SN74LXCH1T45
SCES939 – APRIL 2022
SN74LXCH1T45 Single-Bit Dual-Supply Bus Transceiver With Configurable Voltage
Translation, 3-State Ouputs, and Bus-Hold Inputs
1 Features
3 Description
•
The SN74LXCH1T45 is an 1-bit, dual-supply
noninverting bidirectional voltage level translation
device with bus-hold circuitry. The I/O pin A and
control pin (DIR) are referenced to VCCA logic levels,
and the I/O pin B is referenced to VCCB logic levels.
The A pin is able to accept I/O voltages ranging
from 1.1 V to 5.5 V, while the B port can accept I/O
voltages from 1.1 V to 5.5 V. A high on DIR allows
data transmission from A to B and a low on DIR
allows data transmission from B to A. See Device
Functional Modes for a summary of the operation of
the control logic.
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Fully configurable dual-rail design allows each port
to operate from 1.1 V to 5.5 V
Robust, glitch-free power supply sequencing
Up to 420-Mbps support for 3.3 V to 5.0 V
Bus hold on data inputs eliminates the need for
external pull-up and pull-down resistors
Schmitt-trigger control inputs allow for slow or
noisy inputs
Control inputs with integrated static pull-down
resistors allow for floating control inputs
High drive strength (up to 32 mA at 5 V)
Low power consumption
– 3-µA maximum (25°C)
– 6-µA maximum (–40°C to 125°C)
VCC isolation and VCC disconnect feature
– If either VCC supply is < 100 mV all I/O's
become high-impedance
– Ioff-float supports VCC disconnect operation
Ioff supports partial-power-down mode operation
Compatible with LVC family level shifters
Control logic (DIR) are referenced to VCCA
Operating temperature from –40°C to +125°C
Latch-up performance exceeds 100 mA per JESD
78, class II
DIR
ESD protection exceeds JESD 22
– 4000-V human-body model
– 1000-V charged-device model
Device Information(1)
PART NUMBER
SN74LXCH1T45
(1)
PACKAGE
BODY SIZE (NOM)
SC70 (DCK) (6)
2.00 mm × 1.25 mm
SON (DRY) (6)
1.45 mm × 1.00 mm
X2SON (DTQ) (6)
1.00 mm × 0.80 mm
For all available packages, see the orderable addendum at
the end of the data sheet.
VCCA
VCCB
2 Applications
•
•
•
•
Eliminate slow or noisy input signals
Driving indicator LEDs or buzzers
Debouncing a mechanical switch
General purpose I/O level shifting
A
Bus-Hold
Bus-Hold
Note: Bus-hold circuits are only present for data inputs, not control inputs
Functional Block Diagram
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,
intellectual property matters and other important disclaimers. PRODUCTION DATA.
B
SN74LXCH1T45
www.ti.com
SCES939 – APRIL 2022
Table of Contents
1 Features............................................................................1
2 Applications..................................................................... 1
3 Description.......................................................................1
4 Revision History.............................................................. 2
5 Pin Configuration and Functions...................................3
6 Specifications.................................................................. 4
6.1 Absolute Maximum Ratings........................................ 4
6.2 ESD Ratings............................................................... 4
6.3 Recommended Operating Conditions.........................5
6.4 Thermal Information....................................................5
6.5 Electrical Characteristics.............................................6
6.6 Switching Characteristics, VCCA = 1.2 ± 0.1 V............ 9
6.7 Switching Characteristics, VCCA = 1.5 ± 0.1 V.......... 10
6.8 Switching Characteristics, VCCA = 1.8 ± 0.15 V........ 11
6.9 Switching Characteristics, VCCA = 2.5 ± 0.2 V.......... 12
6.10 Switching Characteristics, VCCA = 3.3 ± 0.3 V........ 13
6.11 Switching Characteristics, VCCA = 5.0 ± 0.5 V........ 14
6.12 Switching Characteristics: Tsk, TMAX ......................15
6.13 Operating Characteristics....................................... 15
6.14 Typical Characteristics............................................ 16
7 Parameter Measurement Information.......................... 17
7.1 Load Circuit and Voltage Waveforms........................17
8 Detailed Description......................................................19
8.1 Overview................................................................... 19
8.2 Functional Block Diagram......................................... 19
8.3 Feature Description...................................................19
8.4 Device Functional Modes..........................................22
9 Application and Implementation.................................. 23
9.1 Application Information............................................. 23
9.2 Enable Times............................................................ 23
9.3 Typical Application.................................................... 23
10 Power Supply Recommendations..............................25
11 Layout........................................................................... 25
11.1 Layout Guidelines................................................... 25
11.2 Layout Example...................................................... 25
12 Device and Documentation Support..........................26
12.1 Documentation Support ......................................... 26
12.2 Receiving Notification of Documentation Updates..26
12.3 Support Resources................................................. 26
12.4 Trademarks............................................................. 26
12.5 Electrostatic Discharge Caution..............................26
12.6 Glossary..................................................................26
13 Mechanical, Packaging, and Orderable
Information.................................................................... 26
4 Revision History
2
DATE
REVISION
NOTES
April 2022
*
Initial Release
Submit Document Feedback
Copyright © 2022 Texas Instruments Incorporated
Product Folder Links: SN74LXCH1T45
SN74LXCH1T45
www.ti.com
SCES939 – APRIL 2022
5 Pin Configuration and Functions
VCCA
6
1
VCCB
GND
2
5
DIR
A
3
4
B
VCCA
1
6
VCCB
GND
2
5
DIR
A
3
4
B
Figure 5-2. DRY Package Preview, 6-Pin SON
(Top View)
Figure 5-1. DCK Package, 6-Pin SC70
(Top View)
VCCA
GND
A
6
1
2
3
5
4
VCCB
DIR
B
Figure 5-3. DTQ Package Preview, 6-Pin X2SON Transparent (Top View)
Table 5-1. Pin Functions
PIN
NAME
NO.
TYPE(1)
DESCRIPTION
A
3
I/O
Input or output A. Referenced to VCCA.
B
4
I/O
Input or output B. Referenced to VCCB.
DIR
5
I
GND
2
—
DIR
5
I
VCCA
1
—
A-port supply voltage. 1.1 V ≤ VCCA ≤ 5.5 V.
VCCB
6
—
B-port supply voltage. 1.1 V ≤ VCCB ≤ 5.5 V.
(1)
Direction-control signal for all ports. Referenced to VCCA.
Ground.
Direction-control signal for all ports. Referenced to VCCA.
I = input, O = output, GND = ground
Submit Document Feedback
Copyright © 2022 Texas Instruments Incorporated
Product Folder Links: SN74LXCH1T45
3
SN74LXCH1T45
www.ti.com
SCES939 – APRIL 2022
6 Specifications
6.1 Absolute Maximum Ratings
over operating free-air temperature range (unless otherwise noted)(1)
MIN
MAX UNIT
VCCA
Supply voltage A
–0.5
6.5
V
VCCB
Supply voltage B
–0.5
6.5
V
I/O Ports (A Port)
–0.5
6.5
VI
Input Voltage(2)
I/O Ports (B Port)
–0.5
6.5
Control Inputs
–0.5
6.5
A Port
–0.5
6.5
B Port
–0.5
6.5
A Port
–0.5 VCCA + 0.5
B Port
–0.5 VCCB + 0.5
VO
Voltage applied to any output in the high-impedance or power-off
state(2)
VO
Voltage applied to any output in the high or low state(2) (3)
IIK
Input clamp current
VI < 0
–50
IOK
Output clamp current
VO < 0
–50
IO
Continuous output current
Continuous current through VCC or GND
Tj
Junction Temperature
Tstg
Storage temperature
(1)
(2)
(3)
V
V
V
mA
mA
–50
50
mA
–200
200
mA
150
°C
150
°C
–65
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress
ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under
Recommended Operating Conditions. Exposure beyond the limits listed in Recommended Operating Conditions. may affect device
reliability.
The input voltage and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.
The output positive-voltage rating may be exceeded up to 6.5 V maximum if the output current rating is observed.
6.2 ESD Ratings
VALUE
V(ESD)
(1)
(2)
4
Electrostatic discharge
Human body model (HBM), per ANSI/ESDA/JEDEC
JS-001(1)
±4000
Charged device model (CDM), per ANSI/ESDA/JEDEC JS-002(2)
±1000
UNIT
V
JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.
Submit Document Feedback
Copyright © 2022 Texas Instruments Incorporated
Product Folder Links: SN74LXCH1T45
SN74LXCH1T45
www.ti.com
SCES939 – APRIL 2022
6.3 Recommended Operating Conditions
over operating free-air temperature range (unless otherwise noted) (1)
MIN
VCCA
Supply voltage A
VCCB
Supply voltage B
High-level input
voltage
VIH
Low-level input
voltage
VIL
IOH
Data Inputs
(A,B)
(Referenced to VCCI)
Data Inputs
(A,B)
(Referenced to VCCI)
High-level output current
IOL
Low-level output current
5.5
V
1.1
5.5
V
VCCI = 1.1 V - 1.3 V
VCCI x 0.8
VCCI = 1.4 V - 1.95 V
VCCI x 0.65
VCCI = 2.3 V - 2.7 V
MAX UNIT
1.1
1.7
VCCI = 3.0 V - 3.6 V
2
VCCI = 4.5 V - 5.5 V
VCCI x 0.7
V
VCCI = 1.1 V - 1.3 V
VCCI x 0.2
VCCI = 1.4 V - 1.95 V
VCCI x 0.35
VCCI = 2.3 V - 2.7 V
0.7
VCCI = 3.0 V - 3.6 V
0.8
VCCI = 4.5 V - 5.5 V
VCCI x 0.3
VCCO = 1.1 V
–0.1
VCCO = 1.4 V
–4
VCCO = 1.65 V
–8
VCCO = 2.3 V
–12
VCCO = 3 V
–24
VCCO = 4.5 V
–32
VCCO = 1.1 V
0.1
VCCO = 1.4 V
4
VCCO = 1.65 V
8
VCCO = 2.3 V
12
VCCO = 3 V
24
VCCO = 4.5 V
VI
Input voltage
VO
Output voltage
TA
(1)
V
mA
mA
32
0
5.5
Active State
0
VCCO
Tri-State
0
5.5
Operating free-air temperature
–40
125
V
V
°C
VCCI is the VCC associated with the input port. VCCO is the VCC associated with the output port.
6.4 Thermal Information
SN74LXCH1T45
THERMAL METRIC(1)
DCK (SC70)
DRY (SON)
DTQ (X2SON)
UNIT
6 PINS
6 PINS
6 PINS
RθJA
Junction-to-ambient thermal resistance
205.2
293.4
285.0
°C/W
RθJC(top)
Junction-to-case (top) thermal resistance
132.4
184.0
140.0
°C/W
RθJB
Junction-to-board thermal resistance
65.1
164.9
208.5
°C/W
YJT
Junction-to-top characterization parameter
48.0
28.3
6.1
°C/W
YJB
Junction-to-board characterization
parameter
64.9
164.0
207.8
°C/W
RθJC(bottom)
Junction-to-case (bottom) thermal
resistance
N/A
N/A
N/A
°C/W
(1)
For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics app report.
Submit Document Feedback
Copyright © 2022 Texas Instruments Incorporated
Product Folder Links: SN74LXCH1T45
5
SN74LXCH1T45
www.ti.com
SCES939 – APRIL 2022
6.5 Electrical Characteristics
over operating free-air temperature range (unless otherwise noted)(1) (2)
Operating free-air temperature (TA)
PARAMETER
TEST CONDITIONS
VCCA
VCCB
25°C
MIN
VT+
VT-
ΔVT
VOH
VOL
IBHL
6
Positivegoing inputthreshold
voltage
Negativegoing inputthreshold
voltage
Inputthreshold
hysteresis
(VT+ – VT-)
MIN
TYP MAX
MIN
TYP MAX
1.1 V
0.44
0.88
0.44
0.88
1.4 V
1.4 V
0.60
0.98
0.60
0.98
1.65 V
1.65 V
0.76
1.13
0.76
1.13
2.3 V
1.08
1.56
1.08
1.56
3V
1.48
1.92
1.48
1.92
4.5 V
4.5 V
2.19
2.74
2.19
2.74
5.5 V
5.5 V
2.65
3.33
2.65
3.33
1.1 V
1.1 V
0.17
0.48
0.17
0.48
1.4 V
1.4 V
0.28
0.59
0.28
0.59
1.65 V
0.35
0.69
0.35
0.69
2.3 V
0.56
0.97
0.56
0.97
1.65 V
Control Inputs
(DIR)
2.3 V
(Referenced to VCCI)
3V
Control Input
(DIR)
(Referenced to
VCCA)
–40°C to 125°C
1.1 V
Control Inputs
2.3 V
(DIR)
(Referenced to VCCI)
3V
TYP MAX
–40°C to 85°C
3V
0.89
1.5
0.89
1.5
4.5 V
4.5 V
1.51
1.97
1.51
1.97
5.5 V
5.5 V
1.88
2.4
1.88
2.4
1.1 V
1.1 V
0.2
0.4
0.2
0.4
1.4 V
1.4 V
0.25
0.5
0.25
0.5
1.65 V
1.65 V
0.3
0.55
0.3
0.55
2.3 V
2.3 V
0.38
0.65
0.38
0.65
3V
3V
0.46
0.72
0.46
0.72
4.5 V
4.5 V
0.58
0.93
0.58
0.93
5.5 V
5.5 V
0.69
1.06
0.69
1.06
VCCO
– 0.1
VCCO
– 0.1
1
1
1.65 V
1.2
1.2
2.3 V
1.9
1.9
3V
3V
2.4
2.4
4.5 V
4.5 V
3.8
3.8
IOH = –100 µA
1.1V – 5.5V 1.1V – 5.5V
IOH = –4 mA
1.4 V
1.4 V
IOH = –8 mA
1.65 V
IOH = –12 mA
2.3 V
IOH = –24 mA
IOH = –32 mA
IOL = 100 µA
1.1V – 5.5V 1.1V – 5.5V
0.1
0.1
IOL = 4 mA
1.4 V
1.4 V
0.3
0.3
IOL = 8 mA
1.65 V
1.65 V
0.45
0.45
IOL = 12 mA
2.3 V
2.3 V
0.3
0.3
IOL = 24 mA
3V
3V
0.55
0.55
IOL = 32 mA
4.5 V
4.5 V
0.55
0.55
VI = 0.39
1.1 V
1.1 V
4
4
VI = 0.49
Bus-hold low
sustaining
VI = 0.58
current
Port A or Port VI = 0.70
B (6)
VI = 0.80
1.4 V
1.4 V
15
10
1.65 V
1.65 V
25
20
2.3 V
2.3 V
45
45
3V
3V
VI = 1.35
4.5 V
4.5 V
High-level
output
voltage (3)
Low-level
output
voltage (4)
Submit Document Feedback
75
75
100
100
UNIT
V
V
V
V
V
µA
Copyright © 2022 Texas Instruments Incorporated
Product Folder Links: SN74LXCH1T45
SN74LXCH1T45
www.ti.com
SCES939 – APRIL 2022
over operating free-air temperature range (unless otherwise noted)(1) (2)
Operating free-air temperature (TA)
PARAMETER
TEST CONDITIONS
VCCA
VCCB
25°C
MIN
IBHH
IBHLO
IBHHO
II
Bus-hold high
sustaining
current
Port A or Port
B (7)
Bus-hold low
overdrive
current (8)
–40°C to 85°C
TYP MAX
MIN
UNIT
–40°C to 125°C
TYP MAX
MIN
TYP MAX
VI = 0.71 V
1.1 V
1.1 V
–4
–4
VI = 0.91 V
1.4 V
1.4 V
–15
–15
VI = 1.07 V
1.65 V
1.65 V
–25
–25
VI = 1.70 V
2.3 V
2.3 V
–45
–45
VI = 2.00 V
3V
3V
VI = 3.15 V
4.5 V
4.5 V
1.3 V
1.3 V
75
75
1.6 V
1.6 V
125
125
1.95 V
1.95 V
200
200
2.7 V
2.7 V
300
300
3.6 V
3.6 V
500
500
5.5 V
5.5 V
900
900
1.3 V
1.3 V
–75
–75
1.6 V
1.6 V
–125
–125
1.95 V
1.95 V
–200
–200
2.7 V
2.7 V
–300
–300
3.6 V
3.6 V
–500
–500
5.5 V
5.5 V
–900
–900
Ramp input up
VI = 0 to VCCI
Bus-hold high
Ramp input down
overdrive
VI = VCCI to 0
(9)
current
Control input
(DIR)
Input leakage VI = VCCA or GND
current
Data Inputs (5)
(Ax, Bx)
VI = VCCI or GND
–75
–75
–100
–100
1.1V – 5.5V 1.1V – 5.5V
-0.1
1
-0.1
2
-0.1
2
µA
1.1V – 5.5V 1.1V – 5.5V
–0.3
1
–1
1
–2
2
µA
A Port or B Port
Partial power
VI or VO = 0 V - 5.5
down current
V
0V
0 V - 5.5 V
–1
1
–2
2
–2.5
2.5
0 V - 5.5 V
0V
–1
1
–2
2
–2.5
2.5
Floating (10) 0 V - 5.5 V
–1.5
1.5
–2
2
–2.5
2.5
Ioff-float
Floating
supply Partial A Port or B Port
power down VI or VO = GND
current
–1.5
1.5
–2
2
–2.5
2.5
0 V - 5.5 V
Floating (10)
1.1V – 5.5V 1.1V – 5.5V
ICCB
ICCA +
ICCB
VCCA supply
current
VCCB supply
current
Combined
supply
current
µA
µA
Ioff
ICCA
µA
VI = VCCI or GND
IO = 0
0V
5.5 V
5.5 V
0V
VI = GND
IO = 0
5.5 V
2
–0.2
2
–0.5
µA
4
–1
1
1
2
Floating (10)
1.5
1.5
2
1.1V – 5.5V 1.1V – 5.5V
2
2
4
VI = VCCI or GND
IO = 0
0V
5.5 V
1
1
2
5.5 V
0V
VI = GND
IO = 0
Floating (10) 5.5 V
VI = VCCI or GND
IO = 0
1.1V – 5.5V 1.1V – 5.5V
–0.2
µA
–0.5
µA
µA
–1
1.5
1.5
2
3
4
6
µA
Submit Document Feedback
Copyright © 2022 Texas Instruments Incorporated
Product Folder Links: SN74LXCH1T45
7
SN74LXCH1T45
www.ti.com
SCES939 – APRIL 2022
over operating free-air temperature range (unless otherwise noted)(1) (2)
Operating free-air temperature (TA)
PARAMETER
TEST CONDITIONS
VCCA
VCCB
25°C
MIN
MIN
UNIT
–40°C to 125°C
TYP MAX
MIN
TYP MAX
Control input (DIR):
VI = VCCA – 0.6 V
A port = VCCA or
GND
B Port = open
3.0V - 5.5V
A Port: VI = VCCA –
0.6 V
DIR = VCCA, B Port
= open
3.0V - 5.5V
3.0V - 5.5V
50
75
ΔICCB
VCCB
additional
supply
current per
input
B Port: VI = VCCB 0.6 V
DIR = GND, A Port
= open
3.0V - 5.5V
3.0V - 5.5V
50
75
µA
Ci
Control Input
Capacitance
VI = 3.3 V or GND
3.3 V
3.3 V
2.2
4
4
pF
Cio
Data I/O
Capacitance
VCCO = 0V VO =
1.65V DC +1 MHz
-16 dBm sine wave
3.3 V
3.3 V
4.9
10
7
pF
ΔICCA
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
8
TYP MAX
–40°C to 85°C
VCCA
additional
supply
current per
input
3.0V - 5.5V
50
75
µA
VCCI is the VCC associated with the input port
VCCO is the VCC associated with the output port
Tested at VI = VT+(MAX)
Tested at VI = VT-(MIN)
For I/O ports, the parameter Il includes the IOZ current
IBHL should be measured after lowering VI to GND and then raising it to the defined input voltage
IBHH should be measured after raising VI to VCCI and then lowering it to the defined input voltage
An external driver must source at least IBHLO to switch this node from low-to-high
An external driver must sink at least IBHHO to switch this node from high to low
Floating is defined as a node that is both not actively driven by an external device and has leakage not exeeding 10nA
Submit Document Feedback
Copyright © 2022 Texas Instruments Incorporated
Product Folder Links: SN74LXCH1T45
SN74LXCH1T45
www.ti.com
SCES939 – APRIL 2022
6.6 Switching Characteristics, VCCA = 1.2 ± 0.1 V
See Figure 7-1 and Table 7-1 for test circuit and loading. See Figure 7-2, Figure 7-3, and Figure 7-4 for measurement waveforms.
PARAMETER
FROM
TO
Test
Conditions
B-Port Supply Voltage (VCCB)
1.2 ± 0.1 V
MIN TYP
tpd
tdis
A
B
B
A
DIR
A
DIR
B
Propagation
delay
Disable time
DIR
ten
A
Enable time
DIR
B
1.5 ± 0.1 V
MAX MIN TYP
1.8 ± 0.15 V
MAX MIN TYP
2.5 ± 0.2 V
MAX MIN TYP
3.3 ± 0.3 V
MAX MIN TYP
5.0 ± 0.5 V
MAX MIN TYP
UNIT
MAX
-40°C to 85°C
6
85
4
41
3
36
1
33
1
34
1
44
-40°C to 125°C
8
55
6
37
5
33
3
30
3
30
2
33
-40°C to 85°C
6
85
5
71
4
67
3
60
3
57
3
58
-40°C to 125°C
8
55
6
47
6
43
5
38
4
37
4
36
-40°C to 85°C
5
53
5
53
5
53
5
53
5
53
4
53
-40°C to 125°C
7
47
7
47
7
47
7
47
7
47
7
47
-40°C to 85°C
10
85
7
47
6
41
5
34
5
33
4
32
-40°C to 125°C
14
71
11
48
10
41
8
34
8
33
6
32
-40°C to 85°C
21
150
17
110
16
99
13
86
13
83
12
85
-40°C to 125°C
27
121
23
89
21
80
17
68
17
65
15
63
-40°C to 85°C
16
118
14
89
13
84
12
81
11
82
11
92
-40°C to 125°C
19
97
18
79
17
73
16
68
15
67
14
70
Submit Document Feedback
Copyright © 2022 Texas Instruments Incorporated
Product Folder Links: SN74LXCH1T45
ns
ns
ns
9
SN74LXCH1T45
www.ti.com
SCES939 – APRIL 2022
6.7 Switching Characteristics, VCCA = 1.5 ± 0.1 V
See Figure 7-1 and Table 7-1 for test circuit and loading. See Figure 7-2, Figure 7-3, and Figure 7-4 for measurement waveforms.
PARAMETER
FROM
TO
Test
Conditions
B-Port Supply Voltage (VCCB)
1.2 ± 0.1 V
MIN TYP
tpd
tdis
A
B
B
A
DIR
A
DIR
B
Propagation
delay
Disable time
DIR
ten
Enable time
DIR
10
A
B
1.5 ± 0.1 V
MAX MIN TYP
1.8 ± 0.15 V
MAX MIN TYP
2.5 ± 0.2 V
MAX MIN TYP
3.3 ± 0.3 V
MAX MIN TYP
5.0 ± 0.5 V
MAX MIN TYP
UNIT
MAX
-40°C to 85°C
1
70
1
29
1
24
1
20
1
19
1
19
-40°C to 125°C
1
46
1
29
1
24
1
21
1
19
1
20
-40°C to 85°C
1
39
1
29
1
26
1
23
1
21
1
21
-40°C to 125°C
1
36
1
29
1
26
1
23
1
21
1
21
-40°C to 85°C
3
29
3
29
3
29
3
29
3
29
3
29
-40°C to 125°C
5
29
5
29
5
29
5
29
5
29
5
29
-40°C to 85°C
11
78
8
45
7
38
5
31
5
30
4
28
-40°C to 125°C
15
70
14
46
11
40
10
32
9
31
8
29
-40°C to 85°C
19
113
15
69
13
59
11
49
11
46
9
44
-40°C to 125°C
27
101
23
70
21
61
18
51
17
48
15
45
-40°C to 85°C
12
91
10
53
9
48
8
43
8
41
7
41
-40°C to 125°C
16
71
14
54
13
49
12
44
12
42
11
42
Submit Document Feedback
ns
ns
ns
Copyright © 2022 Texas Instruments Incorporated
Product Folder Links: SN74LXCH1T45
SN74LXCH1T45
www.ti.com
SCES939 – APRIL 2022
6.8 Switching Characteristics, VCCA = 1.8 ± 0.15 V
See Figure 7-1 and Table 7-1 for test circuit and loading. See Figure 7-2, Figure 7-3, and Figure 7-4 for measurement waveforms.
PARAMETER
FROM
TO
Test
Conditions
B-Port Supply Voltage (VCCB)
1.2 ± 0.1 V
MIN TYP
tpd
tdis
A
B
B
A
DIR
A
DIR
B
Propagation
delay
Disable time
DIR
ten
A
Enable time
DIR
B
1.5 ± 0.1 V
MAX MIN TYP
1.8 ± 0.15 V
MAX MIN TYP
2.5 ± 0.2 V
MAX MIN TYP
3.3 ± 0.3 V
MAX MIN TYP
5.0 ± 0.5 V
MAX MIN TYP
UNIT
MAX
-40°C to 85°C
1
66
1
26
1
21
1
17
1
16
1
15
-40°C to 125°C
1
43
1
27
1
22
1
18
1
17
1
16
-40°C to 85°C
1
35
1
24
1
21
1
18
1
17
1
17
-40°C to 125°C
1
32
1
24
1
22
1
19
1
18
1
17
-40°C to 85°C
2
22
2
22
2
23
2
23
2
22
2
22
-40°C to 125°C
4
23
4
31
4
23
4
23
4
23
4
23
-40°C to 85°C
9
73
7
40
6
34
4
27
4
25
3
23
-40°C to 125°C
15
64
13
42
11
36
6
28
8
27
6
25
-40°C to 85°C
17
103
13
59
12
50
9
40
9
38
7
35
-40°C to 125°C
23
90
21
61
19
53
16
43
12
39
12
37
-40°C to 85°C
11
80
9
44
8
39
7
34
6
33
6
32
-40°C to 125°C
14
61
12
45
11
40
10
36
10
34
9
35
Submit Document Feedback
Copyright © 2022 Texas Instruments Incorporated
Product Folder Links: SN74LXCH1T45
ns
ns
ns
11
SN74LXCH1T45
www.ti.com
SCES939 – APRIL 2022
6.9 Switching Characteristics, VCCA = 2.5 ± 0.2 V
See Figure 7-1 and Table 7-1 for test circuit and loading. See Figure 7-2, Figure 7-3, and Figure 7-4 for measurement waveforms.
PARAMETER
FROM
TO
Test
Conditions
B-Port Supply Voltage (VCCB)
1.2 ± 0.1 V
MIN TYP
tpd
tdis
A
B
B
A
DIR
A
DIR
B
Propagation
delay
Disable time
DIR
ten
Enable time
DIR
12
A
B
1.5 ± 0.1 V
MAX MIN TYP
1.8 ± 0.15 V
MAX MIN TYP
2.5 ± 0.2 V
MAX MIN TYP
3.3 ± 0.3 V
MAX MIN TYP
5.0 ± 0.5 V
MAX MIN TYP
UNIT
MAX
-40°C to 85°C
1
59
1
23
1
19
1
15
1
13
1
12
-40°C to 125°C
1
38
1
23
1
19
1
15
1
14
1
13
-40°C to 85°C
1
32
1
20
1
17
1
15
1
14
1
13
-40°C to 125°C
1
29
1
21
1
18
1
15
1
14
1
14
-40°C to 85°C
1
16
1
23
1
16
1
16
1
20
1
16
-40°C to 125°C
2
16
2
16
2
16
2
25
2
16
2
16
-40°C to 85°C
8
63
6
35
5
29
3
23
3
22
2
19
-40°C to 125°C
13
56
10
37
10
31
8
25
7
23
5
20
-40°C to 85°C
14
91
11
49
10
41
8
33
7
30
6
27
-40°C to 125°C
21
76
18
51
16
44
14
35
13
32
10
29
-40°C to 85°C
8
67
6
33
5
33
4
25
4
24
4
23
-40°C to 125°C
11
49
9
34
8
30
7
27
7
27
6
24
Submit Document Feedback
ns
ns
ns
Copyright © 2022 Texas Instruments Incorporated
Product Folder Links: SN74LXCH1T45
SN74LXCH1T45
www.ti.com
SCES939 – APRIL 2022
6.10 Switching Characteristics, VCCA = 3.3 ± 0.3 V
See Figure 7-1 and Table 7-1 for test circuit and loading. See Figure 7-2, Figure 7-3, and Figure 7-4 for measurement waveforms.
PARAMETER
FROM
TO
Test
Conditions
B-Port Supply Voltage (VCCB)
1.2 ± 0.1 V
MIN TYP
tpd
tdis
A
B
B
A
DIR
A
DIR
B
Propagation
delay
Disable time
DIR
ten
A
Enable time
DIR
B
1.5 ± 0.1 V
MAX MIN TYP
1.8 ± 0.15 V
MAX MIN TYP
2.5 ± 0.2 V
MAX MIN TYP
3.3 ± 0.3 V
MAX MIN TYP
5.0 ± 0.5 V
MAX MIN TYP
UNIT
MAX
-40°C to 85°C
1
57
1
21
1
17
1
14
1
12
1
11
-40°C to 125°C
1
36
1
22
1
18
1
14
1
13
1
12
-40°C to 85°C
1
33
1
19
1
16
1
13
1
12
1
12
-40°C to 125°C
1
29
1
19
1
17
1
14
1
13
1
12
-40°C to 85°C
1
14
1
14
1
14
1
14
1
20
1
14
-40°C to 125°C
1
34
1
15
1
15
1
15
1
15
1
17
-40°C to 85°C
7
59
5
32
5
27
3
21
3
20
2
18
-40°C to 125°C
12
52
9
33
9
29
7
23
7
22
5
19
-40°C to 85°C
13
86
10
44
9
37
7
30
7
28
5
25
-40°C to 125°C
19
71
16
46
14
39
12
32
12
29
10
26
-40°C to 85°C
8
64
6
30
5
27
4
23
4
22
3
22
-40°C to 125°C
10
46
9
31
8
28
7
24
6
23
6
22
Submit Document Feedback
Copyright © 2022 Texas Instruments Incorporated
Product Folder Links: SN74LXCH1T45
ns
ns
ns
13
SN74LXCH1T45
www.ti.com
SCES939 – APRIL 2022
6.11 Switching Characteristics, VCCA = 5.0 ± 0.5 V
See Figure 7-1 and Table 7-1 for test circuit and loading. See Figure 7-2, Figure 7-3, and Figure 7-4 for measurement waveforms.
PARAMETER
FROM
TO
Test
Conditions
B-Port Supply Voltage (VCCB)
1.2 ± 0.1 V
MIN TYP
tpd
tdis
A
B
B
A
DIR
A
DIR
B
Propagation
delay
Disable time
DIR
ten
Enable time
DIR
14
A
B
1.5 ± 0.1 V
MAX MIN TYP
1.8 ± 0.15 V
MAX MIN TYP
2.5 ± 0.2 V
MAX MIN TYP
3.3 ± 0.3 V
MAX MIN TYP
5.0 ± 0.5 V
MAX MIN TYP
UNIT
MAX
-40°C to 85°C
1
57
1
21
1
17
1
13
1
12
1
11
-40°C to 125°C
1
36
1
21
1
17
1
14
1
12
1
11
-40°C to 85°C
1
47
1
19
1
15
1
12
1
11
1
11
-40°C to 125°C
1
33
1
20
1
16
1
13
1
12
1
11
-40°C to 85°C
1
12
1
12
1
21
1
12
1
15
1
12
-40°C to 125°C
1
12
1
12
1
20
1
12
1
12
1
12
-40°C to 85°C
1
57
1
30
4
25
3
20
3
19
2
17
-40°C to 125°C
11
50
9
31
8
27
6
21
6
20
4
18
-40°C to 85°C
8
98
6
42
8
34
7
27
7
25
5
23
-40°C to 125°C
18
73
15
44
13
36
11
29
11
27
9
24
-40°C to 85°C
6
62
4
28
3
24
3
20
2
19
2
18
-40°C to 125°C
9
43
7
28
6
25
5
21
4
20
4
19
Submit Document Feedback
ns
ns
ns
Copyright © 2022 Texas Instruments Incorporated
Product Folder Links: SN74LXCH1T45
SN74LXCH1T45
www.ti.com
SCES939 – APRIL 2022
6.12 Switching Characteristics: Tsk, TMAX
over operating free-air temperature range (unless otherwise noted)
PARAMETER
TEST CONDITIONS
VCCI
Up Translation
TMAX - Maximum
Data Rate
50% Duty Cycle
Input
One channel
switching
20% of pulse >
0.7*VCCO
20% of pulse <
0.3*VCCO
VCCO
tsk – Output skew
Timing skew
between any two
switching outputs
within the same
device
Down Translation
UNIT
-40°C to 125°C
MIN
TYP
3.0 V – 3.6 V
4.5 V – 5.5 V
200
420
2.25 V - 2.75 V
4.5 V - 5.5 V
150
300
1.65 V – 1.95 V
4.5 V – 5.5 V
100
200
1.1 V – 1.3 V
4.5 V – 5.5 V
20
40
1.65 V – 1.95 V
3.0 V – 3.6 V
100
210
1.1 V – 1.3 V
3.0 V – 3.6 V
10
20
1.1 V – 1.3 V
1.65 V – 1.95 V
4.5 V – 5.5 V
3.0 V – 3.6 V
4.5 V – 5.5 V
4.5 V – 5.5 V
Down Translation 4.5 V – 5.5 V
Up Translation
Operating free-air
temperature (TA)
5
10
100
210
2.25 V - 2.75 V
75
140
1.65 V – 1.95 V
50
75
MAX
Mbps
1.1 V – 1.3 V
15
30
3.0 V – 3.6 V
1.65 V – 1.95 V
40
75
3.0 V – 3.6 V
1.1 V – 1.3 V
10
20
1.65 V – 1.95 V
1.1 V – 1.3 V
5
10
3.0 V – 3.6 V
4.5 V – 5.5 V
1
1.65 V – 1.95 V
4.5 V – 5.5 V
2
1.1 V – 1.3 V
4.5 V – 5.5 V
3
1.65 V – 1.95 V
3.0 V – 3.6 V
2.5
1.1 V – 1.3 V
3.0 V – 3.6 V
3.5
1.1 V – 1.3 V
1.65 V – 1.95 V
4.5
4.5 V – 5.5 V
3.0 V – 3.6 V
1
4.5 V – 5.5 V
1.65 V – 1.95 V
2
4.5 V – 5.5 V
1.1 V – 1.3 V
3
3.0 V – 3.6 V
1.65 V – 1.95 V
3
3.0 V – 3.6 V
1.1 V – 1.3 V
4
1.65 V – 1.95 V
1.1 V – 1.3 V
5
ns
6.13 Operating Characteristics
TA = 25℃ (1)
Supply Voltage (VCCB = VCCA)
PARAMETER
A to B
CpdA (2)
B to A
A to B
CpdB
(1)
(2)
(2)
B to A
Test Conditions
A Port
CL = 0, RL = Open
f = 10 MHz
trise = tfall = 1 ns
B Port
CL = 0, RL = Open
f = 10 MHz
trise = tfall = 1 ns
1.2 ± 0.1V 1.5 ± 0.1V
1.8 ± 0.15V
2.5 ± 0.2V 3.3 ± 0.3V 5.0 ± 0.5V
TYP
TYP
TYP
TYP
TYP
TYP
3.5
3.7
3.9
4.2
4.5
5
20.2
20.5
20.7
21.5
22.8
24.9
20.2
20.5
20.8
21.5
22.8
24.8
3.5
3.7
3.9
4.2
4.5
5.1
UNIT
pF
pF
See the CMOS Power Consumption and Cpd Calculation application report for more information about power dissipation capacitance.
CpdA and CpdB are respectively A-Port and B-Port power dissipation capacitances per transceiver.
Submit Document Feedback
Copyright © 2022 Texas Instruments Incorporated
Product Folder Links: SN74LXCH1T45
15
SN74LXCH1T45
www.ti.com
SCES939 – APRIL 2022
6.14 Typical Characteristics
4.5
1.6
4
VOH
Output High Voltage (V)
1.8
VOH
Output High Voltage (V)
5
1.4
VCC = 5 V
VCC = 3.3 V
VCC = 2.5 V
3.5
1.2
3
2.5
0.8
2
VCC = 1.8 V
VCC = 1.5 V
VCC = 1.2 V
0.6
1.5
0.4
0
5
10
15
20
25
30
35
40
IOH Output High Current (mA)
45
50
Figure 6-1. Typical (TA=25°C) Output High Voltage (VOH) vs
Source Current (IOH)
0
0.35
0.35
VOL
Output Low Voltage (V)
0.4
VOL
Output Low Voltage (V)
0.45
0.4
0.3
5
7.5 10 12.5 15 17.5 20
IOH Output High Current (mA)
22.5
25
0.3
0.25
0.2
0.15
0.2
0.15
0.1
VCC = 5 V
VCC = 3.3 V
VCC = 2.5 V
0.05
0
0
5
10
15
20
25
30
35
40
IOL Output Low Current (mA)
45
0.1
VCC = 1.8 V
VCC = 1.5 V
VCC = 1.2 V
0.05
0
50
Figure 6-3. Typical (TA=25°C) Output High Voltage (VOL) vs Sink
Current (IOL)
2
0
2.5
5
7.5 10 12.5 15 17.5 20
IOL Output Low Current (mA)
22.5
25
Figure 6-4. Typical (TA=25°C) Output High Voltage (VOL) vs Sink
Current (IOL)
0.22
VCC = 5 V
VCC = 3.3 V
VCC = 2.5 V
1.8
VCC = 1.8 V
VCC = 1.5 V
VCC = 1.2 V
0.2
0.18
ICC
Supply Current (mA)
1.6
ICC
Supply Current (mA)
2.5
Figure 6-2. Typical (TA=25°C) Output High Voltage (VOH) vs
Source Current (IOH)
0.45
0.25
0.16
1.4
0.14
1.2
0.12
1
0.8
0.1
0.08
0.6
0.06
0.4
0.04
0.2
0.02
0
0
0.5
1
1.5
2
2.5
3
3.5
VIN Input Voltage (V)
4
4.5
5
Figure 6-5. Typical (TA=25°C) Supply Current (ICC) vs Input
Voltage (VIN)
16
1
0
0
0.2
0.4
0.6
0.8
1
1.2
VIN Input Voltage (V)
1.4
1.6
1.8
Figure 6-6. Typical (TA=25°C) Supply Current (ICC) vs Input
Voltage (VIN)
Submit Document Feedback
Copyright © 2022 Texas Instruments Incorporated
Product Folder Links: SN74LXCH1T45
SN74LXCH1T45
www.ti.com
SCES939 – APRIL 2022
7 Parameter Measurement Information
7.1 Load Circuit and Voltage Waveforms
Unless otherwise noted, all input pulses are supplied by generators having the following characteristics:
• f = 1 MHz
• ZO = 50 Ω
• Δt/ΔV ≤ 1 ns/V
Measurement Point
2 x VCCO
RL
S1
Output Pin
Under Test
Open
CL(1)
A.
GND
RL
CL includes probe and jig capacitance.
Figure 7-1. Load Circuit
Table 7-1. Load Circuit Conditions
Parameter
tpd
Propagation (delay) time
ten, tdis Enable time or disable time
ten, tdis Enable time or disable time
VCCO
RL
CL
S1
1.1 V – 5.5 V
2 kΩ
15 pF
Open
N/A
1.1 V – 1.6 V
2 kΩ
15 pF
2 × VCCO
0.1 V
1.65 V – 2.7 V
2 kΩ
15 pF
2 × VCCO
0.15 V
3.0 V – 5.5 V
2 kΩ
15 pF
2 × VCCO
0.3 V
1.1 V – 1.6 V
2 kΩ
15 pF
GND
0.1 V
1.65 V – 2.7 V
2 kΩ
15 pF
GND
0.15 V
3.0 V – 5.5 V
2 kΩ
15 pF
GND
0.3 V
VCCI(1)
VCCI(1)
Input A, B
100 kHz
Input A, B
VCCI / 2
VCCI / 2
VTP
500 ps/V ± 1 s/V
0V
0V
tpd
tpd
VOH(2)
VOH(2)
Output B, A
Output B, A
VCCI / 2
VCCI / 2
VOL(2)
VOL(2)
1.
2.
VCCI is the supply pin associated with the input port.
VOH and VOL are typical output voltage levels that occur
with specified RL, CL, and S1.
Figure 7-2. Propagation Delay
Ensure Monotonic
Rising and Falling Edge
1.
2.
VCCI is the supply pin associated with the input port.
VOH and VOL are typical output voltage levels that occur
with specified RL, CL, and S1.
Figure 7-3. Input Transition Rise and Fall Rate
Submit Document Feedback
Copyright © 2022 Texas Instruments Incorporated
Product Folder Links: SN74LXCH1T45
17
SN74LXCH1T45
www.ti.com
SCES939 – APRIL 2022
VCCA
OE
VCCA / 2
VCCA / 2
GND
tdis
ten
VCCO(3)
Output(1)
VCCO / 2
VOL + VTP
VOL(4)
VOH(4)
VOH - VTP
Output(2)
VCCO / 2
GND
1.
2.
3.
4.
Output waveform on the condition that input is driven to a valid Logic Low.
Output waveform on the condition that input is driven to a valid Logic High.
VCCO is the supply pin associated with the output port.
VOH and VOL are typical output voltage levels with specified RL, CL, and S1.
Figure 7-4. Enable Time And Disable Time
18
Submit Document Feedback
Copyright © 2022 Texas Instruments Incorporated
Product Folder Links: SN74LXCH1T45
SN74LXCH1T45
www.ti.com
SCES939 – APRIL 2022
8 Detailed Description
8.1 Overview
The SN74LXCH1T45 is a 1-bit translating transceiver that uses two individually configurable power-supply rails.
The device is operational with VCCA and VCCB supplies as low as 1.1 V and as high as 5.5 V. Additionally, the
device operates with VCCA = VCCB. The A port is designed to track VCCA, and the B port is designed to track
VCCB.
The SN74LXCH1T45 device is designed for asynchronous communication between data buses and transmits
data from the A bus to the B bus or from the B bus to the A bus based on the logic level of the direction-control
input (DIR). The control pin of the SN74LXCH1T45 (DIR) is referenced to VCCA.
This device is fully specified for partial-power-down applications using the Ioff current. The Ioff protection circuitry
ensures that no excessive current is drawn from or sourced into an input, output, or I/O while the device is
powered down.
The VCC isolation and VCC disconnect feature ensures that if either VCC is less than 100 mV or floating
with the complementary supply within the recommended operating conditions, both I/O ports are set to the
high-impedance state by disabling their outputs and the supply current is maintained.
Glitch-free power supply sequencing allows either supply rail to power on or off in any order while providing
robust power sequencing performance.
8.2 Functional Block Diagram
VCCA
VCCB
DIR
A
Bus-Hold
B
Bus-Hold
Note: Bus-hold circuits are only present for data inputs, not control inputs
8.3 Feature Description
8.3.1 CMOS Schmitt-Trigger Inputs
Standard CMOS inputs are high impedance and are typically modeled as a resistor in parallel with the input
capacitance given in the Electrical Characteristics. The worst case resistance is calculated with the maximum
input voltage, given in the Absolute Maximum Ratings, and the maximum input leakage current, given in the
Electrical Characteristics, using ohm's law (R = V ÷ I).
The Schmitt-trigger input architecture provides hysteresis as defined by ΔVT in the Electrical Characteristics,
which makes this device extremely tolerant to slow or noisy inputs. Driving the inputs slowly will increase
dynamic current consumption of the device. See Understanding Schmitt Triggers for additional information
regarding Schmitt-trigger inputs.
8.3.1.1 Control Inputs with Integrated Static Pull-Down Resistors
Similar to the data I/O's, floating control inputs can cause high current consumption. This device has integrated
weak static pull-downs of 5-MΩ typical on the control inputs (DIR and OE) to help avoid this concern. These
pull-downs are always present. For example, if the DIR pin is left floating, then the B port will be configured as an
input and the A port will be configured as an output.
Submit Document Feedback
Copyright © 2022 Texas Instruments Incorporated
Product Folder Links: SN74LXCH1T45
19
SN74LXCH1T45
www.ti.com
SCES939 – APRIL 2022
8.3.2 Balanced High-Drive CMOS Push-Pull Outputs
A balanced output allows the device to sink and source similar currents. The high drive capability of this device
creates fast edges into light loads so routing and load conditions should be considered to prevent ringing.
Additionally, the outputs of this device are capable of driving larger currents than the device can sustain without
being damaged. The electrical and thermal limits defined in the Absolute Maximum Ratings must be followed at
all times.
8.3.3 Partial Power Down (Ioff)
The inputs and outputs for this device enter a high-impedance state when the device is powered down, inhibiting
current backflow into the device. Ioff in the Electrical Characteristics specifies the maximum leakage into or out of
any input or output pin on the device.
8.3.4 VCC Isolation and VCC Disconnect
The inputs and outputs for this device enter a high-impedance state when either supply is