0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
THVD1550DR

THVD1550DR

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    SOIC8_150MIL

  • 描述:

    IC TRANSCEIVER HALF 1/1 8SOIC

  • 数据手册
  • 价格&库存
THVD1550DR 数据手册
Product Folder Order Now Technical Documents Support & Community Tools & Software THVD1510, THVD1512 THVD1550, THVD1551, THVD1552 ZHCSGQ1C – SEPTEMBER 2017 – REVISED DECEMBER 2018 具有 ±18kV IEC ESD 保护功能的 THVD15xx 5V RS-485 收发器 1 特性 • • • 1 • • • • • • • • • 符合或超过 TIA/EIA-485A 标准要求 4.5V 至 5.5V 电源电压 集成总线 I/O 保护 – ±30kV HBM ESD – ±18kV IEC 61000-4-2 ESD 接触放电 – ±25kV IEC 61000-4-2 ESD 空气间隙放电 – ±4kV IEC 61000-4-4 电气快速瞬变 扩展级运行共模:± 15V 低 EMI 500kbps 和 50Mbps 数据速率 扩展温度范围:-40°C 至 125°C 用于噪声抑制的大接收器滞后 低功耗 – 低待机电源电流:小于 1µA – 运行期间的电流:< 1mA 适用于热插拔功能的无干扰加电/断电 开路、短路和空闲总线失效防护 1/8 单位负载选项(多达 256 个总线节点) 小尺寸 VSSOP 封装(可节省布板空间)或 SOIC 封装(可实现快插兼容性) 每个器件由 5V 单电源供电。该系列中的器件具有扩展 共模电压范围,因此这些器件适用于长电缆上的 多点 应用。 THVD15xx 系列器件采用小型 VSSOP 封装,适用于 空间受限的 应用。这些器件在自然通风环境下的额定 温度范围为 –40°C 至 125°C。 器件信息(1) 器件型号 封装 THVD1510 THVD1550 3.00mm × 3.00mm SOIC (8) 4.90mm × 3.91mm THVD1551 VSSOP (8) 3.00mm × 3.00mm THVD1512 VSSOP (10) 3.00mm × 3.00mm VSSOP (10) 3.00mm × 3.00mm SOIC (14) 8.65mm × 3.91mm THVD1552 (1) 如需了解所有可用封装,请参阅产品说明书末尾的可订购产品 附录。 THVD1510 和 THVD1550 简化原理图 R RE DE 2 应用 • • • • • • • • 电机驱动器 工厂自动化与控制 电网基础设施 楼宇自动化 HVAC 系统 视频监控 过程分析 电信基础设施 D THVD15xx 是一系列抗噪 RS-485/RS-422 收发器,专 用于在恶劣的工业环境中运行。这些器件的总线引脚可 耐受高级别的 IEC 电气快速瞬变 (EFT) 和 IEC 静电放 电 (ESD) 事件,从而无需使用其他系统级保护组件。 1 2 7 3 6 B A 4 THVD1551 简化原理图 R D 2 8 A 7 B 3 6 Z 5 Y THVD1512 和 THVD1552 简化原理图 R 3 说明 封装尺寸(标称值) VSSOP (8) RE DE D 2 (1) 3 (2) (9 ) 12 A (8 ) 11 B 4 (3) 5 (4) (7 ) 10 Z (6) 9 Y 1 本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确 性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。 English Data Sheet: SLLSEV1 THVD1510, THVD1512 THVD1550, THVD1551, THVD1552 ZHCSGQ1C – SEPTEMBER 2017 – REVISED DECEMBER 2018 www.ti.com.cn 目录 1 2 3 4 5 6 7 特性 .......................................................................... 应用 .......................................................................... 说明 .......................................................................... 修订历史记录 ........................................................... Device Comparison Table..................................... Pin Configuration and Functions ......................... Specifications......................................................... 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8 9 1 1 1 2 3 3 6 Absolute Maximum Ratings ...................................... 6 ESD Ratings ............................................................ 6 Recommended Operating Conditions....................... 7 Thermal Information .................................................. 7 Power Dissipation ..................................................... 7 Electrical Characteristics........................................... 8 Switching Characteristics .......................................... 9 Switching Characteristics .......................................... 9 Typical Characteristics ............................................ 10 Parameter Measurement Information ................ 11 Detailed Description ............................................ 14 9.1 Overview ................................................................. 14 9.2 Functional Block Diagrams ..................................... 14 9.3 Feature Description................................................. 14 9.4 Device Functional Modes........................................ 15 10 Application and Implementation........................ 18 10.1 Application Information...................................... 18 10.2 Typical Application ............................................... 18 11 Power Supply Recommendations ..................... 24 12 Layout................................................................... 25 12.1 Layout Guidelines ................................................. 25 12.2 Layout Example .................................................... 25 13 器件和文档支持 ..................................................... 26 13.1 13.2 13.3 13.4 13.5 13.6 13.7 13.8 器件支持................................................................ 第三方产品免责声明.............................................. 相关链接................................................................ 接收文档更新通知 ................................................. 社区资源................................................................ 商标 ....................................................................... 静电放电警告......................................................... 术语表 ................................................................... 26 26 26 26 26 26 26 26 14 机械、封装和可订购信息 ....................................... 27 4 修订历史记录 Changes from Revision B (July 2018) to Revision C • Changed the Description of pins 13 and 14 in the Pin Functions table for THVD1512, THVD1552 D package ................... 5 Changes from Revision A (January 2018) to Revision B • Page Page Added TSD to the Electrical Characteristics table ................................................................................................................... 8 Changes from Original (September 2017) to Revision A Page • Changed the Machine model (MM) value From: ±400 To: ±200 in the ESD Ratings............................................................ 6 • Changed the VOH MIN value From: 2.4 V To: 4 V in the Electrical Characteristics table ..................................................... 8 2 Copyright © 2017–2018, Texas Instruments Incorporated THVD1510, THVD1512 THVD1550, THVD1551, THVD1552 www.ti.com.cn ZHCSGQ1C – SEPTEMBER 2017 – REVISED DECEMBER 2018 5 Device Comparison Table PART NUMBER DUPLEX ENABLES THVD1512 Full DE, RE THVD1510 Half DE, RE THVD1552 Full DE, RE THVD1551 Full None THVD1550 Half DE, RE SIGNALING RATE NODES up to 500 kbps 256 up to 50 Mbps 196 6 Pin Configuration and Functions THVD1510, THVD1550 Devices 8-Pin D Package (SOIC) Top View THVD1510, THVD1550 Devices 8-Pin DGK Package (VSSOP) Top View R 1 8 VCC /RE 2 7 B DE 3 6 A D 4 5 GND Not to scale R 1 8 VCC /RE 2 7 B DE 3 6 A D 4 5 GND Not to scale Pin Functions PIN I/O DESCRIPTION NAME D DGK A 6 6 Bus input/output Bus I/O port, A (complementary to B) B 7 7 Bus input/output Bus I/O port, B (complementary to A) D 4 4 Digital input Driver data input DE 3 3 Digital input Driver enable, active high (2 MΩ internal pull-down) GND 5 5 Ground R 1 1 Digital output VCC 8 8 Power RE 2 2 Digital input Copyright © 2017–2018, Texas Instruments Incorporated Device ground Receive data output 5-V supply Receiver enable, active low (2 MΩ internal pull-up) 3 THVD1510, THVD1512 THVD1550, THVD1551, THVD1552 ZHCSGQ1C – SEPTEMBER 2017 – REVISED DECEMBER 2018 www.ti.com.cn THVD1551 Device 8-Pin DGK Package (VSSOP) Top View VCC 1 8 A R 2 7 B D 3 6 Z GND 4 5 Y Not to scale Pin Functions PIN NAME DGK I/O DESCRIPTION A 8 Bus input Bus input, A (complementary to B) B 7 Bus input Bus input, B (complementary to A) D 3 Digital input GND 4 Ground R 2 Digital output VCC 1 Power Y 5 Bus output Bus output, Y (complementary to Z) Z 6 Bus output Bus output, Z (complementary to Y) 4 Driver data input Device ground Receive data output 5-V supply Copyright © 2017–2018, Texas Instruments Incorporated THVD1510, THVD1512 THVD1550, THVD1551, THVD1552 www.ti.com.cn ZHCSGQ1C – SEPTEMBER 2017 – REVISED DECEMBER 2018 THVD1552 Device 14-Pin D Package (SOIC) Top View THVD1512, THVD1552 Devices 10-Pin DGS Package (VSSOP) Top View NC 1 14 VCC R 2 13 VCC /RE 3 12 A DE 4 11 B D 5 10 Z GND 6 9 Y GND 7 8 NC R 1 10 VCC RE 2 9 A DE 3 8 B D 4 7 Z GND 5 6 Y Not to scale Not to scale Pin Functions PIN NAME D DGS A 12 9 B 11 D 5 DE I/O DESCRIPTION Bus input Bus input, A (complementary to B) 8 Bus input Bus input, B (complementary to A) 4 Digital input Driver data input 4 3 Digital input Driver enable, active high (2 MΩ internal pull-down) 6, 7 (1) 5 Ground 1, 8 — — 2 1 Digital output — 10 Power 5-V supply. 13, 14 — Power 5-V supply. These pins are not connected together internally, so power must be applied to both. Y 9 6 Bus output Bus output, Y (Complementary to Z) Z 10 7 Bus output Bus output, Z (Complementary to Y) RE 3 2 Digital input Receiver enable, active low (2 MΩ internal pull-up) GND NC R VCC (1) Device ground Internally not connected Receive data output These pins are internally connected Copyright © 2017–2018, Texas Instruments Incorporated 5 THVD1510, THVD1512 THVD1550, THVD1551, THVD1552 ZHCSGQ1C – SEPTEMBER 2017 – REVISED DECEMBER 2018 www.ti.com.cn 7 Specifications 7.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted) (1) MIN MAX UNIT Supply voltage VCC –0.5 7 V Bus voltage Range at any bus pin (A, B, Y, or Z) as differential or common-mode with respect to GND –18 18 V Input voltage Range at any logic pin (D, DE, or RE) –0.3 5.7 V Receiver output current IO –24 24 mA –65 150 °C Storage temperature, Tstg (1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. 7.2 ESD Ratings VALUE V(ESD) Electrostatic discharge Contact discharge, per IEC 61000-4-2 Bus terminals and GND ±18,000 Air-gap discharge, per IEC 61000-4-2 Bus terminals and GND ±25,000 Bus terminals and GND ±30,000 All pins except Bus terminals and GND ±8,000 Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1) Charged-device model (CDM), per JEDEC specification JESD22C101 (2) Machine model (MM), per JEDEC JESD22-A115-A V(EFT) (1) (2) 6 Electrical fast transient Per IEC 61000-4-4 Bus terminals UNIT V ±1,500 ±200 ±4,000 V JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Copyright © 2017–2018, Texas Instruments Incorporated THVD1510, THVD1512 THVD1550, THVD1551, THVD1552 www.ti.com.cn ZHCSGQ1C – SEPTEMBER 2017 – REVISED DECEMBER 2018 7.3 Recommended Operating Conditions over operating free-air temperature range (unless otherwise noted) MIN NOM MAX UNIT VCC Supply voltage 4.5 5.5 V VI Input voltage at any bus terminal (1) -15 15 V VIH High-level input voltage (driver, driver enable, and receiver enable inputs) 2 VCC V VIL Low-level input voltage (driver, driver enable, and receiver enable inputs) 0 0.8 V VID Differential input voltage -15 15 V IO Output current, driver -60 60 mA IOR Output current, receiver -8 8 mA RL Differential load resistance 54 Ω THVD1510, THVD1512 500 kbps 1/tUI Signaling rate 50 Mbps TA Operating ambient temperature -40 125 °C TJ Junction temperature -40 150 °C (1) THVD1550, THVD1551, THVD1552 The algebraic convention, in which the least positive (most negative) limit is designated as minimum is used in this data sheet. 7.4 Thermal Information THERMAL METRIC (1) THVD1510 THVD1550 THVD1552 THVD1510 THVD1550 THVD1551 THVD1512 THVD1552 D (SOIC) D (SOIC) DGK (VSSOP) DGS (VSSOP) UNIT 8 PINS 14 PINS 8 PINS 10 PINS RθJA Junction-to-ambient thermal resistance 112.4 88.0 151.7 151.4 °C/W RθJC(top) Junction-to-case (top) thermal resistance 62.7 45.4 62.8 59.3 °C/W RθJB Junction-to-board thermal resistance 62.0 44.1 81.3 81.6 °C/W ψJT Junction-to-top characterization parameter 15.4 11.3 7.8 6.5 °C/W ψJB Junction-to-board characterization parameter 61.3 43.7 79.8 79.9 °C/W RθJC(bot) Junction-to-case (bottom) thermal resistance N/A N/A N/A N/A °C/W (1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report. 7.5 Power Dissipation PARAMETER PD Driver and receiver enabled, VCC = 5.5 V, TA = 125 °C, 50% duty cycle square wave at signaling rate Copyright © 2017–2018, Texas Instruments Incorporated TEST CONDITIONS VALUE Unterminated RL = 300 Ω, CL = 50 pF (driver) THVD151x 500 kbps 210 THVD155x 50 Mbps 350 RS-422 load RL = 100 Ω, CL = 50 pF (driver) THVD151x 500 kbps 220 THVD155x 50 Mbps 330 RS-485 load RL = 54 Ω, CL = 50 pF (driver) THVD151x 500 kbps 250 THVD155x 50 Mbps 340 UNIT mW mW mW 7 THVD1510, THVD1512 THVD1550, THVD1551, THVD1552 ZHCSGQ1C – SEPTEMBER 2017 – REVISED DECEMBER 2018 www.ti.com.cn 7.6 Electrical Characteristics over operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT 1.5 2.7 V 2 3 V 1.5 2.7 V Driver RL = 60 Ω, -15 V ≤ Vtest ≤ 15 V, (See 图 11) |VOD| Driver differential output voltage magnitude RL = 100 Ω (See 图 12) RL = 54 Ω (See 图 12) Δ|VOD| Change in differential output voltage VOC Common-mode output voltage ΔVOC(SS) Change in steady-state common-mode output voltage IOS Short-circuit output current –200 1 RL = 54 Ω (See 图 12) DE = VCC, -15 V ≤ VO ≤ 15V 200 VCC/2 3 mV V –200 200 mV –250 250 mA Receiver VI = 12 V THVD151x II Bus input current DE = 0 V, VCC = 0 V or 5.5 V VI = 15 V VI = -7 V -100 VI = -15 V -215 VI = 12 V THVD155x VI = 15 V 75 125 95 156 -40 -85 115 160 150 200 μA VI = -7 V -130 -75 VI = -15 V -280 -180 See (1) –85 –20 mV –200 –135 See (1) mV Receiver VTH+ Positive-going input threshold voltage VTH- Negative-going input threshold voltage VHYS Input hysteresis VTH+ Positive-going input threshold voltage VTH- Negative-going input threshold voltage VHYS Input hysteresis VOH Output high voltage IOH = -8 mA VOL Output low voltage IOL = 8 mA IOZ Output high-impedance current VO = 0 V or VCC, RE = VCC -1 Input current (D, DE, RE) 4.5 V ≤ VCC ≤ 5.5 V, 0 V ≤ VIN ≤ VCC –5 Over common-mode range of - 7 V to +12 V 50 –85 –20 mV –220 –135 See (1) mV 4 VCC - 0.3 See Over common-mode range of ± 15 V mV (1) 50 0.2 mV V 0.4 V 1 µA 0 5 µA Logic IIN Supply ICC TSD (1) 8 Driver and receiver enabled RE = 0 V, DE = VCC, No load 700 1000 µA Driver enabled, receiver disabled RE = VCC, DE = VCC, No load 400 620 µA Driver disabled, receiver enabled RE = 0 V, DE = 0 V, No load 400 630 µA Driver and receiver disabled RE = VCC, DE = 0 V, D = open, No load 0.1 1 µA Supply current (quiescent) Thermal shutdown temperature 170 °C Under any specific conditions, VTH+ is specified to be at least VHYS higher than VTH–. Copyright © 2017–2018, Texas Instruments Incorporated THVD1510, THVD1512 THVD1550, THVD1551, THVD1552 www.ti.com.cn ZHCSGQ1C – SEPTEMBER 2017 – REVISED DECEMBER 2018 7.7 Switching Characteristics 500-kbps devices (THVD1510, THVD1512) over recommended operating conditions PARAMETER TEST CONDITIONS MIN TYP MAX UNIT 300 400 600 ns 350 500 ns 15 ns 110 200 ns 100 500 ns 2 4 µs 15 25 ns 50 60 ns 10 ns 30 40 ns Driver tr, tf Differential output rise/fall time tPHL, tPLH Propagation delay tSK(P) Pulse skew, |tPHL – tPLH| tPHZ, tPLZ Disable time (THVD1510, THVD1512) tPZH, tPZL Enable time (THVD1510, THVD1512) RL = 54 Ω, CL = 50 pF See 图 13 See 图 14 and 图 15 RE = 0 V RE = VCC Receiver tr, tf Differential output rise/fall time tPHL, tPLH Propagation delay tSK(P) Pulse skew, |tPHL – tPLH| tPHZ, tPLZ Disable time (THVD1510, THVD1512) tPZH(1), tPZL(1), tPZH(2), tPZL(2) Enable time (THVD1510, THVD1512) See 图 16 CL = 15 pF DE = VCC See 图 17 60 100 ns DE = 0 V See 图 18 3 8 μs TYP MAX 7.8 Switching Characteristics 50-Mbps devices (THVD1550, THVD1551, THVD1552) over recommended operating conditions PARAMETER TEST CONDITIONS MIN UNIT Driver tr, tf Differential output rise/fall time tPHL, tPLH Propagation delay tSK(P) Pulse skew, |tPHL – tPLH| tPHZ, tPLZ Disable time (THVD1550, THVD1552) tPZH, tPZL Enable time (THVD1550, THVD1552) RL = 54 Ω, CL = 50 pF RE = 0 V See 图 13 1 2 6 ns 5 10 16 ns 3.5 ns 10 22 ns 10 22 ns 2 4 μs 3 6 ns 30 45 ns 2 ns 8 18 ns See 图 14 and 图 15 RE = VCC Receiver tr, tf Differential output rise/fall time tPHL, tPLH Propagation delay tSK(P) Pulse skew, |tPHL – tPLH| tPHZ, tPLZ Disable time (THVD1550, THVD1552) tPZH(1), tPZL(1), tPZH(2), tPZL(2) Enable time (THVD1550, THVD1552) 1 CL = 15 pF See 图 16 DE = VCC See 图 17 55 90 ns DE = 0 V See 图 18 3 8 μs 版权 © 2017–2018, Texas Instruments Incorporated 9 THVD1510, THVD1512 THVD1550, THVD1551, THVD1552 ZHCSGQ1C – SEPTEMBER 2017 – REVISED DECEMBER 2018 www.ti.com.cn 7.9 Typical Characteristics VOL VOH 4.5 VO - Driver Output Voltage (V) VO - Driver Differential Output Voltage (V) 5 4 3.5 3 2.5 2 1.5 1 0.5 0 10 20 30 40 50 60 70 80 IO - Driver Output Current (mA) VCC = 5 V 90 3 2.5 2 1.5 1 0.5 0 10 20 D001 DE = VCC D=0V 30 40 50 60 70 80 IO - Driver Output Current (mA) VCC = 5 V 图 1. Driver Output Voltage vs Driver Output Current 90 100 110 D002 DE = VCC D=0V 图 2. Driver Differential Output Voltage vs Driver Output 460 V0 - Driver Rise and Fall Time (ns) IO - Driver Output Current (mA) 3.5 100 110 60 50 40 30 20 10 0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 VCC - Supply Voltage (V) TA = 25°C DE = VCC 5 5.5 440 430 420 410 400 390 -20 0 D003 RL = 54 Ω 20 40 60 Temperature (qC) 80 100 120 D004 D = VCC 图 4. THVD1510 Driver Rise or Fall Time vs Temperature 3 VO - Driver Rise and Fall Time (ns) 395 390 385 380 375 370 365 360 355 350 345 340 335 330 -40 450 380 -40 6 图 3. Driver Output Current vs Supply Voltage VO - Driver Propagation Delay (ns) 4 0 0 -20 0 20 40 60 80 Temperature (qC) 100 120 140 D005 图 5. THVD1510 Driver Propagation Delay vs Temperature 10 4.5 2.5 2 1.5 1 0.5 0 -40 -20 0 20 40 60 Temperature (qC) 80 100 120 D006 图 6. THVD1550 Driver Rise or Fall Time vs Temperature 版权 © 2017–2018, Texas Instruments Incorporated THVD1510, THVD1512 THVD1550, THVD1551, THVD1552 www.ti.com.cn ZHCSGQ1C – SEPTEMBER 2017 – REVISED DECEMBER 2018 14 80 12 70 ICC - Supply Current (mA) VO - Driver Propagation Delay (ns) Typical Characteristics (接 接下页) 10 8 6 4 60 50 40 30 20 2 10 0 -40 -20 0 20 40 60 Temperature (qC) 80 100 0 50 120 100 150 D007 200 250 300 350 Signaling Rate (Kbps) 400 450 500 D008 RL = 54 Ω 图 7. THVD1550 Driver Propagation Delay vs Temperature 图 8. THVD1510 Supply Current vs Signal Rate 7 90 VIT- ( 7 V) VIT+ ( 7 V) VIT- (0 V) VIT+ (0 V) VIT- (12 V) VIT+ (12 V) 6 70 Receiver Output (V) ICC - Supply Current (mA) 80 60 50 40 30 5 4 3 2 20 1 10 0 0 5 10 15 20 25 30 35 Signaling Rate (Mbps) 40 45 0 -170 -160 -150 -140 -130 -120 -110 -100 -90 50 -80 -70 -60 Differential Input Voltage (mV) D009 -50 D010 RL = 54 Ω 图 10. Receiver Output vs Input 图 9. THVD1550 Supply Current vs Signal Rate 8 Parameter Measurement Information 375 Ÿ Vcc DE A 0V or Vcc D VOD Vtest RL B 375 Ÿ 图 11. Measurement of Driver Differential Output Voltage With Common-Mode Load A 0V or Vcc D A RL/2 VOD B RL/2 VA B CL VB VOC(PP) VOC ûVOC(SS) VOC 图 12. Measurement of Driver Differential and Common-Mode Output With RS-485 Load 版权 © 2017–2018, Texas Instruments Incorporated 11 THVD1510, THVD1512 THVD1550, THVD1551, THVD1552 ZHCSGQ1C – SEPTEMBER 2017 – REVISED DECEMBER 2018 www.ti.com.cn Parameter Measurement Information (接 接下页) Vcc Vcc DE A D Input Generator VI 50% VI VOD 50 Ÿ 0V tPHL tPLH RL= 54 Ÿ CL= 50 pF VOD ~2 V 90% 50% 10% B tr ~ ±2V tf 图 13. Measurement of Driver Differential Output Rise and Fall Times and Propagation Delays A S1 D Vcc VO 50% VI B DE Input Generator VI RL = 110 Ÿ CL = 50 pF 50 Ÿ 0V tPZH 90% VOH 50% VO ~ ~ 0V tPHZ 图 14. Measurement of Driver Enable and Disable Times With Active High Output and Pull-Down Load Vcc Vcc RL= 110 Ÿ A S1 DE Input Generator 0V tPZL VO B D 50% VI tPLZ § Vcc VO CL= 50 pF 10% 50 % VI VOL 50 Ÿ 图 15. Measurement of Driver Enable and Disable Times With Active Low Output and Pull-up Load 3V A Input Generator R VO VI 50 Ÿ 1.5V 0V 50 % VI B 0V tPLH tPHL VOH 90% CL=15 pF 50% RE VOD 10 % tr VOL tf 图 16. Measurement of Receiver Output Rise and Fall Times and Propagation Delays Vcc Vcc Vcc VI 50 % DE 0V or Vcc 0V A D R B VO 1 kŸ tPZH(1) tPHZ S1 CL=15 pF VO 90 % 50 % tPZL(1) VI 50 Ÿ D at Vcc S1 to GND § 0V RE Input Generator VOH VO tPLZ 50 % VCC D at 0V S1 to Vcc 10 % VOL 图 17. Measurement of Receiver Enable/Disable Times With Driver Enabled 12 版权 © 2017–2018, Texas Instruments Incorporated THVD1510, THVD1512 THVD1550, THVD1551, THVD1552 www.ti.com.cn ZHCSGQ1C – SEPTEMBER 2017 – REVISED DECEMBER 2018 Parameter Measurement Information (接 接下页) Vcc Vcc VI 50% 0V A V or 1.5V R 1.5 V or 0V B RE VO 1 NŸ tPZH(2) S1 CL=15 pF VOH 50% VO § 0V A at 1.5 V B at 0 V S1 to GND tPZL(2) Input Generator VI 50 Ÿ VCC VO 50% VOL A at 0V B at 1.5V S1 to VCC 图 18. Measurement of Receiver Enable Times With Driver Disabled 版权 © 2017–2018, Texas Instruments Incorporated 13 THVD1510, THVD1512 THVD1550, THVD1551, THVD1552 ZHCSGQ1C – SEPTEMBER 2017 – REVISED DECEMBER 2018 www.ti.com.cn 9 Detailed Description 9.1 Overview THVD1510 and THVD1550 are low-power, half-duplex RS-485 transceivers available in two speed grades suitable for data transmission up to 500 kbps and 50 Mbps respectively. THVD1551 is fully enabled with no external enabling pins. THVD1512 and THVD1552 have active-high driver enables and active-low receiver enables. A standby current of less than 1 µA can be achieved by disabling both driver and receiver. 9.2 Functional Block Diagrams VCC R RE A DE B D GND 图 19. THVD1510 and THVD1550 VCC A R R B VCC D Z D Y GND 图 20. THVD1551 VCC A R R B RE DE D Z D Y GND 图 21. THVD1512 and THVD1552 9.3 Feature Description Internal ESD protection circuits of the THVD15xx protect the transceivers against electrostatic discharges (ESD) according to IEC 61000-4-2 of up to ±18 kV and against electrical fast transients (EFT) according to IEC 610004-4 of up to ±4 kV. With careful system design, one could achieve ±4 kV EFT Criterion A (no data loss when transient noise is present). 14 版权 © 2017–2018, Texas Instruments Incorporated THVD1510, THVD1512 THVD1550, THVD1551, THVD1552 www.ti.com.cn ZHCSGQ1C – SEPTEMBER 2017 – REVISED DECEMBER 2018 Feature Description (接 接下页) The THVD15xx device family provides internal biasing of the receiver input thresholds in combination with large input-threshold hysteresis. The receiver output remains logic high under a bus-idle or bus-short conditions without the need for external failsafe biasing resistors. Device operation is specified over a wide ambient temperature range from –40°C to 125°C. 9.4 Device Functional Modes 9.4.1 Device Functional Modes for THVD1510 and THVD1550 When the driver enable pin, DE, is logic high, the differential outputs A and B follow the logic states at data input D. A logic high at D causes A to turn high and B to turn low. In this case the differential output voltage defined as VOD = VA – VB is positive. When D is low, the output states reverse: B turns high, A becomes low, and VOD is negative. When DE is low, both outputs turn high-impedance. In this condition the logic state at D is irrelevant. The DE pin has an internal pull-down resistor to ground, thus when left open the driver is disabled (high-impedance) by default. The D pin has an internal pull-up resistor to VCC, thus, when left open while the driver is enabled, output A turns high and B turns low. 表 1. Driver Function Table for THVD1510 and THVD1550 INPUT ENABLE D DE A OUTPUTS B H H H L Actively drive bus high Actively drive bus low FUNCTION L H L H X L Z Z Driver disabled X OPEN Z Z Driver disabled by default OPEN H H L Actively drive bus high by default When the receiver enable pin, RE, is logic low, the receiver is enabled. When the differential input voltage defined as VID = VA – VB is higher than the positive input threshold, VTH+, the receiver output, R, turns high. When VID is lower than the negative input threshold, VTH-, the receiver output, R, turns low. If VID is between VTH+ and VTH- the output is indeterminate. When RE is logic high or left open, the receiver output is high-impedance and the magnitude and polarity of VID are irrelevant. Internal biasing of the receiver inputs causes the output to go failsafe-high when the transceiver is disconnected from the bus (open-circuit), the bus lines are shorted to one another (short-circuit), or the bus is not actively driven (idle bus). 表 2. Receiver Function Table for THVD1510 and THVD1550 DIFFERENTIAL INPUT ENABLE OUTPUT VID = VA – VB RE R VTH+ < VID L H Receive valid bus high VTH- < VID < VTH+ L ? Indeterminate bus state VID < VTH- L L Receive valid bus low X H Z Receiver disabled FUNCTION X OPEN Z Receiver disabled by default Open-circuit bus L H Fail-safe high output Short-circuit bus L H Fail-safe high output Idle (terminated) bus L H Fail-safe high output 版权 © 2017–2018, Texas Instruments Incorporated 15 THVD1510, THVD1512 THVD1550, THVD1551, THVD1552 ZHCSGQ1C – SEPTEMBER 2017 – REVISED DECEMBER 2018 www.ti.com.cn 9.4.2 Device Functional Modes for THVD1551 For this device, the driver and receiver are fully enabled, thus the differential outputs Y and Z follow the logic states at data input D at all times. A logic high at D causes Y to turn high and Z to turn low. In this case, the differential output voltage defined as VOD = VY – VZ is positive. When D is low, the output states reverse: Z turns high, Y becomes low, and VOD is negative. The D pin has an internal pull-up resistor to VCC, thus, when left open while the driver is enabled, output Y turns high and Z turns low. 表 3. Driver Function Table for THVD1551 INPUT OUTPUTS FUNCTIONS D Y Z H H L L L H Actively drive bus low OPEN H L Actively drive bus high by default Actively drive bus high When the differential input voltage defined as VID = VA – VB is higher than the positive input threshold, VTH+, the receiver output, R, turns high. When VID is less than the negative input threshold, VTH–, the receiver output, R, turns low. If VID is between VTH+ and VTH– the output is indeterminate. Internal biasing of the receiver inputs causes the output to go failsafe-high when the transceiver is disconnected from the bus (open-circuit), the bus lines are shorted to one another (short-circuit), or the bus is not actively driven (idle bus). 表 4. Receiver Function Table for THVD1551 DIFFERENTIAL INPUT OUTPUT VID = VA – VB R VTH+ < VID H Receive valid bus high VTH- < VID < VTH+ ? Indeterminate bus state FUNCTION VID < VTH- L Receive valid bus low Open-circuit bus H Fail-safe high output Short-circuit bus H Fail-safe high output Idle (terminated) bus H Fail-safe high output 9.4.3 Device Functional Modes for THVD1512 and THVD1552 When the driver enable pin, DE, is logic high, the differential outputs Y and Z follow the logic states at data input D. A logic high at D causes Y to turn high and Z to turn low. In this case the differential output voltage defined as VOD = VY – VZ is positive. When D is low, the output states reverse: Z turns high, Y becomes low, and VOD is negative. When DE is low, both outputs turn high-impedance. In this condition the logic state at D is irrelevant. The DE pin has an internal pull-down resistor to ground, thus when left open the driver is disabled (high-impedance) by default. The D pin has an internal pull-up resistor to VCC, thus, when left open while the driver is enabled, output Y turns high and Z turns low. 表 5. Driver Function Table for THVD1512 and THVD1552 16 INPUT ENABLE D DE Y OUTPUTS Z H H H L Actively drive bus high Actively drive bus low FUNCTION L H L H X L Z Z Driver disabled X OPEN Z Z Driver disabled by default OPEN H H L Actively drive bus high by default 版权 © 2017–2018, Texas Instruments Incorporated THVD1510, THVD1512 THVD1550, THVD1551, THVD1552 www.ti.com.cn ZHCSGQ1C – SEPTEMBER 2017 – REVISED DECEMBER 2018 When the receiver enable pin, RE, is logic low, the receiver is enabled. When the differential input voltage defined as VID = VA – VB is higher than the positive input threshold, VTH+, the receiver output, R, turns high. When VID is lower than the negative input threshold, VTH-, the receiver output, R, turns low. If VID is between VTH+ and VTH- the output is indeterminate. When RE is logic high or left open, the receiver output is high-impedance and the magnitude and polarity of VID are irrelevant. Internal biasing of the receiver inputs causes the output to go failsafe-high when the transceiver is disconnected from the bus (open-circuit), the bus lines are shorted to one another (short-circuit), or the bus is not actively driven (idle bus). 表 6. Receiver Function Table for THVD1512 and THVD1552 DIFFERENTIAL INPUT ENABLE OUTPUT VID = VA – VB RE R VTH+ < VID L H Receive valid bus high VTH- < VID < VTH+ L ? Indeterminate bus state Receive valid bus low FUNCTION VID < VTH- L L X H Z Receiver disabled X OPEN Z Receiver disabled by default Open-circuit bus L H Fail-safe high output Short-circuit bus L H Fail-safe high output Idle (terminated) bus L H Fail-safe high output 版权 © 2017–2018, Texas Instruments Incorporated 17 THVD1510, THVD1512 THVD1550, THVD1551, THVD1552 ZHCSGQ1C – SEPTEMBER 2017 – REVISED DECEMBER 2018 www.ti.com.cn 10 Application and Implementation 注 Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality. 10.1 Application Information The THVD15xx family consists of half-duplex and full-duplex RS-485 transceivers commonly used for asynchronous data transmissions. For half-duplex devices, the driver and receiver enable pins allow for the configuration of different operating modes. Full-duplex implementation requires two signal pairs (four wires), and allows each node to transmit data on one pair while simultaneously receiving data on the other pair. 10.2 Typical Application An RS-485 bus consists of multiple transceivers connecting in parallel to a bus cable. To eliminate line reflections, each cable end is terminated with a termination resistor, RT, whose value matches the characteristic impedance, Z0, of the cable. This method, known as parallel termination, generally allows for higher data rates over longer cable length. R R R A RE D RT B DE R A RT D A R B A R D R RE DE D RE B DE D B D D R RE DE D 图 22. Typical RS-485 Network With Half-Duplex Transceivers Y R D Z A RT RT B R R DE RE Master RE D Slave B R A DE Z RT RT A B Z Y D D Y R Slave D R RE DE D 图 23. Typical RS-485 Network With Full-Duplex Transceivers 18 版权 © 2017–2018, Texas Instruments Incorporated THVD1510, THVD1512 THVD1550, THVD1551, THVD1552 www.ti.com.cn ZHCSGQ1C – SEPTEMBER 2017 – REVISED DECEMBER 2018 Typical Application (接 接下页) 10.2.1 Design Requirements RS-485 is a robust electrical standard suitable for long-distance networking that may be used in a wide range of applications with varying requirements, such as distance, data rate, and number of nodes. 10.2.1.1 Data Rate and Bus Length There is an inverse relationship between data rate and cable length, which means the higher the data rate, the shorter the cable length; and conversely, the lower the data rate, the longer the cable length. While most RS-485 systems use data rates between 10 kbps and 100 kbps, some applications require data rates up to 250 kbps at distances of 4000 feet and longer. Longer distances are possible by allowing for small signal jitter of up to 5 or 10%. 10000 Cable Length (ft) 5%, 10%, and 20% Jitter 1000 Conservative Characteristics 100 10 100 1k 10 k 100 k 1M 10 M 100 M Data Rate (bps) 图 24. Cable Length vs Data Rate Characteristic Even higher data rates are achievable (that is, 50 Mbps for the THVD1550, THVD1551 and THVD1552) in cases where the interconnect is short enough (or has suitably low attenuation at signal frequencies) to not degrade the data. 10.2.1.2 Stub Length When connecting a node to the bus, the distance between the transceiver inputs and the cable trunk, known as the stub, should be as short as possible. Stubs present a non-terminated piece of bus line which can introduce reflections of varying phase as the length of the stub increases. As a general guideline, the electrical length, or round-trip delay, of a stub should be less than one-tenth of the rise time of the driver, thus giving a maximum physical stub length as shown in 公式 1. L(STUB) ≤ 0.1 × tr × v × c where • • • tr is the 10/90 rise time of the driver c is the speed of light (3 × 108 m/s) v is the signal velocity of the cable or trace as a factor of c (1) 10.2.1.3 Bus Loading The RS-485 standard specifies that a compliant driver must be able to drive 32 unit loads (UL), where 1 unit load represents a load impedance of approximately 12 kΩ. Because the THVD15xx family consists of 1/8 UL transceivers, connecting up to 256 receivers to the bus is possible. 版权 © 2017–2018, Texas Instruments Incorporated 19 THVD1510, THVD1512 THVD1550, THVD1551, THVD1552 ZHCSGQ1C – SEPTEMBER 2017 – REVISED DECEMBER 2018 www.ti.com.cn Typical Application (接 接下页) 10.2.1.4 Receiver Failsafe The differential receivers of the THVD15xx family are failsafe to invalid bus states caused by the following: • Open bus conditions, such as a disconnected connector • Shorted bus conditions, such as cable damage shorting the twisted-pair together • Idle bus conditions that occur when no driver on the bus is actively driving In any of these cases, the differential receiver will output a failsafe logic high state so that the output of the receiver is not indeterminate. Receiver failsafe is accomplished by offsetting the receiver thresholds such that the input indeterminate range does not include zero volts differential. In order to comply with the RS-422 and RS-485 standards, the receiver output must output a high when the differential input VID is more positive than 200 mV, and must output a low when VID is more negative than –200 mV. The receiver parameters which determine the failsafe performance are VTH+, VTH–, and VHYS (the separation between VTH+ and VTH–). As shown in the Electrical Characteristics table, differential signals more negative than –200 mV will always cause a low receiver output, and differential signals more positive than 200 mV will always cause a high receiver output. When the differential input signal is close to zero, it is still above the VTH+ threshold, and the receiver output will be high. Only when the differential input is more than VHYS below VTH+ will the receiver output transition to a low state. Therefore, the noise immunity of the receiver inputs during a bus fault conditions includes the receiver hysteresis value, Vhys, as well as the value of VTH+. 20 版权 © 2017–2018, Texas Instruments Incorporated THVD1510, THVD1512 THVD1550, THVD1551, THVD1552 www.ti.com.cn ZHCSGQ1C – SEPTEMBER 2017 – REVISED DECEMBER 2018 Typical Application (接 接下页) 10.2.1.5 Transient Protection The bus pins of the THVD15xx transceiver family include on-chip ESD protection against ±30-kV HBM and ±18kV IEC 61000-4-2 contact discharge. The International Electrotechnical Commission (IEC) ESD test is far more severe than the HBM ESD test. The 50% higher charge capacitance, C(S), and 78% lower discharge resistance, R(D), of the IEC model produce significantly higher discharge currents than the HBM model. As stated in the IEC 61000-4-2 standard, contact discharge is the preferred transient protection test method. R(C) R(D) High-Voltage Pulse Generator 330 Ω (1.5 kΩ) Device Under Test 150 pF (100 pF) C(S) Current (A) 50 M (1 M) 40 35 30 10-kV IEC 25 20 15 10 5 0 0 50 100 10-kV HBM 150 200 250 300 Time (ns) 图 25. HBM and IEC ESD Models and Currents in Comparison (HBM Values in Parenthesis) The on-chip implementation of IEC ESD protection significantly increases the robustness of equipment. Common discharge events occur because of human contact with connectors and cables. Designers may choose to implement protection against longer duration transients, typically referred to as surge transients. EFTs are generally caused by relay-contact bounce or the interruption of inductive loads. Surge transients often result from lightning strikes (direct strike or an indirect strike which induce voltages and currents), or the switching of power systems, including load changes and short circuit switching. These transients are often encountered in industrial environments, such as factory automation and power-grid systems. 图 26 compares the pulse power of the EFT and surge transients with the power caused by an IEC ESD transient. The left-hand diagram shows the relative pulse-power for a 0.5-kV surge transient and 4-kV EFT transient, both of which dwarf the 10-kV ESD transient visible in the lower-left corner. 500-V surge transients are representative of events that may occur in factory environments in industrial and process automation. 22 20 18 16 14 12 10 8 6 4 2 0 Pulse Power (MW) Pulse Power (kW) The right-hand diagram shows the pulse-power of a 6-kV surge transient, relative to the same 0.5-kV surge transient. 6-kV surge transients are most likely to occur in power generation and power-grid systems. 0.5-kV Surge 4-kV EFT 10-kV ESD 0 5 10 15 20 25 Time (µs) 30 35 40 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0 6-kV Surge 0.5-kV Surge 0 5 10 15 20 25 30 35 40 Time (µs) 图 26. Power Comparison of ESD, EFT, and Surge Transients 版权 © 2017–2018, Texas Instruments Incorporated 21 THVD1510, THVD1512 THVD1550, THVD1551, THVD1552 ZHCSGQ1C – SEPTEMBER 2017 – REVISED DECEMBER 2018 www.ti.com.cn Typical Application (接 接下页) In the case of surge transients, high-energy content is characterized by long pulse duration and slow decaying pulse power. The electrical energy of a transient that is dumped into the internal protection cells of a transceiver is converted into thermal energy, which heats and destroys the protection cells, thus destroying the transceiver. 图 27 shows the large differences in transient energies for single ESD, EFT, surge transients, and an EFT pulse train that is commonly applied during compliance testing. 1000 100 Surge 10 1 Pulse Energy (J) EFT Pulse Train 0.1 0.01 EFT 10-3 10-4 ESD 10-5 10-6 0.5 1 2 4 6 8 10 15 Peak Pulse Voltage (kV) 图 27. Comparison of Transient Energies 10.2.2 Detailed Design Procedure 图 28 and 图 29 suggest a protection circuit against 1 kV surge (IEC 61000-4-5) transients. 表 7 shows the associated bill of materials. 5V 100nF 100nF 10k VCC R1 R RxD MCU/ UART DIR RE A DE B TVS D TxD R2 10k GND 图 28. Transient Protection Against Surge Transients for Half-Duplex Devices 22 版权 © 2017–2018, Texas Instruments Incorporated THVD1510, THVD1512 THVD1550, THVD1551, THVD1552 www.ti.com.cn ZHCSGQ1C – SEPTEMBER 2017 – REVISED DECEMBER 2018 Typical Application (接 接下页) 5V 100nF R1 10k VCC A TVS R RxD B RE DIR R2 R1 MCU/ UART DE DIR Z TVS D TxD Y GND 10k R2 图 29. Transient Protection Against Surge Transients for Full-Duplex Devices 表 7. Bill of Materials DEVICE FUNCTION ORDER NUMBER MANUFACTURER XCVR 5-V, RS-485 transceiver THVD15xx TI 10-Ω, pulse-proof thick-film resistor CRCW0603010RJNEAHP Vishay Bidirectional 400-W transient suppressor CDSOT23-SM712 Bourns R1 R2 TVS 版权 © 2017–2018, Texas Instruments Incorporated 23 THVD1510, THVD1512 THVD1550, THVD1551, THVD1552 ZHCSGQ1C – SEPTEMBER 2017 – REVISED DECEMBER 2018 www.ti.com.cn 10.2.3 Application Curves 500 kbps 图 30. THVD1510 Waveforms with 60-Ω Termination 50 Mbps 图 31. THVD1550 Waveforms with 60-Ω Termination 11 Power Supply Recommendations To ensure reliable operation at all data rates and supply voltages, each supply should be decoupled with a 100 nF ceramic capacitor located as close to the supply pins as possible. This helps to reduce supply voltage ripple present on the outputs of switched-mode power supplies and also helps to compensate for the resistance and inductance of the PCB power planes. 24 版权 © 2017–2018, Texas Instruments Incorporated THVD1510, THVD1512 THVD1550, THVD1551, THVD1552 www.ti.com.cn ZHCSGQ1C – SEPTEMBER 2017 – REVISED DECEMBER 2018 12 Layout 12.1 Layout Guidelines Robust and reliable bus node design often requires the use of external transient protection devices in order to protect against surge transients that may occur in industrial environments. Since these transients have a wide frequency bandwidth (from approximately 3 MHz to 300 MHz), high-frequency layout techniques should be applied during PCB design. 1. Place the protection circuitry close to the bus connector to prevent noise transients from propagating across the board. 2. Use VCC and ground planes to provide low inductance. Note that high-frequency currents tend to follow the path of least impedance and not the path of least resistance. 3. Design the protection components into the direction of the signal path. Do not force the transient currents to divert from the signal path to reach the protection device. 4. Apply 100-nF to 220-nF decoupling capacitors as close as possible to the VCC pins of transceiver, UART and/or controller ICs on the board. 5. Use at least two vias for VCC and ground connections of decoupling capacitors and protection devices to minimize effective via inductance. 6. Use 1-kΩ to 10-kΩ pullup and pulldown resistors for enable lines to limit noise currents in these lines during transient events. 7. Insert pulse-proof resistors into the A and B bus lines if the TVS clamping voltage is higher than the specified maximum voltage of the transceiver bus pins. These resistors limit the residual clamping current into the transceiver and prevent it from latching up. 8. While pure TVS protection is sufficient for surge transients up to 1 kV, higher transients require metal-oxide varistors (MOVs) which reduce the transients to a few hundred volts of clamping voltage, and transient blocking units (TBUs) that limit transient current to less than 1 mA. 12.2 Layout Example 5 Via to ground C R Via to VCC R 1 JMP 6 4 R MCU 5 6 R THVD15x0 TVS 5 图 32. Half-Duplex Layout Example 版权 © 2017–2018, Texas Instruments Incorporated 25 THVD1510, THVD1512 THVD1550, THVD1551, THVD1552 ZHCSGQ1C – SEPTEMBER 2017 – REVISED DECEMBER 2018 www.ti.com.cn 13 器件和文档支持 13.1 器件支持 13.2 第三方产品免责声明 TI 发布的与第三方产品或服务有关的信息,不能构成与此类产品或服务或保修的适用性有关的认可,不能构成此类 产品或服务单独或与任何 TI 产品或服务一起的表示或认可。 13.3 相关链接 下表列出了快速访问链接。类别包括技术文档、支持和社区资源、工具和软件,以及立即订购快速访问。 表 8. 相关链接 器件 产品文件夹 立即订购 技术文档 工具与软件 支持和社区 THVD1510 请单击此处 请单击此处 请单击此处 请单击此处 请单击此处 THVD1512 请单击此处 请单击此处 请单击此处 请单击此处 请单击此处 THVD1550 请单击此处 请单击此处 请单击此处 请单击此处 请单击此处 THVD1551 请单击此处 请单击此处 请单击此处 请单击此处 请单击此处 THVD1552 请单击此处 请单击此处 请单击此处 请单击此处 请单击此处 13.4 接收文档更新通知 要接收文档更新通知,请转至 TI.com.cn 上您的器件的产品文件夹。请在右上角单击通知我 按钮进行注册,即可收 到产品信息更改每周摘要(如有)。有关更改的详细信息,请查看任意已修订文档的修订历史记录。 13.5 社区资源 下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商“按照原样”提供。这些内容并不构成 TI 技术规范, 并且不一定反映 TI 的观点;请参阅 TI 的 《使用条款》。 TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在 e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。 设计支持 TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。 13.6 商标 E2E is a trademark of Texas Instruments. 13.7 静电放电警告 这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损 伤。 13.8 术语表 SLYZ022 — TI 术语表。 这份术语表列出并解释术语、缩写和定义。 26 版权 © 2017–2018, Texas Instruments Incorporated THVD1510, THVD1512 THVD1550, THVD1551, THVD1552 www.ti.com.cn ZHCSGQ1C – SEPTEMBER 2017 – REVISED DECEMBER 2018 14 机械、封装和可订购信息 以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且 不会对此文档进行修订。如需获取此数据表的浏览器版本,请查看左侧的导航栏。 版权 © 2017–2018, Texas Instruments Incorporated 27 THVD1510, THVD1512 THVD1550, THVD1551, THVD1552 ZHCSGQ1C – SEPTEMBER 2017 – REVISED DECEMBER 2018 www.ti.com.cn PACKAGE OUTLINE D0008B SOIC - 1.75 mm max height SCALE 2.800 SOIC C SEATING PLANE .228-.244 TYP [5.80-6.19] A .004 [0.1] C PIN 1 ID AREA 6X .050 [1.27] 8 1 2X .150 [3.81] .189-.197 [4.81-5.00] NOTE 3 4 5 B .150-.157 [3.81-3.98] NOTE 4 8X .012-.020 [0.31-0.51] .010 [0.25] C A B .069 MAX [1.75] .005-.010 TYP [0.13-0.25] SEE DETAIL A .010 [0.25] .004-.010 [ 0.11 -0.25] 0 -8 .016-.050 [0.41-1.27] DETAIL A .041 [1.04] TYPICAL 4221445/B 04/2014 NOTES: 1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15], per side. 4. This dimension does not include interlead flash. 5. Reference JEDEC registration MS-012, variation AA. www.ti.com 28 版权 © 2017–2018, Texas Instruments Incorporated THVD1510, THVD1512 THVD1550, THVD1551, THVD1552 www.ti.com.cn ZHCSGQ1C – SEPTEMBER 2017 – REVISED DECEMBER 2018 EXAMPLE BOARD LAYOUT D0008B SOIC - 1.75 mm max height SOIC 8X (.061 ) [1.55] SEE DETAILS SYMM 8X (.055) [1.4] SEE DETAILS SYMM 1 1 8 8X (.024) [0.6] 8 SYMM 8X (.024) [0.6] 5 4 6X (.050 ) [1.27] SYMM 5 4 6X (.050 ) [1.27] (.213) [5.4] (.217) [5.5] HV / ISOLATION OPTION .162 [4.1] CLEARANCE / CREEPAGE IPC-7351 NOMINAL .150 [3.85] CLEARANCE / CREEPAGE LAND PATTERN EXAMPLE SCALE:6X SOLDER MASK OPENING METAL SOLDER MASK OPENING .0028 MAX [0.07] ALL AROUND METAL .0028 MIN [0.07] ALL AROUND SOLDER MASK DEFINED NON SOLDER MASK DEFINED SOLDER MASK DETAILS 4221445/B 04/2014 NOTES: (continued) 6. Publication IPC-7351 may have alternate designs. 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. www.ti.com 版权 © 2017–2018, Texas Instruments Incorporated 29 THVD1510, THVD1512 THVD1550, THVD1551, THVD1552 ZHCSGQ1C – SEPTEMBER 2017 – REVISED DECEMBER 2018 www.ti.com.cn EXAMPLE STENCIL DESIGN D0008B SOIC - 1.75 mm max height SOIC 8X (.061 ) [1.55] 8X (.055) [1.4] SYMM SYMM 1 1 8 8X (.024) [0.6] 6X (.050 ) [1.27] 8 SYMM 8X (.024) [0.6] 5 4 6X (.050 ) [1.27] SYMM 5 4 (.217) [5.5] (.213) [5.4] HV / ISOLATION OPTION .162 [4.1] CLEARANCE / CREEPAGE IPC-7351 NOMINAL .150 [3.85] CLEARANCE / CREEPAGE SOLDER PASTE EXAMPLE BASED ON .005 INCH [0.127 MM] THICK STENCIL SCALE:6X 4221445/B 04/2014 NOTES: (continued) 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. 9. Board assembly site may have different recommendations for stencil design. www.ti.com 30 版权 © 2017–2018, Texas Instruments Incorporated THVD1510, THVD1512 THVD1550, THVD1551, THVD1552 www.ti.com.cn 版权 © 2017–2018, Texas Instruments Incorporated ZHCSGQ1C – SEPTEMBER 2017 – REVISED DECEMBER 2018 31 THVD1510, THVD1512 THVD1550, THVD1551, THVD1552 ZHCSGQ1C – SEPTEMBER 2017 – REVISED DECEMBER 2018 32 www.ti.com.cn 版权 © 2017–2018, Texas Instruments Incorporated THVD1510, THVD1512 THVD1550, THVD1551, THVD1552 www.ti.com.cn 版权 © 2017–2018, Texas Instruments Incorporated ZHCSGQ1C – SEPTEMBER 2017 – REVISED DECEMBER 2018 33 THVD1510, THVD1512 THVD1550, THVD1551, THVD1552 ZHCSGQ1C – SEPTEMBER 2017 – REVISED DECEMBER 2018 www.ti.com.cn PACKAGE OUTLINE DGS0010A VSSOP - 1.1 mm max height SCALE 3.200 SMALL OUTLINE PACKAGE C 5.05 TYP 4.75 SEATING PLANE PIN 1 ID AREA A 0.1 C 8X 0.5 10 1 3.1 2.9 NOTE 3 2X 2 5 6 10X B 3.1 2.9 NOTE 4 SEE DETAIL A 0.27 0.17 0.1 C A 1.1 MAX B 0.23 TYP 0.13 0.25 GAGE PLANE 0 -8 0.15 0.05 0.7 0.4 DETAIL A TYPICAL 4221984/A 05/2015 NOTES: 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side. 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side. 5. Reference JEDEC registration MO-187, variation BA. www.ti.com 34 版权 © 2017–2018, Texas Instruments Incorporated THVD1510, THVD1512 THVD1550, THVD1551, THVD1552 www.ti.com.cn ZHCSGQ1C – SEPTEMBER 2017 – REVISED DECEMBER 2018 EXAMPLE BOARD LAYOUT DGS0010A VSSOP - 1.1 mm max height SMALL OUTLINE PACKAGE 10X (1.45) (R0.05) TYP SYMM 10X (0.3) 1 10 SYMM 6 5 8X (0.5) (4.4) LAND PATTERN EXAMPLE SCALE:10X SOLDER MASK OPENING METAL SOLDER MASK OPENING METAL UNDER SOLDER MASK 0.05 MAX ALL AROUND 0.05 MIN ALL AROUND SOLDER MASK DEFINED NON SOLDER MASK DEFINED SOLDER MASK DETAILS NOT TO SCALE 4221984/A 05/2015 NOTES: (continued) 6. Publication IPC-7351 may have alternate designs. 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. www.ti.com 版权 © 2017–2018, Texas Instruments Incorporated 35 THVD1510, THVD1512 THVD1550, THVD1551, THVD1552 ZHCSGQ1C – SEPTEMBER 2017 – REVISED DECEMBER 2018 www.ti.com.cn EXAMPLE STENCIL DESIGN DGS0010A VSSOP - 1.1 mm max height SMALL OUTLINE PACKAGE 10X (1.45) 10X (0.3) SYMM (R0.05) TYP 1 10 SYMM 8X (0.5) 6 5 (4.4) SOLDER PASTE EXAMPLE BASED ON 0.125 mm THICK STENCIL SCALE:10X 4221984/A 05/2015 NOTES: (continued) 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. 9. Board assembly site may have different recommendations for stencil design. www.ti.com 36 版权 © 2017–2018, Texas Instruments Incorporated 重要声明和免责声明 TI 均以“原样”提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资 源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示 担保。 所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、 验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用 所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权 许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。 TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约 束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE 邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122 Copyright © 2018 德州仪器半导体技术(上海)有限公司 PACKAGE OPTION ADDENDUM www.ti.com 10-Dec-2020 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) (6) THVD1510D ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 VD1510 THVD1510DGK ACTIVE VSSOP DGK 8 80 RoHS & Green NIPDAUAG Level-1-260C-UNLIM -40 to 125 1510 THVD1510DGKR ACTIVE VSSOP DGK 8 2500 RoHS & Green NIPDAUAG Level-1-260C-UNLIM -40 to 125 1510 THVD1510DR ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 VD1510 THVD1512DGS ACTIVE VSSOP DGS 10 80 RoHS & Green NIPDAUAG Level-1-260C-UNLIM -40 to 125 1512 THVD1512DGSR ACTIVE VSSOP DGS 10 2500 RoHS & Green NIPDAUAG Level-1-260C-UNLIM -40 to 125 1512 THVD1550D ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 VD1550 THVD1550DGK ACTIVE VSSOP DGK 8 80 RoHS & Green NIPDAUAG Level-1-260C-UNLIM -40 to 125 1550 THVD1550DGKR ACTIVE VSSOP DGK 8 2500 RoHS & Green NIPDAUAG Level-1-260C-UNLIM -40 to 125 1550 THVD1550DR ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 VD1550 THVD1551DGK ACTIVE VSSOP DGK 8 80 RoHS & Green NIPDAUAG Level-1-260C-UNLIM -40 to 125 1551 THVD1551DGKR ACTIVE VSSOP DGK 8 2500 RoHS & Green NIPDAUAG Level-1-260C-UNLIM -40 to 125 1551 THVD1552D ACTIVE SOIC D 14 50 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 1552 THVD1552DGS ACTIVE VSSOP DGS 10 80 RoHS & Green NIPDAUAG Level-1-260C-UNLIM -40 to 125 1552 THVD1552DGSR ACTIVE VSSOP DGS 10 2500 RoHS & Green NIPDAUAG Level-1-260C-UNLIM -40 to 125 1552 THVD1552DR ACTIVE SOIC D 14 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 1552 (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. Addendum-Page 1 Samples PACKAGE OPTION ADDENDUM www.ti.com 10-Dec-2020 (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
THVD1550DR 价格&库存

很抱歉,暂时无法提供与“THVD1550DR”相匹配的价格&库存,您可以联系我们找货

免费人工找货