0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
SN65HVD11SKGDA

SN65HVD11SKGDA

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    Die

  • 描述:

    IC TXRX RS485 3.3V 17XCEPT

  • 数据手册
  • 价格&库存
SN65HVD11SKGDA 数据手册
Sample & Buy Product Folder Support & Community Tools & Software Technical Documents Reference Design SN65HVD11-HT SLLS934F – NOVEMBER 2008 – REVISED NOVEMBER 2015 SN65HVD11-HT 3.3-V RS-485 Transceiver 1 Features 2 Applications • • • • • • • • • • • 1 • • • • • • • • Operates With a 3.3-V Supply Bus-Pin ESD Protection Exceeds 16-kV HumanBody Model (HBM) 1/8 Unit-Load Option Available (up to 256 Nodes on Bus) Optional Driver Output Transition Times for Signaling Rates (1) of 1 Mbps, 10 Mbps, and 32 Mbps Based on ANSI TIA/EIA-485-A Bus-Pin Short Circuit Protection From –7 V to 12 V Open-Circuit, Idle-Bus, and Shorted-Bus Fail-Safe Receiver Glitch-Free Power-Up and Power-Down Protection for Hot-Plugging Applications SN75176 Footprint Supports Extreme Temperature Applications: – Controlled Baselines – One Assembly and Test Sites – One Fabrication Sites – Available in Extreme (–55°C/210°C) Temperature Range (2) – Extended Product Life Cycles – Extended Product-Change Notifications – Product Traceability – Texas Instruments' High Temperature Products Use Highly Optimized Silicon (Die) Solutions With Design and Process Enhancements to Maximize Performance Over Extended Temperatures. Down-Hole Drilling High Temperature Environments Digital Motor Controls Utility Meters Chassis-to-Chassis Interconnects Electronic Security Stations Industrial Process Controls Building Automation Point-of-Sale (POS) Terminals and Networks 3 Description The SN65HVD11-HT device combines a 3-state differential line driver and differential input line receiver that operates with a single 3.3-V power supply. It is designed for balanced transmission lines and meets or exceeds ANSI TIA/EIA-485-A and ISO 8482:1993, with the exception that the thermal shutdown is removed. This differential bus transceiver is a monolithic integrated circuit designed for bidirectional data communication on multipoint bustransmission lines. The driver and receiver have active-high and active-low enables, respectively, that can be externally connected together to function as direction control. The driver differential outputs and receiver differential inputs connect internally to form a differential input/ output (I/O) bus port that is designed to offer minimum loading to the bus when the driver is disabled or VCC = 0. Device Information(1) PART NUMBER SN65HVD11-HT PACKAGE 4.90 mm × 3.91 mm CFP (8) (2) 6.90 mm × 5.65 mm (3) 6.90 mm × 5.65 mm CFP (8) CDIP SB (8) (1) (2) BODY SIZE (NOM) SOIC (8) 11.81 mm × 7.49 mm (1) For all available packages, see the orderable addendum at the end of the data sheet. (2) HKJ Package (3) HKQ Package The signaling rate of a line is the number of voltage transitions that are made per second expressed in the units bits per second (bps). Custom temperature ranges available Typical Application Diagram R R B DE D R A RE R A RT RT D A R B A D R RE DE D R RE B DE D B D D R RE DE D 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA. SN65HVD11-HT SLLS934F – NOVEMBER 2008 – REVISED NOVEMBER 2015 www.ti.com Table of Contents 1 2 3 4 5 6 Features .................................................................. Applications ........................................................... Description ............................................................. Revision History..................................................... Pin Configuration and Functions ......................... Specifications......................................................... 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7 8 1 1 1 2 3 4 Absolute Maximum Ratings ...................................... 4 ESD Ratings.............................................................. 5 Recommended Operating Conditions....................... 5 Thermal Information .................................................. 5 Driver Electrical Characteristics ................................ 6 Receiver Electrical Characteristics ........................... 7 Driver Switching Characteristics ............................... 8 Receiver Switching Characteristics........................... 9 Typical Characteristics ............................................ 12 Parameter Measurement Information ................ 14 Detailed Description ............................................ 19 8.1 Overview ................................................................. 19 8.2 Functional Block Diagram ....................................... 19 8.3 Feature Description................................................. 19 8.4 Device Functional Modes........................................ 19 9 Application and Implementation ........................ 21 9.1 Application Information............................................ 21 9.2 Typical Application .................................................. 22 10 Power Supply Recommendations ..................... 25 11 Layout................................................................... 25 11.1 Layout Guidelines ................................................. 25 11.2 Layout Example .................................................... 25 11.3 Thermal Considerations ........................................ 26 12 Device and Documentation Support ................. 27 12.1 12.2 12.3 12.4 Community Resources.......................................... Trademarks ........................................................... Electrostatic Discharge Caution ............................ Glossary ................................................................ 27 27 27 27 13 Mechanical, Packaging, and Orderable Information ........................................................... 27 4 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. Changes from Revision E (June 2012) to Revision F • 2 Page Added ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section ................................................................................................. 1 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Product Folder Links: SN65HVD11-HT SN65HVD11-HT www.ti.com SLLS934F – NOVEMBER 2008 – REVISED NOVEMBER 2015 5 Pin Configuration and Functions D, JD, or HKJ Package 8-Pin SOIC, PDIP, or CFP Top View R RE DE D 1 8 2 7 3 6 4 5 HKQ Package 8-Pin CFP Top View VCC B A GND 1 8 VCC R B RE A DE D GND 5 4 Pin Functions PIN TYPE DESCRIPTION SOIC, PDIP HKQ A 6 6 Bus input/output Driver output or receiver input (complementary to B) B 7 7 Bus input/output Driver output or receiver input (complementary to A) D 4 4 Digital input Driver data input DE 3 3 Digital input Active-high driver enable GND 5 5 Reference potential Local device ground R 1 1 Digital output Receive data output RE 2 2 Digital input VCC 8 8 Supply NAME Active-low receiver enable 3-V to 3.6-V supply Bare Die Information DIE THICKNESS BACKSIDE FINISH BACKSIDE POTENTIAL BOND PAD METALLIZATION COMPOSITION 15 mils. Silicon with backgrind GND Cu-Ni-Pd Bond Pad Coordinates in Microns - Rev A DESCRIPTION (1) (1) PAD NUMBER a b c d R 1 69.3 372.15 185.3 489.15 ~RE 2 388.75 71.5 503.75 186.5 DNC 3 722.4 55.4 839.4 172.4 DNC 4 891.4 55.4 1008.4 172.4 DE 5 1174.8 71.5 1289.8 186.5 DNC 6 1754.35 65.4 1869.35 180.4 DNC 7 1907.35 65.4 2022.35 180.4 D 8 2280.55 69.5 2395.55 184.5 DNC 9 2733.5 371.5 2848.5 486.5 GND 10 2691 1693.1 2808 1810.1 GND 11 2535 1693.1 2652 1810.1 DNC 12 2253.45 1685.65 2368.45 1800.65 A 13 1961.55 1693.1 2078.55 1810.1 B 14 799.55 1693.1 916.55 1810.1 DNC 15 498.35 1681.2 613.35 1796.2 VCC 16 244.8 1668.5 359.8 1783.5 DNC = Do Not Connect Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Product Folder Links: SN65HVD11-HT 3 SN65HVD11-HT SLLS934F – NOVEMBER 2008 – REVISED NOVEMBER 2015 www.ti.com Bond Pad Coordinates in Microns - Rev A (continued) DESCRIPTION (1) PAD NUMBER a b c d 17 91.8 1668.5 206.8 1783.5 VCC 6 Specifications 6.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted) (1) VCC MIN MAX UNIT –0.3 6 V –9 14 V Input voltage at D, DE, R, or RE –0.5 VCC + 0.5 V Voltage input, transient pulse, A and B, through 100 Ω (see Figure 20) –50 50 V Receiver output current –11 11 mA Continuous total power dissipation See Thermal Information Supply voltage Voltage at A or B IO (1) 4 All voltage values, except differential I/O bus voltages, are with respect to network ground terminal. Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Product Folder Links: SN65HVD11-HT SN65HVD11-HT www.ti.com SLLS934F – NOVEMBER 2008 – REVISED NOVEMBER 2015 6.2 ESD Ratings VALUE V(ESD) (1) (2) Electrostatic discharge A, B, and GND ±16000 All pins ±4000 Charged-device model (CDM), per JEDEC specification JESD22-C101 (2) ±1000 Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1) UNIT V JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. 6.3 Recommended Operating Conditions MIN VCC Supply voltage VI or VIC Voltage at any bus terminal (separately or common-mode) VIH High-level input voltage VIL Low-level input voltage VID Differential input voltage IOH High-level output current IOL Low-level output current RL Differential load resistance CL Differential load capacitance NOM MAX 3.6 V –7 (1) 12 V D, DE, RE 2 VCC V D, DE, RE 0 0.8 V Figure 16 –12 12 V Driver –60 Receiver mA –8 Driver 60 Receiver 54 60 Ω 50 pF (1) (2) 10 Operating junction temperature mA 8 Signaling rate TJ (2) UNIT 3 TA = –55°C to 125°C 129 TA = 175°C 179 TA = 210°C 214 Mbps °C The algebraic convention, in which the least-positive (most-negative) limit is designated as minimum, is used in this data sheet. See Thermal Information table for information regarding this specification. 6.4 Thermal Information SN65HVD11-HT THERMAL METRIC (1) RθJA JD (CDIP SB) HKJ (CFP) HKQ (CFP) 8 PINS 8 PINS 8 PINS 8 PINS UNIT 101.5 73.9 N/A 170 °C/W RθJC(top) Junction-to-case (top) thermal resistance 53.6 N/A N/A 6.2 °C/W RθJB Junction-to-board thermal resistance 45.1 39.8 N/A 195 °C/W ψJT Junction-to-top characterization parameter 4.8 6.9 N/A 3.8 °C/W ψJB Junction-to-board characterization parameter 41.8 49.2 N/A 146.8 °C/W RθJC(bot) Junction-to-case (bottom) thermal resistance N/A 9.1 6.2 N/A °C/W (1) Junction-to-ambient thermal resistance D (SOIC) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953. Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Product Folder Links: SN65HVD11-HT 5 SN65HVD11-HT SLLS934F – NOVEMBER 2008 – REVISED NOVEMBER 2015 www.ti.com 6.5 Driver Electrical Characteristics over recommended operating conditions (unless otherwise noted) PARAMETER VIK TEST CONDITIONS Input clamp voltage |VOD| Differential output voltage MIN II = –18 mA TYP MAX –1.5 IO = 0 2 RL = 54 Ω, See Figure 10 1 Vtest = –7 V to 12 V, See Figure 11 1 UNIT V VCC V Δ|VOD| Change in magnitude of differential output voltage Vtest = –7 V to 12 V, See Figure 10 and Figure 11 VOC(PP) Peak-to-peak common mode output voltage See Figure 12 VOC(SS) Steady-state common mode output voltage See Figure 12 1.4 2.5 V ΔVOC(SS) Change in steady-state common mode output voltage See Figure 12 –0.06 0.06 V IOZ High-impedance output current See receiver input currents –0.2 400 TA = –55°C to 125°C D –100 0 –100 3 TA = 210°C (2) –100 3 0 100 –250 250 TA = 175°C Input current IOS Short circuit output current –7 V ≤ VO ≤ 12 V C(OD) Differential output capacitance VOD = 0.4 sin (4E6πt) + 0.5 V, DE = 0 V DE ICC Supply current RE = VCC, D = VCC, DE = 0 V, No load RE = 0 V, D and DE = VCC, No load (1) (2) 6 Receiver disabled and driver enabled Receiver disabled and driver disabled (standby) 18 11 15.5 TA = 175°C (1) 11.5 17.5 TA = 210°C (2) 14 18 TA = –55°C to 125°C 2.5 20 TA = 175°C (1) 20 150 TA = 210°C (2) 175 450 TA = –55°C to 125°C 11 15.5 11 17.5 11 18 TA = 210°C (2) μA mA pF TA = –55°C to 125°C Receiver enabled and driver enabled TA = 175°C (1) V mV (1) II RE = VCC, D and DE = VCC, No load 0.2 mA μA mA Minimum and maximum parameters are characterized for operation at TA = 175°C but may not be production tested at that temperature. Production test limits with statistical guardbands are used to ensure high temperature performance. Minimum and maximum parameters are characterized for operation at TA = 210°C but may not be production tested at that temperature. Production test limits with statistical guardbands are used to ensure high temperature performance. Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Product Folder Links: SN65HVD11-HT SN65HVD11-HT www.ti.com SLLS934F – NOVEMBER 2008 – REVISED NOVEMBER 2015 6.6 Receiver Electrical Characteristics over recommended operating conditions (unless otherwise noted) PARAMETER TEST CONDITIONS VIT+ Positive-going input threshold voltage IO = –8 mA VIT– Negative-going input threshold voltage IO = 8 mA Vhys Hysteresis voltage (VIT+ –VIT–) MIN 35 TA = 175°C (1) 41 TA = 210°C (2) 41 II = –18 mA VOH High-level output voltage VID = 200 mV, IOH = –8 mA, See Figure 16 VOL Low-level output voltage VID = –200 mV, IOL = 8 mA, See Figure 16 IOZ High-impedance state output current VO = 0 or VCC,RE = VCC V Other input at 0 V VA or VB = –7 V VA or VB = –7 V, VCC = 0 V VIH = 2 V IIL Low-level input current, RE VIL = 0.8 V CID Differential input capacitance VID = 0.4 sin (4E6πt) + 0.5 V, DE at 0 V (1) (2) Supply current RE = 0 V, D and DE = 0 V, No load Receiver enabled and driver disabled RE = VCC, D = VCC, DE = 0 V, No load Receiver disabled and driver disabled (standby) RE = 0 V, D and DE = VCC, No load Receiver enabled and driver enabled 0.4 V 1 μA 0.075 0.11 (1) 0.1 0.15 TA = 210°C (2) 0.1 0.15 0.085 0.13 TA = 175°C (1) 0.12 0.16 TA = 210°C (2) 0.12 0.16 TA = 175°C VA or VB = 12 V, VCC = 0 V mV 2.4 TA = –55°C to 125°C ICC V V –1 VA or VB = 12 V High-level input current, RE –0.01 –1.5 TA = –55°C to 125°C IIH UNIT V TA = –55°C to 125°C Enable-input clamp voltage Bus input current MAX –0.2 VIK II TYP TA = –55°C to 125°C –0.1 –0.05 TA = 175°C (1) –0.3 –0.15 TA = 210°C (2) –0.3 –0.15 TA = –55°C to 125°C –0.1 –0.05 TA = 175°C (1) –0.3 –0.15 TA = 210°C (2) –0.3 –0.15 TA = –55°C to 125°C –30 0 TA = 175°C (1) –30 3 TA = 210°C (2) –30 3 –30 0 TA = –55°C to 125°C 15 TA = 175°C (1) 18 TA = 210°C (2) 18 TA = –55°C to 125°C 5 8 7.5 8.5 (2) 7.5 10 TA = –55°C to 125°C 2.5 20 TA = 175°C (1) 12.5 200 TA = 210°C (2) 175 450 TA = –55°C to 125°C μA μA pF TA = 175°C (1) TA = 210°C mA 11 15.5 TA = 175°C (1) 11.5 17.5 TA = 210°C (2) 14 18 mA μA mA Minimum and maximum parameters are characterized for operation at TA = 175°C but may not be production tested at that temperature. Production test limits with statistical guardbands are used to ensure high temperature performance. Minimum and maximum parameters are characterized for operation at TA = 210°C but may not be production tested at that temperature. Production test limits with statistical guardbands are used to ensure high temperature performance. Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Product Folder Links: SN65HVD11-HT 7 SN65HVD11-HT SLLS934F – NOVEMBER 2008 – REVISED NOVEMBER 2015 www.ti.com 6.7 Driver Switching Characteristics over recommended operating conditions (unless otherwise noted) MIN TYP MAX tPLH Propagation delay time, lowto-high-level output PARAMETER TEST CONDITIONS 18 25 40 ns tPHL Propagation delay time, highto-low-level output 18 25 40 ns TA = –55°C to 125°C 10 21 30 tr Differential output signal rise time TA = 175°C (1) 10 22 30 TA = 210°C (2) 10 22 30 TA = –55°C to 125°C 10 21 30 TA = 175°C (1) 10 22 30 TA = 210°C (2) 10 22 30 RL = 54 Ω, CL = 50 pF, See Figure 13 Differential output signal fall time tf UNIT ns ns tsk(p) Pulse skew (|tPHL – tPLH|) 2.5 ns tsk(pp) (3) Part-to-part skew (tPHL or tPLH) 11 ns tPZH Propagation delay time, highimpedance to high-level output 55 ns tPHZ Propagation delay time, highlevel to high-impedance output 55 ns tPZL Propagation delay time, highimpedance to low-level output 55 ns tPLZ Propagation delay time, lowlevel to high-impedance output 75 ns tPZH Propagation delay time, standby to high-level output RL = 110 Ω, RE = 3 V, See Figure 14 6 μs tPZL Propagation delay time, standby to low-level output RL = 110 Ω, RE = 3 V, See Figure 15 6 μs (1) (2) (3) 8 RL = 110 Ω, RE = 0 V, See Figure 14 RL = 110 Ω, RE = 0 V, See Figure 15 Minimum and maximum parameters are characterized for operation at TA = 175°C but may not be production tested at that temperature. Production test limits with statistical guardbands are used to ensure high temperature performance. Minimum and maximum parameters are characterized for operation at TA = 210°C but may not be production tested at that temperature. Production test limits with statistical guardbands are used to ensure high temperature performance. tsk(pp) is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices operate with the same supply voltages, at the same temperature, and have identical packages and test circuits. Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Product Folder Links: SN65HVD11-HT SN65HVD11-HT www.ti.com SLLS934F – NOVEMBER 2008 – REVISED NOVEMBER 2015 6.8 Receiver Switching Characteristics over recommended operating conditions (unless otherwise noted) PARAMETER tPLH Propagation delay time, low-to-highlevel output tPHL Propagation delay time, high-to-lowlevel output tsk(p) Pulse skew (|tPHL – tPLH|) tsk(pp) (1) Part-to-part skew tr TEST CONDITIONS VID = –1.5 V to 1.5 V, CL = 15 pF, See Figure 17 Output signal rise time CL = 15 pF, See Figure 17 tf tPZH Output signal fall time (3) Output enable time to low level tPHZ Output disable time from high level tPLZ Output disable time from low level tPZH (1) tPZL (1) (1) (2) (3) Propagation delay time, standby-tohigh-level output Propagation delay time, standby-tolow-level output TYP MAX 30 55 70 ns 30 55 70 ns 4 ns 15 ns TA = –55°C to 125°C 1 3 5 TA = 175°C (2) 1 4 5 TA = 210°C (3) 1 4 5 TA = –55°C to 125°C 1 3 5 TA = 175°C (2) 1 4 5 TA = 210°C (3) 1 4 5 Output enable time to high level tPZL (3) MIN CL = 15 pF, DE = 3 V, See Figure 18 CL = 15 pF, DE = 0, See Figure 19 UNIT ns ns 15 ns 15 ns 20 ns 15 ns 6 μs 6 μs tsk(pp) is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices operate with the same supply voltages, at the same temperature, and have identical packages and test circuits. Minimum and maximum parameters are characterized for operation at TA = 175°C but may not be production tested at that temperature. Production test limits with statistical guardbands are used to ensure high temperature performance. Minimum and maximum parameters are characterized for operation at TA = 210°C but may not be production tested at that temperature. Production test limits with statistical guardbands are used to ensure high temperature performance. Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Product Folder Links: SN65HVD11-HT 9 SN65HVD11-HT SLLS934F – NOVEMBER 2008 – REVISED NOVEMBER 2015 www.ti.com xxx Estimated Life (Hours) 1000000 100000 Electromigration Fail Mode 10000 1000 110 Wirebond Fail Mode 120 130 140 150 160 170 180 190 200 210 Continuous TJ (°C) (1) See data sheet for absolute maximum and minimum recommended operating conditions. (2) Silicon operating life design goal is 10 years at 105°C junction temperature (does not include package interconnect life). (3) The predicted operating lifetime vs. junction temperature is based on reliability modeling using electromigration as the dominant failure mechanism affecting device wearout for the specific device process and design characteristics. (4) Wirebond fail mode applicable for D package only. (5) Wirebond life approaches 0 hours < 200°C which is only true of the HD device. Figure 1. SN65HVD11SJD/SKGDA/SHKJ/SHKQ/HD Operating Life Derating Chart 10 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Product Folder Links: SN65HVD11-HT SN65HVD11-HT www.ti.com SLLS934F – NOVEMBER 2008 – REVISED NOVEMBER 2015 375 W ± 1% Y D 0 or 3 V -7 V < V(TEST) < 12 V VOD 60 W ± 1% Z DE 375 W ± 1% Input Generator V 50 W 50% tpZH(diff) VOD (high) 1.5 V 0V tpZL(diff) -1.5 V VOD (low) Note: The time tpZL(x) is the measure from DE to VOD(x). VOD is valid when it is greater than 1.5 V. Figure 2. Driver Enable Time From De to VOD Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Product Folder Links: SN65HVD11-HT 11 SN65HVD11-HT SLLS934F – NOVEMBER 2008 – REVISED NOVEMBER 2015 www.ti.com 6.9 Typical Characteristics 70 90 RL = 54 W CL = 50 pF 70 60 50 VCC = 3 V VCC = 3.3 V 40 TA = 25°C DE at 0 V 80 VCC = 3.6 V I I − Bus Input Current − mA I CC − RMS Supply Current − mA TA = 25°C RE at VCC DE at VCC 60 50 VCC = 0 V 40 30 20 10 0 VCC = 3.3 V −10 −20 −30 −40 −50 30 0 2.5 5 7.5 Signaling Rate − Mbps −60 −7−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 VI − Bus Input Voltage − V 10 Figure 3. RMS Supply Current vs Signaling Rate Figure 4. Bus Input Current vs Bus Input Voltage 200 TA = 25°C DE at VCC D at VCC VCC = 3.3 V 100 TA = 25°C DE at VCC D at 0 V VCC = 3.3 V 180 I OL − Low-Level Output Current − mA IOH − High-Level Output Current − mA 150 50 0 −50 −100 −150 160 140 120 100 80 60 40 20 0 −200 −4 −2 0 2 4 VOH − Driver High-Level Output Voltage − V −20 −4 6 Figure 5. High-Level Output Current vs Driver High-Level Output Voltage −40 VCC = 3.3 V VTest = 12 V 2.2 2.1 2.0 1.9 1.8 1.7 1.6 1.5 -100 TA = 25°C DE at VCC D at VCC RL = 54 W −35 I O − Driver Output Current − mA VOD – Driver Differential Output – V 2.3 −30 −25 −20 −15 −10 −5 0 -50 0 50 100 150 200 250 0 0.50 1 1.50 2 2.50 3 3.50 VCC − Supply Voltage − V TA – Free-Air Temperature – °C Figure 7. Driver Differential Output vs Free-Air Temperature 12 8 Figure 6. Low-Level Output Current vs Driver Low-Level Output Voltage 2.5 2.4 −2 0 2 4 6 VOL − Driver Low-Level Output Voltage − V Figure 8. Driver Output Current vs Supply Voltage Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Product Folder Links: SN65HVD11-HT SN65HVD11-HT www.ti.com SLLS934F – NOVEMBER 2008 – REVISED NOVEMBER 2015 Typical Characteristics (continued) 600 Enable Time − ns 500 400 300 200 100 0 -7 -2 3 8 13 V(TEST) − Common-Mode Voltage − V Figure 9. Enable Time vs Common Mode Voltage (See Figure 2) Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Product Folder Links: SN65HVD11-HT 13 SN65HVD11-HT SLLS934F – NOVEMBER 2008 – REVISED NOVEMBER 2015 www.ti.com 7 Parameter Measurement Information VCC II DE A IOA VOD 0 or 3 V B 54 Ω ±1% IOB VI VOB VOA Figure 10. Driver VOD Test Circuit and Voltage and Current Definitions 375 Ω ±1% VCC DE 0 or 3 V D A VOD 60 Ω ±1% B + _ −7 V < V(test) < 12 V 375 Ω ±1% Figure 11. Driver VOD With Common Mode Loading Test Circuit VCC DE Input D 27 Ω ± 1% A A VA B VB VOC(PP) 27 Ω ± 1% B CL = 50 pF ±20% VOC ∆VOC(SS) VOC A. Input: PRR = 500 kHz, 50% Duty Cycle, t r
SN65HVD11SKGDA 价格&库存

很抱歉,暂时无法提供与“SN65HVD11SKGDA”相匹配的价格&库存,您可以联系我们找货

免费人工找货