0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TCAN1042HVDRQ1

TCAN1042HVDRQ1

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    SOIC8_150MIL

  • 描述:

    带CAN FD的汽车故障保护CAN收发器

  • 数据手册
  • 价格&库存
TCAN1042HVDRQ1 数据手册
TCAN1042-Q1, TCAN1042V-Q1, TCAN1042H-Q1, TCAN1042HV-Q1 TCAN1042G-Q1, TCAN1042GV-Q1, TCAN1042HG-Q1, TCAN1042HGV-Q1 SLLSES9D – FEBRUARY 2016 – REVISED OCTOBER 2021 TCAN1042-Q1 Automotive Fault Protected CAN Transceiver with CAN FD 1 Features 3 Description • This CAN transceiver family meets the ISO11898-2 (2016) High Speed CAN (Controller Area Network) physical layer standard. All devices are designed for use in CAN FD networks up to 2 Mbps (megabits per second). Devices with part numbers that include the "G" suffix are designed for data rates up to 5 Mbps, and versions with the "V" have a secondary power supply input for I/O level shifting the input pin thresholds and RXD output level. This family has a low power standby mode with remote wake request feature. Additionally, all devices include many protection features to enhance device and network robustness. • • • • • • • • • • • AEC-Q100 (grade 1): Qualified for automotive applications Meets the ISO 11898-2:2016 and ISO 11898-5:2007 physical layer standards Functional Safety-Capable – Documentation available to aid functional safety system design 'Turbo' CAN: – All devices support classic CAN and 2 Mbps CAN FD (flexible data rate) and "G" options support 5 Mbps – Short and symmetrical propagation delay times and fast loop times for enhanced timing margin – Higher data rates in loaded CAN networks EMC performance: supports SAE J2962-2 and IEC 62228-3 (up to 500 kbps) without common mode choke I/O Voltage range supports 3.3 V and 5 V MCUs Ideal passive behavior when unpowered – Bus and logic terminals are high impedance (no load) – Power up/down with glitch free operation on bus and RXD output Protection features – IEC ESD protection up to ±15 kV – Bus Fault protection: ±58 V (non-H variants) and ±70 V (H variants) – Undervoltage protection on VCC and VIO (V variants only) supply terminals – Driver dominant time out (TXD DTO) - Data rates down to 10 kbps – Thermal shutdown protection (TSD) Receiver common mode input voltage: ±30 V Typical loop delay: 110 ns Junction temperatures from –55°C to 150°C Available in SOIC(8) package and leadless VSON (8) package (3.0 mm x 3.0 mm) with improved automated optical inspection (AOI) capability 2 Applications • • • • • • Automotive and Transportation All devices support highly loaded CAN networks Heavy machinery ISOBUS applications – ISO 11783 SAE J2284 High-speed CAN for automotive applications GMW3122 Dual-wire CAN physical layer Meets requirements of SAE J2962, GIFT/ICT, ISO16845 Device Information PART NUMBER PACKAGE(1) BODY SIZE SOIC (8) 4.90 mm × 3.91 mm VSON (8) 3.00 mm x 3.00 mm TCAN1042x-Q1 (1) For all available packages, see the orderable addendum at the end of the data sheet. NC or VIO VCC 5 3 VCC or VIO TSD TXD CANH 6 CANL Dominant time-out 1 VCC or VIO STB 7 8 Mode Select UVP VCC or VIO RXD 4 Logic Output MUX WUP Monitor Low Power Receiver 2 GND A. B. Terminal 5 function is device dependent; NC on devices without the "V" suffix, and VIO for I/O level shifting for devices with the "V" suffix. RXD logic output is driven to VCC on devices without the "V" suffix, and VIO for devices with the "V" suffix. Functional Block Diagram An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA. TCAN1042-Q1, TCAN1042V-Q1, TCAN1042H-Q1, TCAN1042HV-Q1 TCAN1042G-Q1, TCAN1042GV-Q1, TCAN1042HG-Q1, TCAN1042HGV-Q1 www.ti.com SLLSES9D – FEBRUARY 2016 – REVISED OCTOBER 2021 Table of Contents 1 Features............................................................................1 2 Applications..................................................................... 1 3 Description.......................................................................1 4 Revision History.............................................................. 2 5 Device Comparison Table...............................................4 6 Pin Configurations and Functions.................................5 7 Specifications.................................................................. 6 7.1 Absolute Maximum Ratings........................................ 6 7.2 ESD Ratings............................................................... 6 7.3 ESD Ratings, Specifications....................................... 7 7.4 Recommended Operating Conditions.........................8 7.5 Thermal Information....................................................8 7.6 Power Rating.............................................................. 8 7.7 Electrical Characteristics.............................................9 7.8 Switching Characteristics..........................................12 7.9 Typical Characteristics.............................................. 13 8 Parameter Measurement Information.......................... 14 9 Detailed Description......................................................18 9.1 Overview................................................................... 18 9.2 Functional Block Diagram......................................... 18 9.3 Feature Description...................................................19 9.4 Device Functional Modes..........................................22 10 Application Information Disclaimer........................... 26 10.1 Application Information........................................... 26 10.2 Typical Applications................................................ 26 11 Power Supply Recommendations..............................29 12 Device and Documentation Support..........................32 12.1 Receiving Notification of Documentation Updates..32 12.2 Support Resources................................................. 32 12.3 Trademarks............................................................. 32 12.4 Electrostatic Discharge Caution..............................32 12.5 Glossary..................................................................32 13 Mechanical, Packaging, and Orderable Information.................................................................... 32 4 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. Changes from Revision C (March 2019) to Revision D (October 2021) Page • Added Feature: EMC performance:.. .................................................................................................................1 • Added Feature "Functional Safety-Capable"...................................................................................................... 1 • Changed the automotive feature, removed temperatures and classification levels ...........................................1 • Deleted "Product Preview" from the DRB pin images in the Pin Configurations and Functions ........................5 • Added footnote to the GND pin in the Pin Functions table ................................................................................ 5 • Changed the ESD Ratingstable, added HBM and CDM classification levels..................................................... 6 • Changed the DRB (VSON) values in the Thermal Information table .................................................................8 • Changed the title in Section 9.3.7.1 .................................................................................................................21 • Changed the title in Section 9.3.7.2 .................................................................................................................21 Changes from Revision B (May 2017) to Revision C (March 2019) Page • Changed the ICC MAX value From: 180 mA To: 110 mA in the Electrical Characteristics ................................. 9 • Changed the tWK_FILTER MAX value From: 1.85 µs To: 1.8 µs in the Switching Characteristics ...................... 12 Changes from Revision A (May 2016) to Revision B (May 2017) Page • Changed Feature "Meets the Released ISO 11898-2:2007 and ISO 11898-2:2003 Physical Layer Standards" To: Meets the ISO 11898-2:2016 and ISO 11898-5:2007 Physical Layer Standards......................................... 1 • Deleted Feature From: Meets the December 17th, 2015 Draft of ISO 11898-2 Physical Layer Update............ 1 • Changed Feature From: "All devices support 2 Mbps CAN FD.." To: "All Devices Support Classic CAN and 2 Mbps CAN FD.."................................................................................................................................................. 1 • Added Feature "Available in SOIC(8) package and leadless VSON(8) package..."........................................... 1 • Changed the Applications list............................................................................................................................. 1 • Changed Feature From: "EMC: SAE J2962, GIFT/ICT, ISO 16845" To: "Meets requirements of SAE J2962, GIFT/ICT, ISO16845" .........................................................................................................................................1 • Added new devices to the Device Comparison Table ........................................................................................4 • Added Storage temperature range to the Absolute Maximum Ratings table......................................................6 • Changed the ESD Ratings table to show the D(SOIC) and DRB (VSON) values.............................................. 6 • Changed Charged Device Model (CDM) From: ±750 To: ±1500 in the ESD Ratings table................................6 • Changed TBD to values for the DRB (VSON) Package in the ESD Ratings table............................................. 6 2 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TCAN1042-Q1 TCAN1042V-Q1 TCAN1042H-Q1 TCAN1042HV-Q1 TCAN1042G-Q1 TCAN1042GV-Q1 TCAN1042HG-Q1 TCAN1042HGV-Q1 TCAN1042-Q1, TCAN1042V-Q1, TCAN1042H-Q1, TCAN1042HV-Q1 TCAN1042G-Q1, TCAN1042GV-Q1, TCAN1042HG-Q1, TCAN1042HGV-Q1 www.ti.com • • • • • • • • • • SLLSES9D – FEBRUARY 2016 – REVISED OCTOBER 2021 Added the DRB package to the Thermal Information table ............................................................................... 8 Added the Power Rating table ........................................................................................................................... 8 Changed VSYM in the Driver Electrical Characteristics table.............................................................................. 9 Changed VSYM_DC in the Driver Electrical Characteristics table......................................................................... 9 Deleted "VI = 0.4 sin (4E6 π t) + 2.5 V" from the Test Condition of CI in the Receiver Electrical Characteristics table.................................................................................................................................................................... 9 Deleted "VI = 0.4 sin (4E6 π t)" in the Test Condition of CID in the Receiver Electrical Characteristics table.....9 Added "-30 V ≤ VCM ≤ +30" to the Test Condition of RID and RIN in the Receiver Electrical Characteristics table.................................................................................................................................................................... 9 Changed the tMODE TYP value From: 1 µs To: 9 µS in the Switching Characteristics table............................. 12 Added Note 2 and Changed Table 9-2, BUS OUTPUT colum..........................................................................20 Changed Standby Mode section ......................................................................................................................23 Changes from Revision * (March 2016) to Revision A (May 2016) Page • Added Features "Meets the Released ISO 11898-2:2007 and ISO 11898-2:2003 Physical Layer Standards" .1 • Changed Feature From: Meets the Requirements of ISO11898-2 (2016) To: Meets the December 17th, 2015 Draft of ISO 11898-2 Physical Layer Update .....................................................................................................1 • Changed the Applications list............................................................................................................................. 1 • Added the VSON (8) pin package to the Device Information table.....................................................................1 • Added the VSON (8) pin package to the Pin Configuration and Functions ....................................................... 5 • Added V(Diff) to the Absolute Maximum Ratings table ........................................................................................6 • Changed OTP to TSD in the Functional Block Diagram ..................................................................................18 • Added Note 2 to Table 9-1 ............................................................................................................................... 20 • Added Note 1 to Table 9-2 ............................................................................................................................... 20 • Added pin number to the Layout Example image ............................................................................................31 Copyright © 2021 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TCAN1042-Q1 TCAN1042V-Q1 TCAN1042H-Q1 TCAN1042HV-Q1 TCAN1042G-Q1 TCAN1042GV-Q1 TCAN1042HG-Q1 TCAN1042HGV-Q1 3 TCAN1042-Q1, TCAN1042V-Q1, TCAN1042H-Q1, TCAN1042HV-Q1 TCAN1042G-Q1, TCAN1042GV-Q1, TCAN1042HG-Q1, TCAN1042HGV-Q1 www.ti.com SLLSES9D – FEBRUARY 2016 – REVISED OCTOBER 2021 5 Device Comparison Table 4 DEVICE NUMBER BUS FAULT PROTECTION 5-Mbps FLEXIBLE DATA RATE TCAN1042-Q1 (Base) ±58 V TCAN1042G-Q1 ±58 V X TCAN1042GV-Q1 ±58 V X TCAN1042V-Q1 ±58 V TCAN1042H-Q1 ±70 V TCAN1042HG-Q1 ±70 V X ±70 V X TCAN1042HV-Q1 ±70 V PIN 8 MODE SELECTION X X TCAN1042HGV-Q1 Submit Document Feedback 3-V LEVEL SHIFTER INTEGRATED Low Power Standby Mode with Remote Wake X X Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TCAN1042-Q1 TCAN1042V-Q1 TCAN1042H-Q1 TCAN1042HV-Q1 TCAN1042G-Q1 TCAN1042GV-Q1 TCAN1042HG-Q1 TCAN1042HGV-Q1 TCAN1042-Q1, TCAN1042V-Q1, TCAN1042H-Q1, TCAN1042HV-Q1 TCAN1042G-Q1, TCAN1042GV-Q1, TCAN1042HG-Q1, TCAN1042HGV-Q1 www.ti.com SLLSES9D – FEBRUARY 2016 – REVISED OCTOBER 2021 6 Pin Configurations and Functions TXD 1 8 STB GND 2 7 CANH VCC 3 6 CANL RXD 4 5 NC Figure 6-1. D Package for Base, (H), (G) and (HG) Devices8 PIN (SOIC) Top View TXD 1 8 STB GND 2 7 CANH VCC 3 6 CANL RXD 4 5 VIO Figure 6-3. D Package for (V), (HV), (GV), and (HGV) Devices 8 PIN (SOIC) Top View TXD 1 8 STB GND 2 7 CANH VCC 3 6 CANL RXD 4 5 NC Figure 6-2. DRB Package for Base, (H), (G) and (HG) Devices 8 PIN (VSON) Top View TXD 1 8 STB GND 2 7 CANH VCC 3 6 CANL RXD 4 5 VIO Figure 6-4. DRB Package for (V), (HV), (GV), and (HGV) Devices 8 PIN (VSON) Top View Table 6-1. Pin Functions PINS Base, (H), (G), (HG) (V), (GV), (HV), (HGV) TYPE TXD 1 1 DIGITAL INPUT GND(1) 2 2 GND VCC 3 3 POWER RXD 4 4 DIGITAL OUTPUT NC 5 — — VIO — 5 POWER Transceiver I/O level shifting supply voltage (Devices with "V" suffix only) CANL 6 6 BUS I/O Low level CAN bus input/output line CANH 7 7 BUS I/O High level CAN bus input/output line STB 8 8 DIGITAL INPUT NAME (1) DESCRIPTION CAN transmit data input (LOW for dominant and HIGH for recessive bus states) Ground connection Transceiver 5-V supply voltage CAN receive data output (LOW for dominant and HIGH for recessive bus states) No Connect Standby Mode control input (active high) For DRB (VSON) package options, the thermal pad may be connected to GND in order to optimize the thermal characteristics of the package. Copyright © 2021 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TCAN1042-Q1 TCAN1042V-Q1 TCAN1042H-Q1 TCAN1042HV-Q1 TCAN1042G-Q1 TCAN1042GV-Q1 TCAN1042HG-Q1 TCAN1042HGV-Q1 5 TCAN1042-Q1, TCAN1042V-Q1, TCAN1042H-Q1, TCAN1042HV-Q1 TCAN1042G-Q1, TCAN1042GV-Q1, TCAN1042HG-Q1, TCAN1042HGV-Q1 www.ti.com SLLSES9D – FEBRUARY 2016 – REVISED OCTOBER 2021 7 Specifications over operating free-air temperature range (unless otherwise noted) (1) (2) 7.1 Absolute Maximum Ratings MIN MAX UNIT –0.3 7 V Devices with the "V" suffix –0.3 7 V VBUS CAN Bus I/O voltage range (CANH, CANL) Devices without the "H" suffix –58 58 V V(Diff) Max differential voltage between CANH and CANL Devices without the “H” suffix –58 58 V VBUS CAN Bus I/O voltage range (CANH, CANL) Devices with the "H" suffix –70 70 V V(Diff) Max differential voltage between CANH and CANL Devices with the “H” suffix –70 70 V V(Logic_Input) Logic input terminal voltage range (TXD, STB) –0.3 7 and VI ≤ VIO + 0.3 V V(Logic_Output) Logic output terminal voltage range (RXD) –0.3 7 and VI ≤ VIO + 0.3 V IO(RXD) RXD (Receiver) output current –8 8 mA TJ Virtual junction temperature range (see Thermal Information) –55 150 °C TSTG Storage temperature range (see Thermal Information) –65 150 °C VCC 5-V bus supply voltage range VIO I/O Level Shifting Voltage Range (1) (2) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime. All voltage values, except differential I/O bus voltages, are with respect to ground terminal. 7.2 ESD Ratings VALUE UNIT HBM classification level 3A for all pins ±6000 V HBM classification level 3B for global pins CANH and CANL with respect to GND ±16000 V Charged-device model (CDM), per AEC Q100-011 CDM classification level C6 for all pins ±1500 V Machine Model (MM), in accordance to JEDEC Standard 22, Test Method A115 ±200 V Human-body model (HBM), per AEC VESD (1) 6 Q100-002(1) Electrostatic discharge AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification. Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TCAN1042-Q1 TCAN1042V-Q1 TCAN1042H-Q1 TCAN1042HV-Q1 TCAN1042G-Q1 TCAN1042GV-Q1 TCAN1042HG-Q1 TCAN1042HGV-Q1 TCAN1042-Q1, TCAN1042V-Q1, TCAN1042H-Q1, TCAN1042HV-Q1 TCAN1042G-Q1, TCAN1042GV-Q1, TCAN1042HG-Q1, TCAN1042HGV-Q1 www.ti.com SLLSES9D – FEBRUARY 2016 – REVISED OCTOBER 2021 7.3 ESD Ratings, Specifications TEST CONDITIONS VALUE UNIT D (SOIC) Package System Level Electro-Static Discharge (ESD) System Level Electro-Static Discharge (ESD) System Level Electrical fast transient (EFT) ISO7637-2 Transients according to GIFT - ICT CAN EMC test specification(1) ISO7637-3 Transients CAN bus terminals (CANH, CANL) to GND CAN bus terminals (CANH, CANL) to GND CAN bus terminals (CANH, CANL) to GND CAN bus terminals (CANH, CANL) to GND CAN bus terminals (CANH, CANL) to GND SAE J2962-2 per ISO 10605: Powered Air Discharge ±15000 SAE J2962-2 per ISO 10605: Powered Contact Discharge ±8000 IEC 61000-4-2: Unpowered Contact Discharge ±15000 IEC 61000-4-2: Powered on Contact Discharge ±8000 IEC 61000-4-4: Criteria A ±4000 Pulse 1 –100 V V Pulse 2 +75 Pulse 3a –150 Pulse 3b +100 Direct Coupling Capacitor "Slow Transient Pulse" with 100 nF coupling capacitor Powered ±85 V V DRB (VSON) Package System Level Electro-Static Discharge (ESD) System Level Electro-Static Discharge (ESD) System Level Electrical fast transient (EFT) ISO7637-2 Transients according to GIFT - ICT CAN EMC test specification(1) ISO7637-3 Transients (1) CAN bus terminals (CANH, CANL) to GND CAN bus terminals (CANH, CANL) to GND CAN bus terminals (CANH, CANL) to GND CAN bus terminals (CANH, CANL) to GND CAN bus terminals (CANH, CANL) to GND SAE J2962-2 per ISO 10605: Powered Air Discharge ±15000 SAE J2962-2 per ISO 10605: Powered Contact Discharge ±8000 IEC 61000-4-2: Unpowered Contact Discharge ±14000 IEC 61000-4-2: Powered on Contact Discharge ±8000 IEC 61000-4-4: Criteria A ±4000 Pulse 1 –100 V V Pulse 2 +75 Pulse 3a –150 Pulse 3b +100 Direct Coupling Capacitor "Slow Transient Pulse" with 100 nF coupling capacitor Powered ±85 V V ISO7637 is a system level transient test. Results given here are specific to the GIFT-ICT CAN EMC Test specification conditions. Different system level configurations may lead to different results. Copyright © 2021 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TCAN1042-Q1 TCAN1042V-Q1 TCAN1042H-Q1 TCAN1042HV-Q1 TCAN1042G-Q1 TCAN1042GV-Q1 TCAN1042HG-Q1 TCAN1042HGV-Q1 7 TCAN1042-Q1, TCAN1042V-Q1, TCAN1042H-Q1, TCAN1042HV-Q1 TCAN1042G-Q1, TCAN1042GV-Q1, TCAN1042HG-Q1, TCAN1042HGV-Q1 www.ti.com SLLSES9D – FEBRUARY 2016 – REVISED OCTOBER 2021 7.4 Recommended Operating Conditions VCC 5-V Bus Supply Voltage Range VIO I/O Level-Shifting Voltage Range IOH(RXD) RXD terminal HIGH level output current IOL(RXD) RXD terminal LOW level output current MIN MAX 4.5 5.5 3 5.5 –2 2 UNIT V mA 7.5 Thermal Information TCAN1042-Q1 Thermal Metric(1) TEST CONDITIONS D (SOIC) DRB (VSON) 8 Pins 8 Pins High-K thermal resistance(2) UNIT RθJA Junction-to-air thermal resistance 105.8 48.3 °C/W RθJB Junction-to-board thermal resistance(3) 46.8 17.2 °C/W RθJC(TOP) Junction-to-case (top) thermal resistance(4) 48.3 37.6 °C/W ΨJT Junction-to-top characterization parameter(5) 8.7 1.8 °C/W ΨJB Junction-to-board characterization parameter(6) 46.2 17.1 °C/W TTSD Thermal shutdown temperature 170 170 °C TTSD_HYS Thermal shutdown hysteresis 5 5 °C (1) (2) (3) (4) (5) (6) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report. The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, High-K board, as specified in JESD51-7, in an environment described in JESD51-2a. The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB temperature, as described in JESD51-8. The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific JEDECstandard test exists, but a close description can be found in the ANSI SEMI standard G30-88. The junction-to-top characterization parameter, ΨJT, estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining θJA, using a procedure described in JESD51-2a (sections 6 and 7). The junction-to-board characterization parameter, ΨJB estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining θJA, using a procedure described in JESD51-2a (sections 6 and 7). 7.6 Power Rating PARAMETER PD 8 Average power dissipation Submit Document Feedback POWER DISSIPATION UNIT VCC = 5 V, VIO = 5 V (if applicable), TJ = 27°C, RL = 60 Ω, S at 0 V, Input to TXD at 250 kHz, CL_RXD = 15 pF. Typical CAN operating conditions at 500 kbps with 25% transmission (dominant) rate. TEST CONDITIONS 52 mW VCC = 5.5 V, VIO = 5.5 V (if applicable), TJ = 150°C, RL = 50 Ω, S at 0 V, Input to TXD at 500 kHz, CL_RXD = 15 pF. Typical high load CAN operating conditions at 1 Mbps with 50% transmission (dominant) rate and loaded network. 124 mW Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TCAN1042-Q1 TCAN1042V-Q1 TCAN1042H-Q1 TCAN1042HV-Q1 TCAN1042G-Q1 TCAN1042GV-Q1 TCAN1042HG-Q1 TCAN1042HGV-Q1 TCAN1042-Q1, TCAN1042V-Q1, TCAN1042H-Q1, TCAN1042HV-Q1 TCAN1042G-Q1, TCAN1042GV-Q1, TCAN1042HG-Q1, TCAN1042HGV-Q1 www.ti.com SLLSES9D – FEBRUARY 2016 – REVISED OCTOBER 2021 7.7 Electrical Characteristics Over recommended operating conditions with TA = –55°C to 125°C (unless otherwise noted). PARAMETER TYP(1) MAX See Figure 8-1, TXD = 0 V, RL = 60 Ω, CL = open, RCM = open, STB = 0 V, Typical Bus Load 40 70 See Figure 8-1, TXD = 0 V, RL = 50 Ω, CL = open, RCM = open, STB = 0 V, High Bus Load 45 80 TEST CONDITIONS MIN UNIT Supply Characteristics Normal mode (dominant) mA See Figure 8-1, TXD = 0 V, STB = 0 V, Normal mode (dominant CANH = -12 V, RL = open, CL = open, RCM = – with bus fault) open ICC 5-V supply current Normal mode (recessive) Standby mode 110 See Figure 8-1, TXD = VCC or VIO, RL = 50 Ω, CL = open, RCM = open, STB = 0 V 1.5 2.5 Devices with the "V" suffix (I/O levelshifting), VCC not needed in Standby mode, See Figure 8-1, TXD = VIO, RL = 50 Ω, CL = open, RCM = open, STB = VIO 0.5 5 Devices without the "V" suffix (5-V only), See Figure 8-1, TXD = VCC, RL = 50 Ω, CL = open, RCM = open, STB = VCC IIO UVVCC I/O supply current 22 Normal mode RXD floating, TXD = STB = 0 or 5.5 V 90 300 Standby mode RXD floating, TXD = STB = VIO, VCC = 0 or 5.5 V 12 17 4.2 4.4 4.0 4.25 Rising undervoltage detection on VCC for protected mode Falling undervoltage detection on VCC for protected mode VHYS(UVVCC) Hysteresis voltage on UVVCC UVVIO Undervoltage detection on VIO for protected mode VHYS(UVVIO) Hysteresis voltage on UVVIO for protected mode All devices V 3.8 200 Devices with the "V" suffix (I/O level-shifting) µA 1.3 mV 2.75 80 V mV STB Terminal (Mode Select Input) VIH High-level input voltage Devices with the "V" suffix (I/O level-shifting) Devices without the "V" suffix (5-V only) 0.7 x VIO 2 Devices with the "V" suffix (I/O level-shifting) 0.3 x VIO VIL Low-level input voltage IIH High-level input leakage current STB = VCC = VIO = 5.5 V IIL Low-level input leakage current STB = 0V, VCC = VIO = 5.5 V –20 0 -2 Ilkg(OFF) Unpowered leakage current STB = 5.5 V, VCC = VIO = 0 V -1 0 1 Devices without the "V" suffix (5-V only) V 0.8 -2 2 µA TXD Terminal (CAN Transmit Data Input) Devices with the "V" suffix (I/O level-shifting) 0.7 x VIO VIH High-level input voltage VIL Low-level input voltage IIH High-level input leakage current TXD = VCC = VIO = 5.5 V –2.5 0 1 IIL Low-level input leakage current TXD = 0 V, VCC = VIO = 5.5 V –100 -25 –7 Ilkg(OFF) Unpowered leakage current TXD = 5.5 V, VCC = VIO = 0 V –1 0 1 CI Input capacitance VIN = 0.4 x sin(2 x π x 2 x 106 x t) + 2.5 V Copyright © 2021 Texas Instruments Incorporated Devices without the "V" suffix (5-V only) 2 Devices with the "V" suffix (I/O level-shifting) 0.3 x VIO Devices without the "V" suffix (5-V only) V 0.8 5 µA pF Submit Document Feedback Product Folder Links: TCAN1042-Q1 TCAN1042V-Q1 TCAN1042H-Q1 TCAN1042HV-Q1 TCAN1042G-Q1 TCAN1042GV-Q1 TCAN1042HG-Q1 TCAN1042HGV-Q1 9 TCAN1042-Q1, TCAN1042V-Q1, TCAN1042H-Q1, TCAN1042HV-Q1 TCAN1042G-Q1, TCAN1042GV-Q1, TCAN1042HG-Q1, TCAN1042HGV-Q1 www.ti.com SLLSES9D – FEBRUARY 2016 – REVISED OCTOBER 2021 7.7 Electrical Characteristics (continued) Over recommended operating conditions with TA = –55°C to 125°C (unless otherwise noted). PARAMETER TEST CONDITIONS MIN TYP(1) MAX UNIT RXD Terminal (Can Receive Data Output) VOH Devices with the "V" suffix (I/O levelshifting), See Figure 8-2, IO = –2 mA. High-level output voltage Devices without the "V" suffix (5V only), See Figure 8-2, IO = –2 mA. 0.8 × VIO 4 4.6 V Devices with the "V" suffix (I/O levelshifting), See Figure 8-2, IO = +2 mA. VOL Low-level output voltage Ilkg(OFF) 0.2 x VIO Devices without the "V" suffix (5-V only), See Figure 8-2, IO = +2 mA. Unpowered leakage current RXD = 5.5 V, VCC = 0 V, VIO = 0 V –1 0.2 0.4 0 1 µA Driver Electrical Characteristics VO(DOM) Bus output voltage (dominant) VO(REC) Bus output voltage (recessive) VO(STB) Bus output voltage (Standby mode) CANH CANL CANH and CANL See Figure 8-1 and Figure 9-3, TXD = 0 V, STB = 0 V, 50 Ω ≤ RL ≤ 65 Ω, CL = open, RCM = open See Figure 8-1 and Figure 9-3, TXD = VCC or VIO, VIO = VCC, STB = 0 V , RL = open (no load), RCM = open CANH CANL CANH - CANL VOD(DOM) VOD(REC) Differential output voltage (dominant) Differential output voltage (recessive) CANH - CANL CANH - CANL See Figure 8-1 and Figure 9-3, STB = VIO, RL = open (no load), RCM = open 2.75 4.5 0.5 2.25 2 0.5 × VCC 3 -0.1 0 0.1 -0.1 0 0.1 -0.2 0 0.2 1.4 3 See Figure 8-1 and Figure 9-3, TXD = 0 V, STB = 0 V, 50 Ω ≤ RL ≤ 65 Ω, CL = open, RCM = open 1.5 3 See Figure 8-1 and Figure 9-3, TXD = 0 V, STB = 0 V, RL = 2240 Ω, CL = open, RCM = open 1.5 5 See Figure 8-1 and Figure 9-3, TXD = VCC, STB = 0 V, RL = 60 Ω, CL = open, RCM = open –120 12 See Figure 8-1 and Figure 9-3, TXD = VCC, STB = 0 V, RL = open (no load), CL = open, RCM = open –50 50 0.9 1.1 V/V 0.4 V mV VSYM Output symmetry (dominant or recessive) ( VO(CANH) + VO(CANL)) / VCC See Figure 8-1 and Figure 10-2, STB at 0 V, Rterm = 60 Ω, Csplit = 4.7 nF, CL = open, RCM = open, TXD = 250 kHz, 1 MHz VSYM_DC DC Output symmetry (dominant or recessive) (VCC – VO(CANH) – VO(CANL)) See Figure 8-1 and Figure 9-3, STB = 0 V, RL = 60 Ω, CL = open, RCM = open –0.4 See Figure 9-3 and Figure 8-7, STB at 0 V, VCANH = -5 V to 40 V, CANL = open, TXD = 0 V –100 IOS(SS_DOM) IOS(SS_REC) 10 Short-circuit steady-state output current, dominant, Normal mode Short-circuit steady-state output current, recessive, Normal mode Submit Document Feedback V See Figure 8-1 and Figure 9-3, TXD = 0 V, STB = 0 V, 45 Ω ≤ RL < 50 Ω, CL = open, RCM = open mA See Figure 9-3 and Figure 8-7, STB at 0 V, VCANL = -5 V to 40 V, CANH = open, TXD = 0 V See Figure 9-3 and Figure 8-7, STB at 0 V, –27 V ≤ VBUS ≤ 32 V, Where VBUS = CANH = CANL, TXD = VCC 100 –5 5 mA Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TCAN1042-Q1 TCAN1042V-Q1 TCAN1042H-Q1 TCAN1042HV-Q1 TCAN1042G-Q1 TCAN1042GV-Q1 TCAN1042HG-Q1 TCAN1042HGV-Q1 TCAN1042-Q1, TCAN1042V-Q1, TCAN1042H-Q1, TCAN1042HV-Q1 TCAN1042G-Q1, TCAN1042GV-Q1, TCAN1042HG-Q1, TCAN1042HGV-Q1 www.ti.com SLLSES9D – FEBRUARY 2016 – REVISED OCTOBER 2021 7.7 Electrical Characteristics (continued) Over recommended operating conditions with TA = –55°C to 125°C (unless otherwise noted). PARAMETER TEST CONDITIONS MIN TYP(1) MAX UNIT +30 V Receiver Electrical Characteristics VCM Common mode range, Normal mode VIT+ Positive-going input threshold voltage, Normal mode VIT– Negative-going input threshold voltage, Normal mode VIT+ Positive-going input threshold voltage, Normal mode VIT– Negative-going input threshold voltage, Normal mode VHYS Hysteresis voltage (VIT+ - VIT–), Normal mode VCM Common mode range, Standby mode See Figure 8-2 and Table 8-1, STB = 0 V See Figure 8-2, Table 9-5 and Table 8-1, STB = 0 V, -20 V ≤ VCM ≤ +20 V See Figure 8-2, Table 9-5 and Table 8-1, STB = 0 V, -30 V ≤ VCM ≤ +30 V -30 900 500 1000 400 See Figure 8-2, Table 9-5 and Table 8-1, STB = 0 V 120 Devices with the "V" suffix (I/O levelshifting), See Figure 8-2, Table 9-5 and Table 8-1, STB = VIO, 4.5 V ≤ VIO ≤ 5.5 V -12 12 Devices with the "V" suffix (I/O levelshifting), See Figure 8-2, Table 9-5 and Table 8-1, STB = VIO, 3.0 V ≤ VIO ≤ 4.5 V -2 +7 Devices without the "V" suffix (5V only), See Figure 8-2, Table 9-5 and Table 8-1, STB = VCC -12 12 STB = VCC or VIO 400 1150 mV 4.8 µA VIT(STANDBY) Input threshold voltage, Standby mode ILKG(IOFF) Power-off (unpowered) bus input leakage current CANH = CANL = 5 V, VCC = VIO = 0 V CI Input capacitance to ground (CANH or CANL) TXD = VCC, VIO = VCC 24 30 CID Differential input capacitance (CANH to CANL) TXD = VCC, VIO = VCC 12 15 RID Differential input resistance RIN Input resistance (CANH or CANL) TXD = VCC = VIO = 5 V, STB = 0 V, -30 V ≤ VCM ≤ +30 V RIN(M) Input resistance matching: [1 – RIN(CANH) / RIN(CANL)] × 100% (1) mV VCANH = VCANL = 5 V 30 80 15 40 –2% +2% V pF kΩ All typical values are at 25°C and supply voltages of VCC = 5 V and VIO = 5 V (if applicable), RL = 60 Ω. Copyright © 2021 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TCAN1042-Q1 TCAN1042V-Q1 TCAN1042H-Q1 TCAN1042HV-Q1 TCAN1042G-Q1 TCAN1042GV-Q1 TCAN1042HG-Q1 TCAN1042HGV-Q1 11 TCAN1042-Q1, TCAN1042V-Q1, TCAN1042H-Q1, TCAN1042HV-Q1 TCAN1042G-Q1, TCAN1042GV-Q1, TCAN1042HG-Q1, TCAN1042HGV-Q1 www.ti.com SLLSES9D – FEBRUARY 2016 – REVISED OCTOBER 2021 7.8 Switching Characteristics Over recommended operating conditions with TA = -55°C to 125°C (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP(1) MAX UNIT Device Switching Characteristics tPROP(LOOP1) Total loop delay, driver input (TXD) to receiver output (RXD), recessive to dominant tPROP(LOOP2) Total loop delay, driver input (TXD) to receiver output (RXD), dominant to recessive tMODE Mode change time, from Normal to Standby or See Figure 8-3 from Standby to Normal tWK_FILTER Filter time for valid wake up pattern See Figure 8-4, STB = 0 V, RL = 60 Ω, CL = 100 pF, CL(RXD) = 15 pF 100 160 110 175 9 45 µs 1.8 µs ns 0.5 Driver Switching Characteristics tpHR Propagation delay time, high TXD to driver recessive (dominant to recessive) tpLD Propagation delay time, low TXD to driver dominant (recessive to dominant) tsk(p) Pulse skew (|tpHR - tpLD|) tR Differential output signal rise time 45 tF Differential output signal fall time 45 tTXD_DTO Dominant timeout 75 See Figure 8-1, STB = 0 V, RL = 60 Ω, CL = 100 pF, RCM = open 55 ns 20 See Figure 8-6, STB = 0 V, RL = 60 Ω, CL = open 1.2 3.8 ms Receiver Switching Characteristics tpRH Propagation delay time, bus recessive input to high output (Dominant to Recessive) tpDL Propagation delay time, bus dominant input to low output (Recessive to Dominant) tR tF 65 ns 50 ns RXD Output signal rise time 10 ns RXD Output signal fall time 10 ns See Figure 8-2, STB = 0 V, CL(RXD) = 15 pF FD Timing Parameters tBIT(BUS) tBIT(RXD) ΔtREC (1) 12 Bit time on CAN bus output pins with tBIT(TXD) = 500 ns, all devices 435 530 Bit time on CAN bus output pins with tBIT(TXD) = 200 ns, G device variants only 155 210 400 550 120 220 Receiver timing symmetry with tBIT(TXD) = 500 ns, all devices -65 40 Receiver timing symmetry with tBIT(TXD) = 200 ns, G device variants only -45 15 Bit time on RXD output pins with tBIT(TXD) = 500 ns, all devices Bit time on RXD output pins with tBIT(TXD) = 200 ns, G device variants only See Figure 8-5 , STB = 0 V, RL = 60 Ω, CL = 100 pF, CL(RXD) = 15 pF, ΔtREC = tBIT(RXD) - tBIT(BUS) ns All typical values are at 25°C and supply voltages of VCC = 5 V and VIO = 5 V (if applicable), RL = 60 Ω Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TCAN1042-Q1 TCAN1042V-Q1 TCAN1042H-Q1 TCAN1042HV-Q1 TCAN1042G-Q1 TCAN1042GV-Q1 TCAN1042HG-Q1 TCAN1042HGV-Q1 TCAN1042-Q1, TCAN1042V-Q1, TCAN1042H-Q1, TCAN1042HV-Q1 TCAN1042G-Q1, TCAN1042GV-Q1, TCAN1042HG-Q1, TCAN1042HGV-Q1 www.ti.com SLLSES9D – FEBRUARY 2016 – REVISED OCTOBER 2021 3 3 2.5 2.5 2 2 VOD(D) (V) VOD(D) (V) 7.9 Typical Characteristics 1.5 1.5 1 1 0.5 0.5 0 -55 -35 -15 5 VCC = 5 V CL = Open 25 45 65 Temperature (°C) 85 105 0 4.5 125 VIO = 3.3 V RCM = Open 4.8 4.9 5 5.1 VCC (V) 5.2 5.3 5.4 5.5 D002 STB = 0 V RCM = Open RL = 60 Ω Temp = 25°C Figure 7-2. VOD(D) over VCC 1.48 150 1.47 125 Total Loop Delay (ns) ICC Recessive (mA) 4.7 VIO = 5 V CL = Open RL = 60 Ω STB = 0 V Figure 7-1. VOD(D) over Temperature 1.46 1.45 1.44 1.43 100 75 50 25 1.42 1.41 -55 4.6 D001 -35 -15 VCC = 5 V CL = Open 5 25 45 65 Temperature (°C) VIO = 3.3 V RCM = Open 85 105 125 -35 -15 D003 RL = 60 Ω STB = 0 V Figure 7-3. ICC Recessive over Temperature Copyright © 2021 Texas Instruments Incorporated 0 -55 VCC = 5 V CL = 100 pF 5 25 45 65 Temperature (°C) 85 VIO = 3.3 V CL_RXD = 15 pF 105 125 D004 RL = 60 Ω STB = 0 V Figure 7-4. Total Loop Delay over Temperature Submit Document Feedback Product Folder Links: TCAN1042-Q1 TCAN1042V-Q1 TCAN1042H-Q1 TCAN1042HV-Q1 TCAN1042G-Q1 TCAN1042GV-Q1 TCAN1042HG-Q1 TCAN1042HGV-Q1 13 TCAN1042-Q1, TCAN1042V-Q1, TCAN1042H-Q1, TCAN1042HV-Q1 TCAN1042G-Q1, TCAN1042GV-Q1, TCAN1042HG-Q1, TCAN1042HGV-Q1 www.ti.com SLLSES9D – FEBRUARY 2016 – REVISED OCTOBER 2021 8 Parameter Measurement Information RCM CANH VCC 50% TXD TXD CL RL VOD 0V VCM VO(CANH) CANL 50% tpHR tpLD 90% RCM VO(CANL) 0.9V VOD 0.5V 10% tR tF Copyright © 2016, Texas Instruments Incorporated Figure 8-1. Driver Test Circuit and Measurement CANH RXD VID IO 1.5V 0.9V 0.5V 0V VID CL_RXD CANL tpDL tpRH VO VOH 90% VO(RXD) 50% 10% VOL tF tR Copyright © 2016, Texas Instruments Incorporated Figure 8-2. Receiver Test Circuit and Measurement Table 8-1. Receiver Differential Input Voltage Threshold Test INPUT (See Receiver Test Circuit and Measurement 14 OUTPUT VCANH VCANL |VID| RXD -29.5 V -30.5 V 1000 mV L 30.5 V 29.5 V 1000 mV L -19.55 V -20.45 V 900 mV L 20.45 V 19.55 V 900 mV L -19.75 V -20.25 V 500 mV H 20.25 V 19.75 V 500 mV H -29.8 V -30.2 V 400 mV H 30.2 V 29.8 V 400 mV H Open Open X H Submit Document Feedback VOL VOH Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TCAN1042-Q1 TCAN1042V-Q1 TCAN1042H-Q1 TCAN1042HV-Q1 TCAN1042G-Q1 TCAN1042GV-Q1 TCAN1042HG-Q1 TCAN1042HGV-Q1 TCAN1042-Q1, TCAN1042V-Q1, TCAN1042H-Q1, TCAN1042HV-Q1 TCAN1042G-Q1, TCAN1042GV-Q1, TCAN1042HG-Q1, TCAN1042HGV-Q1 www.ti.com SLLSES9D – FEBRUARY 2016 – REVISED OCTOBER 2021 CANH VIH TXD 0V CL RL STB 50% CANL STB VI 0V tMODE RXD VO VOH CL_RXD RXD 50% VOL Copyright © 2016, Texas Instruments Incorporated Figure 8-3. tMODE Test Circuit and Measurement CANH VCC TXD VI RL CL TXD 0V CANL STB 0V tPROP(LOOP2) tPROP(LOOP1) RXD VO 50% VOH CL_RXD 50% RXD VOL Copyright © 2016, Texas Instruments Incorporated Figure 8-4. TPROP(LOOP) Test Circuit and Measurement Copyright © 2021 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TCAN1042-Q1 TCAN1042V-Q1 TCAN1042H-Q1 TCAN1042HV-Q1 TCAN1042G-Q1 TCAN1042GV-Q1 TCAN1042HG-Q1 TCAN1042HGV-Q1 15 TCAN1042-Q1, TCAN1042V-Q1, TCAN1042H-Q1, TCAN1042HV-Q1 TCAN1042G-Q1, TCAN1042GV-Q1, TCAN1042HG-Q1, TCAN1042HGV-Q1 www.ti.com SLLSES9D – FEBRUARY 2016 – REVISED OCTOBER 2021 VI 70% TXD CANH 30% 30% 0V TXD VI RL 5 x tBIT CL tBIT(TXD) CANL 0V tBIT(BUS) STB 900mV VDIFF RXD VO 500mV CL_RXD VOH 70% RXD 30% tBIT(RXD) VOL Figure 8-5. CAN FD Timing Parameter Measurement CANH VIH TXD TXD RL CL 0V VOD VOD(D) CANL VOD 0.9V 0.5V tTXD_DTO 0V Copyright © 2016, Texas Instruments Incorporated Figure 8-6. TXD Dominant Timeout Test Circuit and Measurement 16 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TCAN1042-Q1 TCAN1042V-Q1 TCAN1042H-Q1 TCAN1042HV-Q1 TCAN1042G-Q1 TCAN1042GV-Q1 TCAN1042HG-Q1 TCAN1042HGV-Q1 TCAN1042-Q1, TCAN1042V-Q1, TCAN1042H-Q1, TCAN1042HV-Q1 TCAN1042G-Q1, TCAN1042GV-Q1, TCAN1042HG-Q1, TCAN1042HGV-Q1 www.ti.com SLLSES9D – FEBRUARY 2016 – REVISED OCTOBER 2021 CANH 200 s IOS TXD VBUS IOS CANL VBUS VBUS 0V or 0V VBUS VBUS Copyright © 2016, Texas Instruments Incorporated Figure 8-7. Driver Short Circuit Current Test and Measurement Copyright © 2021 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TCAN1042-Q1 TCAN1042V-Q1 TCAN1042H-Q1 TCAN1042HV-Q1 TCAN1042G-Q1 TCAN1042GV-Q1 TCAN1042HG-Q1 TCAN1042HGV-Q1 17 TCAN1042-Q1, TCAN1042V-Q1, TCAN1042H-Q1, TCAN1042HV-Q1 TCAN1042G-Q1, TCAN1042GV-Q1, TCAN1042HG-Q1, TCAN1042HGV-Q1 www.ti.com SLLSES9D – FEBRUARY 2016 – REVISED OCTOBER 2021 9 Detailed Description 9.1 Overview These CAN transceivers meet the ISO11898-2 (2016) High Speed CAN (Controller Area Network) physical layer standard. They are designed for data rates in excess of 1 Mbps for CAN FD and enhanced timing margin / higher data rates in long and highly-loaded networks. These devices provide many protection features to enhance device and CAN robustness. 9.2 Functional Block Diagram NC or VIO VCC 5 3 VCC or VIO TSD TXD CANH 6 CANL Dominant time-out 1 VCC or VIO STB 7 8 Mode Select UVP VCC or VIO RXD 4 Logic Output MUX WUP Monitor Low Power Receiver 2 GND 18 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TCAN1042-Q1 TCAN1042V-Q1 TCAN1042H-Q1 TCAN1042HV-Q1 TCAN1042G-Q1 TCAN1042GV-Q1 TCAN1042HG-Q1 TCAN1042HGV-Q1 TCAN1042-Q1, TCAN1042V-Q1, TCAN1042H-Q1, TCAN1042HV-Q1 TCAN1042G-Q1, TCAN1042GV-Q1, TCAN1042HG-Q1, TCAN1042HGV-Q1 www.ti.com SLLSES9D – FEBRUARY 2016 – REVISED OCTOBER 2021 9.3 Feature Description 9.3.1 TXD Dominant Timeout (DTO) During normal mode (the only mode where the CAN driver is active), the TXD DTO circuit prevents the transceiver from blocking network communication in the event of a hardware or software failure where TXD is held dominant longer than the timeout period tTXD_DTO. The DTO circuit timer starts on a falling edge on TXD. The DTO circuit disables the CAN bus driver if no rising edge is seen before the timeout period expires. This frees the bus for communication between other nodes on the network. The CAN driver is re-activated when a recessive signal is seen on the TXD terminal, thus clearing the TXD DTO condition. The receiver and RXD terminal still reflect activity on the CAN bus, and the bus terminals are biased to the recessive level during a TXD dominant timeout. TXD fault stuck dominant: example PCB failure or bad software TXD (driver) tTXD_DTO Fault is repaired & transmission capability restored Driver disabled freeing bus for other nodes %XV ZRXOG EH ³VWXFN GRPLQDQW´ EORFNLQJ FRPPXQLFDWLRQ IRU WKH whole network but TXD DTO prevents this and frees the bus for communication after the time tTXD_DTO. Normal CAN communication CAN Bus Signal tTXD_DTO Communication from other bus node(s) Communication from repaired node Communication from other bus node(s) Communication from repaired local node RXD (receiver) Communication from local node Figure 9-1. Example Timing Diagram for TXD DTO Note The minimum dominant TXD time allowed by the TXD DTO circuit limits the minimum possible transmitted data rate of the device. The CAN protocol allows a maximum of eleven successive dominant bits (on TXD) for the worst case, where five successive dominant bits are followed immediately by an error frame. This, along with the tTXD_DTO minimum, limits the minimum data rate. Calculate the minimum transmitted data rate by: Minimum Data Rate = 11 / tTXD_DTO. 9.3.2 Thermal Shutdown (TSD) If the junction temperature of the device exceeds the thermal shutdown threshold (TTSD), the device turns off the CAN driver circuits thus blocking the TXD-to-bus transmission path. The CAN bus terminals are biased to the recessive level during a thermal shutdown, and the receiver-to-RXD path remains operational. The shutdown condition is cleared when the junction temperature drops at least the thermal shutdown hysteresis temperature (TTSD_HYS) below the thermal shutdown temperature (TTSD) of the device. Copyright © 2021 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TCAN1042-Q1 TCAN1042V-Q1 TCAN1042H-Q1 TCAN1042HV-Q1 TCAN1042G-Q1 TCAN1042GV-Q1 TCAN1042HG-Q1 TCAN1042HGV-Q1 19 TCAN1042-Q1, TCAN1042V-Q1, TCAN1042H-Q1, TCAN1042HV-Q1 TCAN1042G-Q1, TCAN1042GV-Q1, TCAN1042HG-Q1, TCAN1042HGV-Q1 www.ti.com SLLSES9D – FEBRUARY 2016 – REVISED OCTOBER 2021 9.3.3 Undervoltage Lockout The supply terminals have undervoltage detection that places the device in protected mode. This protects the bus during an undervoltage event on either the VCC or VIO supply terminals. Table 9-1. Undervoltage Lockout 5 V Only Devices (Devices without the "V" Suffix) (1) (2) VCC DEVICE STATE(1) BUS OUTPUT RXD > UVVCC Normal Per TXD Mirrors Bus(2) < UVVCC Protected High Impedance High Impedance See the VIT section of the Electrical Characteristics. Mirrors bus state: low if CAN bus is dominant, high if CAN bus is recessive. Table 9-2. Undervoltage Lockout I/O Level Shifting Devices (Devices with the "V" Suffix) (1) (2) VCC VIO DEVICE STATE BUS OUTPUT RXD > UVVCC > UVVIO Normal Per TXD Mirrors Bus(1) STB = High: Standby Mode Recessive Bus Wake RXD Request(2) < UVVCC > UVVIO STB =Low: Protected Mode High Impedance High (Recessive) > UVVCC < UVVIO Protected High Impedance High Impedance < UVVCC < UVVIO Protected High Impedance High Impedance Mirrors bus state: low if CAN bus is dominant, high if CAN bus is recessive. Refer to Section 9.4.3.1 Note After an undervoltage condition is cleared and the supplies have returned to valid levels, the device typically resumes normal operation within 50 µs. 9.3.4 Unpowered Device The device is designed to be 'ideal passive' or 'no load' to the CAN bus if it is unpowered. The bus terminals (CANH, CANL) have extremely low leakage currents when the device is unpowered to avoid loading down the bus. This is critical if some nodes of the network are unpowered while the rest of the of network remains in operation. The logic terminals also have extremely low leakage currents when the device is unpowered to avoid loading down other circuits that may remain powered. 9.3.5 Floating Terminals These devices have internal pull ups on critical terminals to place the device into known states if the terminals float. The TXD terminal is pulled up to VCC or VIO to force a recessive input level if the terminal floats. The STB terminal is also pulled up to force the device into low power Standby mode if the terminal floats. 9.3.6 CAN Bus Short Circuit Current Limiting The device has two protection features that limit the short circuit current when a CAN bus line is short-circuit fault condition: driver current limiting (both dominant and recessive states) and TXD dominant state time out to prevent permanent higher short circuit current of the dominant state during a system fault. During CAN communication the bus switches between dominant and recessive states, thus the short circuit current may be viewed either as the instantaneous current during each bus state or as an average current of the two states. For system current (power supply) and power considerations in the termination resistors and common-mode choke ratings, use the average short circuit current. Determine the ratio of dominant and recessive bits by the data in the CAN frame plus the following factors of the protocol and PHY that force either recessive or dominant at certain times: • • • Control fields with set bits Bit stuffing Interframe space 20 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TCAN1042-Q1 TCAN1042V-Q1 TCAN1042H-Q1 TCAN1042HV-Q1 TCAN1042G-Q1 TCAN1042GV-Q1 TCAN1042HG-Q1 TCAN1042HGV-Q1 TCAN1042-Q1, TCAN1042V-Q1, TCAN1042H-Q1, TCAN1042HV-Q1 TCAN1042G-Q1, TCAN1042GV-Q1, TCAN1042HG-Q1, TCAN1042HGV-Q1 www.ti.com • SLLSES9D – FEBRUARY 2016 – REVISED OCTOBER 2021 TXD dominant time out (fault case limiting) These ensure a minimum recessive amount of time on the bus even if the data field contains a high percentage of dominant bits. The short circuit current of the bus depends on the ratio of recessive to dominant bits and their respective short circuit currents. The average short circuit current may be calculated with the following formula: IOS(AVG) = %Transmit × [(%REC_Bits × IOS(SS)_REC) + (%DOM_Bits × IOS(SS)_DOM)] + [%Receive × IOS(SS)_REC] (1) Where: • IOS(AVG) is the average short circuit current • %Transmit is the percentage the node is transmitting CAN messages • %Receive is the percentage the node is receiving CAN messages • %REC_Bits is the percentage of recessive bits in the transmitted CAN messages • %DOM_Bits is the percentage of dominant bits in the transmitted CAN messages • IOS(SS)_REC is the recessive steady state short circuit current • IOS(SS)_DOM is the dominant steady state short circuit current Note Consider the short circuit current and possible fault cases of the network when sizing the power ratings of the termination resistance and other network components. 9.3.7 Digital Inputs and Outputs 9.3.7.1 Devices with VCC Only (Devices without the "V" Suffix): The 5-V VCC only devices are supplied by a single 5-V rail. The digital inputs have TTL input thresholds and are therefore 5 V and 3.3 V compatible. The RXD outputs on these devices are driven to the VCC rail for logic high output. Additionally, the TXD and STB pins are internally pulled up to VCC. The internal bias of the mode pins may only place the device into a known state if the terminals float, they may not be adequate for system-level biasing during transients or noisy environments. Note TXD pull up strength and CAN bit timing require special consideration when these devices are used with CAN controllers with an open-drain TXD output. An adequate external pull up resistor must be used to ensure that the CAN controller output of the microcontroller maintains adequate bit timing to the TXD input. 9.3.7.2 Devices with VIO I/O Level Shifting (Devices with "V" Suffix): These devices use a 5 V VCC power supply for the CAN driver and high speed receiver blocks. These transceivers have a second power supply for I/O level-shifting (VIO). This supply is used to set the CMOS input thresholds of the TXD and pins and the RXD high level output voltage. Additionally, the internal pull ups on TXD and STB are pulled up to VIO. Copyright © 2021 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TCAN1042-Q1 TCAN1042V-Q1 TCAN1042H-Q1 TCAN1042HV-Q1 TCAN1042G-Q1 TCAN1042GV-Q1 TCAN1042HG-Q1 TCAN1042HGV-Q1 21 TCAN1042-Q1, TCAN1042V-Q1, TCAN1042H-Q1, TCAN1042HV-Q1 TCAN1042G-Q1, TCAN1042GV-Q1, TCAN1042HG-Q1, TCAN1042HGV-Q1 www.ti.com SLLSES9D – FEBRUARY 2016 – REVISED OCTOBER 2021 9.4 Device Functional Modes The device has two main operating modes: Normal mode and Standby mode. Operating mode selection is made via the STB input terminal. Table 9-3. Operating Modes (1) STB Terminal MODE DRIVER RECEIVER RXD Terminal LOW Normal Mode Enabled (ON) Enabled (ON) Mirrors Bus State(1) HIGH Standby Mode Disabled (OFF) Disabled (OFF) (Low Power Bus Monitor is Active) High (Unless valid WUP has been received) Mirrors bus state: low if CAN bus is dominant, high if CAN bus is recessive. 9.4.1 CAN Bus States The CAN bus has two states during powered operation of the device: dominant and recessive. A dominant bus state is when the bus is driven differentially, corresponding to a logic low on the TXD and RXD terminal. A recessive bus state is when the bus is biased to VCC / 2 via the high-resistance internal input resistors RIN of the receiver, corresponding to a logic high on the TXD and RXD terminals. Figure 9-2. Bus States (Physical Bit Representation) Figure 9-3. Bias Unit (Recessive Common Mode Bias) and Receiver 22 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TCAN1042-Q1 TCAN1042V-Q1 TCAN1042H-Q1 TCAN1042HV-Q1 TCAN1042G-Q1 TCAN1042GV-Q1 TCAN1042HG-Q1 TCAN1042HGV-Q1 TCAN1042-Q1, TCAN1042V-Q1, TCAN1042H-Q1, TCAN1042HV-Q1 TCAN1042G-Q1, TCAN1042GV-Q1, TCAN1042HG-Q1, TCAN1042HGV-Q1 www.ti.com SLLSES9D – FEBRUARY 2016 – REVISED OCTOBER 2021 9.4.2 Normal Mode Select the Normal mode of device operation by setting STB terminal low. The CAN driver and receiver are fully operational and CAN communication is bi-directional. The driver translates a digital input on TXD to a differential output on CANH and CANL. The receiver translates the differential signal from CANH and CANL to a digital output on RXD. 9.4.3 Standby Mode Activate low power Standby mode by setting STB terminal high. In this mode the bus transmitter will not send data nor will the normal mode receiver accept data as the bus lines are biased to ground minimizing the system supply current. Only the low power receiver will be actively monitoring the bus for activity. RXD indicates a valid wake up event after a wake-up pattern (WUP) has been detected on the Bus. The low power receiver is powered using only the VIO pin. This allows VCC to be removed reducing power consumption further. The bus lines are biased to ground in Standby mode to minimize the required system supply current. The low power receiver is supplied by VIO and is capable of detecting CAN bus activity even if VIO is the only supply voltage available to the transceiver. Copyright © 2021 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TCAN1042-Q1 TCAN1042V-Q1 TCAN1042H-Q1 TCAN1042HV-Q1 TCAN1042G-Q1 TCAN1042GV-Q1 TCAN1042HG-Q1 TCAN1042HGV-Q1 23 TCAN1042-Q1, TCAN1042V-Q1, TCAN1042H-Q1, TCAN1042HV-Q1 TCAN1042G-Q1, TCAN1042GV-Q1, TCAN1042HG-Q1, TCAN1042HGV-Q1 www.ti.com SLLSES9D – FEBRUARY 2016 – REVISED OCTOBER 2021 9.4.3.1 Remote Wake Request via Wake Up Pattern (WUP) in Standby Mode The family offers a remote wake request feature that is used to indicate to the host microcontroller that the bus is active and the node should return to normal operation. These devices use the multiple filtered dominant wake up pattern (WUP) from the ISO11898-2 (2016) to qualify bus activity. Once a valid WUP has been received the wake request will be indicated to the microcontroller by a falling edge and low corresponding to a "filtered" dominant on the RXD output terminal. The WUP consists of a filtered dominant pulse, followed by a filtered recessive pulse, and finally by a second filtered dominant pulse. These filtered dominant, recessive, dominant pulses do not need to occur in immediate succession. There is no timeout that will occur between filtered bits of the WUP. Once a full WUP has been detected the device will continue to drive the RXD output low every time an additional filtered dominant signal is received from the bus. For a dominant or recessive signal to be considered "filtered", the bus must continually remain in that state for more than tWK_FILTER. Due to variability in the tWK_FILTER, the following three scenarios can exist: 1. Bus signals that last less than tWK_FILTER(MIN) will never be detected as part of a valid WUP 2. Bus signals that last more than tWK_FILTER(MIN) but less than tWK_FILTER(MAX) may be detected as part of a valid WUP 3. Bus signals that last more than tWK_FILTER(MAX) will always be detected as part of a valid WUP Once the first filtered dominant signal is received, the device is now waiting on a filtered recessive signal, other bus traffic will not reset the bus monitor. Once the filtered recessive signal is received, the monitor is now waiting on a second filtered dominant signal, and again other bus traffic will not reset the monitor. After reception of the full WUP, the device will transition to driving the RXD output pin low for the remainder of any dominant signal that remains on the bus for longer than tWK_FILTER. Bus Wake via RXD Request Wake Up Pattern (WUP) Filtered Dominant Waiting for Filtered Recessive Filtered Recessive Waiting for Filtered Dominant Filtered Dominant Bus Bus VDiff • tWK_FILTER • tWK_FILTER • tWK_FILTER RXD • tWK_FILTER Filtered Dominant RXD Output Bus Wake Via RXD Requests Figure 9-4. Wake Up Pattern (WUP) 24 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TCAN1042-Q1 TCAN1042V-Q1 TCAN1042H-Q1 TCAN1042HV-Q1 TCAN1042G-Q1 TCAN1042GV-Q1 TCAN1042HG-Q1 TCAN1042HGV-Q1 TCAN1042-Q1, TCAN1042V-Q1, TCAN1042H-Q1, TCAN1042HV-Q1 TCAN1042G-Q1, TCAN1042GV-Q1, TCAN1042HG-Q1, TCAN1042HGV-Q1 www.ti.com SLLSES9D – FEBRUARY 2016 – REVISED OCTOBER 2021 9.4.4 Driver and Receiver Function Tables Table 9-4. Driver Function Table INPUTS DEVICE STB All Devices (1) L H or Open (1) (2) OUTPUTS DRIVEN BUS STATE TXD(1) (2) CANH(1) CANL(1) L H L Dominant H or Open Z Z Recessive X Z Z Recessive H = high level, L = low level, X = irrelevant, Z = common mode (recessive) bias to VCC / 2. See CAN Bus States for bus state and common mode bias information. Devices have an internal pull up to VCC or VIO on TXD terminal. If the TXD terminal is open, the terminal is pulled high and the transmitter remain in recessive (non-driven) state. Table 9-5. Receiver Function Table DEVICE MODE Normal (1) (2) CAN DIFFERENTIAL INPUTS VID = VCANH – VCANL BUS STATE RXD TERMINAL(1) VID ≥ VIT+(MAX) Dominant L(2) VIT-(MIN) < VID < VIT+(MAX) ? ?(2) VID ≤ VIT-(MIN) Recessive H(2) Open (VID ≈ 0 V) Open H H = high level, L = low level, ? = indeterminate. See Receiver Electrical Characteristics section for input thresholds. Copyright © 2021 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TCAN1042-Q1 TCAN1042V-Q1 TCAN1042H-Q1 TCAN1042HV-Q1 TCAN1042G-Q1 TCAN1042GV-Q1 TCAN1042HG-Q1 TCAN1042HGV-Q1 25 TCAN1042-Q1, TCAN1042V-Q1, TCAN1042H-Q1, TCAN1042HV-Q1 TCAN1042G-Q1, TCAN1042GV-Q1, TCAN1042HG-Q1, TCAN1042HGV-Q1 www.ti.com SLLSES9D – FEBRUARY 2016 – REVISED OCTOBER 2021 10 Application Information Disclaimer Note Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality. 10.1 Application Information These CAN transceivers are typically used in applications with a host microprocessor or FPGA that includes the data link layer portion of the CAN protocol. Below are typical application configurations for both 5 V and 3.3 V microprocessor applications. The bus termination is shown for illustrative purposes. 10.2 Typical Applications Node n Node 1 Node 2 Node 3 MCU or DSP MCU or DSP MCU or DSP CAN Controller CAN Controller CAN Controller CAN Transceiver CAN Transceiver CAN Transceiver (with termination) MCU or DSP CAN Controller CAN Transceiver RTERM RTERM Figure 10-1. Typical CAN Bus Application 10.2.1 Design Requirements 10.2.1.1 Bus Loading, Length and Number of Nodes The ISO 11898-2 Standard specifies a maximum bus length of 40 m and maximum stub length of 0.3 m. However, with careful design, users can have longer cables, longer stub lengths, and many more nodes to a bus. A large number of nodes requires transceivers with high input impedance such as the TCAN1042 family of transceivers. Many CAN organizations and standards have scaled the use of CAN for applications outside the original ISO 11898-2. They have made system-level trade-offs for data rate, cable length, and parasitic loading of the bus. Examples of some of these specifications are ARINC825, CANopen, DeviceNet and NMEA2000. The TCAN1042 family is specified to meet the 1.5 V requirement with a 50Ω load, incorporating the worst case including parallel transceivers. The differential input resistance of the TCAN1042 family is a minimum of 30 kΩ. If 100 TCAN1042 family transceivers are in parallel on a bus, this is equivalent to a 300Ω differential load worst case. That transceiver load of 300 Ω in parallel with the 60Ω gives an equivalent loading of 50 Ω. Therefore, the TCAN1042 family theoretically supports up to 100 transceivers on a single bus segment. However, for CAN network design margin must be given for signal loss across the system and cabling, parasitic loadings, network imbalances, ground offsets and signal integrity thus a practical maximum number of nodes is typically much lower. Bus length may also be extended beyond the original ISO 11898 standard of 40 m by careful system design and data rate tradeoffs. For example, CANopen network design guidelines allow the network to be up to 1 km with changes in the termination resistance, cabling, less than 64 nodes and significantly lowered data rate. 26 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TCAN1042-Q1 TCAN1042V-Q1 TCAN1042H-Q1 TCAN1042HV-Q1 TCAN1042G-Q1 TCAN1042GV-Q1 TCAN1042HG-Q1 TCAN1042HGV-Q1 TCAN1042-Q1, TCAN1042V-Q1, TCAN1042H-Q1, TCAN1042HV-Q1 TCAN1042G-Q1, TCAN1042GV-Q1, TCAN1042HG-Q1, TCAN1042HGV-Q1 www.ti.com SLLSES9D – FEBRUARY 2016 – REVISED OCTOBER 2021 This flexibility in CAN network design is one of the key strengths of the various extensions and additional standards that have been built on the original ISO 11898-2 CAN standard. In using this flexibility comes the responsibility of good network design and balancing these tradeoffs. 10.2.2 Detailed Design Procedures 10.2.2.1 CAN Termination The ISO 11898 standard specifies the interconnect to be a twisted pair cable (shielded or unshielded) with 120-Ω characteristic impedance (ZO). Resistors equal to the characteristic impedance of the line should be used to terminate both ends of the cable to prevent signal reflections. Unterminated drop lines (stubs) connecting nodes to the bus should be kept as short as possible to minimize signal reflections. The termination may be on the cable or in a node, but if nodes may be removed from the bus, the termination must be carefully placed so that two terminations always exist on the network. Termination may be a single 120-Ω resistor at the end of the bus, either on the cable or in a terminating node. If filtering and stabilization of the common mode voltage of the bus is desired, then split termination may be used. (See Figure 10-2). Split termination improves the electromagnetic emissions behavior of the network by eliminating fluctuations in the bus common-mode voltages at the start and end of message transmissions. Standard Termination CANH Split Termination CANH RTERM/2 CAN Transceiver RTERM CAN Transceiver CSPLIT RTERM/2 CANL CANL Copyright © 2016, Texas Instruments Incorporated Figure 10-2. CAN Bus Termination Concepts The family of transceivers have variants for both 5-V only applications and applications where level shifting is needed for a 3.3-V microcontroller. Copyright © 2021 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TCAN1042-Q1 TCAN1042V-Q1 TCAN1042H-Q1 TCAN1042HV-Q1 TCAN1042G-Q1 TCAN1042GV-Q1 TCAN1042HG-Q1 TCAN1042HGV-Q1 27 TCAN1042-Q1, TCAN1042V-Q1, TCAN1042H-Q1, TCAN1042HV-Q1 TCAN1042G-Q1, TCAN1042GV-Q1, TCAN1042HG-Q1, TCAN1042HGV-Q1 www.ti.com SLLSES9D – FEBRUARY 2016 – REVISED OCTOBER 2021 Figure 10-3. Typical CAN Bus Application Using 5V CAN Controller Figure 10-4. Typical CAN Bus Application Using 3.3 V CAN Controller 28 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TCAN1042-Q1 TCAN1042V-Q1 TCAN1042H-Q1 TCAN1042HV-Q1 TCAN1042G-Q1 TCAN1042GV-Q1 TCAN1042HG-Q1 TCAN1042HGV-Q1 TCAN1042-Q1, TCAN1042V-Q1, TCAN1042H-Q1, TCAN1042HV-Q1 TCAN1042G-Q1, TCAN1042GV-Q1, TCAN1042HG-Q1, TCAN1042HGV-Q1 www.ti.com SLLSES9D – FEBRUARY 2016 – REVISED OCTOBER 2021 10.2.3 Application Curves 50 ICC Dominant (mA) 40 30 20 10 0 4.5 4.6 4.7 4.8 4.9 VCC = 4.5 V to 5.5 V CL = Open 5 5.1 VCC (V) 5.2 5.3 VIO = 3.3 V Temp = 25°C 5.4 5.5 D005 RL = 60 Ω STB = 0 V Figure 10-5. ICC Dominant Current over VCC Supply Voltage 11 Power Supply Recommendations These devices are designed to operate from a VCC input supply voltage range between 4.5 V and 5.5 V. Some devices have an output level shifting supply input, VIO, designed for a range between 3 V and 5.5 V. Both supply inputs must be well regulated. A bulk capacitance, typically 4.7 μF, should be placed near the CAN transceiver's main VCC supply output, and in addition a bypass capacitor, typically 0.1 μF, should be placed as close to the device VCC and VIO supply terminals. This helps to reduce supply voltage ripple present on the outputs of the switched-mode power supplies and also helps to compensate for the resistance and inductance of the PCB power planes and traces. Copyright © 2021 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TCAN1042-Q1 TCAN1042V-Q1 TCAN1042H-Q1 TCAN1042HV-Q1 TCAN1042G-Q1 TCAN1042GV-Q1 TCAN1042HG-Q1 TCAN1042HGV-Q1 29 TCAN1042-Q1, TCAN1042V-Q1, TCAN1042H-Q1, TCAN1042HV-Q1 TCAN1042G-Q1, TCAN1042GV-Q1, TCAN1042HG-Q1, TCAN1042HGV-Q1 www.ti.com SLLSES9D – FEBRUARY 2016 – REVISED OCTOBER 2021 Layout Robust and reliable bus node design often requires the use of external transient protection device in order to protect against EFT and surge transients that may occur in industrial environments. Because ESD and transients have a wide frequency bandwidth from approximately 3 MHz to 3 GHz, high-frequency layout techniques must be applied during PCB design. The family comes with high on-chip IEC ESD protection, but if higher levels of system level immunity are desired external TVS diodes can be used. TVS diodes and bus filtering capacitors should be placed as close to the on-board connectors as possible to prevent noisy transient events from propagating further into the PCB and system. 12.1 Layout Guidelines • • • Place the protection and filtering circuitry as close to the bus connector, J1, to prevent transients, ESD and noise from propagating onto the board. In this layout example a transient voltage suppression (TVS) device, D1, has been used for added protection. The production solution can be either bi-directional TVS diode or varistor with ratings matching the application requirements. This example also shows optional bus filter capacitors C4 and C5. Additionally (not shown) a series common mode choke (CMC) can be placed on the CANH and CANL lines between the transceiver U1 and connector J1. Design the bus protection components in the direction of the signal path. Do not force the transient current to divert from the signal path to reach the protection device. Use supply (VCC) and ground planes to provide low inductance. Note High-frequency currents follows the path of least impedance and not the path of least resistance. • • • • • • • 30 Use at least two vias for supply (VCC) and ground connections of bypass capacitors and protection devices to minimize trace and via inductance. Bypass and bulk capacitors should be placed as close as possible to the supply terminals of transceiver, examples are C1, C2 on the VCC supply and C6 and C7 on the VIO supply. Bus termination: this layout example shows split termination. This is where the termination is split into two resistors, R6 and R7, with the center or split tap of the termination connected to ground via capacitor C3. Split termination provides common mode filtering for the bus. When bus termination is placed on the board instead of directly on the bus, additional care must be taken to ensure the terminating node is not removed from the bus thus also removing the termination. See the application section for information on power ratings needed for the termination resistor(s). To limit current of digital lines, serial resistors may be used. Examples are R2, R3, and R4. These are not required. Terminal 1: R1 is shown optionally for the TXD input of the device. If an open drain host processor is used, this is mandatory to ensure the bit timing into the device is met. Terminal 5: For "V" variants of the family, bypass capacitors should be placed as close to the pin as possible (example C6 and C7). For device options without VIO I/O level shifting, this pin is not internally connected and can be left floating or tied to any existing net, for example a split pin connection. Terminal 8: is shown assuming the mode terminal, STB, will be used. If the device will only be used in normal mode, R4 is not needed and R5 could be used for the pull down resistor to GND. Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TCAN1042-Q1 TCAN1042V-Q1 TCAN1042H-Q1 TCAN1042HV-Q1 TCAN1042G-Q1 TCAN1042GV-Q1 TCAN1042HG-Q1 TCAN1042HGV-Q1 TCAN1042-Q1, TCAN1042V-Q1, TCAN1042H-Q1, TCAN1042HV-Q1 TCAN1042G-Q1, TCAN1042GV-Q1, TCAN1042HG-Q1, TCAN1042HGV-Q1 www.ti.com SLLSES9D – FEBRUARY 2016 – REVISED OCTOBER 2021 12.2 Layout Example STB R4 VCC or VIO R5 R1 R2 TXD GND 8 1 GND 2 6 4 5 R7 J1 3 D1 R3 C3 C5 RXD R6 7 U1 U1 C2 C1 VCC C4 GND GND VIO C7 C6 GND Figure 12-1. Layout Example Copyright © 2021 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TCAN1042-Q1 TCAN1042V-Q1 TCAN1042H-Q1 TCAN1042HV-Q1 TCAN1042G-Q1 TCAN1042GV-Q1 TCAN1042HG-Q1 TCAN1042HGV-Q1 31 TCAN1042-Q1, TCAN1042V-Q1, TCAN1042H-Q1, TCAN1042HV-Q1 TCAN1042G-Q1, TCAN1042GV-Q1, TCAN1042HG-Q1, TCAN1042HGV-Q1 www.ti.com SLLSES9D – FEBRUARY 2016 – REVISED OCTOBER 2021 12 Device and Documentation Support 12.1 Receiving Notification of Documentation Updates To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on Subscribe to updates to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document. 12.2 Support Resources TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need. Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. 12.3 Trademarks TI E2E™ is a trademark of Texas Instruments. All trademarks are the property of their respective owners. 12.4 Electrostatic Discharge Caution This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. 12.5 Glossary TI Glossary This glossary lists and explains terms, acronyms, and definitions. 13 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. 32 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TCAN1042-Q1 TCAN1042V-Q1 TCAN1042H-Q1 TCAN1042HV-Q1 TCAN1042G-Q1 TCAN1042GV-Q1 TCAN1042HG-Q1 TCAN1042HGV-Q1 PACKAGE OPTION ADDENDUM www.ti.com 10-Dec-2020 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) (6) TCAN1042DQ1 ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM -55 to 125 1042 TCAN1042DRBRQ1 ACTIVE SON DRB 8 3000 RoHS & Green SN Level-1-260C-UNLIM -55 to 125 1042 TCAN1042DRBTQ1 ACTIVE SON DRB 8 250 RoHS & Green SN Level-1-260C-UNLIM -55 to 125 1042 TCAN1042DRQ1 ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -55 to 125 1042 TCAN1042GDQ1 ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM -55 to 125 1042 TCAN1042GDRBRQ1 ACTIVE SON DRB 8 3000 RoHS & Green SN Level-1-260C-UNLIM -55 to 125 1042 TCAN1042GDRBTQ1 ACTIVE SON DRB 8 250 RoHS & Green SN Level-1-260C-UNLIM -55 to 125 1042 TCAN1042GDRQ1 ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -55 to 125 1042 TCAN1042GVDQ1 ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM -55 to 125 1042V TCAN1042GVDRBRQ1 ACTIVE SON DRB 8 3000 RoHS & Green SN Level-1-260C-UNLIM -55 to 125 1042V TCAN1042GVDRBTQ1 ACTIVE SON DRB 8 250 RoHS & Green SN Level-1-260C-UNLIM -55 to 125 1042V TCAN1042GVDRQ1 ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -55 to 125 1042V TCAN1042HDQ1 ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM -55 to 125 1042 TCAN1042HDRBRQ1 ACTIVE SON DRB 8 3000 RoHS & Green SN Level-1-260C-UNLIM -55 to 125 1042 TCAN1042HDRBTQ1 ACTIVE SON DRB 8 250 RoHS & Green SN Level-1-260C-UNLIM -55 to 125 1042 TCAN1042HDRQ1 ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -55 to 125 1042 TCAN1042HGDQ1 ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM -55 to 125 1042 TCAN1042HGDRBRQ1 ACTIVE SON DRB 8 3000 RoHS & Green SN Level-1-260C-UNLIM -55 to 125 1042 TCAN1042HGDRBTQ1 ACTIVE SON DRB 8 250 RoHS & Green SN Level-1-260C-UNLIM -55 to 125 1042 TCAN1042HGDRQ1 ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -55 to 125 1042 Addendum-Page 1 Samples PACKAGE OPTION ADDENDUM www.ti.com Orderable Device 10-Dec-2020 Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) (6) TCAN1042HGVDQ1 ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM -55 to 125 1042V TCAN1042HGVDRBRQ1 ACTIVE SON DRB 8 3000 RoHS & Green SN Level-1-260C-UNLIM -55 to 125 1042V TCAN1042HGVDRBTQ1 ACTIVE SON DRB 8 250 RoHS & Green SN Level-1-260C-UNLIM -55 to 125 1042V TCAN1042HGVDRQ1 ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -55 to 125 1042V TCAN1042HVDQ1 ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM -55 to 125 1042V TCAN1042HVDRBRQ1 ACTIVE SON DRB 8 3000 RoHS & Green SN Level-1-260C-UNLIM -55 to 125 1042V TCAN1042HVDRBTQ1 ACTIVE SON DRB 8 250 RoHS & Green SN Level-1-260C-UNLIM -55 to 125 1042V TCAN1042HVDRQ1 ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -55 to 125 1042V TCAN1042VDQ1 ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM -55 to 125 1042V TCAN1042VDRBRQ1 ACTIVE SON DRB 8 3000 RoHS & Green SN Level-1-260C-UNLIM -55 to 125 1042V TCAN1042VDRBTQ1 ACTIVE SON DRB 8 250 RoHS & Green SN Level-1-260C-UNLIM -55 to 125 1042V TCAN1042VDRQ1 ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -55 to 125 1042V (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
TCAN1042HVDRQ1 价格&库存

很抱歉,暂时无法提供与“TCAN1042HVDRQ1”相匹配的价格&库存,您可以联系我们找货

免费人工找货
TCAN1042HVDRQ1
  •  国内价格 香港价格
  • 1+14.911241+1.78411
  • 10+10.9259310+1.30727
  • 25+9.9336525+1.18855
  • 100+8.84437100+1.05822
  • 250+8.32452250+0.99602
  • 500+8.01141500+0.95855
  • 1000+7.753481000+0.92769

库存:4569

TCAN1042HVDRQ1
  •  国内价格 香港价格
  • 2500+7.481282500+0.89513
  • 5000+7.317235000+0.87550
  • 7500+7.235077500+0.86567

库存:4569

TCAN1042HVDRQ1
  •  国内价格 香港价格
  • 1+14.695101+1.75825
  • 10+10.7701810+1.28864
  • 25+9.7925825+1.17167
  • 100+8.71878100+1.04319
  • 250+8.20630250+0.98187
  • 500+7.89764500+0.94494
  • 1000+7.643371000+0.91452

库存:2269

TCAN1042HVDRQ1
    •  国内价格
    • 10+2.73460

    库存:1577

    TCAN1042HVDRQ1
    •  国内价格
    • 1+2.72353

    库存:10