0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
SN74AUCH240RGYR

SN74AUCH240RGYR

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    QFN20_EP

  • 描述:

    IC BUFFER INVERT 2.7V 20VQFN

  • 数据手册
  • 价格&库存
SN74AUCH240RGYR 数据手册
SN74AUCH240 OCTAL BUFFER/DRIVER WITH 3-STATE OUTPUTS SCES431A – MARCH 2003 – REVISED MARCH 2003 D D VCC 1 20 19 2OE 18 1Y1 2 3 17 2A4 16 1Y2 4 5 15 2A3 14 1Y3 6 7 13 2A2 12 1Y4 8 9 10 11 2A1 D D D D D 1A1 2Y4 1A2 2Y3 1A3 2Y2 1A4 2Y1 1OE D RGY PACKAGE (TOP VIEW) Optimized for 1.8-V Operation and is 3.6-V I/O Tolerant to Support Mixed-Mode Signal Operation Ioff Supports Partial-Power-Down Mode Operation Sub 1-V Operable Max tpd of 1.7 ns at 1.8 V Low Power Consumption, 20-µA Max ICC ±8-mA Output Drive at 1.8 V Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II ESD Protection Exceeds JESD 22 – 2000-V Human-Body Model (A114-A) – 200-V Machine Model (A115-A) – 1000-V Charged-Device Model (C101) GND D description/ordering information This octal buffer/driver is operational at 0.8-V to 2.7-V VCC, but is designed specifically for 1.65-V to 1.95-V VCC operation. The SN74AUCH240 is designed specifically to improve the performance and density of 3-state memory address drivers, clock drivers, and bus-oriented receivers and transmitters. This device is organized as two 4-bit buffers/drivers with separate output-enable (OE) inputs. When OE is low, the device passes data from the A inputs to the Y outputs. When OE is high, the outputs are in the high-impedance state. To ensure the high-impedance state during power up or power down, OE should be tied to VCC through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver. Active bus-hold circuitry holds unused or undriven inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended. This device is fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down. ORDERING INFORMATION TA PACKAGE† ORDERABLE PART NUMBER TOP-SIDE MARKING –40°C to 85°C QFN – RGY Tape and reel SN74AUCH240RGYR MT240 † Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Copyright  2003, Texas Instruments Incorporated PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 SN74AUCH240 OCTAL BUFFER/DRIVER WITH 3-STATE OUTPUTS SCES431A – MARCH 2003 – REVISED MARCH 2003 FUNCTION TABLE (each 4-bit buffer/driver) INPUTS OUTPUT Y OE A L H L L L H H X Z logic diagram (positive logic) 1OE 1A1 1A2 1A3 1A4 1 2OE 2 18 4 16 6 14 8 12 1Y1 2A1 1Y2 2A2 1Y3 2A3 1Y4 2A4 19 11 9 13 7 15 5 17 3 2Y1 2Y2 2Y3 2Y4 absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† Supply voltage range, VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 3.6 V Input voltage range, VI (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 3.6 V Voltage range applied to any output in the high-impedance or power-off state, VO (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to 3.6 V Output voltage range, VO (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to VCC + 0.5 V Input clamp current, IIK (VI < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –50 mA Output clamp current, IOK (VO < 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –50 mA Continuous output current, IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±20 mA Continuous current through VCC or GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±100 mA Package thermal impedance, θJA (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37°C/W Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to 150°C † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed. 2. The package thermal impedance is calculated in accordance with JESD 51-5. 2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SN74AUCH240 OCTAL BUFFER/DRIVER WITH 3-STATE OUTPUTS SCES431A – MARCH 2003 – REVISED MARCH 2003 recommended operating conditions (see Note 3) VCC Supply voltage VIH High-level input voltage VIL Low-level input voltage VI Input voltage VCC = 0.8 V VCC = 1.1 V to 1.95 V VCC = 2.3 V to 2.7 V MIN MAX 0.8 2.7 VCC 0.65 × VCC Output voltage High-level output current 0 0.35 × VCC ∆t/∆v Low-level output current V 0.7 3.6 V Active state 0 3-state 0 VCC 3.6 V VCC = 1.4 V VCC = 1.65 V VCC = 2.3 V VCC = 0.8 V IOL V 0 VCC = 0.8 V VCC = 1.1 V IOH V 1.7 VCC = 0.8 V VCC = 1.1 V to 1.95 V VCC = 2.3 V to 2.7 V VO UNIT –0.7 –3 –5 –9 0.7 VCC = 1.1 V VCC = 1.4 V 3 VCC = 1.65 V VCC = 2.3 V 8 Input transition rise or fall rate mA –8 5 mA 9 20 ns/V TA Operating free-air temperature –40 85 °C NOTE 3: All unused control inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 3 SN74AUCH240 OCTAL BUFFER/DRIVER WITH 3-STATE OUTPUTS SCES431A – MARCH 2003 – REVISED MARCH 2003 electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS VCC 0.8 V to 2.7 V IOH = –100 µA IOH = –0.7 mA VOH VOL II IBHL‡ IBHH§ IBHLO¶ A and OE inputs MIN TYP† MAX 0.8 V 0.55 IOH = –3 mA IOH = –5 mA 1.1 V 0.8 1.4 V 1 IOH = –8 mA IOH = –9 mA 1.65 V 1.2 2.3 V 1.8 IOL = 100 µA IOL = 0.7 mA 0.8 V to 2.7 V V 0.2 0.8 V 0.25 IOL = 3 mA IOL = 5 mA 1.1 V 0.3 1.4 V 0.4 IOL = 8 mA IOL = 9 mA 1.65 V 0.45 2.3 V 0.6 VI = VCC or GND VI = 0.35 V ±5 0 to 2.7 V VI = 0.47 V VI = 0.57 V 1.1 V 10 1.4 V 15 1.65 V 20 VI = 0.7 V VI = 0.8 V 2.3 V 40 1.1 V –10 VI = 0.9 V VI = 1.07 V 1.4 V –15 1.65 V –20 VI = 1.7 V 2.3 V –40 VI = 0 to VCC IBHHO# VI = 0 to VCC Ioff IOZ VI or VO = 2.7 V VO = VCC or GND ICC Ci VI = VCC or GND, VI = VCC or GND 1.3 V 75 1.6 V 125 1.95 V 175 2.7 V 275 1.3 V –75 1.6 V –125 1.95 V –175 2.7 V –275 µA µA µA µA 2.7 V 0.8 V to 2.7 V 2.5 V V µA 0 IO = 0 UNIT VCC–0.1 3 ±10 µA ±10 µA 20 µA 4 pF Co VO = VCC or GND 2.5 V 5.5 6 pF † All typical values are at TA = 25°C. ‡ The bus-hold circuit can sink at least the minimum low sustaining current at VIL max. IBHL should be measured after lowering VIN to GND and then raising it to VIL max. § The bus-hold circuit can source at least the minimum high sustaining current at VIH min. IBHH should be measured after raising VIN to VCC and then lowering it to VIH min. ¶ An external driver must source at least IBHLO to switch this node from low to high. # An external driver must sink at least IBHHO to switch this node from high to low. 4 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SN74AUCH240 OCTAL BUFFER/DRIVER WITH 3-STATE OUTPUTS SCES431A – MARCH 2003 – REVISED MARCH 2003 switching characteristics over recommended operating free-air temperature range, CL = 15 pF (unless otherwise noted) (see Figure 1) VCC = 1.2 V ± 0.1 V VCC = 1.5 V ± 0.1 V VCC = 1.8 V ± 0.15 V VCC = 2.5 V ± 0.2 V FROM (INPUT) TO (OUTPUT) VCC = 0.8 V TYP MIN MAX MIN MAX MIN TYP MAX MIN MAX tpd A Y 4.8 1.2 3.3 0.8 2 0.7 1.1 1.7 0.6 1.3 ns ten OE Y 6.4 1.4 4 0.9 2.6 0.8 1.2 2.1 0.7 1.5 ns tdis OE Y 8.7 2 5.8 1.8 3.9 1.8 2.5 4 0.3 3 ns PARAMETER UNIT switching characteristics over recommended operating free-air temperature range, CL = 30 pF (unless otherwise noted) (see Figure 1) FROM (INPUT) TO (OUTPUT) tpd A ten tdis PARAMETER VCC = 1.8 V ± 0.15 V VCC = 2.5 V ± 0.2 V UNIT MIN TYP MAX MIN MAX Y 1 1.4 2.1 0.9 1.6 ns OE Y 1.1 1.7 2.7 1 2 ns OE Y 1.9 2.5 4 1 2 ns operating characteristics, TA = 25°C PARAMETER Cpd Power dissipation capacitance Outputs enabled Outputs disabled TEST CONDITIONS VCC = 0.8 V TYP VCC = 1.2 V TYP VCC = 1.5 V TYP VCC = 1.8 V TYP VCC = 2.5 V TYP 21 21 22 23 27 3 3 3 4 6 f = 10 MHz UNIT pF POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 5 SN74AUCH240 OCTAL BUFFER/DRIVER WITH 3-STATE OUTPUTS SCES431A – MARCH 2003 – REVISED MARCH 2003 PARAMETER MEASUREMENT INFORMATION 2 × VCC S1 RL From Output Under Test Open GND CL (see Note A) RL VCC 0.8 V 1.2 V ± 0.1 V 1.5 V ± 0.1 V 1.8 V ± 0.15 V 2.5 V ± 0.2 V 1.8 V ± 0.15 V 2.5 V ± 0.2 V LOAD CIRCUIT TEST S1 tPLH/tPHL tPLZ/tPZL tPHZ/tPZH Open 2 × VCC GND CL RL 15 pF 15 pF 15 pF 15 pF 15 pF 30 pF 30 pF 2 kΩ 2 kΩ 2 kΩ 2 kΩ 2 kΩ 1 kΩ 500 Ω V∆ 0.1 V 0.1 V 0.1 V 0.15 V 0.15 V 0.15 V 0.15 V VCC Timing Input VCC/2 0V tw tsu VCC VCC/2 Input VCC/2 th VCC VCC/2 Data Input VCC/2 0V 0V VOLTAGE WAVEFORMS PULSE DURATION VOLTAGE WAVEFORMS SETUP AND HOLD TIMES VCC VCC/2 Input VCC/2 0V tPHL tPLH VOH VCC/2 Output VCC/2 VOL tPHL VCC/2 VCC/2 VOL VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES INVERTING AND NONINVERTING OUTPUTS VCC/2 0V tPLZ tPZL VCC VCC/2 Output Waveform 2 S1 at GND (see Note B) VOL + V∆ VOL tPHZ tPZH VOH Output Output Waveform 1 S1 at 2 × VCC (see Note B) tPLH VCC/2 VCC Output Control VCC/2 VOH – V∆ VOH ≈0 V VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES LOW- AND HIGH-LEVEL ENABLING NOTES: A. CL includes probe and jig capacitance. B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, ZO = 50 Ω, slew rate ≥ 1 V/ns. D. The outputs are measured one at a time with one transition per measurement. E. tPLZ and tPHZ are the same as tdis. F. tPZL and tPZH are the same as ten. G. tPLH and tPHL are the same as tpd. H. All parameters and waveforms are not applicable to all devices. Figure 1. Load Circuit and Voltage Waveforms 6 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third–party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Mailing Address: Texas Instruments Post Office Box 655303 Dallas, Texas 75265 Copyright  2003, Texas Instruments Incorporated
SN74AUCH240RGYR 价格&库存

很抱歉,暂时无法提供与“SN74AUCH240RGYR”相匹配的价格&库存,您可以联系我们找货

免费人工找货