0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
SN74GTL2014PWR

SN74GTL2014PWR

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    TSSOP14_5X4.4MM

  • 描述:

    IC SNGL 2IN POS-NOR GATE 14TSSOP

  • 数据手册
  • 价格&库存
SN74GTL2014PWR 数据手册
Product Folder Sample & Buy Support & Community Tools & Software Technical Documents SN74GTL2014 SCLS746A – FEBRUARY 2014 – REVISED OCTOBER 2014 SN74GTL2014 4-Channel LVTTL to GTL Transceiver 1 Features 2 Applications • • • • 1 • • • • • • • • Operates as a GTL–/GTL/GTL+ to LVTTL or LVTTL to GTL–/GTL/GTL+ Translator The LVTTL Inputs are Tolerant up to 5.5 V Allowing Direct Access to TTL or 5 V CMOS The GTL Input/Output Operate up to 3.6 V, Allowing the Device to be Used in High Voltage Open-Drain Applications VREF Goes Down to 0.5 V for Low Voltage CPU Usage Partial Power-Down Permitted Latch-up Protection Exceed 500 mA per JESD78 Package Option: TSSOP14 –40°C to 85°C Operating Temperature Range ESD Protection on All Terminals – 2000 V HBM, JESD22-A114 – 1000 V CDM, IEC61000-4-2 Server Base Station Wireline Communication 3 Description The SN74GTL2014 is a 4-channel translator to interface between 3.3-V LVTTL chip set I/O and Xeon processor GTL–/GTL/GTL+ I/O. The SN74GTL2014 integrates ESD protection cells on all terminals and is available in a TSSOP package (5.0 mm × 4.4 mm). The device is characterized over the free air temperature range of –40°C to 85°C. Device Information(1) PART NUMBER SN74GTL2014 PACKAGE TSSOP (14) BODY SIZE (NOM) 5.00 mm × 4.40 mm (1) For all available packages, see the orderable addendum at the end of the data sheet. GTL2014 B0 + – A0 B1 + – A1 B2 + – A2 B3 + – A3 002aab139 VREF DIR 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA. SN74GTL2014 SCLS746A – FEBRUARY 2014 – REVISED OCTOBER 2014 www.ti.com Table of Contents 1 2 3 4 5 6 7 8 Features .................................................................. Applications ........................................................... Description ............................................................. Revision History..................................................... Pin Configuration and Functions ......................... Specifications......................................................... 1 1 1 2 3 4 6.1 6.2 6.3 6.4 6.5 6.6 6.7 4 4 4 5 5 6 6 Absolute Maximum Ratings ...................................... Handling Ratings....................................................... Recommended Operating Conditions....................... Thermal Information .................................................. Electrical Characteristics........................................... Dynamic Electrical Characteristics............................ Typical Characteristics .............................................. Parameter Measurement Information .................. 7 Detailed Description .............................................. 8 8.1 Overview ................................................................... 8 8.2 Functional Block Diagram ......................................... 8 8.3 Feature Description................................................... 8 8.4 Device Functional Modes.......................................... 8 9 Application and Implementation .......................... 9 9.1 Application Information.............................................. 9 9.2 Typical Application .................................................... 9 10 Power Supply Recommendations ..................... 12 11 Layout................................................................... 12 11.1 Layout Guidelines ................................................. 12 11.2 Layout Example .................................................... 12 12 Device and Documentation Support ................. 13 12.1 Trademarks ........................................................... 13 12.2 Electrostatic Discharge Caution ............................ 13 12.3 Glossary ................................................................ 13 13 Mechanical, Packaging, and Orderable Information ........................................................... 13 4 Revision History Changes from Original (February 2014) to Revision A Page • Added Handling Rating table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section. .............................................................. 1 • Updated Specifications section .............................................................................................................................................. 4 • Updated LVTTL/TTL to GTL–/GTL/GTL+ application schematic. ......................................................................................... 9 • Updated LVTTL/TTL to GTL–/GTL/GTL+ application schematic. ....................................................................................... 11 • Added Power Supply Recommendations ............................................................................................................................ 12 2 Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: SN74GTL2014 SN74GTL2014 www.ti.com SCLS746A – FEBRUARY 2014 – REVISED OCTOBER 2014 5 Pin Configuration and Functions TSSOP Package (14 Pin) (Top View) DIR 1 14 VCC B0 2 13 A0 B1 3 12 A1 VREF 4 B2 5 10 A2 B3 6 9 A3 GND 7 8 GND GTL2014 11 GND Pin Functions PIN NAME DESCRIPTION NUMBER A0 13 A01 12 A02 10 A03 9 B0 2 B01 3 B02 5 B03 6 DIR 1 LVTTL data input/output GTL data input/output Direction control input (LVTTL) 7 GND 8 Ground 11 VCC 14 Supply voltage VREF 4 GTL reference voltage Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: SN74GTL2014 3 SN74GTL2014 SCLS746A – FEBRUARY 2014 – REVISED OCTOBER 2014 www.ti.com 6 Specifications 6.1 Absolute Maximum Ratings Specified at TA = –40°C to 85°C unless otherwise noted (1) VCC Supply voltage IIK Input clamping current, VI < 0 V VSEL Input control voltages SEL (2) (3) VI Input voltage IOK Control input clamp current, VO < 0 V VO Output voltage IOL Current into any output in the low state IOH Current into any output in the high state (1) (2) (3) MIN MAX UNIT –0.5 4.6 V –50 mA –0.5 6 V A port –0.5 7 B port –0.5 4.6 A port –0.5 7 B port –0.5 4.6 V –50 A port 40 B port 80 mA V mA –40 mA Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltages are with respect to ground, unless otherwise specified VI and VO are used to denote specific conditions for VI/O 6.2 Handling Ratings Tstg Storage temperature range VESD (1) (1) (2) (3) MIN MAX UNIT –55 150 °C Human Body Model (HBM), JEDEC: JESD22-A114 (2) All pins 0 2 IEC61000-4-2 contact discharge (3) All pins 0 1 kV Electrostatic discharge (ESD) to measure device sensitivity/immunity to damage caused by assembly line electrostatic discharges into the device. Level listed above is the passing level per ANSI/ESDA/JEDEC JS-001. JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Pins listed as 250 V may actually have higher performance. Level listed above is the passing level per EIA-JEDEC JESD22-C101. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Pins listed as 250 V may actually have higher performance. 6.3 Recommended Operating Conditions over operating free-air temperature range (unless otherwise noted) (1) VCC VTT Termination voltage VREF Reference voltage VI Input voltage VIH High-level input voltage (1) (2) 4 MIN NOM MAX 3 3.3 3.6 GTL– 0.85 0.9 0.95 GTL 1.14 1.2 1.26 GTL+ 1.35 1.5 1.65 Overall 0.5 2 / 3 VTT VCC / 2 GTL– 0.5 0.6 0.63 GTL 0.76 0.8 0.84 GTL+ 0.87 1 1.1 A port 0 3.3 5.5 (2) B port 0 VTT 3.6 Supply voltage A port and DIR B port 2 VREF + 50 mV UNIT V V V V V All unused control inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004. The VI(max) of LVTTL port is 3.6 V if configured as output (DIR=L) Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: SN74GTL2014 SN74GTL2014 www.ti.com SCLS746A – FEBRUARY 2014 – REVISED OCTOBER 2014 Recommended Operating Conditions (continued) over operating free-air temperature range (unless otherwise noted)(1) MIN VIL Low-level input voltage IOH High-level input current IOL Low-level output current NOM MAX A port and DIR UNIT 0.8 B port VREF – 50 mV A port –20 A port 20 B port 50 V mA mA 6.4 Thermal Information SN74GTL2014 THERMAL METRIC (1) PW UNIT 14 PINS RθJA Junction-to-ambient thermal resistance 136.8 RθJC(top) Junction-to-case (top) thermal resistance 63.0 RθJB Junction-to-board thermal resistance 78.6 ψJT Junction-to-top characterization parameter 11.9 ψJB Junction-to-board characterization parameter 77.9 (1) °C/W For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953. 6.5 Electrical Characteristics Specified at TA = –40°C to 85°C (unless otherwise noted) PARAMETER VOH VOL A port TEST CONDITIONS VCC = 3 to 3.6 V, IOH = –100 µA VCC = 3 V, IOH = –16 mA –40°C TO 85°C MIN TYP MAX VCC – 0.2 V 2 A port VCC = 3 V, IOL = 8 mA 0.28 0.4 A port VCC = 3 V, IOL = 16 mA 0.55 0.8 B port VCC = 3 V, IOL = 40 mA 0.23 0.4 A port II UNIT VCC = 3.6 V, VI = VCC ±1 VCC = 3.6, VI = 0 V ±1 VCC = 3.6, VI = 5.5 V V µA 5 B port VCC = 3.6 V, VI = VTT or GND ±1 µA Control pin VCC = 3.6 V, VI = VCC or 0 V ±1 µA OFF-state output current on A port VCC = 0 V, VIO = 0 to 3.6 V ±10 OFF-state output current on A port VCC = 0 V, VIO 3.6 to 5.5V ±100 OFF-state output current on B port VCC = 0 V, VIO = 0 to 3.6 V ±10 A port VCC = 3.6 V, VI = VCC or GND, IO = 0 3 10 mA B port VCC = 3.6 V, VI = VTT or GND, IO = 0 3 10 mA ∆ICC A port or control input VCC = 3.6 V, VI = VCC – 0.6 V 500 µA CI Input capacitance of control pin VI = 3.0 V or 0 V 2 2.5 pF A port VO = 3 V or 0 4 6 B port VO = VTT or 0 5.46 5.55 Ioff ICC CIO Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: SN74GTL2014 µA pF 5 SN74GTL2014 SCLS746A – FEBRUARY 2014 – REVISED OCTOBER 2014 www.ti.com 6.6 Dynamic Electrical Characteristics over operating range, TA = –40°C to 85°C, VCC = 1.65 to 4.6 V, GND = 0 V for GTL (see Functional Block Diagram) PARAMETER GTL− GTL GTL+ VCC = 3.3 V ± 0.3 V VREF = 0.6 V VTT = 0.9 V VCC = 3.3 V ± 0.3 V VREF = 0.8 V VTT = 1.2 V VCC = 3.3 V ± 0.3 V VREF = 1 V VTT = 1.5 V MIN tPLH (low to high propagation delay) An to Bn tPHL(high to low propagation delay) tPLH (low to high propagation delay) Bn to An tPHL (high to low propagation delay) TYP MAX TYP MAX 2.8 5 MIN 2.8 5 MIN 2.8 5 3.3 7 3.4 7 3.4 7 5.3 8 5.2 8 5.1 8 5.2 8 4.9 7.16 4.7 7.16 UNIT TYP MAX ns ns 6.7 Typical Characteristics 1.2 1.2 VREF VREF VTH+ 1.1 VTH+ 1.1 VTH- 1 1 0.9 0.9 Vth+/Vth- Vth+/Vth- VTH- 0.8 0.8 0.7 0.7 0.6 0.6 0.5 0.5 0.4 0.4 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 0.4 0.5 0.6 VREF (V) 0.7 0.8 0.9 1 1.1 1.2 VREF (V) C001 C002 Figure 1. GTL Vth+ and Vth– vs VREF (25°C) Figure 2. GTL Vth+ and Vth– vs VREF (–40°C) 1.2 VREF VTH+ 1.1 VTH1 Vth+/Vth- 0.9 0.8 0.7 0.6 0.5 0.4 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 VREF (V) C003 Figure 3. GTL Vth+ and Vth– vs VREF (125°C) 6 Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: SN74GTL2014 SN74GTL2014 www.ti.com SCLS746A – FEBRUARY 2014 – REVISED OCTOBER 2014 7 Parameter Measurement Information VTT = 1.2 V, VREF = 0.8 V for GTL and VTT = 1.5 V, VREF = 1 V FOR GTL+ VTT 25 Ω From Output Under Test From Output Under Test CL = 50 pF (see Note A) 500 Ω CL = 30 pF (see Note A) LOAD CIRCUIT FOR B OUTPUTS LOAD CIRCUIT FOR A OUTPUTS 3V Input (see Note B) Test Point 1.5 V 1.5 V Input (see Note B) VTT VREF VREF 0V 0V tPHL tPLH tPHL tPLH VOH VTT Output VREF Output VREF 1.5 V 1.5 V VOL VOL VOLTAGE WAVEFORM 2 PROPAGATION DELAY TIMES (B port to A port) † VOLTAGE WAVEFORM 1 PROPAGATION DELAY TIMES (A port to B port) † Input (see Note B) VTT VREF VREF Input (see Note B) 3V 1.5 V 1.5 V 0V 0V tPHL tPLH tPHL tPLH VOH VTT Output VREF Output VREF 1.5 V 1.5 V VOL VOL VOLTAGE WAVEFORM 3 PROPAGATION DELAY TIMES (B port to B port)† VOLTAGE WAVEFORM 4 PROPAGATION DELAY TIMES (ENn to A port) † VTT Input (see Note B) VREF VREF 3V Input (see Note B) 1.5 V 1.5 V 0V tPZL Output S1 at 2 x VCC 0V tPZL tPLZ VCC 1.5 V tPLZ Output S1 at 2 xVCC VOL + 0.3 V VOL VOLTAGE WAVEFORM 5 PROPAGATION DELAY TIMES (B port to A (I/O) port) † VCC 1.5 V VOL + 0.3 V VOL VOLTAGE WAVEFORM 6 ENABLE AND DISABLE TIMES (EN2 to A (I/O) port) † † All control inputs are LVTTL levels. NOTES: A. CL includes probe and jig capacitance. B. All input pulses are supplied by generators having the following characteristics: PRR≤ 10 MHz, ZO = 50 Ω, tr ≤ 2.5 ns, tf ≤ 2.5 ns. C. The outputs are measured one at a time, with one transition per measurement. Figure 4. Load Circuits and Voltage Waveforms Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: SN74GTL2014 7 SN74GTL2014 SCLS746A – FEBRUARY 2014 – REVISED OCTOBER 2014 www.ti.com 8 Detailed Description 8.1 Overview The GTL2014 is a 4-channel translating transceiver designed for 3.3-V LVTTL system interface with a GTL–/GTL/GTL+ bus, where GTL–/GTL/GTL+ refers to the reference voltage of the GTL bus and the input/output voltage thresholds associated with it. The direction pin allows the part to function as either a GTL-to-LVTTL sampling receiver or as a LVTTL-to-GTL interface. 8.2 Functional Block Diagram GTL2014 B0 + – A0 B1 + – A1 B2 + – A2 B3 + – A3 002aab139 VREF DIR 8.3 Feature Description 8.3.1 5 V tolerance on LVTTL input The GTL2014 LVTTL inputs (only) are tolerant up to 5.5 V and allows direct access to TTL or 5 V CMOS inputs. The LVTTL outputs are not 5.5 V tolerant. 8.3.2 3.6 V tolerance on GTL Input/Output The GTL2014 GTL inputs and outputs operate up to 3.6 V, allowing the device to be used in higher voltage open-drain output applications. 8.3.3 Ultra-Low VREF and High Bandwidth GTL2014’s VREF tracks down to 0.5 V for low voltage CPUs with excellent propagation delay performance. This feature allows the GTL2014 to support high data rates with the GTL– bus. 8.4 Device Functional Modes The GTL2014 performs translation in two directions. One direction is GTL–/GTL/GTL+ to LVTTL when DIR is tied to GND. With appropriate VREF set up, the GTL input can be compliant with GTL–/GTL/GTL+. Another direction is LVTTL to GTL–/GTL/GTL+ when DIR is tied to VCC. 3.6 V tolerance on the GTL output allows the GTL outputs to pull up to any voltage level under 3.6 V. 8 Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: SN74GTL2014 SN74GTL2014 www.ti.com SCLS746A – FEBRUARY 2014 – REVISED OCTOBER 2014 9 Application and Implementation NOTE Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality. 9.1 Application Information GTL2014 is the voltage translator for GTL–/GTL/GTL+ to LVTTL or LVTTL to GTL–/GTL/GTL+. Please find the reference schematic and recommend value for passive component in the Typical Application. 9.2 Typical Application 9.2.1 GTL–/GTL/GTL+ to LVTTL Select appropriate VTT/VREF based upon GTL–/GTL/GTL+. The parameters in Recommended Operating Conditions are compliant to the GTL specification. 3.3 V GTL Chipset 1 DIR 2 VCC 14 B0 A0 13 3 B1 A1 12 4 VREF 5 GTL2014PW GND 11 B2 A2 10 6 B3 A3 9 7 GND GND 8 LVTTL FPGA R R2 Port_B to Port_A GTL to LVTTL R1 VTT VCC 3.3 V Vref 2*VTT/3 VTT 1.0 V DIR GND R 75 Ω R1 49.9 Ω R2 100 Ω Figure 5. Application Diagram for GTL to LVTTL Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: SN74GTL2014 9 SN74GTL2014 SCLS746A – FEBRUARY 2014 – REVISED OCTOBER 2014 www.ti.com Typical Application (continued) 9.2.1.1 Design Requirements The GTL2014 requires industrial standard LVTTL and GTL inputs. The design example in Application Information show standard voltage level and typical resistor values. NOTE Only LVTTL terminals (A1/A2/A3/A4) are tolerant to 5 V. 9.2.1.2 Detailed Design Procedure To 1. 2. 3. begin the design process, determine the following: Select direction base upon application (GTL–/GTL/GTL+ to LVTTL or LVTTL to GTL–/GTL/GTL+). Set up appropriate DIR pin and VREF/VTT. Choose correct pullup resistor value base upon data rate and driving current requirement (for LVTTL to GTL–/GTL/GTL+). 9.2.1.3 Application Curve 3.30 Input Output 2.80 Amplitude (V) 2.30 1.80 1.30 0.80 0.30 ±0.20 0 1.25 2.5 3.75 5 6.25 7.5 8.75 Time (ns) C005 Figure 6. GTL-to-LVTTL, VREF = 1 V, VIN = 1.5 V, 100 MHz 10 Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: SN74GTL2014 SN74GTL2014 www.ti.com SCLS746A – FEBRUARY 2014 – REVISED OCTOBER 2014 Typical Application (continued) 9.2.2 LVTTL/TTL to GTL–/GTL/GTL+ Because GTL is an open-drain interface, the selection of pullup resistor depends on the application requirement (for example, data rate) and PCB trace capacitance. 3.3 V GTL Chipset 1 DIR 2 VCC 14 B0 A0 13 3 B1 A1 12 4 VREF 5 GTL2014PW GND 11 B2 A2 10 6 B3 A3 9 7 GND GND 8 LVTTL FPGA R Port_A to Port_B LVTTL to GTL VTT VCC 3.3 V Vref GND VTT 1.0 V DIR 3.3 V R 75 Ω R1 Not Avaliable R2 Not Avaliable Figure 7. Application Diagram for LVTTL to GTL 9.2.2.1 Design Requirements The GTL2014 requires industrial standard LVTTL and GTL inputs. The design example in the Application Information section show standard voltage level and typical resistor values. NOTE Only LVTTL terminals (A1/A2/A3/A4) are tolerant to 5 V. 9.2.2.2 Detailed Design Procedure To 1. 2. 3. begin the design process, determine the following: Select direction based upon application (GTL–/GTL/GTL+ to LVTTL or LVTTL to GTL–/GTL/GTL+). Set up appropriate DIR pin and VREF/VTT. Choose correct pullup resistor value base upon data rate and driving current requirement (for LVTTL to GTL–/GTL/GTL+). Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: SN74GTL2014 11 SN74GTL2014 SCLS746A – FEBRUARY 2014 – REVISED OCTOBER 2014 www.ti.com Typical Application (continued) 9.2.2.3 Application Curve 2.80E+00 Input (V) Output (V) 2.30E+00 Amplitude (V) 1.80E+00 1.30E+00 8.00E-01 3.00E-01 -2.00E-01 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 Time (ns) C001 Figure 8. LVTTL-to-GTL, VREF = 1 V, VTT = 1.5 V, 10 MHz 10 Power Supply Recommendations Because GTL is a low voltage interface, TI recommends a 0.1-µF decoupling capacitor for VREF. 11 Layout 11.1 Layout Guidelines Typically, GTL/LVTTL is running at a low data rate; however, the GTL2014 is optimized for excellent propagation delay, slew rate, bandwidth, and is able support 100-MHz frequencies. 11.2 Layout Example Short Signal Trace as possible Minimize Stub as possible DIR 1 14 VCC B0 2 13 A0 B1 3 12 A1 VREF 4 B2 5 10 A2 B3 6 9 A3 GND 7 8 GND GTL2014 11 GND Figure 9. Layout Example for GTL Trace 12 Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: SN74GTL2014 SN74GTL2014 www.ti.com SCLS746A – FEBRUARY 2014 – REVISED OCTOBER 2014 12 Device and Documentation Support 12.1 Trademarks All trademarks are the property of their respective owners. 12.2 Electrostatic Discharge Caution This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. 12.3 Glossary SLYZ022 — TI Glossary. This glossary lists and explains terms, acronyms, and definitions. 13 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. Submit Documentation Feedback Copyright © 2014, Texas Instruments Incorporated Product Folder Links: SN74GTL2014 13 PACKAGE OPTION ADDENDUM www.ti.com 10-Dec-2020 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) (6) SN74GTL2014PWR ACTIVE TSSOP PW 14 2000 RoHS & Green NIPDAU | SN Level-1-260C-UNLIM -40 to 85 GT14 (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
SN74GTL2014PWR 价格&库存

很抱歉,暂时无法提供与“SN74GTL2014PWR”相匹配的价格&库存,您可以联系我们找货

免费人工找货
SN74GTL2014PWR
  •  国内价格
  • 1+8.40456
  • 10+7.41852
  • 30+6.81696
  • 100+6.31368

库存:91