0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
SN65HVD11D

SN65HVD11D

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    SOIC8_150MIL

  • 描述:

    SN65HVD11 3.3V DIFFERENTIAL TRAN

  • 数据手册
  • 价格&库存
SN65HVD11D 数据手册
SN65HVD10, SN65HVD11, SN65HVD12 SN75HVD10, SN75HVD11, SN75HVD12 SLLS505P – FEBRUARY 2002 – REVISED FEBRUARY 2022 SNx5HVD1x 3.3-V RS-485 Transceivers 1 Features 3 Description • • • The SN65HVD10, SN75HVD10, SN65HVD11, SN75HVD11, SN65HVD12, and SN75HVD12 bus transceivers all combine a 3-state differential line driver, as well as a differential input line receiver that operates with a single 3.3-V power supply. They are designed for balanced transmission lines and meet or exceed ANSI standard TIA/EIA-485-A and ISO 8482:1993. These differential bus transceivers are monolithic integrated circuits, designed for bidirectional data communication on multipoint bustransmission lines. The drivers and receivers have active-high and active-low enables, that can be externally connected together to function as direction control. Very low device standby supply current, can be achieved by disabling the driver and the receiver. • • • • • • • • Operates with a 3.3-V supply Bus-pin ESD protection exceeds 16-kV HBM 1/8 Unit-load option available (up to 256 nodes on the bus) Optional driver output transition times for signaling rates 1of 1 Mbps, 10 Mbps, and 32 Mbps Meets or exceeds the requirements of ANSI TIA/ EIA-485-A Bus-pin short-circuit protection from –7 V to 12 V Low-current standby mode: 1 µA, typical Open-circuit, idle-bus, and shorted-bus fail-safe receiver Thermal shutdown protection Glitch-free power-up and power-down protection for hot-plugging applications SN75176 footprint 2 Applications • • • • • • • Digital motor control Utility meters Chassis-to-chassis interconnects Electronic security stations Industrial process control Building automation Point-of-sale (POS) terminals and networks The driver differential outputs and receiver differential inputs connect internally to form a differential input/ output (I/O) bus port, that is designed to offer minimum loading to the bus whenever the driver is disabled or VCC = 0. These parts feature wide positive and negative common-mode voltage ranges, making them suitable for party-line applications. Device Information PACKAGE(1) PART NUMBER BODY SIZE (NOM) SN65HVD10 SN65HVD11 SOIC (8) 4.90 mm × 3.91 mm PDIP (8) 9.81 mm × 6.35 mm SN65HVD12 SN75HVD10 SN75HVD11 SN75HVD12 (1) R R R A RE B DE D For all available packages, see the orderable addendum at the end of the data sheet. R A RT RT D A R B A D R RE DE D RE B DE D B R D D R RE DE D Copyright © 2016, Texas Instruments Incorporated Typical Application Diagram 1 The signaling rate of a line is the number of voltage transitions that are made per second expressed in the units bps (bits per second). An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA. SN65HVD10, SN65HVD11, SN65HVD12 SN75HVD10, SN75HVD11, SN75HVD12 www.ti.com SLLS505P – FEBRUARY 2002 – REVISED FEBRUARY 2022 Table of Contents 1 Features............................................................................1 2 Applications..................................................................... 1 3 Description.......................................................................1 4 Revision History.............................................................. 2 5 Device Comparison Table...............................................3 6 Pin Configuration and Functions...................................3 7 Specifications.................................................................. 4 7.1 Absolute Maximum Ratings........................................ 4 7.2 ESD Ratings............................................................... 4 7.3 Recommended Operating Conditions.........................4 7.4 Thermal Information....................................................5 7.5 Driver Electrical Characteristics.................................. 5 7.6 Receiver Electrical Characteristics............................. 6 7.7 Power Dissipation Characteristics.............................. 6 7.8 Driver Switching Characteristics................................. 7 7.9 Receiver Switching Characteristics.............................8 7.10 Dissipation Ratings................................................... 8 7.11 Typical Characteristics.............................................. 9 8 Parameter Measurement Information.......................... 11 9 Detailed Description......................................................17 9.1 Overview................................................................... 17 9.2 Functional Block Diagram......................................... 17 9.3 Feature Description...................................................17 9.4 Device Functional Modes..........................................17 10 Application and Implementation................................ 19 10.1 Application Information........................................... 19 10.2 Typical Application.................................................. 20 11 Power Supply Recommendations..............................23 12 Layout...........................................................................23 12.1 Layout Guidelines................................................... 23 12.2 Layout Example...................................................... 24 12.3 Thermal Considerations..........................................24 13 Device and Documentation Support..........................26 13.1 Device Support....................................................... 26 13.2 Related Links.......................................................... 26 13.3 Receiving Notification of Documentation Updates..26 13.4 Support Resources................................................. 26 13.5 Trademarks............................................................. 26 13.6 Electrostatic Discharge Caution..............................26 13.7 Glossary..................................................................26 14 Mechanical, Packaging, and Orderable Information.................................................................... 26 4 Revision History Changes from Revision O (February 2017) to Revision P (February 2022) Page • Changed the Thermal Information table............................................................................................................. 5 Changes from Revision N (July 2015) to Revision O (February 2017) Page • Added MIN value of –55°C to the Storage temperature in Absolute Maximum Ratings ....................................4 Changes from Revision M (July 2013) to Revision N (July 2015) Page • Added Pin Configuration and Functions section, ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section ............................................................................................................................................................... 1 Changes from Revision L (July 2013) to Revision M (July 2013) Page • Changed the VIT+ TYP value From: –0.65 V To: –0.065 V ................................................................................ 6 Changes from Revision K (September 2011) to Revision L (July 2013) Page • Added TYP = –0.65 V to VIT+ .............................................................................................................................6 • Added TYP = –0.1 V to VIT– ...............................................................................................................................6 Changes from Revision J (February 2009) to Revision K (September 2011) Page • Added new section 'LOW-POWER STANDBY MODE', in the Application Information section........................18 2 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: SN65HVD10 SN65HVD11 SN65HVD12 SN75HVD10 SN75HVD11 SN75HVD12 SN65HVD10, SN65HVD11, SN65HVD12 SN75HVD10, SN75HVD11, SN75HVD12 www.ti.com SLLS505P – FEBRUARY 2002 – REVISED FEBRUARY 2022 5 Device Comparison Table PART NUMBER SIGNALING RATE UNIT LOADS SN65HVD10P 32 Mbps 1/2 SN65HVD11P 10 Mbps 1/8 SN65HVD12P 1 Mbps 1/8 VP12 SN75HVD10P 32 Mbps 1/2 VN10 SOIC(1) PDIP SN65HVD10D SN65HVD11D SN65HVD12D SN75HVD10D SN75HVD11D SN75HVD11P 10 Mbps 1/8 SN75HVD12D SN75HVD12P 1 Mbps 1/8 SN65HVD10QD SN65HVD10QP 32 Mbps 1/2 SN65HVD11QD SN65HVD11QP 10 Mbps 1/8 (1) TA SOIC MARKING VP10 –40°C to 85°C –0°C to 70°C VP11 VN11 VN12 –40°C to 125°C VP10Q VP11Q The D package is available as a tape and reel. Add an R suffix to the part number (that is, SN75HVD11DR) for this option. 6 Pin Configuration and Functions R RE DE D 1 8 2 7 3 6 4 5 VCC B A GND Figure 6-1. D, JD, or HKJ Package 8-Pin SOIC or PDIP (Top View) Table 6-1. Pin Functions PIN NAME NO. TYPE DESCRIPTION A 6 Bus input/output Driver output or receiver input (complementary to B) B 7 Bus input/output Driver output or receiver input (complementary to A) D 4 Digital input Driver data input DE 3 Digital input Active-high driver enable GND 5 R 1 Digital output RE 2 Digital input VCC 8 Supply Reference potential Local device ground Copyright © 2022 Texas Instruments Incorporated Receive data output Active-low receiver enable 3-V to 3.6-V supply Submit Document Feedback Product Folder Links: SN65HVD10 SN65HVD11 SN65HVD12 SN75HVD10 SN75HVD11 SN75HVD12 3 SN65HVD10, SN65HVD11, SN65HVD12 SN75HVD10, SN75HVD11, SN75HVD12 www.ti.com SLLS505P – FEBRUARY 2002 – REVISED FEBRUARY 2022 7 Specifications 7.1 Absolute Maximum Ratings over operating free-air temperature range unless otherwise noted (1) (2) VCC Supply voltage Voltage at A or B IO UNIT 6 V –9 14 V –0.5 VCC + 0.5 V Voltage input, transient pulse, A and B, through 100 Ω, see Figure 8-12 –50 50 V Receiver output current –11 11 mA Continuous total power dissipation Junction temperature Tstg Storage temperature (2) MAX Input voltage at D, DE, R, or RE TJ (1) MIN –0.3 See Section 7.10 –55 170 °C 145 °C Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Section 7.3 is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltage values, except differential I/O bus voltages, are with respect to network ground terminal. 7.2 ESD Ratings VALUE Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) V(ESD) (1) (2) (3) Electrostatic discharge Pins 5, 6, and 7 ±16000 All pins ±4000 Charged device model (CDM), per JEDEC specification JESD22-C101(2) All pins Electrical fast transient/burst(3) Pins 5, 6, and 7 UNIT V ±1000 ±4000 JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Tested in accordance with IEC 61000-4-4. 7.3 Recommended Operating Conditions over operating free-air temperature range unless otherwise noted MIN VCC Supply voltage VI or VIC Voltage at any bus terminal (separately or common mode) VIH High-level input voltage VIL VID 12 2 VCC Low-level input voltage D, DE, RE 0 0.8 Differential input voltage See Figure 8-8 –12 12 Driver –60 IOL Low-level output current RL Differential load resistance CL Differential load capacitance Signaling rate 4 Receiver UNIT 3.6 D, DE, RE High-level output current (1) (2) MAX –7(1) IOH TJ (2) NOM 3 V mA –8 Driver 60 Receiver mA 8 54 60 Ω 50 pF HVD10 32 HVD11 10 HVD12 1 Junction temperature Mbps 145 °C The algebraic convention, in which the least positive (most negative) limit is designated as minimum is used in this data sheet. See thermal characteristics table for information regarding this specification. Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: SN65HVD10 SN65HVD11 SN65HVD12 SN75HVD10 SN75HVD11 SN75HVD12 SN65HVD10, SN65HVD11, SN65HVD12 SN75HVD10, SN75HVD11, SN75HVD12 www.ti.com SLLS505P – FEBRUARY 2002 – REVISED FEBRUARY 2022 7.4 Thermal Information SNx5HVD1xx THERMAL METRIC(1) D (SOIC) P (PDIP) UNIT 8 Pins 8 Pins Junction-to-ambient thermal resistance 116.7 84.3 °C/W Junction-to-case (top) thermal resistance 56.3 65.4 °C/W RθJB Junction-to-board thermal resistance 63.4 62.1 °C/W ψJT Junction-to-top characterization parameter 8.8 31.3 °C/W ψJB Junction-to-board characterization parameter 62.6 60.4 °C/W RθJA Rθ JC(top) (1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report. 7.5 Driver Electrical Characteristics Over recommended operating conditions unless otherwise noted PARAMETER TEST CONDITIONS VIK Input clamp voltage II = –18 mA |VOD| Differential output voltage(2) Δ|VOD| Change in magnitude of differential output voltage VOC(PP) Peak-to-peak common-mode output voltage VOC(SS) Steady-state common-mode output voltage See Figure 8-3 ΔVOC(SS) Change in steady-state common-mode output voltage IOZ High-impedance output current II Input current IOS Short-circuit output current –7 V ≤ VO ≤ 12 V C(OD) Differential output capacitance VOD = 0.4 sin(4E6πt) + 0.5 V, DE at 0 V (1) (2) Supply current TYP(1) MAX –1.5 IO = 0 ICC MIN V 2 RL = 54 Ω, See Figure 8-1 1.5 Vtest = –7 V to 12 V, See Figure 8-2 1.5 See Figure 8-1 and Figure 8-2 UNIT VCC V –0.2 0.2 400 V mV 1.4 2.5 V –0.05 0.05 V See receiver input currents D DE –100 0 0 100 –250 250 16 μA mA pF RE at VCC, D and DE at VCC, No load Receiver disabled and driver enabled 9 15.5 mA RE at VCC, D at VCC, DE at 0 V, No load Receiver disabled and driver disabled (standby) 1 5 μA RE at 0 V, D and DE at VCC, No load Receiver enabled and driver enabled 9 15.5 mA All typical values are at 25°C and with a 3.3-V supply. For TA > 85°C, VCC is ±5%. Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: SN65HVD10 SN65HVD11 SN65HVD12 SN75HVD10 SN75HVD11 SN75HVD12 5 SN65HVD10, SN65HVD11, SN65HVD12 SN75HVD10, SN75HVD11, SN75HVD12 www.ti.com SLLS505P – FEBRUARY 2002 – REVISED FEBRUARY 2022 7.6 Receiver Electrical Characteristics Over recommended operating conditions unless otherwise noted PARAMETER TEST CONDITIONS VIT+ Positive-going input threshold voltage IO = –8 mA VIT– Negative-going input threshold voltage MIN IO = 8 mA –0.2 –1.5 Vhys Hysteresis voltage (VIT+ – VIT–) VIK Enable-input clamp voltage II = –18 mA VOH High-level output voltage VID = 200 mV, IOH = –8 mA, see Figure 8-8 VOL Low-level output voltage VID = –200 mV, IOL = 8 mA, see Figure 8-8 IOZ High-impedance-state output current VO = 0 or VCC, RE at VCC TYP(1) MAX –0.065 –0.01 VA or VB = –7 V 2.4 V HVD11, HVD12, Other inputs at 0 V VA or VB = –7 V HVD10, Other inputs at 0 V 0.13 –0.04 0.2 0.5 0.25 0.5 –0.4 –0.2 –0.15 VA or VB = –7 V, VCC = 0 V –0.4 VIH = 2 V –30 IIL Low-level input current, RE VIL = 0.8 V –30 CID Differential input capacitance VID = 0.4 sin(4E6πt) + 0.5 V, DE at 0 V (1) μA 0.06 –0.05 High-level input current, RE Supply current 1 0.11 –0.05 IIH ICC V 0.05 –0.1 VA or VB = 12 V VA or VB = 12 V, VCC = 0 V 0.4 –1 VA or VB = –7 V, VCC = 0 V Bus input current mV V VA or VB = 12 V II V –0.1 35 VA or VB = 12 V, VCC = 0 V UNIT mA mA 0 μA 0 μA 15 pF RE at 0 V D and DE at 0 V No load Receiver enabled and driver disabled 4 8 mA RE at VCC D at VCC DE at 0 V No load Receiver disabled and driver disabled (standby) 1 5 μA RE at 0 V D and DE at VCC No load Receiver enabled and driver enabled 9 15.5 mA All typical values are at 25°C and with a 3.3-V supply. 7.7 Power Dissipation Characteristics PARAMETER PD RL= 60 Ω, CL = 50 pF, DE at VCC, RE at 0 V, Input to D is a 50% duty-cycle square wave at indicated signaling rate High-K board, no airflow TA Ambient air temperature(1) TJSD Thermal shutdown junction temperature(1) (1) (2) 6 Device power dissipation TEST CONDITIONS No airflow(2) MIN TYP MAX HVD10 (32Mbps) 198 250 HVD11 (10Mbps) 141 176 HVD12 (500 kbps) 133 161 D pkg –40 116 P pkg –40 123 165 UNIT mW °C °C See Section 12.3.1 section for an explanation of these parameters. JESD51−10, Test Boards for Through-Hole Perimeter Leaded Package Thermal Measurements. Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: SN65HVD10 SN65HVD11 SN65HVD12 SN75HVD10 SN75HVD11 SN75HVD12 SN65HVD10, SN65HVD11, SN65HVD12 SN75HVD10, SN75HVD11, SN75HVD12 www.ti.com SLLS505P – FEBRUARY 2002 – REVISED FEBRUARY 2022 7.8 Driver Switching Characteristics Over recommended operating conditions unless otherwise noted MIN TYP(1) MAX HVD10 5 8.5 16 HVD11 18 25 40 HVD12 135 200 300 HVD10 5 8.5 16 PARAMETER Propagation delay time, low-to-high-level output tPLH Propagation delay time, high-to-low-level output tPHL TEST CONDITIONS HVD11 18 25 40 HVD12 135 200 300 HVD10 Differential output signal rise time tr Differential output signal fall time tf tsk(p) Pulse skew (|tPHL – tPLH|) tsk(pp) (2) tPZH tPHZ tPZL Part-to-part skew Propagation delay time, high-impedance-tohigh-level output Propagation delay time, high-level-to-highimpedance output Propagation delay time, high-impedance-tolow-level output 3 4.5 10 10 20 30 HVD12 100 170 300 HVD10 3 4.5 10 HVD11 10 20 30 HVD12 100 170 300 HVD11 RL = 54 Ω, CL = 50 pF See Figure 8-4 HVD10 1.5 HVD11 2.5 HVD12 7 HVD10 6 HVD11 11 HVD12 100 HVD10 31 HVD11 55 HVD12 300 HVD10 RL = 110 Ω, RE at 0 V See Figure 8-5 ns ns ns ns ns ns ns 25 HVD11 55 HVD12 300 HVD10 26 HVD11 55 HVD12 300 HVD10 UNIT RL = 110 Ω, RE at 0 V See Figure 8-6 ns ns 26 tPLZ Propagation delay time, low-level-to-highimpedance output tPZH Propagation delay time, standby-to-high- RL = 110 Ω, RE at 3 V level output See Figure 8-5 6 μs tPZL Propagation delay time, standby-to-lowlevel output 6 μs (1) (2) HVD11 75 HVD12 400 RL = 110 Ω, RE at 3 V See Figure 8-6 ns All typical values are at 25°C and with a 3.3-V supply. tsk(pp) is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices operate with the same supply voltages, at the same temperature, and have identical packages and test circuits. Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: SN65HVD10 SN65HVD11 SN65HVD12 SN75HVD10 SN75HVD11 SN75HVD12 7 SN65HVD10, SN65HVD11, SN65HVD12 SN75HVD10, SN75HVD11, SN75HVD12 www.ti.com SLLS505P – FEBRUARY 2002 – REVISED FEBRUARY 2022 7.9 Receiver Switching Characteristics Over recommended operating conditions unless otherwise noted PARAMETER TEST CONDITIONS MIN TYP(1) MAX UNIT tPLH Propagation delay time, low-to-high-level output HVD10 12.5 20 25 tPHL Propagation delay time, high-to-low-level output HVD10 12.5 20 25 tPLH Propagation delay time, low-to-high-level output HVD11 HVD12 30 55 70 ns tPHL Propagation delay time, high-to-low-level output HVD11 HVD12 30 55 70 ns tsk(p) Pulse skew (|tPHL – tPLH|) tsk(pp) (2) Part-to-part skew tr Output signal rise time tf Output signal fall time ns VID = –1.5 V to 1.5 V CL = 15 pF See Figure 8-9 HVD10 1.5 HVD11 4 HVD12 4 HVD10 8 HVD11 15 HVD12 tPZH (1) tPZL (1) CL = 15 pF See Figure 8-9 1 2 5 1 2 5 Output enable time to high level ns 15 Output enable time to low level 15 CL = 15 pF, DE at 3 V See Figure 8-10 Output disable time from high level tPLZ Output disable time from low level tPZH (2) Propagation delay time, standby-to-highlevel output CL = 15 pF, DE at 0 Propagation delay time, standby-to-low- See Figure 8-11 level output (1) (2) ns 15 tPHZ tPZL (2) ns 20 ns 15 6 μs 6 All typical values are at 25°C and with a 3.3-V supply tsk(pp) is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices operate with the same supply voltages, at the same temperature, and have identical packages and test circuits. 7.10 Dissipation Ratings PACKAGE TA ≤ 25°C POWER RATING DERATING FACTOR(1) ABOVE TA = 25°C TA = 70°C POWER RATING TA = 85°C POWER RATING TA = 125°C POWER RATING D(2) 597 mW 4.97 mW/°C 373 mW 298 mW 100 mW (1) (2) (3) 8 D(3) 990 mW 8.26 mW/°C 620 mW 496 mW 165 mW P 1290 mW 10.75 mW/°C 806 mW 645 mW 215 mW This is the inverse of the junction-to-ambient thermal resistance when board-mounted and with no air flow. Tested in accordance with the Low-K thermal metric definitions of EIA/JESD51-3. Tested in accordance with the High-K thermal metric definitions of EIA/JESD51-7. Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: SN65HVD10 SN65HVD11 SN65HVD12 SN75HVD10 SN75HVD11 SN75HVD12 SN65HVD10, SN65HVD11, SN65HVD12 SN75HVD10, SN75HVD11, SN75HVD12 www.ti.com SLLS505P – FEBRUARY 2002 – REVISED FEBRUARY 2022 7.11 Typical Characteristics 70 TA = 25°C RE at VCC DE at VCC RL = 54 W CL = 50 pF VCC = 3.6 V 60 50 VCC = 3 V VCC = 3.3 V 40 30 0 5 10 15 20 25 30 35 TA = 25°C RE at VCC DE at VCC I CC − RMS Supply Current − mA I CC − RMS Supply Current − mA 70 50 VCC = 3 V VCC = 3.3 V 40 30 0 2.5 Signaling Rate − Mbps TA = 25°C RE at VCC DE at VCC 5 7.5 Signaling Rate − Mbps 10 Figure 7-2. HVD11 RMS Supply Current vs Signaling Rate 300 RL = 54 W CL = 50 pF 250 VCC = 3.6 V I I − Bus Input Current − uA I CC − RMS Supply Current − mA 70 VCC = 3.6 V 60 40 Figure 7-1. HVD10 RMS Supply Current vs Signaling Rate RL = 54 W CL = 50 pF 60 VCC = 3.3 V 50 VCC = 3 V 40 TA = 25°C DE at 0 V 200 VCC = 0 V 150 100 50 VCC = 3.3 V 0 −50 −100 −150 30 100 400 700 Signaling Rate − kbps −200 −7 −6−5 −4−3 −2−1 0 1 2 3 4 5 6 7 8 9 10 11 12 VI − Bus Input Voltage − V 1000 Figure 7-3. HVD12 RMS Supply Current vs Signaling Rate Figure 7-4. HVD10 Bus Input Current vs Bus Input Voltage 90 I I − Bus Input Current − uA 70 150 TA = 25°C DE at 0 V 60 50 40 VCC = 0 V 30 20 10 0 VCC = 3.3 V −10 −20 −30 −40 IOH − High-Level Output Current − mA 80 TA = 25°C DE at VCC D at VCC VCC = 3.3 V 100 50 0 −50 −100 −150 −50 −60 −7−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 VI − Bus Input Voltage − V Figure 7-5. HVD11 or HVD12 Bus Input Current vs Bus Input Voltage Copyright © 2022 Texas Instruments Incorporated −200 −4 −2 0 2 4 VOH − Driver High-Level Output Voltage − V 6 Figure 7-6. High-Level Output Current vs Driver High-Level Output Voltage Submit Document Feedback Product Folder Links: SN65HVD10 SN65HVD11 SN65HVD12 SN75HVD10 SN75HVD11 SN75HVD12 9 SN65HVD10, SN65HVD11, SN65HVD12 SN75HVD10, SN75HVD11, SN75HVD12 www.ti.com SLLS505P – FEBRUARY 2002 – REVISED FEBRUARY 2022 7.11 Typical Characteristics (continued) 2.5 200 TA = 25°C DE at VCC D at 0 V VCC = 3.3 V 160 140 2.4 VOD − Driver Differential Output − V I OL − Low-Level Output Current − mA 180 120 100 80 60 40 20 −20 −4 −2 0 2 4 6 VOL − Driver Low-Level Output Voltage − V 2.1 2.0 1.9 1.8 1.7 1.5 −40 8 Figure 7-7. Low-Level Output Current vs Driver Low-Level Output Voltage −15 10 35 60 TA − Free-Air Temperature − °C 85 Figure 7-8. Driver Differential Output vs Free-Air Temperature 600 −40 TA = 25°C DE at VCC D at VCC RL = 54 Ω −35 −30 500 HVD12 Enable Time − ns I O − Driver Output Current − mA 2.2 1.6 0 −25 −20 −15 400 HVD11 300 HVD10 200 −10 100 −5 0 0 0 0.50 1 1.50 2 2.50 3 3.50 VCC − Supply Voltage − V Figure 7-9. Driver Output Current vs Supply Voltage 10 2.3 VCC = 3.3 V DE at VCC D at VCC Submit Document Feedback -7 -2 3 8 13 V(TEST) − Common-Mode Voltage − V Figure 7-10. Enable Time vs Common-Mode Voltage Copyright © 2022 Texas Instruments Incorporated Product Folder Links: SN65HVD10 SN65HVD11 SN65HVD12 SN75HVD10 SN75HVD11 SN75HVD12 SN65HVD10, SN65HVD11, SN65HVD12 SN75HVD10, SN75HVD11, SN75HVD12 www.ti.com SLLS505P – FEBRUARY 2002 – REVISED FEBRUARY 2022 8 Parameter Measurement Information VCC DE II IOA A VOD 0 or 3 V B 54 Ω±1% IOB VI VOB VOA Copyright © 2017, Texas Instruments Incorporated Figure 8-1. Driver VOD Test Circuit and Voltage and Current Definitions 375 Ω ±1% VCC DE D A VOD 0 or 3 V 60 Ω ±1% + _ −7 V < V(test) < 12 V B 375 Ω ±1% Copyright © 2017, Texas Instruments Incorporated Figure 8-2. Driver VOD With Common-Mode Loading Test Circuit VCC DE Input D 27 Ω ± 1% A A VA B VB VOC(PP) 27 Ω ± 1% B CL = 50 pF ±20% VOC DVOC(SS) VOC CL Includes Fixture and Instrumentation Capacitance Copyright © 2017, Texas Instruments Incorporated Input: PRR = 500 kHz, 50% Duty Cycle, tr < 60 ns, tf < 6 ns ZO = 50 Ω Figure 8-3. Test Circuit and Definitions for the Driver Common-Mode Output Voltage 3V VCC DE D Input Generator VI 50 Ω CL = 50 pF ±20% A B VOD RL = 54 Ω ± 1% CL Includes Fixture and Instrumentation Capacitance 1.5 V VI t PLH 1.5 V t PHL 90% VOD 90% 0V 10% tr tf ≈2 V 0V 10% ≈ –2 V Copyright © 2017, Texas Instruments Incorporated Generator: PRR = 500 kHz, 50% Duty Cycle, tr < 60 ns, tf < 6 ns ZO = 50 Ω Figure 8-4. Driver Switching Test Circuit and Voltage Waveforms Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: SN65HVD10 SN65HVD11 SN65HVD12 SN75HVD10 SN75HVD11 SN75HVD12 11 SN65HVD10, SN65HVD11, SN65HVD12 SN75HVD10, SN75HVD11, SN75HVD12 www.ti.com SLLS505P – FEBRUARY 2002 – REVISED FEBRUARY 2022 A 3V D 3V S1 VO VI 1.5 V 1.5 V B DE Input Generator VI 50 Ω 0V 0.5 V RL = 110 Ω ± 1% CL = 50 pF ±20% t PZH VOH CL Includes Fixture and Instrumentation Capacitance VO 2.3 V ≈0V t PHZ Copyright © 2017, Texas Instruments Incorporated Generator: PRR = 500 kHz, 50% Duty Cycle, tr < 60 ns, tf < 6 ns ZO = 50 Ω Figure 8-5. Driver High-Level Enable and Disable Time Test Circuit and Voltage Waveforms 3V A 3V D VI ≈3 V 1.5 V VI S1 1.5 V VO 0V B DE Input Generator RL = 110 Ω ± 1% t PZL t PLZ ≈3 V CL = 50 pF ±20% 50 Ω 0.5 V CL Includes Fixture and Instrumentation Capacitance VO 2.3 V VOL Copyright © 2017, Texas Instruments Incorporated Generator: PRR = 500 kHz, 50% Duty Cycle, tr < 60 ns, tf < 6 ns ZO = 50 Ω Figure 8-6. Driver Low-Level Output Enable and Disable Time Test Circuit and Voltage Waveforms 375 Ω ± 1% Y -7 V < V(TEST) < 12 V D 0 or 3 V VOD 60 W ± 1% Z DE 375 Ω ± 1% Input Generator V 50 Ω 50% tpZH(diff) VOD (high) 1.5 V 0V tpZL(diff) -1.5 V VOD (low) Copyright © 2017, Texas Instruments Incorporated The time tPZL(x) is the measure from DE to VOD(x). VOD is valid when it is greater than 1.5 V. Figure 8-7. Driver Enable Time from DE to VOD 12 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: SN65HVD10 SN65HVD11 SN65HVD12 SN75HVD10 SN75HVD11 SN75HVD12 SN65HVD10, SN65HVD11, SN65HVD12 SN75HVD10, SN75HVD11, SN75HVD12 www.ti.com SLLS505P – FEBRUARY 2002 – REVISED FEBRUARY 2022 IA VA + VB VID VB VIC A R VA IO B VO IB 2 Copyright © 2017, Texas Instruments Incorporated Figure 8-8. Receiver Voltage and Current Definitions A Input Generator R VI 50 Ω B 1.5 V CL = 15 pF ±20% RE 0V VO CL Includes Fixture and Instrumentation Capacitance Generator: PRR = 500 kHz, 50% Duty Cycle, tr
SN65HVD11D 价格&库存

很抱歉,暂时无法提供与“SN65HVD11D”相匹配的价格&库存,您可以联系我们找货

免费人工找货