0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
SENSOREMULATOREVM

SENSOREMULATOREVM

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    -

  • 描述:

    - Voltage-Excited Bridge Sensor Emulator Sensor Evaluation Board

  • 数据手册
  • 价格&库存
SENSOREMULATOREVM 数据手册
Sensor-Emulator-EVM System Reference Guide by Art Kay High-Precision Linear Products SBOA102A Sensor-Emulator-EVM • Simplifies Development of Voltage Excited Bridge Sensor Signal Conditioning Systems • Provides Eleven Different Emulated Sensor Output Conditions • Provides Three Different Emulated Temperature Signals for Diode or Series Resistor Methods of Bridge Sensor Temperature Monitoring • Emulates Bridge Outputs - Cold Temp: 0%, 50%, 100% - Room Temp: 0%, 25%, 50%, 75%, 100% - Hot Temp: 0%, 50%, 100% • LED Indicators for Emulation at a Glance SBOA102A January 2005 Sensor-Emulator-EVM System Reference Guide 2 Sensor Emulator EVM Table of Contents Pages 1.0 Introduction to the Sensor-Emulator-EVM………………………….………. 4-5 2.0 Overview Hardware Emulation of a Real World Sensor……………….……6-15 3.0 Changing the Programmable Range of the Emulator…………………….…17 4.0 Required Electrical connections……………………………………………….18-25 5.0 Configuring the Sensor-Emulator-EVM to Emulate a Real World Sensor…26-43 6.0 Schematic of Sensor-Emulator-EVM……………………..……………………44 7.0 Parts List for Sensor-Emulator-EVM………………………………………...…45-46 Note: Some sections of this user’s guide reference use of the PGA309EVM. This is done for ease of documenting features available on the Sensor-Emulator-EVM which will work with any bridge sensor signal conditioning chip which uses voltage bridge excitation. SBOA102A January 2005 Sensor-Emulator-EVM System Reference Guide 3 1.0 Introduction to The Sensor Emulator Q: A: Q: A: What is the sensor emulator? The sensor emulator is a design that uses rotary switches and potentiometers to emulate the operation of a resistive bridge sensor at discrete operating points, for voltage excitation applications. Why use the sensor emulator? Once the sensor emulator has been programmed, it allows the user to cycle through a set of sensor output conditions very quickly. Doing this with a real sensor can be extremely time consuming because it can take several hours to cycle through various temperatures. Also, some sensors have non-repeatability issues. For example, pressure sensors can have pressure hysteresis and temperature hysteresis. The emulator does not have non-repeatability issues (repeatability errors are typically less then 0.03%). This approach allows the user to program the sensor signal conditioning chip many different ways to quickly and easily assess the optimal calibration settings for a given application. SBOA102A January 2005 Sensor-Emulator-EVM System Reference Guide 4 1.0 Introduction to The Sensor Emulator Q: A: Why not just use a precision voltage source to emulate a sensor? A precision voltage source is not affected by changing sensor excitation. Many sensor signal conditioning chips modulate the sensor excitation to compensate for sensor nonlinearity. In this case (and in the case of a ratiometric system), a precision voltage source would not work. Also, it is much more convenient to have all the different sensor conditions pre-programmed so that you can quickly transition from one condition to another without having to reprogram the source at each different condition. SBOA102A January 2005 Sensor-Emulator-EVM System Reference Guide 5 2.0 Overview of Hardware Emulation of a Real World Sensor • Description of real world bridge sensors – Temperature Drift and Nonlinearity versus applied stimulus – Measurement of the sensor temperature • Description of how Sensor-Emulator-EVM circuitry produces signals equivalent to real world sensors – Emulates four different real world configurations SBOA102A January 2005 Sensor-Emulator-EVM System Reference Guide 6 Bridge Sensor Output Figure 2.1 Figure 2.2 Figure 2.1 is an example of a typical resistive bridge sensor with no applied stimulus. With no stimulus applied, the resistors ideally would be perfectly matched and the sensors’ output (VIN_DIF ) would be zero. Most practical sensors, however, will have some output resulting from resistor mismatch. The output signal with no applied stimulus is called offset. Figure 2.2 is an example of a typical resistive bridge sensor with full scale stimulus applied. For the example sensor, the offset is 5mV (Figure 2.1) and the full scale output is 32mV (Figure 2.2). Span is defined as the difference between the full scale stimulus and the offset (Span = Full Scale Output – Offset). SBOA102A January 2005 Sensor-Emulator-EVM System Reference Guide 7 Drift and Nonlinearity with a Bridge Sensor Kbridge vs. pressure @Troom Bridge sensitivity vs. temp 4.0E-01 Kbridge, V/V or Vbridge@Vexc=1V 3.0E-01 2.5E-01 2.0E-01 Offset Span 1.5E-01 1.0E-01 Kbridge, V/V, or Vbridge@Vexc=1V 3.5E-01 3.5E-01 3.0E-01 2.5E-01 2.0E-01 1.5E-01 1.0E-01 5.0E-02 0.0E+00 5.0E-02 0 10 20 30 40 50 60 70 80 90 Pressure 0.0E+00 -50 0 50 100 150 Temp, degC Figure 2.3 Figure 2.4 An important aspect of pressure sensors is how they drift with temperature. Figure 2.3 is an example of span and offset drift with temperature for a typical resistive bridge sensor. Note that the drift is fairly large and nonlinear. Figure 2.4 is an example of how a bridge sensor can be nonlinear with applied stimulus (in this example the stimulus is pressure). The sensor emulator can be configured to reproduce these characteristics for most sensors. Note that the graphs are shown in a normalized format. The normalized format allows the graph to be easily scaled by multiplying by the bridge excitation voltage. SBOA102A January 2005 Sensor-Emulator-EVM System Reference Guide 8 100 5.0V Emulating Bridge Sensor Outputs R8 R101 10k 10k 2.526V R102 200 ohm This is a simplified diagram of how the sensor emulator generates a bridge output voltage. The potentiometer R102 is adjusted to set the output voltage of the emulated bridge (Vin+ with respect to Vin-). The potentiometer R103 is used to make fine adjustments in the output value. R8 and R9 set a common mode voltage for the other leg of the bridge. R101 and R104 set the adjustable output range of the emulated bridge. For the configuration shown, the output range is -25mV to +26mV (Vdif = Vin- - Vin+ ). Selecting a different value for R101 and R104 can expand this range. On the Sensor-Emulator-EVM, 11 channels like this one are selectable using a rotary switch. 3 R104 := 10⋅ 10 R102 := 200 3 R101 := 10⋅ 10 Vexc := 5 R9 10k 3 R104 := 10⋅ 10 R102 := 200 R104 10k R103 := 10 R103 := 0 Pot set to Minimum Resistance ( Vexc Vexc⋅ R104 + R103 + R102a Vdif := − R101 + R104 + R103 + R102 2 Vdif = 0.026 Vdif = −0.025 SBOA102A January 2005 26mV to -25mV Output of Sensor Vin- to Signal Conditioning Chip Figure 2.5 3 ) Vexc Vexc⋅ R104 + R103 + R102a − Vdif := R101 + R104 + R103 + R102 2 Positive full scale output of emulator Vdif = R101 := 10⋅ 10 Wiper position at bottom of POT ) Wiper at bottom Output of Sensor Vin+ to Signal Conditioning Chip 2.5V R102a := 0 ( 2.475V to R103 10 ohm R102a := 200 Wiper position at top of POT Pot set to maximum Resistance Wiper at top 2.5V Positive full scale of the emulator Negative full scale of the emulator Vexc := 5 Input To Bridge Vexc (Excitation voltage) Negative full scale output of emulator Sensor-Emulator-EVM System Reference Guide 9 Emulating a Temperature Sensor with a Series Bridge Resistor (Rt- connected to the bottom of the bridge) VT Figure 2.6 V exc⋅ R T R T + R Bridge Figure 2.7 Figure 2.8 Figure 2.6 illustrates one method for monitoring the temperature of a real world bridge sensor. In this type of circuit the resistance of the bridge has a strong temperature coefficient. The bridge resistance generates a bridge current with a strong temperature coefficient, which generates a voltage across the temperature sensing resistor (Rt). Rt is typically located remotely from the bridge and should not have a strong temperature coefficient. Note that Rt can be connected to the top or bottom of the bridge. This diagram illustrates the case where it is connected to the bottom of the bridge. The sensor emulator circuit has three channels to emulate the Rt temperature signal that are selectable through a rotary switch. An important aspect of the Rt method of temperature sensing is the reduction of the excitation voltage across the bridge by the series Rt resistance. For example, if Vt = 1V and Vexc = 5V, then only 4V remains for the bridge excitation. This phenomena is modeled by the sensor emulator and the detail of how this works are described in Figure 2.15. SBOA102A January 2005 Sensor-Emulator-EVM System Reference Guide 10 Emulating a Temperature Sensor with a Series Bridge Resistor (Rt+ connected to the top of the bridge) VT Figure 2.9 V exc⋅ R T R T + R Bridge Figure 2.10 Figure 2.11 The sensor emulator circuit can also emulate the case where the temperature sense resistor is connected to the top of the bridge. This is done using an instrumentation amplifier to translate the voltage signal to be referenced to Vexc rather then ground. This mode of operation is selected by a jumper (JUMP1). This circuit also feeds the temperature signal back to the bridge emulator to adjust the excitation across the bridge, as in the real world case. The details of how this feedback works are described in Figure 2.15. SBOA102A January 2005 Sensor-Emulator-EVM System Reference Guide 11 Diode Temperature Sensor Emulator Figure 2.12 Figure 2.13 Figure 2.14 Figure 2.12 illustrates another method for monitoring the temperature of a real world sensor. In this type of circuit a diode is placed in close thermal contact with the bridge and a constant current is driven through the diode. The diode voltage is a reasonably linear function with temperature (the slope is approximately -2mV / °C). The emulator circuit shown in Figure 2.13 uses resistors to develop a voltage equivalent to the diode voltage. Figure 2.14 shows how the emulator can be used to develop an equivalent diode drop if an external current source is not available. SBOA102A January 2005 Sensor-Emulator-EVM System Reference Guide 12 Emulation Case 1: Rt(Resistance in the Bottom of The Bridge) Rt- Temperature Signal Emulation Bridge Voltage Emulation Note that the output signals of the real world sensor and the emulator are the same. 1.101k VINP 1.1023k R2401 5.0V U1A + Adjusted to 1k R2402 R101 10k 50 2k R102 200 ohm U1b + 12.48mV VDIF = 12.4mV Adjusted to 50 R2403 Temperature Signal VT = 0.415V R103 Adjusted to 5 U1d + 10 ohm Output of Sensor Vin- to Signal Conditioning Chip 2.292V 100ohm R9 0.415V Temperature Signal VT- 2.305V Output of Sensor Vin+ to Signal Conditioning Chip 2.305V 150 2.292V Input To Bridge Vexc (Excitation voltage) 10k 10k 1.1075k VINN Rt100 X1 U4 R8 Vexc = 5V 1.1078k - 5.0V Real World Sensor 10k R104 R2404 1k 10k 0.415V 0.415V Rt U1c + X1 JUMP5 U5 GND RtDiode JUMP1 U2 + Temperature Signal Output referenced 0.415V Rt+ INA Figure 2.15 Rt+ Temperature Signal Emulation (Not used in this mode) 2 This diagram illustrates how the emulator generates the bridge output and temperature signals for the circuit where the sense resistor is connected to the bottom of the bridge. Note how the output voltage of the temperature emulator (0.415V) is fed back to the bottom of the bridge emulator via the buffer circuit (U5 and U1c), to emulate the bridge excitation change due to Rt in series with the bridge in the real world. SBOA102A January 2005 Sensor-Emulator-EVM System Reference Guide 13 Emulation Case 2: Rt+ (Resistance in the Top of The Bridge) Figure 2.16 This diagram illustrates how the emulator generates the bridge output and temperature signal for the circuit where the sense resistor is connected to the top of the bridge. Note how the output voltage of the temperature emulator (0.415V) is fed back to the bottom of the bridge emulator via the buffer circuit (U5 and U1c) to emulate the bridge excitation change due to Rt in series with the bridge in the real world. Also, note how the instrumentation amplifier (U2) is used to translate the temperature signal voltage so that it is referenced to the excitation voltage (Vexc). SBOA102A January 2005 Sensor-Emulator-EVM System Reference Guide 14 Emulation Case 3: Diode Temperature Sensor with External Current Source Figure 2.17 This diagram illustrates how the emulator generates the bridge output and temperature signal for the diode temperature measurement. Note that in this case JUMP1 is set so that the bottom of the bridge emulator is at ground potential. Also note that this configuration requires an external current source to operate (in this example, 7µA). SBOA102A January 2005 Sensor-Emulator-EVM System Reference Guide 15 Emulation Case 4: Diode Temperature Sensor with On-Board Voltage Reference Figure 2.17 This diagram illustrates how the emulator generates the bridge output and temperature signal for the diode temperature measurement. Note that in this case JUMP1 is set so that the bottom of the bridge emulator is at ground potential. Also note that this uses an on-board voltage reference (REF102) to set the diode voltage (JUMP2 selects this option). SBOA102A January 2005 Sensor-Emulator-EVM System Reference Guide 16 3.0 Changing the Programmable Range of the Emulator Figure 3.1 illustrates how the range of the bridge emulator can be adjusted by putting a resistor in parallel with R101 and R104. This needs to be done for each channel of the emulator (11 channels x 2 resistors = 22 resistors total). The examples illustrates how the range is increased using a 1kΩ parallel resistor. In general, it is best to select a parallel resistance value that scales your range so that the full scale output of the emulator is slightly larger than what is required for your emulator. Scaling the emulator in this manner will provide the optimal resolution and lowest noise. Note that holes are provided for a parallel through-hole resistor to simplify the process of adjusting the emulator scale. 5.0V R8 Input To Bridge Vexc (Excitation voltage) R101 10k 10k 2.526V R102 200 ohm Wiper at top 2.475V to Wiper at bottom Output of Sensor Vin+ to Signal Conditioning Chip 2.5V R103 10 ohm R9 R104 10k 10k VDIF = 26mV to -25mV Output of Sensor Vin- to Signal Conditioning Chip 2.5V Figure 3.0: Default Range Figure 3.1: Adjusted Range Positive full scale of the emulator Negative full scale of the emulator Vexc := 5 3 R104 := 10⋅ 10 R102 := 200 R102a := 200 Wiper position at top of POT R103 := 10 Pot set to maximum Resistance ( 3 R101 := 10⋅ 10 ) Vexc := 5 3 R104 := 10⋅ 10 R102 := 200 3 R101 := 10⋅ 10 Positive full scale of the emulator Negative full scale of the emulator Vexc := 5 Vexc := 5 R104 := 909.1 R102 := 200 R101 := 909.1 R104 := 909.1 R102 := 200 R102a := 0 R102a := 200 W iper position at to p of POT R102a := 0 W iper positio n at bottom of POT R103 := 0 Pot set to Minimum Resistance R103 := 10 R103 := 0 Pot set to Minimum Resistance ( ) Po t set to maximum Resistance ( ) ( ) Vexc⋅ R104 + R103 + R102a Vexc Vdif := − R101 + R104 + R103 + R102 2 Vexc⋅ R104 + R103 + R102a Vexc Vdif := − R101 + R104 + R103 + R102 2 Vexc⋅ R104 + R103 + R102a Vexc Vdif := − R101 + R104 + R103 + R102 2 Vexc⋅ R104 + R103 + R102a Vexc Vdif := − R101 + R104 + R103 + R102 2 Vdif = 0.026 Vdif = −0.025 Vdif = 0.259 Vdif = −0.248 Positive full scale output of emulator SBOA102A January 2005 R101 := 909.1 Wiper position at bottom of POT Positive full scale output of emulator Positive full scale output of emulator Sensor-Emulator-EVM System Reference Guide N egative full scale output of emulator 17 4.0 Required Electrical Connections to Sensor-Emulator-EVM SBOA102A January 2005 Sensor-Emulator-EVM System Reference Guide 18 Example of a Typical Engineering Bench Setup Using the Sensor Emulator This diagram illustrates an example of how the sensor emulator would be used in an engineering bench setup. The PGA309 is a programmable sensor signal conditioning chip. The Sensor-Emulator-EVM can be used in conjunction with the PGA309EVM to facilitate the development of a PGA309 application. SBOA102A January 2005 Sensor-Emulator-EVM System Reference Guide 19 Note on the Buf_Temp Banana Jacks The Buf_Temp banana jacks are used to monitor the temperature signal with a DVM. It is important to monitor temperature at this point because the non-buffered temperature signal is a high impedance output, and the DVM can load this output. SBOA102A January 2005 Sensor-Emulator-EVM System Reference Guide 20 Note on the Vin- and Vin+ Banana Jacks The Vin- and Vin+ banana jacks are used to monitor the sensor output signal with a DVM. The Vin banana jacks are connected to the Vin signal through a standard RC filter. This filter helps to reduce the coupling of noise (from ground loops) into the sensor output circuit, and into high gain sensor signal conditioner inputs. SBOA102A January 2005 Sensor-Emulator-EVM System Reference Guide 21 These jumpers are not used in this mode. Any position is ok. SBOA102A January 2005 These three channels are used to set the temperature output signal in this mode. The diode channels are not used in this mode. Set the jumper JUMP1 to the position shown to connect the Rttemperature emulation. Sensor-Emulator-EVM System Reference Guide Set the jumper JUMP5 to the position shown to connect the Rt emulation. 22 These jumpers are not used in this mode. Any position is ok. SBOA102A January 2005 These three channels are used to set the temperature output signal in this mode. The diode channels are not used in this mode. Set the jumper JUMP1 to the position shown to connect the Rt+ temperature emulation. Sensor-Emulator-EVM System Reference Guide Set the jumper JUMP5 to the position shown to connect the Rt emulation. 23 These jumpers must be set to the position shown to allow for external current source connection. SBOA102A January 2005 These three channels are used to set the temperature output signal in this mode. The Rt channels are not used in this mode. Set the jumper JUMP1 to the position shown to connect the Diode temperature emulation. Sensor-Emulator-EVM System Reference Guide Set the jumper JUMP5 to the position shown to connect GND to the bottom of the bridge emulator. 24 These jumpers must be set to the position shown to allow the on board voltage reference to generate the emulated diode voltages. SBOA102A January 2005 These three channels are used to set the temperature output signal in this mode. The Rt channels are not used in this mode. Set the jumper JUMP1 to the position shown to connect the Diode temperature emulation. Sensor-Emulator-EVM System Reference Guide Set the jumper JUMP5 to the position shown to connect GND to the bottom of the bridge emulator. 25 5.0 Configuring the SensorEmulator-EVM to Emulate a Real World Sensor If the raw output of the sensor is not known, the generate_emu_values.xls spreadsheet (SBOC065, available for download at www.ti.com) can be used to translate the specifications of your bridge sensor and temperature sensor to system voltage levels. The spreadsheet contains five sections: 1. Offset and Span: Generates the bridge output voltages. 2. Diode Vo: Generates the temperature sensor output voltages for the diode method. 3. Rt-: Generates the temperature sensor voltages for the Rt- method. 4. Rt+: Generates the temperature sensor voltages for the Rt- method. 5. PGA309_Error: Allows you to read the PGA309 via the ADS1100. SBOA102A January 2005 Sensor-Emulator-EVM System Reference Guide 26 Offset and Span: Generates the bridge output voltages from sensor specifications All the areas shown in light blue are either sensor specifications or system requirements. Enter these values and the spreadsheet will generate output voltage settings for each channel on the sensor emulator. The next several pages will show how the voltages listed in the spreadsheet are used to program the sensor emulator. SBOA102A January 2005 Sensor-Emulator-EVM System Reference Guide 27 The sensor output at cold temperature and 0% of applied stimulus is emulated by this channel. The rotary switch S1 is used to select this channel. When the channel is selected, LED D101 will light to indicate that the correct channel is selected. Bridge Sensitivity v s Temp 4.5E-03 4.0E-03 3.5E-03 Kbridge, V/V 3.0E-03 2.5E-03 2.0E-03 offset 1.5E-03 span 1.0E-03 5.0E-04 0.0E+00 -5.0E-04 -1.0E-03 -50 0 50 100 150 Tem p, degC SBOA102A January 2005 Sensor-Emulator-EVM System Reference Guide 28 The sensor output at cold temperature and 100% of applied stimulus is emulated by this channel. The rotary switch S1 is used to select this channel. When the channel is selected, LED D103 will light to indicate that the correct channel is selected. Bridge Sensitivity v s Temp 4.5E-03 4.0E-03 3.5E-03 Kbridge, V/V 3.0E-03 2.5E-03 2.0E-03 offset 1.5E-03 span 1.0E-03 5.0E-04 0.0E+00 -5.0E-04 -1.0E-03 -50 0 50 100 150 Tem p, degC SBOA102A January 2005 Sensor-Emulator-EVM System Reference Guide 29 The sensor output at room temperature and 0% of applied stimulus is emulated by this channel. The rotary switch S1 is used to select this channel. When the channel is selected, LED D104 will light to indicate that the correct channel is selected. Kbridge vs. pressure @Troom 3.5E-03 Kbridge, V/V, or Vbridge@Vexc=1V 3.0E-03 2.5E-03 2.0E-03 1.5E-03 1.0E-03 5.0E-04 0.0E+00 0 10 20 30 40 50 60 70 80 90 100 -5.0E-04 Pressure Emulate the nonlinearity of the curve at room temperature for four points. SBOA102A January 2005 Sensor-Emulator-EVM System Reference Guide 30 The sensor output at room temperature and 25% of applied stimulus is emulated by this channel. The rotary switch S1 is used to select this channel. When the channel is selected, LED D105 will light to indicate that the correct channel is selected. Kbridge vs. pressure @Troom 3.5E-03 Kbridge, V/V, or Vbridge@Vexc=1V 3.0E-03 2.5E-03 2.0E-03 1.5E-03 1.0E-03 5.0E-04 0.0E+00 0 10 20 30 40 50 60 70 80 90 100 -5.0E-04 Pressure SBOA102A January 2005 Sensor-Emulator-EVM System Reference Guide 31 The sensor output at room temperature and 50% of applied stimulus is emulated by this channel. The rotary switch S1 is used to select this channel. When the channel is selected, LED D106 will light to indicate that the correct channel is selected. Kbridge vs. pressure @Troom 3.5E-03 Kbridge, V/V, or Vbridge@Vexc=1V 3.0E-03 2.5E-03 2.0E-03 1.5E-03 1.0E-03 5.0E-04 0.0E+00 0 10 20 30 40 50 60 70 80 90 100 -5.0E-04 Pressure SBOA102A January 2005 Sensor-Emulator-EVM System Reference Guide 32 The sensor output at room temperature and 75% of applied stimulus is emulated by this channel. The rotary switch S1 is used to select this channel. When the channel is selected, LED D107 will light to indicate that the correct channel is selected. Kbridge vs. pressure @Troom 3.5E-03 Kbridge, V/V, or Vbridge@Vexc=1V 3.0E-03 2.5E-03 2.0E-03 1.5E-03 1.0E-03 5.0E-04 0.0E+00 0 10 20 30 40 50 60 70 80 90 100 -5.0E-04 Pressure SBOA102A January 2005 Sensor-Emulator-EVM System Reference Guide 33 The sensor output at room temperature and 100% of applied stimulus is emulated by this channel. The rotary switch S1 is used to select this channel. When the channel is selected, LED D108 will light to indicate that the correct channel is selected. Kbridge vs. pressure @Troom 3.5E-03 Kbridge, V/V, or Vbridge@Vexc=1V 3.0E-03 2.5E-03 2.0E-03 1.5E-03 1.0E-03 5.0E-04 0.0E+00 0 10 20 30 40 50 60 70 80 90 100 -5.0E-04 Pressure SBOA102A January 2005 Sensor-Emulator-EVM System Reference Guide 34 The other channels are set in a similar manner and selected using S1. SBOA102A January 2005 Sensor-Emulator-EVM System Reference Guide 35 Diode Vo: Generate Diode Voltages based on Operating Temperature Range The second tab in the spreadsheet allows the user to enter the temperature range and room temperature diode voltage (light blue areas). The spreadsheet calculates the diode voltages and displays the results in the yellow areas. Note that the Temp ADC area is specific to the PGA309 sensor signal conditioning chip. The Temp ADC values will be used in the computation of the Counts for the temp ADC. The next several pages will show how the diode voltages are used to program the sensor emulator. SBOA102A January 2005 Sensor-Emulator-EVM System Reference Guide 36 The temperature output signal at cold temperature (-45°C) is emulated by this channel. The rotary switch S2 is used to select this channel. When the channel is selected, LED D201 will light to indicate that the correct channel is selected. NOTE: When emulating Diode temperature control, the Rt temperature section is not used. SBOA102A January 2005 Sensor-Emulator-EVM System Reference Guide 37 The temperature output signal at room temperature (25°C) is emulated by this channel. The rotary switch S2 is used to select this channel. When the channel is selected, LED D202 will light to indicate that the correct channel is selected. SBOA102A January 2005 Sensor-Emulator-EVM System Reference Guide 38 The temperature output signal at hot temperature (85°C) is emulated by this channel. The rotary switch S2 is used to select this channel. When the channel is selected, LED D203 will light to indicate that the correct channel is selected. SBOA102A January 2005 Sensor-Emulator-EVM System Reference Guide 39 Generate Rt Voltages based on Operating Temperature Range and System Parameters The third tab in the spreadsheet allows the user to enter the temperature range and other system parameters in the light blue areas. The spreadsheet calculates the voltage level of the temperature signal and displays this in the yellow areas. Note that the Temp ADC area is specific to the PGA309 sensor signal conditioning chip. The Temp ADC values will be used in the computation of the Counts for the Temp ADC. The next several pages will show how the Rt voltages are used to program the sensor emulator. SBOA102A January 2005 Sensor-Emulator-EVM System Reference Guide 40 The temperature output signal at cold temperature (-45°C) is emulated by this channel. The rotary switch S2 is used to select this channel. When the channel is selected, LED D204 will light to indicate that the correct channel is selected. SBOA102A January 2005 Sensor-Emulator-EVM System Reference Guide 41 The temperature output signal at room temperature (20°C) is emulated by this channel. The rotary switch S2 is used to select this channel. When the channel is selected, LED D204 will light to indicate that the correct channel is selected. SBOA102A January 2005 Sensor-Emulator-EVM System Reference Guide 42 The temperature output signal at hot temperature (90°C) is emulated by this channel. The rotary switch S2 is used to select this channel. When the channel is selected, LED D204 will light to indicate that the correct channel is selected. SBOA102A January 2005 Sensor-Emulator-EVM System Reference Guide 43 6.0 Schematic SBOA102A January 2005 Sensor-Emulator-EVM System Reference Guide 44 7.0 Parts List SBOA102A January 2005 Sensor-Emulator-EVM System Reference Guide 45 Parts List, cont’d SBOA102A January 2005 Sensor-Emulator-EVM System Reference Guide 46 SBOA102A January 2005 Sensor-Emulator-EVM System Reference Guide 47
SENSOREMULATOREVM 价格&库存

很抱歉,暂时无法提供与“SENSOREMULATOREVM”相匹配的价格&库存,您可以联系我们找货

免费人工找货
SENSOREMULATOREVM
  •  国内价格 香港价格
  • 1+2222.176201+268.70370

库存:0