Sample &
Buy
Product
Folder
Support &
Community
Tools &
Software
Technical
Documents
SN65LVDS1, SN65LVDS2, SN65LVDT2
SLLS373L – JULY 1999 – REVISED DECEMBER 2014
SN65LVDxx High-Speed Differential Line Drivers and Receivers
1 Features
2 Applications
•
•
•
•
•
1
•
•
•
•
•
•
•
•
•
•
•
•
Meets or Exceeds the ANSI TIA/EIA-644 Standard
Designed for Signaling Rates (1) up to:
– 630 Mbps for Drivers
– 400 Mbps for Receivers
Operates From a 2.4-V to 3.6-V Supply
Available in SOT-23 and SOIC Packages
Bus-Terminal ESD Exceeds 9 kV
Low-Voltage Differential Signaling With Typical
Output Voltages of 350 mV Into a 100-Ω Load
Propagation Delay Times
– 1.7-ns Typical Driver
– 2.5-ns Typical Receiver
Power Dissipation at 200 MHz
– 25 mW Typical Driver
– 60 mW Typical Receiver
LVDT Receiver Includes Line Termination
Low Voltage TTL (LVTTL) Level Driver Input Is 5V Tolerant
Driver Is Output High-Impedance with
VCC < 1.5 V
Receiver Output and Inputs are High-Impedance
With VCC < 1.5 V
Receiver Open-Circuit Fail Safe
Differential Input Voltage Threshold Less Than
100 mV
Wireless Infrastructure
Telecom Infrastructure
Printer
3 Description
The SN65LVDS1, SN65LVDS2, and SN65LVDT2
devices are single, low-voltage, differential line
drivers and receivers in the small-outline transistor
package. The outputs comply with the TIA/EIA-644
standard and provide a minimum differential output
voltage magnitude of 247 mV into a 100-Ω load at
signaling rates up to 630 Mbps for drivers and 400
Mbps for receivers.
When the SN65LVDS1 device is used with an LVDS
receiver (such as the SN65LVDT2) in a point-to-point
connection, data or clocking signals can be
transmitted over printed-circuit board traces or cables
at very high rates with very low electromagnetic
emissions and power consumption. The packaging,
low power, low EMI, high ESD tolerance, and wide
supply voltage range make the device ideal for
battery-powered applications.
The SN65LVDS1, SN65LVDS2, and SN65LVDT2
devices are characterized for operation from –40°C to
85°C.
Device Information(1)
PART NUMBER
SN65LVDS1
SN65LVDS2
SN65LVDT2
(1)
The signaling rate of a line is the number of voltage
transitions that are made per second expressed in the units
bps (bit per second)
PACKAGE
BODY SIZE (NOM)
SOIC (8)
4.90 mm × 3.91 mm
SOT (5)
2.90 mm × 1.60 mm
SOIC (8)
4.90 mm × 3.91 mm
SOT (5)
2.90 mm × 1.60 mm
SOIC (8)
4.90 mm × 3.91 mm
SOT (5)
2.90 mm × 1.60 mm
(1) For all available packages, see the orderable addendum at
the end of the data sheet.
Simplified Schematic
VSUPPLY
VCC
SN65LVDT2
SN65LVDS1
VCC
VCC
Z
B
VCC
A
R
VCC
100 W Trace
D
Y
LVTTL
Out
GND
LVTTL
In
NC
NC
NC
NC
GND
NC
NC
GND
GND
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,
intellectual property matters and other important disclaimers. PRODUCTION DATA.
SN65LVDS1, SN65LVDS2, SN65LVDT2
SLLS373L – JULY 1999 – REVISED DECEMBER 2014
www.ti.com
Table of Contents
1
2
3
4
5
6
7
8
9
Features ..................................................................
Applications ...........................................................
Description .............................................................
Revision History.....................................................
Device Options.......................................................
Pin Configuration and Functions .........................
Specifications.........................................................
1
1
1
2
3
3
4
7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
4
4
4
5
5
6
6
7
8
Absolute Maximum Ratings ......................................
ESD Ratings..............................................................
Recommended Operating Conditions.......................
Thermal Information ..................................................
Driver Electrical Characteristics ................................
Receiver Electrical Characteristics ...........................
Driver Switching Characteristics ...............................
Receiver Switching Characteristics...........................
Typical Characteristics ..............................................
Parameter Measurement Information ................ 10
Detailed Description ............................................ 14
9.1 Overview ................................................................. 14
9.2 Functional Block Diagram ....................................... 14
9.3 Feature Description................................................. 14
9.4 Device Functional Modes........................................ 17
10 Application and Implementation........................ 19
10.1 Application Information.......................................... 19
10.2 Typical Applications .............................................. 19
11 Power Supply Recommendations ..................... 26
12 Layout................................................................... 26
12.1 Layout Guidelines ................................................. 26
12.2 Layout Example .................................................... 30
13 Device and Documentation Support ................. 32
13.1
13.2
13.3
13.4
13.5
13.6
Device Support......................................................
Documentation Support .......................................
Related Links ........................................................
Trademarks ...........................................................
Electrostatic Discharge Caution ............................
Glossary ................................................................
32
32
32
32
32
32
14 Mechanical, Packaging, and Orderable
Information ........................................................... 32
4 Revision History
Changes from Revision K (November 2008) to Revision L
•
2
Page
Added Pin Configuration and Functions section, ESD Ratings table, Feature Description section, Device Functional
Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device
and Documentation Support section, and Mechanical, Packaging, and Orderable Information section .............................. 1
Submit Documentation Feedback
Copyright © 1999–2014, Texas Instruments Incorporated
Product Folder Links: SN65LVDS1 SN65LVDS2 SN65LVDT2
SN65LVDS1, SN65LVDS2, SN65LVDT2
www.ti.com
SLLS373L – JULY 1999 – REVISED DECEMBER 2014
5 Device Options
PART NUMBER
INTEGRATED TERMINATION
PACKAGE
SN65LVDS1DBV
SOT-23 (5)
SN65LVDS1D
SOIC (8)
SN65LVDS2DBV
SOT-23 (5)
SN65LVDS2D
SOIC (8)
SN65LVDT2DBV
√
SOT-23 (5)
SN65LVDT2D
√
SOIC (8)
6 Pin Configuration and Functions
SN65LVDS2 and SN65LVDT2
DBV Package
(TOP VIEW)
SN65LVDS1
DBV Package
(TOP VIEW)
VCC
1
GND
2
Z
3
5
4
VCC
1
GND
2
A
3
D
Y
5
R
4
B
110-W Resistor for LVDT Only
SN65LVDS1
D Package
(TOP VIEW)
VCC
D
NC
GND
1
8
2
7
3
6
4
5
Z
Y
NC
NC
SN65LVDS2 and SN65LVDT2
D Package
(TOP VIEW)
B
A
NC
NC
1
8
2
7
3
6
4
5
VCC
R
NC
GND
110-W Resistor for LVDT Only
Pin Functions: SN65LVDS1
PIN
NAME
I/O
DESCRIPTION
DBV
D
VCC
1
1
--
Supply voltage
GND
2
4
--
Ground
D
5
2
I
LVTTL input signal
Y
4
7
O
Differential (LVDS) non-inverting output
Z
3
8
O
Differential (LVDS) inverting output
NC
--
3, 5, 6
--
No connect
Copyright © 1999–2014, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: SN65LVDS1 SN65LVDS2 SN65LVDT2
3
SN65LVDS1, SN65LVDS2, SN65LVDT2
SLLS373L – JULY 1999 – REVISED DECEMBER 2014
www.ti.com
Pin Functions: SN65LVDS2, SN65LVDT2
PIN
NAME
I/O
DESCRIPTION
DBV
D
VCC
1
8
--
Supply voltage
GND
2
5
--
Ground
A
3
2
I
Differential (LVDS) non-inverting output
B
4
1
I
Differential (LVDS) inverting output
R
5
7
O
LVTTL output signal
NC
--
3, 4, 6
--
No connect
7 Specifications
7.1 Absolute Maximum Ratings
over operating free-air temperature range (unless otherwise noted) (1)
PARAMETER
Supply voltage range, VCC
(2)
MIN
MAX
UNIT
–0.5
4
V
(A or B)
–0.5
4
V
(D)
–0.5
VCC + 2
V
Output voltage, VO
(Y or Z)
–0.5
4
V
Differential input voltage magnitude, |VID|
SN65LVDT2 only
1
V
Input voltage range, VI
Receiver output current, IO
–12
12
mA
Storage temperature, Tstg
–65
150
°C
(1)
(2)
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
All voltage values, except differential I/O bus voltages are with respect to network ground terminal.
7.2 ESD Ratings
VALUE
V(ESD)
(1)
(2)
(3)
Electrostatic
discharge
Human-body model electrostatic discharge, HBM
ESD (1)
All pins
±4000
Bus pins (A, B, Y, Z)
±9000
Machine-model electrostatic discharge, MM ESD (2)
±400
Field-induced-charge device model electrostatic discharge, FCDM ESD (3)
±1500
UNIT
V
Test method based upon JEDEC Standard 22, Test Method A114-A. Bus pins stressed with respect to GND and VCC separately.
Test method based upon JEDEC Standard 22, Test Method A114-A.
Test method based upon EIA-JEDEC JESD22-C101C.
7.3 Recommended Operating Conditions
PARAMETER
VCC
Supply voltage
VIH
High-level input voltage
VIL
Low-level input voltage
TA
Operating free-air temperature
|VID|
Magnitude of differential input voltage
Input voltage (any combination of input or common-mode voltage)
4
Submit Documentation Feedback
MIN
NOM
MAX
2.4
3.3
3.6
UNIT
V
2
5
V
0
0.8
V
–40
85
°C
0.1
0.6
V
0
VCC – 0.8
V
Copyright © 1999–2014, Texas Instruments Incorporated
Product Folder Links: SN65LVDS1 SN65LVDS2 SN65LVDT2
SN65LVDS1, SN65LVDS2, SN65LVDT2
www.ti.com
SLLS373L – JULY 1999 – REVISED DECEMBER 2014
7.4 Thermal Information
THERMAL METRIC
SN65LVDS1, SN65LVDS2,
SN65LVDT2
(1)
D
DBV
8 PINS
5 PINS
RθJA
Junction-to-ambient thermal resistance
172.4
322.6
Power
rating
TA ≤ 25°C
725
385
TA ≤ 85°C
402
200
(1)
UNIT
°C/W
mW
For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.
7.5 Driver Electrical Characteristics
over recommended operating conditions (unless otherwise noted)
PARAMETER
MIN (1)
TYP (2)
MAX
RL = 100 Ω, 2.4 ≤ VCC < 3 V
200
350
454
RL = 100 Ω, 3 ≤ VCC < 3.6 V
247
350
454
See Figure 10
–50
50
1.125
1.375
–50
50
mV
25
100
mV
TEST CONDITIONS
|VOD|
Differential output voltage magnitude
Δ|VOD|
Change in differential output voltage
magnitude between logic states
VOC(SS)
Steady-state common-mode output voltage
ΔVOC(SS)
Change in steady-state common-mode
output voltage between logic states
VOC(PP)
Peak-to-peak common-mode output
voltage
ICC
Supply current
IIH
High-level input current
IIL
Low-level input current
See Figure 10
VI = 0 V or VCC, No load
mV
V
2
4
5.5
8
VIH = 5 V
2
20
μA
VIL = 0.8 V
2
10
μA
VOY or VOZ = 0 V
3
10
VI = 0 V or VCC, RL = 100 Ω
IOS
Short-circuit output current
IO(OFF)
Power-off output current
VCC = 1.5 V, VO = 3.6 V
Ci
Input capacitance
VI = 0.4sin(4E6πt) + 0.5 V
(1)
(2)
UNIT
VOD = 0 V
10
–1
mA
mA
1
3
μA
pF
The algebraic convention, in which the least positive (most negative) limit is designated as a minimum, is used in this data sheet.
All typical values are at 25°C and with a 3.3-V supply.
Copyright © 1999–2014, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: SN65LVDS1 SN65LVDS2 SN65LVDT2
5
SN65LVDS1, SN65LVDS2, SN65LVDT2
SLLS373L – JULY 1999 – REVISED DECEMBER 2014
www.ti.com
7.6 Receiver Electrical Characteristics
over recommended operating conditions (unless otherwise noted)
PARAMETER
VITH+
TEST CONDITIONS
Positive-going differential input voltage
threshold
VOH
High-level output voltage
VOL
Low-level output voltage
IOL = 8 mA
ICC
Supply current
No load, Steady state
UNIT
mV
–100
IOH = –8 mA, VCC = 2.4 V
1.9
IOH = –8 mA, VCC = 3 V
2.4
VI = 0 V, other input = 1.2 V
Input current (A or B inputs)
MAX
100
Negative-going differential input voltage
threshold
II
TYP (2)
See Figure 11
VITH–
LVDS2
MIN (1)
0.25
4
–20
VI = 2.2 V, other input = 1.2 V,
VCC = 3.0 V
VI = 0 V, other input open
LVDT2
VI = 2.2 V, other input open,
VCC = 3.0 V
LVDS2
VIA = 2.4 V, VIB = 2.3 V
V
0.4
7
V
mA
–2
–3
–40
–1.2
μA
-4
–6
–2.4
IID
Differential input current
(IIA – IIB)
II(OFF)
Power-off input current (A or B LVDS2
inputs)
LVDT2
VCC = 0 V, VIA = VIB = 2.4 V
20
VCC = 0 V, VIA = VIB = 2.4 V
40
RT
Differential input resistance
VIA = 2.4 V, VIB = 2.2 V
CI
Input capacitance
VI = 0.4sin(4E6πt) + 0.5 V
5.8
pF
CO
Output capacitance
VI = 0.4sin(4E6πt) + 0.5 V
3.4
pF
(1)
(2)
LVDT2
–2
90
μA
2
111
μA
Ω
132
The algebraic convention, in which the least positive (most negative) limit is designated as a minimum, is used in this data sheet.
All typical values are at 25°C and with a 2.7-V supply.
7.7 Driver Switching Characteristics
over recommended operating conditions (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
TYP (1)
MAX
UNIT
tPLH
Propagation delay time, low-to-high-level output
1.5
3.1
ns
tPHL
Propagation delay time, high-to-low-level output
1.8
3.1
ns
tr
Differential output signal rise time
0.6
1
ns
tf
Differential output signal fall time
0.7
1
ns
tsk(p)
Pulse skew (|tPHL – tPLH|) (2)
0.3
(1)
(2)
6
RL = 100 Ω, CL = 10 pF,
See Figure 13
ns
All typical values are at 25°C and with a 3.3-V supply.
tsk(p) is the magnitude of the time difference between the high-to-low and low-to-high propagation delay times at an output.
Submit Documentation Feedback
Copyright © 1999–2014, Texas Instruments Incorporated
Product Folder Links: SN65LVDS1 SN65LVDS2 SN65LVDT2
SN65LVDS1, SN65LVDS2, SN65LVDT2
www.ti.com
SLLS373L – JULY 1999 – REVISED DECEMBER 2014
7.8 Receiver Switching Characteristics
over recommended operating conditions (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
TYP (1)
MAX
1.4
2.6
3.6
ns
1.4
2.5
3.6
ns
UNIT
tPLH
Propagation delay time, low-to-highlevel output
tPHL
Propagation delay time, high-to-lowlevel output
tsk(p)
Pulse skew (|tpHL – tpLH|) (2)
0.1
0.6
ns
tr
Output signal rise time
0.8
1.4
ns
tf
Output signal fall time
0.8
1.4
ns
tr(slew)
Output slew rate (rising)
CL = 10 pF, See Figure 14
CL = 10 pF
tf(slew)
(1)
(2)
Output slew rate (falling)
VCC = 3.0 V – 3.6 V
2.2
3
5.5
V/ns
VCC = 2.4 V – 2.7 V
1.5
1.9
2.9
V/ns
VCC = 3.0 V – 3.6 V
2.7
3.8
6
V/ns
VCC = 2.4 V – 2.7 V
2.1
2.3
3.9
V/ns
All typical values are at 25°C and with a 2.7-V supply.
tsk(p) is the magnitude of the time difference between the high-to-low and low-to-high propagation delay times at an output.
Copyright © 1999–2014, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: SN65LVDS1 SN65LVDS2 SN65LVDT2
7
SN65LVDS1, SN65LVDS2, SN65LVDT2
SLLS373L – JULY 1999 – REVISED DECEMBER 2014
www.ti.com
7.9 Typical Characteristics
1.9
2.6
2.4
t PLH − Driver High-to-Low Propagation
Delay Times − ns
t PHL − Driver High-to-Low Propagation
Delay Times − ns
VCC = 2.4 V
VCC = 3 V
2.2
2
VCC = 2.7 V
1.8
VCC = 3.3 V
1.6
VCC = 3.6 V
1.4
1.2
1
−40
−20
0
20
40
60
80
VCC = 2.4 V
1.8
1.7
VCC = 2.7 V
1.6
VCC = 3.6 V
1.5
1.4
1.3
1.2
1.1
1
−40
100
−20
TA − Free-Air Temperature − °C
VOL− Receiver Low-Level Output Voltage − V
VOH − Receiver High-Level Output Voltage − V
3
2.5
VCC = 3.3 V
2
1.5
VCC = 2.7 V
1
0.5
80
100
3
2.5
VCC = 2.7 V
2
1.5
VCC = 3.3 V
1
0.5
0
−60
−50
−40
−30
−20
−10
0
0
2.9
2.85
VCC = 2.4 V
2.8
2.75
VCC = 3.6 V
2.7
VCC = 3.3 V
2.6
VCC = 3 V
2.55
2.5
VCC = 2.7 V
2.45
−20
0
20
40
60
80
TA − Free-Air Temperature − °C
Figure 5. Receiver High-to-Low Level Propagation Delay
Times vs Free-Air Temperature
Submit Documentation Feedback
10
20
30
40
50
60
70
IOL − Low-Level Output Current − mA
Figure 4. Receiver Low-Level Output Voltage vs Low-Level
Output Current
t PLH − Receiver Low-to-High Level Propagation
Delay time s − ns
Figure 3. Receiver High-Level Output Voltage vs High-Level
Output Current
t PHL − Receiver High-to-Low level Propagation
Delay Times − ns
60
3.5
IOH − High-Level Output Current − mA
8
40
4
3.5
2.4
−40
20
Figure 2. Driver Low-to-High Level Propagation Delay Times
vs Free-Air Temperature
4
2.65
0
TA − Free-Air Temperature − °C
Figure 1. Driver High-to-Low Level Propagation Delay Times
vs Free-Air Temperature
0
−70
VCC = 3.3 V
VCC = 3 V
3
VCC = 2.4 V
2.9
2.8
2.7
VCC = 3.3 V
VCC = 3.6 V
2.6
2.5
2.4
VCC = 3 V
VCC = 2.7 V
2.3
2.2
−40
−20
0
20
40
60
80
100
TA − Free-Air Temperature − °C
Figure 6. Receiver Low-to-High Level Propagation Delay
Times vs Free-Air Temperature
Copyright © 1999–2014, Texas Instruments Incorporated
Product Folder Links: SN65LVDS1 SN65LVDS2 SN65LVDT2
SN65LVDS1, SN65LVDS2, SN65LVDT2
www.ti.com
SLLS373L – JULY 1999 – REVISED DECEMBER 2014
Typical Characteristics (continued)
1200
1400
VCC = 2.5 V
VCC = 3.3 V
1000
1000
tr, tf − Rise/Fall Time − ps
tr, tf − Rise/Fall Time − ps
1200
Rise Time
800
Fall Time
600
400
Rise Time
800
600
Fall Time
400
200
200
0
0
0
5
10
15
20
25
CL − Capacitive Load − pF
Figure 7. Rise or Fall Time vs Capacitive Load
Copyright © 1999–2014, Texas Instruments Incorporated
0
5
10
15
20
25
CL − Capacitive Load − pF
Figure 8. Rise or Fall Time vs Capacitive Load
Submit Documentation Feedback
Product Folder Links: SN65LVDS1 SN65LVDS2 SN65LVDT2
9
SN65LVDS1, SN65LVDS2, SN65LVDT2
SLLS373L – JULY 1999 – REVISED DECEMBER 2014
www.ti.com
8 Parameter Measurement Information
IOY
Y
II
D
IOZ
VOD
V
VOY
Z
VI
OY
)V
OZ
2
VOC
VOZ
Figure 9. Driver Voltage and Current Definitions
49.9 Ω, ±1% (2 Places)
Y
Input
Z
50 pF
VI
1.4 V
VI
1V
VOC
VOC(PP)
VOC(SS)
VOC
A.
All input pulses are supplied by a generator having the following characteristics: tr or tf ≤ 1 ns, pulse repetition rate
(PRR) = 0.5 Mpps, pulse width = 500 ± 10 ns. CL includes instrumentation and fixture capacitance within 0.06 mm of
the device under test. The measurement of VOC(PP) is made on test equipment with a –3dB bandwidth of at least 300
MHz.
Figure 10. Driver Test Circuit and Definitions for the Driver Common-Mode Output Voltage
IIA
V
IA
)V
A
IO
IB
2
VIA
VIC
IIB
VID
B
R
VO
VIB
Figure 11. Receiver Voltage and Current Definitions
10
Submit Documentation Feedback
Copyright © 1999–2014, Texas Instruments Incorporated
Product Folder Links: SN65LVDS1 SN65LVDS2 SN65LVDT2
SN65LVDS1, SN65LVDS2, SN65LVDT2
www.ti.com
SLLS373L – JULY 1999 – REVISED DECEMBER 2014
Parameter Measurement Information (continued)
1000 Ω
100 Ω
1000 Ω
VIC
+
−
100 Ω†
VID
10 pF,
2 Places
VO
15 pF
†
Remove for testing LVDT device.
NOTE: Input signal of 3 Mpps, duration of 167 ns, and transition time of < 1 ns.
VIT+
0V
VID
−100 mV
VO
100 mV
VID
0V
VIT−
VO
NOTE: Input signal of 3 Mpps, duration of 167 ns, and transition time of