DSP GPIO3 output 0010: Register GPIO3 output (Page 0 / Register 86, bit 2) 00011: Auto mute flag (asserted when both L and R channels are auto muted) 00100: Auto mute flag for left channel 00101: Auto mute flag for right channel 00110: Clock invalid flag (clock error or clock changing or clock missing) 00111: Serial audio interface data output (SDOUT) 01000: Analog mute flag for left channel (low active) 01001: Analog mute flag for right channel (low active) 01010: PLL lock flag 01011: Charge pump clock 01100: Reserved 01101: Reserved 01110: Under voltage flag, asserted when XSMUTE voltage is higher than 0.7 DVDD 01111: Under voltage flag, asserted when XSMUTE voltage is higher than 0.3 DVDD 010000: PLL Output/4 (Requires Clock Flex Register) OTHERS: RESERVED Table 89. Page 0 / Register 83 Dec Hex b7 b6 b5 b4 b3 b2 b1 b0 83 53 RSV RSV RSV G4SL4 G4SL3 G4SL2 G4SL1 G4SL0 0 0 0 0 0 Reset Value RSV Reserved Reserved. Do not access. G4SL[4:0] GPIO4 Output Selection These bits select the signal to output to GPIO4. To actually output the selected signal, the GPIO4 must be set to output mode at Page 0 / Register 8. Default value: 00000 00000: off (low) 00001: DSP GPIO4 output 00010: Register GPIO4 output (Page 0 / Register 86, bit 3) 00011: Auto mute flag (asserted when both L and R channels are auto muted) Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 91 PCM5252 SLASE63 – NOVEMBER 2014 www.ti.com 00100: Auto mute flag for left channel 00101: Auto mute flag for right channel 00110: Clock invalid flag (clock error or clock changing or clock missing) 00111: Serial audio interface data output (SDOUT) 01000: Analog mute flag for left channel (low active) 01001: Analog mute flag for right channel (low active) 01010: PLL lock flag 01011: Charge pump clock 01100: Reserved 01101: Reserved 01110: Under voltage flag, asserted when XSMUTE voltage is higher than 0.7 DVDD 01111: Under voltage flag, asserted when XSMUTE voltage is higher than 0.3 DVDD 010000: PLL Output/4 (Requires Clock Flex Register) OTHERS: RESERVED Table 90. Page 0 / Register 84 Dec Hex b7 b6 b5 b4 b3 b2 b1 b0 84 54 RSV RSV RSV G5SL4 G5SL3 G5SL2 G5SL1 G5SL0 0 0 0 0 0 Reset Value RSV Reserved Reserved. Do not access. G5SL[4:0] GPIO5 Output Selection These bits select the signal to output to GPIO5. To actually output the selected signal, the GPIO5 must be set to output mode at Page 0 / Register 8. Default value: 00000 00000: off (low) 00001: DSP GPIO5 output 00010: Register GPIO5 output (Page 0 / Register 86, bit 4 00011: Auto mute flag (asserted when both L and R channels are auto muted) 00100: Auto mute flag for left channel 00101: Auto mute flag for right channel 00110: Clock invalid flag (clock error or clock changing or clock missing) 00111: Serial audio interface data output (SDOUT) 01000: Analog mute flag for left channel (low active) 01001: Analog mute flag for right channel (low active) 01010: PLL lock flag 01011: Charge pump clock 01100: Reserved 01101: Reserved 01110: Under voltage flag, asserted when XSMUTE voltage is higher than 0.7 DVDD 01111: Under voltage flag, asserted when XSMUTE voltage is higher than 0.3 DVDD 010000: PLL Output/4 (Requires Clock Flex Register) OTHERS: RESERVED Table 91. Page 0 / Register 85 Dec Hex b7 b6 b5 b4 b3 b2 b1 b0 85 55 RSV RSV RSV G6SL4 G6SL3 G6SL2 G6SL1 G6SL0 0 0 0 0 0 Reset Value 92 Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 PCM5252 www.ti.com SLASE63 – NOVEMBER 2014 RSV Reserved Reserved. Do not access. G6SL[4:0] GPIO6 Output Selection These bits select the signal to output to GPIO6. To actually output the selected signal, the GPIO6 must be set to output mode at Page 0 / Register 8. Default value: 00000 00000: off (low) 00001: DSP GPIO6 output 00010: Register GPIO6 output (Page 0 / Register 86, bit 5) 00011: Auto mute flag (asserted when both L and R channels are auto muted) 00100: Auto mute flag for left channel 00101: Auto mute flag for right channel 00110: Clock invalid flag (clock error or clock changing or clock missing) 00111: Serial audio interface data output (SDOUT) 01000: Analog mute flag for left channel (low active) 01001: Analog mute flag for right channel (low active) 01010: PLL lock flag 01011: Charge pump clock 01100: Reserved 01101: Reserved 01110: Under voltage flag, asserted when XSMUTE voltage is higher than 0.7 DVDD 01111: Under voltage flag, asserted when XSMUTE voltage is higher than 0.3 DVDD 010000: PLL Output/4 (Requires Clock Flex Register) OTHERS: RESERVED Table 92. Page 0 / Register 86 Dec Hex b7 b6 b5 b4 b3 b2 b1 b0 86 56 RSV RSV GOUT5 GOUT4 GOUT3 GOUT2 GOUT1 GOUT0 0 0 0 0 0 0 Reset Value RSV Reserved Reserved. Do not access. GOUT5 GPIO6 Output Control This bit controls the GPIO6 output when the selection at Page 0 / Register 85 is set to 0010 (register output) Default value: 0 0: Output low 1: Output high GOUT4 GPIO5 Output Control This bit controls the GPIO5 output when the selection at Page 0 / Register 84 is set to 0010 (register output) Default value: 0 0: Output low 1: Output high GOUT3 GPIO4 Output Control This bit controls the GPIO4 output when the selection at Page 0 / Register 83 is set to 0010 (register output) Default value: 0 0: Output low 1: Output high GOUT2 GPIO3 Output Control This bit controls the GPIO3 output when the selection at Page 0 / Register 82 is set to 0010 (register output) Default value: 0 Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 93 PCM5252 SLASE63 – NOVEMBER 2014 www.ti.com 0: Output low 1: Output high GOUT1 GPIO2 Output Control This bit controls the GPIO2 output when the selection at Page 0 / Register 81 is set to 0010 (register output) Default value: 0 0: Output low 1: Output high GOUT0 GPIO1 Output Control This bit controls the GPIO1 output when the selection at Page 0 / Register 80 is set to 0010 (register output) Default value: 0 0: Output low 1: Output high Table 93. Page 0 / Register 87 Dec Hex b7 b6 b5 b4 b3 b2 b1 b0 87 57 RSV RSV GINV5 GINV4 GINV3 GINV2 GINV1 GINV0 0 0 0 0 0 0 Reset Value RSV Reserved Reserved. Do not access. GINV5 GPIO6 Output Inversion This bit controls the polarity of GPIO6 output. When set to 1, the output will be inverted for any signal being selected. Default value: 0 0: Non-inverted 1: Inverted GINV4 GPIO5 Output Inversion This bit controls the polarity of GPIO5 output. When set to 1, the output will be inverted for any signal being selected. Default value: 0 0: Non-inverted 1: Inverted GINV3 GPIO4 Output Inversion This bit controls the polarity of GPIO4 output. When set to 1, the output will be inverted for any signal being selected. Default value: 0 0: Non-inverted 1: Inverted GINV2 GPIO3 Output Inversion This bit controls the polarity of GPIO3 output. When set to 1, the output will be inverted for any signal being selected. Default value: 0 0: Non-inverted 1: Inverted GINV1 GPIO2 Output Inversion This bit controls the polarity of GPIO2 output. When set to 1, the output will be inverted for any signal being selected. Default value: 0 0: Non-inverted 1: Inverted GINV0 94 GPIO1 Output Inversion Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 PCM5252 www.ti.com SLASE63 – NOVEMBER 2014 This bit controls the polarity of GPIO1 output. When set to 1, the output will be inverted for any signal being selected. Default value: 0 0: Non-inverted 1: Inverted Table 94. Page 0 / Register 90 Dec Hex b7 b6 b5 b4 b3 b2 b1 b0 90 5A RSV RSV RSV L1OV R1OV L2OV R2OV SFOV Reset Value RSV Reserved Reserved. Do not access. L1OV Left1 Overflow (Read Only) This bit indicates whether the left channel of DSP first output port has overflow. This bit is sticky and is cleared when read. 0: No overflow 1: Overflow occurred R1OV Right1 Overflow (Read Only) The bit indicates whether the right channel of DSP first output port has overflow. This bit is sticky and is cleared when read. 0: No overflow 1: Overflow occurred L2OV Left2 Overflow (Read Only) This bit indicates whether the left channel of DSP second output port has overflow. This bit is sticky and is cleared when read. 0: No overflow 1: Overflow occurred R2OV Right2 Overflow (Read Only) The bit indicates whether the right channel of DSP second output port has overflow. This bit is sticky and is cleared when read. 0: No overflow 1: Overflow occurred SFOV Shifter Overflow (Read Only) This bit indicates whether overflow occurred in the DSP shifter (possible sample corruption). This bit is sticky and is cleared when read. 0: No overflow 1: Overflow occurred Table 95. Page 0 / Register 91 Dec Hex b7 b6 b5 b4 b3 b2 b1 b0 91 5B RSV DTFS2 DTFS1 DTFS0 DTSR3 DTSR2 DTSR1 DTSR0 Reset Value RSV Reserved Reserved. Do not access. DTFS[2:0] Detected FS (Read Only) These bits indicate the currently detected audio sampling rate. 000: Error (Out of valid range) 001: 8 kHz 010: 16 kHz Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 95 PCM5252 SLASE63 – NOVEMBER 2014 www.ti.com 011: 32-48 kHz 100: 88.2-96 kHz 101: 176.4-192 kHz 110: 384 kHz DTSR[3:0] Detected SCK Ratio (Read Only) These bits indicate the currently detected SCK ratio. Note that even if the SCK ratio is not indicated as error, clock error might still be flagged due to incompatible combination with the sampling rate. Specifically the SCK ratio must be high enough to allow enough DSP cycles for minimal audio processing when PLL is disabled. The absolute SCK frequency must also be lower than 50 MHz. 0000: Ratio error (The SCK ratio is not allowed) 0001: SCK = 32 FS 0010: SCK = 48 FS 0011: SCK = 64 FS 0100: SCK = 128 FS 0101: SCK = 192 FS 0110: SCK = 256 FS 0111: SCK = 384 FS 1000: SCK = 512 FS 1001: SCK = 768 FS 1010: SCK = 1024 FS 1011: SCK = 1152 FS 1100: SCK = 1536 FS 1101: SCK = 2048 FS 1110: SCK = 3072 FS Table 96. Page 0 / Register 92 Dec Hex b7 b6 b5 b4 b3 b2 b1 b0 92 5C RSV RSV RSV RSV RSV RSV RSV DTBR8 Reset Value Table 97. Page 0 / Register 93 Dec Hex b7 b6 b5 b4 b3 b2 b1 b0 93 5D DTBR7 DTBR6 DTBR5 DTBR4 DTBR3 DTBR2 DTBR1 DTBR0 Reset Value RSV Reserved Reserved. Do not access. DTBR[8:0] Detected BCK Ratio (MSB) (Read Only) These bits indicate the currently detected BCK ratio, that is, the number of BCK clocks in one audio frame. Note that for extreme case of BCK = 1 FS (which is not usable anyway), the detected ratio will be unreliable. Table 98. Page 0 / Register 94 Dec Hex b7 b6 b5 b4 b3 b2 b1 b0 94 5E RSV CDST PLL-L LrckBck fS-SCKr SCKval BCKval fSval Reset Value RSV Reserved Reserved. Do not access. CDST Clock Detector Status (Read Only) This bit indicates whether the SCK clock is present or not. 0: SCK is present 96 Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 PCM5252 www.ti.com SLASE63 – NOVEMBER 2014 1: SCK is missing (halted) PLL-L PLL locked (Read Only) This bit indicates whether the PLL is locked or not. The PLL will be reported as unlocked when it is disabled. 0: PLL is locked 1: PLL is unlocked LrckBck LRCK-BCK present (Read Only) This bit indicates whether the both LRCK and BCK are missing (tied low) or not. 0: LRCK and/or BCK is present 1: LRCK and BCK are missing fS-SCKr Sample rate SCK ratio valid (Read Only) This bit indicates whether the combination of current sampling rate and SCK ratio is valid for clock auto set. 0: The combination of FS/SCK ratio is valid 1: Error (clock auto set is not possible) SCKval SCK valid (Read Only) This bit indicates whether the SCK is valid or not. The SCK ratio must be detectable to be valid. There is a limitation with this flag, that is, when the low period of LRCK is less than or equal to 5 BCKs, this flag will be asserted (SCK invalid reported). 0: SCK is valid 1: SCK is invalid BCKval BCK valid (Read Only) This bit indicates whether the BCK is valid or not. The BCK ratio must be stable and in the range of 32-256FS to be valid. 0: BCK is valid 1: BCK is invalid fSval fS valid (Read Only) This bit indicated whether the audio sampling rate is valid or not. The sampling rate must be detectable to be valid. There is a limitation with this flag, that is when this flag is asserted and Page 0 / Register 37 is set to ignore all asserted error flags such that the DAC recovers, this flag will be de-asserted (sampling rate invalid not reported anymore). 0: Sampling rate is valid 1: Sampling rate is invalid Table 99. Page 0 / Register 95 Dec Hex b7 b6 b5 b4 b3 b2 b1 b0 95 5F RSV RSV RSV LTSH RSV CKMF CSRF CERF Reset Value RSV Reserved Reserved. Do not access. LTSH Latched Clock Halt (Read Only) This bit indicates whether SCK halt has occurred. The bit is cleared when read. 0: SCK halt has not occurred 1: SCK halt has occurred since last read CKMF Clock Missing (Read Only) This bit indicates whether the LRCK and BCK are missing (tied low). 0: LRCK and/or BCK is present 1: LRCK and BCK are missing CSRF Clock Resync Request (Read Only) This bit indicates whether the clock resynchronization is in progress. 0: Not resynchronizing 1: Clock resynchronization is in progress Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 97 PCM5252 SLASE63 – NOVEMBER 2014 CERF www.ti.com Clock Error (Read Only) This bit indicates whether a clock error is being reported. 0: Clock is valid 1: Clock is invalid (Error) Table 100. Page 0 / Register 108 Dec Hex b7 b6 b5 b4 b3 b2 b1 b0 108 6C RSV RSV RSV RSV RSV RSV AMLM AMRM Reset Value RSV Reserved Reserved. Do not access. AMLM Left Analog Mute Monitor (Read Only) This bit is a monitor for left channel analog mute status. 0: Mute 1: Unmute AMRM Right Analog Mute Monitor (Read Only) This bit is a monitor for right channel analog mute status. 0: Mute 1: Unmute Table 101. Page 0 / Register 109 Dec Hex b7 b6 b5 b4 b3 b2 b1 b0 109 6D RSV RSV RSV SDTM RSV RSV RSV SHTM Reset Value RSV Reserved Reserved. Do not access. SDTM Short detect monitor (Read Only) This bit indicates whether line output short is occuring. 0: Normal (No short) 1: Line output is being shorted SHTM Short detected monitor (Read Only) This bit indicates whether line output short has occurred since last read. This bit is sticky and is cleared when read. 0: No short 1: Line output short occurred Table 102. Page 0 / Register 114 Dec Hex b7 b6 b5 b4 b3 b2 b1 b0 114 72 RSV RSV RSV RSV RSV RSV MTST1 MTST0 Reset Value RSV Reserved Reserved. Do not access. MTST[1:0] MUTEZ status (Read Only) These bits indicate the output of the XSMUTE level decoder for monitoring purpose. 11: 0.7 VDD ≤ XSMUTE 01: 0.3 VDD ≤ XSMUTE < 0.7 VDD 00: 0.3 VDD > XSMUTE 98 Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 PCM5252 www.ti.com SLASE63 – NOVEMBER 2014 Table 103. Page 0 / Register 115 Dec Hex b7 b6 b5 b4 b3 b2 b1 b0 115 73 RSV RSV RSV RSV RSV RSV FSMM1 FSMM0 Reset Value RSV Reserved Reserved. Do not access. FSMM[1:0] FS Speed Mode Monitor (Read Only) These bits indicate the actual FS operation mode being used. The actual value is the auto set one when clock auto set is active and register set one when clock auto set is disabled. 00: Single speed (FS ≤ 48 kHz) 01: Double speed (48 kHz < FS ≤ 96 kHz) 10: Quad speed (96 kHz < FS ≤ 192 kHz) 11: Octal speed (192 kHz < FS ≤ 384 kHz) Table 104. Page 0 / Register 118 Dec Hex b7 b6 b5 b4 b3 b2 b1 b0 118 76 BOTM RSV RSV RSV PSTM3 PSTM2 PSTM1 PSTM0 Reset Value RSV Reserved Reserved. Do not access. BOTM DSP Boot Done Flag (Read Only) This bit indicates whether the DSP boot is completed. 0: DSP is booting 1: DSP boot completed PSTM[3:0] Power State (Read Only) These bits indicate the current power state of the DAC. 0000: Powerdown 0001: Wait for CP voltage valid 0010: Calibration 0011: Calibration 0100: Volume ramp up 0101: Run (Playing) 0110: Line output short / Low impedance 0111: Volume ramp down 1000: Standby Table 105. Page 0 / Register 119 Dec Hex b7 b6 b5 b4 b3 b2 b1 b0 119 77 RSV RSV GPIN5 GPIN4 GPIN3 GPIN2 GPIN1 RSV Reset Value RSV Reserved Reserved. Do not access. GPIN[5:0] GPIO Input States (Read Only) This bit indicates the logic level at GPIO6 pin. 0: Low 1: High Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 99 PCM5252 SLASE63 – NOVEMBER 2014 www.ti.com Table 106. Page 0 / Register 120 Dec Hex b7 b6 b5 b4 b3 b2 b1 b0 120 78 RSV RSV RSV AMFL RSV RSV RSV AMFR Reset Value RSV Reserved Reserved. Do not access. AMFL Auto Mute Flag for Left Channel (Read Only) This bit indicates the auto mute status for left channel. 0: Not auto muted 1: Auto muted AMFR Auto Mute Flag for Right Channel (Read Only) This bit indicates the auto mute status for right channel. 0: Not auto muted 1: Auto muted Table 107. Page 0 / Register 121 Dec Hex b7 b6 b5 b4 b3 b2 b1 b0 121 79 RSV RSV RSV RSV RSV RSV RSV DAMD Reset Value RSV 0 Reserved Reserved. Do not access. DAMD DAC Mode This bit controls the DAC architecture to vary the DAC auditory signature. Default value: 0 0: Mode1 - New hyper-advanced current-segment architecture 1: Mode2 - Classic PCM1792 advanced current-segment architecture Table 108. Page 0 / Register 122 Dec Hex b7 b6 b5 b4 b3 b2 b1 b0 122 7A RSV RSV RSV RSV RSV RSV RSV EIFM Reset Value RSV 0 Reserved Reserved. Do not access. EIFM External Interpolation Filter Mode This bit enables or disables the PCM1792 External Interpolation Filter Mode. This mode is used with a PCM1792 in external digital filter mode. Default value: 0 0: Normal mode 1: External Interpolation Filter Mode Table 109. Page 0 / Register 123 Dec Hex b7 b6 b5 b4 b3 b2 b1 b0 123 7B RSV G1MC2 G1MC1 G1MC0 RSV G2MC2 G2MC1 G2MC0 0 0 0 0 0 0 Reset Value 100 Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 PCM5252 www.ti.com SLASE63 – NOVEMBER 2014 RSV Reserved Reserved. Do not access. G1MC[2:0] GPIO1 output for External Interpolation Filter Mode These bits select a signal to be output to GPIO1 in External Interpolation Filter mode. Default value: 000 000: Logic low 001: MS 010: BCK (256FS) 011: WDCK (8FS) 100: DATAL 101: DATAR 110: Raw DIN (from DIN pin) 111: Raw LRCK (from LRCK pin) G2MC[2:0] GPIO2 output for External Interpolation Filter Mode These bits select a signal to be output to GPIO2 in External Interpolation Filter mode. Default value: 000 000: Logic low 001: MS 010: BCK (256FS) 011: WDCK (8FS) 100: DATAL 101: DATAR 110: Raw DIN (from DIN pin) 111: Raw LRCK (from LRCK pin) Table 110. Page 0 / Register 124 Dec Hex b7 b6 b5 b4 b3 b2 b1 b0 124 7C RSV G3MC2 G3MC1 G3MC0 RSV G4MC2 G4MC1 G4MC0 0 0 0 0 0 0 Reset Value RSV Reserved Reserved. Do not access. G3MC[2:0] GPIO3 output for External Interpolation Filter Mode These bits select a signal to be output to GPIO3 in External Interpolation Filter Mode. Default value: 000 000: Logic low 001: MS 010: BCK (256FS) 011: WDCK (8FS) 100: DATAL 101: DATAR 110: Raw DIN (from DIN pin) 111: Raw LRCK (from LRCK pin) G4MC[2:0] GPIO4 output for External Interpolation Filter Mode These bits select a signal to be output to GPIO4 in External Interpolation Filter Mode. Default value: 000 000: Logic low 001: MS 010: BCK (256FS) Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 101 PCM5252 SLASE63 – NOVEMBER 2014 www.ti.com 011: WDCK (8FS) 100: DATAL 101: DATAR 110: Raw DIN (from DIN pin) 111: Raw LRCK (from LRCK pin) Table 111. Page 0 / Register 125 Dec Hex b7 b6 b5 b4 b3 b2 b1 b0 125 7D RSV G5MC2 G5MC1 G5MC0 RSV G6MC2 G6MC1 G6MC0 0 0 0 0 0 0 Reset Value RSV Reserved Reserved. Do not access. G5MC[2:0] GPIO5 output for External Interpolation Filter Mode These bits select a signal to be output to GPIO5 in External Interpolation Filter mode. Default value: 000 000: Logic low 001: MS 010: BCK (256FS) 011: WDCK (8FS) 100: DATAL 101: DATAR 110: Raw DIN (from DIN pin) 111: Raw LRCK (from LRCK pin) G6MC[2:0] GPIO6 output for External Interpolation Filter Mode These bits select a signal to be output to GPIO6 in External Interpolation Filter mode. Default value: 000 000: Logic low 001: MS 010: BCK (256FS) 011: WDCK (8FS) 100: DATAL 101: DATAR 110: Raw DIN (from DIN pin) 111: Raw LRCK (from LRCK pin) 13.1.1.3 Page 1 Registers Table 112. Page 1 / Register 1 Dec Hex b7 b6 b5 b4 b3 b2 b1 b0 1 01 RSV RSV RSV RSV RSV RSV RSV OSEL Reset Value RSV 0 Reserved Reserved. Do not access. OSEL Output Amplitude Type This bit selects the output amplitude type. The clock autoset feature will not work with PLL enabled in VCOM mode. In this case this feature has to be disabled via Page 0 / Register 37 and the clock dividers must be set manually. Default value: 0 102 Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 PCM5252 www.ti.com SLASE63 – NOVEMBER 2014 0: VREF mode (Constant output amplitude against AVDD variation) 1: VCOM mode (Output amplitude is proportional to AVDD variation) Table 113. Page 1 / Register 2 Dec Hex b7 b6 b5 b4 b3 b2 b1 b0 2 02 RSV RSV RSV LAGN RSV RSV RSV RAGN Reset Value RSV 0 0 Reserved Reserved. Do not access. LAGN Analog Gain Control for Left Channel This bit controls the left channel analog gain. Default value: 0 0: 0 dB 1:-6 dB RAGN Analog Gain Control for Right Channel This bit controls the right channel analog gain. Default value: 0 0: 0 dB 1: -6 dB Table 114. Page 1 / Register 5 Dec Hex b7 b6 b5 b4 b3 b2 b1 b0 5 05 RSV RSV RSV RSV RSV RSV UEPD UIPD 0 0 Reset Value RSV Reserved Reserved. Do not access. UEPD External UVP Control This bit enables or disables detection of power supply drop via XSMUTE pin (External Under Voltage Protection). Default value: 0 0: Enabled 1: Disabled UIPD Internal UVP Control This bit enables or disables internal detection of AVDD voltage drop (Internal Under Voltage Protection). Default value: 0 0: Enabled 1: Disabled Table 115. Page 1 / Register 6 Dec Hex b7 b6 b5 b4 b3 b2 b1 b0 6 06 RSV RSV RSV RSV RSV RSV RSV AMCT Reset Value RSV 0 Reserved Reserved. Do not access. AMCT Analog Mute Control This bit enables or disables analog mute following digital mute. Default value: 0 Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 103 PCM5252 SLASE63 – NOVEMBER 2014 www.ti.com 0: Enabled 1: Disabled Table 116. Page 1 / Register 7 Dec Hex b7 b6 b5 b4 b3 b2 b1 b0 7 07 RSV RSV RSV AGBL RSV RSV RSV AGBR Reset Value RSV 0 0 Reserved Reserved. Do not access. AGBL Analog +10% Gain for Left Channel This bit enables or disables amplitude boost mode for left channel. Default value: 0 0: Normal amplitude 1: +10% (+0.8 dB) boosted amplitude AGBR Analog +10% Gain for Right Channel This bit enables or disables amplitude boost mode for right channel. Default value: 0 0: Normal amplitude 1: +10% (+0.8 dB) boosted amplitude Table 117. Page 1 / Register 8 Dec Hex b7 b6 b5 b4 b3 b2 b1 b0 8 08 RSV RSV RSV RSV RSV RSV RSV RCMF Reset Value RSV 0 Reserved Reserved. Do not access. RCMF VCOM Reference Ramp Up This bit controls the VCOM voltage ramp up speed. Default value: 0 0: Normal ramp up, ~600ms with external capacitance = 1uF 1: Fast ramp up, ~3ms with external capacitance = 1uF Table 118. Page 1 / Register 9 Dec Hex b7 b6 b5 b4 b3 b2 b1 b0 9 09 RSV RSV RSV RSV RSV RSV RSV VCPD Reset Value RSV 1 Reserved Reserved. Do not access. VCPD Power down control for VCOM This bit controls VCOM powerdown switch. Default value: 1 0: VCOM is powered on 1: VCOM is powered down 104 Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 PCM5252 www.ti.com 13.1.1.4 SLASE63 – NOVEMBER 2014 Page 44 Registers Table 119. Page 44 / Register 1 Dec Hex b7 b6 b5 b4 b3 b2 b1 b0 1 01 RSV RSV RSV RSV ACRM AMDC ACRS ACSW Reset Value RSV 0 0 Reserved Reserved. Do not access. ACRM Active CRAM Monitor (Read Only) This bit indicates which CRAM is being accessed by the DSP when adaptive mode is disabled. When adaptive mode is enabled, this bit has no meaning. 0: CRAM A is being used by the DSP 1: CRAM B is being used by the DSP AMDC Adaptive Mode Control This bit controls the DSP adaptive mode. When in adaptive mode, only CRAM A is accessible via serial interface when the DSP is disabled (DAC in standby state), while when the DSP is enabled (DAC is run state) the CRAM A can only be accessed by the DSP and the CRAM B can only be accessed by the serial interface, or vice versa depending on the value of CRAMSTAT. When not in adaptive mode, both CRAM A and B can be accessed by the serial interface when the DSP is disabled, but when the DSP is enabled, no CRAM can be accessed by serial interface. The DSP can access either CRAM, which can be monitored at SWPMON. Default value: 0 0: Adaptive mode disabled 1: Adaptive mode enabled ACRS Active CRAM Selection (Read Only) This bit indicates which CRAM currently serves as the active one. The other CRAM serves as an update buffer, and can accessed by serial interface (SPI/I2C) 0: CRAM A is active and being used by the DSP 1: CRAM B is active and being used by the DSP ACSW Switch Active CRAM This bit is used to request switching roles of the two buffers, that is, switching the active buffer role between CRAM A and CRAM B. This bit is cleared automatically when the switching process completed. Default value: 0 0: No switching requested or switching completed 1: Switching is being requested 13.1.1.5 Page 253 Registers Table 120. Page 253 / Register 63 Dec Hex b7 b6 b5 b4 b3 b2 b1 b0 63 3F PLLFLEX1 7 PLLFLEX1 6 PLLFLEX1 5 PLLFLEX1 4 PLLFLEX1 3 PLLFLEX1 2 PLLFLEX1 1 PLLFLEX1 0 0 0 0 0 0 0 0 0 Reset Value PLLFLEX1[7:0] Clock Flex Register #1 Clock Flex Register #1. Write 0x11 to this register to allow advanced clock tree functions. See Clocking Overview section. Default value: 00000000 Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 105 PCM5252 SLASE63 – NOVEMBER 2014 www.ti.com Table 121. Page 253 / Register 64 Dec Hex b7 b6 b5 b4 b3 b2 b1 b0 64 40 PLLFLEX2 7 PLLFLEX2 6 PLLFLEX2 5 PLLFLEX2 4 PLLFLEX2 3 PLLFLEX2 2 PLLFLEX2 1 PLLFLEX2 0 0 0 0 0 0 0 0 0 Reset Value PLLFLEX2[7:0] Clock Flex Register #2 Clock Flex Register #2. Write 0xFF to this register to allow advanced clock tree functions. See Clocking Overview section. Default value: 00000000 106 Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 PCM5252 www.ti.com SLASE63 – NOVEMBER 2014 13.1.2 PLL Tables for Software Controlled Devices Table 122. Recommended Clock Divider Settings for PLL as Master Clock (VREF Mode) fS (kHz) RSCK SCK (MHz) PLL VCO (MHz) P PLL REF (MHz) M = K*R K = J.D R PLL fS DSP fS NMAC DSP CLK (MHz) MOD fS MOD F (kHz) NDAC DOSR % ERROR NCP CP F (kHz) 8 128 1.024 98.304 1 1.024 96 48 2 12288 1024 12 8.192 768 6144 16 48 0 4 1536 8 192 1.536 98.304 1 1.536 64 32 2 12288 1024 12 8.192 768 6144 16 48 0 4 1536 8 256 2.048 98.304 1 2.048 48 48 1 12288 1024 12 8.192 768 6144 16 48 0 4 1536 8 384 3.072 98.304 3 1.024 96 48 2 12288 1024 12 8.192 768 6144 16 48 0 4 1536 8 512 4.096 98.304 3 1.365 72 36 2 12288 1024 12 8.192 768 6144 16 48 0 4 1536 8 768 6.144 98.304 3 2.048 48 48 1 12288 1024 12 8.192 768 6144 16 48 0 4 1536 8 1024 8.192 98.304 3 2.731 36 36 1 12288 1024 12 8.192 768 6144 16 48 0 4 1536 8 1152 9.216 98.304 9 1.024 96 48 2 12288 1024 12 8.192 768 6144 16 48 0 4 1536 8 1536 12.288 98.304 9 1.365 72 36 2 12288 1024 12 8.192 768 6144 16 48 0 4 1536 8 2048 16.384 98.304 9 1.82 54 54 1 12288 1024 12 8.192 768 6144 16 48 0 4 1536 8 3072 24.576 98.304 9 2.731 36 36 1 12288 1024 12 8.192 768 6144 16 48 0 4 1536 11.025 128 1.4112 90.3168 1 1.411 64 32 2 8192 1024 8 11.2896 512 5644.8 16 32 0 4 1411.2 11.025 192 2.1168 90.3168 3 0.706 128 32 4 8192 1024 8 11.2896 512 5644.8 16 32 0 4 1411.2 11.025 256 2.8224 90.3168 1 2.822 32 32 1 8192 1024 8 11.2896 512 5644.8 16 32 0 4 1411.2 11.025 384 4.2336 90.3168 3 1.411 64 32 2 8192 1024 8 11.2896 512 5644.8 16 32 0 4 1411.2 11.025 512 5.6448 90.3168 3 1.882 48 48 1 8192 1024 8 11.2896 512 5644.8 16 32 0 4 1411.2 11.025 768 8.4672 90.3168 3 2.822 32 32 1 8192 1024 8 11.2896 512 5644.8 16 32 0 4 1411.2 11.025 1024 11.2896 90.3168 3 3.763 24 24 1 8192 1024 8 11.2896 512 5644.8 16 32 0 4 1411.2 11.025 1152 12.7008 90.3168 9 1.411 64 32 2 8192 1024 8 11.2896 512 5644.8 16 32 0 4 1411.2 11.025 1536 16.9344 90.3168 9 1.882 48 48 1 8192 1024 8 11.2896 512 5644.8 16 32 0 4 1411.2 11.025 2048 22.5792 90.3168 9 2.509 36 36 1 8192 1024 8 11.2896 512 5644.8 16 32 0 4 1411.2 11.025 3072 33.8688 90.3168 9 3.763 24 24 1 8192 1024 8 11.2896 512 5644.8 16 32 0 4 1411.2 16 64 1.024 98.304 1 1.024 96 48 2 6144 1024 6 16.384 384 6144 16 24 0 4 1536 16 128 2.048 98.304 1 2.048 48 48 1 6144 1024 6 16.384 384 6144 16 24 0 4 1536 16 192 3.072 98.304 1 3.072 32 32 1 6144 1024 6 16.384 384 6144 16 24 0 4 1536 16 256 4.096 98.304 1 4.096 24 24 1 6144 1024 6 16.384 384 6144 16 24 0 4 1536 16 384 6.144 98.304 3 2.048 48 48 1 6144 1024 6 16.384 384 6144 16 24 0 4 1536 16 512 8.192 98.304 3 2.731 36 36 1 6144 1024 6 16.384 384 6144 16 24 0 4 1536 16 768 12.288 98.304 3 4.096 24 24 1 6144 1024 6 16.384 384 6144 16 24 0 4 1536 16 1024 16.384 98.304 3 5.461 18 18 1 6144 1024 6 16.384 384 6144 16 24 0 4 1536 16 1152 18.432 98.304 3 6.144 16 16 1 6144 1024 6 16.384 384 6144 16 24 0 4 1536 16 1536 24.576 98.304 9 2.731 36 36 1 6144 1024 6 16.384 384 6144 16 24 0 4 1536 16 2048 32.768 98.304 9 3.641 27 27 1 6144 1024 6 16.384 384 6144 16 24 0 4 1536 16 3072 49.152 98.304 9 5.461 18 18 1 6144 1024 6 16.384 384 6144 16 24 0 4 1536 22.05 64 1.4112 90.3168 1 1.411 64 32 2 4096 1024 4 22.5792 256 5644.8 16 16 0 4 1411.2 22.05 128 2.8224 90.3168 1 2.822 32 32 1 4096 1024 4 22.5792 256 5644.8 16 16 0 4 1411.2 Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 107 PCM5252 SLASE63 – NOVEMBER 2014 www.ti.com Table 122. Recommended Clock Divider Settings for PLL as Master Clock (VREF Mode) (continued) fS (kHz) RSCK SCK (MHz) PLL VCO (MHz) P PLL REF (MHz) M = K*R K = J.D R PLL fS DSP fS NMAC DSP CLK (MHz) MOD fS MOD F (kHz) NDAC DOSR % ERROR NCP CP F (kHz) 22.05 192 4.2336 90.3168 3 1.411 64 32 2 4096 1024 4 22.5792 256 5644.8 16 16 0 4 1411.2 22.05 256 5.6448 90.3168 1 5.645 16 16 1 4096 1024 4 22.5792 256 5644.8 16 16 0 4 1411.2 22.05 384 8.4672 90.3168 3 2.822 32 32 1 4096 1024 4 22.5792 256 5644.8 16 16 0 4 1411.2 22.05 512 11.2896 90.3168 3 3.763 24 24 1 4096 1024 4 22.5792 256 5644.8 16 16 0 4 1411.2 22.05 768 16.9344 90.3168 3 5.645 16 16 1 4096 1024 4 22.5792 256 5644.8 16 16 0 4 1411.2 22.05 1024 22.5792 90.3168 3 7.526 12 12 1 4096 1024 4 22.5792 256 5644.8 16 16 0 4 1411.2 22.05 1152 25.4016 90.3168 9 2.822 32 32 1 4096 1024 4 22.5792 256 5644.8 16 16 0 4 1411.2 22.05 1536 33.8688 90.3168 9 3.763 24 24 1 4096 1024 4 22.5792 256 5644.8 16 16 0 4 1411.2 22.05 2048 45.1584 90.3168 9 5.018 18 18 1 4096 1024 4 22.5792 256 5644.8 16 16 0 4 1411.2 32 32 1.024 98.304 1 1.024 96 48 2 3072 1024 3 32.768 192 6144 16 12 0 4 1536 32 48 1.536 98.304 1 1.536 64 16 4 3072 1024 3 32.768 192 6144 16 12 0 4 1536 32 64 2.048 98.304 1 2.048 48 24 2 3072 1024 3 32.768 192 6144 16 12 0 4 1536 32 128 4.096 98.304 1 4.096 24 24 1 3072 1024 3 32.768 192 6144 16 12 0 4 1536 32 192 6.144 98.304 3 2.048 48 48 1 3072 1024 3 32.768 192 6144 16 12 0 4 1536 32 256 8.192 98.304 2 4.096 24 24 1 3072 1024 3 32.768 192 6144 16 12 0 4 1536 32 384 12.288 98.304 3 4.096 24 24 1 3072 1024 3 32.768 192 6144 16 12 0 4 1536 32 512 16.384 98.304 3 5.461 18 18 1 3072 1024 3 32.768 192 6144 16 12 0 4 1536 32 768 24.576 98.304 3 8.192 12 12 1 3072 1024 3 32.768 192 6144 16 12 0 4 1536 32 1024 32.768 98.304 3 10.923 9 9 1 3072 1024 3 32.768 192 6144 16 12 0 4 1536 32 1152 36.864 98.304 9 4.096 24 24 1 3072 1024 3 32.768 192 6144 16 12 0 4 1536 32 1536 49.152 98.304 6 8.192 12 12 1 3072 1024 3 32.768 192 6144 16 12 0 4 1536 44.1 32 1.4112 90.3168 1 1.411 64 32 2 2048 1024 2 45.1584 128 5644.8 16 8 0 4 1411.2 44.1 64 2.8224 90.3168 1 2.822 32 16 2 2048 1024 2 45.1584 128 5644.8 16 8 0 4 1411.2 44.1 128 5.6448 90.3168 1 5.645 16 16 1 2048 1024 2 45.1584 128 5644.8 16 8 0 4 1411.2 44.1 192 8.4672 90.3168 3 2.822 32 32 1 2048 1024 2 45.1584 128 5644.8 16 8 0 4 1411.2 44.1 256 11.2896 90.3168 2 5.645 16 16 1 2048 1024 2 45.1584 128 5644.8 16 8 0 4 1411.2 44.1 384 16.9344 90.3168 3 5.645 16 16 1 2048 1024 2 45.1584 128 5644.8 16 8 0 4 1411.2 44.1 512 22.5792 90.3168 3 7.526 12 12 1 2048 1024 2 45.1584 128 5644.8 16 8 0 4 1411.2 44.1 768 33.8688 90.3168 3 11.29 8 8 1 2048 1024 2 45.1584 128 5644.8 16 8 0 4 1411.2 44.1 1024 45.1584 90.3168 3 15.053 6 6 1 2048 1024 2 45.1584 128 5644.8 16 8 0 4 1411.2 48 32 1.536 98.304 1 1.536 64 32 2 2048 1024 2 49.152 128 6144 16 8 0 4 1536 48 64 3.072 98.304 1 3.072 32 16 2 2048 1024 2 49.152 128 6144 16 8 0 4 1536 48 128 6.144 98.304 1 6.144 16 16 1 2048 1024 2 49.152 128 6144 16 8 0 4 1536 48 192 9.216 98.304 3 3.072 32 32 1 2048 1024 2 49.152 128 6144 16 8 0 4 1536 48 256 12.288 98.304 2 6.144 16 16 1 2048 1024 2 49.152 128 6144 16 8 0 4 1536 48 384 18.432 98.304 3 6.144 16 16 1 2048 1024 2 49.152 128 6144 16 8 0 4 1536 48 512 24.576 98.304 3 8.192 12 12 1 2048 1024 2 49.152 128 6144 16 8 0 4 1536 48 768 36.864 98.304 3 12.288 8 8 1 2048 1024 2 49.152 128 6144 16 8 0 4 1536 108 Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 PCM5252 www.ti.com SLASE63 – NOVEMBER 2014 Table 122. Recommended Clock Divider Settings for PLL as Master Clock (VREF Mode) (continued) fS (kHz) RSCK SCK (MHz) PLL VCO (MHz) P PLL REF (MHz) K = J.D R PLL fS DSP fS NMAC DSP CLK (MHz) MOD fS MOD F (kHz) NDAC DOSR % ERROR NCP CP F (kHz) 48 1024 49.152 98.304 3 16.384 96 32 3.072 98.304 1 3.072 6 6 1 2048 1024 2 49.152 128 6144 16 8 0 4 1536 32 16 2 1024 512 2 49.152 64 6144 16 4 0 4 96 48 4.608 98.304 3 1.536 1536 64 32 2 1024 512 2 49.152 64 6144 16 4 0 4 96 64 6.144 98.304 1 1536 6.144 16 8 2 1024 512 2 49.152 64 6144 16 4 0 4 96 128 12.288 98.304 1536 2 6.144 16 16 1 1024 512 2 49.152 64 6144 16 4 0 4 96 192 18.432 1536 98.304 3 6.144 16 16 1 1024 512 2 49.152 64 6144 16 4 0 4 96 256 1536 24.576 98.304 4 6.144 16 16 1 1024 512 2 49.152 64 6144 16 4 0 4 96 1536 384 36.864 98.304 6 6.144 16 16 1 1024 512 2 49.152 64 6144 16 4 0 4 1536 96 512 49.152 98.304 8 6.144 16 16 1 1024 512 2 49.152 64 6144 16 4 0 4 1536 192 32 6.144 98.304 1 6.144 16 8 2 512 256 2 49.152 32 6144 16 2 0 4 1536 192 48 9.216 98.304 3 3.072 32 16 2 512 256 2 49.152 32 6144 16 2 0 4 1536 192 64 12.288 98.304 1 12.288 8 4 2 512 256 2 49.152 32 6144 16 2 0 4 1536 192 128 24.576 98.304 2 12.288 8 8 1 512 256 2 49.152 32 6144 16 2 0 4 1536 192 192 36.864 98.304 3 12.288 8 8 1 512 256 2 49.152 32 6144 16 2 0 4 1536 192 256 49.152 98.304 4 12.288 8 8 1 512 256 2 49.152 32 6144 16 2 0 4 1536 384 32 12.288 98.304 2 6.144 16 8 2 256 128 2 49.152 16 6144 16 1 0 4 1536 384 48 18.432 98.304 3 6.144 16 8 2 256 128 2 49.152 16 6144 16 1 0 4 1536 384 64 24.576 98.304 2 12.288 8 4 2 256 128 2 49.152 16 6144 16 1 0 4 1536 384 128 49.152 98.304 4 12.288 8 8 1 256 128 2 49.152 16 6144 16 1 0 4 1536 M = K*R Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 109 PCM5252 SLASE63 – NOVEMBER 2014 www.ti.com Table 123. Recommended Clock Divider Settings for PLL as Master Clock (VCOM Mode) fS (kHz) RSCK SCK (MHz) PLL VCO (MHz) P PLL REF (MHz) M = K*R K = J.D R PLL fS DSP fS NMAC DSP CLK (MHz) MOD fS MOD F (kHz) NDAC DOSR % ERROR NCP CP F (kHz) 8 128 1.024 73.728 1 1.024 72 36 2 9216 768 12 6.144 768 6144 12 48 0 4 1536 8 192 1.536 73.728 1 1.536 48 24 2 9216 768 12 6.144 768 6144 12 48 0 4 1536 8 256 2.048 73.728 1 2.048 36 36 1 9216 768 12 6.144 768 6144 12 48 0 4 1536 8 384 3.072 73.728 1 3.072 24 12 2 9216 768 12 6.144 768 6144 12 48 0 4 1536 8 512 4.096 73.728 2 2.048 36 36 1 9216 768 12 6.144 768 6144 12 48 0 4 1536 8 768 6.144 73.728 3 2.048 36 36 1 9216 768 12 6.144 768 6144 12 48 0 4 1536 8 1024 8.192 73.728 4 2.048 36 36 1 9216 768 12 6.144 768 6144 12 48 0 4 1536 8 1152 9.216 73.728 6 1.536 48 48 1 9216 768 12 6.144 768 6144 12 48 0 4 1536 8 1536 12.288 73.728 6 2.048 36 36 1 9216 768 12 6.144 768 6144 12 48 0 4 1536 8 2048 16.384 73.728 8 2.048 36 36 1 9216 768 12 6.144 768 6144 12 48 0 4 1536 8 3072 24.576 73.728 12 2.048 36 36 1 9216 768 12 6.144 768 6144 12 48 0 4 1536 11.025 128 1.4112 84.672 1 1.411 60 30 2 7680 960 8 10.584 512 5644.8 15 32 0 4 1411.2 11.025 192 2.1168 84.672 1 2.117 40 10 4 7680 960 8 10.584 512 5644.8 15 32 0 4 1411.2 11.025 256 2.8224 84.672 1 2.822 30 30 1 7680 960 8 10.584 512 5644.8 15 32 0 4 1411.2 11.025 384 4.2336 84.672 2 2.117 40 20 2 7680 960 8 10.584 512 5644.8 15 32 0 4 1411.2 11.025 512 5.6448 84.672 2 2.822 30 30 1 7680 960 8 10.584 512 5644.8 15 32 0 4 1411.2 11.025 768 8.4672 84.672 3 2.822 30 30 1 7680 960 8 10.584 512 5644.8 15 32 0 4 1411.2 11.025 1024 11.2896 84.672 4 2.822 30 30 1 7680 960 8 10.584 512 5644.8 15 32 0 4 1411.2 11.025 1152 12.7008 84.672 6 2.117 40 20 2 7680 960 8 10.584 512 5644.8 15 32 0 4 1411.2 11.025 1536 16.9344 84.672 8 2.117 40 40 1 7680 960 8 10.584 512 5644.8 15 32 0 4 1411.2 11.025 2048 22.5792 84.672 8 2.822 30 30 1 7680 960 8 10.584 512 5644.8 15 32 0 4 1411.2 11.025 3072 33.8688 84.672 8 4.234 20 20 1 7680 960 8 10.584 512 5644.8 15 32 0 4 1411.2 16 64 1.024 73.728 1 1.024 72 36 2 4608 768 6 12.288 384 6144 12 24 0 4 1536 16 128 2.048 73.728 1 2.048 36 36 1 4608 768 6 12.288 384 6144 12 24 0 4 1536 16 192 3.072 73.728 1 3.072 24 24 1 4608 768 6 12.288 384 6144 12 24 0 4 1536 16 256 4.096 73.728 2 2.048 36 36 1 4608 768 6 12.288 384 6144 12 24 0 4 1536 16 384 6.144 73.728 3 2.048 36 36 1 4608 768 6 12.288 384 6144 12 24 0 4 1536 16 512 8.192 73.728 4 2.048 36 36 1 4608 768 6 12.288 384 6144 12 24 0 4 1536 16 768 12.288 73.728 6 2.048 36 36 1 4608 768 6 12.288 384 6144 12 24 0 4 1536 16 1024 16.384 73.728 8 2.048 36 36 1 4608 768 6 12.288 384 6144 12 24 0 4 1536 16 1152 18.432 73.728 9 2.048 36 36 1 4608 768 6 12.288 384 6144 12 24 0 4 1536 16 1536 24.576 73.728 8 3.072 24 24 1 4608 768 6 12.288 384 6144 12 24 0 4 1536 16 2048 32.768 73.728 8 4.096 18 18 1 4608 768 6 12.288 384 6144 12 24 0 4 1536 16 3072 49.152 73.728 8 6.144 12 12 1 4608 768 6 12.288 384 6144 12 24 0 4 1536 22.05 64 1.4112 84.672 1 1.411 60 30 2 3840 960 4 21.168 256 5644.8 15 16 0 4 1411.2 22.05 128 2.8224 84.672 1 2.822 30 30 1 3840 960 4 21.168 256 5644.8 15 16 0 4 1411.2 22.05 192 4.2336 84.672 3 1.411 60 30 2 3840 960 4 21.168 256 5644.8 15 16 0 4 1411.2 22.05 256 5.6448 84.672 2 2.822 30 30 1 3840 960 4 21.168 256 5644.8 15 16 0 4 1411.2 110 Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 PCM5252 www.ti.com SLASE63 – NOVEMBER 2014 Table 123. Recommended Clock Divider Settings for PLL as Master Clock (VCOM Mode) (continued) SCK (MHz) PLL VCO (MHz) P PLL REF (MHz) M = K*R K = J.D R PLL fS DSP fS NMAC DSP CLK (MHz) MOD fS MOD F (kHz) NDAC DOSR % ERROR NCP CP F (kHz) fS (kHz) RSCK 22.05 384 8.4672 84.672 3 2.822 30 30 1 3840 960 4 21.168 256 5644.8 15 16 0 4 1411.2 22.05 512 11.2896 84.672 2 5.645 15 15 1 3840 960 4 21.168 256 5644.8 15 16 0 4 1411.2 22.05 768 16.9344 84.672 3 5.645 15 15 1 3840 960 4 21.168 256 5644.8 15 16 0 4 1411.2 22.05 1024 22.5792 84.672 4 5.645 15 15 1 3840 960 4 21.168 256 5644.8 15 16 0 4 1411.2 22.05 1152 25.4016 84.672 9 2.822 30 30 1 3840 960 4 21.168 256 5644.8 15 16 0 4 1411.2 22.05 1536 33.8688 84.672 8 4.234 20 20 1 3840 960 4 21.168 256 5644.8 15 16 0 4 1411.2 22.05 2048 45.1584 84.672 8 5.645 15 15 1 3840 960 4 21.168 256 5644.8 15 16 0 4 1411.2 32 32 1.024 73.728 1 1.024 72 36 2 2304 768 3 24.576 192 6144 12 12 0 4 1536 32 48 1.536 73.728 1 1.536 48 12 4 2304 768 3 24.576 192 6144 12 12 0 4 1536 32 64 2.048 73.728 1 2.048 36 18 2 2304 768 3 24.576 192 6144 12 12 0 4 1536 32 128 4.096 73.728 2 2.048 36 36 1 2304 768 3 24.576 192 6144 12 12 0 4 1536 32 192 6.144 73.728 3 2.048 36 36 1 2304 768 3 24.576 192 6144 12 12 0 4 1536 32 256 8.192 73.728 4 2.048 36 36 1 2304 768 3 24.576 192 6144 12 12 0 4 1536 32 384 12.288 73.728 6 2.048 36 36 1 2304 768 3 24.576 192 6144 12 12 0 4 1536 32 512 16.384 73.728 8 2.048 36 36 1 2304 768 3 24.576 192 6144 12 12 0 4 1536 32 768 24.576 73.728 6 4.096 18 18 1 2304 768 3 24.576 192 6144 12 12 0 4 1536 32 1024 32.768 73.728 8 4.096 18 18 1 2304 768 3 24.576 192 6144 12 12 0 4 1536 32 1152 36.864 73.728 9 4.096 18 18 1 2304 768 3 24.576 192 6144 12 12 0 4 1536 32 1536 49.152 73.728 12 4.096 18 18 1 2304 768 3 24.576 192 6144 12 12 0 4 1536 44.1 32 1.4112 84.672 1 1.411 60 30 2 1920 960 2 42.336 128 5644.8 15 8 0 4 1411.2 44.1 48 2.1168 84.672 1 2.117 40 10 4 1920 960 2 42.336 128 5644.8 15 8 0 4 1411.2 44.1 64 2.8224 84.672 1 2.822 30 15 2 1920 960 2 42.336 128 5644.8 15 8 0 4 1411.2 44.1 128 5.6448 84.672 1 5.645 15 15 1 1920 960 2 42.336 128 5644.8 15 8 0 4 1411.2 44.1 192 8.4672 84.672 2 4.234 20 20 1 1920 960 2 42.336 128 5644.8 15 8 0 4 1411.2 44.1 256 11.2896 84.672 2 5.645 15 15 1 1920 960 2 42.336 128 5644.8 15 8 0 4 1411.2 44.1 384 16.9344 84.672 3 5.645 15 15 1 1920 960 2 42.336 128 5644.8 15 8 0 4 1411.2 44.1 512 22.5792 84.672 4 5.645 15 15 1 1920 960 2 42.336 128 5644.8 15 8 0 4 1411.2 44.1 768 33.8688 84.672 6 5.645 15 15 1 1920 960 2 42.336 128 5644.8 15 8 0 4 1411.2 44.1 1024 45.1584 84.672 8 5.645 15 15 1 1920 960 2 42.336 128 5644.8 15 8 0 4 1411.2 48 32 1.536 73.728 1 1.536 48 24 2 1536 768 2 36.864 128 6144 12 8 0 4 1536 48 48 2.304 73.728 1 2.304 32 8 4 1536 768 2 36.864 128 6144 12 8 0 4 1536 48 64 3.072 73.728 1 3.072 24 12 2 1536 768 2 36.864 128 6144 12 8 0 4 1536 48 128 6.144 73.728 2 3.072 24 24 1 1536 768 2 36.864 128 6144 12 8 0 4 1536 48 192 9.216 73.728 3 3.072 24 24 1 1536 768 2 36.864 128 6144 12 8 0 4 1536 48 256 12.288 73.728 4 3.072 24 24 1 1536 768 2 36.864 128 6144 12 8 0 4 1536 48 384 18.432 73.728 6 3.072 24 24 1 1536 768 2 36.864 128 6144 12 8 0 4 1536 48 512 24.576 73.728 4 6.144 12 12 1 1536 768 2 36.864 128 6144 12 8 0 4 1536 48 768 36.864 73.728 6 6.144 12 12 1 1536 768 2 36.864 128 6144 12 8 0 4 1536 Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 111 PCM5252 SLASE63 – NOVEMBER 2014 www.ti.com Table 123. Recommended Clock Divider Settings for PLL as Master Clock (VCOM Mode) (continued) fS (kHz) RSCK SCK (MHz) 48 1024 49.152 73.728 8 6.144 12 12 1 1536 768 2 36.864 128 6144 12 8 0 4 1536 96 32 3.072 73.728 2 1.536 48 24 2 768 384 2 36.864 64 6144 12 4 0 4 1536 96 48 4.608 73.728 3 1.536 48 24 2 768 384 2 36.864 64 6144 12 4 0 4 1536 96 64 6.144 73.728 2 3.072 24 12 2 768 384 2 36.864 64 6144 12 4 0 4 1536 96 128 12.288 73.728 4 3.072 24 24 1 768 384 2 36.864 64 6144 12 4 0 4 1536 96 192 18.432 73.728 6 3.072 24 24 1 768 384 2 36.864 64 6144 12 4 0 4 1536 96 256 24.576 73.728 8 3.072 24 24 1 768 384 2 36.864 64 6144 12 4 0 4 1536 96 384 36.864 73.728 6 6.144 12 12 1 768 384 2 36.864 64 6144 12 4 0 4 1536 96 512 49.152 73.728 8 6.144 12 12 1 768 384 2 36.864 64 6144 12 4 0 4 1536 192 32 6.144 73.728 2 3.072 24 12 2 384 192 2 36.864 32 6144 12 2 0 4 1536 192 48 9.216 73.728 3 3.072 24 12 2 384 192 2 36.864 32 6144 12 2 0 4 1536 192 64 12.288 73.728 4 3.072 24 12 2 384 192 2 36.864 32 6144 12 2 0 4 1536 192 128 24.576 73.728 8 3.072 24 24 1 384 192 2 36.864 32 6144 12 2 0 4 1536 192 192 36.864 73.728 6 6.144 12 12 1 384 192 2 36.864 32 6144 12 2 0 4 1536 192 256 49.152 73.728 8 6.144 12 12 1 384 192 2 36.864 32 6144 12 2 0 4 1536 384 32 12.288 73.728 2 6.144 12 6 2 192 96 2 36.864 16 6144 12 1 0 4 1536 384 48 18.432 73.728 3 6.144 12 6 2 192 96 2 36.864 16 6144 12 1 0 4 1536 384 64 24.576 73.728 4 6.144 12 6 2 192 96 2 36.864 16 6144 12 1 0 4 1536 384 128 49.152 73.728 8 6.144 12 12 1 192 96 2 36.864 16 6144 12 1 0 4 1536 112 PLL VCO (MHz) P PLL REF (MHz) M = K*R K = J.D R PLL fS DSP fS NMAC DSP CLK (MHz) MOD fS MOD F (kHz) NDAC DOSR % ERROR NCP CP F (kHz) Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 PCM5252 www.ti.com SLASE63 – NOVEMBER 2014 Table 124. Recommended Clock Divider Settings for SCK as Master Clock fS (kHz) RSCK SCK (MHz) DSP fS NMAC DSP CLK (MHz) MOD fS MOD f (kHz) NDAC DOSR NCP CP f (kHz) 8 256 2.048 256 1 2.048 256 2048 1 16 2 1024 8 384 3.072 384 1 3.072 384 3072 1 24 2 1536 8 512 4.096 512 1 4.096 512 4096 1 32 2 2048 8 768 6.144 768 1 6.144 768 6144 1 48 4 1536 8 1024 8.192 1024 1 8.192 512 4096 2 32 2 2048 8 1152 9.216 1152 1 9.216 576 4608 2 36 4 1152 8 1536 12.288 1536 1 12.288 768 6144 2 48 4 1536 8 2048 16.384 2048 1 16.384 512 4096 4 32 2 2048 8 3072 24.576 3072 1 24.576 768 6144 4 48 4 1536 11.025 256 2.8224 256 1 2.822 256 2822.4 1 16 2 1411.2 11.025 384 4.2336 384 1 4.234 384 4233.6 1 24 4 1058.4 11.025 1152 12.7008 1152 1 12.701 384 4233.6 3 24 4 1058.4 11.025 1536 16.9344 1536 1 16.934 512 5644.8 3 32 4 1411.2 11.025 2048 22.5792 2048 1 22.579 512 5644.8 4 32 4 1411.2 11.025 3072 33.8688 3072 1 33.869 512 5644.8 6 32 4 1411.2 16 256 4.096 256 1 4.096 256 4096 1 16 2 2048 16 384 6.144 384 1 6.144 384 6144 1 24 4 1536 16 512 8.192 512 1 8.192 256 4096 2 16 2 2048 16 768 12.288 768 1 12.288 384 6144 2 24 4 1536 16 1152 18.432 1152 1 18.432 288 4608 4 18 4 1152 16 1536 24.576 1536 1 24.576 384 6144 4 24 4 1536 16 2048 32.768 2048 1 32.768 256 4096 8 16 2 2048 16 3072 49.152 3072 1 49.152 384 6144 8 24 4 1536 22.05 256 5.6448 256 1 5.645 256 5644.8 1 16 4 1411.2 22.05 384 8.4672 384 1 8.467 192 4233.6 2 12 4 1058.4 22.05 512 11.2896 512 1 11.29 256 5644.8 2 16 4 1411.2 22.05 768 16.9344 768 1 16.934 256 5644.8 3 16 4 1411.2 22.05 1024 22.5792 1024 1 22.579 256 5644.8 4 16 4 1411.2 22.05 1152 25.4016 1152 1 25.402 192 4233.6 6 12 4 1058.4 22.05 1536 33.8688 1536 1 33.869 256 5644.8 6 16 4 1411.2 22.05 2048 45.1584 2048 1 45.158 256 5644.8 8 16 4 1411.2 32 256 8.192 256 1 8.192 128 4096 2 8 2 2048 32 384 12.288 384 1 12.288 128 4096 3 8 2 2048 32 512 16.384 512 1 16.384 128 4096 4 8 2 2048 32 768 24.576 768 1 24.576 128 4096 6 8 2 2048 32 1024 32.768 1024 1 32.768 128 4096 8 8 2 2048 32 1152 36.864 1152 1 36.864 128 4096 9 8 4 1024 32 1536 49.152 1536 1 49.152 128 4096 12 8 4 1024 44.1 256 11.2896 256 1 11.29 128 5644.8 2 8 4 1411.2 44.1 384 16.9344 384 1 16.934 128 5644.8 3 8 4 1411.2 44.1 512 22.5792 512 1 22.579 128 5644.8 4 8 4 1411.2 44.1 768 33.8688 768 1 33.869 128 5644.8 6 8 4 1411.2 44.1 1024 45.1584 1024 1 45.158 128 5644.8 8 8 4 1411.2 48 256 12.288 256 1 12.288 128 6144 2 8 4 1536 48 384 18.432 384 1 18.432 128 6144 3 8 4 1536 48 512 24.576 512 1 24.576 128 6144 4 8 4 1536 48 768 36.864 768 1 36.864 128 6144 6 8 4 1536 48 1024 49.152 1024 1 49.152 128 6144 8 8 4 1536 96 192 18.432 192 1 18.432 48 4608 4 3 6 768 96 256 24.576 256 1 24.576 64 6144 4 4 4 1536 96 384 36.864 384 1 36.864 64 6144 6 4 4 1536 96 512 49.152 512 1 49.152 64 6144 8 4 4 1536 Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 113 PCM5252 SLASE63 – NOVEMBER 2014 www.ti.com Table 124. Recommended Clock Divider Settings for SCK as Master Clock (continued) fS (kHz) RSCK SCK (MHz) DSP fS NMAC DSP CLK (MHz) MOD fS MOD f (kHz) NDAC DOSR NCP CP f (kHz) 192 128 24.576 128 1 24.576 32 6144 4 2 4 1536 192 192 36.864 192 1 36.864 32 6144 6 2 4 1536 192 256 49.152 256 1 49.152 32 6144 8 2 4 1536 384 64 24.576 64 1 24.576 16 6144 4 1 4 1536 384 128 49.152 128 1 49.152 16 6144 8 1 4 1536 114 Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 PCM5252 www.ti.com SLASE63 – NOVEMBER 2014 14 Device and Documentation Support 14.1 Community Resources E2E™ Audio Converters Forum TI E2E Community 14.2 Trademarks PurePath is a trademark of Texas Instruments. System Two Cascade, Audio Precision are trademarks of Audio Precision. DirectPath is a trademark of Texas, Instruments, Inc.. All other trademarks are the property of their respective owners. 14.3 Electrostatic Discharge Caution This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. 15 Mechanical, Packaging, and Orderable Information The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, see the left-hand navigation. Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: PCM5252 115 PACKAGE OPTION ADDENDUM www.ti.com 10-Dec-2020 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) (6) PCM5252RHBR ACTIVE VQFN RHB 32 3000 RoHS & Green NIPDAU Level-3-260C-168 HR -25 to 85 PCM5252 PCM5252RHBT ACTIVE VQFN RHB 32 250 RoHS & Green NIPDAU Level-3-260C-168 HR -25 to 85 PCM5252 (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
PCM5252RHBT 价格&库存

很抱歉,暂时无法提供与“PCM5252RHBT”相匹配的价格&库存,您可以联系我们找货

免费人工找货