0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TAS5706APAPR

TAS5706APAPR

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    TQFP64_EP

  • 描述:

    IC AMP AUDIO PWR 20.6W D 64TQFP

  • 数据手册
  • 价格&库存
TAS5706APAPR 数据手册
TAS5706A is Not Recommended for New Designs TAS5706A TAS5706B www.ti.com............................................................................................................................................. SLOS606D – MARCH 2009 – REVISED SEPTEMBER 2009 20-W Stereo Digital Audio Power Amplifier with EQ and DRC FEATURES 1 • Audio Input/Output – 20-W into an 8-Ω Load From an 18-V Supply – Two Serial Audio Inputs (Four Audio Channels) • TAS5706A Supports: – 2-Ch Bridged Outputs (20 W × 2) • TAS5706B Supports: – 2-Ch Bridged Outputs (20 W × 2) – 4-Ch Single-Ended Outputs (10 W × 4) – 2-Ch Single-Ended + 1-Ch Bridged (2.1 Mode) (10 W × 2 + 20 W) • Supports 32-kHz–192-kHz Sample Rates (LJ/RJ/I2S) • Closed Loop Power Stage Architecture – Improved PSRR Reduces Power Supply Performance Requirements – Higher Damping Factor Provides for Tighter, More Accurate Sound With Improved Bass Response – Constant Output Power Over Variation in Supply • Wide PVCC Range From (10 V to 26 V) – No Separate Supply Required for Gate Drive • Headphone PWM Outputs • Subwoofer PWM Outputs • AM Interference Avoidance Support • Audio/PWM Processing – Independent Channel Volume Controls With 48-dB to –79-dB Range—Soft Mute (50% Duty Cycle) – Programmable Dynamic Range Control – 7 Programmable Biquads for Speaker Equalization for Left and Right Channels – 4 Programmable Biquads for Bass 23 • Processing – Adaptive Biquad Coefficients for EQ and DRC Filters – Programmable Input and Output Mixers – Automatic Sample-Rate Detection and Coefficient Banking General Features – Serial Control Interface Operational Without MCLK – Factory-Trimmed Internal Oscillator Avoids the Need for External Crystal – Surface Mount, 64-Terminal, 10-mm × 10-mm HTQFP Package – Thermal and Short-Circuit Protection DESCRIPTION The TAS5706A/B is a 20-W, efficient, digital audio power amplifier for driving stereo bridged-tied speakers. Two serial data inputs allow processing of up to four discrete audio channels and seamless integration to most digital audio processors and MPEG decoders, accepting a wide range of input data and clock rates. A fully programmable data path allows these channels to be routed to the internal speaker drivers or output via the subwoofer or headphone PWM outputs. The TAS5706A/B is a slave-only device receiving all clocks from external sources. The TAS5706A/B operates at a 384-kHz switching rate for 32-, 48-, 96-, and 192-kHz data, and at a 352.8 kHz switching rate for 44.1-, 88.2-, and 176.4-kHz data. The 8× oversampling combined with the fourth-order noise shaper provides a flat noise floor and excellent dynamic range from 20 Hz to 20 kHz. 1 2 3 Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. PurePath Digital is a trademark of Texas Instruments. All other trademarks are the property of their respective owners. PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. Copyright © 2009, Texas Instruments Incorporated TAS5706A TAS5706B TAS5706A is Not Recommended for New Designs SLOS606D – MARCH 2009 – REVISED SEPTEMBER 2009............................................................................................................................................. www.ti.com These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates. SIMPLIFIED APPLICATION DIAGRAMS Bridge-Tied Load (BTL) Mode (TAS5706A/TAS5706B) 3.3 V 10 V–26 V DVDD/AVDD AVCC/PVCC OUT_A LRCLK SCLK Digital Audio Source BST_A MCLK SDIN1 LCBTL* Left LCBTL* Right BST_B SDIN2 OUT_B 2 SDA I C Control OUT_C SCL BST_C BST_D MUTE HPSEL Control Inputs OUT_D RESET 10 V–26 V TAS5602 PDN SUB_PWM+ PWM_AP OUT_A PWM_AN PLL_FLTP SUB_PWM– PWM_BP BST_A LCBTL* Subwoofer BST_B Loop Filter PWM_BN PLL_FLTM BKND_ERR FAULT VALID RESET OUT_B HPR_PWM HPL_PWM RC Filter TPA6110A2 (HP Amplifier) * Refer to TI Application Note (SLOA119) on LC filter design for BTL (AD/BD mode) configuration. 2 Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): TAS5706A TAS5706B TAS5706A is Not Recommended for New Designs TAS5706A TAS5706B www.ti.com............................................................................................................................................. SLOS606D – MARCH 2009 – REVISED SEPTEMBER 2009 2 Single-Ended (SE) + 1 BTL Mode (TAS5706B Only) 3.3 V 10 V–26 V DVDD/AVDD AVCC/PVCC OUT_A LCSE* LRCLK SCLK Digital Audio Source BST_A MCLK SDIN1 SDIN2 BST_B OUT_B 2 LCSE* SDA I C Control SCL MUTE OUT_C HPSEL Control Inputs RESET PDN BST_C LCBTL* BST_D OUT_D PLL_FLTP Loop Filter SUB_PWM+ PLL_FLTM SUB_PWM– BKND_ERR VALID HPR_PWM HPL_PWM RC Filter TPA6110A2 (HP Amplifier) * Refer to TI Application Note (SLOA119) on LC filter design for SE or BTL configuration. B0264-05 Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): TAS5706A TAS5706B 3 TAS5706A TAS5706B TAS5706A is Not Recommended for New Designs SLOS606D – MARCH 2009 – REVISED SEPTEMBER 2009............................................................................................................................................. www.ti.com Single-Ended (SE) 4.0 Mode (TAS5706B Only) 3.3 V 10 V–26 V DVDD/AVDD AVCC/PVCC OUT_A LCSE* LRCLK SCLK Digital Audio Source BST_A MCLK SDIN1 SDIN2 2 BST_B OUT_B LCSE* OUT_C LCSE* SDA I C Control SCL MUTE HPSEL Control Inputs RESET BST_C PDN BST_D OUT_D LCSE* PLL_FLTP Loop Filter SUB_PWM+ PLL_FLTM SUB_PWM– BKND_ERR VALID HPR_PWM HPL_PWM RC Filter TPA6110A2 (HP Amplifier) * Refer to TI Application Note (SLOA119) on LC filter design for SE configuration. B0264-04 4 Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): TAS5706A TAS5706B TAS5706A is Not Recommended for New Designs TAS5706A TAS5706B www.ti.com............................................................................................................................................. SLOS606D – MARCH 2009 – REVISED SEPTEMBER 2009 FUNCTIONAL VIEW Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): TAS5706A TAS5706B 5 TAS5706A TAS5706B TAS5706A is Not Recommended for New Designs SLOS606D – MARCH 2009 – REVISED SEPTEMBER 2009............................................................................................................................................. www.ti.com 64-PIN, HTQFP PACKAGE (TOP VIEW) PIN FUNCTIONS PIN NAME AGND TYPE NO. 57 58 AVCC (1) 5-V TOLERANT TERMINATION DESCRIPTION (2) P Analog ground for power stage P Analog power supply for power stage. Connect externally to same potential as PVCC. AVDD 10 P 3.3-V analog power supply AVSS 11 P Analog 3.3-V supply ground BKND_ERR 35 DI (1) (2) 6 Pullup Active-low. A back-end error sequence is generated by applying logic LOW to this terminal. This terminal is connected to an external power stage. If no external power stage is used, connect this terminal directly to DVDD. TYPE: A = analog; D = 3.3-V digital; P = power/ground/decoupling; I = input; O = output All pullups are 20-µA weak pullups and all pulldowns are 20-µA weak pulldowns. The pullups and pulldowns are included to assure proper input logic levels if the terminals are left unconnected (pullups → logic 1 input; pulldowns → logic 0 input). Devices that drive inputs with pullups must be able to sink 20 µA while maintaining a logic-0 drive level. Devices that drive inputs with pulldowns must be able to source 20 µA while maintaining a logic-1 drive level. Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): TAS5706A TAS5706B TAS5706A is Not Recommended for New Designs TAS5706A TAS5706B www.ti.com............................................................................................................................................. SLOS606D – MARCH 2009 – REVISED SEPTEMBER 2009 PIN FUNCTIONS (continued) PIN NAME TYPE NO. (1) 5-V TOLERANT TERMINATION DESCRIPTION (2) BST_A 59 P High-side bootstrap supply for half-bridge A BST_B 61 P High-side bootstrap supply for half-bridge B BST_C 53 P High-side bootstrap supply for half-bridge C BST_D 55 P High-side bootstrap supply for half-bridge D BYPASS 56 O Nominally equal to VCC/8. Internal reference voltage for analog cells DVDD 15, 33 P 3.3-V digital power supply DVSS 20, 26 P Digital ground HPL_PWM 37 DO Headphone left-channel PWM output. HPR_PWM 38 DO Headphone right-channel PWM output. HPSEL 30 DI 5-V Headphone select, active high. When a logic HIGH is applied, device enters headphone mode and speakers are HARD MUTED. When a logic LOW is applied, device is in speaker mode and headphone outputs become line outputs or are disabled. LRCLK 22 DI 5-V Input serial audio data left/right clock (sampling rate clock) MCLK 34 DI 5-V MCLK is the clock master input. The input frequency of this clock can range from 4.9 MHz to 49 MHz. 5-V Performs a soft mute of outputs, active-low. A logic low on this terminal sets the outputs equal to 50% duty cycle. A logic high on this terminal allows normal operation. The mute control provides a noiseless volume ramp to silence. Releasing mute provides a noiseless ramp to previous volume. MUTE 21 DI OSC_RES 19 AO OUT_A 4, 5 O Output, half-bridge A OUT_B 1, 64 O Output, half-bridge B OUT_C 49, 50 O Output, half-bridge C OUT_D 45, 46 O Output, half-bridge D Power down, active-low. PDN powers down all logic, stops all clocks, and outputs stops switching. When PDN is released, the device powers up all logic, starts all clocks, and performs a soft start that returns to the previous configuration determined by register settings. Pullup Oscillator trim resistor. Connect an 18.2-kΩ resistor to GND. PDN 17 DI 5-V Pullup PGND_A 6, 7 P Power ground for half-bridge A PGND_B 2, 3 P Power ground for half-bridge B PGND_C 47, 48 P Power ground for half-bridge C PGND_D 43, 44 P Power ground for half-bridge D PLL_FLTM 12 AO PLL negative input PLL_FLTP 13 AI PLL positive input PVCC_A 8, 9 P Power supply input for half-bridge output A PVCC_B 62, 63 P Power supply input for half-bridge output B PVCC_C 51, 52 P Power supply input for half-bridge output C PVCC_D 41, 42 P Power supply input for half-bridge output D Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): TAS5706A TAS5706B 7 TAS5706A TAS5706B TAS5706A is Not Recommended for New Designs SLOS606D – MARCH 2009 – REVISED SEPTEMBER 2009............................................................................................................................................. www.ti.com PIN FUNCTIONS (continued) PIN NAME TYPE NO. (1) 5-V TOLERANT TERMINATION (2) DESCRIPTION Pullup Reset, active-low. A system reset is generated by applying a logic low to this terminal. RESET is an asynchronous control signal that restores the DAP to its default conditions, sets the VALID outputs low, and places the PWM in the hard-mute state (stops switching). Master volume is immediately set to full attenuation. Upon the release of RESET, if PDN is high, the system performs a 4- to 5-ms device initialization and sets the volume at mute. RESET 16 DI 5-V SCL 29 DI 5-V I2C serial control clock input SCLK 23 DI 5-V Serial audio data clock (shift clock). SCLK is the serial audio port input data bit clock. SDA 28 DIO 5-V I2C serial control data interface input/output SDIN1 25 DI 5-V Serial audio data-1 input is one of the serial data input ports. SDIN1 supports three discrete (stereo) data formats. SDIN2 24 DI 5-V Serial audio data-2 input is one of the serial data input ports. SDIN2 supports three discrete (stereo) data formats. STEST 31 DI Test terminal. Connect directly to GND. SUB_PWM– 39 DO Subwoofer negative PWM output SUB_PWM+ 40 DO Subwoofer positive PWM output TEST2 32 DI Test terminal. Connect directly to DVDD. VALID 36 DO Output indicating validity of ALL PWM channels, active-high. This terminal is connected to an external power stage. If no external power stage is used, leave this terminal floating. VCLAMP_AB 60 P Internally generated voltage supply for channels A and B gate drive. Not to be used as a supply or connected to any component other than the decoupling capacitor VCLAMP_CD 54 P Internally generated voltage supply for channels C and D gate drive. Not to be used as a supply or connected to any component other than the decoupling capacitor VR_ANA 14 P Internally regulated 1.8-V analog supply voltage. This terminal must not be used to power external devices. VR_DIG 27 P Internally regulated 1.8-V digital supply voltage. This terminal must not be used to power external devices. VREG_EN 18 DI Pulldown Voltage regulator enable. Connect directly to GND. ABSOLUTE MAXIMUM RATINGS over operating free-air temperature range (unless otherwise noted) Supply voltage Input voltage (1) VALUE UNIT DVDD, AVDD –0.3 to 3.6 V PVCC -0.3 to 30 V 3.3-V digital input –0.5 to DVDD + 0.5 V 5-V tolerant (2) digital input –0.5 to DVDD + 2.5 V ±20 mA Input clamp current, IIK (VI < 0 or VI > 1.8 V Output clamp current, IOK (VO < 0 or VO > 1.8 V ±20 mA Operating free-air temperature 0 to 85 °C Operating junction temperature range 0 to 150 °C –40 to 125 °C Storage temperature range, Tstg (1) (2) 8 Stresses beyond those listed under absolute ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under recommended operation conditions are not implied. Exposure to absolute-maximum conditions for extended periods may affect device reliability. 5-V tolerant inputs are PDN, RESET, MUTE, SCLK, LRCLK, MCLK, SDIN1, SDIN2, SDA, SCL, and HPSEL. Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): TAS5706A TAS5706B TAS5706A TAS5706B TAS5706A is Not Recommended for New Designs www.ti.com............................................................................................................................................. SLOS606D – MARCH 2009 – REVISED SEPTEMBER 2009 DISSIPATION RATINGS PACKAGE (1) DERATING FACTOR TA = 25°C POWER RATING TA = 45°C POWER RATING TA = 70°C POWER RATING 10-mm × 10-mm QFP 29 mW/°C 2.89 W 2.31 W 1.59 W (1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com. RECOMMENDED OPERATING CONDITIONS over operating free-air temperature range (unless otherwise noted) Digital/analog supply voltage DVDD Half-bridge supply voltage PVCC_xx VIH High-level input voltage 3.3-V TTL, 5-V tolerant VIL Low-level input voltage 3.3-V TTL, 5-V tolerant TA Operating ambient temperature range TJ Operating junction temperature range MAX 3 3.3 3.6 V 26 V 2 0 RL (PBTL) 6.0 8 3.2 4 3.2 4 LO (BTL) UNIT V 0.8 V 85 °C 150 °C 0 Output filter: L = 22 µH, C = 680 nF. Load impedance NOM 10 RL (BTL) RL (SE) MIN Ω 10 LO (SE) Minimum output inductance under short-circuit condition Output-filter inductance µH 10 LO (PBTL) 10 PWM OPERATION AT RECOMMENDED OPERATING CONDITIONS PARAMETER Output sample rate 2×–1× oversampled TEST CONDITIONS MODE 32–kHz data rate ±2% 12× sample rate VALUE 44.1-, 88.2-, 176.4-kHz data rate ±2% 48-, 96-, 192-kHz data rate ±2% UNITS 384 kHz 8×, 4×, and 2× sample rates 352.8 kHz 8×, 4×, and 2× sample rates 384 kHz PLL INPUT PARAMETERS AND EXTERNAL FILTER COMPONENTS PARAMETER fMCLKI TEST CONDITIONS MIN Frequency, MCLK (1 / tcyc2) TYP 4.9 MCLK duty cycle 40% 50% MAX UNIT 49 MHz 60% MCLK minimum high time ≥ 2-V MCLK = 49.152 MHz, within the min and max duty cycle constraints 8 ns MCLK minimum low time ≤ 0.8-V MCLK = 49.152 MHz, within the min and max duty cycle constraints 8 ns LRCLK allowable drift before LRCLK reset 10 External PLL filter capacitor C1 SMD 0603 Y5V External PLL filter capacitor C2 External PLL filter resistor R MCLKs 47 nF SMD 0603 Y5V 4.7 nF SMD 0603, metal film 470 Ω Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): TAS5706A TAS5706B 9 TAS5706A TAS5706B TAS5706A is Not Recommended for New Designs SLOS606D – MARCH 2009 – REVISED SEPTEMBER 2009............................................................................................................................................. www.ti.com ELECTRICAL CHARACTERISTICS DC Characteristics, TA = 25°C, PVCC_X, AVCC = 18 V, RL = 8 Ω (unless otherwise noted) PARAMETER TEST CONDITIONS VOH High-level output voltage 3.3-V TTL and 5-V tolerant (1) IOH = –4 mA VOL Low-level output voltage 3.3-V TTL and 5-V tolerant (1) IOL = 4 mA | VOS | Class-D output offset voltage VBYPASS PVCC/8 reference for analog section IIL Low-level input current IIH High-level input current MIN TYP MAX 2.4 V 0.5 ±26 No load 2.2 2.26 VI = VIL ±2 5-V tolerant (1) VI = 0 V, DVDD = 3 V ±2 3.3-V TTL VI = VIH 5-V tolerant VI = 5.5 V, DVDD = 3 V Supply voltage (DVDD, AVDD) ±2 Power down (PDNZ = LOW) V mV 2.3 3.3-V TTL Normal mode UNIT ±20 43 65 80 2 8 16 33 V µA µA IDD Input supply current Reset (RESET = LOW) 11 23 ICC Quiescent supply current No load 14 33 57 mA ICC(RESET) Quiescent supply current in reset mode No load 58 176 µA ICC(PDNZ) Quiescent supply current in power down mode No load 58 176 µA PSRR DC power-supply rejection ratio PVCC = 17.5 V to 18.5 V 60 Drain-source on-state resistance, high-side RDS(on) tON tOFF (1) 10 240 Total 480 Turnon time (SE mode) (Set Reg 0x1A bit 7 to 1) 500 Turnon time (BTL mode) (Set Reg 0x1A bit 7 to 0) Turnoff time (SE mode) (Set Reg 0X1A bit 7 to 1) Turnoff time (BTL mode) (Set Reg 0X1A bit 7 to 0) dB 240 VCC = 18 V , IO = 500 mA, TJ = 25°C Low-side mA C(BYPASS) = 1 µF, Time required for the C(BYPASS) to reach its final value 30 500 30 mΩ 850 ms ms 5-V tolerant pins are PDN, RESET, MUTE, SCLK, LRCLK, MCLK, SDIN1, SDIN2, SDA, SCL, and HPSEL. Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): TAS5706A TAS5706B TAS5706A TAS5706B TAS5706A is Not Recommended for New Designs www.ti.com............................................................................................................................................. SLOS606D – MARCH 2009 – REVISED SEPTEMBER 2009 AC Characteristics, TA = 25°C, PVCC_X, AVCC = 18 V, AVDD, DVDD = 3.3 V, RL = 8 Ω (unless otherwise noted) (1) PARAMETER KSVR Supply ripple rejection Continuous output power PO THD+N Vn TEST CONDITIONS MIN TYP MAX 100-mVPP ripple at 20 Hz–20 kHz, BTL, 50% duty cycle PWM –60 dB BTL (RL = 8 Ω, THD+N = 10%, f = 1 kHz, PVCC = 18 V) 20.6 W BTL (RL = 8 Ω, THD+N = 7%, f = 1 kHz, PVCC = 18 V) 19.3 W SE (RL = 4 Ω, THD+N = 10%, f = 1 kHz, PVCC = 24 V) 18.1 W SE (RL = 4 Ω, THD+N = 7%, f = 1 kHz, PVCC = 24 V) 17.3 W Total harmonic distortion VCC = 24 V, RL = 4 Ω, f = 1 kHz, PO = 10 W + noise (SE) (half-power) 0.08% Total harmonic distortion VCC = 18 V, RL = 8 Ω, f = 1 kHz, PO = 10 W + noise (BTL) (half-power) 0.05% Output integrated noise UNIT 20 Hz to 22 kHz (BD mode) 115 µV A-weighted filter; MUTE = LOW –82 dBV Crosstalk PO = 1 W, f = 1 kHz –69 dB SNR Maximum output at THD+N < 1%, f = 1 kHz, A-weighted 99 dB Thermal trip point (output shutdown, unlatched fault) 150 °C Thermal hysteresis 15 °C (1) Signal-to-noise ratio All measurement in AD mode. AC Characteristics, TA = 25°C, PVCC_X, AVCC = 12 V, AVDD, DVDD = 3.3 V, RL = 8 Ω (unless otherwise noted) (1) PARAMETER KSVR PO Supply ripple rejection Continuous output power THD+N Total harmonic distortion + noise (BTL) Vn Output integrated noise Crosstalk SNR Signal-to-noise ratio TEST CONDITIONS TYP MAX UNIT –60 dB BTL (RL = 8 Ω, THD+N = 10%, f = 1 kHz) 9.2 W BTL (RL = 8 Ω, THD+N = 7%, f = 1 kHz) 8.7 W SE (RL = 4 Ω, THD+N = 10%, f = 1 kHz) 4.5 W SE (RL = 4 Ω, THD+N = 7%, f = 1 kHz) 4.2 W VCC = 12 V, RL = 8 Ω, f = 1 kHz, PO = 5 W (half-power) 0.07% 20 Hz to 22 kHz (BD mode) 115 µV A-weighted filter –82 dBV PO = 1 W, f = 1 kHz –75 dB 96 dB 150 °C 15 °C Maximum output at THD+N < 1%, f = 1 kHz, A-weighted Thermal trip point (output shutdown, unlatched fault) Thermal hysteresis (1) MIN 100-mVPP ripple at 20 Hz–20 kHz, BTL, 50% duty cycle PWM All measurement in AD mode. Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): TAS5706A TAS5706B 11 TAS5706A TAS5706B TAS5706A is Not Recommended for New Designs SLOS606D – MARCH 2009 – REVISED SEPTEMBER 2009............................................................................................................................................. www.ti.com SERIAL AUDIO PORTS SLAVE MODE over recommended operating conditions (unless otherwise noted) TEST CONDITIONS PARAMETER TYP 1.024 MAX UNIT 12.288 MHz fSCLKIN Frequency, SCLK 32 × fS, 48 × fS, 64 × fS tsu1 Setup time, LRCLK to SCLK rising edge 10 ns th1 Hold time, LRCLK from SCLK rising edge 10 ns tsu2 Setup time, SDIN to SCLK rising edge 10 ns th2 CL = 30 pF MIN Hold time, SDIN from SCLK rising edge 10 LRCLK frequency 32 48 192 SCLK duty cycle 40% 50% 60% LRCLK duty cycle 40% 50% 60% 32 64 SCLK edges –1/4 1/4 SCLK period SCLK rising edges between LRCLK rising edges t(edge) LRCLK clock edge with respect to the falling edge of SCLK ns kHz Figure 1. Slave Mode Serial Data Interface Timing 12 Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): TAS5706A TAS5706B TAS5706A TAS5706B TAS5706A is Not Recommended for New Designs www.ti.com............................................................................................................................................. SLOS606D – MARCH 2009 – REVISED SEPTEMBER 2009 I2C SERIAL CONTROL PORT OPERATION Timing characteristics for I2C Interface signals over recommended operating conditions (unless otherwise noted) PARAMETER TEST CONDITIONS MIN fSCL Frequency, SCL No wait states tw(H) Pulse duration, SCL high 0.6 1.3 MAX UNIT 400 kHz µs µs tw(L) Pulse duration, SCL low tr Rise time, SCL and SDA 300 ns tf Fall time, SCL and SDA 300 ns tsu1 Setup time, SDA to SCL th1 Hold time, SCL to SDA t(buf) tsu2 100 ns 0 ns Bus free time between stop and start condition 1.3 µs Setup time, SCL to start condition 0.6 µs µs th2 Hold time, start condition to SCL 0.6 tsu3 Setup time, SCL to stop condition 0.6 CL Load capacitance for each bus line µs 400 tw(H) tw(L) pF tf tr SCL tsu1 th1 SDA T0027-01 Figure 2. SCL and SDA Timing SCL t(buf) th2 tsu2 tsu3 SDA Start Condition Stop Condition T0028-01 Figure 3. Start and Stop Conditions Timing Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): TAS5706A TAS5706B 13 TAS5706A TAS5706B TAS5706A is Not Recommended for New Designs SLOS606D – MARCH 2009 – REVISED SEPTEMBER 2009............................................................................................................................................. www.ti.com RESET TIMING (RESET) Control signal parameters over recommended operating conditions (unless otherwise noted) PARAMETER MIN td(VALID_LOW) Time to assert VALID (reset to power stage) low tw(RESET) Pulse duration, RESET active td(I2C_ready) Time to enable I2C td(run) Device start-up time (after start-up command via I2C) TYP MAX ns 1 ms 3.5 ms 10 RESET UNIT 300 ms Earliest time that hard mute could be exited tw(RESET) VALID td(I2C_ready) td(run) td(VALID_LOW) System initialization. Start system 2 Enable via I C. T0029-05 NOTE: On power up, it is recommended that the TAS5706A/B RESET be held LOW for at least 100 µs after DVDD has reached 3.0 V. RESET assertion is ignored if applied while part is powered down Figure 4. Reset Timing POWER-DOWN (PDN) TIMING Control signal parameters over recommended operating conditions (unless otherwise noted) PARAMETER MIN TYP MAX UNIT td(VALID_LOW) Time to assert VALID (reset to power stage) low 725 µs td(STARTUP) Device startup time 120 ms tw Minimum pulse duration required 800 ns PDN tw VALID td(STARTUP) td(VALID_LOW) T0030-04 NOTE: PDNZ assertion is ignored if applied when part is in RESET Figure 5. Power-Down Timing 14 Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): TAS5706A TAS5706B TAS5706A TAS5706B TAS5706A is Not Recommended for New Designs www.ti.com............................................................................................................................................. SLOS606D – MARCH 2009 – REVISED SEPTEMBER 2009 BACK-END ERROR (BKND_ERR) Control signal parameters over recommended operating conditions (unless otherwise noted) PARAMETER MIN tw(ER) Pulse duration, BKND_ERR active (active-low) tp(valid_high) Programmable. Time to stay in the OUT_x low state. After tp(valid_high), the TAS5706A attempts to bring the system out of the OUT_x low state if BKND_ERR is high. Refer Reg 0x1C tp(valid_low) TYP MAX UNIT 350 None ns ms 350 Time TAS5706A takes to bring OUT_x low after BKND_ERR assertion. ns tw(ER) BKND_ERR VALID Normal Operation Normal Operation tp(valid_high) tp(valid_low) T0031-04 Figure 6. Error Recovery Timing MUTE TIMING (MUTE) Control signal parameters over recommended operating conditions (unless otherwise noted) PARAMETER td(VOL) (1) MIN Volume ramp time. Ramp Time = Number of Steps (programmable number of steps, refer register 0x0E) × Stepsize (1) TYP MAX 1024 UNIT steps Stepsize = 4 LRCLKs (for 32–48 kHz sample rate); 8 LRCLKs (for 88.2–96 kHz sample rate); 16 LRCLKs (for 176.4–192 kHz sample rate) MUTE VOLUME Normal Operation Normal Operation td(VOL) td(VOL) 50-50 Duty Cycle T0032-03 Figure 7. Mute Timing Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): TAS5706A TAS5706B 15 TAS5706A TAS5706B TAS5706A is Not Recommended for New Designs SLOS606D – MARCH 2009 – REVISED SEPTEMBER 2009............................................................................................................................................. www.ti.com HEADPHONE SELECT (HPSEL) PARAMETER tw(MUTE) Pulse duration, HPSEL active td(VOL) Soft volume update time t(SW) Switch-over time (1) MIN MAX 350 None See (1) 0.2 UNIT ns ms 1 ms Defined by rate setting. See the Volume Configuration Register section. Figure 8 and Figure 9 show functionality when bit 4 in HP configuration register is set to DISABLE line output from HP_PWM outputs. If bit 4 is not set, than the HP PWM outputs are not disabled when HPSEL is brought low. HPSEL Spkr Volume td(VOL) HP Volume td(VOL) t(SW) VALID T0267-01 Figure 8. HPSEL Timing for Headphone Insertion HPSEL HP Volume td(VOL) Spkr Volume td(VOL) t(SW) VALID T0268-01 Figure 9. HPSEL Timing for Headphone Extraction 16 Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): TAS5706A TAS5706B TAS5706A TAS5706B TAS5706A is Not Recommended for New Designs www.ti.com............................................................................................................................................. SLOS606D – MARCH 2009 – REVISED SEPTEMBER 2009 TYPICAL CHARACTERISTICS, BTL CONFIGURATION TOTAL HARMONIC DISTORTION + NOISE (BTL) vs FREQUENCY TOTAL HARMONIC DISTORTION + NOISE (BTL) vs FREQUENCY 10 THD+N − Total Harmonic Distortion + Noise − % THD+N − Total Harmonic Distortion + Noise − % 10 VCC = 12 V RL = 8 Ω P=5W 1 P = 2.5 W 0.1 0.01 P = 0.5 W 0.001 20 100 1k VCC = 18 V RL = 8 Ω P = 10 W 1 P=5W 0.1 0.01 P=1W 0.001 20 10k 20k 100 1k f − Frequency − Hz 10k 20k f − Frequency − Hz G001 G002 Figure 10. Figure 11. TOTAL HARMONIC DISTORTION + NOISE (BTL) vs FREQUENCY TOTAL HARMONIC DISTORTION + NOISE (BTL) vs OUTPUT POWER 10 THD+N − Total Harmonic Distortion + Noise − % THD+N − Total Harmonic Distortion + Noise − % 10 VCC = 24 V RL = 8 Ω P = 10 W 1 P=5W 0.1 0.01 P=1W 0.001 20 100 1k 10k 20k VCC = 12 V RL = 8 Ω 1 f = 10 kHz f = 1 kHz 0.1 0.01 f = 20 Hz 0.001 0.01 f − Frequency − Hz G003 Figure 12. 0.1 1 10 PO − Output Power − W 40 G004 Figure 13. Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): TAS5706A TAS5706B 17 TAS5706A TAS5706B TAS5706A is Not Recommended for New Designs SLOS606D – MARCH 2009 – REVISED SEPTEMBER 2009............................................................................................................................................. www.ti.com TYPICAL CHARACTERISTICS, BTL CONFIGURATION (continued) TOTAL HARMONIC DISTORTION + NOISE (BTL) vs OUTPUT POWER TOTAL HARMONIC DISTORTION + NOISE (BTL) vs OUTPUT POWER 10 THD+N − Total Harmonic Distortion + Noise − % THD+N − Total Harmonic Distortion + Noise − % 10 VCC = 18 V RL = 8 Ω 1 f = 10 kHz f = 1 kHz 0.1 0.01 f = 20 Hz 0.001 0.01 0.1 1 10 PO − Output Power − W VCC = 24 V RL = 8 Ω 1 f = 10 kHz f = 1 kHz 0.1 0.01 f = 20 Hz 0.001 0.01 40 0.1 1 G005 Figure 15. EFFICIENCY vs OUTPUT POWER SUPPLY CURRENT vs TOTAL OUTPUT POWER 3.0 RL = 8 Ω 90 2.5 VCC = 18 V 70 VCC = 24 V VCC = 18 V 60 ICC − Supply Current − A 80 Efficiency − % 40 G006 Figure 14. 100 VCC = 12 V 50 40 30 2.0 VCC = 12 V 1.5 1.0 VCC = 24 V 20 0.5 10 RL = 8 Ω 0.0 0 0 5 10 15 20 25 PO − Output Power (Per Channel) − W 30 0 5 10 15 20 25 30 PO − Total Output Power − W G007 Figure 16. 18 10 PO − Output Power − W 35 40 G008 Figure 17. Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): TAS5706A TAS5706B TAS5706A TAS5706B TAS5706A is Not Recommended for New Designs www.ti.com............................................................................................................................................. SLOS606D – MARCH 2009 – REVISED SEPTEMBER 2009 TYPICAL CHARACTERISTICS, BTL CONFIGURATION (continued) OUTPUT POWER vs SUPPLY VOLTAGE PSRR vs PVCC 40 0 RL = 8 Ω 35 −10 −20 −30 THD+N = 10% 25 PSRR − dB PO − Output Power − W 30 20 15 THD+N = 1% −40 −50 −60 −70 10 −80 5 −90 0 10 12 14 16 18 20 22 24 12 14 16 18 20 22 24 26 PVCC − V G009 G010 Figure 18. Figure 19. A-WTD NOISE vs PVCC CROSSTALK vs FREQUENCY −75 −40 −76 −50 −77 −60 −78 −70 Right to Left Crosstalk − dB A-Wtd Noise − dBV VCC − Supply Voltage − V −100 10 26 −79 −80 −81 −80 −90 −100 −82 −110 −83 −120 −84 −130 −85 10 12 14 16 18 20 22 24 −140 20 26 Left to Right RL = 8 Ω VCC = 12 V 100 PVCC − V G011 Figure 20. 1k 10k 20k f − Frequency − Hz G012 Figure 21. Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): TAS5706A TAS5706B 19 TAS5706A TAS5706B TAS5706A is Not Recommended for New Designs SLOS606D – MARCH 2009 – REVISED SEPTEMBER 2009............................................................................................................................................. www.ti.com TYPICAL CHARACTERISTICS, BTL CONFIGURATION (continued) CROSSTALK vs FREQUENCY CROSSTALK vs FREQUENCY −40 −40 −50 −50 −60 −60 Right to Left −80 Left to Right −90 −100 −110 −140 20 Left to Right −80 −90 −100 −110 −120 −130 Right to Left −70 Crosstalk − dB Crosstalk − dB −70 −120 RL = 8 Ω VCC = 18 V 100 RL = 8 Ω VCC = 24 V −130 1k −140 20 10k 20k 100 1k f − Frequency − Hz 10k 20k f − Frequency − Hz G013 G014 Figure 22. Figure 23. TYPICAL CHARACTERISTICS, SE CONFIGURATION TOTAL HARMONIC DISTORTION + NOISE (SE) vs FREQUENCY TOTAL HARMONIC DISTORTION + NOISE (SE) vs OUTPUT POWER 10 PO = 1 W RL = 4 Ω THD+N − Total Harmonic Distortion + Noise − % THD+N − Total Harmonic Distortion + Noise − % 10 1 VCC = 12 V 0.1 VCC = 24 V 0.01 VCC = 18 V 0.001 20 100 1k 10k 20k f = 1 kHz RL = 4 Ω 1 VCC = 12 V 0.1 VCC = 24 V 0.01 VCC = 18 V 0.001 0.01 f − Frequency − Hz G015 Figure 24. 20 0.1 1 PO − Output Power − W 10 40 G016 Figure 25. Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): TAS5706A TAS5706B TAS5706A TAS5706B TAS5706A is Not Recommended for New Designs www.ti.com............................................................................................................................................. SLOS606D – MARCH 2009 – REVISED SEPTEMBER 2009 TYPICAL CHARACTERISTICS, SE CONFIGURATION (continued) EFFICIENCY vs OUTPUT POWER SUPPLY CURRENT vs TOTAL OUTPUT POWER 2.0 100 RL = 4 Ω 90 VCC = 18 V 80 1.5 VCC = 24 V VCC = 18 V ICC − Supply Current − A Efficiency − % 70 60 VCC = 12 V 50 40 30 VCC = 12 V 1.0 VCC = 24 V 0.5 20 10 RL = 4 Ω 0.0 0 0 5 10 15 20 0 25 5 10 15 20 25 30 35 PO − Total Output Power − W PO − Output Power (Per Channel) − W G017 Figure 26. 40 G018 Figure 27. OUTPUT POWER vs SUPPLY VOLTAGE 20 RL = 4 Ω 18 PO − Output Power − W 16 14 12 THD+N = 10% 10 8 THD+N = 1% 6 4 2 0 10 12 14 16 18 20 22 24 VCC − Supply Voltage − V 26 G019 Figure 28. Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): TAS5706A TAS5706B 21 TAS5706A TAS5706B TAS5706A is Not Recommended for New Designs SLOS606D – MARCH 2009 – REVISED SEPTEMBER 2009............................................................................................................................................. www.ti.com DETAILED DESCRIPTION POWER SUPPLY The digital portion of the chip requires 3.3 V, and the power stages can work from 10 V to 26 V. CLOCK, AUTO DETECTION, AND PLL The TAS5706A DAP is a slave device. It accepts MCLK, SCLK, and LRCLK. The digital audio processor (DAP) supports all the sample rates and MCLK rates that are defined in the clock control register. The TAS5706A checks to verify that SCLK is a specific value of 32 fS, 48 fS, or 64 fS. The DAP only supports a 1 × fS LRCLK. The timing relationship of these clocks to SDIN1/2 is shown in subsequent sections. The clock section uses MCLK or the internal oscillator clock (when MCLK is unstable or absent) to produce the internal clock. The DAP can autodetect and set the internal clock control logic to the appropriate settings for the frequencies of 32 kHz, normal speed (44.1 or 48 kHz), double speed (88.2 kHz or 96 kHz), and quad speed (176.4 kHz or 192 kHz). The automatic sample rate detection can be disabled and the values set via I2C in the clock control register. The DAP also supports an AM interference-avoidance mode during which the clock rate is adjusted, in concert with the PWM sample rate converter, to produce a PWM output at 7 × fS, 8 × fS, or 6 × fS. The sample rate must be set manually during AM interference avoidance and when de-emphasis is enabled. SERIAL DATA INTERFACE Serial data is input on SDIN1/2. The PWM outputs are derived from SDIN1/2. The TAS5706A DAP accepts 32-, 44.1-, 48-, 88.2-, 96-, 176.4-, and 192-kHz serial data in 16-, 18-, 20-, or 24-bit data in left-justified, right-justified, and I2S serial data formats. PWM Section The TAS5706A DAP device uses noise-shaping and sophisticated error correction algorithms to achieve high power efficiency and high-performance digital audio reproduction. The DAP uses a fourth-order noise shaper that has >100-dB SNR performance from 20 Hz to 20 kHz. The PWM section accepts 24-bit PCM data from the DAP and outputs four PWM audio output channels. TAS5706A PWM section output supports bridge-tied loads. The PWM section has individual channel dc blocking filters that can be enabled and disabled. The filter cutoff frequency is less than 1 Hz. Individual channel de-emphasis filters for 32-, 44.1-, and 48-kHz are included and can be enabled and disabled. Finally, the PWM section has an adjustable maximum modulation limit of 93.8% to 99.2%. I2C COMPATIBLE SERIAL CONTROL INTERFACE The TAS5706A DAP has an I2C serial control slave interface to receive commands from a system controller. The serial control interface supports both normal-speed (100-kHz) and high-speed (400-kHz) operations without wait states. As an added feature, this interface operates even if MCLK is absent. The serial control interface supports both single-byte and multi-byte read and write operations for status registers and the general control registers associated with the PWM. The I2C interface supports a special mode which permits I2C write operations to be broken up into multiple-data write operations that are multiples of 4 data bytes. These are 6-, 10-, 14-, 18-, ... etc., -byte write operations that are composed of a device address, read/write bit, subaddress, and any multiple of 4 bytes of data. This permits the system to write large register values incrementally without blocking other I2C transactions. 22 Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): TAS5706A TAS5706B Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): TAS5706A TAS5706B SDIN2 SDIN1 SDI 0x04 SDIN1L SDIN1R SDIN2L SDIN2R 6 4 3 2 1 0x20 R' Down Mix 0x21 L' SUB 2 BQ 7 BQ 7 BQ 0x21 (L'+R')/2 0x21 Bass Management RS LS RF LF 0x21 Vol6 0x0D Vol 4 0x0B Vol 3 0x0A Vol 2 0x09 Vol1 0x08 DRC2 drc2_ coeff Drc2_en drc1_ coeff Drc1_en Drc2_dis drc1_ coeff Drc1_en drc1_ coeff Drc1_en DRC1 drc1_ coeff Drc1_en Drc1_dis Noise Shaper AD/BD B T L PWM3 0x13 0x20 PWM2 0x12 PWM1 0x11 Sub+ B T L 0x20 Sub– B T L PWM6 0x16 PWM5 0x15 PWM4 0x14 0x20 RF– RF+ LF– LF+ 0x20 Noise Shaper AD Noise Shaper AD Noise Shaper AD/BD 0x20 Noise Shaper AD/BD 0x20 6 6 6 6 6 6 6 6 0x25 Submit Documentation Feedback B0263-01 HPR HPL Sub+ Sub– Out_D Out_C Out_B Out_A TAS5706A is Not Recommended for New Designs TAS5706A TAS5706B www.ti.com............................................................................................................................................. SLOS606D – MARCH 2009 – REVISED SEPTEMBER 2009 BQ (0x24) Loudness (0x23) Master Volume 0x07 Figure 29. TAS5706A DAP Data Flow Diagram With I2C Registers 23 TAS5706A TAS5706B TAS5706A is Not Recommended for New Designs SLOS606D – MARCH 2009 – REVISED SEPTEMBER 2009............................................................................................................................................. www.ti.com I2S Timing I2S timing uses LRCLK to define when the data being transmitted is for the left channel and when it is for the right channel. LRCLK is low for the left channel and high for the right channel. A bit clock running at 32, 48, or 64 × fS is used to clock in the data. There is a delay of one bit clock from the time the LRCLK signal changes state to the first bit of data on the data lines. The data is written MSB first and is valid on the rising edge of bit clock. The DAP masks unused trailing data bit positions. 2 2-Channel I S (Philips Format) Stereo Input 32 Clks LRCLK (Note Reversed Phase) 32 Clks Right Channel Left Channel SCLK SCLK MSB 24-Bit Mode 23 22 LSB 9 8 5 4 5 4 1 0 1 0 1 0 MSB LSB 23 22 9 8 5 4 19 18 5 4 1 0 15 14 1 0 1 0 20-Bit Mode 19 18 16-Bit Mode 15 14 T0034-01 NOTE: All data presented in 2s-complement form with MSB first. Figure 30. I2S 64-fS Format 24 Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): TAS5706A TAS5706B TAS5706A TAS5706B TAS5706A is Not Recommended for New Designs www.ti.com............................................................................................................................................. SLOS606D – MARCH 2009 – REVISED SEPTEMBER 2009 2 2-Channel I S (Philips Format) Stereo Input/Output (24-Bit Transfer Word Size) LRCLK 24 Clks 24 Clks Left Channel Right Channel SCLK SCLK MSB 24-Bit Mode 23 22 MSB LSB 17 16 9 8 5 4 13 12 5 4 1 0 9 1 0 3 2 1 0 LSB 23 22 17 16 9 8 5 4 19 18 13 12 5 4 1 0 15 14 9 1 0 3 2 1 20-Bit Mode 19 18 16-Bit Mode 15 14 8 8 T0092-01 NOTE: All data presented in 2s-complement form with MSB first. Figure 31. I2S 48-fS Format 2 2-Channel I S (Philips Format) Stereo Input LRCLK 16 Clks 16 Clks Left Channel Right Channel SCLK SCLK MSB 16-Bit Mode 15 14 13 12 MSB LSB 11 10 9 8 5 4 3 2 1 0 15 14 13 12 LSB 11 10 9 8 5 4 3 2 1 T0266-01 NOTE: All data presented in 2s-complement form with MSB first. Figure 32. I2S 32-fS Format Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): TAS5706A TAS5706B 25 TAS5706A TAS5706B TAS5706A is Not Recommended for New Designs SLOS606D – MARCH 2009 – REVISED SEPTEMBER 2009............................................................................................................................................. www.ti.com Left-Justified Left-justified (LJ) timing uses LRCLK to define when the data being transmitted is for the left channel and when it is for the right channel. LRCLK is high for the left channel and low for the right channel. A bit clock running at 32, 48, or 64 × fS is used to clock in the data. The first bit of data appears on the data lines at the same time LRCLK toggles. The data is written MSB first and is valid on the rising edge of the bit clock. The DAP masks unused trailing data bit positions. 2-Channel Left-Justified Stereo Input 32 Clks 32 Clks Left Channel Right Channel LRCLK SCLK SCLK MSB 24-Bit Mode 23 22 LSB 9 8 5 4 5 4 1 0 1 0 1 0 MSB LSB 23 22 9 8 5 4 19 18 5 4 1 0 15 14 1 0 1 0 20-Bit Mode 19 18 16-Bit Mode 15 14 T0034-02 NOTE: All data presented in 2s-complement form with MSB first. Figure 33. Left-Justified 64-fS Format 26 Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): TAS5706A TAS5706B TAS5706A TAS5706B TAS5706A is Not Recommended for New Designs www.ti.com............................................................................................................................................. SLOS606D – MARCH 2009 – REVISED SEPTEMBER 2009 2-Channel Left-Justified Stereo Input (24-Bit Transfer Word Size) 24 Clks 24 Clks Left Channel Right Channel LRCLK SCLK SCLK MSB 24-Bit Mode 23 22 21 LSB 17 16 9 8 5 4 13 12 5 4 1 0 9 1 0 1 0 MSB LSB 21 17 16 9 8 5 4 19 18 17 13 12 5 4 1 0 15 14 13 9 1 0 23 22 1 0 20-Bit Mode 19 18 17 16-Bit Mode 15 14 13 8 8 T0092-02 NOTE: All data presented in 2s-complement form with MSB first. Figure 34. Left-Justified 48-fS Format 2-Channel Left-Justified Stereo Input 16 Clks 16 Clks Left Channel Right Channel LRCLK SCLK SCLK MSB 16-Bit Mode 15 14 13 12 LSB 11 10 9 8 5 4 3 2 1 0 MSB 15 14 13 12 LSB 11 10 9 8 5 4 3 2 1 0 T0266-02 NOTE: All data presented in 2s-complement form with MSB first. Figure 35. Left-Justified 32-fS Format Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): TAS5706A TAS5706B 27 TAS5706A TAS5706B TAS5706A is Not Recommended for New Designs SLOS606D – MARCH 2009 – REVISED SEPTEMBER 2009............................................................................................................................................. www.ti.com Right-Justified Right-justified (RJ) timing uses LRCLK to define when the data being transmitted is for the left channel and when it is for the right channel. LRCLK is high for the left channel and low for the right channel. A bit clock running at 32, 48, or 64 × fS is used to clock in the data. The first bit of data appears on the data 8 bit-clock periods (for 24-bit data) after LRCLK toggles. In RJ mode the LSB of data is always clocked by the last bit clock before LRCLK transitions. The data is written MSB first and is valid on the rising edge of bit clock. The DAP masks unused leading data bit positions. 2-Channel Right-Justified (Sony Format) Stereo Input 32 Clks 32 Clks Left Channel Right Channel LRCLK SCLK SCLK MSB 24-Bit Mode LSB 23 22 19 18 15 14 1 0 19 18 15 14 1 0 15 14 1 0 MSB LSB 23 22 19 18 15 14 1 0 19 18 15 14 1 0 15 14 1 0 20-Bit Mode 16-Bit Mode T0034-03 Figure 36. Right Justified 64-fS Format 28 Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): TAS5706A TAS5706B TAS5706A TAS5706B TAS5706A is Not Recommended for New Designs www.ti.com............................................................................................................................................. SLOS606D – MARCH 2009 – REVISED SEPTEMBER 2009 2-Channel Right-Justified Stereo Input (24-Bit Transfer Word Size) 24 Clks 24 Clks Left Channel Right Channel LRCLK SCLK SCLK MSB 24-Bit Mode 23 22 LSB 19 18 15 14 6 5 2 1 0 19 18 15 14 6 5 2 1 0 15 14 6 5 2 1 0 MSB 23 22 LSB 19 18 15 14 6 5 2 1 0 19 18 15 14 6 5 2 1 0 15 14 6 5 2 1 0 20-Bit Mode 16-Bit Mode T0092-03 Figure 37. Right Justified 48-fS Format Figure 38. Right Justified 32-fS Format Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): TAS5706A TAS5706B 29 TAS5706A TAS5706B TAS5706A is Not Recommended for New Designs SLOS606D – MARCH 2009 – REVISED SEPTEMBER 2009............................................................................................................................................. www.ti.com I2C SERIAL CONTROL INTERFACE The TAS5706A DAP has a bidirectional I2C interface that compatible with the I2C (Inter IC) bus protocol and supports both 100-kHz and 400-kHz data transfer rates for single and multiple byte write and read operations. This is a slave only device that does not support a multimaster bus environment or wait state insertion. The control interface is used to program the registers of the device and to read device status. The DAP supports the standard-mode I2C bus operation (100 kHz maximum) and the fast I2C bus operation (400 kHz maximum). The DAP performs all I2C operations without I2C wait cycles. General I2C Operation The I2C bus employs two signals; SDA (data) and SCL (clock), to communicate between integrated circuits in a system. Data is transferred on the bus serially one bit at a time. The address and data can be transferred in byte (8-bit) format, with the most significant bit (MSB) transferred first. In addition, each byte transferred on the bus is acknowledged by the receiving device with an acknowledge bit. Each transfer operation begins with the master device driving a start condition on the bus and ends with the master device driving a stop condition on the bus. The bus uses transitions on the data terminal (SDA) while the clock is high to indicate a start and stop conditions. A high-to-low transition on SDA indicates a start and a low-to-high transition indicates a stop. Normal data bit transitions must occur within the low time of the clock period. These conditions are shown in Figure 39. The master generates the 7-bit slave address and the read/write (R/W) bit to open communication with another device and then waits for an acknowledge condition. The TAS5706A holds SDA low during the acknowledge clock period to indicate an acknowledgment. When this occurs, the master transmits the next byte of the sequence. Each device is addressed by a unique 7-bit slave address plus R/W bit (1 byte). All compatible devices share the same signals via a bidirectional bus using a wired-AND connection. An external pullup resistor must be used for the SDA and SCL signals to set the high level for the bus. SDA R/ A W 7-Bit Slave Address 7 6 5 4 3 2 1 0 8-Bit Register Address (N) 7 6 5 4 3 2 1 0 8-Bit Register Data For Address (N) A 7 6 5 4 3 2 1 8-Bit Register Data For Address (N) A 0 7 6 5 4 3 2 1 A 0 SCL Start Stop T0035-01 2 Figure 39. Typical I C Sequence There is no limit on the number of bytes that can be transmitted between start and stop conditions. When the last word transfers, the master generates a stop condition to release the bus. A generic data transfer sequence is shown in Figure 39. The 7-bit address for TAS5706A is 0011 011 (0x36). Single- and Multiple-Byte Transfers The serial control interface supports both single-byte and multiple-byte read/write operations for status registers and the general control registers associated with the PWM. However, for the DAP data processing registers, the serial control interface supports only multiple-byte (4-byte) read/write operations. During multiple-byte read operations, the DAP responds with data, a byte at a time, starting at the subaddress assigned, as long as the master device continues to respond with acknowledges. If a particular subaddress does not contain 32 bits, the unused bits are read as logic 0. During multiple-byte write operations, the DAP compares the number of bytes transmitted to the number of bytes that are required for each specific subaddress. If a write command is received for a biquad subaddress, the DAP expects to receive five 32-bit words. If fewer than five 32-bit data words have been received when a stop command (or another start command) is received, the data received is discarded. Similarly, if a write command is received for a mixer coefficient, the DAP expects to receive one 32-bit word. 30 Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): TAS5706A TAS5706B TAS5706A TAS5706B TAS5706A is Not Recommended for New Designs www.ti.com............................................................................................................................................. SLOS606D – MARCH 2009 – REVISED SEPTEMBER 2009 Supplying a subaddress for each subaddress transaction is referred to as random I2C addressing. The TAS5706A also supports sequential I2C addressing. For write transactions, if a subaddress is issued followed by data for that subaddress and the 15 subaddresses that follow, a sequential I2C write transaction has taken place, and the data for all 16 subaddresses is successfully received by the TAS5706A. For I2C sequential write transactions, the subaddress then serves as the start address, and the amount of data subsequently transmitted, before a stop or start is transmitted, determines how many subaddresses are written. As was true for random addressing, sequential addressing requires that a complete set of data be transmitted. If only a partial set of data is written to the last subaddress, the data for the last subaddress is discarded. However, all other data written is accepted; only the incomplete data is discarded. Single-Byte Write As shown in Figure 40, a single-byte data write transfer begins with the master device transmitting a start condition followed by the I2C device address and the read/write bit. The read/write bit determines the direction of the data transfer. For a write data transfer, the read/write bit will be a 0. After receiving the correct I2C device address and the read/write bit, the DAP responds with an acknowledge bit. Next, the master transmits the address byte or bytes corresponding to the TAS5706A internal memory address being accessed. After receiving the address byte, the TAS5706A again responds with an acknowledge bit. Next, the master device transmits the data byte to be written to the memory address being accessed. After receiving the data byte, the TAS5706A again responds with an acknowledge bit. Finally, the master device transmits a stop condition to complete the single-byte data write transfer. Start Condition Acknowledge A6 A5 A4 A3 A2 A1 A0 Acknowledge R/W ACK A7 A6 A5 2 A4 A3 A2 A1 Acknowledge A0 ACK D7 D6 Subaddress I C Device Address and Read/Write Bit D5 D4 D3 D2 D1 D0 ACK Stop Condition Data Byte T0036-01 Figure 40. Single-Byte Write Transfer Multiple-Byte Write A multiple-byte data write transfer is identical to a single-byte data write transfer except that multiple data bytes are transmitted by the master device to the DAP as shown in Figure 41. After receiving each data byte, the TAS5706A responds with an acknowledge bit. Start Condition Acknowledge A6 A5 A1 A0 R/W ACK A7 2 I C Device Address and Read/Write Bit A6 A5 A4 A3 Subaddress A1 Acknowledge Acknowledge Acknowledge Acknowledge A0 ACK D7 D0 ACK D7 D0 ACK D7 D0 ACK First Data Byte Other Data Bytes Last Data Byte Stop Condition T0036-02 Figure 41. Multiple-Byte Write Transfer Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): TAS5706A TAS5706B 31 TAS5706A TAS5706B TAS5706A is Not Recommended for New Designs SLOS606D – MARCH 2009 – REVISED SEPTEMBER 2009............................................................................................................................................. www.ti.com Single-Byte Read As shown in Figure 42, a single-byte data read transfer begins with the master device transmitting a start condition followed by the I2C device address and the read/write bit. For the data read transfer, both a write followed by a read are actually done. Initially, a write is done to transfer the address byte or bytes of the internal memory address to be read. As a result, the read/write bit becomes a 0. After receiving the TAS5706A address and the read/write bit, TAS5706A responds with an acknowledge bit. In addition, after sending the internal memory address byte or bytes, the master device transmits another start condition followed by the TAS5706A address and the read/write bit again. This time the read/write bit becomes a 1, indicating a read transfer. After receiving the address and the read/write bit, the TAS5706A again responds with an acknowledge bit. Next, the TAS5706A transmits the data byte from the memory address being read. After receiving the data byte, the master device transmits a not acknowledge followed by a stop condition to complete the single byte data read transfer. Repeat Start Condition Start Condition Acknowledge A6 A5 A1 A0 R/W ACK A7 Acknowledge A6 2 A5 A4 A0 ACK A6 A5 A1 A0 R/W ACK D7 D6 2 Subaddress I C Device Address and Read/Write Bit Not Acknowledge Acknowledge D1 D0 ACK Stop Condition Data Byte I C Device Address and Read/Write Bit T0036-03 Figure 42. Single-Byte Read Transfer Multiple-Byte Read A multiple-byte data read transfer is identical to a single-byte data read transfer except that multiple data bytes are transmitted by the TAS5706A to the master device as shown in Figure 43. Except for the last data byte, the master device responds with an acknowledge bit after receiving each data byte. Repeat Start Condition Start Condition Acknowledge A6 2 A0 R/W ACK A7 I C Device Address and Read/Write Bit Acknowledge A6 A5 Subaddress A6 A0 ACK 2 Acknowledge Acknowledge Acknowledge Not Acknowledge A0 R/W ACK D7 D0 ACK D7 D0 ACK D7 D0 ACK I C Device Address and Read/Write Bit First Data Byte Other Data Bytes Last Data Byte Stop Condition T0036-04 Figure 43. Multiple Byte Read Transfer 32 Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): TAS5706A TAS5706B TAS5706A TAS5706B TAS5706A is Not Recommended for New Designs www.ti.com............................................................................................................................................. SLOS606D – MARCH 2009 – REVISED SEPTEMBER 2009 Dynamic Range Control (DRC) The DRC scheme has a single threshold, offset, and slope (all programmable). There is one ganged DRC for the left/right channels and one DRC for the subwoofer channel. DRC-Compensated Output The DRC input/output diagram is shown in Figure 44. k 1:1 Transfer Function Implemented Transfer Function T DRC Input Level M0091-01 Professional-quality dynamic range compression automatically adjusts volume to flatten volume level. • One DRC for left/right and one DRC for subwoofer • Each DRC has adjustable threshold, offset, and compression levels • Programmable energy, attack, and decay time constants • Transparent compression: compressors can attack fast enough to avoid apparent clipping before engaging, and decay times can be set slow enough to avoid pumping. Figure 44. Dynamic Range Control Energy Filter Compression Control Attack and Decay Filters a, w T, K, O aa, wa / ad, wd DRC1 0x3A 0x40, 0x41, 0x42 0x3B / 0x3C DRC2 0x3D 0x43, 0x44, 0x45 0x3E / 0x3F Audio Input DRC Coefficient Alpha Filter Structure S a w –1 Z NOTE: a=a w=1–a B0265-01 Figure 45. DRC Structure Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): TAS5706A TAS5706B 33 TAS5706A TAS5706B TAS5706A is Not Recommended for New Designs SLOS606D – MARCH 2009 – REVISED SEPTEMBER 2009............................................................................................................................................. www.ti.com Loudness Function The TAS5706A provides a direct form I biquad for loudness on the subwoofer channel. The first biquad is contained in a gain-compensation circuit that maintains the overall system gain at 1 or less to prevent clipping at loud volume settings. This gain compensation is shown in Figure 46 1 if Vol £ 1/G 0 if Vol ³ 1/G + 1/Scale 1 - Scale (Vol - 1/G) otherwise From Input Mux To Output Mux Loudness Biquad (0x23) Gain = G Volume Biquad (0x24) Scale = 1/(1 - 1/G) 0 if Vol £ 1/G 1 if Vol ³ 1/G + 1/Scale Scale (Vol - 1/G) otherwise B0273-01 Figure 46. Biquad Gain Control Structure Table 1. Loudness Table Example for Gain = 4, 1/G = 0.25, Scale = 1.33 Volume 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1 1.125 1.25 1.375 1.5 1.625 1.75 1.875 2 Biquad path 1 1 0.833 0.666 0.5 0.333 0.166 0 0 0 0 0 0 0 0 0 Direct path 0 0 0.166 0.333 0.5 0.666 0.833 1 1 1 1 1 1 1 1 1 Total gain 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 The biquads are implemented in a direct form-I architecture. The direct form-I structure provides a separate delay element and mixer (gain coefficient) for each node in the biquad filter. The five 26-bit (3.23) coefficients for the biquad are programmable via the I2C interface. The following steps are involved in using a loudness biquad with the volume compensation feature: 1. Program the biquad with a loudness filter. 2. Program 0x26 (1/G) and 0x28 (scale). 3. Enable volume compensation in register 0x0E. 34 Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): TAS5706A TAS5706B TAS5706A is Not Recommended for New Designs TAS5706A TAS5706B www.ti.com............................................................................................................................................. SLOS606D – MARCH 2009 – REVISED SEPTEMBER 2009 b0 x(n) S b1 z a1 –1 z b2 z y(n) Magnitude Truncation –1 a2 –1 z –1 M0012-02 Figure 47. Biquad Filter Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): TAS5706A TAS5706B 35 TAS5706A TAS5706B TAS5706A is Not Recommended for New Designs SLOS606D – MARCH 2009 – REVISED SEPTEMBER 2009............................................................................................................................................. www.ti.com BANK SWITCHING The TAS5706A uses an approach called bank switching together with automatic sample-rate detection. All processing features that must be changed for different sample rates are stored internally in the TAS5706A. The TAS5706A has three full banks storing information, one for 32 kHz, one for 44.1/48 kHz, and one for all other data rates. Combined with the clock-rate autodetection feature, bank switching allows the TAS5706A to detect automatically a change in the input sample rate and switch to the appropriate bank without any MCU intervention. The TAS5706A supports three banks of coefficients to be updated during the initialization. One bank is for 32 kHz , a second bank is for 44.1/48 kHz, and a third bank is for all other sample rates. An external controller updates the three banks (see the I2C register mapping table for bankable locations) during the initialization sequence. If the autobank switch is enabled (register 0x50, bits 2:0) , then the TAS5706A automatically swaps the coefficients for subsequent sample rate changes, avoiding the need for any external controller intervention for a sample rate change. By default, bits 2:0 have the value 000; that means the bank switch is disabled. In that state, any update to locations 0x29–0x3F go into the DAP. A write to register 0x50 with bits 2:0 being 001, 010, or 011 brings the system into the coefficient-bank-update state update bank1, update bank2, or update bank3, respectively. Any subsequent write to locations 0x29-0x3F updates the coefficient banks stored outside the DAP. After updating all the three banks, the system controller should issue a write to register 0x50 with bits 2:0 being 100; this changes the system state to automatic bank update. In automatic bank update, the TAS5706A automatically swaps banks based on the sample rate. In the headphone mode, speaker equalization and DRC are disabled, and they are restored upon returning to the speaker mode. Command sequences for initialization can be summarized as follows: 1. Enable factory trim for internal oscillator: Write to register 0x1B with a value 0x00. 2. Update coefficients: Coefficients can be loaded into DAP RAM using the manual bank mode. OR Use automatic bank mode. a. Enable bank-1 mode: Write to register 0x50 with 0x01. Load the 32-kHz coefficients. TI ALE can generate coefficients. b. Enable bank-2 mode: Write to register 0x50 with 0x02. Load the 48-kHz coefficients. c. Enable bank-3 mode: Write to register 0x50 with 0x03. Load the other coefficients. d. Enable automatic bank switching by writing to register 0x50 with 0x04. 3. Bring the system out of all-channel shutdown: Write 0 to bit 6 of register 0x05. 4. Issue master volume: Write to register 0x07 with the volume value (0 db = 0x30). 36 Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): TAS5706A TAS5706B TAS5706A TAS5706B TAS5706A is Not Recommended for New Designs www.ti.com............................................................................................................................................. SLOS606D – MARCH 2009 – REVISED SEPTEMBER 2009 APPLICATION INFORMATION Recovery From Error Protection Mechanisms in the TAS5706A/B • SCP (short-circuit protection, OCP) protects against shorts across the load, to GND, and to PVCC. • OTP turns off the device if Tdie (typical) > 150°C. • UVP turns off the device if PVCC (typical) < 8.4 V • OVP turns off the device if PVCC (typical) > 27.5 V A short-circuit condition can be detected also by an external controller. The SCP error from the external power stage is also fed into TAS5706A/B. The VALID pin goes low in the event of a short circuit. The VALID pin can be monitored by an external µC. The TAS5706A/B initiates a back-end error sequence by itself to recover from the error, which involves settling VALID low for a programmable amount of time and then retrying to check whether the SCP condition still exists. • OTP turns on the device back when Tdie(typical) < 135°C. • UVP turns on the device if PVCC (typical) is > 8.5 V. • OVP turns on the device if PVCC (typical) is < 27.2 V. Interchannel Delay (ICD) Settings Recommended ICD Settings Mode Description ICD1 ICD2 ICD3 ICD4 ICD5 ICD6 2.0 ch BD BTL 2 BTL channels, internal power stage only, BD mode A(L+) = 19 (0x4C) C(R+) = 13 (0x34) B(L–) = 7 (0x1C) D(R–) = 25 (0x64) SM(S–) = –12 SP(S+) = –28 (0xD0) (0x90) 2.1 ch AD BTL 2 internal BTL channels, 1 external BTL channel using PBTL TAS5601, AD mode A(L+) = 23 (0x5C) C(R+) = 9 (0x24) B(L–) = 21 (0x54) D(R–) = 11 (0x2C) SM(S–) = –23 SP(S+) = –21 (0xA4) (0xAC) 2.1 ch AD SE 2 internal SE channels (2 unused), 1 external BTL A(L+) = 15 channel using PBTL (0x3C) TAS5601, AD mode B(R–) = –15 (0xC4) B(0) = 0 (0x00) D(0) = 0 (0x00) SM(S–) = –30 SP(S+) = –32 (0x88) (0x80) 2.1 ch BD BTL 2 internal BTL channels, 1 external BTL channel using PBTL TAS5601, BD mode A(L+) = 19 (0x4C) C(R+) = 13 (0x34) B(L–) = 7 (0x1C) D(R–) = 25 (0x64 ) SM(S–) = –12 SP(S+) = –28 (0xD0) (0x90) 2 internal SE channels + 3.0 ch AD 2SE + 1 internal BTL channel, 1 BTL AD mode A(L+) = 15 (0x3C) B(R–) = –16 (0xC0) SM(0) = 0 (0x00) SP(0) = 0 (0x00) D(S–) = 0 (0x00) C(S+) = 2 (0x08) 4.0 ch AD SE 4 internal SE channels A(L1+) = 8 (=0x20) B(R1–) = –24 (0xA0) C(L2+) = –8 (0xE0) D(R2–) = 24 (0x60) SM(0) = 1 (0x04) SP(0) = –1 (0xFC) 4.1 ch AD SE 4 internal SE channels + 1 external BTL channel, using PBTL TAS5601, AD mode. A(L1+) = 8 (0x20) B(R1–) = –24 (0xA0) C(L2+) = –8 (xE0) D(R2–)= 24 (0x60) SM(S–) = 1 (0x04) SP(S+) = –1 (0xFC) Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): TAS5706A TAS5706B 37 TAS5706A TAS5706B TAS5706A is Not Recommended for New Designs SLOS606D – MARCH 2009 – REVISED SEPTEMBER 2009............................................................................................................................................. www.ti.com Calculation of Output Signal Level of TAS5706A/B Feedback Power Stage (Gain Is independent of PVCC) The gain of the TAS5706A/B is the total digital gain of the controller multiplied by the gain of the power stage. For a half-bridge channel of the TAS5706A/B power stage, the gain is simply: Power stage gain = 13 × VRMS / Modulation Level Modulation level = fraction of full-scale modulation of the PWM signal at the input of the power stage. VRMS = Audio voltage level at the output of the power stage = 13 × Modulation Level For the TAS5706A/B controller, the gain is the programmed digital gain multiplied by a scaling factor, called the maximum modulation level. The maximum modulation level is derived from the modulation limit programmed in the controller, which limits duty cycle to a set number of percent above 0% and below 100%. Setting the modulation limit to 97.7% (default) limits the duty cycle between 2.3% and 97.7%. Controller gain = digital gain × maximum modulation level × (modulation level/digital FFS) Digital FFS = digital input fraction of full scale Modulation limit = 97.7% Maximum modulation level = 2 × modulation limit – 1 = 0.954 The output signal level of the TAS5706A/B can now be calculated. VRMS = digital FFS × digital gain × maximum modulation level × 13 With the modulation limit set at the default level of 97.7%, this becomes: VRMS = digital FFS × digital gain × 12.4 (Single-ended) VRMS = digital FFS × digital gain × 24.8 (BTL) Example: Input = –20 dbFS; volume = 0 dB; biquads = ALL PASS; modulation index = 97.7%; mode = BTL Output VRMS = 24.8 × 0.1 × 1 = 2.48 V 38 Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): TAS5706A TAS5706B TAS5706A is Not Recommended for New Designs TAS5706A TAS5706B www.ti.com............................................................................................................................................. SLOS606D – MARCH 2009 – REVISED SEPTEMBER 2009 I2C SERIAL CONTROL COMMAND CHARACTERISTICS The DAP has two groups of I2C commands. One set is commands that are designed specifically to be operated while audio is streaming and that have built-in mechanisms to prevent noise, clicks, and pops. The other set does not have this built-in protection. Commands that are designed to be adjusted while audio is streaming: • Master volume • Master mute • Individual channel volume • Individual channel mute Commands that are normally issued as part of initialization: • Serial data interface format • De-emphasis • Sample-rate conversion • Input multiplexer • Output multiplexer • Biquads • Down mix • Channel delay • Enable/disable dc blocking • Hard/soft unmute from clock error • Enable/disable headphone outputs Start-up sequence for correct device operation This sequence must be followed to ensure proper operation. 1. Hold ALL logic inputs low. Power up AVDD/DVDD and wait for the inputs to settle in the allowed range. 2. Drive PDN = 1, MUTE = 1, and drive other logic inputs to the desired state. 3. Provide a stable MCLK, LRCLK, and SCLK (clock errors must be avoided during the initialization sequence) . 4. After completing step 3, wait 100 µs, then drive RESET = 1, and wait 13.5 ms after RESET goes high. 5. Trim the internal oscillator (write 0x00 to register 0x1B). 6. Wait 50 ms while the part acquires lock. 7. Configure the DAP via I2C, e.g.: – Downmix control (0x21) – Biquads (0x23–0x24 and 0x29–0x38) – DRC parameters and controls (0x3A–0x46) – Bank select (0x50) NOTE: User may not issue any I2C reads or writes to the above registers after this step is complete. 8. Configure remaining I2C registers, e.g.: – Shutdown group – De-emphasis – Input multiplexers – Output multiplexers – Channel delays – DC blocking – Hard/soft unmute from clock error – Serial data interface format – Clock register (manual clock mode only) NOTE: The BKND_ERR register (0x1C) can only be written once with a value that is not reserved (00 and 01 are reserved values). 9. Exit all-channel shutdown (write 0 to bit 6 of register 0x05). Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): TAS5706A TAS5706B 39 TAS5706A TAS5706B TAS5706A is Not Recommended for New Designs SLOS606D – MARCH 2009 – REVISED SEPTEMBER 2009............................................................................................................................................. www.ti.com 10. This completes the initialization sequence. From this step on, no further constraints are imposed on PDN, MUTE, and clocks. 11. During normal operation the user may do the following: a. Write to the master or individual-channel volume registers. b. Write to the soft-mute register. c. Write to the clock and serial data interface format registers (in manual clock mode only). d. Write to bit 6 of register 0x05 to enter/exit all-channel shutdown. No other bits of register 0x05 may be altered. After issuing the all-channel shutdown command, no further I2C transactions that address this device are allowed for a period of at least: 1 ms + 1.3 × (period specified in start/stop register 0x1A) . e. PDN may be asserted (low) at any time. Once PDN is asserted, no I2C transactions that address this device may be issued until PDN has been deasserted and the part has returned to active mode. NOTE: When the device is in a powered down state (initiated via PDN), the part is not reset if RESET is asserted. NOTE: Once RESET is asserted, and as long as the part is in a reset state, the part does not power down if PDN is asserted. For powering the part down, a negative edge on PDN must be issued when RESET is high and the part is not in a reset state. NOTE: No registers besides those explicitly listed in Steps a.–d. should be altered during normal operation (i.e., after exiting all-channel shutdown). NOTE: No registers should be read during normal operation (i.e., after exiting all-channel shutdown) . 12. To reconfigure registers: a. Return to all-channel shutdown (observe the shutdown wait time as specified in Step 11.d.). b. Drive PDN = 1, and hold MUTE stable. c. Provide a stable MCLK, LRCLK, and SCLK. d. Repeat configuration starting from step (6). Table 2. Serial Control Interface Register Summary SUBADDRESS NO. OF BYTES REGISTER NAME (1) INITIALIZATION VALUE CONTENTS A u indicates unused bits. 0x00 Clock control register 1 Description shown in subsequent section 0x6C 0x01 Device ID register 1 Description shown in subsequent section 0x2A 0x02 Error status register 1 Description shown in subsequent section 0x00 0x03 System control register 1 1 Description shown in subsequent section 0xA0 0x04 Serial data interface register 1 Description shown in subsequent section 0x05 0x05 System control register 2 1 Description shown in subsequent section 0x40 0x06 Soft mute register 1 Description shown in subsequent section 0x00 0x07 Master volume 1 Description shown in subsequent section 0xFF (mute) 0x08 Channel 1 vol 1 Description shown in subsequent section 0x30 (0 dB) 0x09 Channel 2 vol 1 Description shown in subsequent section 0x30 (0 dB) 0x0A Channel 3 vol 1 Description shown in subsequent section 0x30 (0 dB) 0x0B Channel 4 vol 1 Description shown in subsequent section 0x30 (0 dB) 0x0C HP volume 1 Description shown in subsequent section 0x30 (0 dB) 0x0D Channel 6 vol 1 Description shown in subsequent section 0x30 (0 dB) 0x0E Volume configuration register 1 Description shown in subsequent section 0x91 1 Reserved (2) 0x0F 0x10 Modulation limit register 1 Description shown in subsequent section 0x02 0x11 IC delay channel 1 1 Description shown in subsequent section 0x4C (1) (2) Biquad definition is given in Figure 47. Reserved registers should not be accessed. 40 Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): TAS5706A TAS5706B TAS5706A is Not Recommended for New Designs TAS5706A TAS5706B www.ti.com............................................................................................................................................. SLOS606D – MARCH 2009 – REVISED SEPTEMBER 2009 Table 2. Serial Control Interface Register Summary (continued) SUBADDRESS NO. OF BYTES REGISTER NAME 0x12 IC delay channel 2 1 Description shown in subsequent section 0x34 0x13 IC delay channel 3 1 Description shown in subsequent section 0x1C 0x14 IC delay channel 4 1 Description shown in subsequent section 0x64 0x15 IC delay channel 5 1 Description shown in subsequent section 0xB0 0x16 IC delay channel 6 1 Description shown in subsequent section 0x90 0x17 Offset register 1 Reserved 0x00 1 Reserved (2) 0x18 0x19 PWM shutdown group register 1 0x30 0x1A Start/stop period register 1 0x0A 0x1B Oscillator trim register 1 0x82 0x1C BKND_ERR register 1 0x1D–0x1F 0x02 Reserved (2) 0x20 Input MUX register 4 Description shown in subsequent section 0x0089 777A 0x21 Downmix input MUX register 4 Description shown in subsequent section 0x0000 4203 0x22 AM tuned frequency 4 Description shown in subsequent section 0x0000 0000 0x23 ch6_bq[2] (Loudness BQ) 20 u[31:26], b0[25:0] 0x0080 0000 u[31:26], b1[25:0] 0x0000 0000 u[31:26], b2[25:0] 0x0000 0000 u[31:26], a1[25:0] 0x0000 0000 u[31:26], a2[25:0] 0x0000 0000 u[31:26], b0[25:0] 0x0080 0000 u[31:26], b1[25:0] 0x0000 0000 u[31:26], b2[25:0] 0x0000 0000 u[31:26], a1[25:0] 0x0000 0000 u[31:26], a2[25:0] 0x0000 0000 Description shown in subsequent section 0x0102 1345 u[31:26], x[25:0] 0x0080 0000 0x24 ch6_bq[3] (post volume BQ) 0x25 PWM MUX register 0x26 1/G register 20 4 0x27 (3) 1 Reserved 0x28 Scale register 4 u[31:26], x[25:0] 0x0080 0000 0x29 ch1_bq[0] 20 u[31:26], b0[25:0] 0x0080 0000 u[31:26], b1[25:0] 0x0000 0000 u[31:26], b2[25:0] 0x0000 0000 u[31:26], a1[25:0] 0x0000 0000 u[31:26], a2[25:0] 0x0000 0000 u[31:26], b0[25:0] 0x0080 0000 u[31:26], b1[25:0] 0x0000 0000 u[31:26], b2[25:0] 0x0000 0000 u[31:26], a1[25:0] 0x0000 0000 u[31:26], a2[25:0] 0x0000 0000 u[31:26], b0[25:0] 0x0080 0000 u[31:26], b1[25:0] 0x0000 0000 u[31:26], b2[25:0] 0x0000 0000 u[31:26], a1[25:0] 0x0000 0000 u[31:26], a2[25:0] 0x0000 0000 0x2A 0x2B (3) INITIALIZATION VALUE CONTENTS ch1_bq[1] 20 ch1_bq[2] 20 Reserved registers should not be accessed. Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): TAS5706A TAS5706B 41 TAS5706A TAS5706B TAS5706A is Not Recommended for New Designs SLOS606D – MARCH 2009 – REVISED SEPTEMBER 2009............................................................................................................................................. www.ti.com Table 2. Serial Control Interface Register Summary (continued) SUBADDRESS 0x2C 0x2D 0x2E 0x2F 0x30 0x31 0x32 0x33 0x34 42 REGISTER NAME ch1_bq[3] ch1_bq[4] ch1_bq[5] ch1_bq[6] ch2_bq[0] ch2_bq[1] ch2_bq[2] ch2_bq[3] ch2_bq[4] NO. OF BYTES 20 20 20 20 20 20 20 20 20 CONTENTS INITIALIZATION VALUE u[31:26], b0[25:0] 0x0080 0000 u[31:26], b1[25:0] 0x0000 0000 u[31:26], b2[25:0] 0x0000 0000 u[31:26], a1[25:0] 0x0000 0000 u[31:26], a2[25:0] 0x0000 0000 u[31:26], b0[25:0] 0x0080 0000 u[31:26], b1[25:0] 0x0000 0000 u[31:26], b2[25:0] 0x0000 0000 u[31:26], a1[25:0] 0x0000 0000 u[31:26], a2[25:0] 0x0000 0000 u[31:26], b0[25:0] 0x0080 0000 u[31:26], b1[25:0] 0x0000 0000 u[31:26], b2[25:0] 0x0000 0000 u[31:26], a1[25:0] 0x0000 0000 u[31:26], a2[25:0] 0x0000 0000 u[31:26], b0[25:0] 0x0080 0000 u[31:26], b1[25:0] 0x0000 0000 u[31:26], b2[25:0] 0x0000 0000 u[31:26], a1[25:0] 0x0000 0000 u[31:26], a2[25:0] 0x0000 0000 u[31:26], b0[25:0] 0x0080 0000 u[31:26], b1[25:0] 0x0000 0000 u[31:26], b2[25:0] 0x0000 0000 u[31:26], a1[25:0] 0x0000 0000 u[31:26], a2[25:0] 0x0000 0000 u[31:26], b0[25:0] 0x0080 0000 u[31:26], b1[25:0] 0x0000 0000 u[31:26], b2[25:0] 0x0000 0000 u[31:26], a1[25:0] 0x0000 0000 u[31:26], a2[25:0] 0x0000 0000 u[31:26], b0[25:0] 0x0080 0000 u[31:26], b1[25:0] 0x0000 0000 u[31:26], b2[25:0] 0x0000 0000 u[31:26], a1[25:0] 0x0000 0000 u[31:26], a2[25:0] 0x0000 0000 u[31:26], b0[25:0] 0x0080 0000 u[31:26], b1[25:0] 0x0000 0000 u[31:26], b2[25:0] 0x0000 0000 u[31:26], a1[25:0] 0x0000 0000 u[31:26], a2[25:0] 0x0000 0000 u[31:26], b0[25:0] 0x0080 0000 u[31:26], b1[25:0] 0x0000 0000 u[31:26], b2[25:0] 0x0000 0000 u[31:26], a1[25:0] 0x0000 0000 u[31:26], a2[25:0] 0x0000 0000 Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): TAS5706A TAS5706B TAS5706A is Not Recommended for New Designs TAS5706A TAS5706B www.ti.com............................................................................................................................................. SLOS606D – MARCH 2009 – REVISED SEPTEMBER 2009 Table 2. Serial Control Interface Register Summary (continued) SUBADDRESS 0x35 0x36 0x37 0x38 NO. OF BYTES REGISTER NAME ch2_bq[5] 20 ch2_bq[6] 20 ch6_bq[0] 20 ch6_bq[1] 20 0x39 0x3A DRC1 ae 0x3B DRC1 aa 0x3D DRC2 ae u[31:26], b2[25:0] 0x0000 0000 u[31:26], a1[25:0] 0x0000 0000 u[31:26], a2[25:0] 0x0000 0000 u[31:26], b0[25:0] 0x0080 0000 u[31:26], b1[25:0] 0x0000 0000 u[31:26], b2[25:0] 0x0000 0000 u[31:26], a1[25:0] 0x0000 0000 u[31:26], a2[25:0] 0x0000 0000 u[31:26], b0[25:0] 0x0080 0000 u[31:26], b1[25:0] 0x0000 0000 u[31:26], b2[25:0] 0x0000 0000 u[31:26], a1[25:0] 0x0000 0000 u[31:26], a2[25:0] 0x0000 0000 u[31:26], b0[25:0] 0x0080 0000 u[31:26], b1[25:0] 0x0000 0000 u[31:26], b2[25:0] 0x0000 0000 u[31:26], a1[25:0] 0x0000 0000 u[31:26], a2[25:0] 0x0000 0000 0x0080 0000 u[31:26], (1 – ae)[25:0] 0x0000 0000 u[31:26], aa[25:0] 0x0080 0000 u[31:26], (1 – aa)[25:0] 0x0000 0000 u[31:26], ad[25:0] 0x0080 0000 u[31:26], (1 – ad)[25:0] 0x0000 0000 u[31:26], ae[25:0] 0x0080 0000 u[31:26], (1 – ae)[25:0] 0x0000 0000 8 8 DRC 2 (1 – ae) 8 DRC2 (1 – aa) 8 u[31:26], aa[25:0] 0x0080 0000 u[31:26], (1 – aa)[25:0] 0x0000 0000 u[31:26], ad[25:0] 0x0080 0000 0x3F DRC2 ad u[31:26], (1 – ad)[27::0] 0x0000 0000 0x40 DRC1-T 4 T1[31:0] 0xFDA2 1490 0x41 DRC1-K 4 u[31:26], k1[25:0] 0x0384 2109 0x42 DRC1-O 4 u[31:24], O[23:16], O1[15:0] 0x0008 4210 0x43 DRC2-T 4 T2[31:0] 0xFDA2 1490 0x44 DRC2-K 4 u[31:24], k2'[22:0] 0x0384 2109 0x45 DRC2-O 4 u[31:24], O2[25:0] 0x0008 4210 0x46 DRC control DRC2 (1 – ad) 4 u[31:2], ch6[1], ch1_5[0] 0x0000 0000 0x47–0x49 4 Reserved (4) 0x0000 0000 0x50 4 Bank update command register 0x0000 0000 0x51–0xFF (4) 0x0000 0000 u[31:26], ae[25:0] 8 DRC2 aa 0x0080 0000 8 DRC1 (1 – ad) 0x3E u[31:26], b0[25:0] u[31:26], b1[25:0] Reserved (4) DRC1 (1 – aa) DRC1 ad INITIALIZATION VALUE 4 DRC1 (1 – ae) 0x3C CONTENTS 4 Reserved (4) 0x0000 0000 Reserved registers should not be accessed. Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): TAS5706A TAS5706B 43 TAS5706A TAS5706B TAS5706A is Not Recommended for New Designs SLOS606D – MARCH 2009 – REVISED SEPTEMBER 2009............................................................................................................................................. www.ti.com CLOCK CONTROL REGISTER (0x00) In the manual mode, the clock control register provides a way for the system microprocessor to update the data and clock rates based on the sample rate and associated clock frequencies. In the auto-detect mode, the clocks are automatically determined by the TAS5706A. In this case, the clock control register contains the auto-detected clock status as automatically detected (D7–D2). Bits D7–D5 selects the sample rate. Bits D4–D2 select the MCLK frequency. Bit D0 is used in manual mode only. In this mode, when the clocks are updated a 1 must be written to D0 to inform the DAP that the written clocks are valid. Table 3. Clock Control Register (0x00) D7 D6 D5 D4 D3 D2 D1 D0 0 0 0 – – – – – fS = 32-kHz sample rate FUNCTION 0 0 1 – – – – – fS = 38-kHz sample rate 0 1 0 – – – – – fS = 44.1-kHz sample rate 0 1 1 – – – – – fS = 48-kHz sample rate 1 0 0 – – – – – fS = 88.2-kHz sample rate 1 0 1 – – – – – fS = 96-kHz sample rate 1 1 0 – – – – – fS = 176.4-kHz sample rate 1 1 1 – – – – – fS = 192-kHz sample rate – – – 0 0 0 – – MCLK frequency = 64 × fS (2) – – – 0 0 1 – – MCLK frequency = 128 × fS (3) – – – 0 1 0 – – MCLK frequency = 192 × fS – – – 0 1 1 – – MCLK frequency = 256 × fS (1) (1) (4) – – – 1 0 0 – – MCLK frequency = 384 × fS – – – 1 0 1 – – MCLK frequency = 512 × fS (4) – – – 1 1 0 – – Reserved – – – 1 1 1 – – Reserved – – – – – – 1 – Bit clock (SCLK) frequency = 48 × fS (5) – – – – – – 0 – Bit clock (SCLK) frequency = 64 × fS or 32 × fS (selected in register 0x04) (1) – – – – – – – 0 Clock not valid (in manual mode only) – – – – 1 Clock valid (in manual mode only) (1) (2) (3) (4) (5) (1) Default values are in bold. Rate not available for 32-, 44.1-, and 48-kHz data rates Rate not available for 32-kHz data rate Rate not available for 176.4-kHz and 192-kHz data rates Rate only available for 192-fS and 384-fS MCLK frequencies DEVICE ID REGISTER (0x01) The device ID register contains the ID code for the firmware revision. Table 4. Device ID Register (0x01) D7 D6 D5 D4 D3 D2 D1 D0 0 – – – – – – – Default – 0 1 0 1 0 1 0 Identification code (1) 44 FUNCTION (1) Default values are in bold. Submit Documentation Feedback Copyright © 2009, Texas Instruments Incorporated Product Folder Link(s): TAS5706A TAS5706B TAS5706A TAS5706B TAS5706A is Not Recommended for New Designs www.ti.com............................................................................................................................................. SLOS606D – MARCH 2009 – REVISED SEPTEMBER 2009 ERROR STATUS REGISTER (0x02) Note that the error bits are sticky bits that are not cleared by the hardware. This means that the software must clear the register (write zeroes) and then read them to determine if there are any persistent errors. Table 5. Error Status Register (0x02) D7 D6 D5 D4 D3 D2 D1 D0 – – – – – – – – MCLK error – 1 – – – – – – PLL autolock error – – 1 – – – – – SCLK error – – – 1 – – – – LRCLK error – – – – 1 – – – Frame slip 0 0 0 0 0 0 0 0 No errors (1) FUNCTION (1) Default values are in bold. Note that the error bits are sticky bits that are not cleared by the hardware. This means that the software must clear the register (write zeroes) and then read them to determine if there are any persistent errors. Table 6. Error Status Register (0x02) D7 D6 D5 D4 D3 D2 D1 D0 – 1 – – – – – – PLL autolock error – – 1 – – – – – SCLK error – – – 1 – – – – LRCLK error – – – – 1 – – – Frame slip 0 0 0 0 0 0 0 0 No errors (1) FUNCTION (1) Default values are in bold. SYSTEM CONTROL REGISTER 1 (0x03) The system control register 1 has several functions: Bit D7: If 0, the dc-blocking filter for each channel is disabled. If 1, the dc-blocking filter (–3 dB cutoff
TAS5706APAPR 价格&库存

很抱歉,暂时无法提供与“TAS5706APAPR”相匹配的价格&库存,您可以联系我们找货

免费人工找货