0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
SN65HVD12DR

SN65HVD12DR

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    SOIC-8

  • 描述:

    接口(驱动器/接收器/收发器) 1/1 Transceiver Half RS422, RS485 SOIC8_150MIL

  • 数据手册
  • 价格&库存
SN65HVD12DR 数据手册
Order Now Product Folder Support & Community Tools & Software Technical Documents SN65HVD10, SN65HVD11, SN65HVD12 SN75HVD10, SN75HVD11, SN75HVD12 SLLS505O – FEBRUARY 2002 – REVISED FEBRUARY 2017 SNx5HVD1x 3.3-V RS-485 Transceivers 1 Features 3 Description • • • The SN65HVD10, SN75HVD10, SN65HVD11, SN75HVD11, SN65HVD12, and SN75HVD12 bus transceivers combine a 3-state differential line driver and differential input line receiver that operate with a single 3.3-V power supply. They are designed for balanced transmission lines and meet or exceed ANSI standard TIA/EIA-485-A and ISO 8482:1993. These differential bus transceivers are monolithic integrated circuits designed for bidirectional data communication on multipoint bus-transmission lines. The drivers and receivers have active-high and active-low enables, respectively, that can be externally connected together to function as direction control. Very low device standby supply current can be achieved by disabling the driver and the receiver. 1 • • • • • • • • Operates With a 3.3-V Supply Bus-Pin ESD Protection Exceeds 16-kV HBM 1/8 Unit-Load Option Available (Up to 256 Nodes on the Bus) Optional Driver Output Transition Times for Signaling Rates (1) of 1 Mbps, 10 Mbps, and 32 Mbps Meets or Exceeds the Requirements of ANSI TIA/EIA-485-A Bus-Pin Short-Circuit Protection From –7 V to 12 V Low-Current Standby Mode: 1 µA, Typical Open-Circuit, Idle-Bus, and Shorted-Bus Failsafe Receiver Thermal Shutdown Protection Glitch-Free Power-Up and Power-Down Protection for Hot-Plugging Applications SN75176 Footprint The driver differential outputs and receiver differential inputs connect internally to form a differential input/ output (I/O) bus port that is designed to offer minimum loading to the bus whenever the driver is disabled or VCC = 0. These parts feature wide positive and negative common-mode voltage ranges making them suitable for party-line applications. 2 Applications • • • • • • • (1) Device Information(1) Digital Motor Control Utility Meters Chassis-to-Chassis Interconnects Electronic Security Stations Industrial Process Control Building Automation Point-of-Sale (POS) Terminals and Networks The signaling rate of a line is the number of voltage transitions that are made per second expressed in the units bps (bits per second). PART NUMBER PACKAGE BODY SIZE (NOM) SN65HVD10 SN65HVD11 SOIC (8) 4.90 mm × 3.91 mm PDIP (8) 9.81 mm × 6.35 mm SN65HVD12 SN75HVD10 SN75HVD11 SN75HVD12 (1) For all available packages, see the orderable addendum at the end of the data sheet. Typical Application Diagram R R B DE D R A RE R A RT RT D A R B A D R RE DE D R RE B DE D B D D R RE DE D Copyright © 2016, Texas Instruments Incorporated 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA. SN65HVD10, SN65HVD11, SN65HVD12 SN75HVD10, SN75HVD11, SN75HVD12 SLLS505O – FEBRUARY 2002 – REVISED FEBRUARY 2017 www.ti.com Table of Contents 1 2 3 4 5 6 7 8 9 Features .................................................................. Applications ........................................................... Description ............................................................. Revision History..................................................... Device Comparison Table..................................... Pin Configuration and Functions ......................... Specifications......................................................... 1 1 1 2 3 3 4 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.10 7.11 4 4 4 5 5 6 6 7 8 8 9 Absolute Maximum Ratings ...................................... ESD Ratings.............................................................. Recommended Operating Conditions....................... Thermal Information .................................................. Driver Electrical Characteristics ................................ Receiver Electrical Characteristics ........................... Power Dissipation Characteristics ............................ Driver Switching Characteristics ............................... Receiver Switching Characteristics........................... Dissipation Ratings ................................................. Typical Characteristics ............................................ Parameter Measurement Information ................ 11 Detailed Description ............................................ 17 9.1 Overview ................................................................. 17 9.2 Functional Block Diagram ....................................... 17 9.3 Feature Description................................................. 17 9.4 Device Functional Modes........................................ 17 10 Application and Implementation........................ 19 10.1 Application Information.......................................... 19 10.2 Typical Application ................................................ 20 11 Power Supply Recommendations ..................... 23 12 Layout................................................................... 23 12.1 Layout Guidelines ................................................. 23 12.2 Layout Example .................................................... 24 12.3 Thermal Considerations ........................................ 24 13 Device and Documentation Support ................. 26 13.1 13.2 13.3 13.4 13.5 13.6 13.7 Device Support...................................................... Related Links ........................................................ Receiving Notification of Documentation Updates Community Resources.......................................... Trademarks ........................................................... Electrostatic Discharge Caution ............................ Glossary ................................................................ 26 26 26 26 26 26 26 14 Mechanical, Packaging, and Orderable Information ........................................................... 27 4 Revision History Changes from Revision N (July 2015) to Revision O • Page Added MIN value of –55°C to the Storage temperature in Absolute Maximum Ratings........................................................ 4 Changes from Revision M (July 2013) to Revision N • Page Added Pin Configuration and Functions section, ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section .............................. 1 Changes from Revision L (July 2013) to Revision M • Page Changed the VIT+ TYP value From: –0.65 V To: –0.065 V ................................................................................................... 6 Changes from Revision K (September 2011) to Revision L Page • Added TYP = –0.65 V to VIT+ ................................................................................................................................................ 6 • Added TYP = –0.1 V to VIT– ................................................................................................................................................... 6 Changes from Revision J (February 2009) to Revision K • 2 Page Added new section 'LOW-POWER STANDBY MODE', in the Application Information section........................................... 18 Submit Documentation Feedback Copyright © 2002–2017, Texas Instruments Incorporated Product Folder Links: SN65HVD10 SN65HVD11 SN65HVD12 SN75HVD10 SN75HVD11 SN75HVD12 SN65HVD10, SN65HVD11, SN65HVD12 SN75HVD10, SN75HVD11, SN75HVD12 www.ti.com SLLS505O – FEBRUARY 2002 – REVISED FEBRUARY 2017 5 Device Comparison Table PART NUMBER SIGNALING RATE UNIT LOADS SN65HVD10P 32 Mbps 1/2 SN65HVD11D SN65HVD11P 10 Mbps 1/8 SN65HVD12D SN65HVD12P 1 Mbps 1/8 VP12 SN75HVD10D SN75HVD10P 32 Mbps 1/2 VN10 SN75HVD11D SN75HVD11P 10 Mbps 1/8 SOIC (1) PDIP SN65HVD10D TA SOIC MARKING VP10 –40°C to 85°C –0°C to 70°C VP11 VN11 SN75HVD12D SN75HVD12P 1 Mbps 1/8 VN12 SN65HVD10QD SN65HVD10QP 32 Mbps 1/2 VP10Q SN65HVD11QD SN65HVD11QP 10 Mbps 1/8 (1) –40°C to 125°C VP11Q The D package is available as a tape and reel. Add an R suffix to the part number (that is, SN75HVD11DR) for this option. 6 Pin Configuration and Functions D, JD, or HKJ Package 8-Pin SOIC or PDIP Top View R RE DE D 1 8 2 7 3 6 4 5 VCC B A GND Pin Functions PIN NAME NO. TYPE DESCRIPTION A 6 Bus input/output Driver output or receiver input (complementary to B) B 7 Bus input/output Driver output or receiver input (complementary to A) D 4 Digital input Driver data input DE 3 Digital input Active-high driver enable GND 5 Reference potential Local device ground R 1 Digital output Receive data output RE 2 Digital input VCC 8 Supply Copyright © 2002–2017, Texas Instruments Incorporated Active-low receiver enable 3-V to 3.6-V supply Submit Documentation Feedback Product Folder Links: SN65HVD10 SN65HVD11 SN65HVD12 SN75HVD10 SN75HVD11 SN75HVD12 3 SN65HVD10, SN65HVD11, SN65HVD12 SN75HVD10, SN75HVD11, SN75HVD12 SLLS505O – FEBRUARY 2002 – REVISED FEBRUARY 2017 www.ti.com 7 Specifications 7.1 Absolute Maximum Ratings over operating free-air temperature range unless otherwise noted VCC (1) (2) Supply voltage Voltage at A or B IO MAX UNIT 6 V –9 14 V Input voltage at D, DE, R, or RE –0.5 VCC + 0.5 V Voltage input, transient pulse, A and B, through 100 Ω, see Figure 22 –50 50 V –11 11 mA Receiver output current Continuous total power dissipation TJ Junction temperature Tstg Storage temperature (1) MIN –0.3 See Dissipation Ratings –55 170 °C 145 °C Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltage values, except differential I/O bus voltages, are with respect to network ground terminal. (2) 7.2 ESD Ratings VALUE Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1) Electrostatic discharge V(ESD) (1) (2) (3) Pins 5, 6, and 7 ±16000 All pins ±4000 Charged device model (CDM), per JEDEC specification JESD22-C101 (2) All pins ±1000 Electrical fast transient/burst (3) Pins 5, 6, and 7 UNIT V ±4000 JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Tested in accordance with IEC 61000-4-4. 7.3 Recommended Operating Conditions over operating free-air temperature range unless otherwise noted MIN VCC Supply voltage VI or VIC Voltage at any bus terminal (separately or common mode) VIH High-level input voltage VIL VID 12 VCC Low-level input voltage D, DE, RE 0 0.8 Differential input voltage See Figure 18 –12 12 Driver –60 Low-level output current RL Differential load resistance CL Differential load capacitance Signaling rate 4 Junction temperature Receiver V mA –8 Driver 60 Receiver 8 54 UNIT 3.6 2 IOL (1) (2) 3 D, DE, RE High-level output current (2) MAX –7 (1) IOH TJ NOM mA Ω 60 50 pF HVD10 32 HVD11 10 HVD12 1 145 Mbps °C The algebraic convention, in which the least positive (most negative) limit is designated as minimum is used in this data sheet. See thermal characteristics table for information regarding this specification. Submit Documentation Feedback Copyright © 2002–2017, Texas Instruments Incorporated Product Folder Links: SN65HVD10 SN65HVD11 SN65HVD12 SN75HVD10 SN75HVD11 SN75HVD12 SN65HVD10, SN65HVD11, SN65HVD12 SN75HVD10, SN75HVD11, SN75HVD12 www.ti.com SLLS505O – FEBRUARY 2002 – REVISED FEBRUARY 2017 7.4 Thermal Information SNx5HVD1xx THERMAL METRIC D (SOIC) P (PDIP) 8 Pins RθJA Junction-to-ambient thermal resistance (1) RθJB Junction-to-board thermal resistance RθJC Junction-to-case thermal resistance (1) (2) (3) High−K board (2), No airflow No airflow 121 (3) °C/W 93 High−K board See UNIT 8 Pins 67 (3) °C/W 57 41 55 °C/W The intent of RθJA specification is solely for a thermal performance comparison of one package to another in a standardized environment. This methodology is not meant to and will not predict the performance of a package in an application-specific environment. JSD51−7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages. JESD51−10, Test Boards for Through-Hole Perimeter Leaded Package Thermal Measurements. 7.5 Driver Electrical Characteristics over recommended operating conditions unless otherwise noted PARAMETER VIK MIN TYP (1) TEST CONDITIONS Input clamp voltage II = –18 mA –1.5 IO = 0 |VOD| Differential output voltage (2) RL = 54 Ω, See Figure 11 1.5 Vtest = –7 V to 12 V, See Figure 12 1.5 Change in magnitude of differential output voltage VOC(PP) Peak-to-peak common-mode output voltage VOC(SS) Steady-state common-mode output voltage ΔVOC(SS) Change in steady-state common-mode output voltage IOZ High-impedance output current II Input current IOS Short-circuit output current –7 V ≤ VO ≤ 12 V C(OD) Differential output capacitance VOD = 0.4 sin(4E6πt) + 0.5 V, DE at 0 V (1) (2) See Figure 11 and Figure 12 VCC V –0.2 0.2 400 See Figure 13 UNIT V 2 Δ|VOD| ICC MAX V mV 1.4 2.5 V –0.05 0.05 V See receiver input currents D DE Supply current –100 0 0 100 –250 250 16 μA mA pF RE at VCC, D and DE at VCC, No load Receiver disabled and driver enabled 9 15.5 mA RE at VCC, D at VCC, DE at 0 V, No load Receiver disabled and driver disabled (standby) 1 5 μA RE at 0 V, D and DE at VCC, No load Receiver enabled and driver enabled 9 15.5 mA All typical values are at 25°C and with a 3.3-V supply. For TA > 85°C, VCC is ±5%. Copyright © 2002–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: SN65HVD10 SN65HVD11 SN65HVD12 SN75HVD10 SN75HVD11 SN75HVD12 5 SN65HVD10, SN65HVD11, SN65HVD12 SN75HVD10, SN75HVD11, SN75HVD12 SLLS505O – FEBRUARY 2002 – REVISED FEBRUARY 2017 www.ti.com 7.6 Receiver Electrical Characteristics over recommended operating conditions unless otherwise noted PARAMETER TEST CONDITIONS MIN VIT+ Positive-going input threshold voltage IO = –8 mA VIT– Negative-going input threshold voltage IO = 8 mA Vhys Hysteresis voltage (VIT+ – VIT–) VIK Enable-input clamp voltage II = –18 mA VOH High-level output voltage VID = 200 mV, IOH = –8 mA, see Figure 18 VOL Low-level output voltage VID = –200 mV, IOL = 8 mA, see Figure 18 IOZ High-impedance-state output current VO = 0 or VCC, RE at VCC TYP (1) MAX –0.065 –0.01 –0.2 VA or VB = –7 V V 2.4 V HVD11, HVD12, Other inputs at 0 V VA or VB = –7 V HVD10, Other inputs at 0 V 0.13 –0.04 0.2 0.5 0.25 0.5 –0.4 –0.2 –0.15 VA or VB = –7 V, VCC = 0 V –0.4 VIH = 2 V –30 IIL Low-level input current, RE VIL = 0.8 V –30 CID Differential input capacitance VID = 0.4 sin(4E6πt) + 0.5 V, DE at 0 V (1) μA 0.06 –0.05 High-level input current, RE Supply current 1 0.11 –0.05 IIH ICC V 0.05 –0.1 VA or VB = 12 V VA or VB = 12 V, VCC = 0 V 0.4 –1 VA or VB = –7 V, VCC = 0 V Bus input current mV –1.5 VA or VB = 12 V II V –0.1 35 VA or VB = 12 V, VCC = 0 V UNIT mA mA 0 μA 0 μA 15 pF RE at 0 V D and DE at 0 V No load Receiver enabled and driver disabled 4 8 mA RE at VCC D at VCC DE at 0 V No load Receiver disabled and driver disabled (standby) 1 5 μA RE at 0 V D and DE at VCC No load Receiver enabled and driver enabled 9 15.5 mA All typical values are at 25°C and with a 3.3-V supply. 7.7 Power Dissipation Characteristics PARAMETER PD Device power dissipation TEST CONDITIONS RL= 60 Ω, CL = 50 pF, DE at VCC, RE at 0 V, Input to D is a 50% duty-cycle square wave at indicated signaling rate MAX 198 250 HVD11 (10Mbps) 141 176 HVD12 (500 kbps) 133 161 D pkg –40 116 No airflow (2) P pkg –40 123 Ambient air temperature (1) TJSD Thermal shutdown junction temperature (1) 6 MIN High-K board, no airflow TA (1) (2) TYP HVD10 (32Mbps) 165 UNIT mW °C °C See Thermal Characteristics of IC Packages section for an explanation of these parameters. JESD51−10, Test Boards for Through-Hole Perimeter Leaded Package Thermal Measurements. Submit Documentation Feedback Copyright © 2002–2017, Texas Instruments Incorporated Product Folder Links: SN65HVD10 SN65HVD11 SN65HVD12 SN75HVD10 SN75HVD11 SN75HVD12 SN65HVD10, SN65HVD11, SN65HVD12 SN75HVD10, SN75HVD11, SN75HVD12 www.ti.com SLLS505O – FEBRUARY 2002 – REVISED FEBRUARY 2017 7.8 Driver Switching Characteristics over recommended operating conditions unless otherwise noted MIN TYP (1) MAX HVD10 5 8.5 16 HVD11 18 25 40 HVD12 135 200 300 HVD10 5 8.5 16 PARAMETER Propagation delay time, low-to-high-level output tPLH Propagation delay time, high-to-low-level output tPHL TEST CONDITIONS HVD11 18 25 40 HVD12 135 200 300 3 4.5 10 HVD10 Differential output signal rise time tr Differential output signal fall time tf tsk(p) tsk(pp) tPZH tPHZ tPZL tPLZ Pulse skew (|tPHL – tPLH|) (2) Part-to-part skew Propagation delay time, high-impedance-to-highlevel output Propagation delay time, high-level-to-highimpedance output Propagation delay time, high-impedance-to-lowlevel output Propagation delay time, low-level-to-highimpedance output HVD11 RL = 54 Ω, CL = 50 pF See Figure 14 10 20 30 HVD12 100 170 300 HVD10 3 4.5 10 HVD11 10 20 30 HVD12 100 170 300 HVD10 1.5 HVD11 2.5 HVD12 7 HVD10 6 HVD11 11 HVD12 100 HVD10 31 HVD11 55 HVD12 HVD10 RL = 110 Ω, RE at 0 V See Figure 15 ns ns ns ns ns ns 25 55 HVD12 300 HVD10 26 HVD11 55 HVD12 300 RL = 110 Ω, RE at 0 V See Figure 16 ns 300 HVD11 HVD10 UNIT ns ns 26 HVD11 75 HVD12 400 ns tPZH Propagation delay time, standby-to-high- RL = 110 Ω, RE at 3 V level output See Figure 15 6 μs tPZL Propagation delay time, standby-to-lowlevel output RL = 110 Ω, RE at 3 V See Figure 16 6 μs (1) (2) All typical values are at 25°C and with a 3.3-V supply. tsk(pp) is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices operate with the same supply voltages, at the same temperature, and have identical packages and test circuits. Copyright © 2002–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: SN65HVD10 SN65HVD11 SN65HVD12 SN75HVD10 SN75HVD11 SN75HVD12 7 SN65HVD10, SN65HVD11, SN65HVD12 SN75HVD10, SN75HVD11, SN75HVD12 SLLS505O – FEBRUARY 2002 – REVISED FEBRUARY 2017 www.ti.com 7.9 Receiver Switching Characteristics over recommended operating conditions unless otherwise noted PARAMETER TEST CONDITIONS MIN TYP (1) MAX UNIT tPLH Propagation delay time, low-to-high-level output HVD10 12.5 20 25 tPHL Propagation delay time, high-to-low-level output HVD10 12.5 20 25 tPLH Propagation delay time, low-to-high-level output HVD11 HVD12 30 55 70 ns tPHL Propagation delay time, high-to-low-level output HVD11 HVD12 30 55 70 ns tsk(p) Pulse skew (|tPHL – tPLH|) tsk(pp) (2) Part-to-part skew tr Output signal rise time tf Output signal fall time ns HVD10 1.5 HVD11 4 HVD12 4 HVD10 8 HVD11 15 HVD12 15 CL = 15 pF See Figure 19 tPZH (1) Output enable time to high level tPZL (1) Output enable time to low level Output disable time from high level tPLZ Output disable time from low level (2) tPZL (2) (1) (2) 1 2 5 1 2 5 ns ns ns 15 tPHZ tPZH VID = –1.5 V to 1.5 V CL = 15 pF See Figure 19 15 CL = 15 pF, DE at 3 V See Figure 20 20 ns 15 Propagation delay time, standby-to-highlevel output CL = 15 pF, DE at 0 Propagation delay time, standby-to-low- See Figure 21 level output 6 μs 6 All typical values are at 25°C and with a 3.3-V supply tsk(pp) is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices operate with the same supply voltages, at the same temperature, and have identical packages and test circuits. 7.10 Dissipation Ratings PACKAGE TA ≤ 25°C POWER RATING DERATING FACTOR (1) ABOVE TA = 25°C TA = 70°C POWER RATING TA = 85°C POWER RATING TA = 125°C POWER RATING D (2) 597 mW 4.97 mW/°C 373 mW 298 mW 100 mW D (3) 990 mW 8.26 mW/°C 620 mW 496 mW 165 mW P 1290 mW 10.75 mW/°C 806 mW 645 mW 215 mW (1) (2) (3) 8 This is the inverse of the junction-to-ambient thermal resistance when board-mounted and with no air flow. Tested in accordance with the Low-K thermal metric definitions of EIA/JESD51-3. Tested in accordance with the High-K thermal metric definitions of EIA/JESD51-7. Submit Documentation Feedback Copyright © 2002–2017, Texas Instruments Incorporated Product Folder Links: SN65HVD10 SN65HVD11 SN65HVD12 SN75HVD10 SN75HVD11 SN75HVD12 SN65HVD10, SN65HVD11, SN65HVD12 SN75HVD10, SN75HVD11, SN75HVD12 www.ti.com SLLS505O – FEBRUARY 2002 – REVISED FEBRUARY 2017 7.11 Typical Characteristics 70 TA = 25°C RE at VCC DE at VCC RL = 54 W CL = 50 pF VCC = 3.6 V 60 50 VCC = 3 V VCC = 3.3 V 40 30 0 5 10 15 20 25 30 35 TA = 25°C RE at VCC DE at VCC I CC − RMS Supply Current − mA I CC − RMS Supply Current − mA 70 50 VCC = 3 V VCC = 3.3 V 40 30 0 2.5 Signaling Rate − Mbps TA = 25°C RE at VCC DE at VCC 5 7.5 Signaling Rate − Mbps 10 Figure 2. HVD11 RMS Supply Current vs Signaling Rate 300 RL = 54 W CL = 50 pF 250 VCC = 3.6 V I I − Bus Input Current − mA I CC − RMS Supply Current − mA 70 VCC = 3.6 V 60 40 Figure 1. HVD10 RMS Supply Current vs Signaling Rate RL = 54 W CL = 50 pF 60 VCC = 3.3 V 50 VCC = 3 V 40 TA = 25°C DE at 0 V 200 VCC = 0 V 150 100 50 VCC = 3.3 V 0 −50 −100 −150 30 100 400 700 Signaling Rate − kbps −200 −7 −6−5 −4−3 −2−1 0 1 2 3 4 5 6 7 8 9 10 11 12 VI − Bus Input Voltage − V 1000 Figure 3. HVD12 RMS Supply Current vs Signaling Rate Figure 4. HVD10 Bus Input Current vs Bus Input Voltage 90 I I − Bus Input Current − mA 70 150 TA = 25°C DE at 0 V 60 50 40 VCC = 0 V 30 20 10 0 VCC = 3.3 V −10 −20 −30 −40 IOH − High-Level Output Current − mA 80 TA = 25°C DE at VCC D at VCC VCC = 3.3 V 100 50 0 −50 −100 −150 −50 −60 −7−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 VI − Bus Input Voltage − V Figure 5. HVD11 or HVD12 Bus Input Current vs Bus Input Voltage Copyright © 2002–2017, Texas Instruments Incorporated −200 −4 −2 0 2 4 VOH − Driver High-Level Output Voltage − V 6 Figure 6. High-Level Output Current vs Driver High-Level Output Voltage Submit Documentation Feedback Product Folder Links: SN65HVD10 SN65HVD11 SN65HVD12 SN75HVD10 SN75HVD11 SN75HVD12 9 SN65HVD10, SN65HVD11, SN65HVD12 SN75HVD10, SN75HVD11, SN75HVD12 SLLS505O – FEBRUARY 2002 – REVISED FEBRUARY 2017 www.ti.com Typical Characteristics (continued) 200 2.5 TA = 25°C DE at VCC D at 0 V VCC = 3.3 V 160 140 2.4 VOD − Driver Differential Output − V I OL − Low-Level Output Current − mA 180 120 100 80 60 40 20 −20 −4 −2 0 2 4 6 VOL − Driver Low-Level Output Voltage − V 2.1 2.0 1.9 1.8 1.7 1.5 −40 8 Figure 7. Low-Level Output Current vs Driver Low-Level Output Voltage −15 10 35 60 TA − Free-Air Temperature − °C 85 Figure 8. Driver Differential Output vs Free-Air Temperature 600 −40 TA = 25°C DE at VCC D at VCC RL = 54 Ω −35 −30 500 HVD12 Enable Time − ns I O − Driver Output Current − mA 2.2 1.6 0 −25 −20 −15 400 HVD11 300 HVD10 200 −10 100 −5 0 0 0 0.50 1 1.50 2 2.50 3 3.50 VCC − Supply Voltage − V Figure 9. Driver Output Current vs Supply Voltage 10 2.3 VCC = 3.3 V DE at VCC D at VCC Submit Documentation Feedback -7 -2 3 8 13 V(TEST) − Common-Mode Voltage − V Figure 10. Enable Time vs Common-Mode Voltage Copyright © 2002–2017, Texas Instruments Incorporated Product Folder Links: SN65HVD10 SN65HVD11 SN65HVD12 SN75HVD10 SN75HVD11 SN75HVD12 SN65HVD10, SN65HVD11, SN65HVD12 SN75HVD10, SN75HVD11, SN75HVD12 www.ti.com SLLS505O – FEBRUARY 2002 – REVISED FEBRUARY 2017 8 Parameter Measurement Information VCC DE II IOA A VOD 0 or 3 V B 54 Ω±1% IOB VI VOB VOA Copyright © 2017, Texas Instruments Incorporated Figure 11. Driver VOD Test Circuit and Voltage and Current Definitions 375 Ω ±1% VCC DE D A VOD 0 or 3 V 60 Ω ±1% + _ −7 V < V(test) < 12 V B 375 Ω ±1% Copyright © 2017, Texas Instruments Incorporated Figure 12. Driver VOD With Common-Mode Loading Test Circuit VCC DE Input D 27 Ω ± 1% A A VA B VB VOC(PP) 27 Ω ± 1% B CL = 50 pF ±20% VOC DVOC(SS) VOC CL Includes Fixture and Instrumentation Capacitance Copyright © 2017, Texas Instruments Incorporated Input: PRR = 500 kHz, 50% Duty Cycle, tr < 60 ns, tf < 6 ns ZO = 50 Ω Figure 13. Test Circuit and Definitions for the Driver Common-Mode Output Voltage Copyright © 2002–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: SN65HVD10 SN65HVD11 SN65HVD12 SN75HVD10 SN75HVD11 SN75HVD12 11 SN65HVD10, SN65HVD11, SN65HVD12 SN75HVD10, SN75HVD11, SN75HVD12 SLLS505O – FEBRUARY 2002 – REVISED FEBRUARY 2017 www.ti.com Parameter Measurement Information (continued) 3V VCC DE D Input Generator VI VOD t PLH CL Includes Fixture and Instrumentation Capacitance RL = 54 Ω ± 1% B 50 Ω 1.5 V VI CL = 50 pF ±20% A 1.5 V t PHL 90% VOD tr ≈2 V 90% 0V 10% tf 0V 10% ≈ –2 V Copyright © 2017, Texas Instruments Incorporated Generator: PRR = 500 kHz, 50% Duty Cycle, tr < 60 ns, tf < 6 ns ZO = 50 Ω Figure 14. Driver Switching Test Circuit and Voltage Waveforms A 3V D 3V S1 VO VI 1.5 V 1.5 V B DE Input Generator VI 50 Ω 0V 0.5 V RL = 110 Ω ± 1% CL = 50 pF ±20% t PZH VOH CL Includes Fixture and Instrumentation Capacitance VO 2.3 V ≈0V t PHZ Copyright © 2017, Texas Instruments Incorporated Generator: PRR = 500 kHz, 50% Duty Cycle, tr < 60 ns, tf < 6 ns ZO = 50 Ω Figure 15. Driver High-Level Enable and Disable Time Test Circuit and Voltage Waveforms 3V A 3V D VI ≈3 V 1.5 V VI S1 1.5 V VO DE Input Generator RL = 110 Ω ± 1% 0V B t PZL t PLZ ≈3 V CL = 50 pF ±20% 50 Ω CL Includes Fixture and Instrumentation Capacitance 0.5 V VO 2.3 V VOL Copyright © 2017, Texas Instruments Incorporated Generator: PRR = 500 kHz, 50% Duty Cycle, tr < 60 ns, tf < 6 ns ZO = 50 Ω Figure 16. Driver Low-Level Output Enable and Disable Time Test Circuit and Voltage Waveforms 12 Submit Documentation Feedback Copyright © 2002–2017, Texas Instruments Incorporated Product Folder Links: SN65HVD10 SN65HVD11 SN65HVD12 SN75HVD10 SN75HVD11 SN75HVD12 SN65HVD10, SN65HVD11, SN65HVD12 SN75HVD10, SN75HVD11, SN75HVD12 www.ti.com SLLS505O – FEBRUARY 2002 – REVISED FEBRUARY 2017 Parameter Measurement Information (continued) 375 Ω ± 1% Y -7 V < V(TEST) < 12 V D 0 or 3 V 60 W ± 1% VOD Z DE 375 Ω ± 1% Input Generator V 50 Ω 50% tpZH(diff) VOD (high) 1.5 V 0V tpZL(diff) -1.5 V VOD (low) Copyright © 2017, Texas Instruments Incorporated The time tPZL(x) is the measure from DE to VOD(x). VOD is valid when it is greater than 1.5 V. Figure 17. Driver Enable Time from DE to VOD IA VA VA + VB 2 VIC VB A R VID IB IO B VO Copyright © 2017, Texas Instruments Incorporated Figure 18. Receiver Voltage and Current Definitions Copyright © 2002–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: SN65HVD10 SN65HVD11 SN65HVD12 SN75HVD10 SN75HVD11 SN75HVD12 13 SN65HVD10, SN65HVD11, SN65HVD12 SN75HVD10, SN75HVD11, SN75HVD12 SLLS505O – FEBRUARY 2002 – REVISED FEBRUARY 2017 www.ti.com Parameter Measurement Information (continued) A VO R Input Generator VI 50 Ω B 1.5 V CL = 15 pF ±20% RE 0V CL Includes Fixture and Instrumentation Capacitance Generator: PRR = 500 kHz, 50% Duty Cycle, tr
SN65HVD12DR 价格&库存

很抱歉,暂时无法提供与“SN65HVD12DR”相匹配的价格&库存,您可以联系我们找货

免费人工找货
SN65HVD12DR
  •  国内价格
  • 1+3.92500
  • 10+3.80000
  • 100+3.50000
  • 500+3.35000

库存:677

SN65HVD12DR
  •  国内价格 香港价格
  • 1+39.579811+4.95300
  • 10+29.9640910+3.74969
  • 25+27.5572325+3.44850
  • 100+24.91373100+3.11769
  • 250+23.65259250+2.95988
  • 500+22.89253500+2.86476
  • 1000+22.267011000+2.78648

库存:14294