TAS5711
www.ti.com
SLOS600A – DECEMBER 2009 – REVISED AUGUST 2010
20-W DIGITAL AUDIO-POWER AMPLIFIER WITH EQ, DRC, AND 2.1 MODE
Check for Samples: TAS5711
FEATURES
1
•
2
•
•
Audio Input/Output
– 20-W Into an 8-Ω Load From an 18-V Supply
– Wide PVDD Range, From 8 V to 26 V
– Efficient Class-D Operation Eliminates
Need for Heatsinks
– One Serial Audio Input (Two Audio
Channels)
– 2.1 Mode (2 SE + 1 BTL)
– 2.0 Mode (2 BTL)
– Single-Filter PBTL Mode Support
– I2C Address Selection Pin (Chip Select)
– Supports 8-kHz to 48-kHz Sample Rate
(LJ/RJ/I2S)
Audio/PWM Processing
– Independent Channel Volume Controls With
24-dB to Mute
– Separate Dynamic Range Control for
Satellite and Subchannels
– 21 Programmable Biquads for Speaker EQ
and Other Audio Processing Features
– Programmable Coefficients for DRC Filters
– DC Blocking Filters
– Support for 3D Effects
General Features
– Serial Control Interface Operational Without
MCLK
– Factory-Trimmed Internal Oscillator for
Automatic Rate Detection
– Surface Mount, 48-Pin, 7-mm × 7-mm
HTQFP Package
– Thermal and Short-Circuit Protection
– Support for AD or BD Mode
•
•
Benefits
– Up to 90% Efficient
– AD and BD Filter Mode Support
– SNR: 106 dB, A-Weighted
– EQ: Speaker Equalization Improves Audio
Performance
– DRC: Dynamic Range Compression. Can
Be Used As Power Limiter. Enables
Speaker Protection, Easy Listening,
Night-Mode Listening.
– Separate DRC for Satellite and
Subchannels
– Autobank Switching: Preload Coefficients
for Different Sample Rates. No Need to
Write new Coefficients to the Part When
Sample Rate Changes.
– Autodetect: Automatically Detects
Sample-Rate Changes. No Need for
External Microprocessor Intervention
Requires Only 3.3 V and PVDD
APPLICATIONS
•
•
•
Television
iPod™ Dock
Sound Bar
DESCRIPTION
The TAS5711 is a 20-W, efficient, digital audio power
amplifier for driving stereo bridge-tied speakers. One
serial data input allows processing of up to two
discrete audio channels and seamless integration to
most digital audio processors and MPEG decoders.
The device accepts a wide range of input data and
data rates. A fully programmable data path routes
these channels to the internal speaker drivers.
The TAS5711 is an I2S slave-only device receiving all
clocks from external sources. The TAS5711 operates
with a PWM carrier between 384-kHz switching rate
and 352-KHz switching rate depending on the input
sample rate. Oversampling combined with a
fourth-order noise shaper provides a flat noise floor
and excellent dynamic range from 20 Hz to 20 kHz.
1
2
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
iPod is a trademark of Apple Inc.
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of the Texas
Instruments standard warranty. Production processing does not
necessarily include testing of all parameters.
Copyright © 2009–2010, Texas Instruments Incorporated
TAS5711
SLOS600A – DECEMBER 2009 – REVISED AUGUST 2010
www.ti.com
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam
during storage or handling to prevent electrostatic damage to the MOS gates.
SIMPLIFIED APPLICATION DIAGRAM
3.3 V
8 V–26 V
AVDD/DVDD
PVDD
LRCLK
Digital
Audio
Source
OUT_A
LCSE
PVDD
SCLK
MCLK
BST_A
SDIN
BST_B
2
I C
Control
OUT_B
SDA
PVDD
SCL
A_SEL(FAULT)
RESET
Control
Inputs
LCSE
OUT_C
BST_C
PDN
LCBTL
BST_D
PLL_FLTP
Loop
Filter
OUT_D
(1)
PLL_FLTM
B0264-09
(1) See TAS5711 EVM User's Guide (SLOU280) for loop filter values.
2
Submit Documentation Feedback
Copyright © 2009–2010, Texas Instruments Incorporated
Product Folder Link(s): TAS5711
TAS5711
www.ti.com
SLOS600A – DECEMBER 2009 – REVISED AUGUST 2010
FUNCTIONAL VIEW
OUT_A
th
SDIN
Serial
Audio
Port
S
R
C
Digital Audio Processor
(DAP)
4
Order
Noise
Shaper
and
PWM
2´ HB
FET Out
OUT_B
OUT_C
2´ HB
FET Out
OUT_D
Protection
Logic
MCLK
SCLK
LRCLK
SDA
SCL
Click and Pop
Control
Sample Rate
Autodetect
and PLL
Serial
Control
Microcontroller
Based
System
Control
Terminal Control
B0262-06
Submit Documentation Feedback
Copyright © 2009–2010, Texas Instruments Incorporated
Product Folder Link(s): TAS5711
3
TAS5711
SLOS600A – DECEMBER 2009 – REVISED AUGUST 2010
www.ti.com
FAULT
Undervoltage
Protection
FAULT
4
4
Power
On
Reset
Protection
and
I/O Logic
AGND
Temp.
Sense
GND
VALID
Overcurrent
Protection
Isense
OC_ADJ
BST_D
PVDD_D
PWM Controller
PWM_D
PWM
Rcv
Ctrl
Timing
Gate
Drive
OUT_D
Pulldown Resistor
PGND_CD
GVDD_CD
Regulator
GVDD_CD
BST_C
PVDD_C
PWM_C
PWM
Rcv
Ctrl
Timing
Gate
Drive
OUT_C
Pulldown Resistor
PGND_CD
BST_B
PVDD_B
PWM_B
PWM
Rcv
Ctrl
Timing
Gate
Drive
OUT_B
Pulldown Resistor
GVDD_AB
Regulator
PGND_AB
GVDD_AB
BST_A
PVDD_A
PWM_A
PWM
Rcv
Ctrl
Timing
Gate
Drive
OUT_A
Pulldown Resistor
PGND_AB
B0034-05
Figure 1. Power Stage Functional Block Diagram
4
Submit Documentation Feedback
Copyright © 2009–2010, Texas Instruments Incorporated
Product Folder Link(s): TAS5711
R
L
Input Muxing
Copyright © 2009–2010, Texas Instruments Incorporated
Product Folder Link(s): TAS5711
½
61
+
31
1BQ
21 (D8, D9)
I2C:54 – V2IM
+
2A
1BQ
5A
1BQ
1
1
+
+
6BQ
5B
1BQ
32–36, 5C
6BQ
2B–2F, 58
55
+
Vol1
+
Auto-lp
(0x46 Bit 5)
0
–1
+
5E
1BQ
1BQ
5D
1BQ
59
3D
ealpha
3D
ealpha
Vol2
Vol2
ealpha
3A
3A
ealpha
Vol1
Energy
MAXMUX
R
1
+
2
I C Subaddress in Red
Attack
Decay
Attack
Decay
Master ON/OFF
(0x46[1])
Log
Math
Master ON/OFF
(0x46[0])
Log
Math
1
1
+
+
60 V6OM
+
52 V2OM
1
1
51 V1OM
I2C:56
VDISTA
B0321-08
www.ti.com
½
L
30
1BQ
29
1BQ
1
I2C:53 – V1IM
TAS5711
SLOS600A – DECEMBER 2009 – REVISED AUGUST 2010
DAP Process Structure
I2C:57
VDISTB
Energy
MAXMUX
Submit Documentation Feedback
5
TAS5711
SLOS600A – DECEMBER 2009 – REVISED AUGUST 2010
www.ti.com
DEVICE INFORMATION
PIN ASSIGNMENT
PGND_CD
PGND_CD
PVDD_C
OUT_C
PVDD_C
BST_C
PVDD_B
BST_B
PVDD_B
OUT_B
PGND_AB
PGND_AB
PHP Package
(Top View)
48 47 46 45 44 43 42 41 40 39 38 37
OUT_A
1
36
OUT_D
PVDD_A
2
35
PVDD_D
PVDD_A
3
34
PVDD_D
BST_A
4
33
BST_D
GVDD_OUT
5
32
GVDD_OUT
SSTIMER
6
31
VREG
OC_ADJ
7
30
AGND
PBTL
8
29
GND
AVSS
9
28
DVSS
PLL_FLTM
10
27
DVDD
PLL_FLTP
11
26
STEST
VR_ANA
12
25
RESET
TAS5711
SCL
SDA
SDIN
SCLK
LRCLK
PDN
VR_DIG
DVSSO
MCLK
OSC_RES
AVDD
A_SEL
13 14 15 16 17 18 19 20 21 22 23 24
P0075-08
PIN FUNCTIONS
PIN
NAME
NO.
TYPE (1)
5-V
TOLERANT
TERMINATION (2)
DESCRIPTION
AGND
30
P
A_SEL
14
DIO
AVDD
13
P
3.3-V analog power supply
AVSS
9
P
Analog 3.3-V supply ground
BST_A
4
P
High-side bootstrap supply for half-bridge A
BST_B
43
P
High-side bootstrap supply for half-bridge B
BST_C
42
P
High-side bootstrap supply for half-bridge C
BST_D
33
P
High-side bootstrap supply for half-bridge D
DVDD
27
P
3.3-V digital power supply
DVSSO
17
P
Oscillator ground
(1)
(2)
6
Analog ground for power stage
A value of 0 (15-kΩ pulldown) makes the I2C device address 0x34,
and a value of 1 (15-kΩ pullup) makes it 0x36. This pin can be
programmed after RESET to be an output by writing 1 to bit 0 of I2C
register 0x05. In that mode, the A_SEL pin is redefined as FAULT
(see ERROR REPORTING for details).
TYPE: A = analog; D = 3.3-V digital; P = power/ground/decoupling; I = input; O = output
All pullups are weak pullups and all pulldowns are weak pulldowns. The pullups and pulldowns are included to assure proper input logic
levels if the pins are left unconnected (pullups → logic 1 input; pulldowns → logic 0 input).
Submit Documentation Feedback
Copyright © 2009–2010, Texas Instruments Incorporated
Product Folder Link(s): TAS5711
TAS5711
www.ti.com
SLOS600A – DECEMBER 2009 – REVISED AUGUST 2010
PIN FUNCTIONS (continued)
PIN
NAME
NO.
TYPE (1)
5-V
TOLERANT
TERMINATION (2)
DESCRIPTION
DVSS
28
P
Digital ground
GND
29
P
Analog ground for power stage
5, 32
P
Gate drive internal regulator output. This pin must not be used to
drive external devices.
LRCLK
20
DI
5-V
Pulldown
Input serial audio data left/right clock (sample rate clock)
MCLK
15
DI
5-V
Pulldown
Master clock input
OC_ADJ
7
AO
Analog overcurrent programming. Requires resistor to ground.
OSC_RES
16
AO
Oscillator trim resistor. Connect an 18.2-kΩ 1% resistor to DVSSO.
OUT_A
1
O
Output, half-bridge A
OUT_B
46
O
Output, half-bridge B
OUT_C
39
O
Output, half-bridge C
OUT_D
36
O
Output, half-bridge D
PBTL
8
DI
Low means BTL or SE mode; high means PBTL mode. Information
goes directly to power stage.
PDN
19
DI
PGND_AB
47, 48
P
Power ground for half-bridges A and B
PGND_CD
37, 38
P
Power ground for half-bridges C and D
PLL_FLTM
10
AO
PLL negative loop filter terminal
PLL_FLTP
11
AO
PLL positive loop filter terminal
PVDD_A
2, 3
P
Power supply input for half-bridge output A
PVDD_B
44, 45
P
Power supply input for half-bridge output B
PVDD_C
40, 41
P
Power supply input for half-bridge output C
PVDD_D
GVDD_OUT
5-V
Pullup
Power down, active-low. PDN prepares the device for loss of power
supplies by shutting down the Noise Shaper and initiating PWM stop
sequence.
34, 35
P
RESET
25
DI
5-V
Power supply input for half-bridge output D
SCL
24
DI
5-V
SCLK
21
DI
5-V
SDA
23
DIO
5-V
SDIN
22
DI
5-V
SSTIMER
6
AI
Controls ramp time of OUT_x to minimize pop. Leave this pin
floating for BD mode. Requires capacitor of 2.2 nF to GND in AD
mode. The capacitor determines the ramp time.
STEST
26
DI
Factory test pin. Connect directly to DVSS.
VR_ANA
12
P
Internally regulated 1.8-V analog supply voltage. This pin must not
be used to power external devices.
VR_DIG
18
P
Internally regulated 1.8-V digital supply voltage. This pin must not be
used to power external devices.
VREG
31
P
Digital regulator output. Not to be used for powering external
circuitry.
Pullup
Reset, active-low. A system reset is generated by applying a logic
low to this pin. RESET is an asynchronous control signal that
restores the DAP to its default conditions, and places the PWM in
the hard mute state (tristated).
I2C serial control clock input
Pulldown
Serial audio data clock (shift clock). SCLK is the serial audio port
input data bit clock.
I2C serial control data interface input/output
Pulldown
Serial audio data input. SDIN supports three discrete (stereo) data
formats.
Submit Documentation Feedback
Copyright © 2009–2010, Texas Instruments Incorporated
Product Folder Link(s): TAS5711
7
TAS5711
SLOS600A – DECEMBER 2009 – REVISED AUGUST 2010
www.ti.com
ABSOLUTE MAXIMUM RATINGS
over operating free-air temperature range (unless otherwise noted)
(1)
VALUE
UNIT
–0.3 to 3.6
V
PVDD_x
–0.3 to 30
V
OC_ADJ
–0.3 to 4.2
V
–0.5 to DVDD + 0.5
V
–0.5 to DVDD + 2.5 (3)
V
(3)
V
DVDD, AVDD
Supply voltage
3.3-V digital input
Input voltage
5-V tolerant (2) digital input (except MCLK)
5-V tolerant MCLK input
–0.5 to AVDD + 2.5
OUT_x to PGND_x
32 (4)
V
BST_x to PGND_x
43 (4)
V
Input clamp current, IIK
±20
mA
Output clamp current, IOK
±20
mA
0 to 85
°C
0 to 150
°C
–40 to 125
°C
Operating free-air temperature
Operating junction temperature range
Storage temperature range, Tstg
(1)
Stresses beyond those listed under absolute ratings may cause permanent damage to the device. These are stress ratings only and
functional operation of the device at these or any other conditions beyond those indicated under recommended operation conditions are
not implied. Exposure to absolute-maximum conditions for extended periods may affect device reliability.
5-V tolerant inputs are PDN, RESET, SCLK, LRCLK, MCLK, SDIN, SDA, and SCL.
Maximum pin voltage should not exceed 6.0V
DC voltage + peak ac waveform measured at the pin should be below the allowed limit for all conditions.
(2)
(3)
(4)
THERMAL INFORMATION
TAS5711
THERMAL METRIC (1) (2)
qJA
Junction-to-ambient thermal resistance
29.9
qJCtop
Junction-to-case (top) thermal resistance
20.5
qJB
Junction-to-board thermal resistance
12.5
yJT
Junction-to-top characterization parameter
0.3
yJB
Junction-to-board characterization parameter
7.3
qJCbot
Junction-to-case (bottom) thermal resistance
0.7
(1)
(2)
UNITS
PHP (48 PIN)
°C/W
For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.
For thermal estimates of this device based on PCB copper area, see the TI PCB Thermal Calculator.
RECOMMENDED OPERATING CONDITIONS
MIN
NOM
MAX
3.3
3.6
V
26
V
Digital/analog supply voltage
DVDD, AVDD
3
Half-bridge supply voltage
PVDD_x
8
VIH
High-level input voltage
5-V tolerant
2
VIL
Low-level input voltage
5-V tolerant
TA
Operating ambient temperature range
TJ
(1)
Operating junction temperature range
0
Load impedance
Output filter: L = 15 mH, C = 680 nF.
LO (BTL)
Output-filter inductance
Minimum output inductance under
short-circuit condition
(1)
8
V
0
RL (BTL)
6
10
UNIT
0.8
V
85
°C
125
°C
Ω
8
mH
Continuous operation above the recommended junction temperature may result in reduced reliability and/or lifetime of the device.
Submit Documentation Feedback
Copyright © 2009–2010, Texas Instruments Incorporated
Product Folder Link(s): TAS5711
TAS5711
www.ti.com
SLOS600A – DECEMBER 2009 – REVISED AUGUST 2010
PWM OPERATION AT RECOMMENDED OPERATING CONDITIONS
PARAMETER
TEST CONDITIONS
Output sample rate
VALUE
UNIT
11.025/22.05/44.1-kHz data rate ±2%
352.8
kHz
48/24/12/8/16/32-kHz data rate ±2%
384
PLL INPUT PARAMETERS AND EXTERNAL FILTER COMPONENTS
PARAMETER
fMCLKI
tr /
tf(MCLK)
TEST CONDITIONS
MIN
MCLK Frequency
2.8224
MCLK duty cycle
40%
TYP
50%
MAX
UNIT
24.576
MHz
60%
Rise/fall time for MCLK
LRCLK allowable drift before LRCLK reset
5
ns
4
MCLKs
External PLL filter capacitor C1
SMD 0603 X7R
47
nF
External PLL filter capacitor C2
SMD 0603 X7R
4.7
nF
External PLL filter resistor R
SMD 0603, metal film
470
Ω
ELECTRICAL CHARACTERISTICS
DC Characteristics
TA = 25°, PVCC_x = 18V, DVDD = AVDD = 3.3V, RL= 8Ω, BTL AD Mode, FS = 48KHz (unless otherwise noted)
TEST CONDITIONS
MIN
VOH
High-level output voltage
PARAMETER
A_SEL and SDA
IOH = –4 mA
DVDD = AVDD = 3 V
2.4
VOL
Low-level output voltage
A_SEL and SDA
IOL = 4 mA
DVDD = AVDD = 3 V
0.5
IIL
Low-level input current
VI < VIL ; DVDD = AVDD
= 3.6V
75
IIH
High-level input current
VI > VIH ; DVDD =
AVDD = 3.6V
IDD
3.3 V supply current
3.3 V supply voltage (DVDD,
AVDD)
IPVDD
Half-bridge supply current
No load (PVDD_x)
rDS(on)
(2)
TYP
MAX
UNIT
V
75 (1)
Normal Mode
48
70
Reset (RESET = low,
PDN = high)
24
32
Normal Mode
30
55
5
13
Reset (RESET = low,
PDN = high)
Drain-to-source resistance, LS TJ = 25°C, includes metallization resistance
180
Drain-to-source resistance,
HS
TJ = 25°C, includes metallization resistance
180
V
mA
mA
mA
mA
mΩ
I/O Protection
Vuvp
Undervoltage protection limit
PVDD falling
7.2
Vuvp,hyst
Undervoltage protection limit
PVDD rising
7.6
V
OTE (3)
Overtemperature error
150
°C
30
°C
0.63
ms
OTEHYST
(3)
Extra temperature drop
required to recover from error
OLPC
Overload protection counter
fPWM = 384 kHz
IOC
Overcurrent limit protection
Resistor—programmable, max. current, ROCP = 22 kΩ
IOCT
Overcurrent response time
ROCP
OC programming resistor
range
Resistor tolerance = 5% for typical value; the minimum
resistance should not be less than 20 kΩ.
RPD
Internal pulldown resistor at
the output of each half-bridge
Connected when drivers are tristated to provide bootstrap
capacitor charge.
(1)
(2)
(3)
20
V
4.5
A
150
ns
22
kΩ
3
kΩ
IIH for the PBTL pin has a maximum limit of 200 µA due to an intenal pulldown on the pin.
This does not include bond-wire or pin resistance.
Specified by design
Submit Documentation Feedback
Copyright © 2009–2010, Texas Instruments Incorporated
Product Folder Link(s): TAS5711
9
TAS5711
SLOS600A – DECEMBER 2009 – REVISED AUGUST 2010
www.ti.com
AC Characteristics (BTL)
PVDD_x = 18 V, BTL AD mode, FS = 48 KHz, RL = 8 Ω, ROCP = 22 KΩ, CBST = 33 nF, audio frequency = 1 kHz, AES17 filter,
fPWM = 384 kHz, TA = 25°C (unless otherwise specified). All performance is in accordance with recommended operating
conditions (unless otherwise specified).
PARAMETER
TEST CONDITIONS
MIN
PVDD = 18 V, 10% THD, 1-kHz input signal
PO
Power output per channel
THD+N
Total harmonic distortion + noise
Vn
Output integrated noise (rms)
Crosstalk
SNR
(1)
10
Signal-to-noise ratio (1)
TYP
UNIT
21
PVDD = 18 V, 7% THD, 1-kHz input signal
20
PVDD = 12 V, 10% THD, 1-kHz input signal
9.5
PVDD = 12 V, 7% THD, 1-kHz input signal
9
PVDD = 8 V, 10% THD, 1-kHz input signal
4.1
PVDD = 8 V, 7% THD, 1-kHz input signal
3.9
PBTL mode, PVDD = 12 V, RL = 4 Ω,
10% THD, 1-kHz input signal
19.2
PBTL mode, PVDD = 12 V, RL = 4 Ω,
7% THD, 1-kHz input signal
18
PBTL mode, PVDD = 18 V, RL = 4 Ω,
10% THD, 1-kHz input signal
42.8
PBTL mode, PVDD = 18 V, RL = 4 Ω,
7% THD, 1-kHz input signal
40
SE mode, PVDD = 12 V, RL = 4 Ω,
10% THD, 1-kHz input signal
4.6
SE mode, PVDD = 12 V, RL = 4 Ω,
7% THD, 1-kHz input signal
4.3
SE mode, PVDD = 24 V, RL = 4 Ω,
10% THD, 1-kHz input signal
17.8
SE mode, PVDD = 24 V, RL = 4 Ω,
7% THD, 1-kHz input signal
16
PVDD = 18 V, PO = 1 W
0.06%
PVDD = 12 V, PO = 1 W
0.08%
PVDD = 8 V, PO = 1 W
0.2%
A-weighted
MAX
W
44
mV
PO = 0.25 W, f = 1 kHz (BD Mode)
–82
dB
PO = 0.25 W, f = 1 kHz (AD Mode)
–69
dB
A-weighted, f = 1 kHz, maximum power at
THD < 1%
106
dB
SNR is calculated relative to 0-dBFS input level.
Submit Documentation Feedback
Copyright © 2009–2010, Texas Instruments Incorporated
Product Folder Link(s): TAS5711
TAS5711
www.ti.com
SLOS600A – DECEMBER 2009 – REVISED AUGUST 2010
SERIAL AUDIO PORTS SLAVE MODE
over recommended operating conditions (unless otherwise noted)
TEST
CONDITIONS
PARAMETER
MIN
CL = 30 pF
TYP
1.024
MAX
UNIT
12.288
MHz
fSCLKIN
Frequency, SCLK 32 × fS, 48 × fS, 64 × fS
tsu1
Setup time, LRCLK to SCLK rising edge
10
ns
th1
Hold time, LRCLK from SCLK rising edge
10
ns
tsu2
Setup time, SDIN to SCLK rising edge
10
ns
th2
Hold time, SDIN from SCLK rising edge
10
LRCLK frequency
ns
8
48
48
SCLK duty cycle
40%
50%
60%
LRCLK duty cycle
40%
50%
60%
SCLK rising edges between LRCLK rising edges
t(edge)
LRCLK clock edge with respect to the falling edge of SCLK
tr/tf
Rise/fall time for SCLK/LRCLK
kHz
32
64
SCLK
edges
–1/4
1/4
SCLK
period
8
tr
ns
tf
SCLK
(Input)
t(edge)
th1
tsu1
LRCLK
(Input)
th2
tsu2
SDIN
T0026-04
Figure 2. Slave Mode Serial Data Interface Timing
Submit Documentation Feedback
Copyright © 2009–2010, Texas Instruments Incorporated
Product Folder Link(s): TAS5711
11
TAS5711
SLOS600A – DECEMBER 2009 – REVISED AUGUST 2010
www.ti.com
I2C SERIAL CONTROL PORT OPERATION
Timing characteristics for I2C Interface signals over recommended operating conditions (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
No wait states
MAX
UNIT
400
kHz
fSCL
Frequency, SCL
tw(H)
Pulse duration, SCL high
0.6
tw(L)
Pulse duration, SCL low
1.3
tr
Rise time, SCL and SDA
300
ns
tf
Fall time, SCL and SDA
300
ns
tsu1
Setup time, SDA to SCL
th1
Hold time, SCL to SDA
t(buf)
ms
ms
100
ns
0
ns
Bus free time between stop and start condition
1.3
ms
tsu2
Setup time, SCL to start condition
0.6
ms
th2
Hold time, start condition to SCL
0.6
ms
tsu3
Setup time, SCL to stop condition
0.6
ms
CL
Load capacitance for each bus line
400
tw(H)
tw(L)
pF
tf
tr
SCL
tsu1
th1
SDA
T0027-01
Figure 3. SCL and SDA Timing
SCL
t(buf)
th2
tsu2
tsu3
SDA
Start
Condition
Stop
Condition
T0028-01
Figure 4. Start and Stop Conditions Timing
12
Submit Documentation Feedback
Copyright © 2009–2010, Texas Instruments Incorporated
Product Folder Link(s): TAS5711
TAS5711
www.ti.com
SLOS600A – DECEMBER 2009 – REVISED AUGUST 2010
RESET TIMING (RESET)
Control signal parameters over recommended operating conditions (unless otherwise noted). Please refer to Recommended
Use Model section on usage of all terminals.
PARAMETER
tw(RESET)
Pulse duration, RESET active
td(I2C_ready)
Time to enable I2C
MIN
TYP
MAX
UNIT
12.0
ms
100
µs
RESET
tw(RESET)
2
2
I C Active
I C Active
td(I2C_ready)
System Initialization.
2
Enable via I C.
T0421-01
NOTES: On power up, it is recommended that the TAS5711 RESET be held LOW for at least 100 ms after DVDD has
reached 3 V.
If the RESET is asserted LOW while PDN is LOW, then the RESET must continue to be held LOW for at least 100 ms
after PDN is deasserted (HIGH).
Figure 5. Reset Timing
Submit Documentation Feedback
Copyright © 2009–2010, Texas Instruments Incorporated
Product Folder Link(s): TAS5711
13
TAS5711
SLOS600A – DECEMBER 2009 – REVISED AUGUST 2010
www.ti.com
TYPICAL CHARACTERISTICS, BTL CONFIGURATION
TOTAL HARMONIC DISTORTION + NOISE
vs
FREQUENCY
TOTAL HARMONIC DISTORTION + NOISE
vs
FREQUENCY
10
10
PVDD = 12V
RL = 8Ω
T A = 25°C
PVDD = 8V
RL = 8Ω
T A = 25°C
PO = 2.5W
0.1
0.1
PO = 0.5W
PO = 1W
0.01
0.01
0.001
20
100
1k
Frequency (Hz)
10k
10k
20k
G002
Figure 7.
TOTAL HARMONIC DISTORTION + NOISE
vs
FREQUENCY
TOTAL HARMONIC DISTORTION + NOISE
vs
FREQUENCY
10
PVDD = 24V
RL = 8Ω
T A = 25°C
1
PO = 2.5W
THD+N (%)
PO = 5W
0.1
PO = 1W
100
PO = 5W
0.1
0.01
1k
Frequency (Hz)
10k
20k
PO = 2.5W
0.001
20
G003
Figure 8.
14
1k
Frequency (Hz)
Figure 6.
1
THD+N (%)
100
G001
PVDD = 18V
RL = 8Ω
T A = 25°C
0.001
20
PO = 1W
0.001
20
20k
10
0.01
PO = 5W
1
PO = 2.5W
THD+N (%)
THD+N (%)
1
100
PO = 1W
1k
Frequency (Hz)
10k
20k
G004
Figure 9.
Submit Documentation Feedback
Copyright © 2009–2010, Texas Instruments Incorporated
Product Folder Link(s): TAS5711
TAS5711
www.ti.com
SLOS600A – DECEMBER 2009 – REVISED AUGUST 2010
TYPICAL CHARACTERISTICS, BTL CONFIGURATION (continued)
TOTAL HARMONIC DISTORTION + NOISE
vs
OUTPUT POWER
TOTAL HARMONIC DISTORTION + NOISE
vs
OUTPUT POWER
10
10
PVDD = 8V
RL = 8Ω
T A = 25°C
PVDD = 12V
RL = 8Ω
T A = 25°C
f = 20Hz
1
1
f = 1kHz
THD+N (%)
THD+N (%)
f = 1kHz
0.1
0.01
f = 20Hz
0.1
0.01
f = 10kHz
f = 10kHz
0.001
0.01
0.1
1
Output Power (W)
10
0.001
0.01
50
0.1
G005
1
Output Power (W)
50
G006
Figure 10.
Figure 11.
TOTAL HARMONIC DISTORTION + NOISE
vs
OUTPUT POWER
TOTAL HARMONIC DISTORTION + NOISE
vs
OUTPUT POWER
10
10
PVDD = 18V
RL = 8Ω
T A = 25°C
PVDD = 24V
RL = 8Ω
T A = 25°C
1
1
f = 1kHz
THD+N (%)
f = 1kHz
THD+N (%)
10
0.1
0.1
f = 20Hz
f = 20Hz
f = 10kHz
0.01
0.01
f = 10kHz
0.001
0.01
0.1
1
Output Power (W)
10
50
0.001
0.01
G007
Figure 12.
0.1
1
Output Power (W)
10
50
G008
Figure 13.
Submit Documentation Feedback
Copyright © 2009–2010, Texas Instruments Incorporated
Product Folder Link(s): TAS5711
15
TAS5711
SLOS600A – DECEMBER 2009 – REVISED AUGUST 2010
www.ti.com
TYPICAL CHARACTERISTICS, BTL CONFIGURATION (continued)
OUTPUT POWER
vs
SUPPLY VOLTAGE
EFFICIENCY
vs
TOTAL OUTPUT POWER
40
100
RL = 8Ω
T A = 25°C
35
90
80
PVDD = 24V
30
PVDD = 18V
25
Efficiency (%)
Output Power (W)
70
THD+N = 10%
20
15
60
PVDD = 12V
50
PVDD = 8V
40
30
10
20
THD+N = 1%
5
RL = 8Ω
T A = 25°C
10
0
0
8
10
12
14
16
18
20
Supply Voltage (V)
22
24
26
0
5
10
15
20
Total Output Power (W)
G009
NOTE: Dashed lines represent thermally limited region.
Figure 14.
0
PO = 1W
PVDD = 8V
RL = 8Ω
T A = 25°C
-10
-20
PO = 1W
PVDD = 12V
RL = 8Ω
T A = 25°C
-30
Crosstalk (dB)
-30
Crosstalk (dB)
G010
CROSSTALK
vs
FREQUENCY
0
-20
30
NOTE: Dashed lines represent thermally limited region.
Figure 15.
CROSSTALK
vs
FREQUENCY
-10
25
-40
-50
-60
-70
-40
-50
-60
-70
Right to Left
Left to Right
-80
-80
-90
-100
20
100
1k
Frequency (Hz)
10k
20k
-100
20
G011
Figure 16.
16
Right to Left
-90
Left to Right
100
1k
Frequency (Hz)
10k
20k
G012
Figure 17.
Submit Documentation Feedback
Copyright © 2009–2010, Texas Instruments Incorporated
Product Folder Link(s): TAS5711
TAS5711
www.ti.com
SLOS600A – DECEMBER 2009 – REVISED AUGUST 2010
TYPICAL CHARACTERISTICS, BTL CONFIGURATION (continued)
CROSSTALK
vs
FREQUENCY
CROSSTALK
vs
FREQUENCY
0
-10
-20
0
PO = 1W
PVDD = 18V
RL = 8Ω
T A = 25°C
-10
-20
-30
Crosstalk (dB)
Crosstalk (dB)
-30
PO = 1W
PVDD = 24V
RL = 8Ω
T A = 25°C
-40
-50
-60
-70
-40
-50
-60
Right to Left
-70
Right to Left
-80
-80
Left to Right
-90
-90
Left to Right
-100
20
100
1k
Frequency (Hz)
10k
20k
-100
20
G013
Figure 18.
100
1k
Frequency (Hz)
10k
20k
G014
Figure 19.
Submit Documentation Feedback
Copyright © 2009–2010, Texas Instruments Incorporated
Product Folder Link(s): TAS5711
17
TAS5711
SLOS600A – DECEMBER 2009 – REVISED AUGUST 2010
www.ti.com
TYPICAL CHARACTERISTICS, SE CONFIGURATION
TOTAL HARMONIC DISTORTION + NOISE
vs
FREQUENCY
TOTAL HARMONIC DISTORTION + NOISE
vs
FREQUENCY
10
10
PVDD = 12V
RL = 4Ω
T A = 25°C
PVDD = 18V
RL = 4Ω
T A = 25°C
1
PO = 5W
1
PO = 2.5W
THD+N (%)
THD+N (%)
PO = 2.5W
0.1
0.1
PO = 1W
PO = 1W
PO = 0.5W
0.01
0.001
20
0.01
100
1k
Frequency (Hz)
10k
0.001
20
20k
100
G015
1k
Frequency (Hz)
10k
G016
Figure 20.
Figure 21.
TOTAL HARMONIC DISTORTION + NOISE
vs
FREQUENCY
TOTAL HARMONIC DISTORTION + NOISE
vs
OUTPUT POWER
10
20k
10
PVDD = 24V
RL = 4Ω
T A = 25°C
f = 1kHz
RL = 4Ω
T A = 25°C
1
1
PO = 5W
PVDD = 18V
THD+N (%)
THD+N (%)
PO = 2.5W
0.1
PVDD = 12V
0.1
PVDD = 24V
PO = 1W
0.01
0.001
20
0.01
100
1k
Frequency (Hz)
10k
20k
0.001
0.01
G017
Figure 22.
18
0.1
1
Output Power (W)
10
50
G018
Figure 23.
Submit Documentation Feedback
Copyright © 2009–2010, Texas Instruments Incorporated
Product Folder Link(s): TAS5711
TAS5711
www.ti.com
SLOS600A – DECEMBER 2009 – REVISED AUGUST 2010
TYPICAL CHARACTERISTICS, SE CONFIGURATION (continued)
OUTPUT POWER
vs
SUPPLY VOLTAGE
EFFICIENCY
vs
TOTAL OUTPUT POWER
22
100
RL = 4Ω
T A = 25°C
20
90
18
80
70
PVDD = 24V
14
12
Efficiency (%)
Output Power (W)
16
THD+N = 10%
10
60
PVDD = 12V
50
40
8
30
6
THD+N = 1%
4
20
2
10
0
RL = 4Ω
T A = 25°C
0
8
10
12
14
16
18
20
Supply Voltage (V)
22
24
26
0
G019
NOTE: Dashed lines represent thermally limited region.
Figure 24.
3
6
9
Total Output Power (W)
12
15
Figure 25.
Submit Documentation Feedback
Copyright © 2009–2010, Texas Instruments Incorporated
Product Folder Link(s): TAS5711
G020
19
TAS5711
SLOS600A – DECEMBER 2009 – REVISED AUGUST 2010
www.ti.com
TYPICAL CHARACTERISTICS, PBTL CONFIGURATION
TOTAL HARMONIC DISTORTION + NOISE
vs
FREQUENCY
TOTAL HARMONIC DISTORTION + NOISE
vs
FREQUENCY
10
10
PVDD = 12V
RL = 4Ω
T A = 25°C
PVDD = 8V
RL = 4Ω
T A = 25°C
1
1
PO = 5W
THD+N (%)
THD+N (%)
PO = 5W
0.1
PO = 1W
0.1
PO = 2W
0.01
0.01
PO = 2W
PO = 1W
0.001
20
100
1k
Frequency (Hz)
10k
0.001
20
20k
TOTAL HARMONIC DISTORTION + NOISE
vs
FREQUENCY
10
PVDD = 24V
RL = 4Ω
T A = 25°C
1
THD+N (%)
THD+N (%)
20k
G022
TOTAL HARMONIC DISTORTION + NOISE
vs
FREQUENCY
1
PO = 5W
0.01
PO = 2W
100
0.01
PO = 1W
1k
Frequency (Hz)
PO = 2W
0.1
10k
20k
0.001
20
G023
Figure 28.
20
10k
Figure 27.
PVDD = 18V
RL = 4Ω
T A = 25°C
0.001
20
1k
Frequency (Hz)
Figure 26.
10
0.1
100
G021
PO = 5W
100
PO = 1W
1k
Frequency (Hz)
10k
20k
G024
Figure 29.
Submit Documentation Feedback
Copyright © 2009–2010, Texas Instruments Incorporated
Product Folder Link(s): TAS5711
TAS5711
www.ti.com
SLOS600A – DECEMBER 2009 – REVISED AUGUST 2010
TYPICAL CHARACTERISTICS, PBTL CONFIGURATION (continued)
TOTAL HARMONIC DISTORTION + NOISE
vs
OUTPUT POWER
TOTAL HARMONIC DISTORTION + NOISE
vs
OUTPUT POWER
10
10
PVDD = 8V
RL = 4Ω
T A = 25°C
PVDD = 12V
RL = 4Ω
T A = 25°C
1
1
THD+N (%)
THD+N (%)
f = 20Hz
0.1
0.01
f = 20Hz
0.1
f = 10kHz
0.01
f = 1kHz
f = 1kHz
0.001
0.01
0.1
f = 10kHz
1
Output Power (W)
10
0.001
0.01
50
1
Output Power (W)
10
50
G026
Figure 30.
Figure 31.
TOTAL HARMONIC DISTORTION + NOISE
vs
OUTPUT POWER
TOTAL HARMONIC DISTORTION + NOISE
vs
OUTPUT POWER
10
10
PVDD = 18V
RL = 4Ω
T A = 25°C
PVDD = 24V
RL = 4Ω
T A = 25°C
1
THD+N (%)
1
THD+N (%)
0.1
G025
f = 20Hz
0.1
f = 20Hz
f = 1kHz
0.1
f = 1kHz
0.01
0.01
f = 10kHz
0.001
0.01
0.1
1
Output Power (W)
f = 10kHz
10
50
0.001
0.01
G027
Figure 32.
0.1
1
Output Power (W)
10
50
G028
Figure 33.
Submit Documentation Feedback
Copyright © 2009–2010, Texas Instruments Incorporated
Product Folder Link(s): TAS5711
21
TAS5711
SLOS600A – DECEMBER 2009 – REVISED AUGUST 2010
www.ti.com
TYPICAL CHARACTERISTICS, PBTL CONFIGURATION (continued)
OUTPUT POWER
vs
SUPPLY VOLTAGE
EFFICIENCY
vs
TOTAL OUTPUT POWER
60
100
RL = 4Ω
T A = 25°C
90
50
80
Efficiency (%)
Output Power (W)
PVDD = 24V
70
THD+N = 10%
40
30
20
PVDD = 18V
60
PVDD = 12V
50
PVDD = 8V
40
30
THD+N = 1%
20
10
RL = 4Ω
T A = 25°C
10
0
0
8
10
12
14
16
18
20
Supply Voltage (V)
22
24
0
G029
NOTE: Dashed lines represent thermally limited region.
Figure 34.
22
26
10
20
30
40
Total Output Power (W)
50
60
G030
NOTE: Dashed lines represent thermally limited region.
Figure 35.
Submit Documentation Feedback
Copyright © 2009–2010, Texas Instruments Incorporated
Product Folder Link(s): TAS5711
TAS5711
www.ti.com
SLOS600A – DECEMBER 2009 – REVISED AUGUST 2010
DETAILED DESCRIPTION
POWER SUPPLY
To facilitate system design, the TAS5711 needs only a 3.3-V supply in addition to the (typical) 18-V power-stage
supply. An internal voltage regulator provides suitable voltage levels for the gate drive circuitry. Additionally, all
circuitry requiring a floating voltage supply, e.g., the high-side gate drive, is accommodated by built-in bootstrap
circuitry requiring only a few external capacitors.
In order to provide good electrical and acoustical characteristics, the PWM signal path for the output stage is
designed as identical, independent half-bridges. For this reason, each half-bridge has separate bootstrap pins
(BST_x), and power-stage supply pins (PVDD_x). The gate drive voltages (GVDD_AB and GVDD_CD) are
derived from the PVDD voltage. Special attention should be paid to placing all decoupling capacitors as close to
their associated pins as possible. In general, inductance between the power-supply pins and decoupling
capacitors must be avoided.
For a properly functioning bootstrap circuit, a small ceramic capacitor must be connected from each bootstrap pin
(BST_x) to the power-stage output pin (OUT_x). When the power-stage output is low, the bootstrap capacitor is
charged through an internal diode connected between the gate-drive regulator output pin (GVDD_x) and the
bootstrap pin. When the power-stage output is high, the bootstrap capacitor potential is shifted above the output
potential and thus provides a suitable voltage supply for the high-side gate driver. In an application with PWM
switching frequencies in the range from 352 kHz to 384 kHz, it is recommended to use 33-nF 50-V X7R
capacitors, size 0603 or 0805, for the bootstrap supply. These 33-nF capacitors ensure sufficient energy storage,
even during minimal PWM duty cycles, to keep the high-side power stage FET (LDMOS) fully turned on during
the remaining part of the PWM cycle.
Special attention should be paid to the power-stage power supply; this includes component selection, PCB
placement, and routing. As indicated, each half-bridge has independent power-stage supply pins (PVDD_x). For
optimal electrical performance, EMC compliance, and system reliability, it is important that each PVDD_x pin is
decoupled with a 100-nF ceramic capacitor placed as close as possible to each supply pin.
The TAS5711 is fully protected against erroneous power-stage turnon due to parasitic gate charging.
ERROR REPORTING
The A_SEL pin has two functions: I2C device-address select and fault indication. On RESET, this pin is an input
and defines the I2C address. But this pin can be programmed after RESET to be an output by writing 1 to bit 0 of
I2C register 0x05. In that mode, the A_SEL pin has the definition shown in Table 1.
Any fault resulting in device shutdown is signaled by the A_SEL pin going low (see Table 1). A latched version of
this pin is available on D1 of register 0x02. The bit can be cleared only by an I2C write.
Table 1. FAULT Output States
FAULT
DESCRIPTION
0
Overcurrent (OC) or undervoltage (UVP) error or overtemperature error (OTE) or over
voltage ERROR
1
No faults (normal operation)
Submit Documentation Feedback
Copyright © 2009–2010, Texas Instruments Incorporated
Product Folder Link(s): TAS5711
23
TAS5711
SLOS600A – DECEMBER 2009 – REVISED AUGUST 2010
www.ti.com
Table 1. FAULT Output States (continued)
Power Stage
Fault State
FAULT
NO-FAULT
NO-FAULT
FAULT
Programmable Recovery Time
~300 ns
T0450-01
Figure 36. Fault Timing Diagram
DEVICE PROTECTION SYSTEM
Overcurrent (OC) Protection With Current Limiting
The device has independent, fast-reacting current detectors on all high-side and low-side power-stage FETs. The
detector outputs are closely monitored by two protection systems. The first protection system controls the power
stage in order to prevent the output current further increasing, i.e., it performs a cycle-by-cycle current-limiting
function, rather than prematurely shutting down during combinations of high-level music transients and extreme
speaker load impedance drops. If the high-current condition situation persists, i.e., the power stage is being
overloaded, a second protection system triggers a latching shutdown, resulting in the power stage being set in
the high-impedance (Hi-Z) state. The device returns to normal operation once the fault condition (i.e., a short
circuit on the output) is removed. Current limiting and overcurrent protection are not independent for half-bridges.
That is, if the bridge-tied load between half-bridges A and B causes an overcurrent fault, half-bridges A, B, C,
and D are shut down.
Overtemperature Protection
The TAS5711 has over temperature-protection system. If the device junction temperature exceeds 150°C
(nominal), the device is put into thermal shutdown, resulting in all half-bridge outputs being set in the
high-impedance (Hi-Z) state and FAULT being asserted low. The TAS5711 recovers automatically once the
temperature drops approximately 30°.
Undervoltage Protection (UVP) and Power-On Reset (POR)
The UVP and POR circuits of the TAS5711 fully protect the device in any power-up/down and brownout situation.
While powering up, the POR circuit resets the overload circuit and ensures that all circuits are fully operational
when the PVDD and AVDD supply voltages reach 7.6 V and 2.7 V, respectively. Although PVDD and AVDD are
independently monitored, a supply voltage drop below the UVP threshold on AVDD or either PVDD pin results in
all half-bridge outputs immediately being set in the high-impedance (Hi-Z) state and FAULT being asserted low.
SSTIMER FUNCTIONALITY
The SSTIMER pin uses a capacitor connected between this pin and ground to control the output duty cycle when
exiting all-channel shutdown. The capacitor on the SSTIMER pin is slowly charged through an internal current
source, and the charge time determines the rate at which the output transitions from a near zero duty cycle to the
desired duty cycle. This allows for a smooth transition that minimizes audible pops and clicks. When the part is
shutdown the drivers are tristated and transition slowly down through a 3K resistor, similarly minimizing pops and
clicks. The shutdown transition time is independent of SSTIMER pin capacitance. Larger capacitors will increase
the start-up time, while capacitors smaller than 2.2 nF will decrease the start-up time. The SSTIMER pin should
be left floating for BD modulation (BTL and PBTL modes) and in 2.1 mode.
24
Submit Documentation Feedback
Copyright © 2009–2010, Texas Instruments Incorporated
Product Folder Link(s): TAS5711
TAS5711
www.ti.com
SLOS600A – DECEMBER 2009 – REVISED AUGUST 2010
CLOCK, AUTO DETECTION, AND PLL
The TAS5711 is a slave device. It accepts MCLK, SCLK, and LRCLK. The digital audio processor (DAP)
supports all the sample rates and MCLK rates that are defined in the clock control register .
The TAS5711 checks to verify that SCLK is a specific value of 32 fS, 48 fS, or 64 fS. The DAP only supports a 1 ×
fS LRCLK. The timing relationship of these clocks to SDIN is shown in subsequent sections. The clock section
uses MCLK or the internal oscillator clock (when MCLK is unstable, out of range, or absent) to produce the
internal clock (DCLK) running at 512 time the PWM switching frequency.
The DAP can autodetect and set the internal clock control logic to the appropriate settings for all supported clock
rates as defined in the clock control register.
TAS5711 has robust clock error handling that uses the bulit-in trimmed oscillator clock to quickly detect
changes/errors. Once the system detects a clock change/error, it will mute the audio (through a single step mute)
and then force PLL to limp using the internal oscillator as a reference clock. Once the clocks are stable, the
system will auto detect the new rate and revert to normal operation. During this process, the default volume will
be restored in a single step (also called hard unmute). The ramp process can be programmed to ramp back
slowly (also called soft unmute) as defined in volume register (0x0E).
SERIAL DATA INTERFACE
Serial data is input on SDIN. The PWM outputs are derived from SDIN. The TAS5711 DAP accepts serial data in
16-, 20-, or 24-bit left-justified, right-justified, and I2S serial data formats.
PWM Section
The TAS5711 DAP device uses noise-shaping and sophisticated non-linear correction algorithms to achieve high
power efficiency and high-performance digital audio reproduction. The DAP uses a fourth-order noise shaper to
increase dynamic range and SNR in the audio band. The PWM section accepts 24-bit PCM data from the DAP
and outputs two BTL PWM audio output channels.
The PWM section has individual channel dc blocking filters that can be enabled and disabled. The filter cutoff
frequency is less than 1 Hz. Individual channel de-emphasis filters for 44.1- and 48-kHz are included and can be
enabled and disabled.
Finally, the PWM section has an adjustable maximum modulation limit of 93.8% to 99.2%.
For detailed description of using audio processing features like DRC, EQ, 3D, and Bass Boost, please refer to
User's Guide and TAS570X GDE software development tool documentation. Also refer to GDE software
development tool for device data path.
SERIAL INTERFACE CONTROL AND TIMING
The I2S mode is set by writing to register 0x04.
I2S Timing
I2S timing uses LRCLK to define when the data being transmitted is for the left channel and when it is for the
right channel. LRCLK is low for the left channel and high for the right channel. A bit clock running at 32, 48, or
64 × fS is used to clock in the data. There is a delay of one bit clock from the time the LRCLK signal changes
state to the first bit of data on the data lines. The data is written MSB first and is valid on the rising edge of bit
clock. The DAP masks unused trailing data bit positions.
Submit Documentation Feedback
Copyright © 2009–2010, Texas Instruments Incorporated
Product Folder Link(s): TAS5711
25
TAS5711
SLOS600A – DECEMBER 2009 – REVISED AUGUST 2010
www.ti.com
2
2-Channel I S (Philips Format) Stereo Input
32 Clks
LRCLK (Note Reversed Phase)
32 Clks
Right Channel
Left Channel
SCLK
SCLK
MSB
24-Bit Mode
23 22
MSB
LSB
9
8
5
4
5
4
1
0
1
0
1
0
LSB
23 22
9
8
5
4
19 18
5
4
1
0
15 14
1
0
1
0
20-Bit Mode
19 18
16-Bit Mode
15 14
T0034-01
NOTE: All data presented in 2s-complement form with MSB first.
Figure 37. I2S 64-fS Format
2
2-Channel I S (Philips Format) Stereo Input/Output (24-Bit Transfer Word Size)
LRCLK
24 Clks
24 Clks
Left Channel
Right Channel
SCLK
SCLK
MSB
24-Bit Mode
23 22
MSB
LSB
17 16
9
8
5
4
13 12
5
4
1
0
9
1
0
3
2
1
0
LSB
23 22
17 16
9
8
5
4
19 18
13 12
5
4
1
0
15 14
9
1
0
3
2
1
20-Bit Mode
19 18
16-Bit Mode
15 14
8
8
T0092-01
NOTE: All data presented in 2s-complement form with MSB first.
Figure 38. I2S 48-fS Format
26
Submit Documentation Feedback
Copyright © 2009–2010, Texas Instruments Incorporated
Product Folder Link(s): TAS5711
TAS5711
www.ti.com
SLOS600A – DECEMBER 2009 – REVISED AUGUST 2010
2
2-Channel I S (Philips Format) Stereo Input
LRCLK
16 Clks
16 Clks
Left Channel
Right Channel
SCLK
SCLK
MSB
16-Bit Mode
MSB
LSB
15 14 13 12
11 10
9
5
8
4
3
2
1
0
LSB
15 14 13 12
11 10
9
5
8
4
3
2
1
T0266-01
NOTE: All data presented in 2s-complement form with MSB first.
Figure 39. I2S 32-fS Format
Left-Justified
Left-justified (LJ) timing uses LRCLK to define when the data being transmitted is for the left channel and when it
is for the right channel. LRCLK is high for the left channel and low for the right channel. A bit clock running at 32,
48, or 64 × fS is used to clock in the data. The first bit of data appears on the data lines at the same time LRCLK
toggles. The data is written MSB first and is valid on the rising edge of the bit clock. The DAP masks unused
trailing data bit positions.
2-Channel Left-Justified Stereo Input
32 Clks
32 Clks
Left Channel
Right Channel
LRCLK
SCLK
SCLK
MSB
24-Bit Mode
23 22
LSB
9
8
5
4
5
4
1
0
1
0
1
0
MSB
LSB
23 22
9
8
5
4
19 18
5
4
1
0
15 14
1
0
1
0
20-Bit Mode
19 18
16-Bit Mode
15 14
T0034-02
NOTE: All data presented in 2s-complement form with MSB first.
Figure 40. Left-Justified 64-fS Format
Submit Documentation Feedback
Copyright © 2009–2010, Texas Instruments Incorporated
Product Folder Link(s): TAS5711
27
TAS5711
SLOS600A – DECEMBER 2009 – REVISED AUGUST 2010
www.ti.com
2-Channel Left-Justified Stereo Input (24-Bit Transfer Word Size)
24 Clks
24 Clks
Left Channel
Right Channel
LRCLK
SCLK
SCLK
MSB
24-Bit Mode
23 22
21
LSB
17 16
9
8
5
4
13 12
5
4
1
0
9
1
0
1
0
MSB
LSB
21
17 16
9
8
5
4
19 18 17
13 12
5
4
1
0
15 14 13
9
1
0
23 22
1
0
20-Bit Mode
19 18 17
16-Bit Mode
15 14 13
8
8
T0092-02
NOTE: All data presented in 2s-complement form with MSB first.
Figure 41. Left-Justified 48-fS Format
2-Channel Left-Justified Stereo Input
16 Clks
16 Clks
Left Channel
Right Channel
LRCLK
SCLK
SCLK
MSB
16-Bit Mode
15 14 13 12
LSB
11 10
9
8
5
4
3
2
1
0
MSB
15 14 13 12
LSB
11 10
9
8
5
4
3
2
1
0
T0266-02
NOTE: All data presented in 2s-complement form with MSB first.
Figure 42. Left-Justified 32-fS Format
Right-Justified
Right-justified (RJ) timing uses LRCLK to define when the data being transmitted is for the left channel and when
28
Submit Documentation Feedback
Copyright © 2009–2010, Texas Instruments Incorporated
Product Folder Link(s): TAS5711
TAS5711
www.ti.com
SLOS600A – DECEMBER 2009 – REVISED AUGUST 2010
it is for the right channel. LRCLK is high for the left channel and low for the right channel. A bit clock running at
32, 48, or 64 × fS is used to clock in the data. The first bit of data appears on the data 8 bit-clock periods (for
24-bit data) after LRCLK toggles. In RJ mode the LSB of data is always clocked by the last bit clock before
LRCLK transitions. The data is written MSB first and is valid on the rising edge of bit clock. The DAP masks
unused leading data bit positions.
2-Channel Right-Justified (Sony Format) Stereo Input
32 Clks
32 Clks
Left Channel
Right Channel
LRCLK
SCLK
SCLK
MSB
24-Bit Mode
LSB
23 22
19 18
15 14
1
0
19 18
15 14
1
0
15 14
1
0
MSB
LSB
23 22
19 18
15 14
1
0
19 18
15 14
1
0
15 14
1
0
20-Bit Mode
16-Bit Mode
T0034-03
Figure 43. Right Justified 64-fS Format
Submit Documentation Feedback
Copyright © 2009–2010, Texas Instruments Incorporated
Product Folder Link(s): TAS5711
29
TAS5711
SLOS600A – DECEMBER 2009 – REVISED AUGUST 2010
www.ti.com
2-Channel Right-Justified Stereo Input (24-Bit Transfer Word Size)
24 Clks
24 Clks
Left Channel
Right Channel
LRCLK
SCLK
SCLK
MSB
24-Bit Mode
23 22
LSB
19 18
15 14
6
5
2
1
0
19 18
15 14
6
5
2
1
0
15 14
6
5
2
1
0
LSB
MSB
23 22
19 18
15 14
6
5
2
1
0
19 18
15 14
6
5
2
1
0
15 14
6
5
2
1
0
20-Bit Mode
16-Bit Mode
T0092-03
Figure 44. Right Justified 48-fS Format
Figure 45. Right Justified 32-fS Format
30
Submit Documentation Feedback
Copyright © 2009–2010, Texas Instruments Incorporated
Product Folder Link(s): TAS5711
TAS5711
www.ti.com
SLOS600A – DECEMBER 2009 – REVISED AUGUST 2010
I2C SERIAL CONTROL INTERFACE
The TAS5711 DAP has a bidirectional I2C interface that compatible with the I2C (Inter IC) bus protocol and
supports both 100-kHz and 400-kHz data transfer rates for single and multiple byte write and read operations.
This is a slave only device that does not support a multimaster bus environment or wait state insertion. The
control interface is used to program the registers of the device and to read device status.
The DAP supports the standard-mode I2C bus operation (100 kHz maximum) and the fast I2C bus operation
(400 kHz maximum). The DAP performs all I2C operations without I2C wait cycles.
General I2C Operation
The I2C bus employs two signals; SDA (data) and SCL (clock), to communicate between integrated circuits in a
system. Data is transferred on the bus serially one bit at a time. The address and data can be transferred in byte
(8-bit) format, with the most significant bit (MSB) transferred first. In addition, each byte transferred on the bus is
acknowledged by the receiving device with an acknowledge bit. Each transfer operation begins with the master
device driving a start condition on the bus and ends with the master device driving a stop condition on the bus.
The bus uses transitions on the data pin (SDA) while the clock is high to indicate a start and stop conditions. A
high-to-low transition on SDA indicates a start and a low-to-high transition indicates a stop. Normal data bit
transitions must occur within the low time of the clock period. These conditions are shown in Figure 46. The
master generates the 7-bit slave address and the read/write (R/W) bit to open communication with another
device and then waits for an acknowledge condition. The TAS5711 holds SDA low during the acknowledge clock
period to indicate an acknowledgment. When this occurs, the master transmits the next byte of the sequence.
Each device is addressed by a unique 7-bit slave address plus R/W bit (1 byte). All compatible devices share the
same signals via a bidirectional bus using a wired-AND connection. An external pullup resistor must be used for
the SDA and SCL signals to set the high level for the bus.
SDA
R/
A
W
7-Bit Slave Address
7
6
5
4
3
2
1
0
8-Bit Register Address (N)
7
6
5
4
3
2
1
0
8-Bit Register Data For
Address (N)
A
7
6
5
4
3
2
1
8-Bit Register Data For
Address (N)
A
0
7
6
5
4
3
2
1
A
0
SCL
Start
Stop
T0035-01
Figure 46. Typical I2C Sequence
There is no limit on the number of bytes that can be transmitted between start and stop conditions. When the last
word transfers, the master generates a stop condition to release the bus. A generic data transfer sequence is
shown in Figure 46.
Pin A_SEL defines the I2C device address. An external 15-kΩ pulldown on this pin gives a device address of
0x34 and a 15-kΩ pullup gives a device address of 0x36. The 7-bit address is 0011011 (0x36) or 0011010
(0x34).
I2C Device Address Change Procedure
•
Write to device address change enable register, 0xF8 with a value of 0xF9 A5 A5 A5.
•
Write to device register 0xF9 with a value of 0x0000 00XX, where XX is the new address.
•
Any writes after that should use the new device address XX.
Single- and Multiple-Byte Transfers
The serial control interface supports both single-byte and multiple-byte read/write operations for subaddresses
0x00 to 0x1F. However, for the subaddresses 0x20 to 0xFF, the serial control interface supports only
multiple-byte read/write operations (in multiples of 4 bytes).
Submit Documentation Feedback
Copyright © 2009–2010, Texas Instruments Incorporated
Product Folder Link(s): TAS5711
31
TAS5711
SLOS600A – DECEMBER 2009 – REVISED AUGUST 2010
www.ti.com
During multiple-byte read operations, the DAP responds with data, a byte at a time, starting at the subaddress
assigned, as long as the master device continues to respond with acknowledges. If a particular subaddress does
not contain 32 bits, the unused bits are read as logic 0.
During multiple-byte write operations, the DAP compares the number of bytes transmitted to the number of bytes
that are required for each specific subaddress. For example, if a write command is received for a biquad
subaddress, the DAP expects to receive five 32-bit words. If fewer than five 32-bit data words have been
received when a stop command (or another start command) is received, the data received is discarded.
Supplying a subaddress for each subaddress transaction is referred to as random I2C addressing. The TAS5711
also supports sequential I2C addressing. For write transactions, if a subaddress is issued followed by data for
that subaddress and the 15 subaddresses that follow, a sequential I2C write transaction has taken place, and the
data for all 16 subaddresses is successfully received by the TAS5711. For I2C sequential write transactions, the
subaddress then serves as the start address, and the amount of data subsequently transmitted, before a stop or
start is transmitted, determines how many subaddresses are written. As was true for random addressing,
sequential addressing requires that a complete set of data be transmitted. If only a partial set of data is written to
the last subaddress, the data for the last subaddress is discarded. However, all other data written is accepted;
only the incomplete data is discarded.
Single-Byte Write
As shown in Figure 47, a single-byte data write transfer begins with the master device transmitting a start
condition followed by the I2C device address and the read/write bit. The read/write bit determines the direction of
the data transfer. For a write data transfer, the read/write bit will be a 0. After receiving the correct I2C device
address and the read/write bit, the DAP responds with an acknowledge bit. Next, the master transmits the
address byte or bytes corresponding to the TAS5711 internal memory address being accessed. After receiving
the address byte, the TAS5711 again responds with an acknowledge bit. Next, the master device transmits the
data byte to be written to the memory address being accessed. After receiving the data byte, the TAS5711 again
responds with an acknowledge bit. Finally, the master device transmits a stop condition to complete the
single-byte data write transfer.
Start
Condition
Acknowledge
A6
A5
A4
A3
A2
A1
A0
Acknowledge
R/W ACK A7
A6
A5
2
A4
A3
A2
A1
Acknowledge
A0 ACK D7
D6
Subaddress
I C Device Address and
Read/Write Bit
D5
D4
D3
D2
D1
D0 ACK
Stop
Condition
Data Byte
T0036-01
Figure 47. Single-Byte Write Transfer
Multiple-Byte Write
A multiple-byte data write transfer is identical to a single-byte data write transfer except that multiple data bytes
are transmitted by the master device to the DAP as shown in Figure 48. After receiving each data byte, the
TAS5711 responds with an acknowledge bit.
Start
Condition
Acknowledge
A6
A5
A1
A0 R/W ACK A7
2
I C Device Address and
Read/Write Bit
A6
A5
A4
A3
Subaddress
A1
Acknowledge
Acknowledge
Acknowledge
Acknowledge
A0 ACK D7
D0 ACK D7
D0 ACK D7
D0 ACK
First Data Byte
Other Data Bytes
Last Data Byte
Stop
Condition
T0036-02
Figure 48. Multiple-Byte Write Transfer
32
Submit Documentation Feedback
Copyright © 2009–2010, Texas Instruments Incorporated
Product Folder Link(s): TAS5711
TAS5711
www.ti.com
SLOS600A – DECEMBER 2009 – REVISED AUGUST 2010
Single-Byte Read
As shown in Figure 49, a single-byte data read transfer begins with the master device transmitting a start
condition followed by the I2C device address and the read/write bit. For the data read transfer, both a write
followed by a read are actually done. Initially, a write is done to transfer the address byte or bytes of the internal
memory address to be read. As a result, the read/write bit becomes a 0. After receiving the TAS5711 address
and the read/write bit, TAS5711 responds with an acknowledge bit. In addition, after sending the internal memory
address byte or bytes, the master device transmits another start condition followed by the TAS5711 address and
the read/write bit again. This time the read/write bit becomes a 1, indicating a read transfer. After receiving the
address and the read/write bit, the TAS5711 again responds with an acknowledge bit. Next, the TAS5711
transmits the data byte from the memory address being read. After receiving the data byte, the master device
transmits a not acknowledge followed by a stop condition to complete the single byte data read transfer.
Repeat Start
Condition
Start
Condition
Acknowledge
A6
A5
A1
A0 R/W ACK A7
Acknowledge
A6
2
A5
A4
A0 ACK
A6
A5
A1
A0 R/W ACK D7
D6
2
I C Device Address and
Read/Write Bit
Subaddress
I C Device Address and
Read/Write Bit
Not
Acknowledge
Acknowledge
D1
D0 ACK
Stop
Condition
Data Byte
T0036-03
Figure 49. Single-Byte Read Transfer
Multiple-Byte Read
A multiple-byte data read transfer is identical to a single-byte data read transfer except that multiple data bytes
are transmitted by the TAS5711 to the master device as shown in Figure 50. Except for the last data byte, the
master device responds with an acknowledge bit after receiving each data byte.
Repeat Start
Condition
Start
Condition
Acknowledge
A6
2
A0 R/W ACK A7
I C Device Address and
Read/Write Bit
Acknowledge
A6
A6
A0 ACK
A5
Subaddress
2
Acknowledge
Acknowledge
Acknowledge
Not
Acknowledge
A0 R/W ACK D7
D0 ACK D7
D0 ACK D7
D0 ACK
I C Device Address and
Read/Write Bit
First Data Byte
Other Data Bytes
Last Data Byte
Stop
Condition
T0036-04
Figure 50. Multiple Byte Read Transfer
Submit Documentation Feedback
Copyright © 2009–2010, Texas Instruments Incorporated
Product Folder Link(s): TAS5711
33
TAS5711
SLOS600A – DECEMBER 2009 – REVISED AUGUST 2010
www.ti.com
Output Mode and MUX Selection
2.0 BTL AD
Reg setting
0x20 (23) = 0
0x20 (19) = 0
0x05 (3) = X
0x05 (2) = 0
2.0 BTL BD
Reg setting
0x20 (23) = 1
0x20 (19) = 1
0x05 (3) = X
0x05 (2) = 0
2.1 SE, BTL-AD
Reg setting
0x20 (23) = 0
0x20 (19) = 0
0x05 (3) = 0
0x05 (2) = 1
2.1 SE, BTL-BD
Reg setting
0x20 (23) = 0
0x20 (19) = 0
0x05 (3) = 1
0x05 (2) = 1
PWM1
CH1_audio
A
PWM2
PWM3
CH2_audio
B
C
D
PWM4
PWM1
CH1_audio
A
PWM2
PWM3
CH2_audio
B
C
D
PWM4
PWM1
CH1_audio
A
PWM2
CH2_audio
PWM3
CH3_audio
B
C
D
PWM4
PWM1
CH1_audio
A
PWM2
CH2_audio
PWM3
CH3_audio
B
C
D
PWM4
B0378-01
Figure 51. Output Mode and MUX Selection
2.1-Mode Support
The TAS5711 uses a special mid-Z ramp sequence to reduce click and pop in SE-mode and 2.1-mode
operation.To enable the mid-Z ramp, register 0x05 bit D7 must be set to 1. To enable 2.1 mode, register 0x05 bit
D2 must be set to 1. The SSTIMER pin should be left floating in this mode.
Single-Filter PBTL-Mode Support
The TAS5711 supports parallel BTL (PBTL) mode with OUT_A/OUT_B (and OUT_C/OUT_D) connected before
the LC filter. In order to put the part in PBTL configuration, drive PBTL (pin 8) HIGH. This synchronizes the
turnoff of half-bridges A and B (and similarly C/D) if an overcurrent condition is detected in either half-bridge.
There is a pulldown resistor on the PBTL pin that configures the part in BTL mode if the pin is left floating.
PWM output multiplexers should be updated to set the device in PBTL mode. Output Mux Register (0x25) should
be written with a value of 0x01 10 32 45. Also, the PWM shutdown register (0x19) should be written with a value
of 0x3A.
34
Submit Documentation Feedback
Copyright © 2009–2010, Texas Instruments Incorporated
Product Folder Link(s): TAS5711
TAS5711
www.ti.com
SLOS600A – DECEMBER 2009 – REVISED AUGUST 2010
Dynamic Range Control (DRC)
The DRC scheme has a single threshold, offset, and slope (all programmable). There is one ganged DRC for the
left/right channels and one DRC for the subchannel.
The DRC input/output diagram is shown in Figure 52.
Refer to GDE software tool for more description on T, K, and O parameters.
Output Level (dB)
K
1:1 Transfer Function
O
Implemented Transfer Function
T
Input Level (dB)
M0091-02
Professional-quality dynamic range compression automatically adjusts volume to flatten volume level.
• Each DRC has adjustable threshold, offset, and compression levels
• Programmable energy, attack, and decay time constants
• Transparent compression: compressors can attack fast enough to avoid apparent clipping before engaging,
and decay times can be set slow enough to avoid pumping.
Figure 52. Dynamic Range Control
Energy
Filter
Compression
Control
Attack
and
Decay
Filters
a, w
T, K, O
aa, wa / ad, wd
DRC1
0x3A
0x40, 0x41, 0x42
0x3B / 0x3C
DRC2
0x3D
0x43, 0x44, 0x45
0x3E / 0x3F
Audio Input
DRC Coefficient
Alpha Filter Structure
S
a
w
–1
Z
NOTE:
w=1–α
B0265-01
T = 9.23 format, all other DRC coefficients are 3.23 format
Figure 53. DRC Structure
Submit Documentation Feedback
Copyright © 2009–2010, Texas Instruments Incorporated
Product Folder Link(s): TAS5711
35
TAS5711
SLOS600A – DECEMBER 2009 – REVISED AUGUST 2010
www.ti.com
BANK SWITCHING
The TAS5711 uses an approach called bank switching together with automatic sample-rate detection. All
processing features that must be changed for different sample rates are stored internally in three banks. The
user can program which sample rates map to each bank. By default, bank 1 is used in 32kHz mode, bank 2 is
used in 44.1/48 kHz mode, and bank 3 is used for all other rates. Combined with the clock-rate autodetection
feature, bank switching allows the TAS5711 to detect automatically a change in the input sample rate and switch
to the appropriate bank without any MCU intervention.
An external controller configures bankable locations (0x29-0x36, 0x3A-0x3F, and 0x58-0x5F) for all three banks
during the initialization sequence.
If auto bank switching is enabled (register 0x50, bits 2:0) , then the TAS5711 automatically swaps the coefficients
for subsequent sample rate changes, avoiding the need for any external controller intervention for a sample rate
change.
By default, bits 2:0 have the value 000; indicating that bank switching is disabled. In that state, updates to
bankable locations take immediate effect. A write to register 0x50 with bits 2:0 being 001, 010, or 011 brings the
system into the coefficient-bank-update state update bank1, update bank2, or update bank3, respectively. Any
subsequent write to bankable locations updates the coefficient banks stored outside the DAP. After updating all
the three banks, the system controller should issue a write to register 0x50 with bits 2:0 being 100; this changes
the system state to automatic bank switching mode. In automatic bank switching mode, the TAS5711
automatically swaps banks based on the sample rate.
Command sequences for updating DAP coefficients can be summarized as follows:
1. Bank switching disabled (default): DAP coefficient writes take immediate effect and are not
influenced by subsequent sample rate changes.
OR
Bank switching enabled:
(a) Update bank-1 mode: Write "001" to bits 2:0 of reg 0x50. Load the 32 kHz coefficients.
(b) Update bank-2 mode: Write "010" to bits 2:0 of reg 0x50. Load the 48 kHz coefficients.
(c) Update bank-3 mode: Write "011" to bits 2:0 of reg 0x50. Load the other coefficients.
(d) Enable automatic bank switching by writing "100" to bits 2:0 of reg 0x50.
26-Bit 3.23 Number Format
All mixer gain coefficients are 26-bit coefficients using a 3.23 number format. Numbers formatted as 3.23
numbers means that there are 3 bits to the left of the decimal point and 23 bits to the right of the decimal point.
This is shown in Figure 54 .
2
–23
2
2
–5
–1
Bit
Bit
Bit
0
2 Bit
1
2 Bit
Sign Bit
S_xx.xxxx_xxxx_xxxx_xxxx_xxxx_xxx
M0125-01
Figure 54. 3.23 Format
36
Submit Documentation Feedback
Copyright © 2009–2010, Texas Instruments Incorporated
Product Folder Link(s): TAS5711
TAS5711
www.ti.com
SLOS600A – DECEMBER 2009 – REVISED AUGUST 2010
The decimal value of a 3.23 format number can be found by following the weighting shown in Figure 54. If the
most significant bit is logic 0, the number is a positive number, and the weighting shown yields the correct
number. If the most significant bit is a logic 1, then the number is a negative number. In this case every bit must
be inverted, a 1 added to the result, and then the weighting shown in Figure 55 applied to obtain the magnitude
of the negative number.
1
0
2 Bit
2 Bit
1
2
–1
Bit
2
0
(1 or 0) ´ 2 + (1 or 0) ´ 2 + (1 or 0) ´ 2
–1
–4
Bit
2
+ ....... (1 or 0) ´ 2
–4
–23
Bit
+ ....... (1 or 0) ´ 2
–23
M0126-01
Figure 55. Conversion Weighting Factors—3.23 Format to Floating Point
Gain coefficients, entered via the I2C bus, must be entered as 32-bit binary numbers. The format of the 32-bit
number (4-byte or 8-digit hexadecimal number) is shown in Figure 56
Fraction
Digit 6
Sign
Bit
Integer
Digit 1
Fraction
Digit 1
Fraction
Digit 2
Fraction
Digit 3
Fraction
Digit 4
Fraction
Digit 5
u u u u
u u S x
x. x x x
x x x x
x x x x
x x x x
x x x x
x x x x 0
Coefficient
Digit 8
Coefficient
Digit 7
Coefficient
Digit 6
Coefficient
Digit 5
Coefficient
Digit 4
Coefficient
Digit 3
Coefficient
Digit 2
Coefficient
Digit 1
u = unused or don’t care bits
Digit = hexadecimal digit
M0127-01
Figure 56. Alignment of 3.23 Coefficient in 32-Bit I2C Word
Table 2. Sample Calculation for 3.23 Format
dB
Linear
Decimal
0
1
8,388,608
Hex (3.23 Format)
0080 0000
5
1.7782794
14,917,288
00E3 9EA8
–5
0.5623413
4,717,260
0047 FACC
X
L = 10(X/20)
D = 8,388,608 × L
H = dec2hex (D, 8)
Table 3. Sample Calculation for 9.17 Format
dB
Linear
Decimal
Hex (9.17 Format)
0
1
131,072
2 0000
3 8A3D
5
1.77
231,997
–5
0.56
73,400
1 1EB8
X
L = 10(X/20)
D = 131,072 × L
H = dec2hex (D, 8)
Submit Documentation Feedback
Copyright © 2009–2010, Texas Instruments Incorporated
Product Folder Link(s): TAS5711
37
38
2
Submit Documentation Feedback
Product Folder Link(s): TAS5711
PVDD
RESET
SCL
SDA
0 ns
0 ns
100 ms
100 μs
3V
10 ms
8V
6V
13.5 ms
Trim
50 ms
DAP
Config
Other
Config
(1) tPLL has to be greater than 240 ms + 1.3 tstart.
This constraint only applies to the first trim command following AVDD/DVDD power-up.
It does not apply to trim commands following subsequent resets.
(2) tstart/tstop = PWM start/stop time as defined in register 0X1A
(3) When Mid-Z ramp is enabled (for 2.1 mode), tstart = 300 ms
I C
PDN
AVDD/DVDD
Initialization
Exit
SD
(1)
tPLL
1 ms + 1.3 tstart
(2)(3)
Volume and Mute Commands
Normal Operation
Enter
SD
(2)
1 ms + 1.3 tstop
Shutdown
2 ms
2 ms
2 ms
8V
6V
0 ns
Powerdown
T0419-05
3V
TAS5711
SLOS600A – DECEMBER 2009 – REVISED AUGUST 2010
www.ti.com
Recommended Use Model
Figure 57. Recommended Command Sequence
Copyright © 2009–2010, Texas Instruments Incorporated
TAS5711
www.ti.com
SLOS600A – DECEMBER 2009 – REVISED AUGUST 2010
3V
AVDD/DVDD
0 ns
2 ms
PDN
0 ns
2
I C
2 ms
RESET
2 ms
0 ns
8V
PVDD
6V
T0420-05
Figure 58. Power Loss Sequence
Recommended Command Sequences
Initialization Sequence
Use the following sequence to power-up and initialize the device:
1.
Hold all digital inputs low and ramp up AVDD/DVDD to at least 3 V.
2.
Initialize digital inputs and PVDD supply as follows:
•
Drive RESET = 0, PDN = 1, and other digital inputs to their desired state while ensuring that
all are never more than 2.5 V above AVDD/DVDD. Wait at least 100 µs, drive RESET = 1,
and wait at least another 13.5 ms.
•
Ramp up PVDD to at least 8 V while ensuring that it remains below 6 V for at least 100 µs
after AVDD/DVDD reaches 3 V. Then wait at least another 10 µs.
3.
Trim oscillator (write 0x00 to register 0x1B) and wait at least 50 ms.
4.
Configure the DAP via I2C (see Users's Guide for typical values).
5.
Configure remaining registers.
6.
Exit shutdown (sequence defined below).
Normal Operation
The following are the only events supported during normal operation:
1.
Writes to master/channel volume registers.
2.
Writes to soft mute register.
3.
Enter and exit shutdown (sequence defined below).
Note: Event 3 is not supported for 240 ms + 1.3 × tstart after trim following AVDD/DVDD powerup ramp
(where tstart is 300 ms when mid-Z ramp is enabled and is otherwise specified by register 0x1A).
Submit Documentation Feedback
Copyright © 2009–2010, Texas Instruments Incorporated
Product Folder Link(s): TAS5711
39
TAS5711
SLOS600A – DECEMBER 2009 – REVISED AUGUST 2010
www.ti.com
Shutdown Sequence
Enter:
1.
Write 0x40 to register 0x05.
2.
Wait at least 1 ms + 1.3 × tstop (where tstop is specified by register 0x1A).
3.
If desired, reconfigure by returning to step 4 of initialization sequence.
1.
Write 0x00 to register 0x05 (exit shutdown command may not be serviced for as much as 240 ms
after trim following AVDD/DVDD powerup ramp).
2.
Wait at least 1 ms + 1.3 × tstart (where tstart is 300 ms when mid-Z ramp is enabled and is
otherwise specified by register 0x1A).
3.
Proceed with normal operation.
Exit:
Power-Down Sequence
Use the following sequence to powerdown the device and its supplies:
1.
If time permits, enter shutdown (sequence defined above); else, in case of sudden power loss,
assert PDN = 0 and wait at least 2 ms.
2.
Assert RESET = 0.
3.
Drive digital inputs low and ramp down PVDD supply as follows:
4.
40
•
Drive all digital inputs low after RESET has been low for at least 2 µs.
•
Ramp down PVDD while ensuring that it remains above 8 V until RESET has been low for at
least 2 µs.
Ramp down AVDD/DVDD while ensuring that it remains above 3 V until PVDD is below 6 V and
that it is never more than 2.5 V below the digital inputs.
Submit Documentation Feedback
Copyright © 2009–2010, Texas Instruments Incorporated
Product Folder Link(s): TAS5711
TAS5711
www.ti.com
SLOS600A – DECEMBER 2009 – REVISED AUGUST 2010
Table 4. Serial Control Interface Register Summary
SUBADDRESS
REGISTER NAME
NO. OF
BYTES
INITIALIZATION
VALUE
CONTENTS
A u indicates unused bits.
0x00
Clock control register
1
Description shown in subsequent section
0x6C
0x01
Device ID register
1
Description shown in subsequent section
0x70
0x02
Error status register
1
Description shown in subsequent section
0x00
0x03
System control register 1
1
Description shown in subsequent section
0xA0
0x04
Serial data interface
register
1
Description shown in subsequent section
0x05
0x05
System control register 2
1
Description shown in subsequent section
0x40
0x06
Soft mute register
1
Description shown in subsequent section
0x00
0x07
Master volume
1
Description shown in subsequent section
0xFF (mute)
0x08
Channel 1 vol
1
Description shown in subsequent section
0x30 (0 dB)
0x09
Channel 2 vol
1
Description shown in subsequent section
0x30 (0 dB)
0x0A
Channel 3 vol
1
Description shown in subsequent section
0x30 (0 dB)
1
Reserved (1)
1
Description shown in subsequent section
1
Reserved (1)
0x0B - 0x0D
0x0E
Volume configuration
register
0x0F
0x10
Modulation limit register
1
Description shown in subsequent section
0x02
0x11
IC delay channel 1
1
Description shown in subsequent section
0xAC
0x12
IC delay channel 2
1
Description shown in subsequent section
0x54
0x13
IC delay channel 3
1
Description shown in subsequent section
0xAC
0x14
IC delay channel 4
1
Description shown in subsequent section
0x54
1
Reserved (1)
Description shown in subsequent section
0x15-0x18
0x19
PWM channel shutdown
group register
1
0x1A
Start/stop period register
1
0x0F
0x1B
Oscillator trim register
1
0x82
0x1C
BKND_ERR register
1
0x1D–0x1F
0x30
0x02
(1)
1
Reserved
0x20
Input MUX register
4
Description shown in subsequent section
0x0001 7772
0x21
Ch 4 source select register
4
Description shown in subsequent section
0x0000 4303
0x22 -0x24
0x25
PWM MUX register
0x26-0x28
0x29
0x2A
(1)
0x91
ch1_bq[0]
ch1_bq[1]
(1)
4
Reserved
4
Description shown in subsequent section
4
Reserved (1)
20
u[31:26], b0[25:0]
0x0080 0000
u[31:26], b1[25:0]
0x0000 0000
u[31:26], b2[25:0]
0x0000 0000
u[31:26], a1[25:0]
0x0000 0000
u[31:26], a2[25:0]
0x0000 0000
u[31:26], b0[25:0]
0x0080 0000
u[31:26], b1[25:0]
0x0000 0000
u[31:26], b2[25:0]
0x0000 0000
u[31:26], a1[25:0]
0x0000 0000
u[31:26], a2[25:0]
0x0000 0000
20
0x0102 1345
Reserved registers should not be accessed.
Submit Documentation Feedback
Copyright © 2009–2010, Texas Instruments Incorporated
Product Folder Link(s): TAS5711
41
TAS5711
SLOS600A – DECEMBER 2009 – REVISED AUGUST 2010
www.ti.com
Table 4. Serial Control Interface Register Summary (continued)
SUBADDRESS
0x2B
0x2C
0x2D
0x2E
0x2F
0x30
0x31
0x32
0x33
42
REGISTER NAME
ch1_bq[2]
ch1_bq[3]
ch1_bq[4]
ch1_bq[5]
ch1_bq[6]
ch2_bq[0]
ch2_bq[1]
ch2_bq[2]
ch2_bq[3]
NO. OF
BYTES
20
20
20
20
20
20
20
20
20
CONTENTS
INITIALIZATION
VALUE
u[31:26], b0[25:0]
0x0080 0000
u[31:26], b1[25:0]
0x0000 0000
u[31:26], b2[25:0]
0x0000 0000
u[31:26], a1[25:0]
0x0000 0000
u[31:26], a2[25:0]
0x0000 0000
u[31:26], b0[25:0]
0x0080 0000
u[31:26], b1[25:0]
0x0000 0000
u[31:26], b2[25:0]
0x0000 0000
u[31:26], a1[25:0]
0x0000 0000
u[31:26], a2[25:0]
0x0000 0000
u[31:26], b0[25:0]
0x0080 0000
u[31:26], b1[25:0]
0x0000 0000
u[31:26], b2[25:0]
0x0000 0000
u[31:26], a1[25:0]
0x0000 0000
u[31:26], a2[25:0]
0x0000 0000
u[31:26], b0[25:0]
0x0080 0000
u[31:26], b1[25:0]
0x0000 0000
u[31:26], b2[25:0]
0x0000 0000
u[31:26], a1[25:0]
0x0000 0000
u[31:26], a2[25:0]
0x0000 0000
u[31:26], b0[25:0]
0x0080 0000
u[31:26], b1[25:0]
0x0000 0000
u[31:26], b2[25:0]
0x0000 0000
u[31:26], a1[25:0]
0x0000 0000
u[31:26], a2[25:0]
0x0000 0000
u[31:26], b0[25:0]
0x0080 0000
u[31:26], b1[25:0]
0x0000 0000
u[31:26], b2[25:0]
0x0000 0000
u[31:26], a1[25:0]
0x0000 0000
u[31:26], a2[25:0]
0x0000 0000
u[31:26], b0[25:0]
0x0080 0000
u[31:26], b1[25:0]
0x0000 0000
u[31:26], b2[25:0]
0x0000 0000
u[31:26], a1[25:0]
0x0000 0000
u[31:26], a2[25:0]
0x0000 0000
u[31:26], b0[25:0]
0x0080 0000
u[31:26], b1[25:0]
0x0000 0000
u[31:26], b2[25:0]
0x0000 0000
u[31:26], a1[25:0]
0x0000 0000
u[31:26], a2[25:0]
0x0000 0000
u[31:26], b0[25:0]
0x0080 0000
u[31:26], b1[25:0]
0x0000 0000
u[31:26], b2[25:0]
0x0000 0000
u[31:26], a1[25:0]
0x0000 0000
u[31:26], a2[25:0]
0x0000 0000
Submit Documentation Feedback
Copyright © 2009–2010, Texas Instruments Incorporated
Product Folder Link(s): TAS5711
TAS5711
www.ti.com
SLOS600A – DECEMBER 2009 – REVISED AUGUST 2010
Table 4. Serial Control Interface Register Summary (continued)
SUBADDRESS
0x34
0x35
0x36
REGISTER NAME
ch2_bq[4]
ch2_bq[5]
ch2_bq[6]
0x37 - 0x39
0x3A
DRC1 ae (3)
NO. OF
BYTES
20
20
20
DRC1 aa
DRC1 ad
DRC2 ae
DRC2 aa
DRC2 ad
0x0000 0000
u[31:26], a2[25:0]
0x0000 0000
u[31:26], b0[25:0]
0x0080 0000
u[31:26], b1[25:0]
0x0000 0000
u[31:26], b2[25:0]
0x0000 0000
u[31:26], a1[25:0]
0x0000 0000
u[31:26], a2[25:0]
0x0000 0000
u[31:26], b0[25:0]
0x0080 0000
u[31:26], b1[25:0]
0x0000 0000
u[31:26], b2[25:0]
0x0000 0000
u[31:26], a1[25:0]
0x0000 0000
u[31:26], a2[25:0]
0x0000 0000
0x0080 0000
0x0000 0000
u[31:26], aa[25:0]
0x0080 0000
u[31:26], (1 – aa)[25:0]
0x0000 0000
u[31:26], ad[25:0]
0x0080 0000
u[31:26], (1 – ad)[25:0]
0x0000 0000
u[31:26], ae[25:0]
0x0080 0000
u[31:26], (1 – ae)[25:0]
0x0000 0000
u[31:26], aa[25:0]
0x0080 0000
u[31:26], (1 – aa)[25:0]
0x0000 0000
u[31:26], ad[25:0]
0x0080 0000
8
8
8
8
8
DRC2 (1 – ad)
u[31:26], (1 – ad)[25:0]
0x0000 0000
0x40
DRC1-T
4
T1[31:0] (9.23 format)
0xFDA2 1490
0x41
DRC1-K
4
u[31:26], K1[25:0]
0x0384 2109
0x42
DRC1-O
4
u[31:26], O1[25:0]
0x0008 4210
0x43
DRC2-T
4
T2[31:0] (9.23 format)
0xFDA2 1490
0x44
DRC2-K
4
u[31:26], K2[25:0]
0x0384 2109
0x45
DRC2-O
4
u[31:26], O2[25:0]
0x0008 4210
0x46
DRC control
4
Description shown in subsequent section
0x0000 0000
4
Reserved (2)
0x47–0x4F
0x50
Bank switch control
4
Description shown in subsequent section
0x0F70 8000
0x51
Ch 1 output mixer
12
Ch 1 output mix1[2]
0x0080 0000
Ch 1 output mix1[1]
0x0000 0000
Ch 1 output mix1[0]
0x0000 0000
Ch 2 output mix2[2]
0x0080 0000
Ch 2 output mix2[1]
0x0000 0000
Ch 2 output mix2[0]
0x0000 0000
0x52
(2)
(3)
u[31:26], a1[25:0]
u[31:26], (1 – ae)[25:0]
DRC2 (1 – aa)
0x3F
0x0000 0000
u[31:26], ae[25:0]
DRC 2 (1 – ae)
0x3E
0x0000 0000
u[31:26], b2[25:0]
8
DRC1 (1 – ad)
0x3D
0x0080 0000
u[31:26], b1[25:0]
Reserved (2)
DRC1 (1 – aa)
0x3C
u[31:26], b0[25:0]
4
DRC1 (1 – ae)
0x3B
INITIALIZATION
VALUE
CONTENTS
Ch 2 output mixer
12
Reserved registers should not be accessed.
"ae" stands for ∝ of energy filter, "aa" stands for ∝ of attack filter and "ad" stands for ∝ of decay filter and 1- ∝ = w.
Submit Documentation Feedback
Copyright © 2009–2010, Texas Instruments Incorporated
Product Folder Link(s): TAS5711
43
TAS5711
SLOS600A – DECEMBER 2009 – REVISED AUGUST 2010
www.ti.com
Table 4. Serial Control Interface Register Summary (continued)
SUBADDRESS
0x53
0x54
0x55
Ch 1 input mixer
Ch 2 input mixer
Channel 3 input mixer
NO. OF
BYTES
16
16
12
CONTENTS
INITIALIZATION
VALUE
Ch 1 input mixer[3]
0x0080 0000
Ch 1 input mixer[2]
0x0000 0000
Ch 1 input mixer[1]
0x0000 0000
Ch 1 input mixer[0]
0x0080 0000
Ch 2 input mixer[3]
0x0080 0000
Ch 2 input mixer[2]
0x0000 0000
Ch 2 input mixer[1]
0x0000 0000
Ch 2 input mixer[0]
0x0080 0000
Channel 3 input mixer [2]
0x0080 0000
Channel 3 input mixer [1]
0x0000 0000
Channel 3 input mixer [0]
0x0000 0000
0x56
Output post-scale
4
u[31:26], post[25:0]
0x0080 0000
0x57
Output pre-scale
4
u[31:26], pre[25:0] (9.17 format)
0x0002 0000
0x58
ch1 BQ[7]
20
u[31:26], b0[25:0]
0x0080 0000
u[31:26], b1[25:0]
0x0000 0000
u[31:26], b2[25:0]
0x0000 0000
u[31:26], a1[25:0]
0x0000 0000
u[31:26], a2[25:0]
0x0000 0000
u[31:26], b0[25:0]
0x0080 0000
u[31:26], b1[25:0]
0x0000 0000
u[31:26], b2[25:0]
0x0000 0000
u[31:26], a1[25:0]
0x0000 0000
u[31:26], a2[25:0]
0x0000 0000
u[31:26], b0[25:0]
0x0080 0000
u[31:26], b1[25:0]
0x0000 0000
u[31:26], b2[25:0]
0x0000 0000
u[31:26], a1[25:0]
0x0000 0000
u[31:26], a2[25:0]
0x0000 0000
u[31:26], b0[25:0]
0x0080 0000
u[31:26], b1[25:0]
0x0000 0000
u[31:26], b2[25:0]
0x0000 0000
u[31:26], a1[25:0]
0x0000 0000
u[31:26], a2[25:0]
0x0000 0000
u[31:26], b0[25:0]
0x0080 0000
u[31:26], b1[25:0]
0x0000 0000
u[31:26], b2[25:0]
0x0000 0000
u[31:26], a1[25:0]
0x0000 0000
u[31:26], a2[25:0]
0x0000 0000
u[31:26], b0[25:0]
0x0080 0000
u[31:26], b1[25:0]
0x0000 0000
u[31:26], b2[25:0]
0x0000 0000
u[31:26], a1[25:0]
0x0000 0000
u[31:26], a2[25:0]
0x0000 0000
0x59
0x5A
0x5B
0x5C
0x5D
44
REGISTER NAME
ch1 BQ[8]
Subchannel BQ[0]
Subchannel BQ[1]
ch2 BQ[7]
ch2 BQ[8]
20
20
20
20
20
Submit Documentation Feedback
Copyright © 2009–2010, Texas Instruments Incorporated
Product Folder Link(s): TAS5711
TAS5711
www.ti.com
SLOS600A – DECEMBER 2009 – REVISED AUGUST 2010
Table 4. Serial Control Interface Register Summary (continued)
SUBADDRESS
0x5E
REGISTER NAME
pseudo_ch2 BQ[0]
0x61
0x62
20
u[31:26], b0[25:0]
0x0080 0000
u[31:26], b1[25:0]
0x0000 0000
u[31:26], b2[25:0]
0x0000 0000
u[31:26], a1[25:0]
0x0000 0000
u[31:26], a2[25:0]
0x0000 0000
Reserved (4)
Channel 4 (subchannel)
output mixer
8
Ch 4 output mixer[1]
0x0000 0000
Ch 4 output mixer[0]
0x0080 0000
Channel 4 (subchannel)
input mixer
8
Ch 4 input mixer[1]
0x0040 0000
Ch 4 input mixer[0]
0x0040 0000
IDF post scale
4
Post-IDF attenuation register
0x0000 0080
Reserved (4)
0x0000 0000
0x63–0xF7
0xF8
Device address enable
register
4
Write F9 A5 A5 A5 in this register to enable write to
device address update (0xF9)
0x0000 0000
0xF9
Device address Update
Register
4
u[31:8], New Dev Id[7:1] , ZERO[0] (New Dev Id
(7:1) defines the new device address
0X0000 0036
4
Reserved (4)
0x0000 0000
0xFB–0xFF
(4)
INITIALIZATION
VALUE
CONTENTS
4
0x5F
0x60
NO. OF
BYTES
Reserved registers should not be accessed.
All DAP coefficients are 3.23 format unless specified otherwise.
Submit Documentation Feedback
Copyright © 2009–2010, Texas Instruments Incorporated
Product Folder Link(s): TAS5711
45
TAS5711
SLOS600A – DECEMBER 2009 – REVISED AUGUST 2010
www.ti.com
CLOCK CONTROL REGISTER (0x00)
The clocks and data rates are automatically determined by the TAS5711. The clock control register contains the
auto-detected clock status. Bits D7–D5 reflect the sample rate. Bits D4–D2 reflect the MCLK frequency. The
device accepts a 64 fS or 32 fS SCLK rate for all MCLK ratios, but accepts a 48 fS SCLK rate for MCLK ratios of
192 fS and 384 fS only.
Table 5. Clock Control Register (0x00)
D7
D6
D5
D4
D3
D2
D1
D0
0
0
0
–
–
–
–
–
fS = 32-kHz sample rate
0
0
1
–
–
–
–
–
Reserved (1)
0
1
0
–
–
–
–
–
Reserved (1)
0
1
1
–
–
–
–
–
fS = 44.1/48-kHz sample rate
1
0
0
–
–
–
–
–
fs = 16-kHz sample rate
1
0
1
–
–
–
–
–
fs = 22.05/24 -kHz sample rate
1
1
0
–
–
–
–
–
fs = 8-kHz sample rate
1
1
1
–
–
–
–
–
fs = 11.025/12 -kHz sample rate
–
–
–
0
0
0
–
–
MCLK frequency = 64 × fS
–
–
–
0
0
1
–
–
MCLK frequency = 128 × fS
(3)
–
–
–
0
1
0
–
–
MCLK frequency = 192 × fS
(4)
–
–
–
0
1
1
–
–
MCLK frequency = 256 × fS
–
–
–
1
0
0
–
–
MCLK frequency = 384 × fS
–
–
–
1
0
1
–
–
MCLK frequency = 512 × fS
–
–
–
1
1
0
–
–
Reserved (1)
–
–
–
1
1
1
–
–
Reserved (1)
–
–
–
–
–
–
0
–
Reserved (1)
(2)
–
–
–
–
–
–
–
0
Reserved (1)
(2)
(1)
(2)
(3)
(4)
(5)
FUNCTION
(2)
(3)
(2) (5)
Reserved registers should not be accessed.
Default values are in bold.
Only available for 44.1 kHz and 48 kHz rates.
Rate only available for 32/44.1/48 KHz sample rates
Not available at 8 kHz
DEVICE ID REGISTER (0x01)
The device ID register contains the ID code for the firmware revision.
Table 6. General Status Register (0x01)
D7
D6
D5
D4
D3
D2
D1
D0
0
0
0
0
0
0
0
0
46
FUNCTION
Identification code
Submit Documentation Feedback
Copyright © 2009–2010, Texas Instruments Incorporated
Product Folder Link(s): TAS5711
TAS5711
www.ti.com
SLOS600A – DECEMBER 2009 – REVISED AUGUST 2010
ERROR STATUS REGISTER (0x02)
The error bits are sticky and are not cleared by the hardware. This means that the software must clear the
register (write zeroes) and then read them to determine if they are persistent errors.
Error Definitions:
• MCLK Error : MCLK frequency is changing. The number of MCLKs per LRCLK is changing.
• SCLK Error: The number of SCLKs per LRCLK is changing.
• LRCLK Error: LRCLK frequency is changing.
• Frame Slip: LRCLK phase is drifting with respect to internal Frame Sync.
Table 7. Error Status Register (0x02)
D7
D6
D5
D4
D3
D2
D1
D0
1
-
–
–
–
–
–
–
MCLK error
–
1
–
–
–
–
–
–
PLL autolock error
–
–
1
–
–
–
–
–
SCLK error
–
–
–
1
–
–
–
–
LRCLK error
–
–
–
–
1
–
–
–
Frame slip
–
–
–
–
–
1
–
–
Clip indicator
–
–
–
–
–
–
1
–
Overcurrent, overtemperature, overvoltage or undervoltage errors
–
–
–
–
–
–
–
0
Reserved
0
0
0
0
0
0
0
–
No errors
(1)
FUNCTION
(1)
Default values are in bold.
SYSTEM CONTROL REGISTER 1 (0x03)
The system control register 1 has several functions:
Bit D7:
If 0, the dc-blocking filter for each channel is disabled.
If 1, the dc-blocking filter (–3 dB cutoff