0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
SN74LVC2G14DBVR

SN74LVC2G14DBVR

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    SOT23-6

  • 描述:

    反相器 IC 2 通道 施密特触发器 SOT-23-6

  • 数据手册
  • 价格&库存
SN74LVC2G14DBVR 数据手册
Product Folder Sample & Buy Support & Community Tools & Software Technical Documents Reference Design SN74LVC2G14 SCES200O – APRIL 1999 – REVISED AUGUST 2015 SN74LVC2G14 Dual Schmitt-Trigger Inverter 1 Features 3 Description • • • • • • • This dual Schmitt-trigger inverter is designed for 1.65-V to 5.5-V VCC operation. 1 • • • • Available in the TI NanoFree™ Package Supports 5-V VCC Operation Inputs Accept Voltages to 5.5 V Max tpd of 5.4 ns at 3.3 V Low-Power Consumption, 10-μA Maximum ICC ±24-mA Output Drive at 3.3 V Typical VOLP (Output Ground Bounce) 2 V at VCC = 3.3 V, TA = 25°C Ioff Supports Live Insertion, Partial-Power-Down Mode, and Back-Drive Protection Support Translation Down (5 V to 3.3 V; 3.3 V to 1.8 V) Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II 2 Applications • • • • • • • Body Control Modules Engine Control Modules Arcade, Casino, and Gambling Machines Servers and High-Performance Computing EPOS, ECR, and Cash Drawer Routers Desktop PC NanoFree™ package technology is a major breakthrough in IC packaging concepts, using the die as the package. The SN74LVC2G14 device contains two inverters and performs the Boolean function Y = A. The device functions as two independent inverters, but because of Schmitt action, it may have different input threshold levels for positive-going (VT+) and negative-going (VT–) signals. This device is fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down. Device Information(1) PART NUMBER PACKAGE BODY SIZE (NOM) SN74LVC2G14DBV SOT-23 (6) 2.90 mm × 1.60 mm SN74LVC2G14DCK SC70 (6) 2.00 mm × 1.25 mm SN74LVC2G14YZP DSBGA (6) 1.41 mm × 0.91 mm (1) For all available packages, see the orderable addendum at the end of the data sheet. Block Diagram 1A 2A 1 6 3 4 1Y 2Y 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA. SN74LVC2G14 SCES200O – APRIL 1999 – REVISED AUGUST 2015 www.ti.com Table of Contents 1 2 3 4 5 6 7 8 Features .................................................................. Applications ........................................................... Description ............................................................. Revision History..................................................... Pin Configuration and Functions ......................... Specifications......................................................... 1 1 1 2 3 4 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 4 4 4 5 5 6 6 6 6 Absolute Maximum Ratings ..................................... ESD Ratings ............................................................ Recommended Operating Conditions ...................... Thermal Information .................................................. Electrical Characteristics........................................... Switching Characteristics, –40°C to 85°C ................ Switching Characteristics, –40°C to 125°C............... Operating Characteristics.......................................... Typical Characteristics .............................................. Parameter Measurement Information .................. 7 Detailed Description .............................................. 8 8.1 8.2 8.3 8.4 9 Overview ................................................................... Functional Block Diagram ......................................... Feature Description................................................... Device Functional Modes.......................................... 8 8 8 8 Application and Implementation .......................... 9 9.1 Application Information.............................................. 9 9.2 Typical Application ................................................... 9 10 Power Supply Recommendations ..................... 10 11 Layout................................................................... 10 11.1 Layout Guidelines ................................................. 10 11.2 Layout Example .................................................... 11 12 Device and Documentation Support ................. 12 12.1 12.2 12.3 12.4 Community Resources.......................................... Trademarks ........................................................... Electrostatic Discharge Caution ............................ Glossary ................................................................ 12 12 12 12 13 Mechanical, Packaging, and Orderable Information ........................................................... 12 4 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. Changes from Revision N (June 2015) to Revision O • Added TJ junction temperature spec to Abs Max Ratings...................................................................................................... 4 Changes from Revision M (November 2013) to Revision N • 2 Page Page Added Applications, Device Information table, ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section .............................. 1 Submit Documentation Feedback Copyright © 1999–2015, Texas Instruments Incorporated Product Folder Links: SN74LVC2G14 SN74LVC2G14 www.ti.com SCES200O – APRIL 1999 – REVISED AUGUST 2015 5 Pin Configuration and Functions DBV Package 6-Pin SOT-23 Top View DCK Package 6-Pin SC70 Top View 1A 1 6 1Y GND 2 5 VCC 2A 3 4 2Y 1A 1 6 1Y GND 2 5 VCC 2A 3 4 2Y YZP Package 6-Pin DSBGA Bottom View 2Y 2A 3 4 GND 2 5 VCC 1A 1 6 1Y See mechanical drawing for dimensions. Pin Functions PIN NAME NO. I/O DESCRIPTION 1A 1 I Gate 1 logic signal 1Y 6 O Gate 1 inverted signal 2A 3 I Gate 2 logic signal 2Y 4 O Gate 2 inverted signal GND 2 — Ground VCC 5 — Supply/Power Pin Submit Documentation Feedback Copyright © 1999–2015, Texas Instruments Incorporated Product Folder Links: SN74LVC2G14 3 SN74LVC2G14 SCES200O – APRIL 1999 – REVISED AUGUST 2015 www.ti.com 6 Specifications 6.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted) (1) VCC MIN MAX UNIT Supply voltage –0.5 6.5 V (2) VI Input voltage –0.5 6.5 V VO Voltage applied to any output in the high-impedance or power-off state (2) –0.5 6.5 V VO Voltage applied to any output in the high or low state (2) (3) –0.5 VCC + 0.5 V IIK Input clamp current VI < 0 –50 mA IOK Output clamp current VO < 0 –50 mA IO Continuous output current ±50 mA ±100 mA TJ Continuous current through VCC or GND Junction temperature –65 150 °C Tstg Storage temperature –65 150 °C (1) (2) (3) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The input negative-voltage and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed. The value of VCC is provided in the Recommended Operating Conditions table. 6.2 ESD Ratings VALUE Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 V(ESD) (1) (2) Electrostatic discharge (1) Charged-device model (CDM), per JEDEC specification JESD22C101 (2) UNIT ±2000 V ±1000 JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 500-V HBM is possible with the necessary precautions. Pins listed as ±XXX V may actually have higher performance. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with less than 250-V CDM is possible with the necessary precautions. Pins listed as ±YYY V may actually have higher performance. 6.3 Recommended Operating Conditions See (1) Operating MIN MAX 1.65 5.5 UNIT VCC Supply voltage VI Input voltage 0 5.5 V VO Output voltage 0 VCC V Data retention only 1.5 VCC = 1.65 V –4 VCC = 2.3 V IOH High-level output current –8 –16 VCC = 3 V –32 VCC = 1.65 V 4 VCC = 2.3 V Low-level output current 8 16 VCC = 3 V (1) 4 Operating free-air temperature mA 24 VCC = 4.5 V TA mA –24 VCC = 4.5 V IOL V 32 –40 125 °C All unused inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, SCBA004. Submit Documentation Feedback Copyright © 1999–2015, Texas Instruments Incorporated Product Folder Links: SN74LVC2G14 SN74LVC2G14 www.ti.com SCES200O – APRIL 1999 – REVISED AUGUST 2015 6.4 Thermal Information SN74LVC2G14 THERMAL METRIC (1) DBV (SOT23) DCK (SC70) YZP (DSBGA) 6 PINS 6 PINS 6 PINS 215 259 139 °C/W RθJC(top) Junction-to-case (top) thermal resistance 55 87 18 °C/W RθJB 57 89 N/A °C/W RθJA (1) Junction-to-ambient thermal resistance Junction-to-board thermal resistance UNIT For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953. 6.5 Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS VCC VT+ Positive-going input threshold voltage VT– Negative-going input threshold voltage ΔVT Hysteresis (VT+ – VT–) VOH VOL II A input TYP (1) –40°C to 125°C MAX MIN TYP (1) MAX 1.65 V 0.7 1.4 0.7 1.4 2.3 V 1 1.7 1 1.7 3V 1.3 2.2 1.3 2.2 4.5 V 1.9 3.1 1.9 3.1 5.5 V 2.2 3.7 2.2 3.7 1.65 V 0.3 0.7 0.3 0.7 2.3 V 0.4 1 0.4 1 3V 0.6 1.3 0.6 1.3 4.5 V 1.1 2 1.1 2 5.5 V 1.4 2.5 1.4 2.5 1.65 V 0.3 0.8 0.3 0.8 2.3 V 0.4 0.9 0.4 0.9 3V 0.4 1.1 0.4 1.1 4.5 V 0.6 1.3 0.6 1.3 0.7 1.4 0.7 1.4 5.5 V IOH = –100 μA –40°C to 85°C MIN 1.65 V to 4.5 V VCC – 0.1 VCC – 0.1 IOH = –4 mA 1.65 V 1.2 1.2 IOH = –8 mA 2.3 V 1.9 1.9 IOH = –16 mA 3V 2.4 2.4 IOH = –24 mA 3V 2.3 2.3 IOH = –32 mA 4.5 V 3.8 IOL = 100 μA 1.65 V to 4.5 V 0.1 0.1 IOL = 4 mA 1.65 V 0.45 0.45 IOL = 8 mA 2.3 V 0.3 0.3 IOL = 16 mA 3V 0.4 0.4 IOL = 24 mA 3V 0.55 0.55 IOL = 32 mA 4.5 V 0.55 0.55 VI = 5.5 V or GND Ioff VI or VO = 5.5 V ICC VI = 5.5 V or GND, ΔICC One input at VCC – 0.6 V, Other inputs at VCC or GND CI VI = VCC or GND (1) All typical values are at VCC = 3.3 V, TA = 25°C. IO = 0 UNIT V V V V 3.8 V 0 to 5.5 V ±5 ±5 μA 0 ±10 ±10 μA 1.65 V to 5.5 V 10 10 μA 3 V to 5.5 V 500 500 μA 3.3 V 4 pF Submit Documentation Feedback Copyright © 1999–2015, Texas Instruments Incorporated Product Folder Links: SN74LVC2G14 5 SN74LVC2G14 SCES200O – APRIL 1999 – REVISED AUGUST 2015 www.ti.com 6.6 Switching Characteristics, –40°C to 85°C over recommended operating free-air temperature range (unless otherwise noted) (see Figure 3) PARAMETER tpd FROM (INPUT) TO (OUTPUT) A Y VCC = 1.8 V ± 0.15 V VCC = 2.5 V ± 0.2 V VCC = 3.3 V ± 0.3 V VCC = 5 V ± 0.5 V UNIT MIN MAX MIN MAX MIN MAX MIN MAX 3.9 9.5 1.9 5.7 2 5.4 1.5 4.3 ns 6.7 Switching Characteristics, –40°C to 125°C over recommended operating free-air temperature range (unless otherwise noted) (see Figure 3) PARAMETER tpd FROM (INPUT) TO (OUTPUT) A Y VCC = 1.8 V ± 0.15 V VCC = 2.5 V ± 0.2 V VCC = 3.3 V ± 0.3 V VCC = 5 V ± 0.5 V UNIT MIN MAX MIN MAX MIN MAX MIN MAX 3.9 10.5 1.9 6.5 2 6 1.5 4.7 ns 6.8 Operating Characteristics TA = 25°C PARAMETER Cpd Power dissipation capacitance TEST CONDITIONS VCC = 1.8 V f = 10 MHz VCC = 2.5 V VCC = 3.3 V VCC = 5 V TYP TYP TYP TYP 16 17 18 21 UNIT pF 6.9 Typical Characteristics 8 TPD 7 TPD (ns) TPD (ns) 6 5 4 3 2 1 0 0 1 2 3 VCC (V) 4 5 6 D002 Temperature (°C) Figure 1. TPD Across Temperature at 3.3 V VCC 6 Submit Documentation Feedback Figure 2. TPD Across VCC at 25°C Copyright © 1999–2015, Texas Instruments Incorporated Product Folder Links: SN74LVC2G14 SN74LVC2G14 www.ti.com SCES200O – APRIL 1999 – REVISED AUGUST 2015 7 Parameter Measurement Information VLOAD S1 RL From Output Under Test Open TEST GND CL (see Note A) S1 Open VLOAD tPLH/tPHL tPLZ/tPZL tPHZ/tPZH RL GND LOAD CIRCUIT INPUTS VCC 1.8 V ± 0.15 V 2.5 V ± 0.2 V 3.3 V ± 0.3 V 5 V ± 0.5 V VI tr/tf VCC VCC 3V VCC £2 ns £2 ns £2.5 ns £2.5 ns VM VLOAD CL RL VD VCC/2 VCC/2 1.5 V VCC/2 2 × VCC 2 × VCC 6V 2 × VCC 30 pF 30 pF 50 pF 50 pF 1 kW 500 W 500 W 500 W 0.15 V 0.15 V 0.3 V 0.3 V VI Timing Input VM 0V tW tsu VI Input VM VM th VI Data Input VM VM 0V 0V VOLTAGE WAVEFORMS PULSE DURATION VOLTAGE WAVEFORMS SETUP AND HOLD TIMES VI VM Input VM 0V tPLH VOH Output VM VOL tPHL VM VM 0V tPLZ Output Waveform 1 S1 at VLOAD (see Note B) tPLH VLOAD/2 VM tPZH VOH Output VM tPZL tPHL VM VI Output Control VM VOL VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES INVERTING AND NONINVERTING OUTPUTS Output Waveform 2 S1 at GND (see Note B) VOL + VD VOL tPHZ VM VOH – VD VOH »0 V VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES LOW- AND HIGH-LEVEL ENABLING NOTES: A. CL includes probe and jig capacitance. B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR £ 10 MHz, ZO = 50 W. D. The outputs are measured one at a time, with one transition per measurement. E. tPLZ and tPHZ are the same as tdis. F. tPZL and tPZH are the same as ten. G. tPLH and tPHL are the same as tpd. H. All parameters and waveforms are not applicable to all devices. Figure 3. Load Circuit and Voltage Waveforms Submit Documentation Feedback Copyright © 1999–2015, Texas Instruments Incorporated Product Folder Links: SN74LVC2G14 7 SN74LVC2G14 SCES200O – APRIL 1999 – REVISED AUGUST 2015 www.ti.com 8 Detailed Description 8.1 Overview The SN74LVC2G14 device contains two Schmitt Trigger Inverter and performs the Boolean function Y = A. The device functions as an independent inverter, but because of Schmitt Trigger action, it will have different input threshold levels for a positive-going (Vt+) and negative-going (Vt-) signals. This device is fully specified for partial-power-down applications using Ioff. The Ioff circuit disables the output, preventing damaging current back-flow through the device when it is powered down. 8.2 Functional Block Diagram 1A 2A 1 6 3 4 1Y 2Y 8.3 Feature Description 8.3.1 Support Translation Down (5 V to 3.3 V; 3.3 V to 1.8 V) As the inputs are 5.5-V tolerant, the device can be used as a down translator. When the input voltage exceeds VT+ (Max), the output will follow VCC, performing down-translation if the input voltage exceeds VCC. 8.4 Device Functional Modes Table 1 lists the functional modes of the SN74LVC2G14. Table 1. Functional Table (Each Inverter) INPUT A 8 OUTPUT Y H L L H Submit Documentation Feedback Copyright © 1999–2015, Texas Instruments Incorporated Product Folder Links: SN74LVC2G14 SN74LVC2G14 www.ti.com SCES200O – APRIL 1999 – REVISED AUGUST 2015 9 Application and Implementation NOTE Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality. 9.1 Application Information The SN74LVC2G14 device is a high-drive CMOS device that can be used for a multitude of buffer type functions where the input is slow or noisy. The device can produce 24 mA of drive current at 3.3 V, making it Ideal for driving multiple outputs and good for high-speed applications up to 100 MHz. The inputs are 5.5-V tolerant allowing it to translate down to VCC. 9.2 Typical Application ~2.2M  SN74LVC2G14 (one channel) 50 pF 16 pF ~32 pF ~32pF Figure 4. Typical Application Schematic 9.2.1 Design Requirements This device uses CMOS technology and has balanced output drive. Care should be taken to avoid bus contention because it can drive currents that would exceed maximum limits. The high drive will also create fast edges into light loads so routing and load conditions should be considered to prevent ringing. 9.2.2 Detailed Design Procedure 1. Recommended Input Conditions – Rise time and fall time specs. See (Δt/ΔV) in the Recommended Operating Conditions table. – Specified high and low levels. See (VIH and VIL) in the Recommended Operating Conditions table. – Inputs are overvoltage tolerant allowing them to go as high as (VI max) in the Recommended Operating Conditions table at any valid VCC . 2. Recommend Output Conditions – Load currents should not exceed (IO max) per output and should not exceed (continuous current through VCC or GND) total current for the part. These limits are located in the Absolute Maximum Ratings table. – Outputs should not be pulled above VCC. Submit Documentation Feedback Copyright © 1999–2015, Texas Instruments Incorporated Product Folder Links: SN74LVC2G14 9 SN74LVC2G14 SCES200O – APRIL 1999 – REVISED AUGUST 2015 www.ti.com Typical Application (continued) 9.2.3 Application Curve 10 Icc Icc Icc Icc 9 8 1.8V 2.5V 3.3V 5V Icc - mA 7 6 5 4 3 2 1 0 0 20 40 Frequency - MHz 60 80 D003 Figure 5. ICC vs Frequency 10 Power Supply Recommendations The power supply can be any voltage between the minimum and maximum supply voltage rating located in the table. Each VCC pin should have a good bypass capacitor to prevent power disturbance. For devices with a single supply, TI recommends a 0.1-μF capacitor. If there are multiple VCC pins, then TI recommends a 0.01-μF or 0.022-μF capacitor for each power pin. It is ok to parallel multiple bypass capacitors to reject different frequencies of noise. 0.1-μF and 1-μF capacitors are commonly used in parallel. The bypass capacitor should be installed as close to the power pin as possible for best results. 11 Layout 11.1 Layout Guidelines When using multiple bit logic devices inputs should not ever float. In many cases, functions or parts of functions of digital logic devices are unused, for example, when only two inputs of a triple-input AND gate are used or only 3 of the 4 buffer gates are used. Such input terminals should not be left unconnected because the undefined voltages at the outside connections result in undefined operational states. The following rules must be observed under all circumstances: • All unused inputs of digital logic devices must be connected to a high or low bias to prevent them from floating. • The logic level that should be applied to any particular unused input depends on the function of the device. Generally they will be tied to GND or VCC whichever make more sense or is more convenient. 10 Submit Documentation Feedback Copyright © 1999–2015, Texas Instruments Incorporated Product Folder Links: SN74LVC2G14 SN74LVC2G14 www.ti.com SCES200O – APRIL 1999 – REVISED AUGUST 2015 11.2 Layout Example VDD Keep signal traces as short as possible 1A 1 6 GND 2 SN74LVC2G14 5 2A 3 4 0.1µF 1Y VCC 2Y Unused inputs connected to GND or VCC to prevent floating Figure 6. Layout Schematic Submit Documentation Feedback Copyright © 1999–2015, Texas Instruments Incorporated Product Folder Links: SN74LVC2G14 11 SN74LVC2G14 SCES200O – APRIL 1999 – REVISED AUGUST 2015 www.ti.com 12 Device and Documentation Support 12.1 Community Resources The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers. Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support. 12.2 Trademarks NanoFree, E2E are trademarks of Texas Instruments. All other trademarks are the property of their respective owners. 12.3 Electrostatic Discharge Caution These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates. 12.4 Glossary SLYZ022 — TI Glossary. This glossary lists and explains terms, acronyms, and definitions. 13 Mechanical, Packaging, and Orderable Information The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser based versions of this data sheet, refer to the left hand navigation. 12 Submit Documentation Feedback Copyright © 1999–2015, Texas Instruments Incorporated Product Folder Links: SN74LVC2G14 PACKAGE OPTION ADDENDUM www.ti.com 4-Apr-2019 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) SN74LVC2G14DBVR ACTIVE SOT-23 DBV 6 3000 Green (RoHS & no Sb/Br) CU NIPDAU | CU SN Level-1-260C-UNLIM -40 to 125 (C145, C14F, C14K, C14R) SN74LVC2G14DBVRE4 ACTIVE SOT-23 DBV 6 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 (C14F, C14R) SN74LVC2G14DBVRG4 ACTIVE SOT-23 DBV 6 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 (C14F, C14R) SN74LVC2G14DBVT ACTIVE SOT-23 DBV 6 250 Green (RoHS & no Sb/Br) CU NIPDAU | CU SN Level-1-260C-UNLIM -40 to 125 (C145, C14F, C14K, C14R) SN74LVC2G14DBVTG4 ACTIVE SOT-23 DBV 6 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 (C14F, C14R) SN74LVC2G14DCK3 ACTIVE SC70 DCK 6 3000 Pb-Free (RoHS) CU SNBI Level-1-260C-UNLIM -40 to 125 (CFF, CFZ) SN74LVC2G14DCKR ACTIVE SC70 DCK 6 3000 Green (RoHS & no Sb/Br) CU NIPDAU | CU SN Level-1-260C-UNLIM -40 to 125 (CF5, CFF, CFJ, CF K, CFR) SN74LVC2G14DCKRE4 ACTIVE SC70 DCK 6 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 CF5 SN74LVC2G14DCKRG4 ACTIVE SC70 DCK 6 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 CF5 SN74LVC2G14DCKT ACTIVE SC70 DCK 6 250 Green (RoHS & no Sb/Br) CU NIPDAU | CU SN Level-1-260C-UNLIM -40 to 125 (CF5, CFF, CFJ, CF K, CFR) SN74LVC2G14DCKTG4 ACTIVE SC70 DCK 6 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 CF5 SN74LVC2G14YZPR ACTIVE DSBGA YZP 6 3000 Green (RoHS & no Sb/Br) SNAGCU Level-1-260C-UNLIM -40 to 125 (CF7, CFN) (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Addendum-Page 1 Samples PACKAGE OPTION ADDENDUM www.ti.com 4-Apr-2019 Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
SN74LVC2G14DBVR 价格&库存

很抱歉,暂时无法提供与“SN74LVC2G14DBVR”相匹配的价格&库存,您可以联系我们找货

免费人工找货
SN74LVC2G14DBVR
    •  国内价格
    • 3000+0.52800

    库存:0

    SN74LVC2G14DBVR
      •  国内价格
      • 1+0.86526
      • 25+0.77253
      • 100+0.68981
      • 1000+0.61589
      • 3000+0.54989
      • 6000+0.51700
      • 12000+0.48587

      库存:0

      SN74LVC2G14DBVR
      •  国内价格
      • 5+0.68799
      • 20+0.62800
      • 100+0.56800
      • 500+0.50800
      • 1000+0.48000
      • 2000+0.46000

      库存:16509