Product
Folder
Order
Now
Support &
Community
Tools &
Software
Technical
Documents
TLV757P
ZHCSH76A – OCTOBER 2017 – REVISED DECEMBER 2017
TLV757P 1-A、
、低 IQ、小尺寸、低压降稳压器
1 特性
•
•
•
•
•
•
•
•
•
输入电压范围:1.45V 至 5.5V
可用固定输出电压范围:
– 0.6V 至 5V(阶跃为 50mV)
低 IQ:25µA(典型值)
低压降:
– 1A 电流时为 425mV(最大值)(3.3VOUT)
输出精度:1%(最大值)
内置软启动功能,具有单调 VOUT上升
折返电流限制
有源输出放电
高 PSRR:100kHz 时为 45dB
与 1µF 陶瓷输出电容器搭配使用时可保持稳定
封装:
– SOT-23-5(预览)
– 2mm × 2mm (WSON-6)
2 应用
•
•
•
•
•
•
•
机顶盒、电视和游戏机
便携式和电池供电类设备
台式机、笔记本和超级本
平板电脑和遥控器
白色家电和电器
电网基础设施和保护继电器
摄像头模块和图像传感器
TLV757P 低压降稳压器 (LDO) 是一款超小型低静态电
流 LDO,可提供 1A 拉电流,具有良好的线路和负载
瞬态性能。经优化的 TLV757P 可支持 1.45V 至 5.5V
的 输入电压范围 从而适用于各种应用。为最大程度地
降低成本和解决方案尺寸,该器件在 0.6V 至 5V 范围
内以固定输出电压的形式提供,以支持现代 MCU 更低
的内核电压。此外,TLV757P 具备带有使能功能的低
IQ,从而可将待机功耗降至最低。该器件 具有 内部软
启动功能,旨在降低浪涌电流,该电流将为负载提供受
控电压并在启动过程中最大程度地降低输入电压压降。
关断时,该器件可主动下拉输出以快速释放输出并确保
已知的启动状态。
TLV757P 在与支持小尺寸总体解决方案的小型陶瓷输
出电容器搭配使用时,可保持稳定。高精度带隙与误差
放大器支持 1% 的典型精度。所有器件版本均具有集
成的热关断保护、电流限制和低压锁定 (UVLO) 功能。
TLV757P 包含一个内部过流保护限制,有助于在短路
事件中减少热耗散。
器件信息(1)
器件型号
封装
封装尺寸(标称值)
SON (6)
TLV757P
2.00mm × 2.00mm
SOT-23 (5)(预览) 2.90mm x 1.60mm
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附
录。
典型应用
启动波形
7
TLV757P
CIN
EN
175
VOUT
OUT
VIN
VEN
IOUT
6
150
5
125
4
100
3
75
2
50
1
25
COUT
GND
ON
OFF
Voltage (V)
IN
Copyright © 2017, Texas Instruments Incorporated
0
Output Current (mA)
•
•
1
3 说明
0
0
0.2
0.4
0.6
0.8
1
1.2
Time (ms)
1.4
1.6
1.8
2
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,
intellectual property matters and other important disclaimers. UNLESS OTHERWISE NOTED, this document contains PRODUCTION
DATA.
English Data Sheet: SBVS322
TLV757P
ZHCSH76A – OCTOBER 2017 – REVISED DECEMBER 2017
www.ti.com.cn
目录
1
2
3
4
5
6
7
特性 ..........................................................................
应用 ..........................................................................
说明 ..........................................................................
修订历史记录 ...........................................................
Pin Configuration and Functions .........................
Specifications.........................................................
1
1
1
2
3
4
6.1
6.2
6.3
6.4
6.5
6.6
4
4
4
4
5
7
Absolute Maximum Ratings ......................................
ESD Ratings ............................................................
Recommended Operating Conditions.......................
Thermal Information ..................................................
Electrical Characteristics...........................................
Typical Characteristics ..............................................
Detailed Description ............................................ 12
7.1 Overview ................................................................. 12
7.2 Functional Block Diagram ....................................... 12
7.3 Feature Description................................................. 12
7.4 Device Functional Modes........................................ 14
8
Application and Implementation ........................ 15
8.1 Application Information............................................ 15
8.2 Typical Application ................................................. 19
9 Power Supply Recommendations...................... 20
10 Layout................................................................... 21
10.1 Layout Guidelines ................................................. 21
10.2 Layout Examples................................................... 21
11 器件和文档支持 ..................................................... 22
11.1
11.2
11.3
11.4
11.5
11.6
器件支持................................................................
接收文档更新通知 .................................................
社区资源................................................................
商标 .......................................................................
静电放电警告.........................................................
Glossary ................................................................
22
22
22
22
22
22
12 机械、封装和可订购信息 ....................................... 22
4 修订历史记录
注:之前版本的页码可能与当前版本有所不同。
Changes from Original (October 2017) to Revision A
Page
•
将 DRV 封装状态发布为生产 .................................................................................................................................................. 1
2
Copyright © 2017, Texas Instruments Incorporated
TLV757P
www.ti.com.cn
ZHCSH76A – OCTOBER 2017 – REVISED DECEMBER 2017
5 Pin Configuration and Functions
DBV Package (Preview)
5-Pin SOT-23
Top View
IN
1
GND
2
EN
3
5
DRV Package
6-Pin SON With Exposed Thermal Pad
Top View
OUT
OUT
NC
GND
4
1
6
IN
2 Thermal 5
Pad
NC
3
EN
4
NC
Not to scale
Not to scale
NC- no internal connection
Pin Functions
PIN
NAME
I/O
DESCRIPTION
DBV
DRV
EN
3
4
I
GND
2
3
—
IN
1
6
I
NC
4
2, 5
—
No internal connection
OUT
5
1
O
Regulated output voltage pin. A capacitor with a value of 1 µF or larger is
required from this pin to ground (1). See the Input and Output Capacitor Selection
section for more information.
Thermal pad
—
Pad
—
Connect the thermal pad to a large-area ground plane. The thermal pad is
internally connected to GND.
(1)
Enable pin. Drive EN greater than VHI to turn on the regulator. Drive EN less
than VLO to place the LDO into shutdown mode.
Ground pin
Input pin. A capacitor with a value of 1 µF or larger is required from this pin to
ground (1). See the Input and Output Capacitor Selection section for more
information.
The nominal input and output capacitance must be greater than 0.47 µF; throughout this document the nominal derating on these
capacitors is 50%. Take care to ensure that the effective capacitance at the pin is greater than 0.47 µF.
Copyright © 2017, Texas Instruments Incorporated
3
TLV757P
ZHCSH76A – OCTOBER 2017 – REVISED DECEMBER 2017
www.ti.com.cn
6 Specifications
6.1 Absolute Maximum Ratings
over operating free-air temperature range (unless otherwise noted) (1)
MIN
MAX
UNIT
Supply voltage, VIN
–0.3
6
V
Enable voltage, VEN
–0.3
Output voltage, VOUT
–0.3
Operating junction temperature range, TJ
–40
150
°C
Storage temperature, Tstg
–65
150
°C
(1)
(2)
6
V
VIN + 0.3
(2)
V
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
The absolute maximum rating is VIN + 0.3 V or 6 V, whichever is smaller
6.2 ESD Ratings
VALUE
V(ESD)
(1)
(2)
Electrostatic discharge
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)
±1000
Charged-device model (CDM), per JEDEC specification JESD22C101 (2)
±500
UNIT
V
JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with
less than 500-V HBM is possible with the necessary precautions.
JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with
less than 250-V CDM is possible with the necessary precautions.
6.3 Recommended Operating Conditions
over operating free-air temperature range (unless otherwise noted)
MIN
VIN
Input voltage
VOUT
Output voltage
VEN
Enable voltage
IOUT
NOM
MAX
1.45
UNIT
5.5
V
0.6
5
V
0
5.5
V
Output current
0
1
A
CIN
Input capacitor
1
COUT
Output capacitor
1
fEN
Enable toggle frequency
TJ
Junction temperature
µF
–40
200
µF
10
kHz
125
°C
6.4 Thermal Information
TLV757
THERMAL METRIC
(1)
DBV (SOT-23)
DRV (SON)
5 PINS
6 PINS
UNIT
RθJA
Junction-to-ambient thermal resistance
231.1
100.2
°C/W
RθJC(top)
Junction-to-case (top) thermal resistance
118.4
108.5
°C/W
RθJB
Junction-to-board thermal resistance
64.4
64.3
°C/W
ψJT
Junction-to-top characterization parameter
28.4
10.4
°C/W
ψJB
Junction-to-board characterization parameter
63.8
64.8
°C/W
RθJC(bot)
Junction-to-case (bottom) thermal resistance
N/A
34.7
°C/W
(1)
4
For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application
report.
Copyright © 2017, Texas Instruments Incorporated
TLV757P
www.ti.com.cn
ZHCSH76A – OCTOBER 2017 – REVISED DECEMBER 2017
6.5 Electrical Characteristics
over operating free-air temperature range (TJ = –40°C to +125°C), VIN = VOUT + 0.5 V or 1.45 V (whichever is greater), IOUT =
1 mA, VEN = VIN, and CIN = COUT = 1 µF (unless otherwise noted); all typical values are at TJ = 25°C.
PARAMETER
VIN
Input voltage
VOUT
Output voltage
TEST CONDITIONS
–40°C ≤ TJ ≤ 85°C, VOUT ≥ 1 V
Output accuracy
–40°C ≤ TJ ≤ 85°C, 0.6 V ≤ VOUT < 1 V
VOUT ≥ 1 V
0.6 V ≤ VOUT < 1 V
(ΔVOUT)ΔVIN
ΔVOUT/ΔIOU
Line regulation
Load regulation
T
MIN
Ground current
ISHDN
Shutdown current
0.6
5
V
–1%
1%
–10
10
–1.5%
1.5%
–15
DRV package
0.044
DBV package
0.060
25
40
VIN = VOUT + VDO(MAX) + 0.25 V
ISC
Short circuit current
limit
VOUT = 0 V, VIN = VOUT + VDO(MAX) + 0.25 V
IOUT = 1 A,
–40°C ≤ TJ ≤ +85°C
Dropout voltage
IOUT = 1 A,
–40°C ≤ TJ ≤ +125°C
VOUT = 0.9 x VOUT, 1.5
V < VOUT ≤ 4.5 V
1.2
A
mA
1200
1300
mV
1 V ≤ VOUT < 1.2 V
1100
1150
mV
1.2 V ≤ VOUT < 1.5 V
1000
1050
mV
1.5 V ≤ VOUT < 1.8 V
700
800
mV
1.8 V ≤ VOUT < 2.5 V
650
750
mV
2.5 V ≤ VOUT < 3.3 V
500
600
mV
3.3 V ≤ VOUT < 5.0 V
300
425
mV
0.6 V ≤ VOUT < 0.8 V
1450
mV
0.8 V ≤ VOUT < 1 V
1350
mV
1 V ≤ VOUT < 1.2 V
1200
mV
1.2 V ≤ VOUT < 1.5 V
1100
mV
1.5 V ≤ VOUT < 1.8 V
850
mV
1.8 V ≤ VOUT < 2.5 V
800
mV
2.5 V ≤ VOUT < 3.3 V
650
mV
3.3 V ≤ VOUT < 5.0 V
475
mV
f = 1 kHz, VIN = VOUT + 1 V, IOUT = 50 mA
52
f = 100 kHz, , VIN = VOUT + 1 V, IOUT = 50 mA
46
VUVLO
Undervoltage lockout
VIN rising
Undervoltage lockout
hysteresis
VIN falling
(1)
1.78
0.8 V ≤ VOUT < 1 V
BW = 10 Hz to 100 kHz, VOUT = 1.2 V, IOUT = 1 A
VHI
1.55
755
f = 1 MHz, , VIN = VOUT + 1 V, IOUT = 50 mA
EN pin high voltage
(enabled)
µA
mV
Output noise voltage
Startup time
1
1400
Vn
tSTR
0.1
1350
Power supply rejection
ratio
HYST
µA
0.6 V ≤ VOUT < 0.8 V
PSRR
VUVLO,
31
–40°C ≤ TJ ≤ +125°C
Output current limit
mV
V/A
33
VEN ≤ 0.4 V, 1.45 V ≤ VIN ≤ 5.5 V,
–40°C ≤ TJ ≤ +125°C
mV
mV
–40°C ≤ TJ ≤ +85°C
ICL
VDO
15
2
VOUT = VOUT - 0.2 V,
VOUT ≤ 1.5 V
UNIT
V
VOUT + 0.5 V (1) ≤ VIN ≤ 5.5 V
0.1 mA ≤ IOUT ≤ 1 A, VIN ≥ 2.4
V
MAX
5.5
TJ = 25°C
IGND
TYP
1.45
dB
52
71.5
1.21
1
1.3
µVRMS
1.44
V
40
mV
550
µs
V
VIN = 1.45V for VOUT < 0.9 V
Copyright © 2017, Texas Instruments Incorporated
5
TLV757P
ZHCSH76A – OCTOBER 2017 – REVISED DECEMBER 2017
www.ti.com.cn
Electrical Characteristics (continued)
over operating free-air temperature range (TJ = –40°C to +125°C), VIN = VOUT + 0.5 V or 1.45 V (whichever is greater), IOUT =
1 mA, VEN = VIN, and CIN = COUT = 1 µF (unless otherwise noted); all typical values are at TJ = 25°C.
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNIT
VLO
EN pin low voltage
(enabled)
IEN
Enable pin current
VIN = 5.5 V, EN = 5.5 V
10
nA
RPULLDOWN
Pulldown resistance
VIN = 3.3 V (P version only)
95
Ω
TSD
Thermal shutdown
Shutdown, temperature increasing
165
°C
Reset, temperature decreasing
155
°C
6
0.3
V
版权 © 2017, Texas Instruments Incorporated
TLV757P
www.ti.com.cn
ZHCSH76A – OCTOBER 2017 – REVISED DECEMBER 2017
6.6 Typical Characteristics
at operating temperature TJ = 25°C, VIN = VOUT(NOM) + 0.5 V or 1.45 V (whichever is greater), IOUT = 1 mA, VEN = VIN, and CIN
= COUT = 1 µF (unless otherwise noted)
80
Power Supply Rejection Ratio (dB)
Power Supply Rejection Ratio (dB)
80
70
60
50
40
30
20
10
10 mA
50 mA
0
10
100
IOUT
100 mA
500 mA
1k
1A
10k
100k
Frequency (Hz)
1M
70
60
50
40
30
20
VIN = 3.8 V
VIN = 4 V
VIN = 4.3 V
VIN = 5 V
10
0
10
10M
VIN = 4.3 V, VOUT = 3.3 V, COUT = 1 µF
100
图 1. PSRR vs IOUT
1M
10M
图 2. PSRR Vs VIN
10
5
70
2
60
Noise (PV/—Hz)
Power Supply Rejection Ratio (dB)
10k
100k
Frequency (Hz)
VOUT = 3.3 V, COUT = 1 µF, IOUT = 1 A
80
50
40
30
10
100
1
0.5
0.2
0.1
0.05
COUT
1 PF
10 PF
22 PF
100 PF
20
0
10
0.02
0.01
1k
10k
100k
Frequency (Hz)
1M
0.005
10
10M
VIN = 4.3 V, VOUT = 3.3 V, COUT = 1 µF
图 3. PSRR Vs COUT
Noise (PV/—Hz)
1
0.5
0.2
0.02
0.01
0.005
10
1k
10k
100k
Frequency (Hz)
1M
10M
图 4. Output Spectral Noise Density
2
0.1
100
10
5
5
0.05
COUT
4.7 PF, 151 PVRMS
10 PF, 150 PVRMS
22 PF, 151 PVRMS
47 PF, 150 PVRMS
100 PF, 148 PVRMS
VOUT = 3.3 V, IOUT = 1 A, VRMS BW = 10 Hz to 100 kHz
10
Noise (PV/—Hz)
1k
IOUT
10 mA, 158 PVRMS
50 mA, 159 PVRMS
100 mA, 159 PVRMS
500 mA, 153 PVRMS
1 A, 151 PVRMS
100
1k
10k
100k
Frequency (Hz)
1M
10M
VOUT = 3.3 V, COUT = 1 µF, VRMS BW = 10 Hz to 100 kHz
图 5. Output Spectral Noise Density
版权 © 2017, Texas Instruments Incorporated
2
1
0.5
0.2
0.1
0.05
0.02
0.01
0.005
0.002
0.001
10
VOUT
0.9 V, 53.8 PVRMS
1.2 V, 71.47 PVRMS
3.3 V, 151 PVRMS
5 V, 217 PVRMS
100
1k
10k
100k
Frequency (Hz)
1M
10M
IOUT = 1 A, COUT = 1 µF, VRMS BW = 10 Hz to 100 kHz
图 6. Output Noise vs Frequency and VOUT
7
TLV757P
ZHCSH76A – OCTOBER 2017 – REVISED DECEMBER 2017
www.ti.com.cn
Typical Characteristics (接
接下页)
at operating temperature TJ = 25°C, VIN = VOUT(NOM) + 0.5 V or 1.45 V (whichever is greater), IOUT = 1 mA, VEN = VIN, and CIN
= COUT = 1 µF (unless otherwise noted)
6
220
3.328
VIN
VOUT
200
Output Noise Voltage (PVRMS)
5
3.32
160
140
120
100
4
3.312
3
3.304
2
3.296
1
3.288
Output Voltage (V)
Input Voltage (V)
180
80
60
0
40
0.5
1
1.5
2
2.5
3
3.5
Output Voltage (V)
4
4.5
0
5
20
Time (ms)
IOUT = 1 A, COUT = 1 µF, VRMS BW = 10 Hz to 100 kHz
VOUT = 3.3 V, COUT = 1 µF, VIN slew rate = 1 V/µs
图 7. Output Noise Voltage vs VOUT
图 8. Line Transient
2.2
50
1.6
0
1.4
-50
1.2
-100
1
-150
0.8
-200
0.6
-250
0.4
-300
0.2
-350
0
20
40
60
80
100 120
Time (Ps)
140
160
4
3
2
1
0
200
180
VIN
VOUT
5
Voltage (V)
100
VOUT
2
IOUT
1.8
6
Output Current (A)
AC Coupled Output Voltage (mV)
200
150
3.28
50
40
0
0
0.5
1
1.5
2
2.5
3
Time (ms)
3.5
4
4.5
5
VIN = 5 V, VOUT = 3.3 V, COUT = 1 µF, IOUT slew rate = 1 A/µs
图 9. 3.3-V, 1-mA to 1-A Load Transient
图 10. VIN = VEN Power-Up
7
5
175
VOUT
VIN
VOUT
VIN
VEN
IOUT
6
150
5
125
4
100
3
75
2
50
1
25
Voltage (V)
Voltage (V)
4
3
2
1
0
0
0
1
2
3
4
5
6
Time (ms)
7
8
9
10
Output Current (mA)
6
0
0
0.2
0.4
0.6
0.8
1
1.2
Time (ms)
1.4
1.6
1.8
2
VIN = 5 V, IOUT = 100 mA, VEN slew rate = 1 V/µs, VOUT = 3.3 V
图 11. VIN = VEN Shutdown
8
图 12. EN Startup
版权 © 2017, Texas Instruments Incorporated
TLV757P
www.ti.com.cn
ZHCSH76A – OCTOBER 2017 – REVISED DECEMBER 2017
Typical Characteristics (接
接下页)
at operating temperature TJ = 25°C, VIN = VOUT(NOM) + 0.5 V or 1.45 V (whichever is greater), IOUT = 1 mA, VEN = VIN, and CIN
= COUT = 1 µF (unless otherwise noted)
400
-40qC
0qC
25qC
85qC
125qC
0
-40qC
0qC
25qC
350
Dropout Voltage (mV)
Change in Output Voltage (mV)
15
-15
-30
300
250
200
150
100
-45
50
0
-60
0
100
200
300
400 500 600 700
Output Current (mA)
800
0
900 1000
100
图 13. Load Regulation vs IOUT
200
300
400 500 600 700
Output Current (mA)
800
900 1000
图 14. 3.3-V Dropout Voltage vs IOUT
1
400
-40qC
0qC
25qC
85qC
125qC
350
300
200
150
125qC
0.25
0
-0.25
100
-0.5
50
-0.75
-1
3.5
0
100
25qC
85qC
0.5
250
0
-40qC
0qC
0.75
Accuracy (%)
Dropout Voltage (mV)
85qC
125qC
200
300
400 500 600 700
Output Current (mA)
800
900 1000
3.75
4
4.25
4.5
4.75
Input Voltage (V)
5
5.25
5.5
VOUT = 3.3 V, IOUT = 1 mA
图 15. 5.0-V Dropout Voltage vs IOUT
图 16. 3.3 V Regulation vs VIN (Line Regulation)
1
-40qC
0qC
0.75
25qC
85qC
125qC
GND Pin Current (PA)
Accuracy (%)
0.5
0.25
0
-0.25
-0.5
-0.75
-1
5
5.1
5.2
5.3
Input Voltage (V)
5.4
5.5
1400
1300
1200
1100
1000
900
800
700
600
500
400
300
200
100
0
-40qC
0qC
25qC
85qC
125qC
0
100
200
300
400 500 600 700
Output Current (mA)
800
900 1000
IOUT = 1 mA, VOUT = 5 V
图 17. 5.0-V Accuracy vs VIN (Line Regulation)
版权 © 2017, Texas Instruments Incorporated
图 18. IGND vs IOUT
9
TLV757P
ZHCSH76A – OCTOBER 2017 – REVISED DECEMBER 2017
www.ti.com.cn
Typical Characteristics (接
接下页)
300
650
600
550
500
450
400
350
300
250
200
150
100
50
0
-40qC
0qC
25qC
85qC
125qC
-40qC
0qC
25qC
85qC
125qC
250
Quiescent Current (PA)
GND Pin Current (PA)
at operating temperature TJ = 25°C, VIN = VOUT(NOM) + 0.5 V or 1.45 V (whichever is greater), IOUT = 1 mA, VEN = VIN, and CIN
= COUT = 1 µF (unless otherwise noted)
200
150
100
50
0
0
1
2
3
4
Input Voltage (V)
5
6
0
1
VOUT = 3.3 V, IOUT = 1 mA
2
图 19. IGND vs VIN
6
图 20. IGND vs VIN
180
-40qC
0qC
25qC
85qC
125qC
250
160
Shutdown Current (nA)
300
Shutdown Current (nA)
5
VOUT = 3.3 V, IOUT = 0 mA
350
200
150
100
50
140
120
100
80
60
40
20
0
-40
0
0
1
2
3
4
Input Voltage (V)
5
6
-20
0
40
60
80
Temperature (qC)
100
120
140
250
800
750
-40qC
0qC
25qC
85qC
125qC
Enable Current (PA)
200
700
650
600
150
100
50
550
EN Negative
500
-50
20
图 22. ISHDN vs Temperature
图 21. ISHDN vs VIN
Enable Threshold (mV)
3
4
Input Voltage (V)
EN Positive
0
-25
0
25
50
Temperature (qC)
75
100
125
0
1
2
3
4
Input Voltage (V)
5
6
VEN = 5.5 V
图 23. Enable Threshold vs Temperature
10
图 24. IEN vs VIN
版权 © 2017, Texas Instruments Incorporated
TLV757P
www.ti.com.cn
ZHCSH76A – OCTOBER 2017 – REVISED DECEMBER 2017
Typical Characteristics (接
接下页)
at operating temperature TJ = 25°C, VIN = VOUT(NOM) + 0.5 V or 1.45 V (whichever is greater), IOUT = 1 mA, VEN = VIN, and CIN
= COUT = 1 µF (unless otherwise noted)
600
1.4
-40qC
0qC
25qC
550
500
Output Voltage (mV)
UVLO Threshold (V)
1.36
1.32
1.28
1.24
450
400
350
300
250
200
150
100
UVLO Negative
1.2
-50
85qC
125qC
50
UVLO Positive
0
-25
0
25
50
Temperature (qC)
75
100
125
图 25. UVLO Threshold vs Temperature
0
1
2
3
Output Current (mA)
4
5
图 26. IOUT vs VOUT Pulldown Resistor
4
Output Voltage (V)
3.2
2.4
1.6
-40qC
0qC
25qC
85qC
125qC
0.8
0
0
200
400
600
800 1000 1200 1400 1600 1800 2000
Output Current (mA)
图 27. 3.3-V Foldback Current Limit vs IOUT
版权 © 2017, Texas Instruments Incorporated
11
TLV757P
ZHCSH76A – OCTOBER 2017 – REVISED DECEMBER 2017
www.ti.com.cn
7 Detailed Description
7.1 Overview
The TLV757P belongs to a family of next-generation, low-dropout regulators (LDOs). This device consumes low
quiescent current and delivers excellent line and load transient performance. The TLV757P is optimized for wide
variety of applications by supporting an input voltage range from 1.4 V to 5.5 V. To minimize cost and solution
size, the device is offered in fixed output voltages ranging from 0.6 V to 5 V to support the lower core voltages of
modern microcontrollers (MCUs).
This regulator offers foldback current limit, shutdown, and thermal protection. The operating junction temperature
is –40°C to +125°C.
7.2 Functional Block Diagram
OUT
IN
Current
Limit
R1
±
+
Thermal
Shutdown
UVLO
120 Ÿ
R2
EN
Bandgap
GND
Logic
(1)
R2 = 550 kΩ, R1 = adjustable.
7.3 Feature Description
7.3.1 Undervoltage Lockout (UVLO)
An undervoltage lockout (UVLO) circuit disables the output until the input voltage is greater than the rising UVLO
voltage (VUVLO). This circuit ensures that the device does not exhibit any unpredictable behavior when the supply
voltage is lower than the operational range of the internal circuitry. When VIN is less than VUVLO, the output is
connected to ground with a 120-Ω pulldown resistor.
7.3.2 Enable (EN)
The enable pin (EN) is active high. Enable the device by forcing the EN pin to exceed VHI. Turn off the device by
forcing the EN pin below VLO. If shutdown capability is not required, connect EN to IN.
The device has an internal pull-down that connects a 120-Ω resistor to ground when the device is disabled. The
discharge time after disabling depends on the output capacitance (COUT) and the load resistance (RL) in parallel
with the 120-Ω pulldown resistor. 公式 1 calculates the time constant τ:
120 · RL
t=
· COUT
120 + RL
(1)
12
版权 © 2017, Texas Instruments Incorporated
TLV757P
www.ti.com.cn
ZHCSH76A – OCTOBER 2017 – REVISED DECEMBER 2017
Feature Description (接
接下页)
The EN pin is independent of the input pin, but if the EN pin is driven to a higher voltage than VIN, the current
into the EN pin increases. This effect is illustrated in 图 24. When the EN voltage is higher than the input voltage
there is an increased current flow into the EN pin. If this increased flow causes problems in the application,
sequence the EN pin after VIN is high, or to tie EN to VIN to prevent this flow increase from happening. If EN is
driven to a higher voltage than VIN, limit the frequency on EN to below 10 kHz.
7.3.3 Internal Foldback Current Limit
The TLV757P has an internal current limit that protects the regulator during fault conditions. The current limit is a
hybrid scheme with brick wall until the output voltage is less than 0.4 × VOUT(NOM). When the voltage drops below
0.4 × VOUT(NOM), a foldback current limit is implemented which scales back the current as the output voltage
approaches GND. When the output shorts, the LDO supplies a typical current of ISC. The output voltage is not
regulated when the device is in current limit. In this condition, the output voltage is the product of the regulated
current and the load resistance. When the device output is shorts, the PMOS pass transistor dissipates power
[(VIN – VOUT) × ISC] until thermal shutdown is triggered and the device turns off. After the device cools down, the
internal thermal shutdown circuit turns the device back on. If the fault condition continues, the device cycles
between current limit and thermal shutdown.
The foldback current-limit circuit limits the current that is allowed through the device to current levels lower than
the minimum current limit at nominal VOUT current limit (ICL) during start up. See 图 27 for typical current limit
values. If the output is loaded by a constant-current load during start up, or if the output voltage is negative when
the device is enabled, then the load current demanded by the load may exceed the foldback current limit and the
device may not rise to the full output voltage. For constant-current loads, disable the output load until the output
has risen to the nominal voltage.
Excess inductance can cause the current limit to oscillate. Minimize the inductance to keep the current limit from
oscillating during a fault condition.
7.3.4 Thermal Shutdown
Thermal shutdown protection disables the output when the junction temperature rises to approximately 165°C.
Disabling the device eliminates the power dissipated by the device, allowing the device to cool. When the
junction temperature cools to approximately 155°C, the output circuitry is enabled again. Depending on power
dissipation, thermal resistance, and ambient temperature, the thermal protection circuit may cycle on and off.
This cycling limits regulator dissipation which protects the circuit from damage as a result of overheating.
Activating the thermal shutdown feature usually indicates excessive power dissipation as a result of the product
of the (VIN – VOUT) voltage and the load current. For reliable operation, limit junction temperature to a maximum
of 125°C. To estimate the margin of safety in a complete design, increase the ambient temperature until the
thermal protection is triggered; use worst-case loads and signal conditions.
The internal protection circuitry protects against overload conditions but is not intended to be activated in normal
operation. Continuously running the device into thermal shutdown degrades device reliability.
版权 © 2017, Texas Instruments Incorporated
13
TLV757P
ZHCSH76A – OCTOBER 2017 – REVISED DECEMBER 2017
www.ti.com.cn
7.4 Device Functional Modes
表 1 lists a comparison between the normal, dropout, and disabled modes of operation.
表 1. Device Functional Modes Comparison
PARAMETER
OPERATING MODE
(1)
(2)
VIN
EN
IOUT
TJ
Normal (1)
VIN > VOUT(NOM) + VDO
VEN > VHI
IOUT < ICL
TJ < TSD
Dropout (1)
VIN < VOUT(NOM) + VDO
VEN > VHI
—
TJ < TSD
Disabled (2)
VIN < VUVLO
VEN < VLO
—
TJ > TSD
All table conditions must be met.
The device is disabled when any condition is met.
7.4.1 Normal Operation
The device regulates to the nominal output voltage when all of the following conditions are met.
• The input voltage is greater than the nominal output voltage plus the dropout voltage (VOUT(NOM) + VDO)
• The enable voltage has previously exceeded the enable rising threshold voltage and has not decreased
below the enable falling threshold
• The output current is less than the current limit (IOUT < ICL)
• The device junction temperature is less than the thermal shutdown temperature (TJ < TSD)
7.4.2 Dropout Operation
If the input voltage is lower than the nominal output voltage plus the specified dropout voltage, but all other
conditions are met for normal operation, the device operates in dropout. In this mode, the output voltage tracks
the input voltage. During this mode, the transient performance of the device degrades because the pass device
is in a triode state and no longer controls the output voltage of the LDO. Line or load transients in dropout can
result in large output-voltage deviations.
When the device is in a steady dropout state (defined as when the device is in dropout, VIN < VOUT(NOM) + VDO,
right after being in a normal regulation state, but not during startup), the pass-FET is driven as hard as possible
when the control loop is out of balance. During the normal time required for the device to regain regulation, VIN ≥
VOUT(NOM) + VDO, VOUT can overshoot VOUT(NOM) during fast transients.
7.4.3 Disabled
The output is shut down by forcing the enable pin below VLO. When disabled, the pass device is turned off,
internal circuits are shut down, and the output voltage is actively discharged to ground by an internal switch from
the output to ground. The active pulldown is on when sufficient input voltage is provided.
14
版权 © 2017, Texas Instruments Incorporated
TLV757P
www.ti.com.cn
ZHCSH76A – OCTOBER 2017 – REVISED DECEMBER 2017
8 Application and Implementation
注
Information in the following applications sections is not part of the TI component
specification, and TI does not warrant its accuracy or completeness. TI’s customers are
responsible for determining suitability of components for their purposes. Customers should
validate and test their design implementation to confirm system functionality.
8.1 Application Information
8.1.1 Input and Output Capacitor Selection
The TLV757P requires an output capacitance of 0.47 μF or larger for stability. Use X5R- and X7R-type ceramic
capacitors because these capacitors have minimal variation in capacitance value and equivalent series
resistance (ESR) over temperature. When selecting a capacitor for a specific application, consider the DC bias
characteristics for the capacitor. Higher output voltages cause a significant derating of the capacitor. As a
general rule, ceramic capacitors must be derated by 50%. For best performance, TI recommends a maximum
output capacitance value of 200 µF.
Place a 1 µF or greater capacitor on the input pin of the LDO. Some input supplies have a high impedance.
Placing a capacitor on the input supply reduces the input impedance. The input capacitor counteracts reactive
input sources and improves transient response and PSRR. If the input supply has a high impedance over a large
range of frequencies, several input capacitors are used in parallel to lower the impedance over frequency. Use a
higher-value capacitor if large, fast, rise-time load transients are expected, or if the device is located several
inches from the input power source.
8.1.2 Dropout Voltage
The TLV757P uses a PMOS pass transistor to achieve low dropout. When (VIN – VOUT) is less than the dropout
voltage (VDO), the PMOS pass device is in the linear region of operation and the input-to-output resistance is the
RDS(ON) of the PMOS pass element. VDO scales linearly with the output current because the PMOS device
functions like a resistor in dropout mode. As with any linear regulator, PSRR and transient response degrade as
(VIN – VOUT) approaches dropout operation. See 图 14 and 图 15 for typical dropout values.
8.1.3 Exiting Dropout
Some applications have transients that place the LDO into dropout, such as slower ramps on VIN during start-up.
As with other LDOs, the output may overshoot on recovery from these conditions. A ramping input supply causes
an LDO to overshoot on start-up when the slew rate and voltage levels are in the correct range; see 图 28. Use
an enable signal to avoid this condition.
版权 © 2017, Texas Instruments Incorporated
15
TLV757P
ZHCSH76A – OCTOBER 2017 – REVISED DECEMBER 2017
www.ti.com.cn
Application Information (接
接下页)
Input Voltage
Response time for
LDO to get back into
regulation.
Load current discharges
output voltage.
VIN = VOUT(nom) + VDO
Voltage
Output Voltage
Dropout
VOUT = VIN - VDO
Output Voltage in
normal regulation.
Time
图 28. Startup into Dropout
Line transients out of dropout can also cause overshoot on the output of the regulator. These overshoots are
caused by the error amplifier having to drive the gate capacitance of the pass element and bring the gate back to
the correct voltage for proper regulation. 图 29 illustrates what is happening internally with the gate voltage and
how overshoot can be caused during operation. When the LDO is placed in dropout, the gate voltage (VGS) is
pulled all the way down to give the pass device the lowest on-resistance as possible. However, if a line transient
occurs while the device is in dropout, the loop is not in regulation which can cause the output to overshoot until
the loop responds and the output current pulls the output voltage back down into regulation. If these transients
are not acceptable, then continue to add input capacitance in the system until the transient is slow enough to
reduce the overshoot.
16
版权 © 2017, Texas Instruments Incorporated
TLV757P
www.ti.com.cn
ZHCSH76A – OCTOBER 2017 – REVISED DECEMBER 2017
Application Information (接
接下页)
Transient response
time of the LDO
Input Voltage
Load current
discharges
output
voltage
VDO
Voltage
Output Voltage
Output Voltage in
normal regulation
Dropout
VOUT = VIN - VDO
VGS voltage
(pass device
fully off)
Input Voltage
VGS voltage for
normal operation
VGS voltage for
normal operation
Gate Voltage
VGS voltage in
dropout (pass device
fully on)
Time
图 29. Line Transients From Dropout
8.1.4 Reverse Current
As with most LDOs, excessive reverse current can damage this device.
Reverse current flows through the body diode on the pass element instead of the normal conducting channel. At
high magnitudes, this current flow degrades the long-term reliability of the device, as a result of one of the
following conditions:
• Degradation caused by electromigration
• Excessive heat dissipation
• Potential for a latch-up condition
Conditions where reverse current can occur are outlined in this section, all of which can exceed the absolute
maximum rating of VOUT > VIN + 0.3 V:
• If the device has a large COUT and the input supply collapses with little or no load current
• The output is biased when the input supply is not established
• The output is biased above the input supply
版权 © 2017, Texas Instruments Incorporated
17
TLV757P
ZHCSH76A – OCTOBER 2017 – REVISED DECEMBER 2017
www.ti.com.cn
Application Information (接
接下页)
If reverse current flow is expected in the application, external protection must be used to protect the device. 图
30 shows one approach of protecting the device.
Schottky Diode
IN
CIN
Internal Body Diode
Device
OUT
COUT
GND
图 30. Example Circuit for Reverse Current Protection Using a Schottky Diode
8.1.5 Power Dissipation (PD)
Circuit reliability demands that proper consideration is given to device power dissipation, location of the circuit on
the printed circuit board (PCB), and correct sizing of the thermal plane. The PCB area around the regulator must
be as free of other heat-generating devices as possible that cause added thermal stresses.
As a first-order approximation, power dissipation in the regulator depends on the input-to-output voltage
difference and load conditions. Use 公式 2 to approximate PD:
PD = (VIN – VOUT) × IOUT
(2)
It is important to minimize power dissipation to achieve greater efficiency. This minimizing process is achieved by
selecting the correct system voltage rails. Proper selection helps obtain the minimum input-to-output voltage
differential . The low dropout of the device allows for maximum efficiency across a wide range of output voltages.
The main heat conduction path for the device is through the thermal pad on the package. As such, the thermal
pad must be soldered to a copper pad area under the device. This pad area should contain an array of plated
vias that conduct heat to inner plane areas or to a bottom-side copper plane.
The maximum allowable junction temperature (TJ) determines the maximum power dissipation for the device.
Power dissipation and junction temperature are most often related by the junction-to-ambient thermal resistance
(θJA) of the combined PCB, device package, and the temperature of the ambient air (TA), according to 公式 3.
TJ = TA + θJA × PD
(3)
Unfortunately, this thermal resistance (θJA) is dependent on the heat-spreading capability built into the particular
PCB design, and therefore varies according to the total copper area, copper weight, and location of the planes.
The θJA value is only used as a relative measure of package thermal performance. θJA is the sum of the VQFN
package junction-to-case (bottom) thermal resistance (θJCbot) plus the thermal resistance contribution by the PCB
copper.
18
版权 © 2017, Texas Instruments Incorporated
TLV757P
www.ti.com.cn
ZHCSH76A – OCTOBER 2017 – REVISED DECEMBER 2017
Application Information (接
接下页)
8.1.5.1 Estimating Junction Temperature
The JEDEC standard recommends the use of psi (Ψ) thermal metrics to estimate the junction temperatures of
the LDO when in-circuit on a typical PCB board application. These metrics are not thermal resistances, but offer
practical and relative means of estimating junction temperatures. These psi metrics are independent of the
copper-spreading area. The key thermal metrics (ΨJT and ΨJB) are shown in the table and are used in
accordance with 公式 4.
YJT: TJ = TT + YJT ´ PD
YJB: TJ = TB + YJB ´ PD
where:
•
•
•
PD is the power dissipated as shown in 公式 2
TT is the temperature at the center-top of the device package, and
TB is the PCB surface temperature measured 1 mm from the device package and centered on the package
edge
(4)
8.2 Typical Application
IN
OUT
1 …F
DC-DC
Converter
1 …F
TLV757P
EN
Load
GND
ON
Copyright © 2017, Texas Instruments Incorporated
OFF
图 31. TLV757P Typical Application
8.2.1 Design Requirements
表 2 lists the design requirements for this application.
表 2. Design Parameters
PARAMETER
DESIGN REQUIREMENT
Input voltage
2.5 V
Output voltage
1.8 V
Input current
700 mA (maximum)
Output load
600-mA DC
Maximum ambient temperature
70°C
版权 © 2017, Texas Instruments Incorporated
19
TLV757P
ZHCSH76A – OCTOBER 2017 – REVISED DECEMBER 2017
www.ti.com.cn
8.2.2 Detailed Design Procedure
8.2.2.1 Input Current
During normal operation, the input current to the LDO is approximately equal to the output current of the LDO.
During startup, the input current is higher as a result of the inrush current charging the output capacitor. Use 公式
5 to calculate the current through the input.
VOUT(t)
COUT ´ dVOUT(t)
IOUT(t) =
+
RLOAD
dt
where:
•
•
•
VOUT(t) is the instantaneous output voltage of the turn-on ramp
dVOUT(t) / dt is the slope of the VOUT ramp
RLOAD is the resistive load impedance
(5)
8.2.2.2 Thermal Dissipation
The junction temperature can be determined using the junction-to-ambient thermal resistance (RθJA) and the total
power dissipation (PD). Use 公式 6 to calculate the power dissipation. Multiply PD by RθJA and add the ambient
temperature (TA) to calculate the junction temperature (TJ) as 公式 7 shows.
PD = (IGND+ IOUT) × (VIN – VOUT)
TJ = RθJA × PD + TA
(6)
(7)
If the (TJ(MAX)) value does not exceed 125°C calculate the maximum ambient temperature as 公式 8 shows. 公式
9 calculates the maximum ambient temperature with a value of 82.916°C.
TA(MAX) = TJ(MAX) – RθJA × PD
TA(MAX) = 125°C – 100.2 × (2.5 V –1.8 V) × (0.6 A) = 82.916°C
(8)
(9)
8.2.3 Application Curves
1.2
1
2
0.8
1.5
0.6
1
0.4
VIN
VOUT
EN
IIN
0.5
0.2
0
0.5
80
60
40
20
IOUT = 600 mA
0
0
Input Current (A)
Voltage (V)
2.5
100
Power Supply Rejection Ratio (dB)
3
1
1.5
2
2.5
3
Time (ms)
3.5
4
4.5
5
0
10
100
1k
10k
100k
Frequency (Hz)
1M
10M
VIN = 2.5 V, VOUT = 1.8 V, IOUT = 600 mA
图 32. Startup With a 600-mA Load
图 33. PSRR (2.5 V to 1.8 V at 600 mA)
9 Power Supply Recommendations
Connect a low output impedance power supply directly to the IN pin of the TLV757P. If the input source is
reactive, consider using multiple input capacitors in parallel with the 1-µF input capacitor to lower the input supply
impedance over frequency.
20
版权 © 2017, Texas Instruments Incorporated
TLV757P
www.ti.com.cn
ZHCSH76A – OCTOBER 2017 – REVISED DECEMBER 2017
10 Layout
10.1 Layout Guidelines
•
•
•
Place input and output capacitors as close as possible to the device.
Use copper planes for device connections to optimize thermal performance.
Place thermal vias around the device to distribute the heat.
10.2 Layout Examples
VOUT
VIN
1
CIN
5
COUT
2
3
4
EN
GND PLANE
Represents via used for
application specific connections
图 34. Layout Example: DBV Package
VIN
VOUT
COUT
1
6
2
5
3
4
CIN
EN
GND PLANE
Represents via used for
application specific connections
图 35. Layout Example: DRV Package
版权 © 2017, Texas Instruments Incorporated
21
TLV757P
ZHCSH76A – OCTOBER 2017 – REVISED DECEMBER 2017
www.ti.com.cn
11 器件和文档支持
11.1 器件支持
11.1.1 器件命名规则
表 3. 器件命名规则 (1) (2)
(1)
(2)
产品
VOUT
TLV757xx(x)Pyyyz
xx(x) 为标称输出电压。对于分辨率为 50mV 的输出电压,订货编号中使用两位数字;否则,使用三位数
字(例如,28 = 2.8V;125 = 1.25 V)。
P 表示有源输出放电功能。TLV757P 系列的所有产品在器件处于禁用状态时都可以对输出进行主动放电。
yyy 为封装标识符。
z 为封装数量。R 表示卷(3000 片),T 表示带(250 片)。
要获得最新的封装和订货信息,请参见本文档末尾的封装选项附录,或者访问器件产品文件夹(www.ti.com.cn)。
可提供 0.6V 至 5V 范围内的输出电压(以 50mV 为单位增加)。有关器件的详细信息和供货情况,请联系制造商。
11.2 接收文档更新通知
要接收文档更新通知,请导航至 TI.com 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产品
信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。
11.3 社区资源
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商“按照原样”提供。这些内容并不构成 TI 技术规范,
并且不一定反映 TI 的观点;请参阅 TI 的 《使用条款》。
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。
设计支持
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。
11.4 商标
E2E is a trademark of Texas Instruments.
All other trademarks are the property of their respective owners.
11.5 静电放电警告
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可
能会损坏集成电路。
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可
能会导致器件与其发布的规格不相符。
11.6 Glossary
SLYZ022 — TI Glossary.
This glossary lists and explains terms, acronyms, and definitions.
12 机械、封装和可订购信息
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知和修
订此文档。如欲获取此产品说明书的浏览器版本,请参阅左侧的导航。
22
版权 © 2017, Texas Instruments Incorporated
PACKAGE OPTION ADDENDUM
www.ti.com
9-Mar-2018
PACKAGING INFORMATION
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
Lead/Ball Finish
MSL Peak Temp
(2)
(6)
(3)
Op Temp (°C)
Device Marking
(4/5)
PTLV75709PDBVR
ACTIVE
SOT-23
DBV
5
3000
TBD
Call TI
Call TI
-40 to 125
PTLV75710PDBVR
ACTIVE
SOT-23
DBV
5
3000
TBD
Call TI
Call TI
-40 to 125
PTLV75712PDBVR
ACTIVE
SOT-23
DBV
5
3000
TBD
Call TI
Call TI
-40 to 125
PTLV75715PDBVR
ACTIVE
SOT-23
DBV
5
3000
TBD
Call TI
Call TI
-40 to 125
PTLV75718PDBVR
ACTIVE
SOT-23
DBV
5
3000
TBD
Call TI
Call TI
-40 to 125
PTLV75719PDBVR
ACTIVE
SOT-23
DBV
5
3000
TBD
Call TI
Call TI
-40 to 125
PTLV75725PDBVR
ACTIVE
SOT-23
DBV
5
3000
TBD
Call TI
Call TI
-40 to 125
PTLV75728PDBVR
ACTIVE
SOT-23
DBV
5
3000
TBD
Call TI
Call TI
-40 to 125
PTLV75729PDBVR
ACTIVE
SOT-23
DBV
5
3000
TBD
Call TI
Call TI
-40 to 125
PTLV75730PDBVR
ACTIVE
SOT-23
DBV
5
3000
TBD
Call TI
Call TI
-40 to 125
PTLV75733PDBVR
ACTIVE
SOT-23
DBV
5
3000
TBD
Call TI
Call TI
-40 to 125
TLV75709PDRVR
ACTIVE
WSON
DRV
6
3000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
1HGH
TLV75710PDRVR
ACTIVE
WSON
DRV
6
3000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
1HHH
TLV75712PDRVR
ACTIVE
WSON
DRV
6
3000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
1HIH
TLV75715PDRVR
ACTIVE
WSON
DRV
6
3000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
1HJH
TLV75718PDRVR
ACTIVE
WSON
DRV
6
3000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
1HKH
TLV75719PDRVR
ACTIVE
WSON
DRV
6
3000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
1HLH
TLV75725PDRVR
ACTIVE
WSON
DRV
6
3000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
1HMH
TLV75728PDRVR
ACTIVE
WSON
DRV
6
3000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
1HNH
Addendum-Page 1
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
Orderable Device
9-Mar-2018
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
Lead/Ball Finish
MSL Peak Temp
(2)
(6)
(3)
Op Temp (°C)
Device Marking
(4/5)
TLV75730PDRVR
ACTIVE
WSON
DRV
6
3000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
1HOH
TLV75733PDRVR
ACTIVE
WSON
DRV
6
3000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
1HPH
TLV75740PDRVR
ACTIVE
WSON
DRV
6
3000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
1HQH
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may
reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of