SN74AXCH1T45
ZHCSJ32C – DECEMBER 2018 – REVISED SEPTEMBER 2020
具有可配置电压转换、三态输出和总线保持输入的
SN74AXCH1T45 1 位双电源总线收发器
1 特性
• 完全可配置的双电源轨设计可允许各个端口在
0.65V 至 3.6V 的电源电压范围内运行
• 工作温度:–40°C 至 +125°C
• 无干扰电源定序
• 总线保持数据输入消除了对外部上拉或下拉电阻的
需求
• 最大静态电流 (ICCA + ICCB) 为 10µA(最高 85°C)
和 16µA(最高 125°C)
• 从 1.8V 转换到 3.3 V 时,支持高达 500Mbps 的转
换速率
• VCC 隔离特性
– 如果任何一个 VCC 输入低于 100mV,则所有
I/O 输出均禁用且处于高阻抗状态
• Ioff 支持局部关断模式运行
• 闩锁性能超过 100mA,符合 JESD 78 II 类规范的
要求
• ESD 保护性能超过 JESD 22 规范要求
– 8000V 人体放电模型
– 1000V 充电器件模型
2 应用
•
•
•
•
•
•
个人电子产品
企业与通信
无线基础设施
楼宇自动化
电子销售终端
企业级固态硬盘
DIR 引脚决定信号传播的方向。DIR 引脚配置为高电平
时,信号转换由端口 A 流向端口 B。DIR 配置为低电
平时,则由端口 B 流向端口 A。DIR 引脚以 VCCA 为基
准,这意味着它的逻辑高电平和逻辑低电平阈值跟踪
VCCA 电压。
有源总线保持电路会将未使用或未驱动的输入保持在有
效逻辑状态。不建议在总线保持电路上使用上拉或下拉
电阻器。如果 VCCA 或 VCCB 连上电源,则总线保持电
路分别在 A 端口或 B 端口上始终保持工作状态,与方
向控制引脚的状态无关。
该器件完全符合使用 Ioff 电流的部分断电应用的规范要
求。当器件断电时,Ioff 保护电路可确保不从输入、输
出或偏置到特定电压的组合 I/O 获取多余电流,也不向
其提供多余电流。
VCC 隔离特性可确保当 VCCA 或 VCCB 低于 100mV
时,I/O 端口均禁用其输出并进入高阻态。
无干扰电源时序使电源轨能以任何顺序打开或关断,从
而提供强大的电源时序性能。
器件信息
封装(1)
封装尺寸(标称值)
SN74AXCH1T45DBV
SOT-23 (6)
2.90mm × 1.60mm
SN74AXCH1T45DCK
SC70 (6)
2.00mm × 1.25mm
SN74AXCH1T45DTQ
X2SON (6)
1.00mm x 0.80mm
SN74AXCH1T45DRY
SON (6)
1.40mm x 1.00mm
器件型号
(1)
如需了解所有可用封装,请参阅数据表末尾的可订购产品附
录。
3 说明
SN74AXCH1T45 是一款采用两个独立可配置电源轨的
单比特位同相总线收发器。VCCA 和 VCCB 电源电压低
至 0.65V 时,该器件可正常工作。A 端口用于跟踪
VCCA ,该端口可支持 0.65V 至 3.6V 范围内的任何电
源 电 压 。 B 端 口 用 于 跟 踪 VCCB , 该 端 口 也 可 支 持
0.65V 至 3.6V 范 围 内 的 任 何 电 源 电 压 。 此 外 ,
SN74AXCH1T45 还与单电源系统兼容。
VCCA
VCCB
DIR
Bus-Hold
B
A
Bus-Hold
功能方框图
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。有关适用的官方英文版本的最新信息,请访问
www.ti.com,其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前,请务必参考最新版本的英文版本。
English Data Sheet: SCES883
SN74AXCH1T45
www.ti.com.cn
ZHCSJ32C – DECEMBER 2018 – REVISED SEPTEMBER 2020
Table of Contents
1 特性................................................................................... 1
2 应用................................................................................... 1
3 说明................................................................................... 1
4 Revision History.............................................................. 2
5 Pin Configuration and Functions...................................3
6 Specifications.................................................................. 4
6.1 Absolute Maximum Ratings........................................ 4
6.2 ESD Ratings............................................................... 4
6.3 Recommended Operating Conditions.........................5
6.4 Thermal Information....................................................5
6.5 Electrical Characteristics.............................................6
6.6 Operating Characteristics: TA = 25°C....................... 13
6.7 Typical Characteristics.............................................. 14
7 Parameter Measurement Information.......................... 16
7.1 Load Circuit and Voltage Waveforms........................16
8 Detailed Description......................................................18
8.1 Overview................................................................... 18
8.2 Functional Block Diagram......................................... 18
8.3 Feature Description...................................................18
8.4 Device Functional Modes..........................................20
9 Application and Implementation.................................. 21
9.1 Application Information............................................. 21
9.2 Typical Applications.................................................. 21
10 Power Supply Recommendations..............................24
11 Layout........................................................................... 24
11.1 Layout Guidelines................................................... 24
11.2 Layout Example...................................................... 24
12 Device and Documentation Support..........................25
12.1 Documentation Support.......................................... 25
12.2 接收文档更新通知................................................... 25
12.3 支持资源..................................................................25
12.4 Trademarks............................................................. 25
12.5 静电放电警告.......................................................... 25
12.6 术语表..................................................................... 25
13 Mechanical, Packaging, and Orderable
Information.................................................................... 26
4 Revision History
注:以前版本的页码可能与当前版本的页码不同
Changes from Revision B (June 2020) to Revision C (September 2020)
Page
• Updated ICCA, ICCB, and ICCA + ICCB to reflect updated performance of device.................................................. 6
Changes from Revision A (January 2019) to Revision B (June 2020)
Page
• 向器件信息 表添加了 DRY 封装选项...................................................................................................................1
• Added pinout drawing for DRY package.............................................................................................................3
Changes from Revision * (December 2018) to Revision A (January 2019)
•
•
•
•
2
Page
向器件信息 表添加了 DBV 和 DTQ 封装选项..................................................................................................... 1
更新了修订历史记录 部分................................................................................................................................... 1
Added pinout drawings for DBV and DTQ packages .........................................................................................3
Added DRY package to Pin Configurations........................................................................................................3
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: SN74AXCH1T45
SN74AXCH1T45
www.ti.com.cn
ZHCSJ32C – DECEMBER 2018 – REVISED SEPTEMBER 2020
5 Pin Configuration and Functions
VCCA
1
6
VCCB
GND
2
5
DIR
A
3
B
4
VCCA
1
6
VCCB
GND
2
5
DIR
A
3
4
B
图 5-2. DCK Package 6-Pin SC70 Top View
图 5-1. DBV Package 6-Pin SOT-23 Top View
VCCA
2
GND
A
6
1
5
3
4
VCCB
VCCA
1
6
VCCB
DIR
GND
2
5
DIR
A
3
4
B
B
图 5-3. DTQ Package 6-Pin X2SON Transparent Top
View
图 5-4. DRY Package 6-Pin SON Transparent Top
View
Pin Functions
PIN
NO.
NAME
TYPE
DESCRIPTION
1
VCCA
—
A-port supply voltage. 0.65 V ≤ VCCA ≤ 3.6 V.
2
GND
—
Ground
3
A
I/O
Input/output A. This pin is referenced to VCCA.
4
B
I/O
Input/output B. This pin is referenced to VCCB.
5
DIR
I
6
VCCB
—
Direction control signal. See for functionality.
B-port supply voltage. 0.65 V ≤ VCCB ≤ 3.6 V.
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: SN74AXCH1T45
3
SN74AXCH1T45
www.ti.com.cn
ZHCSJ32C – DECEMBER 2018 – REVISED SEPTEMBER 2020
6 Specifications
6.1 Absolute Maximum Ratings
over operating free-air temperature range (unless otherwise noted)(1)
MIN
MAX UNIT
VCCA
Supply voltage A
–0.5
4.2
V
VCCB
Supply voltage B
–0.5
4.2
V
I/O Ports (A Port)
–0.5
4.2
VI
Input Voltage(2)
I/O Ports (B Port)
–0.5
4.2
Control Inputs
–0.5
4.2
A Port
–0.5
4.2
B Port
–0.5
4.2
A Port
–0.5 VCCA + 0.2
B Port
–0.5 VCCB + 0.2
V
VO
Voltage applied to any output in the high-impedance or power-off state(2)
VO
Voltage applied to any output in the high or low state(2) (3)
IIK
Input clamp current
VI < 0
–50
mA
IOK
Output clamp current
VO < 0
–50
mA
IO
Continuous output current
Continuous current through VCC or GND
Tj
Junction Temperature
Tstg
Storage temperature
(1)
(2)
(3)
V
V
–50
50
mA
–100
100
mA
150
°C
150
°C
–65
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device
reliability.
The input voltage and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.
The output positive-voltage rating may be exceeded up to 4.2 V maximum if the output current rating is observed.
6.2 ESD Ratings
VALUE
V(ESD)
(1)
(2)
4
Electrostatic discharge
Human body model (HBM), per ANSI/ESDA/JEDEC
JS-001(1)
±8000
Charged device model (CDM), per JEDEC specification JESD22-C101(2)
±1000
UNIT
V
JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: SN74AXCH1T45
SN74AXCH1T45
www.ti.com.cn
ZHCSJ32C – DECEMBER 2018 – REVISED SEPTEMBER 2020
6.3 Recommended Operating Conditions
over operating free-air temperature range (unless otherwise noted)(1) (2) (3)
MIN
MAX UNIT
VCCA
Supply voltage A
0.65
3.6
V
VCCB
Supply voltage B
0.65
3.6
V
Data Inputs
VCCI = 0.65 V - 0.75 V
VCCI x 0.70
VCCI = 0.76 V - 1 V
VCCI x 0.70
VCCI = 1.1 V - 1.95 V
VCCI x 0.65
VCCI = 2.3 V - 2.7 V
VIH
1.6
VCCI = 3 V - 3.6 V
High-level input voltage
Control Input (DIR)
Referenced to VCCA
2
VCCA = 0.65 V - 0.75 V
VCCA x 0.70
VCCA = 0.76 V - 1 V
VCCA x 0.70
VCCA = 1.1 V - 1.95 V
VCCA x 0.65
VCCA = 2.3 V - 2.7 V
1.6
VCCA = 3 V - 3.6 V
Data Inputs
VIL
Low-level input voltage
Control Input (DIR)
Referenced to VCCA
V
2
VCCI = 0.65 V - 0.75 V
VCCI x 0.30
VCCI = 0.76 V - 1 V
VCCI x 0.30
VCCI = 1.1 V - 1.95 V
VCCI x 0.35
VCCI = 2.3 V - 2.7 V
0.7
VCCI = 3 V - 3.6 V
0.8
VCCA = 0.65 V - 0.75 V
VCCA x 0.30
VCCA = 0.76 V - 1 V
VCCA x 0.30
VCCA = 1.1 V - 1.95 V
VCCA x 0.35
VCCA = 2.3 V - 2.7 V
0.7
VCCA = 3 V - 3.6 V
VI
Input voltage (3)
VO
Output voltage
Δt/Δv
Input transition rate
TA
Operating free-air temperature
(1)
(2)
(3)
V
0.8
0
3.6
Active State
0
VCCO
Tri-State
0
3.6
–40
V
V
100
ns/V
125
°C
VCCI is the VCC associated with the input port.
VCCO is the VCC associated with the output port.
All unused inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report,
Implications of Slow or Floating CMOS Inputs.
6.4 Thermal Information
SN74AXCH1T45
THERMAL METRIC(1)
DBV
(SOT-23)
DCK (SC70)
DTQ
(X2SON)
DRY (SON)
UNIT
6 PINS
6 PINS
6 PINS
6 PINS
Junction-to-ambient thermal resistance
214.0
223.9
327.8
308.3
°C/W
Junction-to-case (top) thermal resistance
151.8
150.9
194.9
206.4
°C/W
RθJB
Junction-to-board thermal resistance
93.6
75.3
248.4
181.7
°C/W
ψJT
Junction-to-top characterization parameter
78.1
58.2
24.1
42.6
°C/W
ψJB
Junction-to-board characterization parameter
93.4
75.0
247.6
180.8
°C/W
RθJA
Rθ
JC(top)
(1)
For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application
report, SPRA953.
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: SN74AXCH1T45
5
SN74AXCH1T45
www.ti.com.cn
ZHCSJ32C – DECEMBER 2018 – REVISED SEPTEMBER 2020
6.5 Electrical Characteristics
over operating free-air temperature range (unless otherwise noted) (1) (2)
Operating free-air temperature (TA)
PARAMETER
TEST CONDITIONS
VCCA
VCCB
–40°C to 85°C
MIN TYP(3)
VOH
VOL
IBHL
IBHH
6
High-level
V = VIH
output voltage I
Low-level
V = VIL
output voltage I
Bus-hold low
sustaining
current (4)
–40°C to 125°C
MAX
MIN
TYP
MAX
VCCO
– 0.1
VCCO
– 0.1
0.65 V
0.55
0.55
0.76 V
0.76 V
0.58
0.58
0.85 V
0.85 V
0.65
0.65
IOH = –3 mA
1.1 V
1.1 V
0.85
0.85
IOH = –6 mA
1.4 V
1.4 V
1.05
1.05
IOH = –8 mA
1.65 V
1.65 V
1.2
1.2
IOH = –9 mA
2.3 V
2.3 V
1.75
1.75
IOH = –12 mA
3V
3V
IOL = 100 µA
0.7 V - 3.6 V
0.7 V - 3.6 V
IOL = 50 µA
0.65 V
0.65 V
0.1
0.1
IOL = 200 µA
0.76 V
0.76 V
0.18
0.18
IOL = 500 µA
0.85 V
0.85 V
0.2
0.2
IOL = 3 mA
1.1 V
1.1 V
0.25
0.25
IOL = 6 mA
1.4 V
1.4 V
0.35
0.35
IOL = 8 mA
1.65 V
1.65 V
0.45
0.45
IOL = 9 mA
2.3 V
2.3 V
0.55
0.55
IOL = 12 mA
3V
3V
0.7
0.7
IOH = –100 µA
0.7 V - 3.6 V
0.7 V - 3.6 V
IOH = –50 µA
0.65 V
IOH = –200 µA
IOH = –500 µA
2.3
V
2.3
0.1
0.1
VI = 0.20 V
0.65 V
0.65 V
4
4
VI = 0.23 V
0.76 V
0.76 V
8
7
VI = 0.26 V
0.85 V
0.85 V
10
10
VI = 0.39 V
1.1 V
1.1 V
20
20
VI = 0.49 V
1.4 V
1.4 V
40
30
VI = 0.58 V
1.65 V
1.65 V
55
45
VI = 0.7 V
2.3 V
2.3 V
90
80
VI = 0.8 V
3V
3V
145
135
VI = 0.45 V
0.65 V
0.65 V
–4
–4
VI = 0.53 V
0.76 V
0.76 V
–8
–7
VI = 0.59 V
0.85 V
0.85 V
–10
–10
Bus-hold high VI = 0.71 V
sustaining
VI = 0.91 V
current (5)
1.1 V
1.1 V
–20
–20
1.4 V
1.4 V
–40
–30
VI = 1.07 V
1.65 V
1.65 V
–55
–45
VI = 1.6 V
2.3 V
2.3 V
–90
–80
VI = 2.0 V
3V
3V
–145
–135
Submit Document Feedback
UNI
T
V
µA
µA
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: SN74AXCH1T45
SN74AXCH1T45
www.ti.com.cn
ZHCSJ32C – DECEMBER 2018 – REVISED SEPTEMBER 2020
6.5 Electrical Characteristics (continued)
over operating free-air temperature range (unless otherwise noted) (1) (2)
Operating free-air temperature (TA)
PARAMETER
TEST CONDITIONS
VCCA
VCCB
–40°C to 85°C
MIN TYP(3)
Bus-hold low
overdrive
current (6)
IBHLO
IBHHO
II
VI = 0 to VCC
Bus-hold high
overdrive
VI = 0 to VCC
current (7)
Input leakage
current
40
40
0.84 V
0.84 V
50
50
0.95 V
0.95 V
65
65
1.3 V
1.3 V
105
105
1.6 V
1.6 V
150
150
1.95 V
1.95 V
205
205
2.7 V
2.7 V
335
335
3.6 V
3.6 V
480
480
0.75 V
0.75 V
–40
–40
0.84 V
0.84 V
–50
–50
0.95 V
0.95 V
–65
–65
1.3 V
1.3 V
–105
–105
1.6 V
1.6 V
–150
–150
1.95 V
1.95 V
–205
–205
2.7 V
2.7 V
–335
–335
3.6 V
3.6 V
–480
–480
µA
µA
–1
1
A or B Port: Vi = VCCI or
GND
0.65 V - 3.6 V 0.65 V - 3.6 V
–4
4
–8
8
0V
0 V - 3.6 V
–8
8
–12
12
0 V - 3.6 V
0V
–8
8
–12
12
µA
ICCA
VI = VCCI
or GND
0.65 V - 3.6 V 0.65 V - 3.6 V
VI = VCCI
or GND
ICCA + Combined
VI = VCCI
ICCB
supply current or GND
IO = 0
IO = 0
IO = 0
Ci
Control input
capacitance
VI = 3.3 V or GND
Cio
Data I/O
capacitance,
A Port
Cio
Data I/O
capacitance,
B Port
(6)
MAX
0.5
VCCA supply
current
(5)
TYP
–0.5
A or B Port: Vi or Vo = 0 V 3.6 V
(1)
(2)
(3)
(4)
MIN
0.75 V
0.65 V - 3.6 V 0.65 V - 3.6 V
Partial power
down current
VCCB supply
current
MAX
0.75 V
Control input (DIR): VI =
VCCA or GND
Ioff
ICCB
UNI
T
–40°C to 125°C
0V
3.6 V
3.6 V
0V
8
–2
µA
12
µA
–8
2
8
0.65 V - 3.6 V 0.65 V - 3.6 V
8
12
0V
3.6 V
2
8
µA
3.6 V
0V
16
µA
–2
–8
0.65 V - 3.6 V 0.65 V - 3.6 V
3.3 V
10
3.3 V
4.3
4.3
pF
VO = 1.65 V DC +1 MHz -16
3.3 V
dBm sine wave
0V
7.4
7.4
pF
VO = 1.65 V DC +1 MHz -16
0V
dBm sine wave
3.3 V
7.4
7.4
pF
VCCI is the VCC associated with the input port.
VCCO is the VCC associated with the output port.
All typical data is taken at 25°C.
The bus-hold circuit can sink at least the minimum low sustaining current at VIL(MAX). IBHL should be measured after lowering VI to
GND and then raising it to VIL(MAX).
The bus-hold circuit can source at least the minimum high sustaining current at VIH(MIN). IBHH should be measured after raising VI to
VCC and then lowering it to VIH(MIN).
An external driver must source at least IBHLO to switch this node from low to high.
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: SN74AXCH1T45
7
SN74AXCH1T45
ZHCSJ32C – DECEMBER 2018 – REVISED SEPTEMBER 2020
(7)
8
www.ti.com.cn
An external driver must sink at least IBHHO to switch this node from high to low.
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: SN74AXCH1T45
SN74AXCH1T45
www.ti.com.cn
ZHCSJ32C – DECEMBER 2018 – REVISED SEPTEMBER 2020
表 6-1. Switching Characteristics, VCCA = 0.7 V
A
tpd
Propagation
delay
B
DIR
tdis
A
A
Disable time
DIR
DIR
ten
B
B
A
Enable time
DIR
B
–40°C to
85°C
0.5
181
0.5
119
0.5
85
0.5
51
0.5
49
0.5
52
0.5
65
0.5
152
–40°C to
125°C
0.5
181
0.5
119
0.5
85
0.5
51
0.5
49
0.5
52
0.5
65
0.5
152
–40°C to
85°C
0.5
181
0.5
162
0.5
136
0.5
96
0.5
91
0.5
89
0.5
88
0.5
88
–40°C to
125°C
0.5
181
0.5
162
0.5
136
0.5
96
0.5
91
0.5
89
0.5
88
0.5
88
–40°C to
85°C
0.5
152
0.5
152
0.5
152
0.5
152
0.5
152
0.5
152
0.5
152
0.5
152
–40°C to
125°C
0.5
152
0.5
152
0.5
152
0.5
152
0.5
152
0.5
152
0.5
152
0.5
152
–40°C to
85°C
0.5
170
0.5
127
0.5
102
0.5
48
0.5
42
0.5
46
0.5
58
0.5
108
–40°C to
125°C
0.5
170
0.5
127
0.5
102
0.5
48
0.5
42
0.5
46
0.5
58
0.5
108
–40°C to
85°C
0.5
343
0.5
278
0.5
231
0.5
141
0.5
132
0.5
134
0.5
144
0.5
193
–40°C to
125°C
0.5
343
0.5
278
0.5
231
0.5
141
0.5
132
0.5
134
0.5
144
0.5
193
–40°C to
85°C
0.5
326
0.5
257
0.5
222
0.5
194
0.5
191
0.5
191
0.5
197
0.5
277
–40°C to
125°C
0.5
326
0.5
257
0.5
222
0.5
194
0.5
191
0.5
191
0.5
197
0.5
277
ns
ns
ns
表 6-2. Switching Characteristics, VCCA = 0.8 V
A
tpd
Propagation
delay
B
DIR
tdis
A
A
Disable time
DIR
DIR
ten
B
B
A
Enable time
DIR
B
–40°C to
85°C
0.5
162
0.5
98
0.5
65
0.5
33
0.5
28
0.5
26
0.5
27
0.5
37
–40°C to
125°C
0.5
162
0.5
98
0.5
65
0.5
33
0.5
28
0.5
26
0.5
27
0.5
37
–40°C to
85°C
0.5
119
0.5
98
0.5
81
0.5
54
0.5
45
0.5
44
0.5
43
0.5
42
–40°C to
125°C
0.5
119
0.5
98
0.5
81
0.5
54
0.5
45
0.5
44
0.5
43
0.5
42
–40°C to
85°C
0.5
107
0.5
107
0.5
107
0.5
107
0.5
107
0.5
107
0.5
107
0.5
107
–40°C to
125°C
0.5
107
0.5
107
0.5
107
0.5
107
0.5
107
0.5
107
0.5
107
0.5
107
–40°C to
85°C
0.5
160
0.5
117
0.5
90
0.5
39
0.5
31
0.5
29
0.5
29
0.5
37
–40°C to
125°C
0.5
160
0.5
117
0.5
90
0.5
39
0.5
31
0.5
29
0.5
29
0.5
37
–40°C to
85°C
0.5
268
0.5
205
0.5
165
0.5
90
0.5
74
0.5
71
0.5
70
0.5
77
–40°C to
125°C
0.5
268
0.5
205
0.5
165
0.5
90
0.5
74
0.5
71
0.5
70
0.5
77
–40°C to
85°C
0.5
257
0.5
194
0.5
161
0.5
130
0.5
125
0.5
126
0.5
125
0.5
132
–40°C to
125°C
0.5
257
0.5
194
0.5
161
0.5
130
0.5
125
0.5
126
0.5
125
0.5
132
ns
ns
ns
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: SN74AXCH1T45
9
SN74AXCH1T45
www.ti.com.cn
ZHCSJ32C – DECEMBER 2018 – REVISED SEPTEMBER 2020
表 6-3. Switching Characteristics, VCCA = 0.9 V
A
tpd
Propagation
delay
B
DIR
tdis
A
A
Disable time
DIR
DIR
ten
B
B
A
Enable time
DIR
B
–40°C to
85°C
0.5
135
0.5
81
0.5
54
0.5
24
0.5
18
0.5
17
0.5
15
0.5
18
–40°C to
125°C
0.5
135
0.5
81
0.5
54
0.5
24
0.5
18
0.5
17
0.5
15
0.5
18
–40°C to
85°C
0.5
86
0.5
65
0.5
54
0.5
41
0.5
30
0.5
26
0.5
23
0.5
23
–40°C to
125°C
0.5
86
0.5
65
0.5
54
0.5
41
0.5
30
0.5
26
0.5
23
0.5
23
–40°C to
85°C
0.5
79
0.5
79
0.5
79
0.5
79
0.5
79
0.5
79
0.5
79
0.5
79
–40°C to
125°C
0.5
79
0.5
79
0.5
79
0.5
79
0.5
79
0.5
79
0.5
79
0.5
79
–40°C to
85°C
0.5
154
0.5
111
0.5
85
0.5
34
0.5
27
0.5
25
0.5
21
0.5
23
–40°C to
125°C
0.5
154
0.5
111
0.5
85
0.5
34
0.5
27
0.5
25
0.5
21
0.5
23
–40°C to
85°C
0.5
227
0.5
166
0.5
131
0.5
71
0.5
53
0.5
48
0.5
42
0.5
44
–40°C to
125°C
0.5
227
0.5
166
0.5
131
0.5
71
0.5
53
0.5
48
0.5
42
0.5
44
–40°C to
85°C
0.5
206
0.5
152
0.5
125
0.5
96
0.5
91
0.5
89
0.5
89
0.5
92
–40°C to
125°C
0.5
206
0.5
152
0.5
125
0.5
96
0.5
91
0.5
89
0.5
89
0.5
92
ns
ns
ns
表 6-4. Switching Characteristics, VCCA = 1.2 V
A
tpd
Propagation
delay
B
DIR
tdis
DIR
A
B
A
Enable time
DIR
10
A
Disable time
DIR
ten
B
B
–40°C to
85°C
0.5
95
0.5
54
0.5
41
0.5
16
0.5
11
0.5
9
0.5
8
0.5
8
–40°C to
125°C
0.5
95
0.5
54
0.5
41
0.5
16
0.5
11
0.5
9
0.5
8
0.5
8
–40°C to
85°C
0.5
51
0.5
33
0.5
24
0.5
16
0.5
13
0.5
11
0.5
8
0.5
8
–40°C to
125°C
0.5
51
0.5
33
0.5
24
0.5
16
0.5
13
0.5
11
0.5
8
0.5
8
–40°C to
85°C
0.5
28
0.5
28
0.5
28
0.5
28
0.5
28
0.5
28
0.5
28
0.5
28
–40°C to
125°C
0.5
28
0.5
28
0.5
28
0.5
28
0.5
28
0.5
28
0.5
28
0.5
28
–40°C to
85°C
0.5
148
0.5
105
0.5
78
0.5
30
0.5
23
0.5
20
0.5
16
0.5
16
–40°C to
125°C
0.5
148
0.5
105
0.5
78
0.5
30
0.5
23
0.5
20
0.5
16
0.5
16
–40°C to
85°C
0.5
191
0.5
129
0.5
96
0.5
43
0.5
34
0.5
30
0.5
23
0.5
22
–40°C to
125°C
0.5
191
0.5
129
0.5
96
0.5
43
0.5
34
0.5
30
0.5
23
0.5
22
–40°C to
85°C
0.5
116
0.5
75
0.5
61
0.5
41
0.5
37
0.5
36
0.5
35
0.5
35
–40°C to
125°C
0.5
116
0.5
75
0.5
61
0.5
41
0.5
37
0.5
36
0.5
35
0.5
35
ns
ns
ns
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: SN74AXCH1T45
SN74AXCH1T45
www.ti.com.cn
ZHCSJ32C – DECEMBER 2018 – REVISED SEPTEMBER 2020
表 6-5. Switching Characteristics, VCCA = 1.5 V
A
tpd
Propagation
delay
B
DIR
tdis
A
A
Disable time
DIR
DIR
ten
B
B
A
Enable time
DIR
B
–40°C to
85°C
0.5
91
0.5
45
0.5
30
0.5
13
0.5
9
0.5
8
0.5
6
0.5
6
–40°C to
125°C
0.5
91
0.5
45
0.5
30
0.5
13
0.5
9
0.5
8
0.5
6
0.5
6
–40°C to
85°C
0.5
49
0.5
28
0.5
18
0.5
11
0.5
9
0.5
8
0.5
6
0.5
5
–40°C to
125°C
0.5
49
0.5
28
0.5
18
0.5
11
0.5
9
0.5
8
0.5
6
0.5
5
–40°C to
85°C
0.5
20
0.5
20
0.5
20
0.5
20
0.5
20
0.5
20
0.5
20
0.5
20
–40°C to
125°C
0.5
20
0.5
20
0.5
20
0.5
20
0.5
20
0.5
20
0.5
20
0.5
20
–40°C to
85°C
0.5
146
0.5
103
0.5
76
0.5
28
0.5
21
0.5
19
0.5
15
0.5
14
–40°C to
125°C
0.5
146
0.5
103
0.5
76
0.5
28
0.5
21
0.5
19
0.5
15
0.5
14
–40°C to
85°C
0.5
186
0.5
124
0.5
89
0.5
38
0.5
29
0.5
26
0.5
20
0.5
18
–40°C to
125°C
0.5
186
0.5
124
0.5
89
0.5
38
0.5
29
0.5
26
0.5
20
0.5
18
–40°C to
85°C
0.5
104
0.5
58
0.5
43
0.5
31
0.5
28
0.5
27
0.5
25
0.5
25
–40°C to
125°C
0.5
104
0.5
58
0.5
43
0.5
31
0.5
28
0.5
27
0.5
25
0.5
25
ns
ns
ns
表 6-6. Switching Characteristics, VCCA = 1.8 V
A
tpd
Propagation
delay
B
DIR
tdis
A
A
Disable time
DIR
DIR
ten
B
B
A
Enable time
DIR
B
–40°C to
85°C
0.5
89
0.5
44
0.5
26
0.5
11
0.5
8
0.5
7
0.5
6
0.5
5
–40°C to
125°C
0.5
89
0.5
44
0.5
26
0.5
11
0.5
8
0.5
7
0.5
6
0.5
5
–40°C to
85°C
0.5
52
0.5
26
0.5
17
0.5
9
0.5
8
0.5
7
0.5
6
0.5
5
–40°C to
125°C
0.5
52
0.5
26
0.5
17
0.5
9
0.5
8
0.5
7
0.5
6
0.5
5
–40°C to
85°C
0.5
17
0.5
17
0.5
17
0.5
17
0.5
17
0.5
17
0.5
17
0.5
17
–40°C to
125°C
0.5
17
0.5
17
0.5
17
0.5
17
0.5
17
0.5
17
0.5
17
0.5
17
–40°C to
85°C
0.5
147
0.5
103
0.5
76
0.5
27
0.5
20
0.5
18
0.5
14
0.5
13
–40°C to
125°C
0.5
147
0.5
103
0.5
76
0.5
27
0.5
20
0.5
18
0.5
14
0.5
13
–40°C to
85°C
0.5
185
0.5
122
0.5
86
0.5
35
0.5
27
0.5
24
0.5
19
0.5
17
–40°C to
125°C
0.5
185
0.5
122
0.5
86
0.5
35
0.5
27
0.5
24
0.5
19
0.5
17
–40°C to
85°C
0.5
100
0.5
54
0.5
37
0.5
27
0.5
25
0.5
24
0.5
22
0.5
22
–40°C to
125°C
0.5
100
0.5
54
0.5
37
0.5
27
0.5
25
0.5
24
0.5
22
0.5
22
ns
ns
ns
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: SN74AXCH1T45
11
SN74AXCH1T45
www.ti.com.cn
ZHCSJ32C – DECEMBER 2018 – REVISED SEPTEMBER 2020
表 6-7. Switching Characteristics, VCCA = 2.5 V
A
tpd
Propagation
delay
B
DIR
tdis
A
A
Disable time
DIR
DIR
ten
B
B
A
Enable time
DIR
B
–40°C to
85°C
0.5
88
0.5
42
0.5
23
0.5
8
0.5
6
0.5
6
0.5
5
0.5
5
–40°C to
125°C
0.5
88
0.5
42
0.5
23
0.5
8
0.5
6
0.5
6
0.5
5
0.5
5
–40°C to
85°C
0.5
65
0.5
27
0.5
15
0.5
8
0.5
6
0.5
6
0.5
5
0.5
4
–40°C to
125°C
0.5
65
0.5
27
0.5
15
0.5
8
0.5
6
0.5
6
0.5
5
0.5
4
–40°C to
85°C
0.5
13
0.5
13
0.5
13
0.5
13
0.5
13
0.5
13
0.5
13
0.5
13
–40°C to
125°C
0.5
13
0.5
13
0.5
13
0.5
13
0.5
13
0.5
13
0.5
13
0.5
13
–40°C to
85°C
0.5
146
0.5
102
0.5
75
0.5
27
0.5
19
0.5
17
0.5
13
0.5
12
–40°C to
125°C
0.5
146
0.5
102
0.5
75
0.5
27
0.5
19
0.5
17
0.5
13
0.5
12
–40°C to
85°C
0.5
191
0.5
122
0.5
85
0.5
33
0.5
25
0.5
22
0.5
17
0.5
16
–40°C to
125°C
0.5
191
0.5
122
0.5
85
0.5
33
0.5
25
0.5
22
0.5
17
0.5
16
–40°C to
85°C
0.5
95
0.5
50
0.5
31
0.5
20
0.5
18
0.5
17
0.5
17
0.5
17
–40°C to
125°C
0.5
95
0.5
50
0.5
31
0.5
20
0.5
18
0.5
17
0.5
17
0.5
17
ns
ns
ns
表 6-8. Switching Characteristics, VCCA = 3.3 V
A
tpd
Propagation
delay
B
DIR
tdis
DIR
A
B
A
Enable time
DIR
12
A
Disable time
DIR
ten
B
B
–40°C to
85°C
0.5
87
0.5
42
0.5
23
0.5
8
0.5
5
0.5
5
0.5
4
0.5
4
–40°C to
125°C
0.5
87
0.5
42
0.5
23
0.5
8
0.5
5
0.5
5
0.5
4
0.5
4
–40°C to
85°C
0.5
154
0.5
37
0.5
18
0.5
8
0.5
6
0.5
5
0.5
5
0.5
4
–40°C to
125°C
0.5
154
0.5
37
0.5
18
0.5
8
0.5
6
0.5
5
0.5
5
0.5
4
–40°C to
85°C
0.5
12
0.5
12
0.5
12
0.5
12
0.5
12
0.5
12
0.5
12
0.5
12
–40°C to
125°C
0.5
12
0.5
12
0.5
12
0.5
12
0.5
12
0.5
12
0.5
12
0.5
12
–40°C to
85°C
0.5
147
0.5
102
0.5
75
0.5
26
0.5
19
0.5
17
0.5
13
0.5
12
–40°C to
125°C
0.5
147
0.5
102
0.5
75
0.5
26
0.5
19
0.5
17
0.5
13
0.5
12
–40°C to
85°C
0.5
275
0.5
129
0.5
88
0.5
34
0.5
24
0.5
21
0.5
17
0.5
16
–40°C to
125°C
0.5
275
0.5
129
0.5
88
0.5
34
0.5
24
0.5
21
0.5
17
0.5
16
–40°C to
85°C
0.5
94
0.5
49
0.5
30
0.5
18
0.5
16
0.5
16
0.5
15
0.5
15
–40°C to
125°C
0.5
94
0.5
49
0.5
30
0.5
18
0.5
16
0.5
16
0.5
15
0.5
15
ns
ns
ns
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: SN74AXCH1T45
SN74AXCH1T45
www.ti.com.cn
ZHCSJ32C – DECEMBER 2018 – REVISED SEPTEMBER 2020
6.6 Operating Characteristics: TA = 25°C
PARAMETER
Power Dissipation Capacitance
per transceiver (A to B: outputs
enabled)
CpdA
Power Dissipation Capacitance
per transceiver (B to A: outputs
enabled)
Power Dissipation Capacitance
per transceiver (A to B: outputs
enabled)
CpdB
Power Dissipation Capacitance
per transceiver (B to A: outputs
enabled)
TEST CONDITIONS
VCCA
VCCB
MIN
TYP
0.7 V
0.7 V
2.0
0.8 V
0.8 V
2.0
0.9 V
0.9 V
2.0
CL = 0, RL = Open f = 1 1.2 V
MHz, tr = tf = 1 ns
1.5 V
1.2 V
2.0
1.5 V
1.9
1.8 V
1.8 V
2.0
2.5 V
2.5 V
2.4
3.3 V
3.3 V
3.0
0.7 V
0.7 V
12
0.8 V
0.8 V
12
0.9 V
0.9 V
12
CL = 0, RL = Open f = 1 1.2 V
MHz, tr = tf = 1 ns
1.5 V
1.2 V
12
1.5 V
13
1.8 V
1.8 V
13
2.5 V
2.5 V
17
3.3 V
3.3 V
21
0.7 V
0.7 V
12
0.8 V
0.8 V
12
0.9 V
0.9 V
12
CL = 0, RL = Open f = 1 1.2 V
MHz, tr = tf = 1 ns
1.5 V
1.2 V
12
1.5 V
13
1.8 V
1.8 V
13
2.5 V
2.5 V
17
3.3 V
3.3 V
21
0.7 V
0.7 V
2.1
0.8 V
0.8 V
2.2
0.9 V
0.9 V
2.2
CL = 0, RL = Open f = 1 1.2 V
MHz, tr = tf = 1 ns
1.5 V
1.2 V
2.2
1.5 V
2.3
1.8 V
1.8 V
2.3
2.5 V
2.5 V
2.6
3.3 V
3.3 V
3.3
MAX
UNIT
pF
pF
pF
pF
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: SN74AXCH1T45
13
SN74AXCH1T45
www.ti.com.cn
ZHCSJ32C – DECEMBER 2018 – REVISED SEPTEMBER 2020
6.7 Typical Characteristics
50
45
CL = 45 pF
CL = 62 pF
CL = 79 pF
CL = 105 pF
CL = 123 pF
40
35
30
25
20
15
0.6
TA = 25°C
0.9
1.2
1.5
1.8
2.1
Supply B (V)
2.4
2.7
3
VCCA = 0.7 V
Propagation delay (ns)
Propagation delay (ns)
20
15
1.8
2.1
Supply B (V)
2.4
2.7
3
3.3
D001
VCCA = 0.8 V
CL = 45 pF
CL = 62 pF
CL = 79 pF
CL = 105 pF
CL = 123 pF
24
21
18
15
12
9
0.9
1.2
1.5
1.8
2.1
Supply B (V)
2.4
2.7
3
6
0.6
3.3
0.9
1.2
1.5
D002
VCCA = 0.9 V
TA = 25°C
1.8
2.1
Supply B (V)
2.4
2.7
3
3.3
D003
VCCA = 1.2 V
图 6-4. Typical Propagation Delay of Low-to-High
(A to B) vs Load Capacitance
30
27
CL = 45 pF
CL = 62 pF
CL = 79 pF
CL = 105 pF
CL = 123 pF
24
CL = 45 pF
CL = 62 pF
CL = 79 pF
CL = 105 pF
CL = 123 pF
24
Propagation delay (ns)
27
Propagation delay (ns)
1.5
27
图 6-3. Typical Propagation Delay of Low-to-High
(A to B) vs Load Capacitance
21
18
15
12
9
21
18
15
12
9
6
0.9
1.2
1.5
1.8
2.1
Supply B (V)
2.4
2.7
3
3
0.6
3.3
0.9
1.2
1.5
D004
TA = 25°C VCCA = 1.5 V
1.8
2.1
Supply B (V)
2.4
2.7
3
3.3
D005
TA = 25°C VCCA = 1.8 V
图 6-5. Typical Propagation Delay of Low-to-High
(A to B) vs Load Capacitance
图 6-6. Typical Propagation Delay of Low-to-High
(A to B) vs Load Capacitance
27
27
CL = 45 pF
CL = 62 pF
CL = 79 pF
CL = 105 pF
CL = 123 pF
21
CL = 45 pF
CL = 62 pF
CL = 79 pF
CL = 105 pF
CL = 123 pF
24
Propagation delay (ns)
24
Propagation delay (ns)
1.2
图 6-2. Typical Propagation Delay of Low-to-High
(A to B) vs Load Capacitance
10
18
15
12
9
6
21
18
15
12
9
6
0.9
1.2
1.5
1.8
2.1
Supply B (V)
2.4
2.7
3
3.3
3
0.6
D007
VCCA = 3.3 V
TA = 25°C
图 6-7. Typical Propagation Delay of Low-to-High
(A to B) vs Load Capacitance
14
0.9
30
CL = 45 pF
CL = 62 pF
CL = 79 pF
CL = 105 pF
CL = 123 pF
25
TA = 25°C
20
TA = 25°C
30
3
0.6
25
D016
35
6
0.6
30
10
0.6
3.3
40
TA = 25°C
35
15
图 6-1. Typical Propagation Delay of Low-to-High
(A to B) vs Load Capacitance
5
0.6
CL = 45 pF
CL = 62 pF
CL = 79 pF
CL = 105 pF
CL = 123 pF
40
Propagation delay (ns)
Propagation delay (ns)
45
0.9
1.2
1.5
1.8
2.1
Supply B (V)
2.4
2.7
3
3.3
D006
VCCA = 2.5 V
图 6-8. Typical Propagation Delay of Low-to-High
(A to B) vs Load Capacitance
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: SN74AXCH1T45
SN74AXCH1T45
www.ti.com.cn
ZHCSJ32C – DECEMBER 2018 – REVISED SEPTEMBER 2020
50
40
CL = 45 pF
CL = 62 pF
CL = 79 pF
CL = 105 pF
CL = 123 pF
40
35
30
25
TA = 25°C
0.9
1.2
1.5
1.8
2.1
Supply A (V)
2.4
2.7
3
VCCA = 0.7 V
TA = 25°C
27
24
21
18
15
1.8
2.1
Supply A (V)
2.4
2.7
3
3.3
D009
VCCA = 0.8 V
CL = 45 pF
CL = 62 pF
CL = 79 pF
CL = 105 pF
CL = 123 pF
22.5
20
17.5
15
12.5
10
0.9
1.2
1.5
1.8
2.1
Supply A (V)
2.4
2.7
3
7.5
0.6
3.3
0.9
1.2
1.5
D010
VCCA = 0.9 V
TA = 25°C
图 6-11. Typical Propagation Delay of Low-to-High
(B to A) vs Load Capacitance
1.8
2.1
Supply A (V)
2.4
2.7
3
3.3
D011
VCCA = 1.2 V
图 6-12. Typical Propagation Delay of Low-to-High
(B to A) vs Load Capacitance
30
25
CL = 45 pF
CL = 62 pF
CL = 79 pF
CL = 105 pF
CL = 123 pF
24
CL = 45 pF
CL = 62 pF
CL = 79 pF
CL = 105 pF
CL = 123 pF
22.5
Propagation delay (ns)
27
Propagation delay (ns)
1.5
25
12
21
18
15
12
9
20
17.5
15
12.5
10
7.5
0.9
1.2
1.5
1.8
2.1
Supply A (V)
2.4
2.7
3
5
0.6
3.3
0.9
1.2
1.5
D012
VCCA = 1.5 V
TA = 25°C
图 6-13. Typical Propagation Delay of Low-to-High
(B to A) vs Load Capacitance
1.8
2.1
Supply A (V)
2.4
2.7
3
3.3
D013
VCCA = 1.8 V
图 6-14. Typical Propagation Delay of Low-to-High
(B to A) vs Load Capacitance
30
30
CL = 45 pF
CL = 62 pF
CL = 79 pF
CL = 105 pF
CL = 123 pF
CL = 45 pF
CL = 62 pF
CL = 79 pF
CL = 105 pF
CL = 123 pF
27
Propagation delay (ns)
25
Propagation delay (ns)
1.2
图 6-10. Typical Propagation Delay of Low-to-High
(B to A) vs Load Capacitance
Propagation delay (ns)
Propagation delay (ns)
30
TA = 25°C
0.9
27.5
CL = 45 pF
CL = 62 pF
CL = 79 pF
CL = 105 pF
CL = 123 pF
33
6
0.6
20
D008
36
TA = 25°C
25
10
0.6
3.3
图 6-9. Typical Propagation Delay of Low-to-High
(B to A) vs Load Capacitance
9
0.6
30
15
20
15
0.6
CL = 45 pF
CL = 62 pF
CL = 79 pF
CL = 105 pF
CL = 123 pF
35
Propagation delay (ns)
Propagation delay (ns)
45
20
15
10
24
21
18
15
12
9
6
5
0.6
0.9
1.2
1.5
1.8
2.1
Supply A (V)
2.4
2.7
3
3.3
3
0.6
D014
TA = 25°C VCCA = 2.5 V
TA = 25°C
图 6-15. Typical Propagation Delay of Low-to-High
(B to A) vs Load Capacitance
0.9
1.2
1.5
1.8
2.1
Supply A (V)
2.4
2.7
3
3.3
D015
VCCA = 3.3 V
图 6-16. Typical Propagation Delay of Low-to-High
(B to A) vs Load Capacitance
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: SN74AXCH1T45
15
SN74AXCH1T45
www.ti.com.cn
ZHCSJ32C – DECEMBER 2018 – REVISED SEPTEMBER 2020
7 Parameter Measurement Information
7.1 Load Circuit and Voltage Waveforms
Unless otherwise noted, all input pulses are supplied by generators having the following characteristics:
• f = 1 MHz
• ZO = 50 Ω
• dv/dt ≤ 1 ns/V
Measurement Point
2 x VCCO
S1
RL
Open
Output Pin
Under Test
GND
CL(1)
A.
RL
CL includes probe and jig capacitance.
图 7-1. Load Circuit
表 7-1. Load Circuit Conditions
Parameter
VCCO
RL
CL
S1
VTP
Δt/
Δv
Input transition rise or fall rate
0.65 V – 3.6 V
1 MΩ
15 pF
Open
N/A
1.1 V – 3.6 V
2 kΩ
15 pF
Open
N/A
tpd
Propagation (delay) time
0.65 V – 0.95
V
20 kΩ
15 pF
Open
N/A
3 V – 3.6 V
2 kΩ
15 pF
2 × VCCO
0.3 V
1.65 V – 2.7 V
2 kΩ
15 pF
2 × VCCO
0.15 V
ten, tdis Enable time, disable time
ten, tdis Enable time, disable time
1.1 V – 1.6 V
2 kΩ
15 pF
2 × VCCO
0.1 V
0.65 V – 0.95
V
20 kΩ
15 pF
2 × VCCO
0.1 V
3 V – 3.6 V
2 kΩ
15 pF
GND
0.3 V
1.65 V – 2.7 V
2 kΩ
15 pF
GND
0.15 V
1.1 V – 1.6 V
2 kΩ
15 pF
GND
0.1 V
0.65 V – 0.95
V
20 kΩ
15 pF
GND
0.1 V
VCCI(1)
VCCI(1)
Input A, B
Input A, B
VCCI / 2
VCCI / 2
500 ps/V ± 100 ns/V
0V
VOH(2)
VCCI / 2
Output B, A
VCCI / 2
VOL(2)
1.
2.
0V
VOH(2)
tpd
tpd
Output B, A
100 kHz
VCCI is the supply pin associated with the input port.
VOH and VOL are typical output voltage levels that occur
with specified RL, CL, and S1
1.
2.
Ensure Monotonic
Rising and Falling Edge
VOL(2)
VCCI is the supply pin associated with the input port.
VOH and VOL are typical output voltage levels that occur
with specified RL, CL, and S1
图 7-3. Input Transition Rise or Fall Rate
图 7-2. Propagation Delay
16
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: SN74AXCH1T45
SN74AXCH1T45
www.ti.com.cn
ZHCSJ32C – DECEMBER 2018 – REVISED SEPTEMBER 2020
VCCA
DIR
VCCA / 2
VCCA / 2
GND
ten(1)
Output A
(2)
VCCO(5)
VCCO / 2
VOL + VTP
VOL(6)
tdis
VOH(6)
Output A
VOH - VTP
(3)
VCCO / 2
GND
ten(1)
Output B(2)
VCCO(5)
VCCO / 2
VOL + VTP
VOL(6)
tdis
VOH(6)
Output B
(3)
VCCO / 2
VOH - VTP
GND
1.
2.
3.
4.
5.
6.
Illustrative purposes only. Enable Time is a calculation as described in the data sheet.
Output waveform on the condition that input is driven to a valid Logic Low.
Output waveform on the condition that input is driven to a valid Logic High.
VCCI is the supply pin associated with the input port
VCCO is the supply pin associated with the output port.
VOH and VOL are typical output voltage levels that occur with specified RL, CL, and S1
图 7-4. Disable and Enable Time
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: SN74AXCH1T45
17
SN74AXCH1T45
www.ti.com.cn
ZHCSJ32C – DECEMBER 2018 – REVISED SEPTEMBER 2020
8 Detailed Description
8.1 Overview
The SN74AXCH1T45 is single-bit, dual-supply, noninverting voltage level translator. Pin A and the direction
control pin are referenced to VCCA logic levels and pin B is referenced to VCCB logic levels, as depicted in . The A
port can accept I/O voltages ranging from 0.65 V to 3.6 V, and the B port can accept I/O voltages from 0.65 V to
3.6 V. A logic high on the DIR pin enables data transmission from A to B and a logic low on the DIR pin enables
data transmission from B to A.
8.2 Functional Block Diagram
VCCA
VCCB
DIR
Bus-Hold
B
A
Bus-Hold
图 8-1. Functional Block Diagram
8.3 Feature Description
8.3.1 Standard CMOS Inputs
Standard CMOS inputs are high impedance and are typically modeled as a resistor in parallel with the input
capacitance given in the Electrical Characteristics. The worst case resistance is calculated with the maximum
input voltage, given in the Absolute Maximum Ratings, and the maximum input leakage current, given in the
Electrical Characteristics, using ohm's law (R = V ÷ I).
Signals applied to the inputs need to have fast edge rates, as defined by Δt/Δv in Recommended Operating
Conditions to avoid excessive current consumption and oscillations. If a slow or noisy input signal is required, a
device with a Schmitt-trigger input should be used to condition the input signal prior to the standard CMOS input.
8.3.2 Balanced High-Drive CMOS Push-Pull Outputs
A balanced output allows the device to sink and source similar currents. The high drive capability of this device
creates fast edges into light loads so routing and load conditions should be considered to prevent ringing.
Additionally, the outputs of this device are capable of driving larger currents than the device can sustain without
being damaged. The electrical and thermal limits defined in the Absolute Maximum Ratings must be followed at
all times.
8.3.3 Partial Power Down (Ioff)
The inputs and outputs for this device enter a high-impedance state when the device is powered down, inhibiting
current backflow into the device. The maximum leakage into or out of any input or output pin on the device is
specified by Ioff in the Electrical Characteristics.
8.3.4 VCC Isolation
The inputs and outputs for this device enter a high-impedance state when either supply is