SPIO-4/NOPB

SPIO-4/NOPB

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    -

  • 描述:

    SAM3U, XC6SLX16 - Interface, Analog Front End (AFE) Evaluation Board

  • 数据手册
  • 价格&库存
SPIO-4/NOPB 数据手册
User's Guide SNAU112A – December 2010 – Revised May 2018 SPIO-4 Precision Signal-Path Controller Board This user’s guide describes the characteristics, operation, and use of the SPIO-4 precision signal-path controller board. This document includes a schematic, reference printed circuit board (PCB) layouts, and a complete bill of materials (BOM). SNAU112A – December 2010 – Revised May 2018 Submit Documentation Feedback SPIO-4 Precision Signal-Path Controller Board Copyright © 2010–2018, Texas Instruments Incorporated 1 www.ti.com 1 2 3 Contents System Overview ............................................................................................................ 3 System Functionality ........................................................................................................ 5 PCB Layout, Schematics, and Bill of Materials......................................................................... 11 List of Figures 1 SPIO-4 System Block Diagram ............................................................................................ 5 2 GPSI 16 DUT to SPIO4 Mating ............................................................................................ 7 3 GPSI 32 DUT to SPIO4 Mating ............................................................................................ 7 4 SPIO-4 Board Layout – Component Side ............................................................................... 11 5 Board Photo Showing Respective Layout From 6 7 8 9 10 11 12 13 14 15 16 ...................................................................... SPIO-4 Interface Board Block Diagram ................................................................................. Atmel ARM Microcontroller: Power, Debug, and Analog ............................................................. Atmel ARM Microcontroller and Port Connection ...................................................................... SPIO4 PSRAM ............................................................................................................. SPIO-4 FPGA SRAM and Configuration Interface ..................................................................... SPIO-4 FPGA DEBUG, JTAG Interfaces and Power ................................................................. SPIO4 FPGA GPSI32 Interface .......................................................................................... SPIO-4 Micro SD Card .................................................................................................... USB, CPU JTAG ........................................................................................................... SPIO-4 Power Distribution ................................................................................................ 3.3-V, 1.2-V, 1.8-V, and DUT Power Supplies ......................................................................... 11 12 13 14 15 16 17 18 19 20 21 22 List of Tables 1 Main Component Reference Designators ................................................................................ 4 2 Test Points .................................................................................................................... 4 3 LED Behavior 4 GPSI-32 Signals ............................................................................................................. 8 5 Bill of Materials ................................................................................................................ ............................................................................................................. 6 23 Trademarks All trademarks are the property of their respective owners. 2 SPIO-4 Precision Signal-Path Controller Board SNAU112A – December 2010 – Revised May 2018 Submit Documentation Feedback Copyright © 2010–2018, Texas Instruments Incorporated System Overview www.ti.com 1 System Overview The SPIO-4 is one of several National Semiconductor digital controller and capture boards that are used by multiple evaluation systems. The objective of these software and hardware evaluation systems is to allow our customers to easily and accurately evaluate TI's signal-path devices in a lab setting. At the time of the SPIO-4 release, two different evaluation system software applications and graphical user interfaces (GUIs) make use of this board: the WaveVision-5 and the Sensor AFE. The board ships with the current version of the WaveVision-5 software. In addition to the controller and capture board (in this case, the SPIO-4) and the evaluation GUI software (for example, WaveVision-5 or Sensor AFE), the third essential element of an evaluation system is the device or signalpath evaluation board that plugs into the controller board. This evaluation board is generically referred to as the DUT board. Each DUT board comes with a user's guide that documents the specific features of the board. Each DUT board also comes with some software that the user must install before initial use. In the case of the WaveVision-5 GUI, this software is essentially a device-specific module that adds support for the future device evaluation boards. In the case of Sensor AFE device family, the evaluation board comes with a complete, custom Sensor AFE that is specifically paired with that device. The WaveVision-5 and Sensor AFE GUI software have respective user's guide documents that describe how to interact with the respective GUI. This user’s guide describes only the SPIO-4 board. The user is expected to refer to this guide only if necessary. The DUT user’s guide and the GUI user's guide are the primary documents that describe how to work with a TI signal-path evaluation board. The latest version of this document may be obtained from the Texas Instruments web site at www.ti.com. 1.1 System Features • • • • • • 1.2 Captures or sources multiple signal-path data streams and transfers them to and from the PC-based application software through a USB 2.0 connection (USB 1.1 compatible). Supports a jumper-less, plug-and-play configuration. The GUI automatically discovers the attached DUT board and loads the appropriate software module for it. Supports a wide variety of signal-path evaluation board through a standardized connector (GPSI- 16 or GPSI-32). Capable of storing up to 8 MBytes of signal-path data. DUT interface can be SPI, I2C, or parallel. Powered either by PC via USB or external supply. Packing List The SPIO-4 kit (order number SPIO-4/NOPB) consists of the following components: • SPIO-4 board • USB cable • User’s guide (this document) • WaveVision-5 GUI software SNAU112A – December 2010 – Revised May 2018 Submit Documentation Feedback SPIO-4 Precision Signal-Path Controller Board Copyright © 2010–2018, Texas Instruments Incorporated 3 System Overview 1.3 www.ti.com Component Description Table 1 describes both the onboard connectors and the main components used in the SPIO-4 system shown in Figure 4. Table 1. Main Component Reference Designators Component 1.4 Description J1 Serial debug connector J2 Header to provide access to the FPGA JTAG interface for debug J3 Jumper to select J4 IO voltage (3.3 V or programmable) J4 (DBG) Debug and development connector(see Section 2.6) J6 (GPSI-32) GPSI-16/32 connector to DUT J7 (micro_SD) Holds the microSD card for storage or development purposes J8 (USB) USB cable connection J9 (JTAG) Atmel processor JTAG debug header J10 (POWER) 5-v to 6-V power supply connection; optional (see Section 2.9) J14 (USNAP) Additional header providing power and serial interface to processor JP1 Jumpers for test purposes only U1 Atmel SAM3U processor U4 8Mx16 PSRAM U5 Xilinx Spartan LX16 FPGA D1-D4 FPGA status LEDs (see Section 2.4) D6 1.8-V PSRAM core voltage surface-mount power LED D7 3.3-V DUT supply voltage surface-mount power LED D8 5.0-V DUT supply voltage surface-mount power LED D10 USB input power LED D11 1.2-V FPGA Core voltage surface-mount power LED SW1 Reset switch SW2 Power on push-button SPIO-4 Board Test Points Table 2 describes the available test points. Table 2. Test Points Test Point 4 Description TP1, TP3, TP16, TP18 (GND) Ground test points TP11 3.3-V digital I/O voltage for SPIO board TP12 1.2 V for FPGA core voltage TP13 1.8 V for PSRAM core voltage TP14 3.3 V for DUT digital supply TP15 5.0 V for DUT analog supply SPIO-4 Precision Signal-Path Controller Board SNAU112A – December 2010 – Revised May 2018 Submit Documentation Feedback Copyright © 2010–2018, Texas Instruments Incorporated System Functionality www.ti.com 2 System Functionality 2.1 System Block Diagram Debug Connector (J1) Debug Connector (J9) 12 MHZ Xtal 32 kHZ Xtal GPSI 32 Connector (J6) SD Card (J7) GPSI A GPIO USB Connector (J8) Micro-Controller Atmel SAM3U (U1) USB GPSI A > Level Shift Pins 1, 3, 7, 8, 16 GPSI A GPSI A < Level Shift DUT3.3V_EN VDDIO Pins 5, 6, 9 Pin 15 3.3 V DUT I2C Static Mem intrfc I2C(SCL) NCS2 NCS3/ FPGA_CFG Pin 12 3.3 V DUT A23-1 D15-0 I2C(SCL) NCS0 8MBx16 PSRAM (U4) Pin 11 Spartan 6 XC6SLX16 (U5) NWR NRD DUT 3.3 V DUT 5 V GPSI B NBS0-1 IO Voltage Pin 13 Pin 14 Pin 23-30 3.3 V 1.8 V 1.2 V USB 5 V Ext Pwr (J10) Input Protection LP3910 Multiple Supply Switching Regulator (U11) JTAG (J2) DEBUG (J4) 3.3 V DUT3.3V_EN DUT 3.3 V Boost Regulator (U12) Filter DUT 5 V Figure 1. SPIO-4 System Block Diagram 2.2 General System Overview The SPIO-4 board is controlled via the Atmel SAM3U, a microcontroller that is based on an ARM M3, 32bit embedded core. This miscrocontroller provides the interface to the computer via a USB interface. The DUT board interfaces to the SPIO-4 via J6, the GPSI-16/32 connector. The GPSI-16/32 interface provides control, data and power to the DUT board. The interfaces on the GPSI-32 can be I2C, SPI with multipledevice capability, or parallel interface. The dedicated I2C interface on the GPSI-16/32 is primarily for control and DUT identification, while the dedicated SPI interface may be used for control or for data transfer. The I2C interface is derived from the peripheral of the microcontroller. There can be a wide variety of SPI requirements for DUTs; therefore, the SPI interface can be provided via a processor peripheral and over the dedicated SPI lines as shown in this document, or the onboard Xilinx Spartan XC6SLX16 FPGA may be used. In fact, the FPGA may be used to implement DUT interfaces other than SPI, such as high-speed I2C for data purposes, and parallel data-plus-clock interfaces. A large external SRAM 8Mx16 is connected to both the processor and the FPGA, and is used to provide additional device data storage in case the microcontroller or FPGA onboard memory is insufficient. Power is provided to the system via the USB cable or external power jack. A switching regulator is used to produce the 3.3-V supply required by the microcontroller and GPSI-32 devices. A boost regulator creates the regulated 5-V supply required by the devices interfaced to the GPSI-32 connector. SNAU112A – December 2010 – Revised May 2018 Submit Documentation Feedback SPIO-4 Precision Signal-Path Controller Board Copyright © 2010–2018, Texas Instruments Incorporated 5 System Functionality 2.3 www.ti.com Automatic Device Detection and Configuration The SPIO-4 system supports automatic hardware detection and configuration of the device under test. The GUI software actually carries out the device detection and configuration task. The FPGA is reconfigured on-the-fly by the host PC when the SPIO-4 board is powered on, or whenever ADC evaluation boards are exchanged and SPIO-4 power is cycled. Each DUT board has either an FPGA configuration file or a microcontroller firmware module unique to the board. The GUI software, in conjunction with the USB microcontroller, determines which DUT board has been plugged in. The GUI then loads a configuration file tailored for that DUT board into the FPGA, the microcontroller, or both. Normally, the configuration process is totally transparent to the user, and requires no intervention. However, some devices may allow this process to be overridden. Refer to the evaluation board manual for more information. NOTE: Many of our device evaluation boards do require jumper configurations to select channels, voltages, or other options. Please consult the manual that came with the evaluation board for specific information. CAUTION Be aware that DUT boards are NOT hot swappable. Power down both the SPIO-4 board and the DUT board prior to swapping DUT board. 2.4 LED Indicators There are several LED indicators on the SPIO-4 board. The LED indicators described in Table 3 are driven directly by separate power rails on the SPIO-4 board. Those rails can only be controlled by the processor; therefore, the LEDs not only indicate a particular rails is powered on, but the LEDs also show the state of the SPIO-4 firmware, as shown in Table 3. Table 3. LED Behavior LED Number 2.5 Description D10 Indicates power (USB or external) is present to SPIO board D5 3.3-V digital I/O voltage for SPIO board is up (required for all operations) D6 1.2 V for FPGA core voltage. Indicates processor has completed low-level hardware initialization, and is ready to program the FPGA. D11 1.8 V for PSRAM core voltage. Indicates processor has completed low-level hardware initialization, and is able to use the PSRAM D7 and D8 3.3-V and 5-V DUT supplies. Indicates the processor has detected a DUT board is inserted, and has powered the board. DUT Interface (GPSI-16/32) The SPIO-4 data capture board is connected to the DUT through the GPSI-16/32 (J6) connector. As described in this user's guide, the GPSI-32 interface provides control, data, and power to the DUT board. See Table 4 for signal specifics. The GPSI-16/32 interface also supports a subset called GPSI-16 that consists of the lower order pins 1 to 16. A given DUT board may use a 16-pin, GPSI-16 port only, or may use the whole 32-pin port. GPSI-16 has level shifters allowing some of the DUT interface voltages to go from 1.65-V to 5.5-V LVTTL levels under the direct control of the DUT board circuitry. To achieve that voltage range, the voltage level shifters are NOT bidirectional. A DUT board requiring bidirectional signals must use the upper-order portion of the GPSI-32. However, that upper-order portion of GPSI-32 requires adherence to 3.3-V LVTTL voltage levels because the upper-order portion does not have level shifters. Figure 2 and Figure 3 show two photos demonstrating the proper mating of a GPSI16 and a GPSI32 DUT board to the SPIO4. 6 SPIO-4 Precision Signal-Path Controller Board SNAU112A – December 2010 – Revised May 2018 Submit Documentation Feedback Copyright © 2010–2018, Texas Instruments Incorporated System Functionality www.ti.com Figure 2. GPSI 16 DUT to SPIO4 Mating Figure 3. GPSI 32 DUT to SPIO4 Mating SNAU112A – December 2010 – Revised May 2018 Submit Documentation Feedback SPIO-4 Precision Signal-Path Controller Board Copyright © 2010–2018, Texas Instruments Incorporated 7 System Functionality 2.5.1 www.ti.com Level Shifters The board incorporates level shifters to allow flexible output voltages on the unidirectional SPI signals of GPSI-16 port, as shown in Figure 1. VDDIO, a supply voltage from the GPSI-16/32 connector coming from the DUT board, provides the voltage to the output side of the level translators. If the DUT has no special requirements for voltage and simply needs basic 3.3-V signal levels, the 3.3-V output from the GPSI connector can be connected to VDDIO on the DUT board. The level shifters are unidirectional. If VDDIO is not provided, the level shifters enter a shutdown state with all input pins in a tri-state condition. The state passed along to the processor in this case is logic low. Table 4 shows the full list of available level-shifter configurations. Table 4. GPSI-32 Signals Pin # Signal Name Signal Function Voltage Level Direction (From SPIO-4) 1.65 V to 5.5 V Output N/A N/A 1.65 V to 5.5 V Output N/A Input Pins 1-16 form the GPSI-16 subset: 1 SCS0_A~ Serial Bus A – Chip select for device 0. 2 GND Ground 3 SCK_A Serial Bus A – Serial clock from the master to the device. DUT_Present~ The DUT board grounds this pin. The SPIO-4 senses this pin to determine the DUT board presence. SMISO_A Serial Bus A – Data from the slave (device) to the master. The device may implement this as a tri-state signal that can be driven 1.65 V to 5.5 V by multiple devices on Serial Bus A in a bussed fashion. The pullup resistor, if required, is on the DUT board. Input 6 Dev_INT~/ SDRDY_A~ In certain applications, if required, this pin serves as the DRDY~ signal from the DUT to the SPIO-4. In other cases, this pin may be a general interrupt pin from the device to the SPIO-4. On the SPIO- 1.65 V to 5.5 V 4 board, this signal connects to an interrupt pin on the microcontroller. Input 7 SMOSI_A Serial Bus A – Data from the master to the slave (device). 1.65 V to 5.5 V Output 8 SCS1_A~ Serial Bus A – Chip select for device 1. 1.65 V to 5.5 V Output 9 Ref_CLK Reference clock from the DUT board to the SPIO-4 board. If not used, the DUT board should ground this pin. 1.65 V to 5.5 V Input 10 GND Ground N/A N/A 11 SDA Data line of the I2C bus. Pulled up to +3.3V_DUT on the SPIO-4 board through a 1.5-kΩ resistor. 3.3 V Bidirectional 12 SCL Clock line of the I2C bus. Pulled up to +3.3V_DUT on the SPIO-4 board through a 1.5-kΩ resistor. 3.3 V Bidirectional +3.3V_DUT Switched by the SPIO-4 conditional parameter on the DUT_Present pin. The ID EEPROM and the entire I2C bus on the DUT board must be unconditionally powered by this supply. Maximum peak current = 50 mA (subject to total power budget limit of 200 mW over both supplies). Maximum capacitor loading for this node is not to exceed 50 µF. 3.3 V Output 14 +5V_DUT This supply is sourced by the SPIO-4 and is intended to power the core functionality of the DUT board, if desired. Nominal current = 35 mA. Maximum peak current = 50 mA (subject to total power budget limit of 200mW over both supplies). If power from the SPIO4 is not required, the DUT board must leave this pin open. Maximum capacitor loading for this node is not to exceed 50 µF. 5.0 V Output 15 VDDIO 1.65 V to 5.5 V Input 16 SCS2_A~ 1.65 V to 5.5 V Output 17 DUT_PWR_Enable 4 5 13 8 3.3 V Output 18 Available for implementation-specific use. Refer to the DUT board manual. If unused, leave it open. (Possible use: DUT_RESET~) 3.3 V N/A 19 Available for implementation-specific use. Refer to the DUT board manual. If unused, leave it open. 3.3 V N/A 20 Available for implementation-specific use. Refer to the DUT board manual. If unused, leave it open. 3.3 V N/A SPIO-4 Precision Signal-Path Controller Board SNAU112A – December 2010 – Revised May 2018 Submit Documentation Feedback Copyright © 2010–2018, Texas Instruments Incorporated System Functionality www.ti.com Table 4. GPSI-32 Signals (continued) Pin # Signal Name Signal Function Voltage Level Direction (From SPIO-4) 21 Available for implementation-specific use. Refer to the DUT board manual. If unused, leave it open. 3.3 V N/A 22 Available for implementation-specific use. Refer to the DUT board manual. If unused, leave it open. 3.3 V N/A SCS0_B~ Available for implementation-specific use. Refer to the DUT board manual. If unused, leave it open. If a second SPI bus is implemented, then use this pin as shown: Serial Bus B – Chip select for device 0. 3.3 V N/A 24 SDRDY_B~ Available for implementation-specific use. Refer to the DUT board manual. If unused, leave it open. If a second SPI bus is implemented, then use this pin as shown: In certain SPI applications, if required, this pin serves as the DRDY~ signal from the DUT to the SPIO-4. 3.3 V N/A 25 SCK_B Available for implementation-specific use. Refer to the DUT board manual. If unused, leave it open. If a second SPI bus is implemented, then use this pin as shown: Serial Bus B – Serial clock from the master to the device. 3.3 V N/A 26 SCS1_B~ Available for implementation-specific use. Refer to the DUT board manual. If unused, leave it open. If a second SPI bus is implemented, then use this pin as shown: Serial Bus B – Chip select for device 1. 3.3 V N/A 27 SMISO_B Available for implementation-specific use. Refer to the DUT board manual. If unused, leave it open. If a second SPI bus is implemented, then use this pin as shown: Serial Bus B – Data from the slave (device) to the master. The device may implement this as a tri-state signal that can be driven by multiple devices on Serial Bus B in a bussed fashion. The pullup resistor, if required, is on the DUT board. 3.3 V N/A 28 SCS2_B~ Available for implementation-specific use. Refer to the DUT board manual. If unused, leave it open. If a second SPI bus is implemented, then use this pin as shown: Serial Bus B – Chip select for device 2. 3.3 V N/A 29 SMOSI_B Available for implementation-specific use. Refer to the DUT board manual. If unused, leave it open. If a second SPI bus is implemented, then use this pin as shown: Serial Bus B – Data from the master to the slave (device). 3.3 V N/A 30 SCS3_B~ Available for implementation-specific use. Refer to the DUT board manual. If unused, leave it open. If a second SPI bus is implemented, then use this pin as shown: Serial Bus B – Chip Select for device 3. 3.3 V N/A 31 Reserved Reserved for future use. The DUT board leaves this pin open. 3.3 V N/A 32 GND Ground N/A N/A 23 SNAU112A – December 2010 – Revised May 2018 Submit Documentation Feedback SPIO-4 Precision Signal-Path Controller Board Copyright © 2010–2018, Texas Instruments Incorporated 9 System Functionality 2.6 www.ti.com Auxiliary Interface The SPIO-4 board can be connected to auxiliary test equipment through debug connector J4 located on the board. 2.7 Computer Interface The SPIO-4 board communicates with a PC via standard USB 2.0 at high-speed (up to a 480 Mbits/sec signaling rate). The board is fully backward-compatible with USB 1.1 devices and cables. 2.8 Memory The SPIO-4 board comes with 8M × 16 bits of PSRAM for data storage. The memory is a single Micron MT45W8MW16BGX PSRAM configured for asynchronous accesses. In asynchronous configuration, the fastest access speed is 70 ns latency, or approximately 14.2 MHz per 16-bit transfer. Both the processor and the FPGA have read and write access to the PSRAM. The processor’s static memory interface mastership is controlled by firmware within the processor because there is no hardware mechanism to share the bus. 2.9 Power Requirements The SPIO-4 data capture board can be solely powered using the USB interface power, but can also be powered by an external power supply. The SPIO-4 data capture board consumes up to 500 mA of current depending on the DUT load. ADC evaluation boards differ widely in their power consumption; consult the manual that came with your evaluation board, and verify if an external supply is required for your DUT board. External power can be supplied via J10, and must be greater than 4.5 V and less than 6.0 V dc with a current rating of at least 1 A. 10 SPIO-4 Precision Signal-Path Controller Board SNAU112A – December 2010 – Revised May 2018 Submit Documentation Feedback Copyright © 2010–2018, Texas Instruments Incorporated PCB Layout, Schematics, and Bill of Materials www.ti.com 3 PCB Layout, Schematics, and Bill of Materials The following section shows the printed circuit board (PCB) layout overview, the schematics, and the bill of materials (BOM). 3.1 PCB Layout Overview Figure 4 shows the component side of the SPIO-4 board layout. 5" SW2 J14 DUT 5V U12 5V J2 D8 Ext Pwr J10 DUT SPIO PSRAM FPGA 3.3 V 3.3 V 1.8 V 1.2 V D7 D4 D3 D5 D6 U11 LP3910 1.2 V, 1.8 V, 3.3 V D11 U4 PSRAM D2 D1 D10 J8 USB SW1 J6 GPSI-16/32 U9 U6 U1 SAM3U 100 LQFP 16x16 U5 XC6SLX16 FPGA 324 FBGA 18x18 J9 JTAG Debug Connector U10 3" U8 U7 J3 J4 JP1 J1 J7 SD Card Figure 4. SPIO-4 Board Layout – Component Side Figure 5. Board Photo Showing Respective Layout From Figure 4 SNAU112A – December 2010 – Revised May 2018 Submit Documentation Feedback SPIO-4 Precision Signal-Path Controller Board Copyright © 2010–2018, Texas Instruments Incorporated 11 PCB Layout, Schematics, and Bill of Materials 3.2 www.ti.com Schematics The following pages show the schematics of the board. These are provided for general information purposes only. TI reserves the right to make modifications to the board design at any time. Debug Connector (J1) Debug Connector (J9) 12 MHZ Xtal 32 kHZ Xtal GPSI 32 Connector (J6) SD Card (J7) GPSI A GPIO USB Connector (J8) Micro-Controller Atmel SAM3U (U1) USB GPSI A > Level Shift Pins 1, 3, 7, 8, 16 GPSI A GPSI A < Level Shift DUT3.3V_EN VDDIO Pins 5, 6, 9 Pin 15 3.3 V DUT I2C Static Mem intrfc I2C(SCL) NCS2 NCS3/ FPGA_CFG Pin 12 3.3 V DUT A23-1 D15-0 I2C(SCL) NCS0 8MBx16 PSRAM (U4) Pin 11 Spartan 6 XC6SLX16 (U5) NWR NRD DUT 3.3 V DUT 5 V GPSI B NBS0-1 IO Voltage Pin 13 Pin 14 Pin 23-30 3.3 V 1.8 V 1.2 V USB 5 V Ext Pwr (J10) Input Protection LP3910 Multiple Supply Switching Regulator (U11) JTAG (J2) DEBUG (J4) 3.3 V DUT3.3V_EN DUT 3.3 V Boost Regulator (U12) Filter DUT 5 V Figure 6. SPIO-4 Interface Board Block Diagram 12 SPIO-4 Precision Signal-Path Controller Board SNAU112A – December 2010 – Revised May 2018 Submit Documentation Feedback Copyright © 2010–2018, Texas Instruments Incorporated PCB Layout, Schematics, and Bill of Materials www.ti.com Atmel ARM Microcontroller - Power, Debug, Analog 3p3V JP1 JP U1B SAM3U VANA C1 137 138 142 135 136 10nF 9 R1 RSTN DNS ERASE TEST JTAGSEL FWUP SHDN SW1 A B 39 VBG DGND DGND 11 9 9 9 9 9 9 NRST_PWR DHSD_P DHSD_M R2 R3 39R 39R DFSD_M DFSD_P DHSDP DHSDM DFSDM DFSDP 144 143 XIN32_CLK XOUT32 C5 10uF DGND VCORE DGND C6 0.1uF C7 0.1uF C8 0.1uF C9 0.1uF C10 0.1uF 17 51 85 104 127 VDDIO1 VDDIO2 VDDIO3 VDDIO4 VDDIO5 XIN XOUT C4 0.1uF C3 10uF 34 VDDPLL XIN32 XOUT32 36 35 XIN_CLK XOUT1 C2 0.1uF 16 27 44 50 86 125 VDDCORE1 VDDCORE2 VDDCORE3 VDDCORE4 VDDCORE5 VDDCORE6 TDI TDO/TRACESWO TMS/SWDIO TCK/SWCLK 37 38 41 42 2 VDDOUT NRST NRSTB 1 4 7 9 TDI TDO TMS TCK 3p3V 3 VDDIN VBG 11 141 74 76 ADVREF AD12BVREF C11 0.1uF C12 0.1uF C13 10uF DGND 3p3V VUTMI 18 52 60 90 126 VBG XIN32_CLK C25 GND1 GND2 GND3 GND4 GND5 15pF 140 R4 6.8K Y2 32.768KHz C30 15pF C16 0.1uF DGND 139 VDDBU 3p3V DGND 0R R66 DGND 3p3V XIN_CLK C24 C19 10uF C23 0.1uF GNDANA C27 0.1uF 3p3V L1 10uH/100mA C18 0.1uF VANA GNDUTMI VDDBU VUTMI C17 0.1uF GNDPLL 75 XOUT32 C15 0.1uF DGND DGND 73 VDDANA 43 DGND C14 0.1uF C20 0.1uF GNDBU 33 C21 10pF 40 VDDUTMI DGND C59 1.0uF 15pF DGND C26 0.1uF R5 0R Y1 12.000MHz C22 10uF XOUT1 C28 C29 DGND 15pF 3p3V 4.7uF DGND DGND VANA R69 DNS 499R 3p3V L2 10uH/100mA CLK_12MHZ2_R 3p3V U2 1 R67 CLK_12MHZ 5 2 DNS 3p3V C31 0.1uF R6 0R C32 2 4.7uF DGND DGND 1 3 U3 1 OE VDD GND OUT 4 3 DNS OSCIL_12M_SMD_3.3V VCORE U13 R8 CLK_12MHZA_R 2 CLK_12MHZA 1A 2A GND VCC 1Y 2Y DNS 74LVC2G06 DNS 5 6 4 1.0K DGND R70 OE VDD GND OUT 4 3 DNS OSC_32768HZ_SMD R7 CLK_32K_R XIN32_CLK DNS DNS CLK_12MHZ1_R DNS XIN_CLK R68 DGND R71 DNS DGND Figure 7. Atmel ARM Microcontroller: Power, Debug, and Analog SNAU112A – December 2010 – Revised May 2018 Submit Documentation Feedback SPIO-4 Precision Signal-Path Controller Board Copyright © 2010–2018, Texas Instruments Incorporated 13 PCB Layout, Schematics, and Bill of Materials www.ti.com Atmel ARM Microcontroller, Port Connection D[15:0] 4,5 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D9 D11 D12 D13 D14 D15 U1A SAM3U 9,11 VUSB_DET 8 CD 7 DUTCLKIN 8 CK 8 CDA 8 DA0 8 DA1 8 DA2 8 DA3 11 SDA 11 SCL TP17 DUT_SDA 1 7 7 7 7 DUT_SCL 11 11 CPUMISO_A CPU_MOSI_A CPU_SCLK_A CPU_CS0N_A ONSTAT USBISEL RXD_IN TXD_OUT USNAP_SCLK_N USNAP_MOSI USNAP_MISO USNAP_SEL_N USNAP_IRQ_N TP4 7 DUT_SDA 7 DUT_SCL 5 SCC_TD 5 PCK 5 SCC_CLK 7 DUTDRDYN_A 5 SCC_TF 4 SRAM_CNTRL_REG 1 TP7 CK CDA DA0 DA1 DA2 DA3 1 TP19 CD 1 SDA SCL A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 7 CPU_CS2N_A 4,5 NBS1 NBS1 109 111 113 115 117 119 121 123 128 130 132 133 134 87 88 91 93 95 99 100 101 102 77 103 105 106 107 64 45 46 78 48 110 112 114 116 118 120 122 124 129 131 89 92 94 98 28 81 PA0/WKUP0 PA1/WKUP1 PA2/WKUP2 PA3/CK PA4/CDA PA5/DA0 PA6/DA1 PA7/DA2 PA8/DA3 PA9/TWD0 PA10/TWCK0 PA11/URXD PA12/UTXD PA13/MISO PA14/MOSI PA15/SPCK PA16/NPCS0 PA17/WKUP7 PA18/WKUP8 PA19/WKUP9 PA20/TXD1 PA21/RXD1 PA22/RTS1 PA23/CTS2 PA24/WKUP11 PA25/WKUP12 PA26/TD PA27/PCK0 PA28/TK PA29/PWMH1 PA30/TF PA31/RF PB0/PWMH0 PB1/PWMH1 PB2/PWMH2 PB3/AD12BAD2 PB4/AD12BAD3 PB5/AD1 PB6/D15 PB7/A0/NBS0 PB8/A1 PB9/D0 PB10/D1 PB11/D2 PB12/D3 PB13/D4 PB14/D5 PB15/D6 PB16/D7 PB17/NANDOE PB18/NANDWE PB19/NRD PB20/NCS0 PB21/A21/NANDALE PB22/A22/NANDCLE PB23/NWR0/NWE PB24/NANDRDY PB25/D8 PB26/D9 PB27/D10 PB28/D11 PB29/D12 PB30/D13 PB31/D14 PC0/A2 PC1/A3 PC2/A4 PC3/A5 PC4/A6 PC5/A7 PC6/A8 PC7/A9 PC8/A10 PC9/A11 PC10/A12 PC11/A13 PC12/NCS1 PC13/RXD3 PC14/NPCS2 PC15/NWR1/NBS1 PC16/NCS2 PC17/AD12BAD6 PC18/AD12BAD7 PC19/NPCS1 PC20/A14 PC21/A15 PC22/A16 PC23/A17 PC24/A18 PC25/A19 PC26/PWMH2 PC27/A23 PC28/DA4 PC29/DA5 PC30/DA6 PC31/DA7 53 55 57 79 80 65 66 67 68 31 30 59 61 62 29 97 96 26 25 24 23 21 20 19 15 14 13 12 10 8 6 5 82 83 84 32 108 22 47 49 54 56 58 63 69 70 71 72 D15 NBS0 A1 D0 D1 D2 D3 D4 D5 D6 D7 NRD NCS0 A21 A22 NWE D8 D9 D10 D11 D12 D13 D14 A14 A15 A16 A17 A18 A19 A20 A23 USNAP_RST_N FPGA_INIT_N 5 FPGA_M0 5 FPGA_M1 5 FPGA_PRGM_N 6 FPGA_DONE_N 6 DUT_PWR_EN 7 NBS0 4,5 A[23:1] IRQ_PWR_N 11 DUT_PRSNT_N 7 NRD 4,5 NCS0 4,5 NWE PCK1 4,5 5 NCS2 5 NCS3 5 NWAIT 4,5 CPU_CS1N_A 7 DUT_3VEN DUT_5VEN 4,5 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 A20 A21 A22 A23 11 11 USNAP INTERFACE J14 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 PCB REVISION RESISTORS USNAP_SEL_N USNAP_IRQ_N USNAP_SCLK_N USNAP_MOSI USNAP_MISO USNAP_RST_N USNAP_RST_N UART Debug Interface header R82 1.5K J1 USNAP_IRQ_N 3p3V R83 DNS DGND R82 REV ___ R83 ___ PCB ______ DNS DNS A 2mm_hdr_6pin 1 2 3 4 5 1 2 3 4 5 RXD_IN TXD_OUT 3p3V hdr_5pin 1.5K DNS B DNS 1.5K C DGND DGND Figure 8. Atmel ARM Microcontroller and Port Connection 14 SPIO-4 Precision Signal-Path Controller Board SNAU112A – December 2010 – Revised May 2018 Submit Documentation Feedback Copyright © 2010–2018, Texas Instruments Incorporated PCB Layout, Schematics, and Bill of Materials www.ti.com 3,5 3,5 A[23:1] U4 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 A20 A21 A22 A23 3,5 3,5 3,5 3,5 NCS0 NRD NWE 3,5 3,5 NBS1 NBS0 A3 A4 A5 B3 B4 C3 C4 D4 H2 H3 H4 H5 G3 G4 F3 F4 E4 D3 H1 G2 H6 E3 J4 B5 A2 G5 B2 A1 A6 J3 J2 SRAM_CNTRL_REG A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 A20 A21 A22 CS OE WE UB LB CRE ADV CLK D[15:0] MT45W8MW16BGX DQ0 DQ1 DQ2 DQ3 DQ4 DQ5 DQ6 DQ7 DQ8 DQ9 DQ10 DQ11 DQ12 DQ13 DQ14 DQ15 WAIT RFU3 RFU4 B6 C5 C6 D5 E5 F5 F6 G6 B1 C1 C2 D2 E2 F2 F1 G1 D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 J1 NWAIT 3,5 J5 J6 3p3V 1p8V VCCQ VCC VSSQ VSSQ 3p3V E1 D6 C33 0.1uF C34 1.0uF D1 E6 MT45W8MW16BGX DGND C35 0.1uF C36 0.1uF C37 10uF DGND DGND Figure 9. SPIO4 PSRAM SNAU112A – December 2010 – Revised May 2018 Submit Documentation Feedback SPIO-4 Precision Signal-Path Controller Board Copyright © 2010–2018, Texas Instruments Incorporated 15 PCB Layout, Schematics, and Bill of Materials 3,4 D[15:0] D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D9 D11 D12 D13 D14 D15 3,4 www.ti.com U5-2 NOTE:D0-7 SWAPPED GOING INTO CONFIG BITS U5-3 D2 3 FPGA_INIT_N 3,4 NCS0 3,4 NWE 3,4 3,4 3,4 3,4 NRD NBS0 NBS1 NWAIT NCS0 D4 D15 D14 D13 D12 D11 D10 D9 D8 A[23:1] A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 A20 A21 A22 A23 NRD NBS0 NBS1 NWAIT FPGA_CFG_CSN D5 D6 3 FPGA_M0 3 NCS2 D3 D1 FPGA_CCLK CCLK R15 DATA_D7_CFG_D0 3 FPGA_M1 2 CLK_12MHZ 3 PCK1 D0 R3 U3 T4 U5 T5 V7 U7 T7 V8 U8 T8 V10 U10 T10 U11 T11 V13 U13 T13 V14 T14 T15 V16 U16 V6 V3 V4 V5 V9 T6 V11 T3 R15 R13 N12 P12 R11 R10 R8 T9 R7 R5 N5 P6 3p3V IO_L62P_D5_2 VCCO_2 IO_L65P_INIT_B_2 VCCO_2 IO_L63P_2 VCCO_2 IO_L49P_D3_2 VCCO_2 IO_L48N_RDWR_B_VREF_2 VCCO_2 IO_L43N_2 VCCO_2 IO_L43P_2 IO_L46N_2 IO_L41N_VREF_2 IO_L41P_2 IO_L31N_GCLK30_D15_2 IO_L30N_GCLK0_USERCCLK_2 IO_L30P_GCLK1_D13_2 IO_L29N_GCLK2_2 IO_L23P_2 IO_L16N_VREF_2 IO_L14N_D12_2 IO_L14P_D11_2 IO_L3N_MOSI_CSI_B_MISO0_2 IO_L12N_D2_MISO3_2 IO_L12P_D1_MISO2_2 IO_L1N_M0_CMPMISO_2 IO_L2N_CMPMOSI_2 IO_L2P_CMPCLK_2 IO_L45N_2 IO_L65N_CSO_B_2 IO_L63N_2 IO_L49N_D4_2 IO_L32N_GCLK28_2 IO_L45P_2 IO_L23N_2 IO_L62N_D6_2 IO_L1P_CCLK_2 IO_L3P_D0_DIN_MISO_MISO1_2 IO_L13P_M1_2 IO_L13N_D10_2 IO_L16P_2 IO_L29P_GCLK3_2 IO_L31P_GCLK31_D14_2 IO_L32P_GCLK29_2 IO_L46P_2 IO_L48P_D7_2 IO_L64P_D8_2 IO_L64N_D9_2 P9 R12 R6 U14 U4 U9 XC6SLX9CSG324 REQUIRED SIGNALS TO CONFIG FPGA VIA SERIAL OR BYTE WIDE (SELECTMAP) D7 R5 D6 T3 CSI_B T13 D5 R3 RDWR_B T5 INIT U3 D4 V5 M1 N12 D3 U5 M0 T15 D2 V14 D1 T14 DO_DIN R13 D7 0R R74 3 SCC_TD 3 A23 A22 A21 A20 A19 A18 A17 A16 A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 J18 K18 K17 K16 J16 L15 K15 H14 C17 C18 D17 D18 E16 E18 F18 F17 F16 F15 G18 G16 H18 H17 H16 H15 P18 P17 T17 U17 N18 N17 N16 P15 P16 M18 M16 N15 N14 L18 L17 L16 T18 U18 F14 G14 H12 G13 K12 K13 H13 J13 K14 L12 L13 M14 L14 M13 3p3V IO_L44N_A2_M1DQ7_1 VCCO_1 IO_L45N_A0_M1LDQSN_1 VCCO_1 IO_L45P_A1_M1LDQS_1 VCCO_1 IO_L41N_GCLK8_M1CASN_1 VCCO_1 IO_L44P_A3_M1DQ6_1 VCCO_1 IO_L42P_GCLK7_M1UDM_1 VCCO_1 IO_L41P_GCLK9_IRDY1_M1RASN_1 IO_L36N_A8_M1BA1_1 IO_L29P_A23_M1A13_1 IO_L29N_A22_M1A14_1 IO_L31P_A19_M1CKE_1 IO_L31N_A18_M1A12_1 IO_L33P_A15_M1A10_1 IO_L33N_A14_M1A4_1 IO_L35N_A10_M1A2_1 IO_L35P_A11_M1A7_1 IO_L1N_A24_VREF_1 IO_L1P_A25_1 IO_L38N_A4_M1CLKN_1 IO_L38P_A5_M1CLK_1 IO_L43N_GCLK4_M1DQ5_1 IO_L43P_GCLK5_M1DQ4_1 IO_L37N_A6_M1A1_1 IO_L37P_A7_M1A0_1 IO_L49N_M1DQ11_1 IO_L49P_M1DQ10_1 IO_L51P_M1DQ12_1 IO_L52P_M1DQ14_1 IO_L48N_M1DQ9_1 IO_L48P_HDC_M1DQ8_1 IO_L50N_M1UDQSN_1 IO_L74P_AWAKE_1 IO_L74N_DOUT_BUSY_1 IO_L47N_LDC_M1DQ1_1 IO_L47P_FWE_B_M1DQ0_1 IO_L50P_M1UDQS_1 IO_L53N_VREF_1 IO_L46N_FOE_B_M1DQ3_1 IO_L46P_FCS_B_M1DQ2_1 IO_L42N_GCLK6_TRDY1_M1LDM_1 IO_L51N_M1DQ13_1 IO_L52N_M1DQ15_1 IO_L30P_A21_M1RESET_1 IO_L30N_A20_M1A11_1 IO_L32P_A17_M1A8_1 IO_L32N_A16_M1A9_1 IO_L34P_A13_M1WE_1 IO_L34N_A12_M1BA2_1 IO_L36P_A9_M1BA0_1 IO_L39P_M1A3_1 IO_L39N_M1ODT_1 IO_L40P_GCLK11_M1A5_1 IO_L40N_GCLK10_M1A6_1 IO_L53P_1 IO_L61P_1 IO_L61N_1 XC6SLX9CSG324 DATA_D7_CFG_D0 3p3V DNS R73 C47 1.0uF NCS3 0R R76 3 SCC_TF 3 PCK 3 SCC_CLK E17 G15 J14 J17 M15 R17 C40 0.1uF C41 0.1uF C42 0.1uF C43 0.1uF C44 0.1uF C45 10uF FPGA_CFG_CSN DNS R75 DGND DGND 0R R78 FPGA_CCLK DNS R77 RSTUFF OPTIONS TO SUPPORT SERIAL AND PARALLEL FPGA CONFIG Figure 10. SPIO-4 FPGA SRAM and Configuration Interface 16 SPIO-4 Precision Signal-Path Controller Board SNAU112A – December 2010 – Revised May 2018 Submit Documentation Feedback Copyright © 2010–2018, Texas Instruments Incorporated PCB Layout, Schematics, and Bill of Materials www.ti.com XILINX JTAG HDR FOR CONFIG OR CHIPSCOPE 3p3V JUMER TO SELECT BANK VOUT 3p3V DGND J2 1 2 3 4 5 6 J4 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 DBG2 DBG4 DBG6 DBG8 DBG10 DBG12 DBG14 DBG16 DBG18 DBG20 DBG22 DBG24 DBG26 DBG28 DBG30 DBG32 DBG34 DBG36 DBG38 DBG40 DBG42 DBG44 DBG46 DBG48 J3 U5-4 DBG1 DBG2 DBG3 DBG4 DBG5 DBG6 DBG7 DBG8 DBG9 DBG10 DBG11 DBG12 DBG13 DBG14 DBG15 DBG16 DBG17 DBG18 DBG19 DBG20 DBG21 DBG22 DBG23 DBG24 DBG25 DBG26 DBG27 DBG28 DBG29 DBG30 DBG31 3p3V 50PIN_MALE_HDR DBG32 DBG33 DBG34 DBG35 DBG36 DBG37 DBG38 DBG39 DBG40 DBG41 DBG42 DBG43 DBG44 DBG45 DBG46 DBG47 DBG48 3p3V R9 750R R10 750R R11 750R R12 750R D1 D2 GRN_LED GRN_LED D3 GRN_LED D3 E4 E3 F6 F5 F4 F3 G6 H7 H6 H5 H4 H3 J7 J6 K6 J3 K3 K4 K5 L5 L7 L6 L4 C2 C1 D2 D1 E1 F2 F1 G1 G3 H1 H2 J1 K2 K1 L1 L2 M1 N2 N1 N3 P1 P2 P3 T1 T2 U1 U2 M3 P4 N4 M5 L3 IO_L54N_M3A11_3 VCCO_3 IO_L54P_M3RESET_3 VCCO_3 IO_L50P_M3WE_3 VCCO_3 IO_L55P_M3A13_3 VCCO_3 IO_L55N_M3A14_3 VCCO_3 IO_L51P_M3A10_3 VCCO_3 IO_L51N_M3A4_3 IO_L53N_M3A12_3 IO_L53P_M3CKE_3 IO_L49P_M3A7_3 IO_L49N_M3A2_3 IO_L44P_GCLK21_M3A5_3 IO_L44N_GCLK20_M3A6_3 IO_L47P_M3A0_3 IO_L47N_M3A1_3 IO_L45N_M3ODT_3 IO_L40P_M3DQ6_3 IO_L42N_GCLK24_M3LDM_3 IO_L42P_GCLK25_TRDY2_M3UDM_3 IO_L43N_GCLK22_IRDY2_M3CASN_3 IO_L43P_GCLK23_M3RASN_3 IO_L45P_M3A3_3 IO_L31P_3 IO_L39P_M3LDQS_3 IO_L83P_3 IO_L83N_VREF_3 IO_L52P_M3A8_3 IO_L52N_M3A9_3 IO_L50N_M3BA2_3 IO_L48P_M3BA0_3 IO_L48N_M3BA1_3 IO_L46N_M3CLKN_3 IO_L46P_M3CLK_3 IO_L41N_GCLK26_M3DQ5_3 IO_L41P_GCLK27_M3DQ4_3 IO_L40N_M3DQ7_3 IO_L38P_M3DQ2_3 IO_L38N_M3DQ3_3 IO_L37N_M3DQ1_3 IO_L37P_M3DQ0_3 IO_L36N_M3DQ9_3 IO_L35P_M3DQ10_3 IO_L35N_M3DQ11_3 IO_L1N_VREF_3 IO_L34N_M3UDQSN_3 IO_L34P_M3UDQS_3 IO_L2N_3 IO_L33N_M3DQ13_3 IO_L33P_M3DQ12_3 IO_L32N_M3DQ15_3 IO_L32P_M3DQ14_3 IO_L36P_M3DQ8_3 IO_L2P_3 IO_L1P_3 IO_L31N_VREF_3 IO_L39N_M3LDQSN_3 D4 GRN_LED E2 G4 J2 J5 M4 R2 BNK3_VDDIO C49 1.0uF DGND 1 2 3 3p3V hdr_6pin R72 10.0K hdr_3pin VTEST 3 3p3V U5-5 A17 D15 B18 D16 R16 P13 V17 V2 A1 A18 B13 B7 C16 C3 D10 D5 E15 G12 G17 G2 G5 H10 H8 J11 J15 J4 J9 K10 K8 L11 L9 FPGA_TCK FPGA_TDI FPGA_TMS FPGA_TDO DGND FPGA_DONE_N 3 FPGA_PRGM_N PROGRAM V2 DONE V17 TP20 1 U5-6 E7 E8 F7 E6 G8 F8 G11 F10 F11 E11 D12 C12 C13 A13 NC1 NC2 NC3 NC4 NC5 NC6 NC7 NC8 NC9 NC10 NC11 NC12 NC13 NC14 NC15 NC16 NC17 NC18 NC19 NC20 NC21 NC22 NC23 NC24 NC25 NC26 NC27 NC28 NC29 NC30 NC31 NC32 F12 E12 U15 V15 T12 V12 N10 P11 M10 N9 M11 N11 N7 P8 M8 N8 N6 P7 DGND TCK TDI TMS TDO SUSPEND CMPCS_B_2 DONE_2 PROGRAM_B_2 GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCAUX VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT VCCINT GND GND GND GND GND GND GND GND GND GND GND GND GND GND XC6SLX9CSG324 B1 B17 E14 E5 E9 G10 J12 K7 M9 P10 P14 P5 G7 H11 H9 J10 J8 K11 K9 L10 L8 M12 M7 M17 M2 M6 N13 R1 R14 R18 R4 R9 T16 U12 U6 V1 V18 1p2V DGND XC6SLX9CSG324 XC6SLX9CSG324 BNK3_VDDIO C48 0.1uF 1 2 3 C53 0.1uF C54 0.1uF C55 0.1uF C56 0.1uF C57 0.1uF C58 10uF 1p2V C101 100uF C50 0.1uF C51 0.1uF C52 0.1uF C60 0.1uF C61 0.1uF 3p3V C62 10uF TP1 C63 1.0uF C100 100uF DGND DGND TP3 1 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 1 DBG1 DBG3 DBG5 DBG7 DBG9 DBG11 DBG13 DBG15 DBG17 DBG19 DBG21 DBG23 DBG25 DBG27 DBG29 DBG31 DBG33 DBG35 DBG37 DBG39 DBG41 DBG43 DBG45 DBG47 1 2 3 4 5 6 DGND DGND DGND Figure 11. SPIO-4 FPGA DEBUG, JTAG Interfaces and Power SNAU112A – December 2010 – Revised May 2018 Submit Documentation Feedback SPIO-4 Precision Signal-Path Controller Board Copyright © 2010–2018, Texas Instruments Incorporated 17 PCB Layout, Schematics, and Bill of Materials www.ti.com 3p3V DUT INPUT LEVEL SHIFTERS U6 8 1 VCCB VCCA DUT_VDDIO 7 6 REF_CLKA SDRDYN_A B1 B2 A1 A2 DIRA2B GND 8 7 6 VCCB B1 B2 VCCA A1 A2 DIRA2B GND 7 6 SCS1N_A_R R17 33R SCLK_A B1 B2 SCLK_A_R A1 A2 DIRA2B GND 1 U5-1 R15 33R 2 3 DUTMISO_A_R 5 4 CPUMISO_A_R DUTMISO_A CPUMISO_A 3 R53 0R RSTUFF OPTIONS TO SUPPORT CPU ONLY 8 R18 33R 7 6 SCS0N_A_R R19 33R SMOSI_A VCCB B1 B2 SMOSI_A_R VCCA A1 A2 DIRA2B GND 8 R20 33R 7 6 SCS2N_A_R VCCB B1 B2 VCCA A1 A2 DIRA2B GND CAPABILITY (NO FPGA) 3p3V CPU_CS1N_A 3 R55 0R DUTCS1N_A DUTSCLK_A 5 4 CPU_SCLK_A 3 R59 0R 1 SCS0N_B SCLK_B SMISO_B SMOSI_B SDRDYN_B SCS1N_B SCS2N_B SCS3N_B DGND CPU_CS0N_A 3 2 3 R56 0R DUTCS0N_A DUTMOSI_A 5 4 CPU_MOSI_A 3 R57 0R SN74LVC2T45SSOP U10 SCS2N_A DGND 2 3 SN74LVC2T45SSOP U9 SCS0N_A 3 3p3V DUT OUTPUT LEVEL SHIFTERS U8 8 1 VCCB VCCA R16 33R DUTDRDYN_A DGND SN74LVC2T45SSOP SCS1N_A DUTCLKIN 3 DUTCLKIN DUTCLKIN_R R14 33R DUTDRDYN_R 5 4 SN74LVC2T45SSOP U7 SMISO_A R13 33R 2 3 1 DGND DUTCS2N_A 2 3 CPU_CS2N_A 3 R58 0R 5 4 SN74LVC2T45SSOP DGND C99 0.1uF C98 0.1uF C70 0.1uF C71 0.1uF C72 0.1uF C73 10uF DUT_PWR_EN C68 0.1uF C69 0.1uF C105 0.1uF C104 0.1uF C106 1.0uF A8 A11 A12 A10 A9 A14 A15 A16 A3 A5 A6 A4 A7 D4 C4 B2 A2 D6 C6 B3 B4 C5 C7 B6 D8 C8 B8 D9 C9 B9 D11 C11 C10 G9 F9 B11 B12 B14 F13 E13 C15 D14 C14 B16 IO_L33N_0 IO_L39N_0 IO_L41N_0 IO_L37N_GCLK12_0 IO_L35N_GCLK16_0 IO_L62N_VREF_0 IO_L64N_SCP4_0 IO_L66N_SCP0_0 IO_L4N_0 IO_L6N_0 IO_L8N_VREF_0 IO_L5N_0 IO_L10N_0 IO_L1P_HSWAPEN_0 IO_L1N_VREF_0 IO_L2P_0 IO_L2N_0 IO_L3P_0 IO_L3N_0 IO_L4P_0 IO_L5P_0 IO_L6P_0 IO_L10P_0 IO_L8P_0 IO_L11P_0 IO_L11N_0 IO_L33P_0 IO_L34P_GCLK19_0 IO_L34N_GCLK18_0 IO_L35P_GCLK17_0 IO_L36P_GCLK15_0 IO_L36N_GCLK14_0 IO_L37P_GCLK13_0 IO_L38P_0 IO_L38N_VREF_0 IO_L39P_0 IO_L41P_0 IO_L62P_0 IO_L63P_SCP7_0 IO_L63N_SCP6_0 IO_L64P_SCP5_0 IO_L65P_SCP3_0 IO_L65N_SCP2_0 IO_L66P_SCP1_0 VCCO_0 VCCO_0 VCCO_0 VCCO_0 VCCO_0 VCCO_0 B10 B15 B5 D13 D7 E10 XC6SLX9CSG324 DGND DGND DGND R54 DNS DUT_PRSNT_N 3 J6 3 DUT_SDA 3p3V_DUT 11 DUT_VDDIO 3 DUT_PWR_EN SCS0N_A SCLK_A SMISO_A SMOSI_A REF_CLKA DUT_SDA DUT_VDDIO DUT_PWR_EN C109 1.0uF SCS0N_B SCLK_B SMISO_B SMOSI_B DGND 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 32PIN_FEM_HDR_RA R79 1.5K 3p3V_DUT SDRDYN_A SCS1N_A DUT_SCL SCS2N_A 3p3V DUT_SCL 3 DGND C103 0.47uF 5p0V_DUT C65 0.1uF C67 1.0uF 5VDUT_FLTERD SDRDYN_B SCS1N_B SCS2N_B SCS3N_B C46 0.1uF C108 0.1uF C66 0.1uF C64 0.1uF DGND DGND DUT_SCL R80 1.5K DUT_SDA Figure 12. SPIO4 FPGA GPSI32 Interface 18 SPIO-4 Precision Signal-Path Controller Board SNAU112A – December 2010 – Revised May 2018 Submit Documentation Feedback Copyright © 2010–2018, Texas Instruments Incorporated PCB Layout, Schematics, and Bill of Materials www.ti.com Micro SD Card 3p3V 3p3V R21 10.0K R22 46.4K R23 46.4K R24 46.4K 3p3V R25 46.4K R26 10.0K J7 3 3 3 DA2 DA3 CDA 3 CK 3 3 DA0 DA1 1 2 3 4 5 6 7 8 DA2 DA3 CDA CK DA0 DA1 DAT2 CD/DAT3 CMD VDD CLK VSS DAT0 DAT1 CD GND1 GND2 GND3 GND4 13 CD CD 3 9 10 11 12 MICRO_SD DGND DGND 3p3V C74 0.1uF C75 10uF DGND Figure 13. SPIO-4 Micro SD Card SNAU112A – December 2010 – Revised May 2018 Submit Documentation Feedback SPIO-4 Precision Signal-Path Controller Board Copyright © 2010–2018, Texas Instruments Incorporated 19 PCB Layout, Schematics, and Bill of Materials www.ti.com USB, CPU JTAG J8 USB TYPE B PORT R27 2 2 6 5 3 2 4 1 VUSB_RTN DHSD_P DHSD_M VUSB_DET 3,11 VUSB_DET 0R R28 46.4K VUSB R29 68K 0R C78 10pF C76 0.1uF C77 E_GND1 E_GND0 D+ DGND VBUS VUSB_IN F1 4.7uF DGND DGND DGND DGND 3p3V R30 10.0K R31 10.0K R32 10.0K R33 10.0K R34 10.0K J9 IDC20-2.54mm 2 2 2 TDI TMS TCK 2 2 TDO RSTN R35 0R 1 3 5 7 9 11 13 15 17 19 VTref Vsupply nTRST GND1 TDI GND2 TMS GND3 TCK GND4 RTCK GND5 TDO GND6 nSRST GND7 DBGRQ GND8 DBGACK GND9 2 4 6 8 10 12 14 16 18 20 C79 0.1uF C80 10uF DGND DGND Figure 14. USB, CPU JTAG 20 SPIO-4 Precision Signal-Path Controller Board SNAU112A – December 2010 – Revised May 2018 Submit Documentation Feedback Copyright © 2010–2018, Texas Instruments Incorporated PCB Layout, Schematics, and Bill of Materials www.ti.com LP3910 5 Vin from Wall Supply ~5 Vin from USB Vin Switching Li-Ion Chrg Circuit Logic & Cntrl LDO1 FPGAIO LDO2 1.8V_SRAM** Buck1 1.2V_FPGA** Buck2 3.3V_DUT_SW** Buck/ Boost 3.3V_SPIO FET SW 3.3V_DUT TO DUT BOOST Reg NRST_PWR 3.3V_SPIO 5V FPGAIO I2C 1.8V_SRAM 3.3V_SPIO 1.2V_SRAM J3 VDDIO LDO VDDcore SAM3U CPU VDDIO VDDIO VDDCore VDDIO VDDCore VDDIO IO SD Card PSRAM FPGA J4 Figure 15. SPIO-4 Power Distribution SNAU112A – December 2010 – Revised May 2018 Submit Documentation Feedback SPIO-4 Precision Signal-Path Controller Board Copyright © 2010–2018, Texas Instruments Incorporated 21 PCB Layout, Schematics, and Bill of Materials www.ti.com 3p3V 3.3V, 1.2V, 1.8V, DUT Power Supply 1p8V 2 out 7 21 22 36 VIN 5VIN PTC_1A_1812 D12 DIODE ZENER C86 C38 C39 C87 C82 C83 C84 4.7uF 10uF 10uF 10uF 10uF 10uF 4.7uF C85 0.1uF 46 42 41 DGND PJ037A DGND DGND 47 R44 1.5K 3p3V 45 VUSB R45 1.5K VIN1 VIN2 VIN3 VIN4 VLDO1 VLDO2 VFB1 VBUCK1 BCKGND1 VDD1 VDD2 VDD3 VDDIO VFB2 VBUCK2 BCKGND2 CHG_DET USBPWR VBBFB VBBOUT VBBL1 VBBL2 BBGND1 BBGND2 VBATT A B 29 27 3 SDA 3 SCL SW2 PWR_ON DGND R49 10.0K 3 26 17 5 9 37 38 TP_PWRACK TP_USBSP 1 TP9 DGND USBISEL TP10 1 2 44 43 VBATT C102 J12 3p3V + - TP_PWRACK 1 2 10uF C92 100uF 1 TMP_SNS 12 11 DNS R61 10.0K TP8 D6 I2C_SDA I2C_SCL ON/~OFF BUCK1EN LDO2EN POWERACK USBSUSP USBISEL ~NRST ONSTAT ~IRQB CHG STAT VBATT1 VBATT2 VBATT3 VREFH I_SEN I_REF TS ADC1 ADC2 DGND AGND DAP LP3910 8 6 3p3V_DUT R36 750R 1p8V 18 20 19 5p0V_DUT R39 1.5K C88 1 1V2_SW 2 L3 2.2uH 10uF C89 10uF DGND R41 1.5K 3V3_DUT_SW VIN 1 DGND 31 32 35 33 34 39 2 L4 DGND 2.2uH 3p3V 10uF DGND 3V3_D_SW1 1 2.2uH R46 R47 R48 10.0K 10.0K 10.0K C91 1p2V 1 TP21 1 VREFH ISEN R51 4.64k_1% IREF R52 121K C93 0.1uF 40 3 49 D11 650 NRST_PWR 2 ONSTAT 3 IRQ_PWR_N 3 TP_CHG TP_STAT 4 10 48 R42 GRN_LED 10uF DGND 3V3_D_SW2 DGND 14 30 13 15 16 3p3V 2 L5 D10 GRN_LED C90 3p3V D8 GRN_LED 3p3V 28 25 23 24 D7 GRN_LED 1p2V 3 2 RING in D9 1 F2 1 1 R37 0R GRN_LED C81 1.0uF DGND 1 R43 10.0K Q1 2 U11 DIODE_SCHOTTKY_1A TIP D5 GRN_LED VTEST TP5 J10 R38 750R MMBT3904 TP22 DGND DGND DGND 1 3,9 J13 1 2 3 1 2 3 7 VUSB_DET DGND R60 DUT_VDDIO 10.0K DUT_VDDIO_MEAS DNS R86 9.2K R62 100K DGND Connector for using LI-Ion w/internal temp sense DGND C112 3p3V_DUT 100MHZ FERRITE U14 0.1uF 3V3_DUT_SW R63 680K 3 DUT_3VEN 4 6 5 VIN R1/C1 OFF VOUTA VOUTB R2 FDG6342L_SC70-6 R85 10.0K 3 2 C111 1 10uF U12 8 9 C94 L8 10uF R40 100K 1.0uF DGND DGND DGND DGND 3 CP1+ C96 CP1- 10 7 4 VIN1 VIN2 VOUT1 VOUT2 GND1 GND2 GND3 GND4 SD_N 3 5 6 DAP 5p0V_DUT 100MHZ FERRITE 100MHZ FERRITE 5V_DUT_OUT C95 C97 10uF C1+ C1- DUT_5VEN R64 10.0K 1 2 L6 L7 C107 C110 10uF 10uF 10uF DGND DGND DGND LM2750 DGND DGND Test Points 5p0V_DUT 1 3p3V_DUT 1 1p8V 1 DGND 1p2V 1 DGND 3p3V 1 1 TP18 1 TP16 TP11 TP12 TP13 TP14 TP15 Figure 16. 3.3-V, 1.2-V, 1.8-V, and DUT Power Supplies 22 SPIO-4 Precision Signal-Path Controller Board SNAU112A – December 2010 – Revised May 2018 Submit Documentation Feedback Copyright © 2010–2018, Texas Instruments Incorporated PCB Layout, Schematics, and Bill of Materials www.ti.com 3.3 Bill of Materials (BOM) Table 5 shows the bill of materials (BOM) for the SPIO-4 precision signal-path controller board. Table 5. Bill of Materials Item Manufacturer Name Manufacturer No. 1 CAP CER 10000PF 25V Y5V 0603 Description Qty 1 C1 Reference MURATA ELECTRONICS (VA) GRM188F51E103ZA01D 2 CAP CER .47UF 10V X7R 0603 1 C103 TAIYO YUDEN (VA) LMK107B7474KA-T YAGEO (VA) CC0603KRX7R7BB104 3 CAP .10UF 16V CERAMIC X7R 0603 58 C2,C4,C6,C7,C8,C9,C10,C11,C12,C14,C15,C16, C17,C18,C20,C23,C26,C27,C31,C33,C35,C36,C40, C41,C42,C43,C44,C46,C48,C50,C51,C52,C53,C54, C55,C56,C57,C60,C61,C64,C65,C66,C68,C69, C70,C71,C72,C74,C76,C79,C85,C93,C98,C99,C104, C105, C108,C112 4 CAP CERAMIC 10PF 50V NP0 0603 2 C21,C78 KEMET (VA) C0603C100J5GACTU 5 CAP CER 15PF 50V C0G 5% 0603 4 C24,C25,C29,C30 TDK CORPORATION (VA) C1608C0G1H150J 6 CAP CER 4.7UF 10V Y5V 0603 5 C28,C32,C77,C84,C86 MURATA ELECTRONICS (VA) GRM188F51A475ZE20D TDK CORPORATION (VA) C1608Y5V0J106Z 7 CAP CER 10UF 6.3V Y5V 0603 22 C3,C5,C13,C19,C22,C37,C38,C39,C45,C58,C62, C73,C75,C80,C82,C83,C87,C88,C89,C90,C91,C102 8 CAP CER 1.0UF 10V X7R 0603 9 C34,C47,C49,C59,C63,C67,C81,C106,C109 TAIYO YUDEN (VA) LMK107B7105KA-T 9 CAP CER 100UF 10V X5R 1210 3 C92,C100,C101 TAIYO YUDEN (VA) LMK325BJ107MM-T 10 CAP CER 10UF 10V X5R 0805 6 C94,C95,C97,C107,C110,C111 JOHANSON DIELECTRICS INC (VA) 100R15X106KV4E 11 CAP CER 1.0UF 16V X7R 20% 1206 1 C96 TDK CORPORATION (VA) C3216X7R1C105M/0.85 LG M67K-G1J2-24-0-2-R18-Z 12 LED TOPLED 570NM GREEN CLR SMD 10 D1,D2,D3,D4,D5,D6,D7,D8,D10,D11 OSRAM OPTO SEMICONDUCTORS INC(VA) 13 DIODE ZENER 6.2V 3W DO214AA 1 D12 MICRO COMMERCIAL CO (VA) 3SMBJ5920B-TP 14 DIODE SCHOTTKY 1A 20V SOD-123 1 D9 MICRO COMMERCIAL CO (VA) MBRX120LF-TP 15 RES 0.0 OHM 1/2W 1210 SMD 1 F1 VISHAY/DALE (VA) CRCW12100000Z0EA 16 PTC RESETTABLE 1.10A 16V 1812 1 F2 BOURNS INC (VA) MF-MSMF110/16-2 17 CONN HEADER VERT 5POS .100 TIN 1 J1 TYCO ELECTRONICS AMP 640454-5 18 CON PWR JCK 2.0 X 6.5MM W/O SW 1 J10 CUI INC PJ-037A 19 CONN HEADER 10POS 2MM VERT T/H 1 J14 3M 951110-8622-AR 20 CONN HEADER VERT SGL 6POS GOLD 1 J2 3M 961106-6404-AR 21 BERGSTIK II .100" SR STRAIGHT 1 J3 FCI 68000-203HLF 22 CONN FEMALE 32POS DL .1" R/A TIN 1 J6 SULLINS CONNECTOR SOLUTIONS PPTC162LJBN-RC 23 CONN MICRO SD R/A HING TYPE SMD 1 J7 HIROSE ELECTRIC CO LTD (VA) DM3C-SF 24 CONN RCPT USB TYPE B R/A PCB 1 J8 FCI 61729-0010BLF 25 CONN HEADER 2.54MM 20POS GOLD 1 J9 SULLINS CONNECTOR SOLUTIONS SBH11-PBPC-D10-ST-BK 26 BERGSTIK II .100" SR STRAIGHT 1 JP1 FCI 68001-202HLF SNAU112A – December 2010 – Revised May 2018 Submit Documentation Feedback SPIO-4 Precision Signal-Path Controller Board Copyright © 2010–2018, Texas Instruments Incorporated 23 PCB Layout, Schematics, and Bill of Materials www.ti.com Table 5. Bill of Materials (continued) Item 24 Description Qty Reference Manufacturer Name Manufacturer No. 27 INDUCTOR 10UH 100MA 0805 2 L1,L2 MURATA ELECTRONICS (VA) LQM21FN100M70L 28 INDUCTOR 2.2UH 1.20A 20% 1210 3 L3,L4,L5 TDK CORPORATION (VA) NLCV32T-2R2M-PFR 29 FERRITE CHIP 2700 OHM 200MA 0805 3 L6,L7,L8 MURATA ELECTRONICS (VA) BLM21BD272SN1L 30 TRANSISTOR NPN GP 40V SOT23 1 Q1 MICRO COMMERCIAL CO (VA) MMBT3904-TP 31 RES 33.0 OHM 1/10W 1% 0603 SMD 8 R13,R14,R15,R16,R17,R18,R19,R20 YAGEO (VA) RC0603FR-0733RL 32 RES 39 OHM 1/10W 5% 0603 SMD 2 R2,R3 PANASONIC - ECG (VA) ERJ-3GEYJ390V STACKPOLE ELECTRONICS INC (VA) RMCF0603FT10K0 33 RES 10K OHM 1/10W 1% 0603 SMD 17 R21,R26,R30,R31,R32,R33,R34,R43,R46,R47,R48, R49,R60,R61, R64,R72,R85 34 RES 46.4K OHM 1/10W 1% 0603 SMD 5 R22,R23,R24,R25,R28 STACKPOLE ELECTRONICS INC (VA) RMCF0603FT46K4 35 RES 68K OHM 1/10W 5% 0603 SMD 1 R29 PANASONIC - ECG (VA) ERJ-3GEYJ683V 36 RES 1.5K OHM 1/10W 5% 0603 SMD 7 R39,R41,R44,R45,R79,R80,R82 STACKPOLE ELECTRONICS INC (VA) RMCF0603JT1K50 37 RES 6.8K OHM 1/10W 1% 0603 SMD 1 R4 STACKPOLE ELECTRONICS INC (VA) RMCF0603FT6K80 38 RES 100K OHM 1/10W 1% 0603 SMD 2 R40,R62 STACKPOLE ELECTRONICS INC (VA) RMCF0603FT100K 39 RES 649 OHM 1/10W 1% 0603 SMD 1 R42 PANASONIC - ECG (VA) ERJ-3EKF6490V STACKPOLE ELECTRONICS INC (VA) RMCF0603ZT0R00 40 RES 0.0 OHM 1/10W 0603 SMD 15 R5,R6,R27,R35,R37,R53,R55,R56,R57,R58,R59, R66,R74,R76,R78 41 RES 4.64K OHM 1/10W 1% 0603 SMD 1 R51 PANASONIC - ECG (VA) ERJ-3EKF4641V 42 RES 121K OHM 1/10W 1% 0603 SMD 1 R52 STACKPOLE ELECTRONICS INC (VA) RMCF0603FT121K 43 RES 680K OHM 1/10W 5% 0603 SMD 1 R63 PANASONIC - ECG (VA) ERJ-3GEYJ684V 44 RES 9.1K OHM 1/10W 5% 0603 SMD 1 R86 PANASONIC - ECG (VA) ERJ-3GEYJ912V 45 RES 750 OHM 1/10W 1% 0603 SMD 6 R9,R10,R11,R12,R36,R38 STACKPOLE ELECTRONICS INC (VA) RMCF0603FT750R OMRON ELECTRONICS INC-ECB DIV (VA) B3U-1000P 46 SWITCH TACT SPST W/O GND SMD 2 SW1,SW2 47 PC TEST POINT MINIATURE SMT 14 TP1,TP3,TP4,TP5,TP7,TP11,TP12,TP13,TP14,TP15, KEYSTONE ELECTRONICS (VA) TP16,TP17, TP18,TP19 5015 48 ATSAM3U4EA-AU-ND 1 U1 ATSAM3U4EA-AU-ND 49 LP3910SQ-AA 1 U11 LP3910SQ-AA 50 LM2750LD-5.0CT-ND 1 U12 51 IC LOAD SWITCH INTEGRATED SC70-6 1 U14 FAIRCHILD SEMICONDUCTOR (VA) FDG6342L 52 IC PSRAM 128MBIT 70NS 54VFBGA 1 U4 MICRON TECHNOLOGY INC (VA) MT45W8MW16BGX-701 IT TR 53 XC6SLX16-2CSG324C 1 U5 54 IC BUS TRANSCVR 2BIT N-INV SM8 5 U6,U7,U8,U9,U10 TEXAS INSTRUMENTS (VA) SN74LVC2T45DCTR 55 CRYSTAL 12.00 MHZ 8PF SMD 1 Y1 NDK (VA) NX5032GA 12MHZ AT-W 56 CRYSTAL 32.768KHZ 12.5PF SMD 1 Y2 ABRACON CORPORATION (VA) ABS10-32.768KHZ-T 57 PCB Fab 1 Fab TEXAS INSTRUMENTS (VA) 551600474-001 LM2750LD-5.0CT-ND XC6SLX16-2CSG324C SPIO-4 Precision Signal-Path Controller Board SNAU112A – December 2010 – Revised May 2018 Submit Documentation Feedback Copyright © 2010–2018, Texas Instruments Incorporated Revision History www.ti.com Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. Changes from Original (December 2010) to A Revision ................................................................................................ Page • Changed document to Texas Instruments format..................................................................................... 1 SNAU112A – December 2010 – Revised May 2018 Submit Documentation Feedback Copyright © 2010–2018, Texas Instruments Incorporated Revision History 25 STANDARD TERMS FOR EVALUATION MODULES 1. Delivery: TI delivers TI evaluation boards, kits, or modules, including any accompanying demonstration software, components, and/or documentation which may be provided together or separately (collectively, an “EVM” or “EVMs”) to the User (“User”) in accordance with the terms set forth herein. User's acceptance of the EVM is expressly subject to the following terms. 1.1 EVMs are intended solely for product or software developers for use in a research and development setting to facilitate feasibility evaluation, experimentation, or scientific analysis of TI semiconductors products. EVMs have no direct function and are not finished products. EVMs shall not be directly or indirectly assembled as a part or subassembly in any finished product. For clarification, any software or software tools provided with the EVM (“Software”) shall not be subject to the terms and conditions set forth herein but rather shall be subject to the applicable terms that accompany such Software 1.2 EVMs are not intended for consumer or household use. EVMs may not be sold, sublicensed, leased, rented, loaned, assigned, or otherwise distributed for commercial purposes by Users, in whole or in part, or used in any finished product or production system. 2 Limited Warranty and Related Remedies/Disclaimers: 2.1 These terms do not apply to Software. The warranty, if any, for Software is covered in the applicable Software License Agreement. 2.2 TI warrants that the TI EVM will conform to TI's published specifications for ninety (90) days after the date TI delivers such EVM to User. Notwithstanding the foregoing, TI shall not be liable for a nonconforming EVM if (a) the nonconformity was caused by neglect, misuse or mistreatment by an entity other than TI, including improper installation or testing, or for any EVMs that have been altered or modified in any way by an entity other than TI, (b) the nonconformity resulted from User's design, specifications or instructions for such EVMs or improper system design, or (c) User has not paid on time. Testing and other quality control techniques are used to the extent TI deems necessary. TI does not test all parameters of each EVM. User's claims against TI under this Section 2 are void if User fails to notify TI of any apparent defects in the EVMs within ten (10) business days after delivery, or of any hidden defects with ten (10) business days after the defect has been detected. 2.3 TI's sole liability shall be at its option to repair or replace EVMs that fail to conform to the warranty set forth above, or credit User's account for such EVM. TI's liability under this warranty shall be limited to EVMs that are returned during the warranty period to the address designated by TI and that are determined by TI not to conform to such warranty. If TI elects to repair or replace such EVM, TI shall have a reasonable time to repair such EVM or provide replacements. Repaired EVMs shall be warranted for the remainder of the original warranty period. Replaced EVMs shall be warranted for a new full ninety (90) day warranty period. 3 Regulatory Notices: 3.1 United States 3.1.1 Notice applicable to EVMs not FCC-Approved: FCC NOTICE: This kit is designed to allow product developers to evaluate electronic components, circuitry, or software associated with the kit to determine whether to incorporate such items in a finished product and software developers to write software applications for use with the end product. This kit is not a finished product and when assembled may not be resold or otherwise marketed unless all required FCC equipment authorizations are first obtained. Operation is subject to the condition that this product not cause harmful interference to licensed radio stations and that this product accept harmful interference. Unless the assembled kit is designed to operate under part 15, part 18 or part 95 of this chapter, the operator of the kit must operate under the authority of an FCC license holder or must secure an experimental authorization under part 5 of this chapter. 3.1.2 For EVMs annotated as FCC – FEDERAL COMMUNICATIONS COMMISSION Part 15 Compliant: CAUTION This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation. Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment. FCC Interference Statement for Class A EVM devices NOTE: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense. FCC Interference Statement for Class B EVM devices NOTE: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures: • • • • Reorient or relocate the receiving antenna. Increase the separation between the equipment and receiver. Connect the equipment into an outlet on a circuit different from that to which the receiver is connected. Consult the dealer or an experienced radio/TV technician for help. 3.2 Canada 3.2.1 For EVMs issued with an Industry Canada Certificate of Conformance to RSS-210 or RSS-247 Concerning EVMs Including Radio Transmitters: This device complies with Industry Canada license-exempt RSSs. Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device. Concernant les EVMs avec appareils radio: Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes: (1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement. Concerning EVMs Including Detachable Antennas: Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and maximum (or lesser) gain approved for the transmitter by Industry Canada. To reduce potential radio interference to other users, the antenna type and its gain should be so chosen that the equivalent isotropically radiated power (e.i.r.p.) is not more than that necessary for successful communication. This radio transmitter has been approved by Industry Canada to operate with the antenna types listed in the user guide with the maximum permissible gain and required antenna impedance for each antenna type indicated. Antenna types not included in this list, having a gain greater than the maximum gain indicated for that type, are strictly prohibited for use with this device. Concernant les EVMs avec antennes détachables Conformément à la réglementation d'Industrie Canada, le présent émetteur radio peut fonctionner avec une antenne d'un type et d'un gain maximal (ou inférieur) approuvé pour l'émetteur par Industrie Canada. Dans le but de réduire les risques de brouillage radioélectrique à l'intention des autres utilisateurs, il faut choisir le type d'antenne et son gain de sorte que la puissance isotrope rayonnée équivalente (p.i.r.e.) ne dépasse pas l'intensité nécessaire à l'établissement d'une communication satisfaisante. Le présent émetteur radio a été approuvé par Industrie Canada pour fonctionner avec les types d'antenne énumérés dans le manuel d’usage et ayant un gain admissible maximal et l'impédance requise pour chaque type d'antenne. Les types d'antenne non inclus dans cette liste, ou dont le gain est supérieur au gain maximal indiqué, sont strictement interdits pour l'exploitation de l'émetteur 3.3 Japan 3.3.1 Notice for EVMs delivered in Japan: Please see http://www.tij.co.jp/lsds/ti_ja/general/eStore/notice_01.page 日本国内に 輸入される評価用キット、ボードについては、次のところをご覧ください。 http://www.tij.co.jp/lsds/ti_ja/general/eStore/notice_01.page 3.3.2 Notice for Users of EVMs Considered “Radio Frequency Products” in Japan: EVMs entering Japan may not be certified by TI as conforming to Technical Regulations of Radio Law of Japan. If User uses EVMs in Japan, not certified to Technical Regulations of Radio Law of Japan, User is required to follow the instructions set forth by Radio Law of Japan, which includes, but is not limited to, the instructions below with respect to EVMs (which for the avoidance of doubt are stated strictly for convenience and should be verified by User): 1. 2. 3. Use EVMs in a shielded room or any other test facility as defined in the notification #173 issued by Ministry of Internal Affairs and Communications on March 28, 2006, based on Sub-section 1.1 of Article 6 of the Ministry’s Rule for Enforcement of Radio Law of Japan, Use EVMs only after User obtains the license of Test Radio Station as provided in Radio Law of Japan with respect to EVMs, or Use of EVMs only after User obtains the Technical Regulations Conformity Certification as provided in Radio Law of Japan with respect to EVMs. Also, do not transfer EVMs, unless User gives the same notice above to the transferee. Please note that if User does not follow the instructions above, User will be subject to penalties of Radio Law of Japan. 【無線電波を送信する製品の開発キットをお使いになる際の注意事項】 開発キットの中には技術基準適合証明を受けて いないものがあります。 技術適合証明を受けていないもののご使用に際しては、電波法遵守のため、以下のいずれかの 措置を取っていただく必要がありますのでご注意ください。 1. 2. 3. 電波法施行規則第6条第1項第1号に基づく平成18年3月28日総務省告示第173号で定められた電波暗室等の試験設備でご使用 いただく。 実験局の免許を取得後ご使用いただく。 技術基準適合証明を取得後ご使用いただく。 なお、本製品は、上記の「ご使用にあたっての注意」を譲渡先、移転先に通知しない限り、譲渡、移転できないものとします。 上記を遵守頂けない場合は、電波法の罰則が適用される可能性があることをご留意ください。 日本テキサス・イ ンスツルメンツ株式会社 東京都新宿区西新宿6丁目24番1号 西新宿三井ビル 3.3.3 Notice for EVMs for Power Line Communication: Please see http://www.tij.co.jp/lsds/ti_ja/general/eStore/notice_02.page 電力線搬送波通信についての開発キットをお使いになる際の注意事項については、次のところをご覧ください。http:/ /www.tij.co.jp/lsds/ti_ja/general/eStore/notice_02.page 3.4 European Union 3.4.1 For EVMs subject to EU Directive 2014/30/EU (Electromagnetic Compatibility Directive): This is a class A product intended for use in environments other than domestic environments that are connected to a low-voltage power-supply network that supplies buildings used for domestic purposes. In a domestic environment this product may cause radio interference in which case the user may be required to take adequate measures. 4 EVM Use Restrictions and Warnings: 4.1 EVMS ARE NOT FOR USE IN FUNCTIONAL SAFETY AND/OR SAFETY CRITICAL EVALUATIONS, INCLUDING BUT NOT LIMITED TO EVALUATIONS OF LIFE SUPPORT APPLICATIONS. 4.2 User must read and apply the user guide and other available documentation provided by TI regarding the EVM prior to handling or using the EVM, including without limitation any warning or restriction notices. The notices contain important safety information related to, for example, temperatures and voltages. 4.3 Safety-Related Warnings and Restrictions: 4.3.1 User shall operate the EVM within TI’s recommended specifications and environmental considerations stated in the user guide, other available documentation provided by TI, and any other applicable requirements and employ reasonable and customary safeguards. Exceeding the specified performance ratings and specifications (including but not limited to input and output voltage, current, power, and environmental ranges) for the EVM may cause personal injury or death, or property damage. If there are questions concerning performance ratings and specifications, User should contact a TI field representative prior to connecting interface electronics including input power and intended loads. Any loads applied outside of the specified output range may also result in unintended and/or inaccurate operation and/or possible permanent damage to the EVM and/or interface electronics. Please consult the EVM user guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative. During normal operation, even with the inputs and outputs kept within the specified allowable ranges, some circuit components may have elevated case temperatures. These components include but are not limited to linear regulators, switching transistors, pass transistors, current sense resistors, and heat sinks, which can be identified using the information in the associated documentation. When working with the EVM, please be aware that the EVM may become very warm. 4.3.2 EVMs are intended solely for use by technically qualified, professional electronics experts who are familiar with the dangers and application risks associated with handling electrical mechanical components, systems, and subsystems. User assumes all responsibility and liability for proper and safe handling and use of the EVM by User or its employees, affiliates, contractors or designees. User assumes all responsibility and liability to ensure that any interfaces (electronic and/or mechanical) between the EVM and any human body are designed with suitable isolation and means to safely limit accessible leakage currents to minimize the risk of electrical shock hazard. User assumes all responsibility and liability for any improper or unsafe handling or use of the EVM by User or its employees, affiliates, contractors or designees. 4.4 User assumes all responsibility and liability to determine whether the EVM is subject to any applicable international, federal, state, or local laws and regulations related to User’s handling and use of the EVM and, if applicable, User assumes all responsibility and liability for compliance in all respects with such laws and regulations. User assumes all responsibility and liability for proper disposal and recycling of the EVM consistent with all applicable international, federal, state, and local requirements. 5. Accuracy of Information: To the extent TI provides information on the availability and function of EVMs, TI attempts to be as accurate as possible. However, TI does not warrant the accuracy of EVM descriptions, EVM availability or other information on its websites as accurate, complete, reliable, current, or error-free. 6. Disclaimers: 6.1 EXCEPT AS SET FORTH ABOVE, EVMS AND ANY MATERIALS PROVIDED WITH THE EVM (INCLUDING, BUT NOT LIMITED TO, REFERENCE DESIGNS AND THE DESIGN OF THE EVM ITSELF) ARE PROVIDED "AS IS" AND "WITH ALL FAULTS." TI DISCLAIMS ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, REGARDING SUCH ITEMS, INCLUDING BUT NOT LIMITED TO ANY EPIDEMIC FAILURE WARRANTY OR IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADE SECRETS OR OTHER INTELLECTUAL PROPERTY RIGHTS. 6.2 EXCEPT FOR THE LIMITED RIGHT TO USE THE EVM SET FORTH HEREIN, NOTHING IN THESE TERMS SHALL BE CONSTRUED AS GRANTING OR CONFERRING ANY RIGHTS BY LICENSE, PATENT, OR ANY OTHER INDUSTRIAL OR INTELLECTUAL PROPERTY RIGHT OF TI, ITS SUPPLIERS/LICENSORS OR ANY OTHER THIRD PARTY, TO USE THE EVM IN ANY FINISHED END-USER OR READY-TO-USE FINAL PRODUCT, OR FOR ANY INVENTION, DISCOVERY OR IMPROVEMENT, REGARDLESS OF WHEN MADE, CONCEIVED OR ACQUIRED. 7. USER'S INDEMNITY OBLIGATIONS AND REPRESENTATIONS. USER WILL DEFEND, INDEMNIFY AND HOLD TI, ITS LICENSORS AND THEIR REPRESENTATIVES HARMLESS FROM AND AGAINST ANY AND ALL CLAIMS, DAMAGES, LOSSES, EXPENSES, COSTS AND LIABILITIES (COLLECTIVELY, "CLAIMS") ARISING OUT OF OR IN CONNECTION WITH ANY HANDLING OR USE OF THE EVM THAT IS NOT IN ACCORDANCE WITH THESE TERMS. THIS OBLIGATION SHALL APPLY WHETHER CLAIMS ARISE UNDER STATUTE, REGULATION, OR THE LAW OF TORT, CONTRACT OR ANY OTHER LEGAL THEORY, AND EVEN IF THE EVM FAILS TO PERFORM AS DESCRIBED OR EXPECTED. 8. Limitations on Damages and Liability: 8.1 General Limitations. IN NO EVENT SHALL TI BE LIABLE FOR ANY SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF THESE TERMS OR THE USE OF THE EVMS , REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. EXCLUDED DAMAGES INCLUDE, BUT ARE NOT LIMITED TO, COST OF REMOVAL OR REINSTALLATION, ANCILLARY COSTS TO THE PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, RETESTING, OUTSIDE COMPUTER TIME, LABOR COSTS, LOSS OF GOODWILL, LOSS OF PROFITS, LOSS OF SAVINGS, LOSS OF USE, LOSS OF DATA, OR BUSINESS INTERRUPTION. NO CLAIM, SUIT OR ACTION SHALL BE BROUGHT AGAINST TI MORE THAN TWELVE (12) MONTHS AFTER THE EVENT THAT GAVE RISE TO THE CAUSE OF ACTION HAS OCCURRED. 8.2 Specific Limitations. IN NO EVENT SHALL TI'S AGGREGATE LIABILITY FROM ANY USE OF AN EVM PROVIDED HEREUNDER, INCLUDING FROM ANY WARRANTY, INDEMITY OR OTHER OBLIGATION ARISING OUT OF OR IN CONNECTION WITH THESE TERMS, , EXCEED THE TOTAL AMOUNT PAID TO TI BY USER FOR THE PARTICULAR EVM(S) AT ISSUE DURING THE PRIOR TWELVE (12) MONTHS WITH RESPECT TO WHICH LOSSES OR DAMAGES ARE CLAIMED. THE EXISTENCE OF MORE THAN ONE CLAIM SHALL NOT ENLARGE OR EXTEND THIS LIMIT. 9. Return Policy. Except as otherwise provided, TI does not offer any refunds, returns, or exchanges. Furthermore, no return of EVM(s) will be accepted if the package has been opened and no return of the EVM(s) will be accepted if they are damaged or otherwise not in a resalable condition. If User feels it has been incorrectly charged for the EVM(s) it ordered or that delivery violates the applicable order, User should contact TI. All refunds will be made in full within thirty (30) working days from the return of the components(s), excluding any postage or packaging costs. 10. Governing Law: These terms and conditions shall be governed by and interpreted in accordance with the laws of the State of Texas, without reference to conflict-of-laws principles. User agrees that non-exclusive jurisdiction for any dispute arising out of or relating to these terms and conditions lies within courts located in the State of Texas and consents to venue in Dallas County, Texas. Notwithstanding the foregoing, any judgment may be enforced in any United States or foreign court, and TI may seek injunctive relief in any United States or foreign court. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2018, Texas Instruments Incorporated IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES Texas Instruments Incorporated (‘TI”) technical, application or other design advice, services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you (individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of this Notice. TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications (and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource. You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your noncompliance with the terms and provisions of this Notice. This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services. These include; without limitation, TI’s standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm), evaluation modules, and samples (http://www.ti.com/sc/docs/sampterms.htm). Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2018, Texas Instruments Incorporated
SPIO-4/NOPB 价格&库存

很抱歉,暂时无法提供与“SPIO-4/NOPB”相匹配的价格&库存,您可以联系我们找货

免费人工找货