SN74LVC1G00-EP
SINGLE 2-INPUT POSITIVE-NAND GATE
www.ti.com
SCES450D – DECEMBER 2003 – REVISED SEPTEMBER 2006
FEATURES
•
•
•
•
•
•
•
•
•
(1)
•
Controlled Baseline
– One Assembly/Test Site, One Fabrication
Site
Enhanced Diminishing Manufacturing
Sources (DMS) Support
Enhanced Product-Change Notification
Qualification Pedigree (1)
Supports 5-V VCC Operation
Inputs Accept Voltages to 5.5 V
Max tpd of 3.8 ns at 3.3 V
Low Power Consumption, 10-µA Max ICC
±24-mA Output Drive at 3.3 V
•
•
Ioff Supports Partial-Power-Down Mode
Operation
Latch-Up Performance Exceeds 100 mA Per
JESD 78, Class II
ESD Protection Exceeds JESD 22
– 2000-V Human-Body Model (A114-A)
– 200-V Machine Model (A115-A)
– 1000-V Charged-Device Model (C101)
DBV OR DCK PACKAGE
(TOP VIEW)
A
B
GND
Component qualification in accordance with JEDEC and
industry standards to ensure reliable operation over an
extended temperature range. This includes, but is not limited
to, Highly Accelerated Stress Test (HAST) or biased 85/85,
temperature cycle, autoclave or unbiased HAST,
electromigration, bond intermetallic life, and mold compound
life. Such qualification testing should not be viewed as
justifying use of this component beyond specified
performance and environmental limits.
1
5
VCC
4
Y
2
3
DESCRIPTION/ORDERING INFORMATION
This single 2-input positive-NAND gate is designed for 1.65-V to 5.5-V VCC operation.
The SN74LVC1G00 performs the Boolean function Y = A • B or Y = A + B in positive logic.
This device is fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs,
preventing damaging current backflow through the device when it is powered down.
ORDERING INFORMATION
PACKAGE (1)
TA
–40°C to 85°C
–55°C to 125°C
(1)
(2)
ORDERABLE PART NUMBER
TOP-SIDE MARKING (2)
SOP (SC-70) – DCK
Reel of 3000
SN74LVC1G00IDCKREP
CAO
SOP – DBV
Reel of 3000
SN74LVC1G00MDBVREP
SBFM
SOP (SC-70) – DCK
Reel of 3000
SN74LVC1G00MDCKREP
BYA
Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at
www.ti.com/sc/package.
The actual top-side marking has one additional character that designates the assembly/test site.
FUNCTION TABLE
INPUTS
A
B
OUTPUT
Y
H
H
L
L
X
H
X
L
H
LOGIC DIAGRAM (POSITIVE LOGIC)
A
B
1
2
4
Y
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of the Texas
Instruments standard warranty. Production processing does not
necessarily include testing of all parameters.
Copyright © 2003–2006, Texas Instruments Incorporated
SN74LVC1G00-EP
SINGLE 2-INPUT POSITIVE-NAND GATE
www.ti.com
SCES450D – DECEMBER 2003 – REVISED SEPTEMBER 2006
Absolute Maximum Ratings (1)
over operating free-air temperature range (unless otherwise noted)
MIN
MAX
VCC
Supply voltage range
–0.5
6.5
V
VI
Input voltage range (2)
–0.5
6.5
V
–0.5
6.5
V
–0.5
VCC + 0.5
state (2)
VO
Voltage range applied to any output in the high-impedance or power-off
VO
Voltage range applied to any output in the high or low state (2) (3)
IIK
Input clamp current
VI < 0
–50
mA
IOK
Output clamp current
VO < 0
–50
mA
IO
Continuous output current
±50
mA
±100
mA
Continuous current through VCC or GND
θJA
Package thermal impedance (4)
Tstg
Storage temperature range
(1)
(2)
(3)
(4)
2
UNIT
DBV package
324.1
DCK package
252
–65
150
V
°C/W
°C
Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating
conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.
The value of VCC is provided in the recommended operating conditions table.
The package thermal impedance is calculated in accordance with JESD 51-7.
Submit Documentation Feedback
SN74LVC1G00-EP
SINGLE 2-INPUT POSITIVE-NAND GATE
www.ti.com
SCES450D – DECEMBER 2003 – REVISED SEPTEMBER 2006
Recommended Operating Conditions
VCC
Supply voltage
(1)
Operating
Data retention only
High-level input voltage
MAX
1.65
5.5
1.5
VCC = 2.3 V to 2.7 V
1.7
VCC = 3 V to 3.6 V
0.7 × VCC
0.35 × VCC
VCC = 1.65 V to 1.95 V
Low-level input voltage
V
V
2
VCC = 4.5 V to 5.5 V
VIL
UNIT
0.65 × VCC
VCC = 1.65 V to 1.95 V
VIH
MIN
VCC = 2.3 V to 2.7 V
0.7
VCC = 3 V to 3.6 V
0.8
V
0.3 × VCC
VCC = 4.5 V to 5.5 V
VI
Input voltage
0
5.5
V
VO
Output voltage
0
VCC
V
VCC = 1.65 V
–4
VCC = 2.3 V
IOH
High-level output current
VCC = 3 V
–8
2.4-V Min VOH
–16
2.3-V Min VOH
–24
VCC = 4.5 V
–32
VCC = 1.65 V
4
VCC = 2.3 V
IOL
Low-level output current
∆t/∆v
Input transition rise or fall rate
VCC = 3 V
8
0.4-V Max VOL
16
0.55-V Max VOL
24
VCC = 4.5 V
32
VCC = 1.8 V ± 0.15 V, 2.5 V ± 0.2 V
20
VCC = 3.3 V ± 0.3 V
10
VCC = 5 V ± 0.5 V
TA
(1)
Operating free-air temperature
mA
mA
ns/V
5
SN74LVC1G00IDCKREP
–40
85
SN74LVC1G00MDBVREP
–55
125
°C
All unused inputs of the device must be held at VCC or GND to ensure proper device operation. See the TI application report,
Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
Submit Documentation Feedback
3
SN74LVC1G00-EP
SINGLE 2-INPUT POSITIVE-NAND GATE
www.ti.com
SCES450D – DECEMBER 2003 – REVISED SEPTEMBER 2006
Electrical Characteristics
over recommended operating free-air temperature range (unless otherwise noted)
PARAMETER
TEST CONDITIONS
VCC
IOH = –100 µA
VOH
1.65 V to 5.5 V
1.65 V
1.2
IOH = –8 mA
2.3 V
1.9
4.5 V
1.65 V to 5.5 V
0.1
IOL = 4 mA
1.65 V
0.45
IOL = 8 mA
2.3 V
0.3
0.4
ICC
VI = 5.5 V or GND, IO = 0
∆ICC
One input at VCC – 0.6 V, Other inputs at VCC or GND
Ci
VI = VCC or GND
0.55
0 to 5.5 V
±5
µA
0
±10
µA
1.65 V to 5.5 V
10
µA
3 V to 5.5 V
500
µA
VI = 5.5 V or GND
VI or VO = 5.5 V
V
0.55
4.5 V
Ioff
(1)
3.8
3V
IOL = 32 mA
A or B
inputs
2.3
IOL = 100 µA
IOL = 24 mA
UNIT
V
IOH = –32 mA
IOL = 16 mA
II
MAX
2.4
3V
IOH = –24 mA
TYP (1)
VCC – 0.1
IOH = –4 mA
IOH = –16 mA
VOL
MIN
3.3 V
4
pF
All typical values are at VCC = 3.3 V, TA = 25°C.
Switching Characteristics
over recommended operating free-air temperature range, CL = 15 pF (unless otherwise noted) (see Figure 1)
PARAMETER
FROM
(INPUT)
TO
(OUTPUT)
A or B
Y
tpd
VCC = 1.8 V
± 0.15 V
VCC = 2.5 V
± 0.2 V
VCC = 3.3 V
± 0.3 V
MIN
MAX
MIN
MAX
2.2
7.2
0.9
4.4
MIN MAX
0.8
3.8
VCC = 5 V
± 0.5 V
UNIT
MIN
MAX
0.8
3.4
ns
Switching Characteristics
over recommended operating free-air temperature range, CL = 30 pF or 50 pF (unless otherwise noted) (see Figure 2)
PARAMETER
tpd
FROM
(INPUT)
TO
(OUTPUT)
A or B
Y
VCC = 1.8 V
± 0.15 V
VCC = 2.5 V
± 0.2 V
VCC = 3.3 V
± 0.3 V
VCC = 5 V
± 0.5 V
MIN
MAX
MIN
MAX
MIN
MAX
MIN
MAX
SN74LVC1G00M
3.1
9
1.3
7.0
1
6.3
1
5
SN74LVC1G00I
3.1
9
1.3
5.5
1
4.7
1
4
DEVICE
UNIT
ns
Operating Characteristics
TA = 25°C
Cpd
4
PARAMETER
TEST CONDITIONS
Power dissipation capacitance
f = 10 MHz
VCC = 1.8 V
VCC = 2.5 V
VCC = 3.3 V
VCC = 5 V
TYP
TYP
TYP
TYP
22
22
23
25
Submit Documentation Feedback
UNIT
pF
SN74LVC1G00-EP
SINGLE 2-INPUT POSITIVE-NAND GATE
www.ti.com
SCES450D – DECEMBER 2003 – REVISED SEPTEMBER 2006
PARAMETER MEASUREMENT INFORMATION
VLOAD
S1
RL
From Output
Under Test
CL
(see Note A)
Open
GND
RL
TEST
S1
tPLH/tPHL
tPLZ/tPZL
tPHZ/tPZH
Open
VLOAD
GND
LOAD CIRCUIT
INPUTS
VCC
1.8 V ± 0.15 V
2.5 V ± 0.2 V
3.3 V ± 0.3 V
5 V ± 0.5 V
VI
tr/tf
VCC
VCC
3V
VCC
≤2 ns
≤2 ns
≤2.5 ns
≤2.5 ns
VM
VLOAD
CL
RL
V∆
VCC/2
VCC/2
1.5 V
VCC/2
2 × VCC
2 × VCC
6V
2 × VCC
15 pF
15 pF
15 pF
15 pF
1 MΩ
1 MΩ
1 MΩ
1 MΩ
0.15 V
0.15 V
0.3 V
0.3 V
VI
Timing Input
VM
0V
tw
tsu
VI
Input
VM
VM
th
VI
Data Input
VM
VM
0V
0V
VOLTAGE WAVEFORMS
PULSE DURATION
VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES
VI
VM
Input
VM
0V
tPLH
VM
VM
VOL
tPHL
VM
VM
0V
Output
Waveform 1
S1 at VLOAD
(see Note B)
tPLH
tPLZ
VLOAD/2
VM
tPZH
VOH
Output
VM
tPZL
tPHL
VOH
Output
VI
Output
Control
VM
VOL
Output
Waveform 2
S1 at GND
(see Note B)
VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
INVERTING AND NONINVERTING OUTPUTS
VOL + V∆
VOL
tPHZ
VM
VOH – V∆
VOH
≈0 V
VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
LOW- AND HIGH-LEVEL ENABLING
NOTES: A. CL includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, ZO = 50 Ω.
D. The outputs are measured one at a time, with one transition per measurement.
E. tPLZ and tPHZ are the same as tdis.
F. tPZL and tPZH are the same as ten.
G. tPLH and tPHL are the same as tpd.
H. All parameters and waveforms are not applicable to all devices.
Figure 1. Load Circuit and Voltage Waveforms
Submit Documentation Feedback
5
SN74LVC1G00-EP
SINGLE 2-INPUT POSITIVE-NAND GATE
www.ti.com
SCES450D – DECEMBER 2003 – REVISED SEPTEMBER 2006
PARAMETER MEASUREMENT INFORMATION (continued)
VLOAD
S1
RL
From Output
Under Test
CL
(see Note A)
Open
GND
RL
TEST
S1
tPLH/tPHL
tPLZ/tPZL
tPHZ/tPZH
Open
VLOAD
GND
LOAD CIRCUIT
INPUTS
VCC
1.8 V ± 0.15 V
2.5 V ± 0.2 V
3.3 V ± 0.3 V
5 V ± 0.5 V
VI
tr/tf
VCC
VCC
3V
VCC
≤2 ns
≤2 ns
≤2.5 ns
≤2.5 ns
VM
VLOAD
CL
RL
V∆
VCC/2
VCC/2
1.5 V
VCC/2
2 × VCC
2 × VCC
6V
2 × VCC
30 pF
30 pF
50 pF
50 pF
1 kΩ
500 Ω
500 Ω
500 Ω
0.15 V
0.15 V
0.3 V
0.3 V
VI
Timing Input
VM
0V
tw
tsu
VI
Input
VM
VM
th
VI
Data Input
VM
VM
0V
0V
VOLTAGE WAVEFORMS
PULSE DURATION
VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES
VI
VM
Input
VM
0V
tPLH
VM
VM
VOL
tPHL
VM
VM
0V
Output
Waveform 1
S1 at VLOAD
(see Note B)
tPLH
tPLZ
VLOAD/2
VM
tPZH
VOH
Output
VM
tPZL
tPHL
VOH
Output
VI
Output
Control
VM
VOL
Output
Waveform 2
S1 at GND
(see Note B)
VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
INVERTING AND NONINVERTING OUTPUTS
VOL + V∆
VOL
tPHZ
VM
VOH – V∆
VOH
≈0 V
VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
LOW- AND HIGH-LEVEL ENABLING
NOTES: A. CL includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, ZO = 50 Ω.
D. The outputs are measured one at a time, with one transition per measurement.
E. tPLZ and tPHZ are the same as tdis.
F. tPZL and tPZH are the same as ten.
G. tPLH and tPHL are the same as tpd.
H. All parameters and waveforms are not applicable to all devices.
Figure 2. Load Circuit and Voltage Waveforms
6
Submit Documentation Feedback
PACKAGE OPTION ADDENDUM
www.ti.com
10-Dec-2020
PACKAGING INFORMATION
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
(2)
Lead finish/
Ball material
MSL Peak Temp
Op Temp (°C)
Device Marking
(3)
(4/5)
(6)
SN74LVC1G00IDCKREP
ACTIVE
SC70
DCK
5
3000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 85
CAO
SN74LVC1G00MDBVREP
ACTIVE
SOT-23
DBV
5
3000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-55 to 125
SBFM
SN74LVC1G00MDCKREP
ACTIVE
SC70
DCK
5
3000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-55 to 125
BYA
V62/04732-01XE
ACTIVE
SC70
DCK
5
3000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 85
CAO
V62/04732-02XE
ACTIVE
SC70
DCK
5
3000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-55 to 125
BYA
V62/04732-02YE
ACTIVE
SOT-23
DBV
5
3000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-55 to 125
SBFM
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may
reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
很抱歉,暂时无法提供与“SN74LVC1G00IDCKREP”相匹配的价格&库存,您可以联系我们找货
免费人工找货