SN74HC20, SN54HC20
SN54HC20
SCLS086G – DECEMBERSN74HC20,
1982 – REVISED
APRIL 2021
SCLS086G – DECEMBER 1982 – REVISED APRIL 2021
www.ti.com
SNx4HC20 Dual 4-Input NAND Gates
1 Features
3 Description
•
•
•
This device contains two independent 4-input NAND
gates. Each gate performs the Boolean function
Y = A ● B ● C ● D in positive logic.
•
•
Buffered inputs
Wide operating voltage range: 2 V to 6 V
Wide operating temperature range:
–40°C to +85°C
Supports fanout up to 10 LSTTL loads
Significant power reduction compared to LSTTL
logic ICs
2 Applications
•
•
Alarm / tamper detect circuit
S-R latch
Device Information(1)
PART NUMBER
1B
NC
1C
1D
1Y
GND
BODY SIZE (NOM)
SN74HC20D
SOIC (14)
8.70 mm × 3.90 mm
SN74HC20N
PDIP (14)
19.30 mm × 6.40 mm
SN74HC20NS
SO (14)
10.20 mm × 5.30 mm
SN74HC20PW
TSSOP (14)
5.00 mm × 4.40 mm
SN54HC20J
CDIP (14)
21.30 mm × 7.60 mm
SN54HC20W
CFP (14)
9.20 mm × 6.29 mm
SN54HC20FK
LCCC (20)
8.90 mm × 8.90 mm
(1)
1A
PACKAGE
For all available packages, see the orderable addendum at
the end of the data sheet.
1
14
2
13
3
12
4
11
VCC
2D
2C
NC
5
10
6
9
7
8
2B
2A
2Y
Functional pinout
An©IMPORTANT
NOTICEIncorporated
at the end of this data sheet addresses availability, warranty, changes, use in
safety-critical
applications,
Copyright
2021 Texas Instruments
Submit
Document
Feedback
intellectual property matters and other important disclaimers. PRODUCTION DATA.
Product Folder Links: SN74HC20 SN54HC20
1
SN74HC20, SN54HC20
www.ti.com
SCLS086G – DECEMBER 1982 – REVISED APRIL 2021
Table of Contents
1 Features............................................................................1
2 Applications..................................................................... 1
3 Description.......................................................................1
4 Revision History.............................................................. 2
5 Pin Configuration and Functions...................................3
Pin Functions.................................................................... 3
6 Specifications.................................................................. 4
6.1 Absolute Maximum Ratings........................................ 4
6.2 Recommended Operating Conditions.........................4
6.3 Thermal Information....................................................4
6.4 Electrical Characteristics - 74..................................... 5
6.5 Electrical Characteristics - 54..................................... 5
6.6 Switching Characteristics - 74.....................................6
6.7 Switching Characteristics - 54.....................................6
6.8 Operating Characteristics........................................... 6
6.9 Typical Characteristics................................................ 6
7 Parameter Measurement Information............................ 8
8 Detailed Description........................................................9
8.1 Overview..................................................................... 9
8.2 Functional Block Diagram........................................... 9
8.3 Feature Description.....................................................9
8.4 Device Functional Modes..........................................10
9 Application and Implementation.................................. 11
9.1 Application Information..............................................11
9.2 Typical Application.................................................... 11
10 Power Supply Recommendations..............................13
11 Layout........................................................................... 13
11.1 Layout Guidelines................................................... 13
11.2 Layout Example...................................................... 13
12 Device and Documentation Support..........................14
12.1 Documentation Support.......................................... 14
12.2 Related Links.......................................................... 14
12.3 Support Resources................................................. 14
12.4 Trademarks............................................................. 14
12.5 Electrostatic Discharge Caution..............................14
12.6 Glossary..................................................................14
13 Mechanical, Packaging, and Orderable
Information.................................................................... 14
4 Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.
Changes from Revision F (August 2003) to Revision G (April 2021)
Page
• Updated the numbering format for tables, figures, and cross-references throughout the document..................1
• Updated to new data sheet standards................................................................................................................ 1
• RθJA increased for the D package from 86 to 133.6°C/W, increased for the PW package from 113°C/W, and
decreased for the N package from 80 to 67.2°C/W............................................................................................ 4
2
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: SN74HC20 SN54HC20
SN74HC20, SN54HC20
www.ti.com
SCLS086G – DECEMBER 1982 – REVISED APRIL 2021
5 Pin Configuration and Functions
1B 1A NC VCC 2D
1A
1
14
VCC
1B
2
13
2D
NC
3
12
2C
NC
4
3
2
1
20 19
18
2C
NC
5
17
NC
NC
1C
4
11
NC
1D
5
10
2B
1C
6
16
1Y
6
9
2A
NC
7
15
NC
GND
7
8
2Y
1D
8
14
9 10 11 12 13
2B
Figure 5-1. D, N, NS, PW, J, or W Package
14-Pin SOIC, PDIP, SO, TSSOP, CDIP, or CFP
Top View
1Y GND NC 2Y 2A
Figure 5-2. FK Package
20-Pin LCCC
Top View
Pin Functions
PIN
I/O
DESCRIPTION
D, N, NS,
PW, J, or W
FK
1A
1
2
Input
Channel 1, Input A
1B
2
3
Input
Channel 1, Input B
NC
3, 11
1, 4, 5, 7, 11, 15,
16, 17
—
1C
4
6
Input
Channel 1, Input C
1D
5
8
Input
Channel 1, Input D
1Y
6
9
Output
GND
7
10
—
2Y
8
12
Output
2A
9
13
Input
Channel 2, Input A
2B
10
14
Input
Channel 2, Input B
2C
12
18
Input
Channel 2, Input C
2D
13
19
Input
Channel 2, Input D
VCC
14
20
—
NAME
Not internally connected
Channel 1, Output Y
Ground
Channel 2, Output Y
Positive Supply
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: SN74HC20 SN54HC20
3
SN74HC20, SN54HC20
www.ti.com
SCLS086G – DECEMBER 1982 – REVISED APRIL 2021
6 Specifications
6.1 Absolute Maximum Ratings
over operating free-air temperature range (unless otherwise noted)(1)
VCC
Supply voltage
current(2)
MIN
MAX
–0.5
7
UNIT
V
IIK
Input clamp
VI < 0 or VI > VCC
±20
mA
IOK
Output clamp current(2)
VO < 0 or VO > VCC
±20
mA
Continuous output current
VO = 0 to VCC
IO
Continuous current through VCC or GND
TJ
Junction temperature(3)
Tstg
Storage temperature
(1)
(2)
(3)
–65
±25
mA
±50
mA
150
°C
150
°C
Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress
ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated
under Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device
reliability.
The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
Guaranteed by design.
6.2 Recommended Operating Conditions
over operating free-air temperature range (unless otherwise noted)
VCC
Supply voltage
VIH
High-level input voltage
VCC = 2 V
MIN
NOM
MAX
2
5
6
3.15
VCC = 6 V
V
4.2
0.5
VCC = 4.5 V
Low-level input voltage
V
1.5
VCC = 4.5 V
VCC = 2 V
VIL
UNIT
1.35
VCC = 6 V
V
1.8
VI
Input voltage
0
VCC
V
VO
Output voltage
0
VCC
V
tt
Input transition time
VCC = 2 V
1000
VCC = 4.5 V
500
VCC = 6 V
TA
Operating free-air temperature
ns
400
SN54HC00
–55
125
SN74HC00
–40
85
°C
6.3 Thermal Information
SN74HC20
THERMAL METRIC(1)
4
N (PDIP)
D (SOIC)
PW (TSSOP)
NS (SOP)
UNIT
14 PINS
14 PINS
14 PINS
14 PINS
RθJA
Junction-to-ambient thermal
resistance
67.2
133.6
151.7
122.6
°C/W
RθJC(top)
Junction-to-case (top) thermal
resistance
55.3
89.0
79.4
81.8
°C/W
RθJB
Junction-to-board thermal
resistance
46.9
89.5
94.7
83.8
°C/W
ΨJT
Junction-to-top characterization
parameter
35.3
45.5
25.2
45.4
°C/W
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: SN74HC20 SN54HC20
SN74HC20, SN54HC20
www.ti.com
SCLS086G – DECEMBER 1982 – REVISED APRIL 2021
SN74HC20
THERMAL METRIC(1)
N (PDIP)
D (SOIC)
PW (TSSOP)
NS (SOP)
UNIT
14 PINS
14 PINS
14 PINS
14 PINS
ΨJB
Junction-to-board characterization
parameter
46.7
89.1
94.1
83.4
°C/W
RθJC(bot)
Junction-to-case (bottom) thermal
resistance
N/A
N/A
N/A
N/A
°C/W
(1)
For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application
report.
6.4 Electrical Characteristics - 74
over operating free-air temperature range; typical values measured at TA = 25°C (unless otherwise noted).
Operating free-air temperature (TA)
PARAMETER
VOH
VOL
High-level
output voltage
TEST CONDITIONS
VI = VIH
or VIL
Low-level output VI = VIH
voltage
or VIL
IOH = –20 µA
VCC
25°C
-40°C to 85°C
MIN
TYP
2V
1.9
1.998
1.9
4.5 V
4.4
4.499
4.4
6V
MAX
MIN
5.9
5.999
5.9
IOH = –4 mA
4.5 V
3.98
4.3
3.84
IOH = –5.2 mA
6V
5.48
IOL = 20 µA
5.8
TYP
UNIT
MAX
V
5.34
2V
0.002
0.1
0.1
4.5 V
0.001
0.1
0.1
6V
0.001
0.1
0.1
V
IOL = 4 mA
4.5 V
0.17
0.26
0.33
IOL = 5.2 mA
6V
0.15
0.26
0.33
±0.1
±100
±1000
nA
2
20
µA
10
10
pF
II
Input leakage
current
VI = VCC or 0
6V
ICC
Supply current
VI = VCC
or 0
6V
Ci
Input
capacitance
VI = VCC or 0
2 V to 6 V
3
6.5 Electrical Characteristics - 54
over operating free-air temperature range; typical values measured at TA = 25°C (unless otherwise noted).
PARAMETER
TEST CONDITIONS
IOH = –20 µA
VOH
VOL
High-level output
voltage
Low-level output
voltage
VI = VIH or
VIL
VI = VIH or
VIL
VCC
Operating free-air
temperature (TA)
Operating free-air
temperature (TA)
25°C
–55°C to 125°C
MIN
TYP
2V
1.9
1.998
1.9
4.5 V
4.4
4.499
4.4
6V
MAX
MIN
5.9
5.999
5.9
IOH = –4 mA
4.5 V
3.98
4.3
3.7
IOH = –5.2
mA
6V
5.48
5.8
5.2
TYP
UNIT
MAX
V
2V
0.002
0.1
0.1
IOL = 20 µA
4.5 V
0.001
0.1
0.1
6V
0.001
0.1
0.1
IOL = 4 mA
4.5 V
0.17
0.26
0.4
IOL = 5.2 mA
6V
0.15
0.26
0.4
V
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: SN74HC20 SN54HC20
5
SN74HC20, SN54HC20
www.ti.com
SCLS086G – DECEMBER 1982 – REVISED APRIL 2021
over operating free-air temperature range; typical values measured at TA = 25°C (unless otherwise noted).
PARAMETER
TEST CONDITIONS
VCC
Operating free-air
temperature (TA)
Operating free-air
temperature (TA)
25°C
–55°C to 125°C
MIN
TYP
MAX
MIN
TYP
UNIT
MAX
II
Input leakage
current
VI = VCC or 0
6V
±0.1
±1
µA
ICC
Supply current
VI = VCC or 0 IO = 0
6V
2
40
µA
Ci
Input capacitance
10
10
pF
2 V to 6
V
3
6.6 Switching Characteristics - 74
over operating free-air temperature range (unless otherwise noted)
Operating free-air temperature (TA)
PARAMETER
FROM
TO
VCC
25°C
MIN
tpd
tt
A, B, C, or
Y
D
Propagation delay
Transition-time
Y
–40°C to 85°C
MIN
TYP
UNIT
TYP
MAX
MAX
2V
45
110
140
4.5 V
14
22
28
6V
11
19
24
2V
27
75
95
4.5 V
9
15
19
6V
7
13
16
ns
ns
6.7 Switching Characteristics - 54
over operating free-air temperature range; typical values measured at TA = 25°C (unless otherwise noted).
PARAMETER
FROM
TO
TEST
CONDITIONS
VCC
Operating free-air
temperature (TA)
Operating free-air
temperature (TA)
25°C
–55°C to 125°C
MIN
TYP
MAX
45
110
140
4.5 V
9
22
28
6V
8
19
24
2V
27
75
95
4.5 V
9
15
19
6V
7
13
16
2V
tpd
tt
Propagation delay
A, B, C,
or D
Y
Transition-time
Y
CL = 50 pF
CL = 50 pF
MIN
TYP
UNIT
MAX
ns
ns
6.8 Operating Characteristics
over operating free-air temperature range; typical values measured at TA = 25°C (unless otherwise noted).
PARAMETER
Cpd
TEST CONDITIONS
Power dissipation capacitance
No load
per gate
VCC
2 V to 6 V
MIN
TYP
25
MAX UNIT
pF
6.9 Typical Characteristics
TA = 25°C
6
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: SN74HC20 SN54HC20
SN74HC20, SN54HC20
SCLS086G – DECEMBER 1982 – REVISED APRIL 2021
7
0.3
6
0.25
VOL Output Low Voltage (V)
VOH Output High Voltage (V)
www.ti.com
5
4
3
2
2-V
4.5-V
6-V
1
0
2-V
4.5-V
6-V
0.2
0.15
0.1
0.05
0
0
1
2
3
4
IOH Output High Current (mA)
5
6
Figure 6-1. Typical output voltage in the high state
(VOH)
0
1
2
3
4
IOL Output Low Current (mA)
5
6
Figure 6-2. Typical output voltage in the low state
(VOL)
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: SN74HC20 SN54HC20
7
SN74HC20, SN54HC20
www.ti.com
SCLS086G – DECEMBER 1982 – REVISED APRIL 2021
7 Parameter Measurement Information
•
•
Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by generators
having the following characteristics: PRR ≤ 1 MHz, ZO = 50 Ω, tt < 6 ns.
The outputs are measured one at a time, with one input transition per measurement.
Test
Point
90%
VCC
90%
Input
10%
10%
tr(1)
From Output
Under Test
CL(1)
0V
tf(1)
90%
VOH
90%
Output
10%
A.
10%
tr(1)
CL= 50 pF and includes probe and jig capacitance.
A.
Figure 7-1. Load Circuit
tf(1)
VOL
tt is the greater of tr and tf.
Figure 7-2. Voltage Waveforms Transition Times
VCC
Input
50%
50%
0V
tPLH
(1)
tPHL
(1)
VOH
Output
50%
50%
VOL
tPLH(1)
tPHL(1)
VOH
Output
50%
50%
VOL
A.
The maximum between tPLH and tPHL is used for tpd.
Figure 7-3. Voltage Waveforms Propagation Delays
8
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: SN74HC20 SN54HC20
SN74HC20, SN54HC20
www.ti.com
SCLS086G – DECEMBER 1982 – REVISED APRIL 2021
8 Detailed Description
8.1 Overview
This device contains two independent 4-input NAND gates. Each gate performs the Boolean function
Y = A ● B ● C ● D in positive logic.
8.2 Functional Block Diagram
xA
xB
xY
xC
xD
8.3 Feature Description
8.3.1 Balanced CMOS Push-Pull Outputs
A balanced output allows the device to sink and source similar currents. The drive capability of this device
may create fast edges into light loads so routing and load conditions should be considered to prevent ringing.
Additionally, the outputs of this device are capable of driving larger currents than the device can sustain without
being damaged. It is important for the output power of the device to be limited to avoid damage due to
over-current. The electrical and thermal limits defined in the Absolute Maximum Ratings must be followed at all
times.
The SN74HC20 can drive a load with a total capacitance less than or equal to the maximum load listed in
the Switching Characteristics - 74 connected to a high-impedance CMOS input while still meeting all of the
datasheet specifications. Larger capacitive loads can be applied, however it is not recommended to exceed the
provided load value. If larger capacitive loads are required, it is recommended to add a series resistor between
the output and the capacitor to limit output current to the values given in the Absolute Maximum Ratings.
8.3.2 Standard CMOS Inputs
Standard CMOS inputs are high impedance and are typically modeled as a resistor from the input to ground
in parallel with the input capacitance given in the Electrical Characteristics - 74. The worst case resistance is
calculated with the maximum input voltage, given in the Absolute Maximum Ratings, and the maximum input
leakage current, given in the Electrical Characteristics - 74, using ohm's law (R = V ÷ I).
Signals applied to the inputs need to have fast edge rates, as defined by the input transition time in the
Recommended Operating Conditions to avoid excessive current consumption and oscillations. If a slow or noisy
input signal is required, a device with a Schmitt-trigger input should be used to condition the input signal prior to
the standard CMOS input.
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: SN74HC20 SN54HC20
9
SN74HC20, SN54HC20
www.ti.com
SCLS086G – DECEMBER 1982 – REVISED APRIL 2021
8.3.3 Clamp Diode Structure
The inputs and outputs to this device have both positive and negative clamping diodes as depicted in Figure 8-1.
CAUTION
Voltages beyond the values specified in the Absolute Maximum Ratings table can cause damage to
the device. The recommended input and output voltage ratings may be exceeded if the input and
output clamp-current ratings are observed.
VCC
Device
+IIK
+IOK
Logic
Input
Output
-IIK
-IOK
GND
Figure 8-1. Electrical Placement of Clamping Diodes for Each Input and Output
8.4 Device Functional Modes
Table 8-1. Function Table
INPUTS
10
OUTPUT
A
B
C
D
Y
H
H
H
H
L
L
X
X
X
H
X
L
X
X
H
X
X
L
X
H
X
X
X
L
H
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: SN74HC20 SN54HC20
SN74HC20, SN54HC20
www.ti.com
SCLS086G – DECEMBER 1982 – REVISED APRIL 2021
9 Application and Implementation
Note
Information in the following applications sections is not part of the TI component specification,
and TI does not warrant its accuracy or completeness. TI’s customers are responsible for
determining suitability of components for their purposes, as well as validating and testing their design
implementation to confirm system functionality.
9.1 Application Information
In this application, two 4-input NAND gates are used to create an active-low SR latch as shown in Figure 9-1.
Unused inputs can be tied together or to VCC
This device is used to drive the tamper indicator LED and provide one bit of data to the system controller.
When the tamper switch outputs LOW, the output Q becomes HIGH. This output remains HIGH until the system
controller addresses the event and sends a LOW signal to the R input which returns the Q output back to LOW.
9.2 Typical Application
R1
System
Controller
R
Tamper
Switch 1
SA
Q
R2
SB
Tamper
Indicato r
Tamper
Switch 3
SC
Figure 9-1. Typical application schematic
9.2.1 Design Requirements
9.2.1.1 Power Considerations
Ensure the desired supply voltage is within the range specified in the Recommended Operating Conditions. The
supply voltage sets the device's electrical characteristics as described in the Electrical Characteristics - 74.
The supply must be capable of sourcing current equal to the total current to be sourced by all outputs of the
SN74HC20 plus the maximum supply current, ICC, listed in the Electrical Characteristics - 74. The logic device
can only source or sink as much current as it is provided at the supply and ground pins, respectively. Be sure not
to exceed the maximum total current through GND or VCC listed in the Absolute Maximum Ratings.
Total power consumption can be calculated using the information provided in CMOS Power Consumption and
Cpd Calculation.
Thermal increase can be calculated using the information provided in Thermal Characteristics of Standard Linear
and Logic (SLL) Packages and Devices.
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: SN74HC20 SN54HC20
11
SN74HC20, SN54HC20
www.ti.com
SCLS086G – DECEMBER 1982 – REVISED APRIL 2021
CAUTION
The maximum junction temperature, TJ(max) listed in the Absolute Maximum Ratings, is an
additional limitation to prevent damage to the device. Do not violate any values listed in the Absolute
Maximum Ratings. These limits are provided to prevent damage to the device.
9.2.1.2 Input Considerations
Unused inputs must be terminated to either VCC or ground. These can be directly terminated if the input is
completely unused, or they can be connected with a pull-up or pull-down resistor if the input is to be used
sometimes, but not always. A pull-up resistor is used for a default state of HIGH, and a pull-down resistor is
used for a default state of LOW. The resistor size is limited by drive current of the controller, leakage current into
the SN74HC20, as specified in the Electrical Characteristics - 74, and the desired input transition rate. A 10-kΩ
resistor value is often used due to these factors.
The SN74HC20 has standard CMOS inputs, so input signal edge rates cannot be slow. Slow input edge
rates can cause oscillations and damaging shoot-through current. The recommended rates are defined in the
Recommended Operating Conditions.
Refer to Section 8.3 for additional information regarding the inputs for this device.
9.2.1.3 Output Considerations
The positive supply voltage is used to produce the output HIGH voltage. Drawing current from the output will
decrease the output voltage as specified by the VOH specification in the Electrical Characteristics - 74. Similarly,
the ground voltage is used to produce the output LOW voltage. Sinking current into the output will increase the
output voltage as specified by the VOL specification in the Electrical Characteristics - 74.
Unused outputs can be left floating. Do not connect outputs directly to VCC or ground.
Refer to Section 8.3 for additional information regarding the outputs for this device.
9.2.2 Detailed Design Procedure
1. Add a decoupling capacitor from VCC to GND. The capacitor needs to be placed physically close to the
device and electrically close to both the VCC and GND pins. An example layout is shown in Section 11.
2. Ensure the capacitive load at the output is ≤ 70 pF. This is not a hard limit, however it will ensure optimal
performance. This can be accomplished by providing short, appropriately sized traces from the SN74HC20
to the receiving device.
3. Ensure the resistive load at the output is larger than (VCC / IO(max)) Ω. This will ensure that the maximum
output current from the Absolute Maximum Ratings is not violated. Most CMOS inputs have a resistive load
measured in megaohms; much larger than the minimum calculated above.
4. Thermal issues are rarely a concern for logic gates, however the power consumption and thermal increase
can be calculated using the steps provided in the application report, CMOS Power Consumption and Cpd
Calculation
9.2.3 Application Curves
R
S
Q
Figure 9-2. Typical application timing diagram
12
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: SN74HC20 SN54HC20
SN74HC20, SN54HC20
www.ti.com
SCLS086G – DECEMBER 1982 – REVISED APRIL 2021
10 Power Supply Recommendations
The power supply can be any voltage between the minimum and maximum supply voltage rating located in
the Recommended Operating Conditions. Each VCC terminal should have a bypass capacitor to prevent power
disturbance. A 0.1-μF capacitor is recommended for this device. It is acceptable to parallel multiple bypass caps
to reject different frequencies of noise. The 0.1-μF and 1-μF capacitors are commonly used in parallel. The
bypass capacitor should be installed as close to the power terminal as possible for best results, as shown in
Figure 11-1.
11 Layout
11.1 Layout Guidelines
When using multiple-input and multiple-channel logic devices inputs must not ever be left floating. In many
cases, functions or parts of functions of digital logic devices are unused; for example, when only two inputs of
a triple-input AND gate are used. Such unused input pins must not be left unconnected because the undefined
voltages at the outside connections result in undefined operational states. All unused inputs of digital logic
devices must be connected to a logic high or logic low voltage, as defined by the input voltage specifications, to
prevent them from floating. The logic level that must be applied to any particular unused input depends on the
function of the device. Generally, the inputs are tied to GND or VCC, whichever makes more sense for the logic
function or is more convenient.
11.2 Layout Example
GND
VCC
Recommend GND flood fill for
improved signal isolation, noise
reduction, and thermal dissipation
0.1 F
Avoid 90°
corners for
signal lines
Bypass capacitor
placed close to
the device
1A
1
14
VCC
1B
2
13
NC
3
12
2D Unused inputs
tied to VCC
2C
1C
4
11
NC
1D
5
10
2B
1Y
6
9
2A
GND
7
8
2Y
Figure 11-1. Example layout for the SN74HC20
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: SN74HC20 SN54HC20
13
SN74HC20, SN54HC20
www.ti.com
SCLS086G – DECEMBER 1982 – REVISED APRIL 2021
12 Device and Documentation Support
12.1 Documentation Support
12.1.1 Related Documentation
For related documentation see the following:
• HCMOS Design Considerations
• CMOS Power Consumption and CPD Calculation
• Designing with Logic
12.2 Related Links
The table below lists quick access links. Categories include technical documents, support and community
resources, tools and software, and quick access to sample or buy.
12.3 Support Resources
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight
from the experts. Search existing answers or ask your own question to get the quick design help you need.
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do
not necessarily reflect TI's views; see TI's Terms of Use.
12.4 Trademarks
TI E2E™ is a trademark of Texas Instruments.
All trademarks are the property of their respective owners.
12.5 Electrostatic Discharge Caution
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may
be more susceptible to damage because very small parametric changes could cause the device not to meet its published
specifications.
12.6 Glossary
TI Glossary
This glossary lists and explains terms, acronyms, and definitions.
13 Mechanical, Packaging, and Orderable Information
The following pages include mechanical, packaging, and orderable information. This information is the most
current data available for the designated devices. This data is subject to change without notice and revision of
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.
14
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: SN74HC20 SN54HC20
PACKAGE OPTION ADDENDUM
www.ti.com
14-Oct-2022
PACKAGING INFORMATION
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
(2)
Lead finish/
Ball material
MSL Peak Temp
Op Temp (°C)
Device Marking
(3)
Samples
(4/5)
(6)
5962-8403901VCA
ACTIVE
CDIP
J
14
1
Non-RoHS
& Green
SNPB
N / A for Pkg Type
-55 to 125
5962-8403901VC
A
SNV54HC20J
84039012A
ACTIVE
LCCC
FK
20
1
Non-RoHS
& Green
SNPB
N / A for Pkg Type
-55 to 125
84039012A
SNJ54HC
20FK
8403901CA
ACTIVE
CDIP
J
14
1
Non-RoHS
& Green
SNPB
N / A for Pkg Type
-55 to 125
8403901CA
SNJ54HC20J
Samples
8403901DA
ACTIVE
CFP
W
14
1
Non-RoHS
& Green
SNPB
N / A for Pkg Type
-55 to 125
8403901DA
SNJ54HC20W
Samples
JM38510/65003BCA
ACTIVE
CDIP
J
14
1
Non-RoHS
& Green
SNPB
N / A for Pkg Type
-55 to 125
JM38510/
65003BCA
Samples
M38510/65003BCA
ACTIVE
CDIP
J
14
1
Non-RoHS
& Green
SNPB
N / A for Pkg Type
-55 to 125
JM38510/
65003BCA
Samples
SN54HC20J
ACTIVE
CDIP
J
14
1
Non-RoHS
& Green
SNPB
N / A for Pkg Type
-55 to 125
SN54HC20J
Samples
SN74HC20D
ACTIVE
SOIC
D
14
50
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 85
HC20
Samples
SN74HC20DR
ACTIVE
SOIC
D
14
2500
RoHS & Green
NIPDAU | SN
Level-1-260C-UNLIM
-40 to 85
HC20
Samples
SN74HC20N
ACTIVE
PDIP
N
14
25
RoHS & Green
NIPDAU
N / A for Pkg Type
-40 to 85
SN74HC20N
Samples
SN74HC20NSR
ACTIVE
SO
NS
14
2000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 85
HC20
Samples
SN74HC20PW
ACTIVE
TSSOP
PW
14
90
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 85
HC20
Samples
SN74HC20PWR
ACTIVE
TSSOP
PW
14
2000
RoHS & Green
NIPDAU | SN
Level-1-260C-UNLIM
-40 to 85
HC20
Samples
SN74HC20PWT
ACTIVE
TSSOP
PW
14
250
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 85
HC20
Samples
SNJ54HC20FK
ACTIVE
LCCC
FK
20
1
Non-RoHS
& Green
SNPB
N / A for Pkg Type
-55 to 125
84039012A
SNJ54HC
20FK
SNJ54HC20J
ACTIVE
CDIP
J
14
1
Non-RoHS
& Green
SNPB
N / A for Pkg Type
-55 to 125
8403901CA
SNJ54HC20J
Addendum-Page 1
Samples
Samples
Samples
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
Orderable Device
14-Oct-2022
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
(2)
Lead finish/
Ball material
MSL Peak Temp
Op Temp (°C)
(3)
Device Marking
Samples
(4/5)
(6)
SNJ54HC20W
ACTIVE
CFP
W
14
1
Non-RoHS
& Green
SNPB
N / A for Pkg Type
-55 to 125
8403901DA
SNJ54HC20W
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may
reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of