0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
PTLV75733PDBVR

PTLV75733PDBVR

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    SOT23-5

  • 描述:

    PTLV75733PDBVR

  • 数据手册
  • 价格&库存
PTLV75733PDBVR 数据手册
Product Folder Order Now Support & Community Tools & Software Technical Documents TLV757P ZHCSH76A – OCTOBER 2017 – REVISED DECEMBER 2017 TLV757P 1-A、 、低 IQ、小尺寸、低压降稳压器 1 特性 • • • • • • • • • 输入电压范围:1.45V 至 5.5V 可用固定输出电压范围: – 0.6V 至 5V(阶跃为 50mV) 低 IQ:25µA(典型值) 低压降: – 1A 电流时为 425mV(最大值)(3.3VOUT) 输出精度:1%(最大值) 内置软启动功能,具有单调 VOUT上升 折返电流限制 有源输出放电 高 PSRR:100kHz 时为 45dB 与 1µF 陶瓷输出电容器搭配使用时可保持稳定 封装: – SOT-23-5(预览) – 2mm × 2mm (WSON-6) 2 应用 • • • • • • • 机顶盒、电视和游戏机 便携式和电池供电类设备 台式机、笔记本和超级本 平板电脑和遥控器 白色家电和电器 电网基础设施和保护继电器 摄像头模块和图像传感器 TLV757P 低压降稳压器 (LDO) 是一款超小型低静态电 流 LDO,可提供 1A 拉电流,具有良好的线路和负载 瞬态性能。经优化的 TLV757P 可支持 1.45V 至 5.5V 的 输入电压范围 从而适用于各种应用。为最大程度地 降低成本和解决方案尺寸,该器件在 0.6V 至 5V 范围 内以固定输出电压的形式提供,以支持现代 MCU 更低 的内核电压。此外,TLV757P 具备带有使能功能的低 IQ,从而可将待机功耗降至最低。该器件 具有 内部软 启动功能,旨在降低浪涌电流,该电流将为负载提供受 控电压并在启动过程中最大程度地降低输入电压压降。 关断时,该器件可主动下拉输出以快速释放输出并确保 已知的启动状态。 TLV757P 在与支持小尺寸总体解决方案的小型陶瓷输 出电容器搭配使用时,可保持稳定。高精度带隙与误差 放大器支持 1% 的典型精度。所有器件版本均具有集 成的热关断保护、电流限制和低压锁定 (UVLO) 功能。 TLV757P 包含一个内部过流保护限制,有助于在短路 事件中减少热耗散。 器件信息(1) 器件型号 封装 封装尺寸(标称值) SON (6) TLV757P 2.00mm × 2.00mm SOT-23 (5)(预览) 2.90mm x 1.60mm (1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附 录。 典型应用 启动波形 7 TLV757P CIN EN 175 VOUT OUT VIN VEN IOUT 6 150 5 125 4 100 3 75 2 50 1 25 COUT GND ON OFF Voltage (V) IN Copyright © 2017, Texas Instruments Incorporated 0 Output Current (mA) • • 1 3 说明 0 0 0.2 0.4 0.6 0.8 1 1.2 Time (ms) 1.4 1.6 1.8 2 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. UNLESS OTHERWISE NOTED, this document contains PRODUCTION DATA. English Data Sheet: SBVS322 TLV757P ZHCSH76A – OCTOBER 2017 – REVISED DECEMBER 2017 www.ti.com.cn 目录 1 2 3 4 5 6 7 特性 .......................................................................... 应用 .......................................................................... 说明 .......................................................................... 修订历史记录 ........................................................... Pin Configuration and Functions ......................... Specifications......................................................... 1 1 1 2 3 4 6.1 6.2 6.3 6.4 6.5 6.6 4 4 4 4 5 7 Absolute Maximum Ratings ...................................... ESD Ratings ............................................................ Recommended Operating Conditions....................... Thermal Information .................................................. Electrical Characteristics........................................... Typical Characteristics .............................................. Detailed Description ............................................ 12 7.1 Overview ................................................................. 12 7.2 Functional Block Diagram ....................................... 12 7.3 Feature Description................................................. 12 7.4 Device Functional Modes........................................ 14 8 Application and Implementation ........................ 15 8.1 Application Information............................................ 15 8.2 Typical Application ................................................. 19 9 Power Supply Recommendations...................... 20 10 Layout................................................................... 21 10.1 Layout Guidelines ................................................. 21 10.2 Layout Examples................................................... 21 11 器件和文档支持 ..................................................... 22 11.1 11.2 11.3 11.4 11.5 11.6 器件支持................................................................ 接收文档更新通知 ................................................. 社区资源................................................................ 商标 ....................................................................... 静电放电警告......................................................... Glossary ................................................................ 22 22 22 22 22 22 12 机械、封装和可订购信息 ....................................... 22 4 修订历史记录 注:之前版本的页码可能与当前版本有所不同。 Changes from Original (October 2017) to Revision A Page • 将 DRV 封装状态发布为生产 .................................................................................................................................................. 1 2 Copyright © 2017, Texas Instruments Incorporated TLV757P www.ti.com.cn ZHCSH76A – OCTOBER 2017 – REVISED DECEMBER 2017 5 Pin Configuration and Functions DBV Package (Preview) 5-Pin SOT-23 Top View IN 1 GND 2 EN 3 5 DRV Package 6-Pin SON With Exposed Thermal Pad Top View OUT OUT NC GND 4 1 6 IN 2 Thermal 5 Pad NC 3 EN 4 NC Not to scale Not to scale NC- no internal connection Pin Functions PIN NAME I/O DESCRIPTION DBV DRV EN 3 4 I GND 2 3 — IN 1 6 I NC 4 2, 5 — No internal connection OUT 5 1 O Regulated output voltage pin. A capacitor with a value of 1 µF or larger is required from this pin to ground (1). See the Input and Output Capacitor Selection section for more information. Thermal pad — Pad — Connect the thermal pad to a large-area ground plane. The thermal pad is internally connected to GND. (1) Enable pin. Drive EN greater than VHI to turn on the regulator. Drive EN less than VLO to place the LDO into shutdown mode. Ground pin Input pin. A capacitor with a value of 1 µF or larger is required from this pin to ground (1). See the Input and Output Capacitor Selection section for more information. The nominal input and output capacitance must be greater than 0.47 µF; throughout this document the nominal derating on these capacitors is 50%. Take care to ensure that the effective capacitance at the pin is greater than 0.47 µF. Copyright © 2017, Texas Instruments Incorporated 3 TLV757P ZHCSH76A – OCTOBER 2017 – REVISED DECEMBER 2017 www.ti.com.cn 6 Specifications 6.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted) (1) MIN MAX UNIT Supply voltage, VIN –0.3 6 V Enable voltage, VEN –0.3 Output voltage, VOUT –0.3 Operating junction temperature range, TJ –40 150 °C Storage temperature, Tstg –65 150 °C (1) (2) 6 V VIN + 0.3 (2) V Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The absolute maximum rating is VIN + 0.3 V or 6 V, whichever is smaller 6.2 ESD Ratings VALUE V(ESD) (1) (2) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1) ±1000 Charged-device model (CDM), per JEDEC specification JESD22C101 (2) ±500 UNIT V JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 500-V HBM is possible with the necessary precautions. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 250-V CDM is possible with the necessary precautions. 6.3 Recommended Operating Conditions over operating free-air temperature range (unless otherwise noted) MIN VIN Input voltage VOUT Output voltage VEN Enable voltage IOUT NOM MAX 1.45 UNIT 5.5 V 0.6 5 V 0 5.5 V Output current 0 1 A CIN Input capacitor 1 COUT Output capacitor 1 fEN Enable toggle frequency TJ Junction temperature µF –40 200 µF 10 kHz 125 °C 6.4 Thermal Information TLV757 THERMAL METRIC (1) DBV (SOT-23) DRV (SON) 5 PINS 6 PINS UNIT RθJA Junction-to-ambient thermal resistance 231.1 100.2 °C/W RθJC(top) Junction-to-case (top) thermal resistance 118.4 108.5 °C/W RθJB Junction-to-board thermal resistance 64.4 64.3 °C/W ψJT Junction-to-top characterization parameter 28.4 10.4 °C/W ψJB Junction-to-board characterization parameter 63.8 64.8 °C/W RθJC(bot) Junction-to-case (bottom) thermal resistance N/A 34.7 °C/W (1) 4 For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report. Copyright © 2017, Texas Instruments Incorporated TLV757P www.ti.com.cn ZHCSH76A – OCTOBER 2017 – REVISED DECEMBER 2017 6.5 Electrical Characteristics over operating free-air temperature range (TJ = –40°C to +125°C), VIN = VOUT + 0.5 V or 1.45 V (whichever is greater), IOUT = 1 mA, VEN = VIN, and CIN = COUT = 1 µF (unless otherwise noted); all typical values are at TJ = 25°C. PARAMETER VIN Input voltage VOUT Output voltage TEST CONDITIONS –40°C ≤ TJ ≤ 85°C, VOUT ≥ 1 V Output accuracy –40°C ≤ TJ ≤ 85°C, 0.6 V ≤ VOUT < 1 V VOUT ≥ 1 V 0.6 V ≤ VOUT < 1 V (ΔVOUT)ΔVIN ΔVOUT/ΔIOU Line regulation Load regulation T MIN Ground current ISHDN Shutdown current 0.6 5 V –1% 1% –10 10 –1.5% 1.5% –15 DRV package 0.044 DBV package 0.060 25 40 VIN = VOUT + VDO(MAX) + 0.25 V ISC Short circuit current limit VOUT = 0 V, VIN = VOUT + VDO(MAX) + 0.25 V IOUT = 1 A, –40°C ≤ TJ ≤ +85°C Dropout voltage IOUT = 1 A, –40°C ≤ TJ ≤ +125°C VOUT = 0.9 x VOUT, 1.5 V < VOUT ≤ 4.5 V 1.2 A mA 1200 1300 mV 1 V ≤ VOUT < 1.2 V 1100 1150 mV 1.2 V ≤ VOUT < 1.5 V 1000 1050 mV 1.5 V ≤ VOUT < 1.8 V 700 800 mV 1.8 V ≤ VOUT < 2.5 V 650 750 mV 2.5 V ≤ VOUT < 3.3 V 500 600 mV 3.3 V ≤ VOUT < 5.0 V 300 425 mV 0.6 V ≤ VOUT < 0.8 V 1450 mV 0.8 V ≤ VOUT < 1 V 1350 mV 1 V ≤ VOUT < 1.2 V 1200 mV 1.2 V ≤ VOUT < 1.5 V 1100 mV 1.5 V ≤ VOUT < 1.8 V 850 mV 1.8 V ≤ VOUT < 2.5 V 800 mV 2.5 V ≤ VOUT < 3.3 V 650 mV 3.3 V ≤ VOUT < 5.0 V 475 mV f = 1 kHz, VIN = VOUT + 1 V, IOUT = 50 mA 52 f = 100 kHz, , VIN = VOUT + 1 V, IOUT = 50 mA 46 VUVLO Undervoltage lockout VIN rising Undervoltage lockout hysteresis VIN falling (1) 1.78 0.8 V ≤ VOUT < 1 V BW = 10 Hz to 100 kHz, VOUT = 1.2 V, IOUT = 1 A VHI 1.55 755 f = 1 MHz, , VIN = VOUT + 1 V, IOUT = 50 mA EN pin high voltage (enabled) µA mV Output noise voltage Startup time 1 1400 Vn tSTR 0.1 1350 Power supply rejection ratio HYST µA 0.6 V ≤ VOUT < 0.8 V PSRR VUVLO, 31 –40°C ≤ TJ ≤ +125°C Output current limit mV V/A 33 VEN ≤ 0.4 V, 1.45 V ≤ VIN ≤ 5.5 V, –40°C ≤ TJ ≤ +125°C mV mV –40°C ≤ TJ ≤ +85°C ICL VDO 15 2 VOUT = VOUT - 0.2 V, VOUT ≤ 1.5 V UNIT V VOUT + 0.5 V (1) ≤ VIN ≤ 5.5 V 0.1 mA ≤ IOUT ≤ 1 A, VIN ≥ 2.4 V MAX 5.5 TJ = 25°C IGND TYP 1.45 dB 52 71.5 1.21 1 1.3 µVRMS 1.44 V 40 mV 550 µs V VIN = 1.45V for VOUT < 0.9 V Copyright © 2017, Texas Instruments Incorporated 5 TLV757P ZHCSH76A – OCTOBER 2017 – REVISED DECEMBER 2017 www.ti.com.cn Electrical Characteristics (continued) over operating free-air temperature range (TJ = –40°C to +125°C), VIN = VOUT + 0.5 V or 1.45 V (whichever is greater), IOUT = 1 mA, VEN = VIN, and CIN = COUT = 1 µF (unless otherwise noted); all typical values are at TJ = 25°C. PARAMETER TEST CONDITIONS MIN TYP MAX UNIT VLO EN pin low voltage (enabled) IEN Enable pin current VIN = 5.5 V, EN = 5.5 V 10 nA RPULLDOWN Pulldown resistance VIN = 3.3 V (P version only) 95 Ω TSD Thermal shutdown Shutdown, temperature increasing 165 °C Reset, temperature decreasing 155 °C 6 0.3 V 版权 © 2017, Texas Instruments Incorporated TLV757P www.ti.com.cn ZHCSH76A – OCTOBER 2017 – REVISED DECEMBER 2017 6.6 Typical Characteristics at operating temperature TJ = 25°C, VIN = VOUT(NOM) + 0.5 V or 1.45 V (whichever is greater), IOUT = 1 mA, VEN = VIN, and CIN = COUT = 1 µF (unless otherwise noted) 80 Power Supply Rejection Ratio (dB) Power Supply Rejection Ratio (dB) 80 70 60 50 40 30 20 10 10 mA 50 mA 0 10 100 IOUT 100 mA 500 mA 1k 1A 10k 100k Frequency (Hz) 1M 70 60 50 40 30 20 VIN = 3.8 V VIN = 4 V VIN = 4.3 V VIN = 5 V 10 0 10 10M VIN = 4.3 V, VOUT = 3.3 V, COUT = 1 µF 100 图 1. PSRR vs IOUT 1M 10M 图 2. PSRR Vs VIN 10 5 70 2 60 Noise (PV/—Hz) Power Supply Rejection Ratio (dB) 10k 100k Frequency (Hz) VOUT = 3.3 V, COUT = 1 µF, IOUT = 1 A 80 50 40 30 10 100 1 0.5 0.2 0.1 0.05 COUT 1 PF 10 PF 22 PF 100 PF 20 0 10 0.02 0.01 1k 10k 100k Frequency (Hz) 1M 0.005 10 10M VIN = 4.3 V, VOUT = 3.3 V, COUT = 1 µF 图 3. PSRR Vs COUT Noise (PV/—Hz) 1 0.5 0.2 0.02 0.01 0.005 10 1k 10k 100k Frequency (Hz) 1M 10M 图 4. Output Spectral Noise Density 2 0.1 100 10 5 5 0.05 COUT 4.7 PF, 151 PVRMS 10 PF, 150 PVRMS 22 PF, 151 PVRMS 47 PF, 150 PVRMS 100 PF, 148 PVRMS VOUT = 3.3 V, IOUT = 1 A, VRMS BW = 10 Hz to 100 kHz 10 Noise (PV/—Hz) 1k IOUT 10 mA, 158 PVRMS 50 mA, 159 PVRMS 100 mA, 159 PVRMS 500 mA, 153 PVRMS 1 A, 151 PVRMS 100 1k 10k 100k Frequency (Hz) 1M 10M VOUT = 3.3 V, COUT = 1 µF, VRMS BW = 10 Hz to 100 kHz 图 5. Output Spectral Noise Density 版权 © 2017, Texas Instruments Incorporated 2 1 0.5 0.2 0.1 0.05 0.02 0.01 0.005 0.002 0.001 10 VOUT 0.9 V, 53.8 PVRMS 1.2 V, 71.47 PVRMS 3.3 V, 151 PVRMS 5 V, 217 PVRMS 100 1k 10k 100k Frequency (Hz) 1M 10M IOUT = 1 A, COUT = 1 µF, VRMS BW = 10 Hz to 100 kHz 图 6. Output Noise vs Frequency and VOUT 7 TLV757P ZHCSH76A – OCTOBER 2017 – REVISED DECEMBER 2017 www.ti.com.cn Typical Characteristics (接 接下页) at operating temperature TJ = 25°C, VIN = VOUT(NOM) + 0.5 V or 1.45 V (whichever is greater), IOUT = 1 mA, VEN = VIN, and CIN = COUT = 1 µF (unless otherwise noted) 6 220 3.328 VIN VOUT 200 Output Noise Voltage (PVRMS) 5 3.32 160 140 120 100 4 3.312 3 3.304 2 3.296 1 3.288 Output Voltage (V) Input Voltage (V) 180 80 60 0 40 0.5 1 1.5 2 2.5 3 3.5 Output Voltage (V) 4 4.5 0 5 20 Time (ms) IOUT = 1 A, COUT = 1 µF, VRMS BW = 10 Hz to 100 kHz VOUT = 3.3 V, COUT = 1 µF, VIN slew rate = 1 V/µs 图 7. Output Noise Voltage vs VOUT 图 8. Line Transient 2.2 50 1.6 0 1.4 -50 1.2 -100 1 -150 0.8 -200 0.6 -250 0.4 -300 0.2 -350 0 20 40 60 80 100 120 Time (Ps) 140 160 4 3 2 1 0 200 180 VIN VOUT 5 Voltage (V) 100 VOUT 2 IOUT 1.8 6 Output Current (A) AC Coupled Output Voltage (mV) 200 150 3.28 50 40 0 0 0.5 1 1.5 2 2.5 3 Time (ms) 3.5 4 4.5 5 VIN = 5 V, VOUT = 3.3 V, COUT = 1 µF, IOUT slew rate = 1 A/µs 图 9. 3.3-V, 1-mA to 1-A Load Transient 图 10. VIN = VEN Power-Up 7 5 175 VOUT VIN VOUT VIN VEN IOUT 6 150 5 125 4 100 3 75 2 50 1 25 Voltage (V) Voltage (V) 4 3 2 1 0 0 0 1 2 3 4 5 6 Time (ms) 7 8 9 10 Output Current (mA) 6 0 0 0.2 0.4 0.6 0.8 1 1.2 Time (ms) 1.4 1.6 1.8 2 VIN = 5 V, IOUT = 100 mA, VEN slew rate = 1 V/µs, VOUT = 3.3 V 图 11. VIN = VEN Shutdown 8 图 12. EN Startup 版权 © 2017, Texas Instruments Incorporated TLV757P www.ti.com.cn ZHCSH76A – OCTOBER 2017 – REVISED DECEMBER 2017 Typical Characteristics (接 接下页) at operating temperature TJ = 25°C, VIN = VOUT(NOM) + 0.5 V or 1.45 V (whichever is greater), IOUT = 1 mA, VEN = VIN, and CIN = COUT = 1 µF (unless otherwise noted) 400 -40qC 0qC 25qC 85qC 125qC 0 -40qC 0qC 25qC 350 Dropout Voltage (mV) Change in Output Voltage (mV) 15 -15 -30 300 250 200 150 100 -45 50 0 -60 0 100 200 300 400 500 600 700 Output Current (mA) 800 0 900 1000 100 图 13. Load Regulation vs IOUT 200 300 400 500 600 700 Output Current (mA) 800 900 1000 图 14. 3.3-V Dropout Voltage vs IOUT 1 400 -40qC 0qC 25qC 85qC 125qC 350 300 200 150 125qC 0.25 0 -0.25 100 -0.5 50 -0.75 -1 3.5 0 100 25qC 85qC 0.5 250 0 -40qC 0qC 0.75 Accuracy (%) Dropout Voltage (mV) 85qC 125qC 200 300 400 500 600 700 Output Current (mA) 800 900 1000 3.75 4 4.25 4.5 4.75 Input Voltage (V) 5 5.25 5.5 VOUT = 3.3 V, IOUT = 1 mA 图 15. 5.0-V Dropout Voltage vs IOUT 图 16. 3.3 V Regulation vs VIN (Line Regulation) 1 -40qC 0qC 0.75 25qC 85qC 125qC GND Pin Current (PA) Accuracy (%) 0.5 0.25 0 -0.25 -0.5 -0.75 -1 5 5.1 5.2 5.3 Input Voltage (V) 5.4 5.5 1400 1300 1200 1100 1000 900 800 700 600 500 400 300 200 100 0 -40qC 0qC 25qC 85qC 125qC 0 100 200 300 400 500 600 700 Output Current (mA) 800 900 1000 IOUT = 1 mA, VOUT = 5 V 图 17. 5.0-V Accuracy vs VIN (Line Regulation) 版权 © 2017, Texas Instruments Incorporated 图 18. IGND vs IOUT 9 TLV757P ZHCSH76A – OCTOBER 2017 – REVISED DECEMBER 2017 www.ti.com.cn Typical Characteristics (接 接下页) 300 650 600 550 500 450 400 350 300 250 200 150 100 50 0 -40qC 0qC 25qC 85qC 125qC -40qC 0qC 25qC 85qC 125qC 250 Quiescent Current (PA) GND Pin Current (PA) at operating temperature TJ = 25°C, VIN = VOUT(NOM) + 0.5 V or 1.45 V (whichever is greater), IOUT = 1 mA, VEN = VIN, and CIN = COUT = 1 µF (unless otherwise noted) 200 150 100 50 0 0 1 2 3 4 Input Voltage (V) 5 6 0 1 VOUT = 3.3 V, IOUT = 1 mA 2 图 19. IGND vs VIN 6 图 20. IGND vs VIN 180 -40qC 0qC 25qC 85qC 125qC 250 160 Shutdown Current (nA) 300 Shutdown Current (nA) 5 VOUT = 3.3 V, IOUT = 0 mA 350 200 150 100 50 140 120 100 80 60 40 20 0 -40 0 0 1 2 3 4 Input Voltage (V) 5 6 -20 0 40 60 80 Temperature (qC) 100 120 140 250 800 750 -40qC 0qC 25qC 85qC 125qC Enable Current (PA) 200 700 650 600 150 100 50 550 EN Negative 500 -50 20 图 22. ISHDN vs Temperature 图 21. ISHDN vs VIN Enable Threshold (mV) 3 4 Input Voltage (V) EN Positive 0 -25 0 25 50 Temperature (qC) 75 100 125 0 1 2 3 4 Input Voltage (V) 5 6 VEN = 5.5 V 图 23. Enable Threshold vs Temperature 10 图 24. IEN vs VIN 版权 © 2017, Texas Instruments Incorporated TLV757P www.ti.com.cn ZHCSH76A – OCTOBER 2017 – REVISED DECEMBER 2017 Typical Characteristics (接 接下页) at operating temperature TJ = 25°C, VIN = VOUT(NOM) + 0.5 V or 1.45 V (whichever is greater), IOUT = 1 mA, VEN = VIN, and CIN = COUT = 1 µF (unless otherwise noted) 600 1.4 -40qC 0qC 25qC 550 500 Output Voltage (mV) UVLO Threshold (V) 1.36 1.32 1.28 1.24 450 400 350 300 250 200 150 100 UVLO Negative 1.2 -50 85qC 125qC 50 UVLO Positive 0 -25 0 25 50 Temperature (qC) 75 100 125 图 25. UVLO Threshold vs Temperature 0 1 2 3 Output Current (mA) 4 5 图 26. IOUT vs VOUT Pulldown Resistor 4 Output Voltage (V) 3.2 2.4 1.6 -40qC 0qC 25qC 85qC 125qC 0.8 0 0 200 400 600 800 1000 1200 1400 1600 1800 2000 Output Current (mA) 图 27. 3.3-V Foldback Current Limit vs IOUT 版权 © 2017, Texas Instruments Incorporated 11 TLV757P ZHCSH76A – OCTOBER 2017 – REVISED DECEMBER 2017 www.ti.com.cn 7 Detailed Description 7.1 Overview The TLV757P belongs to a family of next-generation, low-dropout regulators (LDOs). This device consumes low quiescent current and delivers excellent line and load transient performance. The TLV757P is optimized for wide variety of applications by supporting an input voltage range from 1.4 V to 5.5 V. To minimize cost and solution size, the device is offered in fixed output voltages ranging from 0.6 V to 5 V to support the lower core voltages of modern microcontrollers (MCUs). This regulator offers foldback current limit, shutdown, and thermal protection. The operating junction temperature is –40°C to +125°C. 7.2 Functional Block Diagram OUT IN Current Limit R1 ± + Thermal Shutdown UVLO 120 Ÿ R2 EN Bandgap GND Logic (1) R2 = 550 kΩ, R1 = adjustable. 7.3 Feature Description 7.3.1 Undervoltage Lockout (UVLO) An undervoltage lockout (UVLO) circuit disables the output until the input voltage is greater than the rising UVLO voltage (VUVLO). This circuit ensures that the device does not exhibit any unpredictable behavior when the supply voltage is lower than the operational range of the internal circuitry. When VIN is less than VUVLO, the output is connected to ground with a 120-Ω pulldown resistor. 7.3.2 Enable (EN) The enable pin (EN) is active high. Enable the device by forcing the EN pin to exceed VHI. Turn off the device by forcing the EN pin below VLO. If shutdown capability is not required, connect EN to IN. The device has an internal pull-down that connects a 120-Ω resistor to ground when the device is disabled. The discharge time after disabling depends on the output capacitance (COUT) and the load resistance (RL) in parallel with the 120-Ω pulldown resistor. 公式 1 calculates the time constant τ: 120 · RL t= · COUT 120 + RL (1) 12 版权 © 2017, Texas Instruments Incorporated TLV757P www.ti.com.cn ZHCSH76A – OCTOBER 2017 – REVISED DECEMBER 2017 Feature Description (接 接下页) The EN pin is independent of the input pin, but if the EN pin is driven to a higher voltage than VIN, the current into the EN pin increases. This effect is illustrated in 图 24. When the EN voltage is higher than the input voltage there is an increased current flow into the EN pin. If this increased flow causes problems in the application, sequence the EN pin after VIN is high, or to tie EN to VIN to prevent this flow increase from happening. If EN is driven to a higher voltage than VIN, limit the frequency on EN to below 10 kHz. 7.3.3 Internal Foldback Current Limit The TLV757P has an internal current limit that protects the regulator during fault conditions. The current limit is a hybrid scheme with brick wall until the output voltage is less than 0.4 × VOUT(NOM). When the voltage drops below 0.4 × VOUT(NOM), a foldback current limit is implemented which scales back the current as the output voltage approaches GND. When the output shorts, the LDO supplies a typical current of ISC. The output voltage is not regulated when the device is in current limit. In this condition, the output voltage is the product of the regulated current and the load resistance. When the device output is shorts, the PMOS pass transistor dissipates power [(VIN – VOUT) × ISC] until thermal shutdown is triggered and the device turns off. After the device cools down, the internal thermal shutdown circuit turns the device back on. If the fault condition continues, the device cycles between current limit and thermal shutdown. The foldback current-limit circuit limits the current that is allowed through the device to current levels lower than the minimum current limit at nominal VOUT current limit (ICL) during start up. See 图 27 for typical current limit values. If the output is loaded by a constant-current load during start up, or if the output voltage is negative when the device is enabled, then the load current demanded by the load may exceed the foldback current limit and the device may not rise to the full output voltage. For constant-current loads, disable the output load until the output has risen to the nominal voltage. Excess inductance can cause the current limit to oscillate. Minimize the inductance to keep the current limit from oscillating during a fault condition. 7.3.4 Thermal Shutdown Thermal shutdown protection disables the output when the junction temperature rises to approximately 165°C. Disabling the device eliminates the power dissipated by the device, allowing the device to cool. When the junction temperature cools to approximately 155°C, the output circuitry is enabled again. Depending on power dissipation, thermal resistance, and ambient temperature, the thermal protection circuit may cycle on and off. This cycling limits regulator dissipation which protects the circuit from damage as a result of overheating. Activating the thermal shutdown feature usually indicates excessive power dissipation as a result of the product of the (VIN – VOUT) voltage and the load current. For reliable operation, limit junction temperature to a maximum of 125°C. To estimate the margin of safety in a complete design, increase the ambient temperature until the thermal protection is triggered; use worst-case loads and signal conditions. The internal protection circuitry protects against overload conditions but is not intended to be activated in normal operation. Continuously running the device into thermal shutdown degrades device reliability. 版权 © 2017, Texas Instruments Incorporated 13 TLV757P ZHCSH76A – OCTOBER 2017 – REVISED DECEMBER 2017 www.ti.com.cn 7.4 Device Functional Modes 表 1 lists a comparison between the normal, dropout, and disabled modes of operation. 表 1. Device Functional Modes Comparison PARAMETER OPERATING MODE (1) (2) VIN EN IOUT TJ Normal (1) VIN > VOUT(NOM) + VDO VEN > VHI IOUT < ICL TJ < TSD Dropout (1) VIN < VOUT(NOM) + VDO VEN > VHI — TJ < TSD Disabled (2) VIN < VUVLO VEN < VLO — TJ > TSD All table conditions must be met. The device is disabled when any condition is met. 7.4.1 Normal Operation The device regulates to the nominal output voltage when all of the following conditions are met. • The input voltage is greater than the nominal output voltage plus the dropout voltage (VOUT(NOM) + VDO) • The enable voltage has previously exceeded the enable rising threshold voltage and has not decreased below the enable falling threshold • The output current is less than the current limit (IOUT < ICL) • The device junction temperature is less than the thermal shutdown temperature (TJ < TSD) 7.4.2 Dropout Operation If the input voltage is lower than the nominal output voltage plus the specified dropout voltage, but all other conditions are met for normal operation, the device operates in dropout. In this mode, the output voltage tracks the input voltage. During this mode, the transient performance of the device degrades because the pass device is in a triode state and no longer controls the output voltage of the LDO. Line or load transients in dropout can result in large output-voltage deviations. When the device is in a steady dropout state (defined as when the device is in dropout, VIN < VOUT(NOM) + VDO, right after being in a normal regulation state, but not during startup), the pass-FET is driven as hard as possible when the control loop is out of balance. During the normal time required for the device to regain regulation, VIN ≥ VOUT(NOM) + VDO, VOUT can overshoot VOUT(NOM) during fast transients. 7.4.3 Disabled The output is shut down by forcing the enable pin below VLO. When disabled, the pass device is turned off, internal circuits are shut down, and the output voltage is actively discharged to ground by an internal switch from the output to ground. The active pulldown is on when sufficient input voltage is provided. 14 版权 © 2017, Texas Instruments Incorporated TLV757P www.ti.com.cn ZHCSH76A – OCTOBER 2017 – REVISED DECEMBER 2017 8 Application and Implementation 注 Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality. 8.1 Application Information 8.1.1 Input and Output Capacitor Selection The TLV757P requires an output capacitance of 0.47 μF or larger for stability. Use X5R- and X7R-type ceramic capacitors because these capacitors have minimal variation in capacitance value and equivalent series resistance (ESR) over temperature. When selecting a capacitor for a specific application, consider the DC bias characteristics for the capacitor. Higher output voltages cause a significant derating of the capacitor. As a general rule, ceramic capacitors must be derated by 50%. For best performance, TI recommends a maximum output capacitance value of 200 µF. Place a 1 µF or greater capacitor on the input pin of the LDO. Some input supplies have a high impedance. Placing a capacitor on the input supply reduces the input impedance. The input capacitor counteracts reactive input sources and improves transient response and PSRR. If the input supply has a high impedance over a large range of frequencies, several input capacitors are used in parallel to lower the impedance over frequency. Use a higher-value capacitor if large, fast, rise-time load transients are expected, or if the device is located several inches from the input power source. 8.1.2 Dropout Voltage The TLV757P uses a PMOS pass transistor to achieve low dropout. When (VIN – VOUT) is less than the dropout voltage (VDO), the PMOS pass device is in the linear region of operation and the input-to-output resistance is the RDS(ON) of the PMOS pass element. VDO scales linearly with the output current because the PMOS device functions like a resistor in dropout mode. As with any linear regulator, PSRR and transient response degrade as (VIN – VOUT) approaches dropout operation. See 图 14 and 图 15 for typical dropout values. 8.1.3 Exiting Dropout Some applications have transients that place the LDO into dropout, such as slower ramps on VIN during start-up. As with other LDOs, the output may overshoot on recovery from these conditions. A ramping input supply causes an LDO to overshoot on start-up when the slew rate and voltage levels are in the correct range; see 图 28. Use an enable signal to avoid this condition. 版权 © 2017, Texas Instruments Incorporated 15 TLV757P ZHCSH76A – OCTOBER 2017 – REVISED DECEMBER 2017 www.ti.com.cn Application Information (接 接下页) Input Voltage Response time for LDO to get back into regulation. Load current discharges output voltage. VIN = VOUT(nom) + VDO Voltage Output Voltage Dropout VOUT = VIN - VDO Output Voltage in normal regulation. Time 图 28. Startup into Dropout Line transients out of dropout can also cause overshoot on the output of the regulator. These overshoots are caused by the error amplifier having to drive the gate capacitance of the pass element and bring the gate back to the correct voltage for proper regulation. 图 29 illustrates what is happening internally with the gate voltage and how overshoot can be caused during operation. When the LDO is placed in dropout, the gate voltage (VGS) is pulled all the way down to give the pass device the lowest on-resistance as possible. However, if a line transient occurs while the device is in dropout, the loop is not in regulation which can cause the output to overshoot until the loop responds and the output current pulls the output voltage back down into regulation. If these transients are not acceptable, then continue to add input capacitance in the system until the transient is slow enough to reduce the overshoot. 16 版权 © 2017, Texas Instruments Incorporated TLV757P www.ti.com.cn ZHCSH76A – OCTOBER 2017 – REVISED DECEMBER 2017 Application Information (接 接下页) Transient response time of the LDO Input Voltage Load current discharges output voltage VDO Voltage Output Voltage Output Voltage in normal regulation Dropout VOUT = VIN - VDO VGS voltage (pass device fully off) Input Voltage VGS voltage for normal operation VGS voltage for normal operation Gate Voltage VGS voltage in dropout (pass device fully on) Time 图 29. Line Transients From Dropout 8.1.4 Reverse Current As with most LDOs, excessive reverse current can damage this device. Reverse current flows through the body diode on the pass element instead of the normal conducting channel. At high magnitudes, this current flow degrades the long-term reliability of the device, as a result of one of the following conditions: • Degradation caused by electromigration • Excessive heat dissipation • Potential for a latch-up condition Conditions where reverse current can occur are outlined in this section, all of which can exceed the absolute maximum rating of VOUT > VIN + 0.3 V: • If the device has a large COUT and the input supply collapses with little or no load current • The output is biased when the input supply is not established • The output is biased above the input supply 版权 © 2017, Texas Instruments Incorporated 17 TLV757P ZHCSH76A – OCTOBER 2017 – REVISED DECEMBER 2017 www.ti.com.cn Application Information (接 接下页) If reverse current flow is expected in the application, external protection must be used to protect the device. 图 30 shows one approach of protecting the device. Schottky Diode IN CIN Internal Body Diode Device OUT COUT GND 图 30. Example Circuit for Reverse Current Protection Using a Schottky Diode 8.1.5 Power Dissipation (PD) Circuit reliability demands that proper consideration is given to device power dissipation, location of the circuit on the printed circuit board (PCB), and correct sizing of the thermal plane. The PCB area around the regulator must be as free of other heat-generating devices as possible that cause added thermal stresses. As a first-order approximation, power dissipation in the regulator depends on the input-to-output voltage difference and load conditions. Use 公式 2 to approximate PD: PD = (VIN – VOUT) × IOUT (2) It is important to minimize power dissipation to achieve greater efficiency. This minimizing process is achieved by selecting the correct system voltage rails. Proper selection helps obtain the minimum input-to-output voltage differential . The low dropout of the device allows for maximum efficiency across a wide range of output voltages. The main heat conduction path for the device is through the thermal pad on the package. As such, the thermal pad must be soldered to a copper pad area under the device. This pad area should contain an array of plated vias that conduct heat to inner plane areas or to a bottom-side copper plane. The maximum allowable junction temperature (TJ) determines the maximum power dissipation for the device. Power dissipation and junction temperature are most often related by the junction-to-ambient thermal resistance (θJA) of the combined PCB, device package, and the temperature of the ambient air (TA), according to 公式 3. TJ = TA + θJA × PD (3) Unfortunately, this thermal resistance (θJA) is dependent on the heat-spreading capability built into the particular PCB design, and therefore varies according to the total copper area, copper weight, and location of the planes. The θJA value is only used as a relative measure of package thermal performance. θJA is the sum of the VQFN package junction-to-case (bottom) thermal resistance (θJCbot) plus the thermal resistance contribution by the PCB copper. 18 版权 © 2017, Texas Instruments Incorporated TLV757P www.ti.com.cn ZHCSH76A – OCTOBER 2017 – REVISED DECEMBER 2017 Application Information (接 接下页) 8.1.5.1 Estimating Junction Temperature The JEDEC standard recommends the use of psi (Ψ) thermal metrics to estimate the junction temperatures of the LDO when in-circuit on a typical PCB board application. These metrics are not thermal resistances, but offer practical and relative means of estimating junction temperatures. These psi metrics are independent of the copper-spreading area. The key thermal metrics (ΨJT and ΨJB) are shown in the table and are used in accordance with 公式 4. YJT: TJ = TT + YJT ´ PD YJB: TJ = TB + YJB ´ PD where: • • • PD is the power dissipated as shown in 公式 2 TT is the temperature at the center-top of the device package, and TB is the PCB surface temperature measured 1 mm from the device package and centered on the package edge (4) 8.2 Typical Application IN OUT 1 …F DC-DC Converter 1 …F TLV757P EN Load GND ON Copyright © 2017, Texas Instruments Incorporated OFF 图 31. TLV757P Typical Application 8.2.1 Design Requirements 表 2 lists the design requirements for this application. 表 2. Design Parameters PARAMETER DESIGN REQUIREMENT Input voltage 2.5 V Output voltage 1.8 V Input current 700 mA (maximum) Output load 600-mA DC Maximum ambient temperature 70°C 版权 © 2017, Texas Instruments Incorporated 19 TLV757P ZHCSH76A – OCTOBER 2017 – REVISED DECEMBER 2017 www.ti.com.cn 8.2.2 Detailed Design Procedure 8.2.2.1 Input Current During normal operation, the input current to the LDO is approximately equal to the output current of the LDO. During startup, the input current is higher as a result of the inrush current charging the output capacitor. Use 公式 5 to calculate the current through the input. VOUT(t) COUT ´ dVOUT(t) IOUT(t) = + RLOAD dt where: • • • VOUT(t) is the instantaneous output voltage of the turn-on ramp dVOUT(t) / dt is the slope of the VOUT ramp RLOAD is the resistive load impedance (5) 8.2.2.2 Thermal Dissipation The junction temperature can be determined using the junction-to-ambient thermal resistance (RθJA) and the total power dissipation (PD). Use 公式 6 to calculate the power dissipation. Multiply PD by RθJA and add the ambient temperature (TA) to calculate the junction temperature (TJ) as 公式 7 shows. PD = (IGND+ IOUT) × (VIN – VOUT) TJ = RθJA × PD + TA (6) (7) If the (TJ(MAX)) value does not exceed 125°C calculate the maximum ambient temperature as 公式 8 shows. 公式 9 calculates the maximum ambient temperature with a value of 82.916°C. TA(MAX) = TJ(MAX) – RθJA × PD TA(MAX) = 125°C – 100.2 × (2.5 V –1.8 V) × (0.6 A) = 82.916°C (8) (9) 8.2.3 Application Curves 1.2 1 2 0.8 1.5 0.6 1 0.4 VIN VOUT EN IIN 0.5 0.2 0 0.5 80 60 40 20 IOUT = 600 mA 0 0 Input Current (A) Voltage (V) 2.5 100 Power Supply Rejection Ratio (dB) 3 1 1.5 2 2.5 3 Time (ms) 3.5 4 4.5 5 0 10 100 1k 10k 100k Frequency (Hz) 1M 10M VIN = 2.5 V, VOUT = 1.8 V, IOUT = 600 mA 图 32. Startup With a 600-mA Load 图 33. PSRR (2.5 V to 1.8 V at 600 mA) 9 Power Supply Recommendations Connect a low output impedance power supply directly to the IN pin of the TLV757P. If the input source is reactive, consider using multiple input capacitors in parallel with the 1-µF input capacitor to lower the input supply impedance over frequency. 20 版权 © 2017, Texas Instruments Incorporated TLV757P www.ti.com.cn ZHCSH76A – OCTOBER 2017 – REVISED DECEMBER 2017 10 Layout 10.1 Layout Guidelines • • • Place input and output capacitors as close as possible to the device. Use copper planes for device connections to optimize thermal performance. Place thermal vias around the device to distribute the heat. 10.2 Layout Examples VOUT VIN 1 CIN 5 COUT 2 3 4 EN GND PLANE Represents via used for application specific connections 图 34. Layout Example: DBV Package VIN VOUT COUT 1 6 2 5 3 4 CIN EN GND PLANE Represents via used for application specific connections 图 35. Layout Example: DRV Package 版权 © 2017, Texas Instruments Incorporated 21 TLV757P ZHCSH76A – OCTOBER 2017 – REVISED DECEMBER 2017 www.ti.com.cn 11 器件和文档支持 11.1 器件支持 11.1.1 器件命名规则 表 3. 器件命名规则 (1) (2) (1) (2) 产品 VOUT TLV757xx(x)Pyyyz xx(x) 为标称输出电压。对于分辨率为 50mV 的输出电压,订货编号中使用两位数字;否则,使用三位数 字(例如,28 = 2.8V;125 = 1.25 V)。 P 表示有源输出放电功能。TLV757P 系列的所有产品在器件处于禁用状态时都可以对输出进行主动放电。 yyy 为封装标识符。 z 为封装数量。R 表示卷(3000 片),T 表示带(250 片)。 要获得最新的封装和订货信息,请参见本文档末尾的封装选项附录,或者访问器件产品文件夹(www.ti.com.cn)。 可提供 0.6V 至 5V 范围内的输出电压(以 50mV 为单位增加)。有关器件的详细信息和供货情况,请联系制造商。 11.2 接收文档更新通知 要接收文档更新通知,请导航至 TI.com 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产品 信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。 11.3 社区资源 下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商“按照原样”提供。这些内容并不构成 TI 技术规范, 并且不一定反映 TI 的观点;请参阅 TI 的 《使用条款》。 TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在 e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。 设计支持 TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。 11.4 商标 E2E is a trademark of Texas Instruments. All other trademarks are the property of their respective owners. 11.5 静电放电警告 ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可 能会损坏集成电路。 ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可 能会导致器件与其发布的规格不相符。 11.6 Glossary SLYZ022 — TI Glossary. This glossary lists and explains terms, acronyms, and definitions. 12 机械、封装和可订购信息 以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知和修 订此文档。如欲获取此产品说明书的浏览器版本,请参阅左侧的导航。 22 版权 © 2017, Texas Instruments Incorporated PACKAGE OPTION ADDENDUM www.ti.com 9-Mar-2018 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) PTLV75709PDBVR ACTIVE SOT-23 DBV 5 3000 TBD Call TI Call TI -40 to 125 PTLV75710PDBVR ACTIVE SOT-23 DBV 5 3000 TBD Call TI Call TI -40 to 125 PTLV75712PDBVR ACTIVE SOT-23 DBV 5 3000 TBD Call TI Call TI -40 to 125 PTLV75715PDBVR ACTIVE SOT-23 DBV 5 3000 TBD Call TI Call TI -40 to 125 PTLV75718PDBVR ACTIVE SOT-23 DBV 5 3000 TBD Call TI Call TI -40 to 125 PTLV75719PDBVR ACTIVE SOT-23 DBV 5 3000 TBD Call TI Call TI -40 to 125 PTLV75725PDBVR ACTIVE SOT-23 DBV 5 3000 TBD Call TI Call TI -40 to 125 PTLV75728PDBVR ACTIVE SOT-23 DBV 5 3000 TBD Call TI Call TI -40 to 125 PTLV75729PDBVR ACTIVE SOT-23 DBV 5 3000 TBD Call TI Call TI -40 to 125 PTLV75730PDBVR ACTIVE SOT-23 DBV 5 3000 TBD Call TI Call TI -40 to 125 PTLV75733PDBVR ACTIVE SOT-23 DBV 5 3000 TBD Call TI Call TI -40 to 125 TLV75709PDRVR ACTIVE WSON DRV 6 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 1HGH TLV75710PDRVR ACTIVE WSON DRV 6 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 1HHH TLV75712PDRVR ACTIVE WSON DRV 6 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 1HIH TLV75715PDRVR ACTIVE WSON DRV 6 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 1HJH TLV75718PDRVR ACTIVE WSON DRV 6 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 1HKH TLV75719PDRVR ACTIVE WSON DRV 6 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 1HLH TLV75725PDRVR ACTIVE WSON DRV 6 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 1HMH TLV75728PDRVR ACTIVE WSON DRV 6 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 1HNH Addendum-Page 1 Samples PACKAGE OPTION ADDENDUM www.ti.com Orderable Device 9-Mar-2018 Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) TLV75730PDRVR ACTIVE WSON DRV 6 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 1HOH TLV75733PDRVR ACTIVE WSON DRV 6 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 1HPH TLV75740PDRVR ACTIVE WSON DRV 6 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 1HQH (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
PTLV75733PDBVR 价格&库存

很抱歉,暂时无法提供与“PTLV75733PDBVR”相匹配的价格&库存,您可以联系我们找货

免费人工找货